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Abstract

Project Code: MRG5380153

Project Title: Neuronal differentiation of canine mesenchymal stem cells isolated form bone marrow

and adipose tissue

Investigator: Theerawat Tharasanit et al. Department of Obstetrics, Gynaecology and

Reproduction, Faculty of Veterinary Science, Chulalongkorn University

E-mail Address: Theerawat.t@chula.ac.th

Project Period: 2 years

Abstract:

Mesenchymal stem cells (MSCs) have a unique capability to multiply and differentiate into
specialized cell types especially the mesodermal lineage. However, information on differentiation of
the MSCs into neurons has been limited. This study aimed at examining the capability of
mesenchymal stem cells isolated either from bone marrow or from adipose tissue on neuronal
differentiation. The bone marrow contents and adipose tissues were collected from 4 dogs. The
putative MSCs were cultured and passaged. On passage 3, they were disaggregated and
examined for cell surface proteins CD 34, CD 44 and CD 90 using flow cytometry. They were also
chemically induced to differentiate into osteogenic and adipogenic lineages. Two-step neuronal
differentiation protocol was used in this study. The MSCs were cultured in preneuronal
differentiation medium containing basic fibroblast growth factor (bFGF) and epidermal growth factor
(EGF) for 7 day in order to allow the neurons to aggregate as a neurosphere. The neurospheres
were typsinized and the single cells were further cultured in neuronal medium without the two

growth factors for additional 5 days.

In this study, we found that cells isolated from bone marrow and adipose tissue highly
expressed mesenchymal stem cell markers (CD 44 and CD 90), while the expression of the
hemopoietic stem cells were found to be rare (CD 34, less than 5 %). These MSCs irrespective the
origin of cells were able to differentiate into osteogenic and adipogenic lineages. In addition, they
also demonstrated to transdifferentiate into neuronal lineage but the efficacy appeared to differ
when compared between the bone and adipose tissue derived MSCs. By using the specific
neuronal differentiation, the MSCs tended to differentiate into astrocyte rather than other neuronal

lineages.

Keywords: Canine, Mesenchymal stem cells, neuron



LAaNAILLNUANIULAY 3

Executive summary
€9 o a_A & & e a a A o
Lﬁnaamummﬂmmu"lﬂu (MSCs) LU%LSIT&aﬂ&lﬂ’n&laﬁw’liﬂluﬂﬁilﬁlimuLW&IE]’]%’J%LL&::&’]&I’]‘SG

[

N WU ULTARINLNIZHAN ﬂmﬁ@wi@sJLawmsﬁatﬂumﬁuLﬁal,ﬁa“ﬁ'uﬂma atng lsAaulTasnnavasg

v

dayamafsuudasuasiamzauaadduinia  mscs  Miidwmaddszan  nsfnwidl
o ¢ A =) wa fY o A A = & A o o
Tandsasdiadnmgusutfzasaadduinia MSCs Miivanlunszanuaziiiaibeluiuvasgin
datszaninmwmasywaisiduwoasdszan MERAINIALTNRAINNINTINTZANFHVUAZ
Whattaluadn  INMasITaaLN oL NS 1M BLAZINLTRAN U193 U TR UURRALTas oA CD 34
CD 44 uaz CD 90 dnelnTlaladnd ﬁwmimaﬁ]qmauﬁamawﬁaﬁﬁuﬁmﬁ@ﬁmﬂﬂﬁﬁaUmiﬂsz@ju
v 6 & ] ﬁ/ ~ & U ] A & 6 G o
Iaasnawidussdlunguiiaibotunans ldunmadasuudandwaasnszgnuazioad ludi i
LTAR LA 4 maﬂaﬁﬁmmﬂﬁﬂmm:@ﬂLLa:LﬁaL'E‘Javlmﬁ'umns:éfulﬁﬂwmﬁﬂs:mw
=< ' e & & A A o a en & €Y o A
KansAnswLITaaTALR N lenszgnuaziiabaluiiu Squauddidusaddutiuiie
firulad lasamaseuanmiazUiefiedoadiWlusuma (wn 1) usaseanvasldsfudinne
UBALTARTHA CD 34 CD 44 uaz CD 90 (@13199 1) uazanansnaiyilfouudasldiduioasiv
1 dl ﬁl g; v dl o dq/ 6 [ :/ U v &) 6
nguitaleTunasld  Warhmadsasasainanluwihenedulfdusadizamn  (pre-neuronal
differentiation) wumil,mfm&jwnaomaﬂué’nmmzmaoﬁﬂsmﬂﬁ (neurosphere) ldwuanuuandns
P94ANNRILIUTBILTAS IR aAn Bz N TIMznguvastia lim s LRZIAINUARIARING
, & A A ) A o \ & A
wwhagas MSC nlunszgnuazanniiaibaludiu iaviinstasisasdaanain neurosphere Liia
a A A & Ay A AA A '
AT MTAALTIA 1 TadUad neurosphere HiTauazvavTaAlTIaTeags (N 2) lawliiwy
' a el o A & ' A o
AMVUUANGNIVDIUT U DAL VTIANINUREINUIVAILTAE MSCs  LASAINURILUUYDILTRNN 1T
dy d' o £Z v 6 a 3 v & 6 v g’ d‘d.
wes Warhmaneduldiaadiasgwamiidusssdszamdisihnlaulsznauves sos nu
@8 (all-trans retinol) waz InsnuWaiees ol dAesNea way waEe WluTuas wuilwas
t:l' % [} €tﬂld a [ v & €¢:l'd d'
wWasnansmzzUe nnaasniinuazlansunasadoisad Wlusums Wdidwosdaninsuusug
ARUAANNY  (multiple process) AaBLTAaUITENN MMIAnELUSHUBUIINMTLEAdaaNYBd
113w beta Il tubulin, NeuN uaz nestin (MW# 3) wudnisas MSCs Mfivanlunszgniuwaliug
ﬁ]:ﬂiza‘n%mwlumimﬁﬂuLLﬂmLflumaﬁﬂizmﬂg\mdﬁ Wallgunuwras MSCs fisAuaNLaLia

e 6 1 u:i 2 =S & n%' & 6 a 6 dl
lwsin usziwasdszamawlnain ldanmadnwessiluassdszamriauaslaslod (nwi 4)

v

P e ' a 6 o a A & 6 A ' v
AMMAN 1 LRAIDTNAIDYINAN W IUSUDILTRR %ﬂ’]Lu@&JL"IT%VLﬂ&l NEﬂi’]dﬂﬂ’]ﬂL‘ﬁﬂﬂWIUanﬁﬁ



5

A1319N 1 LLEWNNﬂﬁ?ﬂﬂ’]i@]i?ﬂﬂ?ﬂmﬂﬂﬂﬂﬂﬂ]@dIﬂiﬁuﬁ’JLTﬂﬁ’ﬁﬁ@ CD 44 uaz CD 90 éf’JﬂI‘Wﬂsﬁ-

Taiing (flow cytometry)

WHAIIRNDBILTRE wWosiBudmasnwinauan | wesiEwdimasiilinauan

Aa CD 44 ¢ia CD 90
Bone marrow MSC dog 1 98.8 67.8
Bone marrow MSC dog 2 95.0 39.2
Bone marrow MSC dog 3 97.7 79.9
Bone marrow MSC dog 4 93.3 81.3
Adipose tissue MSC dog 1 97.4 95.1
Adipose tissue MSC dog 2 994 80.4
Adipose tissue MSC dog 3 99.8 82.8
Adipose tissue MSC dog 4 99.5 88.8
AR guAzEIRL ISR 9761+ 23 76.9 1171
N1A313 % (mean £ SD)

o a =

AN 2 WA neurosphere (T11) MenaimMaaslwihsnszduliisasduiuialowladnam

& & > A o e Aa & o =
Wulraadszan I@ﬂLsﬁaa‘ﬂﬂ%{ﬂqﬂlu neurosphere (V31) YINWIULTIRNDTIARI (LTRRYIAINNIT

U

o <3 6 6
NNV LB%VLGITN LORLADILIR)



P a &
NN 3 UAAINIUEAI8aNTa9lUIAUBEI neurosphere (3NAT) UAZLTASLITAN NN A: LAAS
#aReEVad neurosphere gauaag DAPI (R113%) "MW B: N3laadaanuad beta Il tubulin (R1T81)

. = . I
WaT nestin (FUAY AW C) MW D UFAINITINATW (merged image) vasmsuaadaanldsdnlu

neurosphere

NNA 4 LEAINTUEAIBaNVadlLsAY Glial fibrillary acidic protein (GFAP) (f1387) vadtwasyszann

.

A a & v o a A 6 a = 6 v v a :’ a
NHIAINNLDTAN umm@msﬁuvlﬂm’mvlmm:gﬂ BIAIARYRVDILTANLDNAIY DAPI (RULIW)



1. anNdEAYLazNN12ynINyiin13398

6 v o a & A t:lI‘:l >3 QI o a

LraaawAL oL RN AN TN B NI WIS N TN (self-renewal) wazi
mmmmmiumimﬁﬂmmaagﬂLLumjaama&iﬂumaﬁmmqmﬁ@ LTRR AW AAI 0 BEINITD
o ldannguisad (inner cell mass) Nagmuludidanszuzumalads dqmuaudadiasluniaaiy
N mnlaadnalasine  (self-renewal) uwazananTailRsuudaaduaasuiiadg 2893198
TN TRRLHALE DT WHON TWNANI LATW U DIAI S0 ULARNININIARDNIANIZRN LTARGWRNLT
¥ { o %] =3 %] U o a a é { e
el oNARUATEASLANIE (fetal and adult stem cells) (Huinaadwiniiadnsianitef lasu

=2 ' o A = v A ° v o & A A& A

midnmadannluiingu  lesnndumliunazgnihldlfnmlsaludnsucsadniaiiote
111J@ (cell- or tissue engineering- based therapy) wananhgitioaailyniasusssumsliaisan

sansdaduiiallanenasmariaalandieiialiie (tissue transplantation) uazaadaywiiiiaain

maasadRalnduasaasewiniaawnanoiiuirasuzids (tumorogenesis)

6 v o a a A I~ (% d? dll
wasewiiasiaiiioulanea (mesenchymal stem cells: MSCs) aunsatiuldanniiiatie
naogria lasawizaasnailulnsinszgnuialunszan (bone marrow aspirate) uaziftaibialusin
(adipose tissue) LTaa MSCs s3NITaLasd AN IwInlUIUAM Iz RBILazlanuaIuITa L INaIM
Wasulaawaaanaiania I@mawmmaﬁm:@ﬂ nizgngau LLazvlmﬁ'uLﬁa"l,ﬁ%'umimzéjuama
wianzaw adglsfanaludagtiunudusad MSCs snanInwawtanguiiiaiiia (transdifferentiation)
2 1 d' L A ] d' = s L% d' U 1 a 6 6
1 udwanldgslaifanuuiuen esanfinaeiaddianiioides 1w anwuignivasioas
MSCs Il uszmnaaumasnuimadlaar datvvedsadanauanszguliiaiyanioad MSCs
, & o & ' o A o ) & wn o \ o
LT LTA8NAINLHELATITN NAINLHERALA LTRaAU LAz TaalIZ N AuFNUAGINE1IT8I MSCs 1
Wmas’?ﬁuﬁwLﬁ@"ﬁﬁ@ﬁﬁmiﬁﬂmﬁuazmﬂ’?ww’mﬁ'ﬂumgwﬁuaﬂué’mf ANNIANBINIUEAIAAN
= 6 1 6 = n:l' o % c.{' c.{' % % a
P98 ululmas MSCs Wudmas MSCs sunsnugadsaandwnfanedesnunsiasyuazny
o & i o & & 2 « €9 o a_d .
WUV DAL T281N (neuronal gene expression) AIKWLTAR MSCs 9L ulmanawnItibaniingg
NI M IHaaRaUTE eI luaIwnaaas 1N M lATANENIFULALINUU A DNITNAIW
Padraalszain mMIkhaasadszanluniImasausn 88IN1ILIT MSCs wazn 1IN w LAt winas
Uszaninalslwaasiinga 1TunIdhlsa Parkinson’s LLazmwﬁ@ﬂnamaammauﬂi:mwﬁaﬂmmq
A 2 [ & v & v = o 2 &
au9 ﬂ’ﬁﬂﬂmmiwwu’maaLﬁﬁaaﬂszaﬂwlua@ammmimﬂu@mLLuumiﬂﬂu’muuﬂs:a’mlumgw

ov

AT RAILNNANTAT @wmamtﬁmﬁﬂmﬁmﬂwmmmﬁlﬁu‘%mﬁhmé’mfﬂm a9l
> o a d U el a QI J 1 1 { o @ o &
ﬂ’«aﬁguuﬁmmua@fﬁmm’nﬁummﬂwmuammmﬁaﬂmmawwzqummmm qummmu%mﬁ
Uawmessuudszanau guandeaugUfinguaznizgnauwnadrin (dislocation of spinal cord)
A A A A a & P A o '
wiadilymvasmaFeuvasszuulszamifiasananliadabauisiia Tuunenstiaaiuwne bal
f1ANININFIRATUIHAINENIAILATMIINWLLAILEN  AINWNNIIANEIITNIITNEIGIULTARINLI A

g A o v & & ° A e A A P
Taun1stwizLaey MSCs LiNawalw I waaslseanuazsinaniNanaunaaan g u/igana e
= A & o > %] o 6 dd' 1 [ @ Aad
AR aNWINAIRIUMITNEN IIaTadTsuulszamluagad laaanizlunydin lisnansnsnunalsis



aad

Un@ (conventional treatment) wiaanaldiTastindasiununsinse83Taug ad9lsianuisnnsg
AnvTuaawn U uuwllasadsas MSCs  Iiluraniseanadaudnesusaniiadaingd hiniu

[ t:llo U v 6 t:ll a :Sr 6 a a
ﬂﬁmmml,wwzluﬂ'ﬁm:@;ulﬁmamﬂawuﬂaa MeANNYIgNTVaLTAS  UazdszEnTaIws
Lﬂ‘é‘ﬂuLLﬂawaaLsﬁaﬁﬂszmwﬂaaglmzﬁuﬁﬂ

