

Abstract

Project Code: MRG5380143

Project Title: Second generation of biodiesel production from potential energy sources in Thailand

Investigator: 1) Asst.Prof.Dr.Worapon Kiatkittipong, Silpakorn University (PI)
2) Prof.Dr.Suttichai Assabumrungrat, Chulalongkorn University (Mentor)

E-mail Address: kworapon@su.ac.th

Project Period: 24 months

Hydroprocessing of crude palm oil (CPO) and its physical refining including degummed palm oil (DPO) and palm fatty acid distillate (PFAD) used to produce diesel with 5 wt.% Pd/C catalyst was studied in this work. The effect of operating parameters such as reaction time, operating temperature, and pressure, was examined in order to determine suitable operating condition for each feedstock. When using CPO as feedstock, the highest diesel yield of 51% was achieved at 400°C and 40 bar with reaction time of 3 h. When gum is removed from CPO, named DPO, the highest diesel yield of 70% was obtained in shorter reaction time of 1 h. In case of PFAD, which mainly contains free fatty acids, maximum diesel yield of 81% could be obtained with milder conditions of 375°C and reaction time of 0.5 h. The main liquid products are n-pentadecane and n-heptadecane, which contain one carbon atom shorter than the total length of corresponding fatty acid $C_{(n-1)}$ i.e. palmitic and oleic acid, respectively, which are obtained via decarboxylation/decarbonylation pathways.

In addition, according to our previous works the wide range of ethers production by FCC self-etherification with ethanol catalyzed by beta zeolite could effectively enhance the RON, sustain the demand of oxygenated ethers and the amount of remaining olefinic compounds in the products are in compliance with the limiting values regulated by Euro IV standard (Kiatkittipong et al., 2008; 2009); however, converting the rest olefinic compounds would be beneficial both in terms of olefins reduction and enhanced ethanol substitution in gasoline. In this study, the influences of Si/Al ratio and the addition of copper (Cu) or magnesium (Mg) in the beta zeolite on the reaction performance were investigated. It was found that the beta zeolite with Si/Al ratio of 27 (beta₂₇) can enhance higher ethanol conversion than those of 42 and 77. In addition, the modification of beta₂₇ by Cu (Cu- beta₂₇) can further improve the ethanol conversion from 38.2% (beta₂₇) to 55.1%, and the olefin content reduction from 46.2% (beta₂₇) to 62.4%.

Keywords: Bio-hydrogenated diesel, Hydroprocessing, Deoxygenation, Diesel-like hydrocarbon, Relevant palm oil.

บทคัดย่อ

รหัสโครงการ: MRG5380143

ชื่อโครงการ: การผลิตไบโอดีเซลในยุคที่ 2 จากแหล่งพลังงานที่มีศักยภาพในประเทศไทย

หัวข้อ: 1) ผู้ช่วยศาสตราจารย์ ดร. วรพล เกียรติกิตติพงษ์ มหาวิทยาลัยศิลปากร (หัวหน้าโครงการ)

2) ศาสตราจารย์ ดร.สุทธิชัย อัสสะบารุ่งรัตน์ จุฬาลงกรณ์มหาวิทยาลัย (นักวิจัยที่ปรึกษา)

