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Abstract

Chemical compositions of catfish and Frigate mackerel muscles were characterized.
Characteristics, chemical and physical compositions were different among species as well as
muscle types. Frigate mackerel muscle contained a greater content of protein compared with
catfish muscle (p<0.05). Catfish, particularly ordinary muscle composed of a higher lipid
content than Frigate mackerel muscle (p<0.05). From muscle protein fractionation, myofibrillar
proteins were major proteins found in both muscles. Frigate mackerel muscle, both dark and
ordinary muscles, contained greater contents of myofibrillar proteins than catfish muscle
(p<0.05). Myosin heavy chain and actin were predominant proteins found in myofibrillar
protein fraction in both fish. Dark muscle from Frigate mackerel composed of the highest
sarcoplasmic proteins, especially myoglobin (p<0.05). The highest carotenoid content was
noticeable in both dark and ordinary muscles from catfish muscle. Ordinary muscle from
Frigate mackerel had the highest phospholipid content. Both dark and ordinary muscles from
Frigate mackerel contained a greater content of sodium chloride compared with those from
catfish (p<0.05). The highest contents of iron, copper and selenium were found in Frigate
mackerel dark muscle (p<0.05). The pH of ordinary muscle from both species was higher
than dark muscle (p<0.05). Frigate mackerel, especilly dark muscle, exhibited the most dark-
red color as shown by the lowest L* and b* values with the highest a* value and redness
index (a*/b*) (p<0.05). Lipid from dark muscle of both species was more susceptible to
oxidation than that from ordinary muscle as indicated by the lowest induction time analysed
by Rancimant test.

Changes in lipid, myoglobin, color and odor in dark, ordinary and whole muscles from

catfish and Frigate mackerel during refrigerated storage (4°C) for 15 days were investigated.
A negligible change in pH was found in both species during storage. Total volatile base
(TVB) contents of all muscles tended to increase with increasing storage time. Changes in
free fatty acid content occurred with the highest degree in all muscles from Frigate mackerel.
Formation and decomposition rates of conjugated diene were different among fish species
and muscle types. Dark muscle of both species tended to have the highest peroxide value
(PV) throughout the storage period. Thiobarbituric acid reactive substances (TBARS) values
of all types of Frigate mackerel muscles were higher than those of catfish muscles till the end
of storage period indicating a higher degree of lipid oxidation in Frigate mackerel muscle. For

the changes in heme iron content, a decrease was found in Frigate mackere and no marked



change was found in catfish muscle. Frigate mackerel, especially dark muscle, showed a
higher content of non-heme iron throughout the storage time and a slight change in non-
heme iron content was found in both species during storage. The changes in oxymyoglobin
and metmyoglobin contents of muscles from both species tended to follow the same trend.
Both myoglobin derivatives tended to decrease during storage indicating the oxidation of
oxymyoglobin to form metmyoglobin and other derivatives. A slight change in redness index
was found in catfish muscle but a marked change was observed in Frigate mackerel,
especially dark muscle. For the protein carbonyl content, it was noted that the rate of protein
oxidation in fish muscle depended on fish species and muscle type.

The prooxidative activities of ferrous myoglobin on catfish and Frigate mackerel lipid
oxidations in lecithin-liposome model systems were investigated by monitoring the changes in
conjugated diene and TBARS during incubation for 180 min. The results showed that ferrous
myoglobin at a concentration of 0.1 mM exhibited the highest prooxidative activity towards
catfish and Frigate mackerel lipids. It was also found that the prooxidative activity of ferrous

myoglobin was species and temperature dependent. The highest degree of lipid oxidation

was found at 25°C. The pH influenced the lipid oxidation induced by ferrous myoglobin with
varying degrees depending on fish species. Considering the TBARS value, a secondary lipid
oxidation product derived from conjugated diene, it was stated that lipid oxidation in catfish
and Frigate mackerel was found to be the highest at pH 7. For the effect of sodium chloride
on the lipid oxidation catalyzed by ferrous myoglobin, the highest conjugated diene was
found in catfish the presence of 2.5 % and the TBARS value of Frigate mackerel was higher
than catfish at all sodium chloride concentration. In addition, the prooxidative activity ot
ferrous myoglobin was enhanced by the addition of hydrogen peroxide especially at high
concentration. For the inhibitory activity of EDTA towards lipid oxidation in the presence of
ferrous myoglobin, it was suggested that the ability to inhibit the lipid oxidation of EDTA was
governed by EDTA concentration and fish species.

Keywords: myoglobin, oxidation, lipid, muscle, fatty fish, chilled storage
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AUFIAU NMTLAURANLAINENI LaNaNAALTwNTA s kLaznBLTaTes NMTeaNTLATHY DY la®
1uﬂﬁﬁmf':a°7il,ﬁ@°ﬁvumwé’ammwmaaé’mfﬁuag’ﬁ'uﬂﬁ]fﬁ'wmﬂﬂizmi lawn anududues
TuvoanGuanst 11w 1wan rhevasnseladuiiiduasdusznoululodn rhauaza N uives
#a% sfiavasnduiie uaztawloiunssfiafisansassnmseandiatusasladu ww lawand
U (lipoxygenase) I@yﬁ"’svlﬂLm”qLi{aé’m’j‘mulmyja:ﬁmiﬁ'maan%m%’ummma (natural

. . o v i v a a { a é/ v g 1 a a
antioxidants) vwiih e unsetzaaljn3seandietuniiadulundruiia wn Jandninialn

lawasea (tocopherol)  latddlndnintaesiludanauiduasdisznay ou ansludu



(carnosine) Lawlaleng ¢ 1iu nganlslawiwesoandiaw (glutathione peroxidase) 1Hudu
(Foegeding wazate, 1996)

laguludansiadsznaudlronsalesin EPA  uwaz DHA  dszanmsasas 90 Ua9nsa
lsusfialidusn wenanitludulsdisznaudonialaduriialiduddu g fuandronu
%uagliﬁ'Uﬁﬁmaaﬂmﬁ?w] nIa T RadN9 9 Lﬂumiﬁg\iﬁuﬁﬁ%ﬁﬁ@@iaﬂﬁﬁ%maan%m%’u
ludusunsoudauiu 2 ndu fe lasnfizalsd uazWeslndlla lavlasnfialideznuatlu
gﬂmamﬂm{wﬁuﬁz\amUsl,ul,l,azmsmamsﬁaﬁ srunaalwaaszwuagluansos biayer luty
WLUIUVDILTRS uanmnﬁﬁﬂhﬁ‘[uLaqamaoaan%muﬁﬁmﬁﬂﬁLﬂuaﬂiéaﬁuﬁéﬁﬁmuL“ﬁuﬁu 8%
wdnuaznasuasiidulansiTunumadnyluiadevessad lagrmihfiduldseonduaus

(FNTIw LYana, 2548)

H H H H H H Polyunsaturated
-c-C=C-C-C=C - Fatty Acid
H H
02
H H H H H H Tasteless But
-cLC-Cc=C-C=C - Reactive
H 0 - -
o Peroxide ——» Peroxide Value
H /
H H H H H H H H
c-C=C-C=0C - C- H-H
| | T
0] 0 O
Aldehyde Malonaldehyde
(Strong Flavour) Thiobarb.itunc
and Reactive TBA Value Acid

4' A o o a o g A o e
31]7]1 mzmumiaaﬂsmmju;’uaaﬂmvlmuuvl,uaumlumamaa@ W

a1 gniad LWwagana (2548)



tladainsilsznrsndnananistssiAnsaraandiadwaas lasin (a!ﬂﬁ"'a'@uﬁ \UQANA, 2548)

1. DANTLIB

UndudreandianlidesaziashidedfiTen iwszdl unpaired electron 2 ¢ Tavinwif
[y o o Aaaa o . . A ' o
flasriunisvujasenduluiana (spin-forbidden) dvagludnume ground  state laslans

a o d' & 6 1 6 AI AAda o v dl 1 aaa g: a n‘ (% 6
mm%u‘nLﬂuadﬂﬂszﬂauaghmaamaaaawﬁm%m%mwLiaﬂgﬂsmﬂmuwlmauvlﬁnuLm:
19 o 6 a a a . a A 3 Aaaa oA > €t:ll v
Tiltienlad aanFrausfianinian (Triplet oxygen) danuidasdal e uanianmsinla
> ™ 1 J

