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ABSTRACT 

 
Project Code: MRG5380159 

Project Title:  Accurate and efficient numerical techniques for computing fracture data for 
arbitrary cracks in 3D linear elastic media 

Investigators: Jaroon Rungamornrat and Teerapong Senjuntichai, Department of Civil 
Engineering, Faculty of Engineering, Chulalongkorn University 

Email Address: Jaroon.r@chula.ac.th and Teerapong.S@chula.ac.th 

Project Period: 2 years 

Abstract: This investigation proposed an accurate and efficient numerical technique for 
stress analysis of un-cracked body and cracks in three-dimensional elastic media. The 
technique is established in a general context allowing the treatment of arbitrary-shaped cracks 
in both infinite and finite bodies, three-dimensional media made of generally anisotropic 
elastic materials, infinite bodies containing localized complex zones, and fractures with nano-
scale influences. A pair of weakly singular, weak-form boundary integral equations for the 
displacement and traction is developed and successfully implemented in terms of the weakly 
singular, symmetric Galerkin boundary element method SGBEM and SGBEM-FEM coupling 
to determine the unknown crack-face and related boundary data. The crucial features of the 
proposed numerical technique are associated with the reduction of one spatial dimension of 
the key governing equation and all kernels contained in the involved boundary integral 
equations are only weakly singular allowing standard continuous interpolation functions to be 
used in the numerical approximation. Once the jump and sum crack-face displacement data is 
determined, it forms a sufficient set of information essential for independently extracting the 
mixed-mode stress intensity factors and the T-stresses. The accuracy of this data in the 
vicinity of the crack front is enhanced by using special crack-tip elements that contain proper 
shape functions and extra degrees of freedom along the crack front. With incorporation of 
these special elements, a pair of explicit and concise expressions for the stress intensity 
factors and for the T-stresses can be derived. To investigate the accuracy and efficiency of the 
proposed numerical technique, extensive numerical experiments are performed on various 
boundary value problems involving un-cracked bodies and cracks in both infinite and finite 
media. From the numerical study, the proposed technique is found promising and 
computationally robust for three-dimensional fracture analysis.  

Keywords: cracks, integral equations, SGBEM, nano-scale influence, stress intensity factors, 
T-stresses 
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แตกร้าวรูปร่างใดๆในวตัถุไร้ขอบเขตและมีขอบเขตจาํกดั วตัถุสามมิติท่ีทาํมาจากวสัดุยดืหยุน่ท่ีมีคุณสมบติัข้ึนกบั

ทิศทาง วตัถุไร้ขอบเขตท่ีมีส่วนยอ่ยซบัซอ้น และปัญหารอยแตกร้าวท่ีพิจารณาอิทธิพลในระดบันาโน สมการเชิง

ปริพนัธ์พื้นผิวเอกฐานตํ่าสาํหรับการขจดัและแรงท่ีผวิท่ีพฒันาข้ึน ถูกนาํมาใชส้าํหรับพฒันาระเบียบวิธีกาเลอร์คิน

บาวดารีเอลิเมนตแ์บบเอกฐานตํ่า และระเบียบวธีิร่วมกบัวธีิไฟไนตเ์อลิเมนตเ์พ่ือหาตวัไม่ทราบค่าท่ีผิวรอยแตกร้าว 
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ตวัท่ีเก่ียวขอ้งกบัสมการปริพนัธ์มีความเป็นเอกฐานตํ่า ทาํใหส้ามารถใชฟั้งกช์นัพื้นฐานแบบต่อเน่ืองในการ

ประมาณคาํตอบได ้ ปริมาณท่ีเก่ียวขอ้งกบัการกระโดดและการรวมของการขจดับนผิวรอยแตกร้าวท่ีคาํนวณได้

สามารถใชใ้นการหาค่าตวัประกอบความเขม้ของความเคน้และหน่วยแรงทีได ้ ความถูกตอ้งของขอ้มูลดงักล่าวท่ี

บริเวณขอบรอยแตกร้าวสามารถปรับปรุงไดโ้ดยใชช้ิ้นส่วนยอ่ยพิเศษท่ีมีฟังกช์นัรูปร่างแบบพเิศษ และระดบัขั้น

ความอิสระเพิ่มเติมท่ีขอบรอยแตกร้าว นอกจากน้ีการใชช้ิ้นส่วนพิเศษน้ีทาํใหส้ามารถพฒันาสูตรในการคาํนวณตวั