A A

€Y o a & e A = A L a aaA P &
Leﬁﬂﬂ@uﬂqLu@LﬂuLsﬁaaﬂwﬂqsﬂﬂﬂqw’]ﬂﬂqﬂlu‘ﬁadallﬂ'ﬂN'T%&nLuaﬂﬁnﬂLﬂuLgﬁaﬂﬂwﬂmﬂNu

5

D 3B

Aewninoaan W luieme I@aJLa‘wwzqmauu‘"@lumnﬁm‘hmuaamvl&ifﬁwﬁ'@ (self-renewal) uazd
anusansnlumsnssnnanuduassauinifiomenaimaiing i wiu  (undifferentiated  stage/
stemness) uamnnfﬁmaﬁé’andnmmmgnmz@jﬂﬁmﬁslu,amwLLazLﬁmuLﬂuLsﬁaa‘mﬁ@ﬁus] 289
iwmﬂVLﬁLﬁa"l,@i”%'umsm:@jmm:amwLn(ﬂﬁaummgmLmaﬁmm:au (Evans and Kaufman, 1981;
Thomson and Marshall, 1998 ) MnQaauidaInavasLTAdwTLHA Lmaﬁmﬁ@fﬁuﬂumaﬁﬁgﬂ
manirinzmannihanlfidemsdnsns lnmswamvesisasoiadi g Tuismaioas
ﬁuﬁﬂLﬁ@mlﬁ'ﬁams%’nmmgwfﬁaé’mfﬂaEJ (Bongso et al., 2008; Hiyama et al., 2008) LTARA
fdaludagiugniruunsanidu 2 sRamuLrsIfivasasauinialaun wasausufiofsan
(embryonic stem cells) uazimadduiLiaaNuysS/FaTiduiy (adult stem cells) imaRduiLila
@T’;ziauﬁqmauﬁ'@lumﬂﬁmﬁmul,l,a:m‘%muLﬂumaﬁ@ha6] 289719me'le (pluripotency) INANTILTAR
duiifiannuusiniadafidui (adult stem cells) I@uﬁaulmy’ﬁﬂmauﬁ'aiummﬁzyLﬂuwﬁaﬁﬁagj
Tungaidieariu (multipotency) 13w imasauiuiladiowlasl LtﬂmsﬁaﬁﬁuﬁﬁLﬁ@luﬂémf‘:mﬁa%zuﬂma
swsnsydwiadetunansldaitu nIZQn NIzQnaa waziitowielusin (Jiang et al, 2002;
Pittenger et al., 1999; Prockop, 1997) andlsfiauasdanuiluilagiunuii adult stem cells 119
mﬁ@mmsmﬁmLﬂuLSﬁaﬂuﬂﬁgwLf:al,?iaﬁ@mﬁu"lﬁ (transdifferentiation)  #nA8e19LTH  MSCs
sunsaasyiduimasiszam (Woodbury et al., 2000) uazlTaRAL (Ong et al., 2006) Falwizadin

m;iuLﬁaLﬁa%’uuaﬂumfﬂumuéﬂﬁu

wraaewiiaiioulad  (mesenchymal stem cells; MSCs) iduinasawinian lasu
MIANEIALNININ mezuaﬂﬁnm}:ﬁgmauﬁ'ﬁlumilﬂumaﬁﬁuﬁwLﬁ@LLﬁa LTRALRATHEIIT
mmmmsnslumiﬂsziumssﬁawufﬁmaama&i’/ai’m: Tmﬁ'oﬁqmawﬂ'?mﬂmié'mauLLa:ms@iaéTm

maas:uugﬁﬁuﬁu (Ganea et al., 2006; Greco and Rameshwar 2007) MSCs Huinaananansaiu

Idanniitoionanssiiatn seoszda vinluda (synovium) ooty doa Tnsediu Twsanszgn
Waz3i1nd1 (Musina et al, 2005) 1mad MSCs luanwmwziassiianwasamoaasiwlusuaas &
Amawlidlunsaihe adhere molecule vlmusaimzawasnansdn Jmsuaaseanvaslusaud
Ausasnaoria lasluaaiudshinnuli@udinzdasad  MSCs midaidanuazmavild
\88 MSCs u%qﬂ'%{%a%uﬁ'ummamaaﬂmaﬂﬂiauﬁﬁaLénaarﬁmmﬁ@im g GalauUnd MSCs 1z
I¥uauanea CD 29, CD 44, CD 90, CD 105, CD106, CD166, STRO-1, SSEA-1 (Jiang et al., 2002;
Prockop, 1997) uazlinaaudaiadlungs hemopoietic stem cells (CD 34 uaz CD 45) atn9l3fiaa
msugesaanaaslusauifiaasanafianuuandsinlugaiudszoiio anuwsnnansvasldsaud
Ruaassuliloas MSCs °1n<ﬂmmu‘%qﬂﬁmza@ﬂizﬁﬂ%mwmsﬁﬂmaﬁﬂ%mmﬁﬁﬂ



(Gregory et al., 2005) AN TUanwaas MSCs (waasiseanlutisduwiwdunsansnl
snwaemsdvasunariaasluluinsdsaaadlasanizmsldmsfiindsanm cycic AMP 15%
isobutylmethylxanthine (IBMX: Deng et al., 2001) %380 Butylated hydroxyanisole (Woodbury et al.,
2000) vhl#imas MSCs Lanwmeadnoiaadlszamn (neuron-ike cells) LTASMAATIENINTD

uaadaanlusaunsmzsdairaslszanunanasiaiin nestin, glial fibrillary acidic protein (GFAP),

neurofilament heavy chain (NF-H), and [3-1Il tubulin aLi’m"l,iﬁmwmsm‘é‘ﬂugﬂi”]waa MSCs atind
= o A P o A ~ & ¢ o & °
FIATLRTAINAUARFNINVAILTAR MSCs Munrasinstlasuulasdusaanaisimaslszainyin
lﬁmm’hmﬂﬁﬂmimz@umaﬁﬁaﬂ&h’s"l,ajmmsmﬂ'é‘ml, MSCs Liluaraniszamniuviassle udns
A ' e o & = o [ a ' A a
Lﬂayugﬂs’mmaamaaﬂmﬂmaaﬂszmwmmmaan‘un’mﬂaUuLLﬂaamadLmaﬁiﬂsasﬁaﬁsa Laadn
Tasadud (actin microfilament) agndlsAaunsAnBALITaINUMTIURLUTAR MSCs 1ulaas
dzamnilanudamednds  nelunins@nsIona lnmsesgveassslszan AWM Ivas
& ° & o A o ’~ ¢ A A A o o e a o
LTRRLATM TN a LT RN I TINa N ITN BT TaaRIaLibaLt a1 Mﬁaﬁ;uumwmumimw
& & A oA o o & a a
LERRUIZENINNLTAS  MSCs  LALLTRAN L UANBMARILLTASUTZRIN  INSUEAI0aNTDID LAY
TisGuniertasnuirasalszan ‘vﬁaLL&TﬂszﬁaLmaﬁﬁﬁmsmﬁauﬁmaoﬂizﬁflw?\h (action potential)
= o ~ A ) A . =g o &
uIEITIRIRNTFOUTERINLNITRaLTY lawidn (Dopamine) HananitmIdneEnisas MSCs
Tugad  1ou qﬁ?’nLLamhl,ﬂ'ﬂﬁmams%'ﬂmimmaaLsﬁa§ﬂs:mﬂﬁﬁLLmIﬁmzmmmﬁmﬂ*ﬁ%’nm‘[sﬂ
maom&wﬂ@” uaﬂmﬂ@gmauﬁaﬁmaﬁ MSCs f1a15avlaunuladiisastseanuad 1waa MSCs
wadaligmuandiaugninaulatu guaud@luniinda Neurotrophic factors (NTFs) fizanlun1s
wawwaztlasnunsansvesaaslszan Troaasaadszanlnd (Chen et al., 2002; Mahmood
{ { K a { 1 ﬁ a e 1
and Chopp, 2004) 1315LARawN WHIUSnMNaasUszaniFeniy [ owluanad mluﬂaguumvm
NINUNA NNTALIULAANAI1LLAAINN chemokines UNITHALT stromal-cell-derived factor-1 (SDF-
1a) (Li et al., 2001; Stumm et al., 2002)

msﬁm:nl,ﬁmﬁ'uLeﬁaﬁﬁuﬁ'}Lﬁ@ﬁlemvlﬂﬂuqﬁfmﬁa%iashﬁwﬁ'@ MSCs maqqﬁfmmmmlﬁﬁlﬁ
nnitadananssfia ldun soas@o (Lim et al., 2008; Zucconi et al., 2009) Litaifialusis (Neupane
et al., 2008; Black et al., 2008) vlmﬂizgm (Arinzeh, 2003; Csaki et al., 2008; Hiyama et al., 2007)
lasinad MSCs ngualansmueABITas MSCs TS RN Lm:qmauﬁ'alumim‘é"muuﬂm
iradiiulradeneg 16 15U 1 maanszan (osteoblast) LA AL UazlTARNIzQNdaw (Csaki et al.,
2007) MIAN®LTas MSCs luqﬁfmﬁN'mmLﬂumiﬁﬂmﬁmﬁ'u%%n"mﬁwﬁaﬁ MSCs MInaxay
amanliAvadTad uszmInszduliioad MSCs Wi dwaadnizgn nszgndaw tieldlunisinm
anudullldlunslfimadamanlunsinmliavanszgnuazda  adalsfionunsdnmlosnis
feorniTas MSCs mmsmj’aﬂ%’ﬂmqﬁfmﬁﬁﬂmmmim@L%uvlmé'uﬂé'a (spinal cord injury) 'le
(Jung et al., 2009) atilsiauiiawiazliaannagdldduoad MScs Afnorndmaaouutas
vomas MSCs lwaastzamlugivlanse ludndudilidnsd@nsilSouiivuanuausn
voamad MSCs anlunszgnuazludugiy lum‘igﬂmz{fu‘lﬁﬁ@n’mﬂﬁ'slul,l,ﬂm*’nawmélﬁlﬂu
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1. Lﬁa‘v‘hmiLﬁuLmaﬁi’ﬁuﬁ%ﬁ@ﬁmuvlﬂﬁmﬂmaamaﬂuiwn/vl,mﬂizgﬂLLa:LﬁaLﬁa"Lmﬁué’n%%ﬂ%
=< ad & ad g en &N o g
luns@nsiTmaiy ImudsiusznmIanaseu uanivemadn ldann1Ides
A R ~ a €Y o A A e & A
2. WefnslSpuifisuanumaninvesaasauiniafiauladnunnlunszgnuaziiaibe
Tugulwninlaswudasduimasdszan

3. szigu3539y
3.1 A INAKa

2 < A9 0 o , A o o = o Ao & «
mydnmesiligiy argszning 1-5 U $wau 36 a1 lasdugiandanusuysoiudoungg
lLadulsadada  wazlesuniiavafaanawsinanls mstféz‘mLLazmsgLLaqﬁﬂmmzﬁﬁmiﬁﬂmH

@‘hLﬁm’m@nmﬁmmimmﬂ%é'@fmaawaaﬁ;wmanstﬁwﬁw RY
3.2 msLﬁuéﬁasha"lmmz@mm:msﬁ@meﬂmﬁ

Lﬁuéhaamsl,uﬂ‘s:g}ﬂmaoqﬁmﬁ"[ﬁ%’umnwmaa‘uLLﬂUﬁ'@éﬁ LRTINANNRZDIAUSII LR INN
AUTUAUUNANNTENIARLNTIN  ITUANTARINIILTIIE wing of ilium LALABHNIL TR
o a o & v & o v & ' = & . °
mLu@wLﬁnuvl,ﬂm]’m"lmngﬂiﬂﬂmﬂmﬂmmmumumamwuma (bone marrow biopsy needle) ¥in
m‘sg}mﬁwaamaﬂﬂwsoﬂi:gﬂﬁhmu 5-10 UaRAAT adlunasaaaunlgsnilasnwnsndidivad
\§a@ (heparinized syringe) ¥aamaINNIwsInIzgnlusnioaddis Histoplague ® (Sigma) il
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ANUTNTUA 9NY @28 ITWNILIN 400 g Wk 30 Wl LNBAANIDILTARHILARRLAL?