INN3TANTU (reduction products) AN higadn

2. Tane NI UG T

ﬂ'%mmmﬁn‘lunﬁwLﬁaﬂmu@m@haﬁ‘mr}mmddﬁaglimﬁﬂ Uarniiaw113a21w

v @ & o ' Aa & a 2 & ) L A o & & a A
Wautwwasnandinitdanlifefes angwlnaiwuiniduasdlsznavasaiied fa
Flaulnadu wazlaulalnadu uananidsdildsdusiindn wou tolnlasy (cytochrome) Aawad
é g‘ U [ U =4 U v v
3918 cytochrome C TaN1Iaaza8in laazsnwdn W lnlolnwansdy dranududuaad
& & A = Y = ) a A

"Laimmmwasaaﬂ"lwgaLwmwaa:malmmgmﬂmaﬂgﬂﬂa@ﬂaaﬂaanmnau Tuamenay
wutuaadlalasianinasaan koaean mﬁn‘l,uﬁngnmzéju

Iammww’?j‘*ﬁuﬁagﬂué’nwmzawaamzﬁfu unpaired electron N1 AU ATEN8E19

& a o & o 2+ o a v
TQQLTQﬂUINLaQﬂTQGQBﬂGﬁWu @Gu%L‘V\Iﬂ%ﬁﬁ (Fe ) mmiﬂﬂix@;uaaﬂGﬁL%uLLaxlngwag

2
=1

aanbua (0°,) addh
2+ 3+
Fe + 02 % Fe + 002
& & A \ . . A a £
miwadeanlad swnsnasuudatlasriunizuauns dismutation Gaiialuiaslag

a A a 6 6 ea A 04 a%’
ﬁiiﬂJ"ﬁ"l(ﬂ‘Vi‘iﬂLﬂ@’l"ﬂ']ﬂLa%vLsﬁﬂJeﬁquaﬁﬂaﬂvlﬂj@@ﬁN'JL@]ﬁ 3%

20°%, + 2H — H,0, + O,
o

6 ed a o aaa a 6 Aa &
vL‘e’lI@iL"ﬂ%LW@iaaﬂvleﬁ@‘ﬂLﬂﬂ ummmmﬂgmmnuamama\iL‘V\Iasia tnatiu

Aa Qs dy
a%avl,amaﬂﬁnamz A9h
2+ 3+ o) -
Fe + H,0, —> Fe + "OH + OH
a Aa 1 dq, I Qs AI U v A Aaaa a Q/ %
a%aaaizvlamaﬂsﬁamzmmmﬂumLiu@ulﬂm@ﬂgmmaanmwmaa"lfuuu N9
=) aAaa =Y L L= = =Y U { A I ¥
el jAsenaandiatuvad lvduludamarssfiaialaan pH 6.5-6.9 Gallu pH vaudiata
o o a o Ao o q o e o & Y
NYHRAINITNNEY LLa:mmmsnmm"[waqm%gum 0-6°C LLmluamaﬂnLLaxamaLamgﬂmﬂuu
a a £ I A A o ' A A A = !
mm'ﬁmzmmuvl,@uaUwqmmgmfl TagiawzlugansasuuiuTwadiitattaUaiiuuvas
maovl,mﬁuﬁﬂszﬂauﬁ’sﬂﬂmvl,mﬁu%ﬁﬂvl,&iﬁuéhQﬂuﬂ%mmﬁqaﬂ'jﬂu"lmﬁuﬁ"svlﬂ BILNNULLTUIL
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Wwunad luiwnanludaiiitoan eanlwdaiadn wuind winaaueasailuasdilsznausay
8% 40-45 VaIUSNNATLTAR
3. wannfuasddsznavvasda
mMuIaInaﬁu%%aLuw‘éiﬂﬂaﬁu%aLﬂuiﬂiﬁuﬁuﬁmﬁmfluaaﬁﬂs:ﬂaua%ilu
[ o aaa s 6 6 % a g a g o‘d'
lassgsvswnsorljiseanulalasiauwasasnled usniaduasndadmsinaunsn
1 v a 1 a Q é a &/ 6 d‘;/ dl U
naliwtAani1sissaandLat mmsmmwnaavl,aimmmwasaaﬂ"lsmﬁl,w,uawammmm:@;u
a A £ 1 v A aaa a > s cg/
lis@uda uanalwifadfisoneandiatusasladuiu
4. Singet oxygen
Singet oxygen 71321fin91NNI2UIY photosensitization #azatiluaniziignnazduuazdl
wé’amuﬁgo L‘%ﬂﬂh}LaqamwﬁﬂﬁmmmgwﬁuLLmLLé“’JLﬂﬁsmﬂuamfazgﬂmzé}uﬁ’h
g ad e . . - -
sensitizers  813U3zNaUTIINTIGNLTIW sensitizer  Usznaua o s luWanIn Lazwas NG
(porphyrin)
5. Lot L3
A . A A . & &
lanand3iua (lipoxygenase) 3o laaand3iua (dioxygenase) tuian lodfaursany
Talwmdan wid uazlavasdan tawlmilwnibianuiinnaldifianmsigautgouad lanluwialia
U d?’ U Aa o aaa 2 £ ai a 6 A di
nauiela lawanddmwasunsaviljison leanunseladunesmedldnunsiresesiile
Wisuisununsa luiwdstzlaotaw krdauitntwianas i luitataraniavgs laganwie
sluﬂ'umaumﬂhﬂszgﬂaaﬂ luﬂ‘szmumiwamﬂmmﬁafﬁﬁ

Talalnadin
Tulalnadwidulds@unsanannfiminluanadzanm 16.8 Alaaadulsznaudis
sauidulisd@wiondt Inadu (globin) wazduiidussaiagiiundt §u (heme) lasfidiuvas
Fwazdeudragnululasiairovasinabudadudiui lizensi uazduazdeatiulnaiuas
duniinydlonlon  (imidazole) vainInazlludsiiau (sUn 2) luanaveslulalnadu
fnIndunuaanFanuuudeunaulasslunuindiaydanissdosuaziiuinenaandian
v 1 v dq’ & = Qs Q a a I3 U v 1
IRunnawile Sansdualnueandianaadiulalnaduaniduidulasuuulawasluan
(hyperbolic curve) lulalnadutsznaudialassansrsuniumasniu (porphyrin ring)
UsenauaigazaaNeadtnan WunInnes wsulsznauderaanlulasian 4 drunis
FATLIAUUUITEMNIY AN 5 wduNUTaAauvadlUsiunsenan (globular  protein)
° oA oo o o A A = A A A o o 1 A &
dunisn 6 lddwivdueandaunisluanasmiaianau 9 HflunundAydefueniie

=) =Y J = =3 v ¥ a v ¥ =) =)

YSunalulalnadudunuafievesnanuiite Aanssuvednauiite USuimeandian nns

a A o & ) @ o & o Ao o ada =& A
Tnaiauvadifa 01578970} Tasmluinnulunaiuitadn TuunengalgadTIamaniny
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UszanmiSanaz 10 azaglugdlulalnaiu srulngudrazedluzddlulnaduuazunediudn
Wniapazaglugdlolalasunialils@unazaunindus udlliaiunsieniaasaniduatneg
srnudnundninuludadindnudinlngSenaz 95 azagluzdlalolnadu denunis

d Y ¥ =2 £ | o A & o .
wWasnulasFuaandaitedulwgdaduagiululalnadwduddny (Belitz uazamiz, 2004)

(a) (b)

5uf 2 lassesanadidvesialelnadu (a) warmissudivesndniulnaduuszaandiaulu
luanavaslulalnadu (b)

N1 aaudadann Belitz uazatue (2004)

o ad A o &= A PS
snwucAndnnguentadadidunaniainnisganinusizasiulalnaduuazns
o o A A a A = A A =
nznsussvadulunauiile Sefuassavasiaidunaniannisganivussiigiuaziinng
Aos a a A A A AaAa A A
nszansusdng aaandlulalnadunIalulalnadwiFi9uas AA1INGANTIUURINIANYT
a a a A A Aaa a A P
ARUEIFA 555 Wl e lummz*naanmvluiaiauusﬁomau,mamzummm@@ﬂammwmm
BIARUFIFAT 542 WAz 580 wlniuas watlalulalnaduianisaandiatuannat ot wun
a & aad A A A A
TulalnadudsliminamazanningandiuuaiNiaue1IAaugIgan 505 uaz 635 w1luiuas
(3UN 3) ssvznauuesiia 1w CO, NO, Ny uaz CN sansndunululalnadule
1 =} s Qs a =3 v =} 1 =1 Qs Qs =)
wuidsinunueandlaudiaunnlduszyduuuniiganfsusiswdoinuiveandlula
PN o o A o PN a £ v A 4 oA a £ & o '
Tnatin MIsuarvadaandiawnululalnadniialiu laatlad NiaTiANTh  WaNINHEIINLIN
a { a 2+ . ' o o
m§ﬂaaszﬁ1ﬁq@aaﬂma’m1ﬂauu (free heme, Fe -protophophyrin) 2z lianunsaduny
+

a v 1 a a R v [l 3 | Aaa . 3
aaﬂsmﬁm"lmmemmm@miaanm@“ﬁuvl,@amas’mn’munmmﬂuauu (hemin: Fe -
protophophyrin) (Edder, 1996)
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1Y