ประกอบความเขม้ของความเคน้และหน่วยแรงทีไดโ้ดยตรง การตรวจสอบความถูกตอ้งและประสิทธิภาพของ

ระเบียบวธีิเชิงตวัเลขท่ีนาํเสนอ อาศยัการทดลองเชิงตวัเลขสาํหรับปัญหาค่าขอบเขตท่ีมีความหลากหลายทั้งท่ี



เก่ียวขอ้งกบัวตัถุไร้ขอบเขตและท่ีมีขอบเขตจาํกดัทั้งท่ีมีและไม่มีรอยแตกร้าว และจากการศึกษาดงักล่าวพบวา่

ระเบียบวธีิท่ีนาํเสนอมีความ สามารถเชิงคาํนวณท่ีเหมาะกบัการวเิคราะห์ปัญหารอยแตกร้าวในวตัถุสามมิติ  

คาํสําคญั: รอยแตกร้าว, สมการปริพนัธ์, SGBEM, อิทธิพลในระดบันาโน, ตวัประกอบความเขม้ของความเคน้, 

หน่วยแรงที 
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CHAPTER I 
 

INTRODUCTION 
 
 
1.1 Motivation and Research Significance 
 

Flaws and cracks are induced naturally within materials constituting both engineering 
and non-engineering components either during manufacturing processes or during their 
service life applications. Presence of such defects in the components generally produces 
stress concentration and reduction of the global strength, results in fatigue growth and 
damage accumulations, and finally can lead to ultimate failure and loss of functions of such 
components. Therefore, fracture analysis and design becomes an essential and necessary 
ingredient in the damage/fatigue evaluation and assessment process in order to ensure safety 
and integrity of the designed components. For various classes of materials (e.g. glass, 
composites, concrete, rock, cast iron, etc.), the fracture-induced failure mechanism assumes 
in a brittle fashion and any inelastic deformation is merely contained within a small region in 
the vicinity of the crack front (viz. small scale yielding pertains). As a result, a mathematical 
model based upon linear elasticity is well-suited and sufficient for performing a stress 
analysis of such cracked bodies. It is known that a crack induced within a body acts as a local 
stress riser and, upon the linear elasticity theory, a local stress field is essentially singular 
along the crack front. The dominant behavior of such local singular stress field is commonly 
and completely characterized by a singular term resulting from a careful study of asymptotic 
fields in the neighborhood of the crack front. Such dominant term is known as the K-field and 
involves generally three parameters termed mode-I, mode-II and mode-III stress intensity 
factors. These fracture data (i.e. stress intensity factors) are vital and play an important role in 
linear elastic fracture analysis. In particular, knowledge of the stress intensity factors not only 
provides a measure of the dominant stress field around the crack front but also forms a basis 
in the investigation of crack growth and fatigue analysis. Besides the K-field, the second term 
in the asymptotic expansion (known as the T-stress) has recently gained significant attention 
from various investigators. This term is nonsingular but generates a constant stress field in the 
region ahead of the crack front. The T-stress has been found significantly useful in several 
circumstances such as prediction of the size and shape of a crack-tip plastic zone, 
investigation of the level of crack-tip stress tri-axiality and crack-tip constraint,  investigation 
of stability behavior of crack growth, etc. The stress intensity factors along with the T-stress 
forms a two-parameter fracture model widely used in the recent failure/damage evaluation 
and assessment. 

While asymptotic stress analysis in the local region near the crack front provides 
essential information about characteristics of some of leading terms in the expansion and their 
dependence on crack configuration, geometry of the body, loading conditions and material 
properties, it yields no information on the values of the stress intensity factors and the T-
stress along the crack front and this still requires solving the boundary value problem 
associated with the entire cracked body. Note also that complexity posed by the presence of 
the stress singularity in the local region near the crack front and the need to formulate the 
problem within the three-dimensional context render such full boundary value problem 
theoretically and computationally challenging. Another nontrivial task is associated with the 
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post-process, once the problem is globally resolved, in order to accurately extract those 
essential fracture data (i.e. the stress intensity factors and the T-stress). On the basis of a 
careful literature search, works related to this specific area (see more details in the following 
section of background and review) are still relatively limited and this motivates the current 
investigation. In this study, we propose an efficient and accurate means to extract both the 
stress intensity factors and the T-stress for cracks in three-dimensional elastic bodies. The 
technique is to be established in a general context allowing the treatment of cracks in both 
infinite media and finite bodies, arbitrary crack configurations including planar and non-
planar cracks, generally anisotropic elastic materials, and consideration of nano-scale 
influence and soft elastic solids. Results from the proposed investigation are anticipated not 
only to provide an alternative, more accurate and more efficient approach to existing 
techniques but also to ideally close the still existing gap of knowledge. 
 