(mononuclear cells) 2ONIMNLAALROALA
3.3 mautitada laduaznsAausnisas Adipose-MSCs (A-MSCs)

miLﬁuLﬁaLﬁa"[mﬁm:m:ﬁﬂuqﬁfmﬁaLamﬁ'um%ém%'uLﬁumaammlﬂwsdngﬂ iy
da hatda lunuuImaz InnuwalTzanm 3x3 waas vinmsaatay lutuai8nITinITINAUMT
Ifiaulodnanaiiug (collagenase) NaMuLdintn 0.075 % Ngmwnnil 37 asruoaifus win 30-45
P71V IARIN EUININTOIHIBULEBNTAIVUIA 100 LAz 40 LUATOUAINAIAU ¥iIn1IUud 1500
, a oA & ° A o kg \ kg
JAUGaUNLNDLENLTAS LAZILTRAN LRI 1T BINIZLRE

3.4 MILRUILTARAURLIAR LT LA

wraaawiniia MSCs ﬁ]:gmﬁmiuﬁ’lm Delbecco’s phosphate buffered saline NAUIu1

ﬁnmaﬂgiﬂa 1 g/L, 2 mM L-glutamine, 10% (v/v) fetal calf serum uazenUjaaus luﬁamﬁ@ 5%
A 1) o = b & & o o & &

CO, qm%ﬁu 37.0 C ﬂﬂﬂﬂiLﬂaﬂuuﬁﬂ’]LaﬂdL‘TjaanﬂG] 2-3 1% Ynﬂ’]ilaaﬂ\‘]Lsﬁaﬂu"ﬂquLquLaU\‘]

Wa']ﬁaﬂ ﬁmﬂﬁzﬁaLﬁﬁaﬁLLNﬂ‘iza’Iﬂﬂ‘izmm 80% confluence %Gﬁ’]ﬂ’]iﬂﬂﬂ“ﬁﬂﬂﬁ%q@ﬁnﬂﬁnu

IWNZLRE9RE 0.05% trypsin
3.5 MIaTaguanidveadduiiiila
ANIATIINUANLRGI 9 Badaad MSCs ldun
1) qmawﬁ'@luﬂ'mm:mmww:L‘gﬁawaﬂaaﬂ
2) M3MANaUIN2aIlUIAULUAIDAS L@lA CD 44 Laz CD 90
3) M3lANaauvaIlUsAuUUEILTAS oA CD 34

4) qusndidlunsiauidasuudassadidwsadlunguuaaitaibazunand

(mesoderm) lduri Litaibaludu n3zgn waznIzgnaan

3.6 MIA52UTAULURLTARGLE flow cytometer
ﬁwmsﬂ’auﬁﬂﬂaL‘samuﬁmaﬂﬂiauuuﬁavﬁaﬁVLGTLm' CD 34, CD 44 uaz CD 90

U { { =) A€ 1 {
LRZATIANTTLIDILEIVBILTARAILLATAY flow cytometer Lﬁamwaaummmqmmaanqmmaﬁﬁlﬂu
n3I98

v 9 o ¢ 4 < & A & wn &
3.7 ﬂ’ﬁﬂsx@lul%LeﬁaaLﬂﬂU%Lﬂul‘ﬂaﬂuﬂfﬂ&lLuaLUaTuﬂﬂ’NLLazﬂ'ﬁ@]Tﬁﬁ]ﬂma@Jﬂ@]TaﬂLsﬁaa
ﬂqﬂﬂgdﬂ'ﬁl,aﬂ\‘]lfﬁaﬂﬁwlﬁ confluence ﬂiz&nm 70-80% ﬁqtsﬁaé‘ﬁvlﬁwqﬂiz(i%ﬂfﬁl,ﬂaU%Ltﬂaﬂmaﬂ

& P>
LIAN NUA1I19N 2



14

P & PN @ A v o a A v & &
N1I9N 2 LLEW]{'IW]Uﬁﬂlﬂuﬂﬂiﬂiz@;uﬂ’]ﬂﬂaﬂuLLﬂad“UE}dL‘Iiaa@mﬂ’lLu@wLﬁﬁuvLﬂﬂmﬂumaa

THAG9)

ﬁﬁ@"llﬂdl,ﬁliaﬂ{ ﬁﬁmé’m%'umzé;fumimﬁUmmawawﬁaﬁ

LIRS L% 0.1 mg/ml insulin , 10mM sodium pyruvate, 1mM methyl isobutylxanthine,
1uM dexamethasone and 0.2 mM Indomethacin

Lsﬁaﬁﬂszgﬂ 100 nM dexamethasone, 50 pM ascorbate-2 phosphate, 10 mM beta
glycerophosphate

L%ﬂﬁﬂizﬂﬂéa% 10 ng/ml TGF-B1, 100 nM dexamethasone, 0.1 mM ascorbate-2
phosphate

3.8 m‘smaauqmauﬁ'ﬁmaamaﬁmmé‘amim:ﬁumsmﬁﬂuLLﬂawawnaa’”uﬁuﬁmﬁ@ﬁ
L ladas

MINAROLAMANBUVBITASNMERAININIzduMnUasuuasasaasduinfiafioulad
sannrhldlasnmsfenaiiasnlanuiimzdaiftaitioniaimadsiiouny  wialfinafiamiaya

luanalun13asas (@119 3)

A ad Aa o A A A & [ @ @ €9 o a_a &
M13d9Nn 3 ']'ﬁﬂ’]i@li’lﬁ]ﬂmﬂ?’]&lﬁnl,wq:@ﬂluﬂLﬂa'ﬁiaLsﬁaﬂﬂqU%a\‘]ﬂix@lul'ﬁLsﬁﬂﬂ@uﬂqLu@NLeﬁuvLﬂﬂJ

\Wasuulad (differentiation)

TRAVDILTAR FBnanaguanifvesad

ERR TGN Oil Red O positive staining, PPARY 2 gene expression

L%ﬂﬁﬂi:g}ﬂ Von Kossa positive staining, osteocalcin gene expression
Lﬁnaﬁﬂs:gméau Alcian blue staining positive staining, collagen type Il gene expression

3.9 ninszguldizadisiyduaadilszan
° & A A £ & A A &
Wwas MSCs i passage 01 3 mm’mmmmmqmmaamaamnlﬂsmuuummaa LAz
ﬁwﬂﬂlﬁ’lumsﬁnmmimz@umsmﬁﬂuu,ﬂawao MSCs irasanaliiduimasiszzn lagvinniy
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nazguisad MsCs liiduwmaddszamdrsmanzduldiaiydwaadiszan 2 seu  (two-step
neuronal differentiation) I@]Uﬂﬂiﬂizﬂitﬁ%ﬂ’]iﬁwu’ﬁladL‘ﬁaﬁﬂiza’mﬂ%\‘iﬁ 1 eldAenss
nuerosphere UazASI7ig04 WiRenswanauysnlvesoasdszan awitnives  (Shiri et al,
2009) menssmIdasmasiiiduimasianIug ﬁwmiﬁfua‘im’mmaﬁua:lﬁﬁ'}mﬂszéjulﬁl,ﬁ@mi
&34 neurosphere ﬁﬁmuﬂi:ﬂaumadmfﬂm neurobasal, B27 supplement, 1% insulin-transferin-
selenite (ITS), 20 ng/ml basic fibroblast growth factor w8z 20 ng/ml epidermal growth factor L’gm
wwadlwihenhdunawn 7 % dumadiimeiwluian neurosphere andaslwdwlodhudu
(0.25%, wiv) Wis 2 wift shaadlUamaius i weadLarToa 8 Tadiain HIITaSINI
IWN2RE9TARURIE  Poly-D-Lysine tagsimaslwingunionlutunousi 1 udlifinsld basic
fibroblast growth factor Wae epidermal growth factor Lﬁlalﬁl,ﬁ@]ﬂﬁil,’i]%tyLLﬂzﬁ@&lu’]aﬁJH‘iﬂiﬂla\‘iL‘UM\T
Uszann apamadlwinegniinnm 5 lunﬂmcﬁv‘hmsmﬁﬂm{wmﬂq 2-3 %

8.10 mIamamIuaasaanvaslusauiiiisatasiuimaduszam

mMaasaTaslsramaudiandn  oniuiasssasUwnIRandikiumIAday  poly-D-
Lysine ¥NAIA39LTARGRE 4% (w/v) paraformaldehyde #11 5 wfi Aaun13a19638 phosphate
buffered saline (PBS) amaﬁaﬂaaoﬂ%”'aﬁauv‘hmsl,ﬁu%'ﬂmsl,ugﬂ,ﬁu 4 pIALTALTEE AWNINeTRINg
Fandi3aousafangasminaaaanasllsiin  feuwrknisdandvinisusan non-specific  binding

@28 0.3% bovine serum albumin 11 PBS laguanfvaanltuaasluaisien 4

N3N 4 LL'N@N"E%@"UE’NLLB%@UQ@ﬂIﬁ%ﬂ’]SﬂﬂH’]

Primary antibody Neuronal target

Nestin an intermediate filament protein expressed by neural

progenitor cells

Beta Il tubulin a neuron-specific marker that indicates the neuronal
commitment
NeuN a neuron-specific protein which is present in most

neuronal cell types of vertebrates

Glial  fibrillary  acidic  protein | Astocyte marker

(GFAP)

Oligodendrocyte Marker O1 (O1) Oligodendrocyte marker

4. HaN1INA|DI
& @ . Y | PN a a £ v
IMMNNNILNUAID El’]\‘]L‘Iiaa(ﬁ]’vaﬂlﬂizﬂﬂﬂl E]G’si(Wll ‘WiLl’J’]mﬂuﬂiuﬂ’]ﬂwuﬂ’rmiqﬂﬁ?l E]GLGIiaE\i(G]u
A o N v a & X o A PN A £ Y
m Lu@ﬁLsﬁuvLﬂﬁﬂ’]vL@l’ﬂf]ﬂ%a’] UQ% luﬂ’liaﬂﬂﬂﬂidﬁlﬁEmsL“liL‘Ylﬂuﬂﬂ’]‘iLW&lﬂ’J’]&I‘]Jifiﬁmﬂl aﬁlﬁﬁafi@’)ﬂ
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gradient density I@mmmsn‘lﬁa‘hmulfnmﬁg@m,ﬁaﬁwmsmnﬁfmi']mumaﬁ‘luﬁfuﬁ 7 2a4n1IAu
o ' ° 6 ' @ ' ¥ { o o
GIDEILTAR (NWIULTARUITZNNH  1.0920.8 X 10 LTAR) mumnﬁ‘umaszﬁaLﬁavLmuumﬂqum
o ' & v o A A = & A o ' = o o = &
(mamamumnqmmmmmnmmaamnvlmﬂ's:@ﬂ) Warinmsdasduluiusmadulas collagenase
LRZYIINITLRILTAS bbANWLAZL RIS I R Bt TR s awiL e L laaiwuin AT
o o a a & & A “ M o e o a A ed & V o & A A A
EraaanrL e laivadiiatia luiwle  lagimasawiniadiau lnaninulaanniattagasiadl
o v o A Ao @ [ :; ] 1 =3 di 6
ANBHEATENY AolanEmeaanulTas INIUTUARAININN 5 waz 6 Laadndlsnauitasanniras
v ' A o o 2 A o & o ° [N eaN o
mnmmanwmzﬂmULsnaa“'I,WT,mumaawmwmLﬂu@laommimnqmmmmawﬁaa‘nvl@ Taunns
ATINILRAIAANAILUSARLBRILTAS laun1IdnEniiaanld CD 44 waz CD 90 Waliuinie
\nasuIn (positive markers) vadtaaauiiadiouwlad wazld cD 34 1w ansainasay (negative
A & & & A A 4 o o €Y o a A
marker) #8431n CD 34 lunnsainasvasnsuaadeanvadldsfuiifoidaanuisasauniniaion
. . ‘é o v 1 L U o a
(hemopoietic stem cells) smmmmmmﬂﬁuvl,ﬂmﬂvlmngﬂmeamnumaﬁmumm@ﬁmﬂﬂﬁ
=< g ' ea o & A a a o A
ANMIANBNATIBWLINTAS LAUNINNINTIINIANA  INITURAIDDNY DI LU TABLWHILTAR LTI N
54 NANIIATIINITUEAIaanVa9lUsfw CD 34 CD 44 uaz CD 90 maamaﬁﬁl,ﬁu"lﬁmﬂvlmnix@ﬂ

LRAILUAINDN 7, 8, 9 waz 10 uazaniattialuan waadluainn 11, 12, 13 ua 14

P v Il L €Y o a A & ed & % A ' v
NMAN 5 LLammwmamaaﬂwmwmmaamummmLeﬁu"lﬂumﬂumﬂvlmﬂsz@ﬂqum llglli’h‘iﬂﬂ’ltl

e bW USRI E
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[}
Q—
=
= i iE i T 4 T T T
w? 1wl e w10 Tt ot wE d ot
CDMFITS COFITS
Sample (D 10 test

Acquizition Dake: 19-Dec-11
Total Eventz: 30000
Guad Location: 28, 13

Guad Events 3 Gated 3 Total

UL 26001 BBTT BEGT
UR 119 041 040
LL H44 107 1048
LR 7 009 0.09

Sample I0: 10 test
Acquisition Dare: 19-Dec-11
Total Events: 30000

Guad Location: 28, 32

fuad Ewents % Gated % Totsl

UL 29142 9949 9714
UR 145 0s0 049
LL 3 ool oo
LR 0 0o0 000

- 100 hokstain 058

¥ T T T
w’ o owd d gt
CDO0 RPE

Sample I 10 nohstain
Acquizition Date: 19-Dec-11
Total Events: 30000

Guad Location: 15,32

Ougad  Ewvents % Gated 5 Total

Iy 158 054 053
UR 421 144 14D
LL 28400 9730 9497
LR 20 07z 07

- 10 2nd Ab0S9

=
o
]

o

-9

S

o4

T2

[

=

(=] b

e i 3 4
10! w2 wd o
D40 RPE

Sample I0: 10 2nd Ab
Acquizition Dake: 19-Dec-11
Total Events: 20000

Guad Location: 15, 32

Guad Events % Gated 5 Totsl

[ 7T 026 026
UR 466 150 155
LL 28173 9657 9391
LR 450 157 15
- 10 test 060
byl
L]
b=
4
e
T =4
z=
[=1
o
=]
o
= '1 i i P
10 10 10y 10 10

D90 RPE

Sample [C: 10 test
Acquizition Dake: 19-Dec-11
Tatal Events: 30000

Guad Location: 15, 32

Guad Events % Gated 3 Total

UL 26 927 9.0n
UR 26372 9072 8857
LL 1 o.o0 000
LR z oy o
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wa & v v v &Y o A A& & A @ '
Nam‘m‘s'maau@mauumwadmaamaamsnszq‘lﬂﬂmaam%mL%ﬂNLGﬁ%M&JL%‘thLﬂ%L%ﬂ&

A9 9

iaarrsauguaNtfzasadduiifiadiouladlumudtgiandwaadsiade g lu
g o 'Y €Y o A A e A I3 ' &g A &
PNULWIZLRLS I@]ﬂﬂ‘sz@;u‘lﬂmaamumm@msﬁu‘lﬂuLamyLﬂuvﬁaﬁluﬂ@muamaﬂjuﬂmo(mesodermal
lineage) lasiawizmaiamzassadidusadnizgn iwadiiaibaluiu uazioadnizgnden vins
@379 I REWLURIVAILTARAINENTIATANNANTWN 2 INMIAnEINUINLTaantAL laa1nng L
A A o o v a & ' A A & o A o
ngnua:mawa"lmwummsnm:@lﬂ%Lﬁ]ifgLﬂmsﬁaﬁluﬂgmuaLﬂamuﬂmavlm udliasnnmMInIzdu
v 6 v o A A & v & 6 o U = & Jaﬁ %%