T

0.l

bz

'8}

] Elil 254 k] H50
FAL L
3U7 3 Jduuumiganduuaivasdiaandlulalnadu () aan@lulalnadu (- - - -) uaziun

lalalnadu —)
A3 Eder (1996)

Talalnafinlutibaiad

laulalnaduandanfesdtsznauvainsanazilu (amino acid composition) LANA1IN
lulalnaduandadiasagneasun laslulalnabusesdandsznoudodmadu luntaezdily
146 61 WUINTAEA U IMIB 79-85 @2 lud1@LvaINTABzA 11 (amino acid sequence) a2

uwand9nlulalnadiuandaion (gnsiw wgyans, 2548)

nstnailAnSaeandiaduwaaslalalnatin

UjfsenaandiatuvadlulalnadunaldfanslfsuudssFuaaiadaluseninaiu
snw lawlulalnaduazidaswduiunlulalnadu (metmyoglobin)  HeilFiaa (U7 4)

a (4

le, a ) v ai I A 6 aaa a o Lo
waninitlulalnadudeviminiduldseanduaudvasdjismeandiadululoiu (anoia
wayana, 2548) lulalnadiuludanfianuiashdedjisueandiatungenidafiaegnean
nyUszanms 2.5 11 I@Umwwzﬁqmwgﬁgmazﬁm%ﬁw W MWEN1IENIIALINEN U
123 6 6 1Aa dl dl A s 62/ = 1 a aan
faoaivaulaeen loddiinmgaiarzaanaiieniorasda i inasainmaiad jitenves
aandiaTuwyadaand bulalnadw liilwantulalnaduwarinalvmilaouwwdasly seninems
Lﬁu%‘ﬂmﬂmumluan’mmiw‘ﬁd WUl asrvastadaraudunaannig

Aawuntulalnadn Elqm‘ﬂzj“ﬁﬂﬂiLﬁU%ﬂH’]ﬁNﬂI@ﬂ@]ﬁd@iEléT(ﬂ‘i’lﬂ’]‘iLﬁ@LlJY]VL&JIaIﬂﬂﬁu Tasnny
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Lﬁu%‘ﬂmﬁqmﬂgﬁ -33°C  mraInTzaan A uLlasF e a9 i UTEENT AW WRIIW

N3z (apparent activation energy, Ea) lumatiiaiun lulalnaduludaa@duaafidiviiiy

252, 90.5 W8z 18.3 kcal/mole LﬁaLﬁU%‘ﬂm%uﬂmﬁqmﬁgﬁ 2, -2 §9-5 uar -5°C
ANNRIAL msm‘é"wuﬂm%maaﬂmﬁﬁu%’nmﬁqmugﬁ@im?aLﬁu%'ﬂmluama:u,‘*ﬁuﬁa
sansnazaaldlasmslifmihvesindamduiaiuaanGlaniiszeudn dsaansoilasuwaan
Faulalnadwdwlalolnatin wasaniuielituladudanuenfuauvonan lod3unmiay
voaoululalnaduldiduasuendlaulolnadn (carboxymyoglobin) ~ Ssdananuniuda
Ujismeandiatulddniteandlulalnadu (gnoiat iwnana, 2548)

Myoglobin (Mb) oxygenation Oxymyoglobin (MbO)

. ot > . 2.
(Ferrous iron, Fe™) % q (Ferrous iron, Fe™)
eoxygen

ation
reduc\ /Jn
)

Metmyoglobin (MetMb
(Ferric iron, Fe™)

i 4 madsuudasvasiulelnadu

nan gnaiad lgana (2548)

MIeanTiaTuatnet o uwudaiasuadlulalnaduildlulalnadunaneduinla
lolnadudidF71u1a1a N17LAA00NTLATUAINENILTENTN NISLNABalABBNTLATY
a Qs v =2 ¢ d o vV A g U { U
(autooxidation) wian1seandiatudiudiies Tamansngniniethldiieluanldilad e
A 1 { & o a a g . . .
7083 Dalusznirndfilasaaasiuazvhlilnaduuszduianmgaaanainiu (dissociation)
2 o v ' a A o &£ o Ao ¢ A o & aa
vl Bniedansiiaeendiasuinniu Murainaaiany eraiaziRiaTUIzanth 7 uas
o o A A A oA o & a a A ' o
i lilassasvaslulalnaduiiiadosniw udllanaruiitasianisinale ladadassana i
g > < o =Y a =Y L U J ¥
WagailntaTazanaidu 5-6 azvinlit bulalnaduiianisealaaandiatuladinodin wanaini
v a a L% J 1 ad v [ dl' a d' a
winafissnwedlulalnadudslinediugmnniidndqs 1w WaRasanmfsuudasives
iaflgunnReneg wudn thesanfiftemiviniy 5 azauninifiuinma 25°C laszunm 2.8
T UIUATUAUTAEN 0°C zauTnvzaaN U ULURIF bUIUE9 5 14 (Foegeding WA
ATy, 1996)
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= Aada v
ITLUHUIDIE

d. 3 o A t% [y &
fnawn 1 ﬂ']sﬁﬂﬂ']aﬂﬂﬂszﬂaumqﬂLﬂNLuaGm%ﬂaﬂﬂanL%aﬂaq‘[ﬁ] Llazﬂaqﬂﬂ

minaassasaililan 2 ofla e Yanla (frigate mackerel; Auxis thazard) waziangn

(Gunther’'s walking catfish; Clarias macrocephalus) Walluwaunwvesdasiaunazlaiiiae

t:llt:l a2 L o o Y [l a a gl ° v 9
Y]l]'].]i&l’]mvl,“llllufﬂ\‘i 20NN I@ml‘*ﬁ@’mm@ﬂm‘*ﬁu@az 5 ﬂIﬂﬂ'ﬁ&J mmm\‘imm’mazmﬂim

o = o < =g q —_— v & v & di
1°II‘1«I>’1LEJ% (4°C) Nnuuabadataantiu 2 ﬂE‘!SJ A NRTNLUDAT LLRZNRTULUD U DI

° [y & 1Y a LYY o o . v o g L
qﬂflﬂ’]il,l,ﬂﬂﬂﬂ’]l]Lu@@’]vl,@ﬁnﬂlﬁlﬂMLauﬂl’Naq@]QTaﬂﬂaq (lateral line) LLazFLTﬂaqﬂJLuaﬂﬁvlﬂ

(ordinary muscle) NI&IWUS (dorsal muscle) LaEEIUENI (ventral muscle) tHuaunuves

. & M. v X .ﬁ ¥,
ALty waaz ldihausasnauitarias (belly muscle) W lglunsans luasedh sin

nauLhadLaznaNtarINwen leuualiazidoaaiuiaIasuaiiie ﬁnﬂﬁfuﬁﬂmiqué’aama

A o a [3 6 a & 7 v & [ '
WarinmMItaTzrasatlsznaumtaliasauuainauiie VL@]LLﬂ

1.

