

บทคัดย่อ

รหัสโครงการ: MRG5380127

ชื่อโครงการ: การพัฒนาวัสดุโครงสร้างประกอบระหว่างวัสดุแม่เหล็กและวัสดุกึ่งตัวนำอินทรีย์สำหรับการประยุกต์ในอุปกรณ์สปินอิเล็กทรอนิกส์

ชื่อนักวิจัย และสถาบัน: อัศวิน สินทรัพย์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

Email address: asawin.sin@mahidol.ac.th

ระยะเวลาโครงการ: 2 ปี

งานวิจัยนี้เป็นการศึกษาหาเงื่อนไขที่เหมาะสมในการผลิตวัสดุโครงสร้างประกอบระหว่างวัสดุกึ่งตัวนำอินทรีย์กับวัสดุแม่เหล็กด้วยวิธีการที่มีค่าใช้จ่ายต่ำแต่ได้คุณสมบัติทางแม่เหล็กและคุณสมบัติเกี่ยวกับการขันส่งสปินของอิเล็กตรอนที่เหมาะสมกับการใช้งานเป็นอุปกรณ์สปินอิเล็กทรอนิกส์ ในส่วนของวัสดุแม่เหล็กได้มีการศึกษาหาปัจจัยที่เหมาะสมในการผลิตฟิล์มบางอัลลอยของเหล็กและนิกเกิลโดยวิธีการสะสมทางไฟฟ้า โดยปัจจัยที่ทำการศึกษาประกอบด้วยความเข้มข้นของไอออนเหล็กและนิกเกิลในสารละลาย ปริมาณสารเติมแต่ง และการใช้สารแม่เหล็กภายนอกร่วมระหว่างการผลิตฟิล์ม นอกจากนี้ยังมีการศึกษาการผสมอัลลอยที่มีคุณสมบัติแม่เหล็กเพิ่มเติมเพื่อผลิตเป็นฟิล์มบางอัลลอยของสารโลหะที่มีคุณสมบัติทางแม่เหล็กตามที่ต้องการได้ รวมทั้งมีการศึกษาการใช้กรรมวิธีทางความร้อนกับวัสดุอัลลอยที่ได้เพื่อสร้างวัสดุแม่เหล็กประเภทอกไซด์ซึ่งมีคุณสมบัติทางไฟฟ้าและทางแม่เหล็กแตกต่างไปจากวัสดุเดิมได้ สำหรับส่วนของวัสดุกึ่งตัวนำอินทรีย์ได้มีการศึกษาหาปัจจัยที่เหมาะสมในการผลิตฟิล์มบางสารกลุ่มฟทาโลไซยานีนซึ่งมีโลหะเป็นอัลลอย (MPC) เช่น NiPc CoPc FePc และ CuPc เป็นต้น โดยใช้วิธีสองวิธีคือ วิธีการสะสมในสูญญากาศ และ การเกาเติดแบบขั้นต่อขั้น ในการวิจัยนี้ยังมีการพัฒนาสร้างระบบบัดประภูมิการทัศนศาสตร์เชิงแสงแบบเครอร์ (MOKE) เพื่อใช้ศึกษาคุณสมบัติเชิงแม่เหล็กและคุณสมบัติที่เกี่ยวนেื่องกับการขันส่งสปิน ในวัสดุแม่เหล็ก วัสดุอินทรีย์ และ วัสดุโครงสร้างประกอบระหว่างวัสดุทั้งสอง ระบบบัดที่สร้างขึ้นสามารถวัดคุณสมบัติทางแม่เหล็กของฟิล์มบางสารกลุ่มฟทาโลไซยานีนซึ่งมีโลหะเป็นอัลลอยที่ผลิตขึ้นได้อย่างได้ผลดีกว่าวิธีอื่นที่มีอยู่ในห้องปฏิบัติการ อย่างไรก็ตามผลการศึกษาคุณสมบัติของวัสดุโครงสร้างประกอบระหว่างวัสดุกึ่งตัวนำอินทรีย์ กับวัสดุแม่เหล็กที่ผลิตได้พบว่ามีต้องการการปรับปรุงปัจจัยการผลิตเพิ่มเติมเพื่อให้ได้วัสดุโครงสร้างประกอบที่เหมาะสมกับการใช้งานเป็นอุปกรณ์สปินอิเล็กทรอนิกส์

คำหลัก: วัสดุโครงสร้างประกอบ ฟิล์มบางแม่เหล็ก สารกึ่งตัวนำอินทรีย์ ทัศนศาสตร์แม่เหล็ก

Abstract

Project Code: MRG5380127

Project Title: Development of organic-semiconductor/magnetic heterostructures for spin-electronic devices

Investigator: Asawin Sinsarp, Faculty of Science, Mahidol University

Email address: asawin.sin@mahidol.ac.th

Project Period: 2 years

The fundamental studies being necessary for constructing low-cost organic-semiconductor/magnetic heterostructures with appropriate magnetic and spin transport properties were done. For magnetic material part, the conditions for preparing iron-nickel alloy thin films by electrodeposition were optimized. Various conditions, such as the concentrations of iron and nickel ions in electrolytes, the amounts of additives in electrolytes, the in-situ applied magnetic field, were studied. The mixing of other kinds of magnetic atoms such as cobalt atoms to the iron and nickel atoms to form tertiary magnetic metal alloys with tunable magnetic properties were also studied. Heat treatment of the obtained magnetic materials to form magnetic metal oxides as another class of magnetic materials were also studied. For organic-semiconductor part, the conditions for preparing metal-phthalocyanine (MPc)-based thin films such as NiPc, CoPc, FePc, CuPc were studied using two method: vacuum deposition and layer-by-layer formation in solutions. The magneto-optical Kerr effect (MOKE) measurement system was developed to measure the magnetic and spin-related properties of metal and organic thin films, as well as their heterostructures. The MOKE measurement system was used to investigate the magnetic properties of various metal-phthalocyanine (MPc)-based thin films such as NiPc, CoPc, FePc, CuPc. In spite of the fact that all MPc-based thin films used in our studies cannot be measured by the VSM, our MOKE measurement system is sensitive enough to measure the magnetic properties of the films. The results of the studies also showed that the conditions

for preparing the organic-semiconductor/magnetic heterostructures need to be improved in order to be suitable for the application as spin-electronic devices.

Keywords: heterostructure, magnetic thin film, organic semiconductor, magneto-optics