1%LmaamumLuﬂmsﬁu"lmﬂuLﬂulfﬁaangﬂmm‘mm‘lmwzl MIANEATIRII I TNIIATI9NT
A €Y o a A & & & & o \ = e o A a &
LﬂawuﬂawaaLsnaa@mmLu@uLsm"l,ﬂmﬂwﬁaam:@mﬂu%aﬂ 2819 IINAULTAR AW AATTAT
sannfouulsadusadang lunguiitaiboTunand itwmadnIzgnaan LaziTas 11U aunIw
715 msmnaauqmauﬁ'@maamaﬁéfuﬁﬁLﬁmﬁaﬁuﬂ'ml,azm‘%ﬂmﬁUuqmauﬂ'@mawﬁaﬁﬁuﬁ%ﬁ@ﬁ
Lsﬁu"l,ﬂﬁﬁ'aﬁnnvlmmx@ﬂLLa:LﬁaLﬁaVLmifumﬂqﬁfmﬁaﬁu 4 61 WUITasawILRaNLEw ladannIga
A YY) [ YN A I & g .
LmawqmauummUﬂuimlmww:qmaumlumsmaslumeLﬂmsﬁaamz@ﬂlumw,wm,am (in

vitro bone differentiation)

—

N 15 uaasdmadninnamInszduliioad MsCs lilluimadnizgn (A, Alizaline Red staining)

LAY LIRS LUNY (B, Qil red O staining) aNAILRAY perinuclear fat droplet
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3 [ a a $ { . e J @ 4
wansnizquliisasdisnladliiesatrasiaiitoda (transdifferentiation) ialAidwinas

Uszdn

° o o €Y o A ~ & €Y o A @ o o & & o
mmsnsz@lulﬂmaamummmﬂayuLLﬁJaaLﬂumaa@lummmnﬂqmmmu 4 @7 L NLTARA
fuiia MSC an'laain 4 aaating LLa:mnvmez@ﬂ 1IN 4 P88 FINITRLILTARLANNT 1w LTI

g; ai 1 v &, 6 d' 2 = 6 a a C= o 6 o ngl/
A39N 3 (passage 3) dauiwanlwidwwasiasidiodunlod N3UTH AU IULTARUELINNNTLRE

[% ' 5 5 6 k4 o o

LIRRAIAMNAWILUL 3 WUL Aa 2.5x10° 5x10° waz 1x 10 lummﬂsz@;u MsC lwiiluinag
U3zan Lﬁaﬁ’mmﬁmLsﬁaﬁluﬁ’]mmtzqﬂmﬂumaﬁﬂizmwmu 7 T W lwlwaainznwn 1w
neurosphere (ATWN 16 Waz 17) INMIANWINLIN L88 MSCs ﬁrmﬁ'aLﬁaLE‘Ja"Lmimeaz"lmﬂsz@ﬂ
ananutdu neurosphere laglifinaaasnnuniiuiuaa L sasananisasd neuroshere La¥inmN3
AT UMINTIG VB Taannznwdu neurosphere azwun lifianuuand1svastasaznsidig

e & T e @ A =
°Ila\‘)LGIiE‘IE‘WlLE‘IUx‘il%ﬂ’)’]&l“ﬂuﬁLL%%‘YILL@]ﬂ@]’Nﬂ% AAII9N 5 LATNINN 18 Lax 19

e

mﬁm&m%’oﬁwuiwmﬂﬁmLeﬁaammﬁwmuuugwﬂﬁ neuroshere UIu1HINNNIN UAE
pwalwanin meitliamansaieuwnaiSouiinues neurosphere MNNguMINAnadldiiiasnnd
MIMENdNAuBed neurosphere lvlanwmeglingliuiuau lasdnwae neurosphere Hwans

ansaunaTwuuiawasIvIoaguNuRAL g fiaw (AW 16)

A319N 5 LEAIEATITARIDATIAVILTAR MSCs ?d’va"]Jﬂ‘St(ﬂﬂ (B-MSC) uazanniiiaitia s (A-

MSC) mMenasmsnunguLiu neurosphere

Cell type Total cell count Alive cells Dead cells % viability
B-MSC

Dog No. 1 209 179 30 85.6

Dog No.2 209 172 37 82.3

Dog No. 3 201 183 18 91.0

Dog No. 4 201 194 7 96.5
A-MSC

Dog No. 1 233 212 21 91.0

Dog No.2 216 199 17 92.1
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13 94.8

239

252

Dog No. 3

88.0

25

184

209

Dog No. 4
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NN 16 UFAINTNZNFNVBITAR MSCs mn"lmm:g]ﬂ (A, C, E, G) uaziitattialusi (B, D, F, H);
A uaz B u,ammja5ﬂ'aumsm:éjwfﬁaé‘lﬁLﬂuLmaﬁ‘fﬂizaﬂw; C Uz D LREIAIUAMNAMILULLTAE

5 ¥ 1Y | 5 Y [y | 6
2.5x 10, E Uaz F Laﬂﬁﬂjﬂﬂqquﬂuquu%l’sﬁaa{ 5x 10 ; G ez H Laﬂd@’mm’]&mu’nmm‘ﬁag1 x10

A o & v o = o & o
ANN 17 LEAIAN WUV ILTRaNIINAINWLL K neurosphere I@]Uwuaﬂiﬂ'mz neurosphere Wunawn

Lae (A) wae LL‘lJ‘]JTJ@JﬂEqilmad neurosphere (B)
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A e [ v A = & A .
AAN 18 LLRAILTRANEDYITN neurosphere ﬂqﬂﬂﬂﬂﬂqiﬂaNﬁWQIaLiﬁLsﬁu@ THA calcein LA

Aa

g . e da a A a A U [ a A a =
Ethidium homodimer 1 LTRANUDTIAGNARLIDILRINLVE mmsﬁaa@nﬂ@@mmalummaﬂa

AINN 19 LRAIANHIATLAZNNINILINAIVDILTAA VDI A LALTRAA A L3 neurosphere
% v a < & a . - . fdda a A A a
ﬂ?ﬂ%ﬂdﬂ’]iﬁﬂ&]ﬁWQIﬂL‘iﬁL‘ﬁ%(ﬂ TU@ calcein ez Ethidium homodimer 1 LORANDINAARLIDILRIF

= 1 6 a a a
LU RIBLTARAN m\@aumlummama
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P o & o & o o a A & o
AMNAN 20 LLRAIINBIUSLDTRIRNAN ULsﬁﬂaﬂiza’]‘ﬂﬂq Uﬂaﬂﬂ’]iﬂiz@luﬂ’]ilﬂim Ll]ﬂ U%LL‘JJM‘U DILTRNRNA W

fufia MSCs aniitaibialasiu (A) uazlunszgn (8)

AMURRINTLBLLTANINN  neuroshere mtgmluﬁt’]m final neuron induction ﬁﬁmuﬂi:ﬂau
Yo% enilawi LN neuronal preinduction sniuliiieiy EGF, bFGF wazld 1 uM all-trans
retinoic acid 1wz e WaNEAN AR LT poly-D-lysine #1% 5 1% WUINLANILLTARGUNLHA
Lﬂﬁ'ﬂuLLﬂaogﬂiwa’mmaﬁﬁﬁﬁaLLa:ﬂmmmamﬁwma&?’l%ﬂmuma I T wera AN E N TE Wl
AAEAAMS (multiple process) ARNELTRRLITEIN Gamndi 20 anmsUszfind asduansman
Lmaﬁﬁgﬂiwaﬂﬁwvﬁaﬁﬂi:mw WU LTAs MSCs ﬁLﬁumn"l:nm:@ﬂﬁﬂi:'ﬁw%mwlummﬂﬁwm.laq
\Dwsaadszangandy dlafeunuwad MSCs MAvnitaieluii (ndi 20) Wavinmsdand
SosussiionTiansugasannaadllsiin nestin FodulisauiisinizdoimadUszamazwuin as

sawtagazlwnauIngdan1Idau nestin aInINN 21

{ v { a &/ Q U YV &
2NN 21 LLamLeﬁaa{ﬂmmmaﬁﬂs:mwﬁm@mumwaamim:@lwﬁmar MSCs Iiiluaraniszan

lasiadlANauINGa Nestin (Fua9) SaNd DNA 628 DAPI
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luanzsi@onusasdszaniaoslumsansnadsitlinauinds Beta Il tubulin (WA 22) wae
{ ] \ o ' o ¥
NeuN (mwh 23) Saduunsainasvasaasdsean o819 lsAaunLInAeRaINMIasITasdszan
TiWansuyoldinadimadunsduniniznguiin neurosphere Fanguuad neurosphere Hugndaan
1U5@ua09n9 beta 11l tubulin kae nestin Iuvaeirasauiin llAnauIngda nestin (MNA 24) 1ila
o o a 6 1 6 1 1 v o . . . T
mIananeniuunrievaasasdianazwuiiaassawlng ldnauanny  Glial fibrillary acidic
protein  (GFAP)  udlinaausda 01  usasdnmasUszaniidedldiniadusadlszanlungy

dl & v o s 6 1 v v l:l
astrocyte (NN 25) TIRDAARNDINUANBUSVBILTIIVNATIINVAILNADY phase contrast (AMWN 20)

AINN 22 LRAINTUEAI8aNUILLTAY beta Il tubulin (FT87) VBITARUITETENNRNEANNLTARG Y

fdafiiuladainlanszgn dhiafsavessaddaudis DAPI (Fiidu)
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AINN 23 LRAINTUEAIBaNUBILLTAY beta Il tubulin (FT87) VBITARUITTENAREANNLTARG Y

2

fudafiiuladanlanszgn fiafoavessaddaudis DAPI (Riidu) uaz NeuN (Fua)
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ANN 24 LRAINILEAIBaNRIlUTAUYDY neurosphere AW A UROIAINARE YD neurosphere
Hauaa8 DAPI (RINIS1) 7MW B: NMIUEAI88Nad beta Il tubulin (F1087) WA nestin (FUWa3 AW C)

NN D LRAINITIINNTIN (merged image) 284nsuaaIaanlysanle neurosphere
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NINN 25 uRAIMILEAdaanuadllsdn Glial fibrilary acidic protein (GFAP) (fdg7) 2adiBas

2

Urannfindannsasauinfiafiduladnnlunsgn fefosvemaddondin DAPI (Fidu)

AN 26 LEAINTUEAIBENVBILLTAY beta Il tubulin (RiTB2) WAL nestin (Fua9) vadwasdszani

a €Y o a_ A & & & A o A a 6o Y ad a
Na(ﬂ"ﬂqﬂLﬂjaa@]uﬂqLu@NLmuvLﬂN'ﬂqﬂLuaLUavLmNu PWIANURUDIL DN DUANIY DAPI (au’uﬁu)
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a I3 o [ a o
5. a7uazInsainan1Iinaasg wazdatdEwaukedEImSUIINIde Inanian
=< & & Py oY o A A & & = Y &
msﬂﬂmmauagﬂmﬂmaa@mmLu@umuvlﬂummmmuvl,@mﬂmimwaom:gmmz
d? dl' a (d' = (2 le, di v n' o LN 6 v o a =1
hattia luain T,@meﬁaamﬂﬂl@mmsmamLwa11aqummmm:uamqmauumaomaamumLu@u
LEwlasd TauA RINNTONNZNUNWRLINANFEAN LANTIWIW L LEAI80NUTAUISUNIZTURRILTAE LaY
sansnnzduliiaigwawiduaadigld  lasawzaaslunguiiaiiatunats mdnsazit
1 6 v o a a & 6 g; 1 Jw = [~ = d' A 2 > 6
wmwLsnaa@mmLu@uLsﬁu"LmeﬂmaaaLmaaumuqmauumlummamaaﬂiﬂsmuwmmmaaﬂwma
U328 LT% nestin Beta Il tubulin NeuN Wazloaalszaniumnzuaalaslos (astrocytes) Loz
Oligodendrodrite
€Y o A A & & €Y o A v & & @ Aa °
wraaewiiaiiguladiduimasduinidannaaii@uis  (adult stem cells) NHLwIluui
6 L% dl' s gj n? dll A A 6 v o a a d‘v [
Erasan lgiNanTITnE lsavatylse nitiiesnnemaniaiiasasmadduiniarioh 1w
sannfivldnniflelanasaiia 1w anlanszgn (Wagner et al., 2005; Kemn et al., 2006),
viattaludu (Zuk et al., 2002) suEz@e (Lee et al., 2004; Koch et al., 2007 ) kaz WWSIWU (Jo et
al., 2007; Waddington et al., 2009) trasAaANTANI IR LGINE wazrRTanaw D wras
. A A & o Ko a o o & \ At ' o &
69 sl,unqmuawa"ﬁuﬂmavlm %ANINNHEIL LLquulumﬂmsﬁaammulunwﬂgnmmluamﬂasl
d' 1 a a dq' d' >3 1 1 =3 = = E=
Luaaa’mmma@IanwaLﬂ@nﬂiﬂgLamuawammmamsﬂgﬂmﬂ amﬂmmuluumsmmluqm
Aautnaras lagluftudnsnumfnsmaiudeiusadduinfeiiduladanlanzgn
(Csaki et al., 2007; Jafarian et al., 2008), isatea i (Neupane et al., 2008; Vieira et al., 2010)
A = = = A:l' dl (% % o
LRZRNOR=AE (Seo et al., 2009) Iummzmmﬂumiﬂﬂwmmmmaaﬂuqmaummawﬁaﬂ@mawwz
wa ~ A A4 o ~ wn A o @ \ [
QmauumlummamaaﬂmmﬂuLLa:Iﬂimqunuamaa maﬂmauwmmuumwmmyimwmaamwm
A A £ e = o A A =< < A9 o a
ﬂiaaLLaszwmmmqﬂﬁmmLsﬁaawmuvl,@mmuawa nIAnNEATIRlTILEaIaanuadllidn  CD
44 CD 90 stml,auauaaﬁlﬁwamﬂﬁmmuaLauiuqﬁfmﬁﬁauﬁﬁaﬁaﬂ FIUNITATIVTRALTAAG 1
Aufiaiiduladlunsnuineg lugaidneg lonsusaseanvedldsdn 1w CD 29, CD 44, CD 90,
CD 105 and Stro-1 (Martin et al., 2002; Bosnakovski et al., 2005; Csaki et al., 2007; Meirelles and
Nardi, 2009; Rho et al., 2009)
=3 Qs ] 6 d‘y lﬂl s a o s 1 {d‘ =3 v
mﬂmimumamal,énaamﬂ"lmm:gﬂLLa:Lualeavlfuuumﬂqummmu 4617 wWuinmaaniAulaiaina
LANGANIN I HIZAUIIWIUUBILTARNULEAIDANTAYI CD 4 CD 90 NInNifa9aNiAsITaIna1aifady 1w