Aa e 1A AD L a kg . g ad
IenzidTinmanudn ludusin 1Usdn wazidn (proximate composition) aN3TANT
289 AOAC (2000)

: A 'Y & A o [ en &
nmausnduldsdundaiie Ssazvinsusnlaserdoguantlunmsazaisoaniu 5
sulaudznstsznavlulasiand lilglusdu TusGuoslananaia lusaululalwusas
lusdunazanelaludrs uazalasun a1n35ue9 Hashimoto uazame (1975)
avaseujluuuuaziwinluanazasldsdunduiiietan laslfinaiia SDS-PAGE
(4% stacking gel L8z 10% running gel) (Leammli, 1970)

@72970NLaT (Benjakul Lazathe, 1997)
FianzrdSunmlulalnadulunaauiiadandmsnsanamenaswatinines wariaen

A d' di ad .
NIQANAULEINANEIAAK 525 wluluasauiTnnvas Benjakul WAz Bauer
(2001) uddwiamanudutuuadlulalnadu lasld milimolar extinction coefficient
Winny 7.6
JiaerdSinanealnglla auitn1ues Stewart (1980) LazAlsNUaLANIRNA AN
2BN13V8Y Zheng LazAthe (2010)
Ansuaiissawedluiudaniseandatulasn1iGaaiuan Induction time duLATaY
Rancimat

a =y A [
anIaLSumlofouaaa b3 (AOAC, 2000)
aaUSHmran aadidas uazimaiien @181@389 inductively coupled plasma
. L. a =
optical emission spectrophotometer (ICP-OES) 333113284 AOAC (2000) TILHaN
Fr & . Ao o ' o  a P e A , S A
wazaaiiasaaidu prooxidants Nd1A &IunITIaUIUBMLLALBENALNELITRINTH

\ & & a 4 & L. . 9 &
agvadaulminganlslewnaioanGias Taillu antioxidative enzyme lunduiita
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10. 30& lagiadn L* a* waz b* warnunua1ashiuag (redness index; a*/b*) @133

2849 Chaijan LazAne (2005)

aaudl 2 @nwinistlagwuidasuaslain Ialalnaiiv & uaznanlwnalrutailailouas

1 ® o 1 ® { @ [
dalian ‘ixﬁ'lﬂﬁﬂ']‘itﬂﬂiﬂ‘lsﬂLL‘]J‘]JLL??LEI%ﬁ 4°C 1wtian 15 1w

Mmsansmadasuntasvadsladw lulalnadu & uaznan lunauiiiadn  (dark

muscle) nNaNLHa1 (ordinary muscle) LRzNaNLHaTIN (whole muscle) ya9talauazdan

an TERINMIAUTEMUULTELERA 4°C 1Tuan 15 % laaAuTnenalagislauauday

ThA luanWSLa’ﬁﬁuqaa: 200 NIN UIN 12 04 ﬁ’m%’un’mﬁuéfqamm%'mz 3 99 31UIn 4

A39 (AU 0 5 10 kaz 15 VaINMTALITAE) tadaaumTilasuutasvadlasulaulalnadu &

LRZNAWAAUNG LalLn

1.
2.

8.
9.

YSanmnsalaiudase (Lowry uaz Tinsley, 1976)

N peroxide value (PV) NIV Shantha LWae Decker (1994)

N thiobarbituric acid reactive substances (TBARS) ANITNNIV89 Buege LAz Aust
(1978)

fi1 conjugated diene MN3FN3189 Undeland wazams (1998) Tagsir luduiianialaan
azanelu isooctane LLﬁa’;’@wmi@J@ﬂﬁmLmﬁﬂ’num’m'é"u 234 W luluas

mM3tUaewL 8998915870 oxymyoglobin W&z metmyoglobin  laginsanialule
Tnaduee 40 mM phosphate buffer, pH 6.8 Mu35A13289 Chaijan wazaAmse (2005)
13010 heme iron L&z non-heme iron (Benjakul LLa Bauer, 2001)

Sadasiitora Tapiadn L* a* uaz b* uazseuA1euiauas (redness index; a*/b*)
(Chaijan kazAnz, 2005)

ANLaT (Benjakul Wazatke, 1997)

f1 TVB lagldis Conway maAtnsnaulas Hasegawa (1987)

10. Ysunmansuefiaveslusauauitnisuas Mercier uazamse (2000)
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mann 3 anwvinazadlulalnativdanisiiaaandiatuaadslasiw vasilarlavazilalian

Tuszuudans

1. aﬁ'@LLa:ﬁ’]u‘%qw%ﬂﬂa‘[naﬁumnnﬁwuLf:a@i’maaﬂmia uwazlangn aw3snIves
Chaijan WazADAz (2007) NINNNILATEY ferrous  myoglobin Taanns3a9aa8 sodium
dithionite @x3TN152849 Millar Lazatse (1996)

2. aﬁ'@"lmﬁ'umﬂﬂﬁwmf:ammaoﬂmiaua:ﬂmqﬂ a1u3N13209 Bligh  Waz Dyer
(1959)

3. dnwnavadlulalnadudenisiineandiasuveslaswluszuudnaas lecithin -
liposome (ﬁ@LLﬂaﬁ%m‘i"nad Yin Wl Faustman, 1994) %am’%ﬂm:um‘haao lecithin -
liposome Tagmsazaneta®sn 8 mgml) Auluiuannauitotsn ¢ mg/mi) w40 mM
phosphate buffer pH 7.0 ﬁ]’mﬁ?uLLlid"qmﬂ"ﬁﬂ@aa\‘lLﬁlaﬁﬂm é'\‘lf:

34 @nwnavasnnudutuved ferrous  myoglobin  uazamnnddaniaiia
28NTLATUVDI MK lasvinnILdy ferrous myoglobin ﬁa:mﬂagﬂu 40 mM phosphate buffer
pH 7.0 ANLTNTU 0, 0.005, 0.01, 0.05 uaz 0.1 mM (TaaIuAuIzIMTENTHIWaTUNwly
lalnadn) mnfuﬁﬂﬂﬂuﬁqmwgﬁ 4 asenaados wom 180 widl lufidia g
fr0gn9LND3LATIZ%5AN conjugated diene uaz TBARS lutaani 0 30 60 90 120 150 uaz 180
W lagssnuen conjugated diene 1%31]?!80 OD 234 nm WazNLIUNAA1 TBARS 1%31]
289 OD 532 nm NNTHAALEaNANNTNT IS ferrous myoglobin vl IoanTiat
maﬂmﬁugaﬁqmﬁ'aﬁnm%w%wamaaqmwgﬁ@iamuﬁ@aaﬂ%m%‘maﬂmﬁu lag@nuf
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Table 1 Chemical compositions of frigate mackerel (Auxis thazard) and catfish (Clarias

macrocephalus) muscles

Compositions Frigate mackerel Catfish
Ordinary Dark Ordinary Dark
Proximate composition
(% wet muscle)
Moisture 75.0110.01c  73.70%0.27b  71.55%0.25a  75.6810.27d
Crude protein 23.0810.05c  23.2120.19c  18.70%0.34b  18.1910.09a
Crude fat 0.8410.01a 1.902-0.00b 8.5410.04d 5.0510.02¢
Ash 1.08%0.00a 1.19£0.00c 1.21%£0.01d 1.09£0.01b
Nitrogenous composition
(mg/g wet muscle)
Non-protein nitrogen 5.1910.01c 4.8710.00b 2.2910.01a 2.2610.01a
Sarcoplasmic protein 10.6710.12c  11.5410.36d  9.3010.06a 9.8510.24b
Myofibrillar protein 30.8111.28b  30.0212.07b  21.9910.73a  23.5210.24a
Stromal protein 12.0910.30b  17.44%1.03d  10.63*f0.06a  16.1210.12¢c
Alkaline-soluble protein 11.4510.05b  11.4910.06b  17.2610.23c  8.99%0.00a
Carotenoid (mg/g) 0.1310.01a 0.3210.01b 4.3710.07d 4.0310.05¢
Myoglobin (mg/g) 6.1910.01c 7.5210.02d 0.7510.01a 3.0110.03b
Phospholipid (mg/100g lipid) 23.07+2.97d  16.5713.03c 9.6910.61b 2.6310.42¢
Sodium chloride (%) 1.20£0.03¢c 1.15%0.03¢c 0.7710.04a 0.9010.09b
Minerals (mg/kg)
Iron 5.6710.45b 24.8410.87¢c 2.8810.10a 5.4510.35b
Copper 0.5710.02b 2.2810.22¢ 0.5510.13b 0.2210.02a
Selenium 2.2910.10b 3.2310.11c 1.22%0.12a 1.23%0.10a
pH 6.1610.16b 5.9610.02a 6.8610.01d 6.6910.04c

*Values are given as mean T SD from triplicate determinations.