1.2 Background and Review 
 

It is well known that both the stress intensity factors and the T-stress are essential 
fracture data that plays a significant role in linear elastic fracture mechanics (LEFM); in 
particular, they completely characterize the first two leading terms in the asymptotic 
expansion of the local stress field in the neighborhood of the crack front (e.g. Williams, 1957; 
Cotterell and Rice, 1980; Ting, 1985; Leblond, 1989; Leblond and Torlai, 1992). The stress 
intensity factors provide a measure of the dominant behavior of the local stress field while the 
latter represents the constant terms in that asymptotic expansion. From an extensive study on 
the asymptotic behavior of fields near the crack front along with a careful dimensional 
analysis, both the stress intensity factors and the T-stress has been found strongly dependent 
on the crack configuration and overall geometry of the cracked body, properties of 
constituting materials, and loading conditions (e.g. Broek, 1982; Sanford, 2003; Anderson, 
2005). Nevertheless, values of the stress intensity factors and the T-stress cannot be obtained 
directly from the asymptotic analysis but it still requires solving the boundary value problem 
associated with the entire cracked body. 

As a result of complexity posed by the presence of stress singularity along the crack 
front, analytical solutions for corresponding boundary value problems (or more precisely the 
solutions for the stress intensity factors and the T-stress) are limited to simple crack 
configurations (e.g. straight cracks in 2D problems and penny-shaped and elliptical cracks in 
3D problems), simple loading conditions (e.g. pure mode-I loading and pure shear traction), 
simple domains (e.g. infinite 2D and 3D bodies), and simple linear elastic materials (e.g. 
isotropic solids). Some of those relevant investigations include the work of Westergaard 
(1939), Kassir and Sih (1975), Fabrikant (1989), Chen (2000), Wang (2004), Kirilyuk and 
Levchuk (2007). In three-dimensional applications, fractures problems are often mixed-mode 
and geometries of the body and cracks can possibly be very sophisticated and this, therefore, 
requires robust computational techniques to accurately obtain such fracture data. 

Boundary integral equation methods (BIEMs) has been found efficient and attractive 
for linear elasticity and linear fracture analysis since the spatial dimension of the key 
governing equation is less than that of the domain by one (e.g. Brebbia and Dominguez, 
1983; Cruse, 1988). This crucial feature renders this group of methods gaining significant 
benefit in terms of computational efficiency and effort required for mesh generation; in 
particular, only the boundary of the domain and the crack surface require discretization. Such 
advantage becomes more apparent when three-dimensional problems and bodies containing 
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multiple or non-planar cracks are involved. Various investigators have successfully 
implemented the BIEMs to model cracks in both linear elastic infinite domain (e.g. Weaver, 
1977; Gu and Yew, 1988; Xu and Ortiz, 1993; Xu, 2000) and finite domain (e.g. Martha et 
al., 1992; Pan and Yuan, 2000; Li et al., 1998; Frangi et al., 2002; Ariza et al., 2004; 
Rungamornrat and Mear, 2008b; Rungamornrat and Mear, 2011). Besides that the boundary 
value problem associated with the entire cracked body must be solved accurately and 
efficiently, an algorithm to extract the stress intensity factors and the T-stressed at any point 
along the crack front from the solved crack-face data must receive special attention since it 
significantly influences the accuracy of numerical solutions. 