A I3 A o v a £ .
L“/]ﬂ%ﬂﬂ']iLﬂ‘].lL‘D’ﬂig Lﬂﬂ%ﬂﬂ?iﬂWLsﬁaﬂﬂU‘iqﬂﬁ LLa:mr;ql (Egrise et al., 1992; Dodson et al., 1996)

atnsbifianumInanszguliiiamaaiyiamn iidussdlunguiaibetunanaduinaiia

o

Aa & AR wn Y o A A & & = & g ' €Y o A
mmmmLﬂuluﬂwsummqmawmmaaLsnaa@mmm@memvlﬂu NIANEIATIBWU TN AU
A & ed & v & A A Y o v & 1 '
uLsﬁuvlﬂu'ﬂmuvlﬂmmﬂvlmmz@ﬂLLa:mﬂLualeavlmuummmgﬂmmqulﬂLﬂul,éma@m sﬂunqm a3
LbaLE D TWNRTI be I@]sJmwnzasi’mEamsmsaamsm:é}u’lﬁﬂuma§°11aaﬂiz@ﬂ NIHLIHINNENNIT
@lsaﬁ]vL@Tdﬁsuazﬁﬁﬂ*’ﬁﬁhﬂumsmmﬁaﬂﬁﬁg@ wana i lunsltiaasawiniiauiahin
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Wisn (scaffold) luanuazuaImInaaitaLtadainIsy (tissue engineering) 8819 1sNaNNMIANTA
wn €Y o A A & o A [ v & x> & A
auauddvenmasauiniaiduladludunmauaywamldidussddunguiiiae
. . & o ! @ 1Y o { A d ) o
(transdifferentiation) Wufsiimanudaudsiay  FynnonuiiwMIAamasniglea
6 6’: a J dl dl a A v 6 I a
waalszannuwiiaduitasannminsidaswudasvasuandnlulasiandudannuannuiduf e
81382818 dimethyl sulphoxide (Lu et al., 2004; Neuhuber et al., 2004) u@lHhasanieuns
wgadaanuasduNinItasnumasUszanlusasaniniaiiidulad  (Yamaguchi et al., 2006;
Kamishina et al., 2006) vhl#fluwilivnzauninnzduliioadduindariailiiaiyiauniu
' & 1y = & X ) & by v 99 a &
iadlunguisaslzanld  nmsfinsasiwuiidavmadoasasluihoneduliaiydusad
U528 (neuronal preinduction) W 7 4 zwuIwasaurtiadibwladimenuluansucad
v ] P . Y= S VI caq & )
neurosphere 3N # 12 lasmaimznguaindd wiaunuiwinsadnlaasidluawwizians
AA) vo & \ Vo \ = A °
A lEiwnsaannaziiulAladnmwin - neurosphere  ann agdlsAanailasanniiwin
neurosphere NanninldluawmiziaesyinlfiAiansinnznuwes neuroshere uasfias neurpshere
ywa g ldSumlduvildifiemsaevessasnelu  neurosphere  msfinwaTaiwuiniinig
AszneaIvadTaaaen el neurosphere  WATWIBLTARABATIWINRBLINNILALLTARNTIA
VRN TINATBINITNNZAUTY neurophere anausasliiAwidaddunislunmanszguliiians
t:l' 6 d' 2 s o A a J 0 ] 1 6 [ 4
WRsnulaswasaasdizanataneitesnulatsNiad na NN TFINIBIZRINITARUALLTAR
v a =3 g dl dl v L g a s 1 %
9feds udsthdsiineitasnueandian (Wang et al., 2012) §57891M13A2AUWYBY neurosphere
Honszgulfioadlu neurosphere a1aldsfiu nestin MiRpITasiumIaTyluszozSuduvo DA
. . < v & A4
Usz8 M (Bi et al., 2010; Jang et al., 2010; Qi et al., 2010) TIFONARBINUNNITANBIATIHRANLNT
. €Y o A A & ed = o & & A
ULEAI8aNvad nestin 14 neurosphere vadimasauiLiadidulainiiuldannnslunszgnuazifiaibie
ludiu  Wedauisadly neurosphere wazidpaialdifamsamanyInivaaddizanazwudn
eV va o % 6 A 6 A [}
LDRRT RN HUSARIITARLIZAN  LagNUNILEAIaanvadlUsausadsaalssanranssiia 1o
. g; v o a ~ U b [ 3 é
NeuN, Beta Il tubulin nanniaaaduindefiviuladitldannlonszgnuazainladu adelsfionads

A A o & @ A = € ! & o A = el o
LNQLVIE]UQW%']%LTQQLtﬂzﬂquLmNTaﬂﬂqiLiﬂ\‘]LLa\‘]WQIaLsaLsﬁu@]WUQWL‘D‘aa@]uﬂ’]LuﬂNLsﬂu‘lﬂNﬂ‘lﬂﬁnﬂ

A

A o A ' 6 AV o 6 v o A A& 6 d‘y % %
lunzgnilszdunganiussddszamildnnaadduinfaiiduladanieabaloin - mondams
A 'S AV o ] & 1 | & & . = a o
arariadasvaaaatszamildnuit wassulngidwaaddszamlungy astrocyte Tadnfivi
wihAlumstoisaslszan wazlununlumsTeuusuaNUL ALV INTHNUYBITZUL
3zan (Montgomery,1994; Aschner, 1998) JsanaiuldldmasamadUszamliiaiyauysally
YUADWNFEIVDINTLRE (final neuron differentiation) ﬁﬂﬁm:@jumiﬁ'@ummaamaﬁ*’nﬁ@ astrocyte

= o & [ o A @ o o 4 v a
F.lu  subtype VB neuron  @IRUWANINAIWILAzMIANETAIEARETaIRUTN IRIAANNS

wasuudaadwaastszamisasiiondannawimsltioasewiiedidwladlulsNawd

Yyniuedeuulszsn
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Abstract

Mesenchymal stem cells (MSCs) are multipotent cells that have characteristics of self-renewal and
differentiation into various specific cell types, in particular mesodermal lineages. This study aimed at isolating,
identifying and examining the differentiation capability of canine MSCs. Bone marrow aspirates were obtained from
4 dogs. Putative MSCs were then cultured in MSC medium and subpassaged. At the 3t to 5th passages, MSCs were
examined for their morphology and doubling time. Two cell lines were examined for the expression of CD 34, CD 44
and CD 90, using flow cytometry. The in vitro differentiation of these MSCs into mesodermal lineages (bone, cartilage
and adipose tissues) and ectodermal lineage (neuron) was performed using osteogenic, chondrogenic, adipogenic and
neurogenic media, respectively. Histological examinations (Von Kossa and alcian blue staining) and mRNA
expressions (GLA and COL1A1) were used to examine the bone and cartilage differentiation, while Oil red O staining
was used to determine adipogenic differentiation.

Plastic-adhered MSCs had high potential for cell division, with a mean doubling time of 35.4+9.3 hours.
These fibroblast-like MSCs expressed MSCs markers (CD 44 and CD 90), while fewer than 5% of these MSCs were
tested positive to a hemopoietic stem cell marker (CD34). Based on the histological examinations and gene
expressions, these cells demonstrated the ability to differentiate into bone, cartilage and adipose tissues. In
conclusion, MSCs can be isolated from canine bone marrow and these cells are capable of in vitro differentiation into
specific mesodermal lineages.

Keywords: bone marrow, canine, mesenchymal stem cells
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Introduction

Stem cells have been intensively studied over
the past two decades because these cells have a
remarkable potential to develop into various specific
cell lineages upon being cultured in appropriated
conditions. Because of this, they have been considered
as a powerful tool for cell- or tissue-based engineering
in human and veterinary medicine (Barry et al., 2004;
Bongso et al., 2008; Ribitsch et al., 2010). Stem cells are
different from other cell types by two important
characteristics (Wobus and Boheler, 2005), as they
have the capability of self-renewal, while maintaining
themselves in an undifferentiated stage. In specific
condition, these quiescent stem cells, however,
differentiate into specific cell types or tissues with
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special functions such as cardiomyocyte (Jing et al.,
2008; Mayorga et al., 2009), bone (Barry and Murphy,
2004), cartilage (Kavalkovich et al., 2002) and neuron
(Trzaska et al., 2007; Kim et al., 2009).

Stem cells are usually classified into three
types (viz. embryonic, induced-pluripotent and adult
stem cells), according to their origins and production
techniques. Embryonic stem (ES) cells are pluripotent-
specialized cells that are isolated from an inner cell
mass of Dblastocyst-stage embryos (Evans and
Kaufman, 1981; Martin, 1981). Induced-pluripotent
stem cells (iPS) are also pluripotent stem cells that can
be derived from genetic modification of non-
pluripotent somatic cells (Takahashi and Yamanaka,
2006). Although these two types of ES cells are
capable of unlimited cell division and differentiation
into all three germ layers (endoderm, ectoderm and



mesoderm), their clinical exploitation has been
obscured by the possibility of tumorogenesis after
transplantation in vivo (Arnhold et al., 2000; Reubinoff
et al., 2000; Erdo et al., 2003). In contrast to the ES
cells, adult stem cells have less ability of self-renewal,
and their differentiation usually occurs within a cell
lineage from which they originated. For example,
mesenchymal stem cells (MSCs) can only differentiate
into mesodermal lineages, such as bone, cartilage and
adipose tissues (Zuk et al., 2002). Interestingly,
although these cells have been described as
multipotent stem cells as differentiation potentials are
essentially restricted to only mesodermal lineages, a
recent report showed that they also have a potential to
differentiate into other cell lineages, such as
endoderm and ecdoderm origins (a process referred
to as transdifferentiation) (Alaminos et al., 2010).

To date, host-specific MSCs are highly
desired in regenerative medicine because they can be
logically isolated and propagated from many tissue
origins, such as bone marrow and adipose tissue.
Canine MSCs have been demonstrated to have the
potential for use in cell-based therapy, particularly for
bone and soft tissue regeneration (Kraus and Kirker-
Headm, 2006; Hiyama et al., 2008; Jang et al., 2008;
Jung et al., 2009; Zucconi et al., 2010). It is commonly
accepted that the identification of MSCs relies on the
expressions of positive (Stro-1, CD 90, CD 105, CD 44,
CD 73) and negative markers (i.e., markers for
hemopoietic cells: CD 34 and 45). In dogs, only the
attachment property of MSCs to plastic culture dishes
is commonly-accepted method for the selection of
canine MSCs, while the use of MSC markers for
identification varies from one laboratory to the next.

The present study was aimed at evaluating
the isolation and the identification techniques for
canine mesenchymal stem cells (MSCs) that are
derived from bone marrow aspirates and studying
their differentiation potentials.

Materials and Methods

All chemicals were purchased from Sigma-
Aldrich, St Louis, USA, unless otherwise specified.

Isolation of mesenchymal stem cells from bone
marrow aspirates: Bone marrow aspirates were
obtained from 4 healthy dogs. The procedure for
obtaining these aspirates was reviewed and approved
by the Ethical Committee for Animal Use, Faculty of
Veterinary  Science, Chulalongkorn  University
(Accession No. 0931055). In brief, the animals were
premedicated intramuscularly with 01 mg/ml
Acepromacine maleate (Vetranquil™; Ceva Sante
animal, Libourne, France) and 0.25 mg/kg morphine
sulphate (Food and Drug Administration, Bangkok,
Thailand). After 15-20 min, anesthesia was induced
intravenously with 4 mg/kg propofol (Fresenius Kabi
Austria GmbH, Graz, Austria). The bone marrow
contents were collected from either the humorous or
iliac crest into a 10-ml heparinized syringe (containing
1000 IU heparin). The bone marrow aspirates were
then transported to the laboratory (at 26°C) and
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processed within 4 hours after bone marrow
aspiration. Upon arrival, the bone marrow aspirates
were first layered onto gradient density
(Histopaque®-1077  density 1.077 g/ml) and
centrifuged at 26°C and 400g for 30 min. The
mononuclear cells at the interface between each of the
bone marrow aspirates and Histopaque® were used.
Occasionally, remaining red blood cells were mixed
and incubated with an equal volume of red blood cell
lysis buffer for 5 min. The mixture was then
centrifuged and resuspended with 1 ml of culture
medium.

Culture of canine bone marrow mesenchymal stem
cells: Following MSC isolation, presumptive MSCs
were seeded into a 100 mm-Petri dishes (BD-Falcon™,
Franklin Lake, NJ, USA), containing low glucose
Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% (v/v) fetal bovine serum
(Invitrogen, Carlsbad, USA), 2 mM L-glutamine, 100
IU/ml penicillin and 100 pg/ml streptomycin. Non-
adherent cells were removed by washing the culture
dishes with Dulbecco’s phosphate buffered saline
(DPBS; Invitrogen) and the culture medium was
changed every 2-3 days. Adherent cells were cultured
(passage 0) until they reached approximately 70-80%
confluence. To sub-passage, the adherent cells were
washed twice with DPBS and then digested with
0.125% trypsin-EDTA (Gibco™, Invitrogen) for 2 min
and the enzyme was inactivated with an excessive
amount of fetal bovine serum in DMEM. The cell
suspension was then centrifuged at 4°C and 1000 rpm
for 5 min. If cryopreservation of cells were needed, a
freezing  medium  containing  10% v/v)
dimethylsulphoxide (DMSO) and 90% (v/v) fetal
bovine serum was added to the cells. The equilibrated
cell suspension was added into a 1-ml cryovial
(Corning, USA). The freezing rate was controlled at
1°C/min using a cryobox.

Cell morphology and population doubling time:
MSCs were daily examined for cell morphology at 100
and 200x magnification using a phase contrast
microscope (CKX41, Olympus, Japan). At the 3rd
passage, the MSCs were plated into a 12-well plate at
20,000 cells/cm? (approximately, 40-50% confluence).
The MSCs were then trypsinized with trypsin-EDTA,
and the total number of cells in each culture well was
counted using a hemocytometer at 24 hours interval
for 3 consecutive days. The doubling time was
calculated using the equation, In(2)/growth rate,
whereas the growth rate referred to the number of
doublings that occurred per unit of time.