**Different letters under the same row indicate significant differences (P<0.05).
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Table 2 Color of frigate mackerel (Auxis thazard) and catfish (Clarias macrocephalus)

muscles
Frigate mackerel Catfish
Color
Ordinary Dark Ordinary Dark

L* value 46.8810.03b  35.3510.15a  48.6110.20c  48.43F0.16¢
a* value 8.4410.04b 9.8110.30c 7.5310.11a 8.7110.22b
b* value 13.0210.05b  11.7910.13a  25.0910.11d  18.9610.14c
Redness index 0.6510.00c 0.8310.03d 0.30£0.00a 0.4610.01b

*Values are given as mean X SD from triplicate determinations.

**Different letters under the same row indicate significant differences (P<0.05).

Table 3 Induction time of lipid extracted from frigate mackerel (Auxis thazard) and catfish

(Clarias macrocephalus) muscles

Species Muscle type Induction time (hr)
Ordinary 1.0410.02b
Frigate mackerel
Dark 0.8410.01a
Ordinary 1.5310.10¢c
Catfish
Dark 0.8710.03a

*Values are given as mean + SD from triplicate determinations.

**Different letters under the same column indicate significant differences (P<0.05).



II.MHC

Figure 5 SDS-PAGE patterns of dark and ordinary muscles from Frigate mackerel and

catfish under reducing condition. M, molecular weight standards; 1, Frigate mackerel ordinary
muscle; 2, Frigate mackerel dark muscle; 3, catfish ordinary muscle; 4, catfish dark muscle.

MHC, myosin heavy chain; AC, actin.
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Figure 6 Changes in pH of whole (W), dark (D) and ordinary (O) muscles from Frigate

mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 7 Changes in total volatile base nitrogen (TVB) content of whole (W), dark (D) and

ordinary (O) muscles from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage

4°C) for 15 days.
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Figure 8 Changes in free fatty acid (FFA) content of whole (W), dark (D) and ordinary (O)

muscles from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15

days.
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Figure 9 Changes in cojugated diene (CD) content of whole (W), dark (D) and ordinary (O)
muscles from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15

days.

25



14 - == Nlac/\W
== N\ac/D
=de=NMac/O
i C At W
== Cat/D
—8—Cat/O

PV (meq/ kg lipid)

0 5 10 15

Storage tune (days)

Figure 10 Changes in peroxide value (PV) of oil extracted from whole (W), dark (D) and

ordinary (O) muscles from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage

4°C) for 15 days.
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Figure 11 Changes in TBARS of whole (W), dark (D) and ordinary (O) muscles from Frigate

mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 12 Changes in heme iron content of whole (W), dark (D) and ordinary (O) muscles from

Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4OC) for 15 days.
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Figure 13 Changes in non-heme iron content of whole (W), dark (D) and ordinary (O) muscles

from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 14 Changes in oxymyoglobin content of whole (W), dark (D) and ordinary (O) muscles

from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 15 Changes in metmyoglobin conent of whole (W), dark (D) and ordinary (O) muscles

from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 16 Changes in redness index of whole (W), dark (D) and ordinary (O) muscles from

Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15 days.
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Figure 17 Changes in protein carbonyl content of whole (W), dark (D) and ordinary (O)

muscles from Frigate mackerel (Mac) and catfish (Cat) during refrigerated storage (4°C) for 15

days.
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Figure 18 Effect of ferrous myoglobin concentration on the formation of conjugated diene in

lecithin-liposome model system from catfish.
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Figure 19 Effect of ferrous myoglobin concentration on the formation of conjugated diene in

lecithin-liposome model system from Frigate mackerel.
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Figure 20 Effect of ferrous myoglobin concentration on the formation of TBARS in lecithin-

liposome model system from catfish.
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Figure 21 Effect of ferrous myoglobin concentration on the formation of TBARS in lecithin-

liposome model system from Frigate mackerel.
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Figure 22 Effect of temperature on the formation of conjugated diene in lecithin-liposome

model system catalyzed by ferrous myoglobin.
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Figure 23 Effect of temperature on the formation of TBARS in lecithin-liposome model

system catalyzed by ferrous myoglobin.
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Figure 24 Effect of pH on the formation of conjugated diene in lecithin-liposome model

system catalyzed by ferrous myoglobin.
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Figure 25 Effect of pH on the formation of TBARS in lecithin-liposome model system

catalyzed by ferrous myoglobin.
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Figure 26 Effect of sodium chloride concentration on the formation of conjugated diene in

lecithin-liposome model system catalyzed by ferrous myoglobin.
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Figure 27 Effect of sodium chloride concentration on the formation of TBARS in lecithin-

liposome model system catalyzed by ferrous myoglobin.
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Figure 28 Effect of hydrogen peroxide concentration on the formation of conjugated diene in

lecithin-liposome model system catalyzed by ferrous myoglobin.
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Figure 29 Effect of hydrogen peroxide concentration on the formation of TBARS in lecithin-

liposome model system catalyzed by ferrous myoglobin.
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Figure 30 Effect of EDTA concentration on the formation of conjugated diene in lecithin-

liposome model system catalyzed by ferrous myoglobin.
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Figure 31 Effect of EDTA concentration on the formation of TBARS in lecithin-liposome

model system catalyzed by ferrous myoglobin.
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Chemical compositions and color of dark and ordinary muscles from
frigate mackerel (Auxis thazard) were characterized. Moisture was the most
predominant component found in both muscle types and the higher content
was found in ordinary muscle (p<0.05). Ash and lipid contents were found to
be higher in dark muscle (p<0.05). No difference in protein was observed
between two muscle types (p>0.05). Ordinary muscle composed of a higher
content of non-protein nitrogen (p<<0.05). Sarcoplasmic and stromal proteins
of dark muscle were higher than ordinary muscle (p<0.05). Both muscles had
the comparable contents of myofibrillar protein, alkaline-soluble protein and
sodium chloride (p>0.05). Dark muscle composed of greater contents of
myoglobin, carotenoid and minerals (iron, copper and selenium) whereas the
content of phospholipid was higher in ordinary muscle (p<0.05). SDS-PAGE
revealed that myofibrillar proteins were major proteins found in both muscle
types. Myosin heavy chain (MHC) and actin were predominant proteins in
myofibrillar fraction and MHC was generally higher in ordinary muscle than
in dark muscle. Dark muscle had lower values of L* and b* but it had higher
a* value and redness index (p<0.05). Lipid extracted from dark muscle was
more susceptible to oxidation than that from ordinary muscle as indicated by
a shorter induction time analyzed by Rancimat test (p<0.05).
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(p<0.05). Frigate mackerel, especilly dark muscle, exhibited the most dark-red color as shown by the
lowest L* and b* values with the highest a* value and redness index (a*/b*) (p<0.05).
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Abstract

Dark and ordinary muscle from Frigate mackerel (Auxis thazard) and catfish
(Clarias macrocephalus) were characterized. Chemical and physical compositions
were different among species as well as muscle types. Moisture was the most
predominant component found in both muscle types of both species and the higher
content was found in ordinary muscle (p<0.05). Catfish, particularly ordinary muscle,
composed of higher contents of lipid and carotenoid than Frigate mackerel muscle
p<0.05) but ordinary muscle from Frigate mackerel had the highest phospholipid
content p<0.05). Dark muscle from both species composed of a greater ash content
than ordinary muscle (p<0.05). Frigate mackerel muscle contained a greater content
of protein compared with catfish muscle (p<0.05). Myofibrillar proteins were major
proteins found in both muscle types. Both dark and ordinary muscles of Frigate
mackerel contained greater contents of myofibrillar proteins than catfish muscle
p<0.05). Sodium dodecyl sulfate-gel electrophoresis (SDS-PAGE) revealed that
myosin heavy chain and actin were predominant proteins found in both muscle types
of both species but the intensities of those protein bands were higher in catfish
muscles suggesting a higher integrity of myosin and actin from catfish. Dark muscle
from Frigate mackerel composed of the highest sarcoplasmic proteins, especially
extractable myoglobin p<0.05). Both dark and ordinary muscles from Frigate
mackerel contained a greater content of sodium chloride compared with those from
catfish (p<0.05). The highest contents of iron, copper and selenium were found in
Frigate mackerel dark muscle (p<0.05). The pH of ordinary muscle from both species
was higher than dark muscle (p<0.05). Frigate mackerel, especilly dark muscle,
exhibited the most dark-red color as shown by the lowest L* and b* values with the

highest a* value and redness index (a*/b*) p<0.05).
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Introduction