E-mail Address: kworapon@su.ac.th

ระยะเวลาโครงการ: 24 เดือน

งานวิจัยนี้ได้ทำการศึกษาปฏิกริยาไอกิจกรรมของน้ำมันปาล์มดิบ น้ำมันปาล์มที่ถูกเอา
ยางออก และกรดไขมันที่ได้จากการกระบวนการกลั่นน้ำมันปาล์ม เพื่อใช้ในการกระบวนการผลิตน้ำมันดีเซล
โดยใช้ 5% โดยน้ำหนักของแพลตเติร์นบันด์ตัวรองรับถ่านกัมมันต์เป็นตัวเร่งปฏิกริยา โดยในการทดลอง
นี้ได้ทำการทดสอบที่เหมาะสมในการทำปฏิกริยาของสารตั้งต้นแต่ละชนิดได้แก่ ระยะเวลาในการทำ
ปฏิกริยา อุณหภูมิ และความดันของการเกิดปฏิกริยา จากผลการทดลองพบว่าเมื่อใช้น้ำมันปาล์มดิบ
เป็นสารตั้งต้น ทำปฏิกริยาที่อุณหภูมิ 400 องศาเซลเซียส และความดัน 40 บาร์ เป็นเวลา 3 ชั่วโมงจะ^{ให้ผลได้ดีของน้ำมันดีเซล 51% และเมื่อใช้น้ำมันปาล์มที่ถูกเย้ายางออกเป็นสารตั้งต้นพบว่าจะให้ผล}
ผลิตภัณฑ์ของน้ำมันดีเซลที่สูงถึง 70% และใช้เวลาในการทำปฏิกริยาเพียง 1 ชั่วโมง และเมื่อใช้กรด
ไขมันที่ได้จากการกระบวนการกลั่นน้ำมันปาล์มเป็นสารตั้งต้นในการทำปฏิกริยาพบว่าให้ผลิตภัณฑ์ของ
น้ำมันดีเซลสูงที่สุดคือ 81% โดยใช้สภาวะในการทำปฏิกริยาต่ำกว่าคือใช้อุณหภูมิ 375 องศาเซลเซียส
และใช้เวลาในการทำปฏิกริยาเพียง 30 นาที เนื่องจากกรดไขมันที่ได้กระบวนการกลั่นน้ำมันปาล์มมี
องค์ประกอบหลักเป็นกรดไขมันอิสระ นอกจากนี้ยังพบว่าองค์ประกอบหลักที่พบในผลิตภัณฑ์เพส
ของเหลวคืออัมโนนิลแลคเคนที่มีคาร์บอนอะตอม 15 และ 17 อะตอม ซึ่งมีคาร์บอนอะตอมน้อยกว่า
คาร์บอนอะตอมในกรดไขมันของกรดปาล์มิติกและโอลิโกออยล์ 1 อะตอม ตามลำดับ นั้นแสดงให้เห็นว่า
ปฏิกริยาที่เกิดขึ้นเกิดผ่านปฏิกริยาดีكارบีโอดีซิลเลชันและดีكارบอนิลเลชันเป็นหลัก

นอกจากนี้จากการวิจัยที่ผ่านมาของคณะผู้วิจัย (Kiatkittipong et al., 2008; 2009) ซึ่งได้ทำปฏิกริยาอีเทอร์พิเดชันในตัวกับการทำanolด้วยตัวเร่งปฏิกริยาเบตาซีโอลิต์ สามารถเพิ่มค่าออกเทนด้วยสารประกอบออกซิเจนตือเทอร์ และปริมาณโอลิฟินส์ที่เหลืออยู่ผ่านเกณฑ์มาตรฐาน ยูโร 4 งานวิจัยนี้ มุ่งเน้นพัฒนาตัวเร่งปฏิกริยาให้สามารถลดปริมาณโอลิฟินส์ลงอีกพร้อมกับทดแทนน้ำมันด้วยการทำanol ได้มากขึ้น โดยได้ศึกษาผลของอัตราส่วนชิลิกอนต่ออลูมิเนียมและการเติมโลหะ พบว่าตัวเร่งปฏิกริยาเบตาซีโอลิต์ที่มีค่าอัตราส่วนชิลิกอนต่ออลูมิเนียมเท่ากับ 27 ($Beta_{27}$) ให้ค่าการเปลี่ยนของการทำanol ที่สูงกว่าเบตาซีโอลิต์ที่มีค่าอัตราส่วนชิลิกอนต่ออลูมิเนียมเท่ากับ 42 และ 77 อีกทั้งเมื่อทำการปรับปรุง