Flow cytometry analysis: Canine MSCs at the 3rd
passage were immunologically examined for surface
markers of MSCs. Because there is no universal
marker that is specific to MSCs, identification of MSCs
therefore relied on both positive and negative
markers. To perform flow cytometry, the MSCs were
first dissociated from the Petri dishes with Trypsin-
EDTA and then centrifuged. A total of 200,000 to
300,000 cells were stained with each respective
antibody. Rat monoclonal anti-canine CD 34
conjugated with fluorescein isothiocyanate (FITC) (a



marker for hemopoietic stem cells) was used as the
negative MSC marker. Rat monoclonal anti-canine CD
90 (AbD serotec, Kidlington, UK) with rabbit anti-rat
FITC secondary antibody and monoclonal anti-canine
CD44 conjugated with allophycocyanin (APC) (R&D
system, Minneapolis, USA) were used as MSC
positive markers. Fluorescently-labeled MSCs were
finally washed once, fixed with 1% (w/v)
paraformaldehyde in PBS and stored in the dark at
4°C until analysis. Non-staining MSCs and MSCs
labeled with only the secondary antibody were used
as controls. At least 20,000 MSCs were used to test the
presence of each cell surface marker, using flow
cytometry (BD Biosciences, Franklin Lakes, USA).

Differentiation of MSCs: The MSCs derived from the
canine bone marrow at the 3rd-5th passages from 2
dogs were used to demonstrate their differentiation
potentials. MSCs were induced to differentiate into
bone, cartilage and adipose tissues according to the
methods as previously described (Bosch et al., 2006),
with some modifications. For bone differentiation,
MSCs were first sub-cultured to reach approximately
80% confluence, and the bone induction medium
consisting of DMEM supplemented with 10% (v/v)
FCS, 100 nM dexamethasone, 50 ng/ml ascorbic acid
and 10 mM Beta-glycerophosphate was added into
the Petri dishes. The bone induction medium was
changed every 2-3 days. A three-dimensional culture
system was used to induce cartilage differentiation.
MSCs were dissociated and then transferred to a 15-
ml cornical tube (BD-Falcon™, Franklin Lake, NJ,
USA). After centrifugation, aggregated cells were re-
suspended with the cartilage induction medium
containing DMEM, 10 ng/ml TGF-1, 100 nM
dexamethasone and 50 ng/ml ascorbic acid 2-
phosphate. The medium was changed every 2-3 days.
The adipose tissue differentiation was performed with
monolayer MSCs, as previously described (Zuk et al.,
2002). The MSCs were treated with 4 cycles of
adipogenic induction and maintenance (each cycle
consisted of 3 days of adipogenic induction and 2
days of adipogenic maintenance). The adipogenic
induction medium consisted of DMEM 10% (v/v)
FCS, 0.1 mg/ml human recombinant insulin, 10 mM
sodium pyruvate, 1 mM methyl isobutylxanthine
(IBMX), 02 mM indomethacin and 1 pM
dexamethasone.  Adipogenic maintenance was
prepared in a similar manner to adipogenic induction,
but without IBMX, dexamethasone and indomethacin.
Neurogenic induction was performed with DMEM
supplemented with 200 pM butylated hydroxyanisole,
25 mM KCl, 2mM valproic acid, 10 uM forskolin, 1
uM hydrocortisone, 5 pg/ml Insulin and 2% (v/v)
DMSO.

Assessment of MSC differentiation: After the fixation
of MSC-derived bone tissues in 4% (w/v)
paraformaldehyde, the tissues were embedded in
paraffin for histological analysis. The histological
sections of the tissues were stained with Von Kossa
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and alcian blue to detect the deposition of calcium
phosphate and glycosaminoglycans enriched-matrix,
indicating the successful differentiation of MSCs into
bone and cartilage tissues, respectively. The presence
of adipogenesis was confirmed by oil red O staining
which detects intracellular neutral triglycerides and
lipids.

Reverse transcription polymerase chain reaction (RT-
PCR): Total RNA was extracted from undifferentiated
MSCs that were cultured in monolayer and
differentiated cell pellets collected on D9 and D21 of
differentiation using Absolutely RNA® Nanoprep Kit
(Stratagene, Agilent Technologies, USA). The
contaminating genomic DNA was removed during
the purification steps by DNase I treatment according
to the manufacturer’s instructions. Total RNA was
eluted from the purification column with sterile
distilled water and was quantified wusing a
NanoDrop® 1000 spectophotometer  (Thermo
Scientificc, USA). Gene-specific  oligonucleotide
primers were synthesized by BioDesign Co., Ltd.
(Bangkok, Thailand). Two target genes reported to be
involved in osteogenic lineage differentiation, i.e.,
collagen type I alpha I (COL1Al) and bone y-
carboxyglutamate protein (GLA), were selected for
this experiment. A housekeeping gene, i.e.,
glyceraldehype 3-phosphate dehydrogenase
(GAPDH), was included as the internal control and
reference. Oligonucleotide sequences, PCR product
size, Genebank accession number and references of
primers are shown in Table 1.

cDNA was synthesized from an aliquot of
150 to 200 ng of total RNA using random hexamer
primers and Omniscript® Reverse Transcription Kit
(Qiagen, Hilden, Germany). One microliter of RT
reaction was mixed with 12.5 pl of GoTaq® Green
Master Mix (Promega, WI, USA), 6.25 uM each of
forward- and reverse primers, and sterile distilled
water to reach the final volume of 25 ul. PCR was
carried out on an Amplitronyx™ thermocycler
machine (Nyxtechnik, CA, USA). The suitable cycle
condition was determined and applied for each
primer pair as follows: GAPDH, 94°C for 2 min,
followed by 30 cycles of 94°C for 30 sec, 55°C for 30
sec, 72°C for 45 sec, plus the final extension at 72°C for
5 min; COL1A1 and GLA, 94°C for 1 min, followed by
30 cycles of 94°C for 30 sec, 58°C for 30 sec, 72°C for 1
min, plus the final extension at 72°C for 10 min. PCR
products were analyzed by electrophoresis on 2%
ethidium bromide incorporated-agarose gels in Tris-
Boric-EDTA (TBE) buffer. The images of agarose gels
were taken using GeneFlash Gel Documentation
(Syngene, Synoptic Ltd., Frederick, USA) and the
calculation of relative intensity of target gene mRNA
expression signal utilizing the expression intensity of
GAPDH as the reference was carried out using the
Scion Imaging program (Beta 4.0.3; Scion Corporation,
MD).
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Table 1 Oligonucleotide primers used in this study

Gene Sequences Size (bp)  Accession number References

COL1A1 (F) 5-CAC CTC AGGAGA AGG CTC AC-% 123 NM_001003090.1 Seo et al. (2009)
(R) 5"-ATG TTC TCG ATC TGC TGG CT-3'

GLA (F) 5-GTG GTG CAA CCT TCG TGT C-3’ 131 XM_547536.2 Seo et al. (2009)
(R) 5-GCT CGC ATA CTIT CCC TCT TG-3'

GAPDH (F) 5-GGA GAA AGC TGC CAA ATA TG-3 191 AB038241 Sano et al. (2005)

(R) 5-CAG GAA ATG AGC TTG ACA AAG TGG-3’

Figure 4 Relative signal intensity of COL1Al and GLA expression compared with GAPDH expression on D0, D9 and D21 of dog
MSCs bone differentiation in vitro.



Results

Fibroblastic-like cells were isolated from
canine bone marrow (Fig 1). These cells adhered to
the culture dish by 24 hours of culture. At passage 3,
putative MSCs were cultured and analyzed for
expression of MSC surface markers and population
doubling time. These MSCs were expressed
mesenchymal stem cells markers (CD 44 and CD 90)
and also negative to hemopoietic stem cells marker
(CD 34). Two canine MSCs (dog 3 and dog 4) strongly
expressed CD 44 (99.9% and 86.7%) and CD 90 (92.5%,
and 95.3%), respectively (Fig 2). However, the growth
rates of MSCs (population doubling time) were found
to be different among putative MSCs from different
dogs (46.1, 24.2, 38.8 and 32.4 hours).

We further demonstrated that these cells
were also capable of differentiation into mesodermal
lineages including bone, cartilage and adipose tissues.
After 21 days of differentiation, differentiated MSCs
were essentially positive to oil red O, Von kossa and
alcian blue as indicators of fat, bone and cartilage
formation respectively (Fig 3). In addition, MSCs were
also transdifferentiated into multiple-process neuron-
like cells soon after treating MSCs with neurogenic
medium (Fig 3).

Figure 1 Fibroblastic-like mesenchymal stem cells derived
from bone marrow aspirate

COL1A1 and GLA expression was detected
in undifferentiated MSCs. The early stage of
differentiation up-regulated the genes as seen in the
increment of relative signal intensity on D9 post
culture. COL1A1 mRNA increased continuously on
D21 post differentiation, while the expression of GLA
gene dropped below the starting point (Fig 4).

Figure 2 Expressions of CD 44 and CD 90 in canine MSCs. Samples from dog 3 (upper panel) and dog 4 (lower panel) were analyzed

by flow cytometry.
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Figure 3 Differentiation potential of canine mesenchymal stem cell (A) adipose tissue; cartilage (B) bone (C and E) and neuron-
like cells (F). Adipocytic cells accumulated with neutral lipids as shown by oil red O staining. Cartilagenous and
bone tissues were confirmed by the presence of glucosaminoglycan enriched matrix, calcium phosphate and alkaline
phosphatase activity (D) using alcian blue, Von kossa and leukocyte alkaline phosphatase kit, respectively.

Discussion

In the current study, we successfully isolated well-defined mesenchymal stem cells derived from canine
bone marrow. These specialized cells are classified as multipotent stem cells because they have the capability of
differentiation into mesodermal lineage. MSCs have been isolated from many tissues of the body such as bone
marrow (Wagner et al., 2005; Kern et al., 2006), adipose tissue (Zuk et al., 2002), umbilical cord (Lee et al., 2004;
Koch et al., 2007 ) and dental pulp (Jo et al., 2007; Waddington et al., 2009). In dog, the data in regard to the
isolation, characterization and clinical use of canine MSCs have been limited. Until recently, canine MSCs have
been isolated from bone marrow (Csaki et al., 2007; Jafarian et al., 2008), adipose tissue (Neupane et al., 2008;
Vieira et al., 2010) and umbilical cord (Seo et al., 2009). Because there is no specific marker for the identification of
canine MSCs, the isolation and identification technique has therefore been different among laboratories. MSCs
from many species demonstrate antigen specific on cell membrane such as CD 29, CD 44, CD 90, CD 105 and
Stro-1 (Martin et al., 2002; Bosnakovski et al., 2005; Csaki et al., 2007; Meirelles and Nardi, 2009; Rho et al., 2009).
In the current study, only canine antibodies were proven a good candidate for MSC isolation when compared
with antibodies from other animals such as anti-mouse Stro-1 and anti-human CD 105 (unpublished data),
suggesting

the specificity of canine surface antigen. This phenomenon is one of the hallmarks affecting the exploitation of
MSCs for clinical use since MSCs are located in the bone marrow with a mixed population of cells and it has been
estimated that there are only 0.0001-0.01% MSCs in the nucleated cells of bone marrow aspirate (Pittenger et al.,
1999). Most investigators have isolated MSC using their capacity to adhere to a plastic culture dish. However,
macrophages, endothelial cells, lymphocytes, and smooth muscle cells can also adhere to culture plate and
therefore contaminate the MSC preparations. The isolation, identification and purification of canine MSCs
recently become an important issue for the clinical use of MSCs. Although legal regulation use of canine MSCs
has yet to be discussed, the minimum requirements for clinical use of MSCs have been announced for human
(Dominici et al., 2006). Human MSCs must demonstrate the fibroblast-like morphology and have the ability to
adhere to a plastic culture dish, positively express (> 95%) cell surface receptors (e.g. CD 29, CD 44, CD 73, CD
105, CD 106, Stro-1, etc.) and negatively express (< 2%) the hematopoietic lineage markers (e.g. c-Kit, CD 14, CD
34, CD 45). More importantly, these cells must show a capability of differentiation into mesodermal lineage
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(bone, cartilage and adipose tissues). In the current study, we found that MSCs, at least under our conditions,
were already committed to differentiate into bone and cartilage as they prematurely expressed GLA and
COL1A1 (early markers for bone and cartilage differentiation) prior to differentiation induction. It is also
possible that the MSCs used in this study had spontaneous differentiation during culture. Until recently, study of
pathways regulating the bone and cartilage differentiation of canine bone marrow MSCs is still required in order
to improve the efficiency of in vitro bone and cartilage differentiation for cell- or tissue-based engineering. Volk
et al. (2005) reported that canine MSCs could be efficiently differentiated into bone using bone morphologic
protein 2 (BMP-2) which was similar to other species (Li et al., 2007). In addition to the differentiation capability
into mesodermal lineage, transdifferentiation of MSCs to neuron-like cells has been believed to hold a great
promise in cell treatment therapy (Zipori, 2004; Krabbe et al., 2005, Bongso et al., 2008). However, this
transdifferentiation of MSCs into neuron-like cells has been contradictory especially the toxic effect of DMSO on
actin microfilament during differentiation (Lu et al., 2004; Neuhuber et al, 2004). Interestingly, it has been shown
that MSCs expressed neuronal specific genes even though they were not treated with neuronal differentiation
medium (Yamaguchi et al., 2006; Kamishina et al., 2006). In this study, we only recorded morphological changes
of canine MSCs after neuronal differentiation. The “true’ capability of canine MSCs in neuron differentiation has
yet to be examined in the prospective study.

In conclusion, our study demonstrates that canine mesenchymal stem cells can be isolated from bone
marrow, and these MSCs are capable of differentiation into specific mesodermal linage (bone, cartilage and
adipose tissue) following passages and in vitro differentiation.
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Abstract

Mesenchymal stem cells (MSCs) have increasingly become an attractive aspect for
tissue engineering and modulation of bone healing. However, limitation of cell numbers at
isolation and culture has restricted the clinical exploitations. In experiment 1, bone marrow
contents were collected from 7 dogs and then submitted to 3 different MSC isolation
techniques (direct plating, red blood cell lysis treatment and Percoll gradient density). The
number of cells and viability for each technique were recorded. The characterization of
isolated MSCs included plastic adherence, expression of MSC markers and in vitro

differentiation.