Surimi can theoretically produce from any fish (Shimizu, Toyohara & Lanier,
1992) but the rheological characteristics of the surimi gel depend on the properties of
myofibrillar proteins, which are affected by the species (Shimizu et al., 1992; Niwa,
1992; Chaijan, Panpipat & Benjakul, 2010). The marine white fish species used in
Southest Asia for production of surimi are mainly threadfin bream (Nemipterus spp.),
bigeye snapper (Priacanthus spp.), croaker (Pennahia and Johnius spp.) and lizardfish
(Saurida spp.) (Morrissey & Tan, 2000). However, the major problem facing the Thai
surimi industry is the supply of raw materials (Morrissey & Tan, 2000). Due to the
limited marine white muscle fish resources with the overexploitation of marine white
fish in the Gulf of Thailand, dark muscle fish have been paid more attention as a
potential alternative raw material for surimi production (Morrissey & Tan, 2000).
Hultin & Kelleher (2000) reported that dark-fleshed fish species make up 40-50% of
the total fish catch in the world. In 2006, the catch of pelagic fish in the Gulf of
Thailand was approximately 844.2 metric tons (Department of Fisheries, 2006).
Among all dark-fleshed fish species, mackerel, such as Frigate mackerel, short-bodied
mackerel and Indian mackerel, was one of the most abundant species caught in
Southern Thailand (Chaijan et al., 2010). Beside marine dark-fleshed fish, freshwater
fish such as catfish and tilapia can be used for production of surimi, in stead of marine
white-fleshed fish, as well (Rawdkuen, Sai-Ut, Khansorn, Chaijan & Benjakul, 2009).
Catfish is one of the important economic freshwater fish of Thailand. Traditionally,
catfish has been used almost exclusively for fresh consumption and some part is

introduced to fillet industry. Due to the high current volume of production, it could be
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used by the industry to develop other process products particularly for surimi
production. As a consequence, the use of the dark-fleshed fish and freshwater fish for
surimi production is one of a major challenge ways to overcome such overexploitation
of marine white fish in the Gulf of Thailand problems. However, the characteristics of
surimi gel are species-dependent which was correlated with the muscle compositions
(Niwa, 1992). So far, Frigate mackerel and catfish have been used for surimi
production even to a small portion in Thailand. However, no information regarding
compositions of muscles from both species caught in Thailand has been reported.
Therefore, this study aimed to characterise the chemical compositions of Frigate

mackerel (Auxis thazard) and catfish (Clarias macrocephalus) muscles.

Materials and methods
Chemicals

Sodium dodecyl sulfate (SDS), dithiothreitol (DTT), p-mercaptoethanol
(BME) were purchased from Sigma (St. Louise, MO, USA). Trichloroacetic acid was
obtained from Merck (Darmstadt, Germany). Sodium dithionite was purchased from
Riedel (Seeize, Germany). Chloroform was purchased from BDH (Poole, England).
Disodium hydrogen phosphate and sodium dihydrogen phosphate were purchased
from Fluka (Buchs, Switzerland).All chemicals were of analytical grade.
Fish samples

Frigate mackerel (Auxis thazard) with an average weight of 95-110 g was
caught from Thasala-Nakhon Si Thammarat Coast along the Gulf of Thailand. The
fish, off-loaded approximately 12 h after capture, were placed in ice with a fish/ice
ratio of 1:2 (w/w) and transported to the School of Agricultural Technology, Walailak

University, Thasala, Nakhon Si Thammarat, Thailand within 15 min. The fish were
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immediately washed, filleted and manually excised into ordinary and dark muscles.
Catfish (Clarias macrocephalus) with an average weight of 250-300 g were obtained
from Thasala market, Nakhon Si Thammarat, and transported alive to the School of
Agricultural Technology, Walailak University within 15 min. Upon arrival, catfish
were exsanguinated and kept refrigeration for 12 h to balance the post-mortem period
with the Frigate mackerel. Thereafter, the catfish muscles were excised following the
procedure used for Frigate mackerel. The muscles were kept on ice during preparation
and analysis.
Proximate analysis

Protein, ash, fat and moisture contents of muscle from fish raw materials were
determined according to the methods of AOAC (2000).
Electrophoresis

Protein patterns of dark and ordinary muscles from Frigate mackerel and
catfish were analyzed on SDS-PAGE under reducing condition according to the
method of Laemmli (1970). To prepare the protein sample, 27 ml of 5% (w/v) SDS
solution were added to the sample (3 g). The mixture was homogenized for 1 min.
The homogenate was incubated at 85°C for 1 h to dissolve total proteins. The sample
was centrifuged at 8,500xg for 5 min at room temperature (26-28°C) using a Biofuge
primo centrifuge (Sorvall, Hanau, Germany). Protein concentration was determined
according to the Biuret method (Robinson & Hodgen, 1940), using bovine serum
albumin as a standard. Protein samples were applied into the gel. After separation, the
proteins were stained in 0.125% (w/v) Coomassie brilliant blue R-250 and destained

in 25% (v/v) ethanol and 10% (v/v) acetic acid.
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Muscle fractionation

The muscles were subjected to fractionation according to the method of
Hashimoto, Watabe, Kono & Shiro (1979). The muscle (20 g) was homogenised in
200 ml of phosphate buffer (15.6 mM Na;HPO,, 3.5 mM KH,PO,), pH 7.5 using an
IKA Labortechnik homogeniser (Selangor, Malaysia). The homogenate was
centrifuged at 5,000xg for 15 min at 4°C using a Sorvall Model RC-B Plus centrifuge
(Newtown, CT, USA). The residue was added with 200 ml of the same buffer,
homogenised and centrifuged again. These two supernatants were combined and
trichloroacetic acid was added to obtain a final concentration of 5%. The resulting
precipitate was collected by filtration and referred to as “sarcoplasmic protein
fraction”. The filtrate was used as non-protein nitrogenous compound fraction. For
above residue, 10 volumes of phosphate buffer (15.6 mM Na,HPO,, 3.5 mM
KH,PO,) containing 0.45 M KCI, pH 7.5 were added. The mixtures were
homogenised and centrifuged at 5,000xg for 15 min at 4°C. The process was repeated
twice. Both supernatants were combined and used as myofibrillar protein fraction.
The pellet obtained was mixed with 5 volumes of 0.1 N NaOH and stirred for 12 h at
4°C. The mixtures were then centrifuged at 5,000xg for 15 min at 4°C. The
supernatant was used as alkali-soluble protein fraction. The final residue was used as
stroma fraction. Each fraction was subjected to nitrogen analysis using Kjeldahl
method (AOAC, 2000).
Myoglobin content determination

The myoglobin content of fish muscle was determined by direct
spectrophotometric measurement, as described by Chaijan, Benjakul, Visessanguan &
Faustman (2004). Two grams of mince were weighed into a 50 ml centrifuge tube and

20 ml of 40 mM phosphate buffer, pH 6.8, were added. The mixture was



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

homogenised at 20,000 rpm for 10 s, followed by centrifuging at 3000 xg for 30 min at
4°C. The supernatant was filtered with a Whatman No.1 filter paper. The supernatant
was treated with 0.2 ml of 1% (w/v) sodium dithionite to reduce the myoglobin and
then absorbance measured at 525 nm. Myoglobin content was calculated from the
millimolar extinction coefficient of 7.6 and a molecular weight of 16,111. Myoglobin
content was expressed as mg/g sample.
Salt determination

Salt content in samples was measured by the method of AOAC (2000).
Sample (1 g) was treated with 10 ml of 0.1 N AgNO3; and 10 ml of HNOs. The
mixture was boiled gently on a hot plate until all solids except AgCl, were dissolved
(usually 10 min). The mixture was then cooled using running water; 50 ml of distilled
water and 5 ml of ferric alum indicator were added. The mixture was titrated with
standardized 0.1 N KSCN until the solution became permanent brownish-red. The salt
content was then calculated and expressed as % NaCl.
pH determination

The pH of fish muscle was measured as described by Benjakul, Seymour,
Morrissey & An (1997). Fish muscle was homogenised using an IKA Labortechnik
homogeniser (Selangor, Malaysia) with 10 volumes of deionised water (w/v), and the
pH was measured using a pH meter (Cyberscan 500, Singapore) at 25°C.
Lipid extraction