For stress intensity factor calculation, quarter-point elements have commonly been 
employed in various investigations to capture the square root singularity of the local stress 
field near the crack front (e.g. Xu and Ortiz, 1993; Xu, 2000; Ariza et al., 2004). Although 
such elements provide proper shape functions that can represent the singular term in the local 
stress expansion, the order of approximation is still relatively low and, therefore, sufficiently 
small quarter-point elements must be used along the crack front in order to obtain reasonably 
accurate results. In addition, a nontrivial extrapolation technique must be adopted to post-
process crack-face data on the quarter-point element to obtain the stress intensity factors. Li 
et al. (1998) implemented a weakly singular, symmetric Galerkin boundary element method 
(SGBEM) with use of special crack-tip elements along the crack front to perform stress 
analysis of isotropic, linearly elastic cracked bodies. This special crack-tip element possesses 
two superior features than those of the quarter-point element in that its shape functions can 
represent local stress field near the crack front to sufficiently high order and it contains extra 
degrees of freedom along the crack front that correspond directly to the gradient of the 
relative crack-face displacement. The former feature allows the use of a relatively large size 
of crack-tip elements while the latter feature provides a means to extract the stress intensity 
factors in a straightforward fashion. Frangi et al. (2002) offered an identical weakly singular 
SGBEM to that by Li et al. (1998) but, instead of using special crack-tip elements, they 
simply utilized standard elements along the crack front along with a special (unidentified) 
extrapolation technique to compute the stress intensity factors for cracks in isotropic elastic 
media. While their presented numerical results exhibit good accuracy, use of standard basis 
functions to accurately capture the singular field near the crack front and the extrapolation 
technique employed are still questionable. Later, Rungamornrat and Mear (2008b) 
generalized the crack-tip elements developed by Li et al (1998) and then utilized them in the 
implementation of the weakly singular SGBEM for modeling cracks in three-dimensional 
anisotropic media. While their boundary integral equations were derived within the context of 
general anisotropy and the numerical scheme to extract the stress intensity factors has proven 
promising, numerical results were reported only for cracks in isotropic and transversely 
isotropic solids. On the basis of a careful literature search, no other recent advance in 
boundary integral equation methods for calculation of the stress intensity factors for cracks in 
elastic media has been found. In this investigation, we propose an accurate and more efficient 
numerical scheme for computing the mixed-mode stress intensity factors for cracks of 
arbitrary shape contained in three-dimensional isotropic and generally anisotropic media. The 
weakly singular SGBEM, developed in a broad context by Rungamornrat and Senjuntichai 
(2009) and Rungamornrat (2009), is to be employed as a supporting computational tool for 
solving the boundary value problem associated with the entire cracked body. 
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A vast number of researches towards the development of both analytical and 
numerical techniques for determining the T-stress of cracks in linearly elastic media has also 
been well recognized and gained significant attention from various investigators in the past 
three decades. Some of those relevant works are briefly summarized below not only to 
demonstrate the history and current advances in this specific area but also to identify the gap 
of knowledge to be emphasized in the present investigation. Within the context of two-
dimensional boundary value problems, Rice (1974) originally studied the influence of the T-
stress on the estimation of the plastic zone size and shape using Barrenblatt-Dugdale yielding 
model. Du and Hancock (1991) investigated the influence of the T-stress on the plastic zone 
size and shape for a plane strain crack using Von-Mises yield criterion and they concluded 
that the plastic zone is enlarged and rotated forward for the negative T-stress and is reduced 
and rotated backward for the positive T-stress. Fett (1997) determined the T-stress in an edge 
cracked rectangular finite plate by first using a boundary collocation technique to construct 
Green’s functions for a pair of normal point forces and then applied them to obtain a solution 
for the prescribed arbitrary normal traction. Later, Fett (1998) employed the same technique 
to calculate the T-stress in rectangular plates and circular disks with edged crack and center 
crack subjected to both tensile and bending loads. Wang (2001) used weight-function 
technique and finite element method to determine the T-stress for various test specimens 
including a single edge cracked plate (SECP), a double edge cracked plate (DECP) and a 
center cracked plate (CCP) under uniform, linear, parabolic and cubic normal traction acting 
to the crack surfaces. Fett and Rizzi (2006) applied the weight-function technique and finite 
element method to compute T-stress of a compact tension crack (CT), a double cantilever 
crack (DCC) and an edge cracked bar (ECB) loaded by near-tip normal traction. Fett et al. 
(2006) studied the T-stress for kinked and forked cracks in two-dimensional isotropic plate 
subjected to traction on the crack surface by using a technique of Green’s function. Zhou et 
al. (2013) employed a symplectric expansion method to determine the T-stress for an edged 
crack in an isotropic, linearly elastic plate bonded by two different materials. This symplectic 
expansion method was found to be capable of treating either mixed or complex boundary 
conditions. 