In order to study in vivo osteogenic capacity of derived MSCs, non-union ulna lesions
(n=3) were firstly induced by transplantation of a composite of polycarpolactone/
hydroxyapatite (PCL/HA) scaffold onto a critical size ulna bone defect. The MSCs were then
injected into the lesions. The non-union sites were examined by radiography, angiography
and histology at 2, 4, 6, 8 and 12 weeks after MSC injection.

Gradient density (1.08 £ 0.92) and RBC lysis (0.94 + 0.55) techniques yielded higher number
(x10° of putative MSCs on day 7 of culture compared with direct plating technique (0.26 +
0.28), while the percentages of viability and osteogenic differentiation property were not
significantly different among the isolation techniques. A large number of isolated MSCs,
irrespective the isolation techniques expressed all MSC markers used (CD 44, CD 90).
However, the numbers of MSC-marker positive cells were significantly reduced when

compared between MSCs at passage 3 and 5

For all MSC transplanted dogs, neither radiological changes at scaffold-ulna interface
nor callus formation was observed. At 16 weeks after MSC injection, the angiogram
indicated an increased neovascularization. This was confirmed by the histological finding that
there was an improvement of vascularization within the thicker fibrinous tissue surrounded
the scaffold.

It is concluded that gradient density and RBC lysis treatment are suitable MSC
isolation techniques in terms of the numbers of cells obtained and also their MSC properties.
However, the potential use of these MSCs following injection to non-union bone site was
compromised possibly caused by a lack of osteogenic stimulation.
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1. Introduction

In dogs with impaired bone healing, the incidence of long bone non-union is 3.4% and
the most common site of non-union (40-60%) is often associated with the radius/ulna
(Bartels, 1987). The etiology of a non-union may involve multiple factors including a poor
blood supply to the affected area, poor apposition of fractured bone-end, motion at the
fracture site, large fracture gap, pathological fractures, foreign bodies, large quantities of
necrotic bone, infection and non-justified corticosteroid therapy (Calori et al., 2011;
Vertenten et al., 2010). For treatment of non-union bone, autologous bone graft is the gold
standard that leads to bone union through osteogenecity, osteoconductivity and
osteoinductivity. However, it carries with it a high risk of fracture and infection, pain at the
donor site and less cancellous bone (Lee et al., 2009). Such shortcomings can be addressed by
bone tissue engineering, an interdisciplinary field that applies principles of bioengineering,
material science and life science to develop biological substitutes that restore, maintain, and

improve tissue function (Langer and Vacanti, 1993).

Stem cells are anticipated to serve as a powerful tool for tissue engineering in human
and veterinary medicine (Barry and Murphy, 2004; 2008; Ribitsch et al., 2010).
Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into mesodermal
lineage such as bone, cartilage and adipose tissues (Zuk et al., 2002). They also can
potentially transdifferentiate into other cell lineages (Alaminos et al., 2010). Canine MSCs
have been demonstrated to have potential for cell-based therapy for bone and soft tissue
regeneration (Jang et al., 2008; Kraus and Kirker-Head, 2006; Zucconi et al., 2010).
Although bone marrow is the major accessible and enriched source of mesenchymal stem
cells, the numbers of MSCs obtained from bone marrow is generally insufficient for
transplantation since the population of MSCs has been reported to range about 0.01 to
0.001% of bone marrow mononuclear cells in rodents and felines (Martin et al., 2002),
(Kadiyala et al., 1997). This therefore highlights the importance of the technique for isolation
of MSCs. Because the specific markers for bone marrow derived MSCs have yet to be
identified, the characterization of MSCs usually relies upon the traditional MSC properties.
These include plastic adherence, expression of some surface markers such as CD 90, CD 105
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and Stro-1, while lacking the expression of hemopoietic stem cell marker (CD 34) (Wagner et
al., 2005; Dominici et al., 2006). More importantly, these cells have a capability to
differentiate into mesodermal lineague including bone, cartilage and adipose tissue (Bosch et
al., 2006) or transdifferentiate into other cell lineagues such as neuron (Krabbe et al., 2005).
In dog, direct plating of bone marrow aspirate is frequently used for bone marrow derived
mesenchymal stem cells. However, no such information about comparison of the technique
for MSC isolation has been reported. It is therefore important to standardize the MSC
isolation technique in order to increase the cell homogeneity of the MSCs population, thereby

improving efficiency for bone regeneration (Roberts et al., 2008).

Scaffold, a three-dimensional porous structure with interconnection between pores, allows
cell attachment that can replace defective bone. Polycaprolactone (PCL) is a biodegradable
synthetic polymer (Amato et al., 2007; Williams et al., 2005) with advantages over other
polymeric materials for bone formation and remodeling phase, including good
biocompatibility, higher and prolonged mechanical strength, more stability in ambient
conditions, and a slower biodegradation rate (Gunatillake and Adhikari, 2003; Shor et al.,
2007). Hydroxyapatite (HA) (Cai0[PO4]s[OH]2) is known as a ceramic of choice for bone
tissue engineering because its chemical and crystal properties resemble to the mineral
component of bone tissue, giving it to have an excellent biocompatibility (Di Silvio et al.,
2002; Neuendorf et al., 2008; Wang, 2006), osteoconductive capacity and also ability to bind
directly to host bone (Hutmacher et al., 2007). The combination of PCL and HA
synergistically improves mechanical properties, osteoconductivity and osteointegrative
potential of the scaffold (Di Silvio et al., 2002; Neuendorf et al., 2008; Wang, 2006). The
objectives of this study were to compare the effects of isolation techniques on derivation of
bone marrow mesenchymal stem cells and characteristics and also to examine the effect of
MSC transplantation on bone healing of an experimentally ‘induced’ non-union ulna bone in

dogs.
2. Materials and methods

All chemicals used in this study were purchased from Sigma Aldrich, St Louis, USA, unless

otherwise specified.

2.1 Collection and isolation of canine bone marrow derived mesenchymal stem cells
This study was approved by the Committee for the Ethical Care of Animals of the
Chulalongkorn University. Seven mature dogs, mixed breeds, weighed between 10 to 15 kg
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were enrolled in this study. All dogs were clinically examined and remained health entirely
the experiment. Complete blood counts and blood chemical profiles were also examined
before surgery. Acepromazine (0.02 mg/kg) and morphine (0.5 mg/kg) were administered
intramuscularly for sedation and pain control. Anesthesia was induced with propofol
(Fresenius Kabi, Austria GmbH, Graz, Austria) and maintained with isoflurane in 100%
oxygen delivered via a rebreathing anesthetic circuit. Cefazolin (25 mg/kg) was administered
intravenously as prophylactic antibiotic. Epidural anesthesia using 5% bupivacaine (1 mg/kg)
combined with 0.1 mg/kg morphine was additionally performed in order to relief pain
sensation caused by bone marrow aspiration procedure. Fifteen milliliters of bone marrow

were harvested from the iliac crest of each dog with a heparinized syringe.

The bone marrow aspirate (15 ml) was equally divided into 3 aliquots, and each
aliquot (5 ml) of bone marrow was then submitted to one of the following isolation

techniques: 1) direct plating, 2) red blood cell lysis treatment and 3) gradient density.
2.1.1 Direct plating

Direct plating was performed by adding bone marrow aspirate directly into a 10 cm
Petri-dish (BD-Falcon™, Franklin Lake, NJ, USA) containing with 7 ml of MSC culture
medium. After 24 of culture, the attached cells were washed with Dulbecco’s Phosphate
Buffered Saline without calcium and magnesium (DPBS) for 2-3 times, and the fresh MSC
medium was then added.

2.1.2 Red blood cell lysis treatment

Red blood cell lysis buffer (8.3 g/L ammonium chloride in 0.01 M Tris-HCI buffer,
pH 7.5 + 0.2) was used to eliminate the contaminated red blood cells (RBC) in the bone
marrow aspirate. The RBC lysis buffer was mixed at a ratio of 1: 1 with bone marrow
aspirate and then incubated at room temperature (approximately 25-26 °C) for 5 min. The
mixture was then centrifuged at 1000 rpm for 5 min. After the supernatant was discarded, the
pellet was resuspended with MSC medium, and the isolated cells were cultured in MSC

culture medium. The non-attached cells were washed out in the following day.
2.1.3 Gradient density

Bone marrow aspirate (5 ml) was gently layered onto a histopaque® 1077 (density
1.077 +0.001) in a 15 ml conical tube (BD-Falcon™, Franklin Lake, NJ, USA).The
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centrifugation was performed at 26 °C and 400g for 30 min, and the interface containing
mononuclear cells was then collected. The presumptive MSCs were washed with MSC

culture medium for two times prior to culture.
2.2 Culture of bone marrow derived mesenchymal stem cells

Following MSC isolation (day 0) as previously described, the isolated cells were allowed to
attach to the culture plate for 24 h prior to washing with DPBS (Invitrogen). These cultured
cells were assigned as primary cells at passage 0 (Po). MSC culture medium was composed of
a low-glucose Dulbecco’s modified Eagle’s medium (low glucose DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS, Invitrogen, CA, USA), 2 mM L-glutamine
(Invitrogen, Carlsbad, USA), 100 unit/ml penicillin G, 100 pg/ml streptomycin, 8 mg/ml

gentamicin and 5 pg/ml amphotericin B.

Subculture of MSCs was performed after treating the cells with 0.05% (w/v) trypsin-
EDTA (Invitrogen). The disaggregated cells were then centrifuged and split into new petri-
dish at a ratio of 1:3. Putative MSCs at passages 3 (P3) and passage 5 (Ps) were used for flow
cytometric analysis in order to examine the expression of cell-surface antigens and also for in
vitro differentiation. In all cases, the culture condition was performed at 37°C in a humidified

condition of 5 % CO; in air.
2.3 Assessing the characteristics of canine mesenchymal stem cells
2.3.1 Flow cytometry

The examination of MSCs was performed as essentially described by Tharasanit et al.
(2011). Canine MSCs at the 3 and 5™ passages from a total of 5 dogs (Dog no. 1, 4, 6, 7 and
8) were immunologically examined for surface markers. These makers included the positive
(CD 44, CD 90) and negative (CD 34) makers. The MSCs were first dissociated from the
Petri dishes with Trypsin- EDTA and then centrifuged. A total of 200,000 to 300,000 cells
were used for immunolabeling. Rat monoclonal anti-canine CD 90 (AbD serotec, Kidlington,
UK) with rabbit anti-rat FITC secondary antibody and monoclonal anti-canine CD44
conjugated with allophycocyanin (APC) (R&D system, Minneapolis, USA) were used as
MSC positive markers. Antibody against CD 34 conjugated with fluorescein isothiocyanate
(FITC) (Rat monoclonal anti-canine antibody was used as the negative MSC marker.
Fluorescently-labeled MSCs were washed and fixed with 1% (w/v) paraformaldehyde in PBS
and stored at 4°C in the dark until analysis. Non-staining MSCs and MSCs labeled with only
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the secondary antibody were used as controls. At least 20,000 MSCs were analyzed by flow
cytometry.

2.3.2 In vitro bone differentiation of MSCs

Canine bone marrow derived MSCs at passage 3 and 5 from four dogs were
simultaneously induced to osteogenic lineage (each dog represented one replicate).
Osteogenic differentiation was performed as essentially described by Bosch et al. (2006) with
minor modifications. The MSCs were first cultured to reach approximately 80% confluence,
the osteogenic medium containing MSC medium supplemented with 0.1 pM dexamethasone,
50 uM ascorbic acid, 10 mM B-glycerophosphate (Merck) was then added into the culture
dish. The in vitro bone differentiation was performed for 21 days. Von Kossa staining was

used to detect deposition of calcium phosphate indicating de novo bone formation.
2.3.3 Scaffold preparation and MSC transplantation

PCL/HA composite scaffolds were prepared as previously described. The scaffold were cut
into 10x5x25 millimeters and sterilized with 100% (v/v) absolute ethanol for 1 h. The
scaffolds were washed thoroughly with sterilized distilled water and then DPBS to remove
the ethanol.

Anesthesia and surgical procedures were performed as similar as previously
described. Brachial plexus block using 5% bupivacaine (1.3 mg/kg) was additionally
performed prior bilateral ulnar osteotomy in order to reduce pain sensation principally by
noxious signal inhibition. A total of 3 dogs were induced bilateral ulnar non-union (n=6) by
cutting the mid-shaft of the ulnar bone (2.5 cm) using an oscillating saw. The osteotomized
sites were implanted with the PCL/HA composite scaffold to improve bone stability. After
the operation, all forelimbs were applied with modified Robert Jone bandages reinforced with
thermoplastic splint (Vet-lite, Bangkok, Thailand). All dogs also received enrofloxacin (5
mg/kg, Bayer®, USA) and carprofen (4 mg/kg, Pfizer, USA) orally for 7 days after
implantation. All dogs demonstrated for bone non-union during 12 weeks after scaffold
implantation. For transplantation, autologous MSCs were subcultured to passage 4 as
previously described. After trypsinization, approximately 10x10° cells/ml were loaded into a
syringe containing with minimum volume (0.5 ml) of DMEM supplemented with 1% (v/v)
FBS. Three MSC transplanted sites (proximal, middle and distal parts of the PCL/HA
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scaffold implant) were injected via a 23 G indwelling intravenous catheter with MSCs under
a fluoroscope.

2.4 Examination of bone formation
2.4.1 Radiography

The lateral radiographs were taken immediately at 2, 4, 6, 8, 10 and 12 weeks post-
operation in all dogs. Bone healing was evaluated using radiographic scoring system
previously described by Johnson et al. (1996) as shown in table 1. Bone union was justified
grading from 0 to 3 at the proximal and distal of implanted material. In addition, the new

bone formation was scored O to 4.
2.4.2 Angiography

Fluoroscopic angiography was performed in two experimental dogs at 12 weeks
before MSC injection (dog no. 1, 2) and 16 weeks after MSC injection (dog no.1) in order to
observe blood vessels at an implantation site. Anesthesia and surgical procedures were
performed as previously described. The 23 G intravenous catheter connected with an
extension tube was inserted into the axillary vein and the radiographic contrast medium
(Omnipaque®) was slowly administrated in order to observe the presence of the blood vessel
at the MSC transplanted site using fluoroscopy.