Lipid was extracted by the method of Bligh & Dyer (1959). Sample (25 g) was
homogenised with 200 ml of a chloroform:methanol:distilled water mixture
(50:100:50) at the speed of 9,500 rpm for 2 min at 4°C using an IKA Labortechnik
homogeniser (Selangor, Malaysia). The homogenate was treated with 50 ml of

chloroform and homogenised at 9,500 rpm for 1 min. Then, 25 ml of distilled water
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were added and homogenised again for 30 sec. The homogenate was centrifuged at
3,000xg at 4°C for 15 min using a RC-5B plus centrifuge (Sorvall, Norwalk, CT,
USA), and transferred into a separating flask. The chloroform phase was drained off
into the 125 ml Erlenmeyer flask containing about 2-5 g of anhydrous sodium sulfate,
shaken very well, and decanted into a round-bottom flask through a Whatman No.4
filter paper. The solvent was evaporated at 25°C using an EYELA rotary evaporator
N-100 (Tokyo, Japan), and the residual solvent was removed by flushing nitrogen.
Determination of phospholipid content

Phospholipid content was determined based on the direct spectrophotometric
measurement of complex formation between phospholipids and ammonium
ferrothiocyanate as described by Stewart (1980). Lipids were extracted from the
sample by the method of Bligh & Dyer (1959). Thereafter, lipids (20 ml) were
dissolved in chloroform to a final volume of 2 ml. One ml of thiocyanate reagent (a
mixture of 0.10 M ferric chloridehexahydrate and 0.40 M ammoniumthiocyanate) was
added. After thorough mixing for 1 min, the lower layer was removed and the
absorbance at 488 nm was measured. A standard curve was prepared with
phosphatidylcholine (0-0.1 mg/ml). The phospholipids content was expressed as
mg/100 g lipid.
Total carotenoid determination

The total carotenoids were extracted using the method of Yanar, Celik &
Yanar (2004). Homogenised samples of 0.2-0.45 g were added 8 ml acetone and
shaken at 200 rpm/min for 1 h in the dark at room temperature of 25°C. The
extraction was centrifuged at 5,000 rpm for 5 min and the absorbance at 480 nm was

measured. Total carotenoid content was calculated from the millimolar extinction
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coefficient E(1%,1cm) of 1.900. Total carotenoid content was expressed as mg/g
sample.
Determination of minerals

Iron (Fe), copper (Cu) and selenium (Se) contents were determined by an
inductively coupled plasma optical emission spectrophotometer (ICP-OES) (Perkin-
Elmer, Model 4300 DV, Norwalk, CT) according to the AOAC (2000) method.
Determination of colour and redness index

Colourimetric values of the chopped fish sample were obtained in triplicate by
using a portable Hunterlab Miniscan/EX instrument (10° standard observers,
illuminant D65, Hunter Assoc. Laboratory; VA, USA). The instrument was calibrated
to a white and black standard. The tristimulus L* (lightness), a* (redness/greenness),
and b* (yellowness/blueness) measurement mode was used as it relates to the human
eye response to colour. The redness index (a*/b*) of salted fish was calculated as
described by Chen, Chiu & Huang (1997).
Statistical analysis

Data were subjected to analysis of variance (ANOVA). Comparison of means
was carried out by Duncan’s multiple range test (Steel & Torrie, 1980). Statistical
analysis was performed using the Statistical Package for Social Science (SPSS 11.0

for windows, SPSS Inc., Chicago, IL).

Results and discussion
Proximate compositions in Frigate mackerel and catfish muscles

Dark and ordinary muscles from Frigate mackerel and catfish were different in
proximate composition (Table 1). The dark muscle is normally concentrated along the

lateral line of the body and may represent 15-30% of the total muscle in migratory
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fish such as mackerel and 2-12% of less active fish (Haard, 1992). Both muscles from
both species composed of moisture as a major component (71.55-75.68%). As a major
constituent in fish muscle, protein accounted for approximately 18.19-23.21%. Both
dark and ordinary muscles of Frigate mackerel had higher protein contents than those
of catfish (p<0.05). Sikorski (1994) and Spinelli & Dassow (1982) reported that crude
protein content in the muscle was usually in the broad range of 11-24% (wet weight),
depending on the species and variety, the state of nutrition, and the reproductive cycle
of the animals, as well as the parts of the organisms. Lipid content was generally
higher in catfish muscle, especially ordinary muscle. Catfish ordinary muscle
contained approximately 10 times greater lipid content than Frigate mackerel ordinary
muscle. For dark muscle, catfish contained about 2.6 times higher lipid content than
Frigate mackerel. The lipid content in Frigate mackerel was followed the rule that
dark muscles were especially rich in chromoproteins and contained about two to five
times more lipids than the ordinary muscles (Sikorsk, Kolakowska & Burt, 1990) but
not absolutely true for catfish in which the ordinary muscle contain much more lipids
than dark muscle. This was probably due to the fact that catfish was a farm-raised fish
in which the chemical compositions of the muscle was governed by feeding as well as
the nutrition of the feed. Ash contents of both species were found in the ranges of
1.08-1.21.
Protein patterns and nitrogenous constituents in Frigate mackerel and catfish
muscles

Electrophoretic patterns indicated that Frigate mackerel and catfish muscles
consisted of several protein bands corresponding to myosin heavy chain (MHC),
actin, troponin and tropomyosin. MHC and actin was major proteins in both species

but the intensities of those protein bands were higher in catfish muscles suggesting a
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higher integrity of myosin and actin from catfish (Figure 1). The result was in
agreement with Hashimoto et al. (1979) who found that MHC showed the highest
band intensity in the protein from sardine (Sardinops melanosticta) and mackerel
(Pneumatophorus japonicus japonicus) muscle. Similar results were found in muscle
from two species of bigeye snapper (Benjakul, Visessanguan & Leelapongwattana,
2002). From the result, Frigate mackerel muscles contained greater content of protein
bands, with molecular weight lower than 45 kDa, compared with catfish muscles.
These low molecular proteins may categorise into sarcoplasmic protein fractions
which normally found in dark-fleshed fish with a greater extent. Naturally, dark
fleshed-fish species contained the high content of dark muscle comprising a
considerable amount of sarcoplasmic proteins (Sikorski et al., 1990; Spinelli &
Dassow, 1982).

Proteins in dark and ordinary muscles from both species were classified into
five fractions based on solubility (Table 2). Myofibrillar proteins were found as major
protein components for both muscle types and species (21.9-30.8 mg/g). Myofibrillar
proteins were the dominant proteins, which are involved in muscle contraction
(Sikorski, 1994). For the same type of muscle, Frigate mackerel contained a greater
amount of sarcoplasmic proteins. However, dark muscle consisted of a greater content
of sarcoplasmic protein, compared to ordinary muscle. Haard, Simpson & Pan (1994)
suggested that the sarcoplasmic proteins from fish included myoglobin, enzymes and
other albumins. The content of sarcoplasmic protein was generally high in pelagic
fish, such as sardine and mackerel (Haard et al., 1994; Hashimoto et al., 1979). For
both species, dark muscles had a larger amount of stromal protein than ordinary
muscle. Greater stroma content in dark muscle could be related to the high mechanical

strength of this muscle (Hultin & Kelleher, 2000). Among all muscle types and
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species, catfish ordinary muscle composed of the highest alkaline-soluble protein
content indicating the highest accumulation of denatured proteins in this muscle.
Chaijan et al. (2004) reported that denatured myofibrillar and sarcoplasmic proteins
can be solubilised in alkaline solution. Thus, it was classified as alkaline-soluble
protein fraction. Frigate mackerel muscle, particularly ordinary muscle, was
composed of a higher content of non-protein nitrogenous compounds than catfish
muscle. This might be due to a higher content of amino acids, dipeptide, nucleotide,
trimethylamine, urea, and the products of postmortem changes in this species
(Foegeding, Lanier & Hultin, 1996; Sikorski, 1994). For the same species, ordinary
muscle tended to contain lower amount of non-protein nitrogenous compounds than
dark muscle.
Pigments and certain chemical compositions in Frigate mackerel and catfish
muscles