For three-dimensional fracture analysis and modeling, Wang (2002) determined the T-
stress for a semi-elliptical, surface-breaking crack in an isotropic, linear elastic finite thick 
plate subjected to tensile and bending loads at both ends. In his work, the finite element 
method was utilized to determine field quantities and the interaction integral formula was 
adopted to extract the T-stress along the crack front. In 2003, Wang and Bell extended the 
work of Wang (2003) to be capable of modeling more general end loading conditions such as 
uniform, linear, parabolic, and cubic loads. Later, Wang (2004) presented an analytical 
solution for the T-stress of a penny-shaped crack embedded in an isotropic linear elastic 
infinite body under the action of remote tension and bending by using the potential-theory-
based method and Hankel’s transformation. Qu and Wang (2006) modeled a corner quarter-
elliptical crack in a thick plate under the tensile and bending loads at both ends by using the 
finite element method along with the interaction integral formula to obtain the T-stress. 
Kirilyuk and Levchuk (2007) generalized the work of Wang (2004) to solve for the elastic T-
stress of a flat-elliptical crack in an isotropic, linearly elastic, infinite body under remote 
tension and bending by using the method of potential theory and a special collection of 
harmonic functions. Schutte and Molla-Abbasi (2007) and Molla-Abbasi and Schutte (2008) 
applied the potential-theory-based method, technique of Green’s function, Hankel’s 
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transformation and a finite element method to calculate the T-stress of both penny-shaped and 
flat-elliptical cracks embedded in a three-dimensional isotropic infinite domain under remote 
mixed-mode tractions. The influence of the T-stress on estimation of the plastic zone size 
using the Von-Mises yielding criterion was also investigated. Lewis and Wang (2008) 
employed the finite element technique to compute the elastic T-stress for a circumferential 
crack in an isotropic finite cylinder subjected to either tensile and bending loads at its ends or 
uniform, linear, parabolic and cubic normal tractions on the crack surface. Recently, Meshii 
et al. (2010) used the finite element method to determine the elastic T-stress of a semi-
elliptical crack embedded in a three-dimensional isotropic finite cylinder under uniform, 
linear, parabolic and cubic normal tractions on the crack surface. 

While various investigations have been devoted to the development of techniques to 
determine of the T-stress, most of existing works were restricted only to either cracks in two-
dimensional, isotropic bodies (e.g., Shah et al., 2006; Yu et al., 2006; Ananthasayanam et al., 
2007; Profant et al., 2008; Chen et al. 2008; Chen et al., 2009) or three-dimensional problems 
with specific crack and domain configurations (e.g. Lewis and Wang, 2008; Molla-Abbasi 
and Schutte, 2008). The principal investigator is unaware of any advance of techniques that 
are capable of comprehensively solving the elastic T-stress for cracks of arbitrary geometry 
embedded in a general, three-dimensional media made of generally anisotropic materials 
(e.g., transversely isotropic and orthotropic solids), and this serves as the key motivation of 
the proposed investigation aiming to fill such gap of knowledge. 
 
1.3 Objectives 
 

The key objectives of the current investigation are  
(1) to develop a proper mathematical model, in terms of weakly singular boundary 

integral equations and other appropriate forms, that governs the data essential and 
sufficient for computing the fracture information along the crack front including 
the crack opening displacement, mixed-mode stress intensity factors and the 
elastic T-stress for cracks in three-dimensional, linearly elastic media with and 
without consideration of nano-scale influence, and 

(2) to develop efficient and accurate numerical techniques such as the SGEBM and 
SGBEM-FEM coupling to extract fracture information along the crack front (e.g., 
crack opening displacement, stress intensity factors, and the T-stress) for isolated 
cracks in both isotropic and generally anisotropic linearly elastic infinite and finite 
media 

 
1.4 Scope of Work 
 

Scope of the present study and assumptions relevant to the development are summarized as 
follows: 

(1) the boundary value problem considered in this investigation is linear and 
governed by the theory of local linear elasticity; 

(2) a body associated with the boundary value problem is three-dimensional and can 
be either infinite (associated with a whole space) or finite; 

(3) a body is assumed to be free of a body force; 
(4) a constituting material is assumed to be linearly elastic and spatially independent 

(or homogeneous) but there is no restriction of its properties on the directional 
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dependence. The latter allows the treatment of both isotropic and generally 
anisotropic materials; and 

(5) the crack configuration or geometry can be represented by a piecewise smooth 
surface otherwise it is arbitrary. Planar and non-planar cracks, embedded and 
surface breaking cracks, single and multiple cracks can be treated. 