2.4.3 Histological examination of MSCs loaded scaffold

The biopsy was performed both before (n=2) and after MSC transplantation (n=2) at
12 and 20 weeks post-transplantation. The biopsy samples were fixed with 10% (v/v)
formalin, and the fixed samples were embedded in paraffin and processed following
guideline for a routine histological procedure. The sections were stained with H&E and
examined for neovascularization and bone formation under a light microscope. Occasionally,
Masson’s Trichrome staining was additionally performed to detect the presence of collagen

fibers.
3. Statistical analysis

Values are present as means + standard deviation (SD). Efficacy for different MSC
isolation techniques on the number of isolated MSCs, viability and expression of MSC

markers were compared by one-way analysis of variance (ANOVA) and post-hoc analysis
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with LDS. Expression of MSC markers of MSCs at passage 3 and 5 was compared using a
pair T-test. Angiographs and histological findings were descriptively analyzed. The
differences in radiographic scores at 2, 4, 6 and 8 weeks post MSC transplantation were
evaluated using Kruskal-Wallis one way analysis and Mann-Whitney U test. In all cases,
statistical analysis was performed using SPSS statistical program (version 17.0). P values
<0.05 were considered statistically significant.

4. Results

Following MSC isolation, putative MSCs were attached onto Petri-dish. These MSCs
irrespective the MSC isolation techniques demonstrated a typical MSC morphology (figure 1
A-C). There were several cell types including thin spindle shaped, typical fibroblast-like, and
mantle cells. On day 7 after MSC isolation, the total number of MSCs obtained from a 5-ml
of bone marrow aspirate was ranged from 0.35x10° to 2.8x10° (1.08x10°), 0.23x10° to
1.43x10° (mean = 0.94x10°), 0.03x10°% to 0.75x10° (mean = 0.26x10°) for gradient density,
RBC lysis treatment and direct plating, respectively. The numbers of isolated MSCs were
considerably variable among donors (Table 3). On day 7 after MSC isolation, the gradient
density techniques significantly increased the numbers of isolated MSCs when compared
with direct plating technique (P<0.05), while cell yields obtained from this gradient density
was efficiently comparable to RBC lysis treatment (P>0.05). However, different techniques
did not affect the cell viability (Table 1).

Cell-surface antigen profiles of canine MSCs was ascertained after immunolabeling
with canine-specific/cross-reacted monoclonal antibodies and examined with a flow
cytometer. Ranges and averages of percentage of cells positive for CD 44, CD 90 and CD34
are shown in table 3. In general, canine MSCs were positively labeled with CD 44 and CD
90, while they were negative to CD 34 a hemopoietic stem cell marker. Canine MSCs at
passage 3 and passage 5 highly expressed CD 44 (range between xxx-yyy and eee —ttt for
MSCs at passage 3 and 5) and rarely expressed CD 34 in all cases . However, these cells
appeared to differently express CD 90 when compared between the two passages (P>0.05). In
order to verify that these cells retained the MSC properties during subpassages, MSCs were
induced to differentiate into osteogenesis. These cultured cell lines were able to differentiate

into an osteogenic lineage as they positively stained with VVon Kossa.
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Following MSC transplantation into non-union sites, all three dogs could walk
properly within 24 hours after surgery. Neither radiological changes at scaffold-ulna interface
nor callus formation was presented at the implant sites of PCL/HA alone (figure 4A) and
PCL/HA combined with MSCs (figure 4B) at 2, 4, 6, 8 and 12 weeks post-operatively. The
density of the implant grafts was comparable to soft tissue density. The radiographic scores
was 0 in all cases. Fluoroscopic angiography presented blood vessels at the PCL/HA grafts at
12 weeks after implantation and increasing blood vessels at PCL/HA grafts with MSCs
injection at 16 weeks after injection (figure 5). Moreover, this cannot prove vascular suppling

at the implant area or at deep tissue surround.

Histopathology showed a incorporation of the PCL/HA scaffold and host bone which
mainly achieved with fibrocartilaginous tissue without osteoid formation. The defect site was
filled with loose and unorganized connective tissue with new vascular ingrowth in the control
group (figure 6 A-B). The new vascular ingrowth and the organized connective tissue were
increase at the PCL/HA scaffold with MSCs injection. The capillaries and arterioles were
more remarkable and thickening of fibrous tissue was mainly comprised of spindled cells
with extensive collagen deposition confirmed by Masson’s Trichrome staining at 16 week
and 20 weeks after MSC injection (Figure 6 C-D). The numerous of multinucleated gaint
cells and lymphocytes were found indicating a chronic inflammation with foreign body giant

cell response to the material both before and after MSC injection.

Discussion

The in vitro study demonstrated property of BMSCs in all isolation techniques for cell
behaviors with respect to cell viability, cell attachment and morphology, the proliferative
capacity and the ability to differentiate into osteogenic lineage confirmed by von kossa.
Whole bone marrow aspiration was the worst isolated techniques that it might RBC occupy
the space of expansion. RBC lysis technique is less time consuming, and easy to perform. It
is the best in terms of the number of total MSCs and simplicity so it should be used to isolate
MSCs from bone marrow. However, age also affects on amount of BMSCs which MSCs
decrease in elder (Dodson et al., 1996; Egrise et al., 1992) and the cells obtained from young
donors grew more rapidly (Musina et al., 2005). There is a small number of MSCs at Py so
sub-culturing of BMSCs need to increase the number of cells. We found the similar

properties of cells at P3 and Ps_ According to the expression of cell-surface antigen markers,
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BMSCs from all isolation techniques contain with the high percentage of cells positive on CD
44 and CD 90. The percentages of cells positive on CD 90 decrease at Ps that it might be
spontaneous differentiation of MSC. As considering of Wiesmann et al (2006), expression
level of CD 90 declines as the cells mature towards osteoblast-like cells. However, it is not
happen in CD 44 which is adherent marker. Furthermore, in vitro osteogenic differentiation

demonstrated MSC property can be used in vivo.

In vivo study, as the combination of osteopotential cell and biolodegradable scaffold
is one of the most successful strategies in bone tissue engineering and the use of PLC/HA
composite scaffold fabricated by solvent casting and particular leaching techniques has been
demonstrated as a promising approach for promoting new bone formation
(Chuenjitkuntaworn et al., 2010). Defects in PCL/HA group were healed with fibrous
connective tissue consisted of long spindle-shaped fibroblastic cells and collagen fiber as an
extracellular matrix. The presence of capillaries within the graft sites suggested that PCL/HA
scaffolds can support the ingrowth of vascular tissue. Similar results were obtained in the
group that treated with MSC-injected PCL/HA scaffold, however, Mason’s trichrome
staining suggested that more collagen deposition was found when compared to PCL/HA
group. Although there was a good evidence of fibrovascular tissue infiltration with an extent
matrix deposition throughout the entire PCL/HA scaffold, no osteogenic differentiation was
observed. In contrast to the promising result in a calvarial defect of mouse
(Chuenjitkuntaworn et al., 2010) neither new bone nor callus formation was observed in
defects treated with PCL/HA alone or MSC-injected PCL/HA scaffold. Several possible
reasons could explain for this inconsistency. It is believed that larger animal possesses bone
regenerative capacity to a lesser extent than small animal. Moreover, the physiological
differences between dog and mouse with regard to the slower bone turnover rate lower basal
metabolic rate and longer lifespan in dog may contribute to different bone healing result
(Cook et. al., 1994). The variation in size, location and the mechanical environment of the
defects may impact on the biological response to the scaffold. PCL/HA scaffolds used in the
present study were not only larger in size but also thicker in dimension than the previous
study. This may cause a massive release of the degradation product, caproic acid, from the
scaffold and subsequently creating an unfavorable environment for bone regeneration
(Bostmann et al. 1990; Bergsma et al., 1995; Prokop et al., 2004). Finally, the major
consideration was given to the different types of bone defect (flat bone as a calvarial bone

versus long bone). A calvarial defect is considered as a non-weight-bearing model which
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experiences lesser mechanical interference than a long bone model. Therefore, a calvarial
bone defect may provide more favorable environment for new bone regeneration than an
ulnar bone defect in a biomechanical aspects. Histological analysis demonstrated the presence
of numerous multinucleated giant cells within defect sites that implanted with PCL/HA and
MSC-injected PCL/HA scaffold. These giant cells appeared adjacent to remnants of the
scaffold which reflected chronic inflammation with foreign body response. For this reason,
scaffold samples were sent to identify the contamination using scanning electron microscope
with energy dispersive x-ray (SEM/EDX) analysis. The result of the SEM/EDX analysis
showed that the scaffolds were contaminated with copper (Cu) from hydroxyapatite ceramic.
Thus, chronic inflammation with foreign body giant cell response from copper contamination
may result in an impaired new bone formation at defect site. Similar tissue reaction was
reported by Linder and Lundskog (1975), Volker et al. (1997), Tindel et al. (2001) and Saitoh
et al. (2010).

Conclusion

The basics for successful bone healing are biomechanical stability and biological
vitality of the bone providing an environment in which new bone formed. Cortical bone graft,
scaffold, or fibrous tissue at the long bone-defects can be used to bridge major defects or to
establish the continuity of a long bone additionally to promote bony union in delayed union
or non-union fractures. Moreover, non-union has a poor blood supply together with a poor
general nutritional status. Polytherapy becomes the concept for the treatment of non-union
using three fundamental components, osteoprogenitor cells, growth factor and
osteoconductive scaffold. These are essential for the evolution of bone healing which lack
any factors causing disappointing results. (Calori et al., 2011) BMP is one of the most
popular growth factors which play a role in bone tissue engineering. It greatly increased
osteocalcin release from MSCs promoting and healing response and induced chondrogenic
and osteogenic differentiation of human bone marrow MSCs (Cheng et al., 2003; Schmitt et
al., 1999; Shen et al., 2010). Additionally, it promoted the new bone formation in femoral
defects in rats (Burastero et al., 2010) and increased the local population of cells and the
connective tissue progenitors in a canine femur defect model with the combination of MSCs
(Takigami et al., 2007). It should be used for the future study.
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Table 1 Radiographic scoring system for bone healing evaluation (reference).’®

Score Description

Bone

formation

Bone union

0 No new bone; graft approximates density of soft tissue

Minimal new bone composed mostly of noncontiguous
1 Areas of minimal density

New bone present as mostly contiguous areas of normal
2 Density and fills approximately 50% of the defect

New bone present as mostly contiguous areas of normal

3 Density and fills approximately 51-95% of the defect

4 New bone a solid contiguous mass that fills > 95% of the defect

0 No contact between new bone and noninvolved adjacent normal bone
1 Partial bridge (< 50%) from new bone to adjacent normal bone

2 Partial bridge (> 50%) from new bone to adjacent normal bone

3 Complete bridge from new bone to adjacent normal bone
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Table 2 Total cells and viability of BMSCs on day 7 (Po) by using three isolated techniques.

Gradient RBC lysis Whole aspiration

Dog Total cell % viability | Total cell % viability Total cell % viability
(x10°) (x10°) (x10°

1 2.8 97.01 1.32 97.58 0.17 96.95

2 1.40 96.29 1.25 95.85 0.75 97.34

3 0.35 96.89 1.43 86.27 0.46 93.48

4 0.51 98.27 0.26 94.36 0.03 88.32

5 0.61 97.51 1.14 93.76 0.08 95.88

6 0.79 96.45 0.23 98.23 0.09 96.22

7 1.16 96.21 0.04 96.73 0.38 95.82

Mean +SD | 1.08 +0.92a | 97.08+0.73a | 0.94 + 0.55a,b | 94.34 +4.32a | 0.26 +0.28b | 94.70 + 3.4a

Table 2 Mean + SD of total cells and viability of BMSCs of 7 dogs on day 7 (Po) by using

three isolated techniques.

Isolation techniques % viability Total cell (x10°)
Gradient 1.08 + 0.92a 97.08+0.73a
RBC lysis 0.94 + 0.553,b 94.34 + 4.32a
Whole aspiration 0.26 + 0.28b 94.70 + 3.4a
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Table 3 Range and average percentage of flow cytometric determine canine BMSCs by using CD 34
CD 90 and CD 44.

PS5

WHOLE RBC LYSIS GRADIENT
range Average Range average range average
95.66-99.59 | 98.74+1.73 99.18-99.89 | 99.28+0.82 | 99.02-99.89 | 99.2+0.96
CDh44 (P3
88.56-99.76 | 96.34+4.74 96.34-99.93 | 98.38+1.8 95.04-99.76 | 97.27+1.98
P5
01.93-99.15 | 95.84+3.05 74.3-99.21 93.48+10.76 | 82.53-98.88 | 93.62+6.65
CD9 [P3
23.35-92.99 | 67.61+30.04 | 67.49-95.67 | 79.38+22.34 | 31.19-93.93 | 70.34+26.39
P5
0-0.01 0.018+0.03 0-0.06 0.014+0.03 0-0.06 0.012+0.027
CD34 |P3
0-0.03 0.01+0.01 0-0.02 0.006+0.009 | 0-0.06 0.012+0.027
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Figure 1 canine MSCs cultured at P, derived from bone marrow using whole bone marrow
aspirate (A), RBC lysis technique (B), gradient density (C). Their morphologies were spindle

and fibroblastic-like cells.
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Figure 3 BMSCs were shown to differentiate appropriately to the osteogenic lineage: von

kossa

Figure 4 Radiographs of canine ulnar segment defect with PCL/HA injected BMSCs at 2
weeks (A) and 12 weeks (B) postoperatively
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Figure 5 Fluoroscopic angiography at 12 weeks (A) after PCL/HA scaffold implantation and
at 16 weeks after BMSC injection (B) presented increasing blood vessel at the implantation
site after BMSC injection. (in a dog)
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Figure 6 Histopathology at 12 weeks (A-B) after PCL/HA scaffold implantation and at 20

weeks after BMSC injection (C) remarkable capillaries and arterioles and thickening of

fibrous tissue with extensive collagen deposition confirmed by Masson’s Trichrome staining

(D).