Different extractable myoglobin content was observed between different
muscle types and species (Table 3). Frigate mackerel muscle contained a larger
amount of extractable myoglobin, especially in dark muscle, when compared to
catfish muscle. The results were in agreement with Spinelli & Dassow (1982) and
Hashimoto et al. (1979) who reported that myoglobin was dominant in dark muscle.
Dark muscle, both superficial and deep-seated, contained more hemoglobin,
myoglobin and cytochrome ¢ than the ordinary muscles (Sikorski et al., 1990).
Muscle of yellowfin tuna contained myoglobin ranging from 37 to 128 mg/100 g in
light muscle and 530 to 2,440 mg/100 g in dark muscle (Brown, 1961). Frigate
mackerel dark muscle comprised myoglobin 2.5 times greater than catfish dark
muscle. For ordinary muscle, Frigate mackerel contained myoglobin 8.2 times higher

than catfish. Myoglobin contributed to the redness of muscle, which is associated with
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the lowered whiteness of surimi gel (Chaijan, Benjakul, Visessanguan, Lee &
Faustman, 2007). For the total carotenoid content, it was found that dark and ordinary
muscles of catfish contained total carotenoid 12.6 and 33.6 times greater than Frigate
mackerel, respectively. Higher content of total carotenoid in catfish muscle, especially
ordinary muscle, may correlate with the higher oxidative stability of that muscle
because carotenoid can be functioned as antioxidant. Lipid from ordinary muscle of
Frigate mackerel contained the highest content of phospholipids and Frigate mackerel
had a greater content of phospholipids than catfish (p<0.05). The higher phospholipid
content in Frigate mackerel muscle may relate to the greater emulsifying ability of this
muscle. However, the oxidative stability of this muscle might be limited. Due to a
high content of phospholipids which normally contain a high amount of
polyunsaturated fatty acids, possibly from the subdermal fat layer, oxidation could
take place rapidly (Ke, Ackman, Linke, & Nash, 1977). Considering the sodium
chloride content, both ordinary and dark muscles from Frigate mackerel, a marine
fish, contained more sodium chloride content than catfish, a freshwater fish (p<0.05).
This difference was probably due to the different in fishing ground, feeding of the
fish, and mineral content in the habitat environment (Chaijan, 2011). The highest
contents of prooxidant metals including iron and copper were observed in Frigate
mackerel dark muscle (p<0.05). The higher the metals the greater the lipid oxidation
can be taken place in this muscle. However, Frigate mackerel dark muscle also
contained the highest content of selenium, correlating with the highest antioxidative
enzyme, glutathione peroxidase, in this muscle. The selenium is found in the active
site of glutathione peroxidase and its content was reported to be correlated well with
the content of glutathione peroxidase in the muscle (Undeland, Ekstrand & Lingnert,

1998).
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The post-mortem pHs of Frigate mackerel and catfish muscles were found in
the ranges of 5.96-6.86 depending on species and muscle types. Foegeding et al.
(1996) reported that the ultimate pH of fish muscle was generally in the range of 6.2-
6.6. The pH of fish muscle depended on a variety of factors such as species, fishing
ground, feeding of the fish, storage temperature and buffering capacity of meat
(Pacheco-Aguilar, Lugo-Sanchez & Robles-Burgueno, 2000). Dark muscle of both
species had lower pH than ordinary muscle. The activity of enzymes converting
glycogen into lactic acid might be different between two muscles. Lactic acid,
generated in anoxic conditions from glycogen, is the principal factor in lowering the
post-mortem pH in the fish muscles (Sikorski et al., 1990). Dark muscle might
contain relatively sufficient in the enzymes which convert glycogen into lactic acid.
These features can cause the post-mortem pH to be lower than that of ordinary
muscle.

Colour of Frigate mackerel and catfish muscles

Instrumental colour values of Frigate mackerel and catfish muscles are shown
in Table 4. From the result, the lightness (L*) of catfish muscle was higher than
Frigate mackerel and the greater L* value was found in ordinary muscle from both
species (p<0.05). The redness-greenness (a*) and redness index (a*/b*) of dark
muscle was higher than ordinary muscle in both species and the higher a* value and
redness index were noticeable in Frigate mackerel muscle (p<0.05). This was in
agreement with the greater amount of myoglobin in Frigate mackerel muscle (Table
3). For yellowness-blueness (b*), ordinary muscle from both species exhibited a
higher b* value (p<0.05) and the higher value was observed in catfish muscle. The

more yellow of catfish muscle was in accordance with the higher carotenoid content
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of that muscle (Table 3). Overall, the color of Frigate mackerel especially dark muscle

was more dark-red than catfish muscle.

Conclusion

The characteristics and compositions of dark and ordinary muscles from
Frigate mackerel and catfish were different. The compositions and color of fish
muscle were species-dependent. The muscle type or muscle location can also
influence the characteristics of fish muscle. The muscle compositions can be a crucial
factor determining the physicochemical and functional properties as well as the
oxidative stability of Frigate mackerel and catfish muscles during handling,
processing and storage. The basic information gained from this study can be used to

apply for production of a high grade surimi from those two species.
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Table 1 Proximate compositions of Frigate mackerel (Auxis thazard) and catfish

(Clarias macrocephalus) muscles

Compositions Frigate mackerel Catfish

(% wet weight) Ordinary Dark Ordinary Dark
Moisture 75.01+0.01c 73.70+0.27b 71.55+0.25a 75.68+0.27d
Crude protein 23.08+£0.05¢c 23.21+0.19c 18.70+0.34b 18.19+0.09a
Crude fat 0.84+0.01a  1.90+0.00b  8.54+0.04d  5.05+0.02c
Ash 1.08+0.00a  1.19+0.00c  1.21+0.01d 1.094+0.01b

*Values are given as mean + SD from triplicate determinations.

**Different letters under the same row indicate significant differences (p<0.05).

Table 2. Nitrogenous constituents in Frigate mackerel (Auxis thazard) and catfish

(Clarias macrocephalus) muscles

Nitrogenous composition Frigate mackerel Catfish
(mgN/g muscle) Ordinary Dark Ordinary Dark
Non-protein nitrogen 5.19+0.01c 4.87+0.00b 2.29+0.01a 2.26+0.0la
Sarcoplasmic protein 10.67+0.12c 11.54+0.36d 9.30+0.06a  9.85+0.24b
Myofibrillar protein 30.81+1.28b 30.02+2.07b 21.99+0.73a 23.52+0.24a
Stromal protein 12.09+0.30b 17.44+1.03d 10.63+0.06a 16.12+0.12c

Alkaline-soluble protein 11.45+0.05b 11.49+0.06b 17.26+0.23c  8.99+0.00a

*Values are given as mean + SD from triplicate determinations.

**Different letters under the same row indicate significant differences (p<0.05).
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Table 3. Pigments, phospholid, salt, minerals and pH of Frigate mackerel (Auxis

thazard) and catfish (Clarias macrocephalus) muscles

Compositions Frigate mackerel Catfish
Ordinary Dark Ordinary Dark

Carotenoid (mg/g) 0.13+0.01a  0.32+0.01b  4.37+0.07d  4.03+0.05c
Myoglobin (mg/g) 6.19+0.01c  7.52+0.02d 0.75+0.01a 3.01+0.03b
Phospholipid (mg/100g lipid)  23.07+2.97d 16.57+3.03c  9.69+0.61b  2.63+0.42c
Sodium chloride (%) 1.20+£0.03c  1.15+0.03c  0.774+0.04a  0.90+0.09b
Minerals (mg/kg)

Iron 5.67+0.45b 24.84+0.87c 2.88+0.10a 5.45+0.35b

Copper 0.57+0.02b  2.28+0.22c  0.55+0.13b  0.22+0.02a

Selenium 2.29+0.10b  3.23+0.11c  1.224+0.12a  1.23+0.10a
pH 6.16+0.16b  5.96+0.02a  6.86+0.01d  6.69+0.04c

*Values are given as mean + SD from triplicate determinations.

**Different letters under the same row indicate significant differences (p<0.05).
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Table 4. Color of Frigate mackerel (Auxis thazard) and catfish (Clarias

macrocephalus) muscles

Frigate mackerel Catfish
Color
Ordinary Dark Ordinary Dark
L* value 46.88+0.03b 35.35+0.15a 48.61+0.20c 48.43+0.16¢
a* value 8.44+0.04b  9.81+0.30c  7.53+0.11a 8.71+0.22b
b* value 13.02+0.05b 11.79+0.13a 25.09+0.11d 18.96+0.14c
Redness index 0.65+0.00c  0.83+0.03d  0.30+0.00a  0.46+0.01b

*Values are given as mean + SD from triplicate determinations.

**Different letters under the same row indicate significant differences (p<0.05).
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Figure Legend
Figure 1. SDS-PAGE patterns of dark and ordinary muscles from Frigate mackerel
and catfish under reducing condition. M, molecular weight standards; 1, Frigate
mackerel ordinary muscle; 2, Frigate mackerel dark muscle; 3, catfish ordinary

muscle; 4, catfish dark muscle. MHC, myosin heavy chain; AC, actin.
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