 
1.5 Methodology 
 

The present study consists of several main tasks with methodology, procedures, and involved 
fundamental theories for each task being briefly summarized as follows: 

(1) basic field equations governing the body containing cracks (i.e., equilibrium 
equations, strain-displacement relation, and constitutive law) are derived from the 
classical theory of linear elasticity where the constituting material is assumed to be 
fully anisotropic; 

(2) the nano-scale influence is modeled by Gurtin-Murdoch surface elasticity model; 
(3) key governing equations are formulated in terms of weakly-singular, weak-form 

boundary integral equations for the displacement and traction where the special 
decompositions of strongly singular and hyper-singular kernels are utilized along 
with the integration by parts via Strokes’ theorem; 

(4) the key governing equation to describe the nano-scale influence follows the 
standard technique of weight residual; 

(5) symmetric formulations for various types of boundary value problems are 
established by properly employing both the displacement and traction boundary 
integral equations and the final form involves unknown displacement and traction 
on the ordinary boundary and the unknown jump and sum of the displacement 
across the crack surface; 

(6) selected numerical techniques based on the weakly-singular, symmetric Galerkin 
boundary element method (SGBEM) and the coupling with standard finite element 
method (FEM) are implemented to construct the approximate solution of all 
primary unknowns (i.e., displacement and traction on the ordinary boundary and 
jump and sum of the displacement across the crack surface); 

(7) special local interpolation functions (enriched by square-root functions along with 
the introduction of extra degrees of freedom along the crack front) are employed 
to accurately model the jump and sum of the displacement across the crack surface 
in the vicinity of the crack front; 

(8) extrapolation-free formula for determining both the stress intensity factors and 
elastic T-stresses are established in terms of the solved jump and sum of the 
displacement local to the crack front; and 

(9) formulation, numerical procedure, and implementation of an in-house computer 
code are extensively verified with reliable benchmark solutions      

 
1.6 Contribution 
 

The significant contribution gained from the present study is an accurate and efficient 
numerical technique for computing the essential fracture data such as relative crack-face 
displacement, the mixed-mode stress intensity factors, and the T-stress for cracks in three-
dimensional elastic media with and without the consideration of nano-scale influence. The 
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attractive features of the proposed technique are that it allows the treatment of cracks in both 
infinite and finite media, is applicable to cracks of arbitrary configuration (including both 
planar and non-planar cracks and embedded and surface breaking cracks), and applies to both 
isotropic and generally anisotropic materials. The numerical technique will be implemented 
in terms of a computer code that is user friendly and constitutes a well-suited tool for stress 
analysis of elastic bodies containing cracks. This robust computational tool could potentially 
be beneficial in the investigation of various aspects of fracture phenomena, e.g. crack growth 
simulation and fatigue/damage evaluation and assessment. In addition, the developed 
numerical procedure can readily be coupled with a standard finite element method to solve a 
larger class of boundary value problems (e.g., problems involving cracks and localized 
nonlinear zones and treatment of nano-scale influence to simulate the behavior and responses 
of nano-cracks). 
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CHAPTER II 
 

FORMULATION 
 
 
This chapter summarizes the problem description, basic field equations, the conventional 
boundary integral relations for the displacement and stress, the decomposition of strongly 
singular and hyper-singular kernels, the development of completely regularized boundary 
integral equations, and the formulation of the governing equations for the boundary value 
problem of a medium containing cracks.   
 
2.1 Problem Description 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Schematic of a three-dimensional body containing cracks 
 
Let us consider a three-dimensional body   which is made of a homogeneous, generally 
anisotropic, linearly elastic material with prescribed elastic constants ijklE   and contains an 

embedded crack and a surface breaking crack as shown schematically in Figure 2.1. The body 
is assumed to be nice in the sense that any differential and integral operations involved in the 
development presented further below are valid when they are performed on this body. The 
total boundary of the body consists of the ordinary boundary, denoted by 0S , and the surface 

of the cracks, represented by two geometrically identical surfaces cS   and cS  . The ordinary 

boundary 0S  can be decomposed into a surface uS  on which the displacement is prescribed 

(i.e., 0  uS  u u x ) and a surface tS  on which the traction is prescribed (i.e., 0  tS  t t x

) whereas, on the crack surface, the traction is fully prescribed (i.e., 0  c c cS S    t t x ). In 

the present study, all the surfaces 0S  , cS   and cS   are assumed to be sufficiently smooth (i.e., 

the unit normal vector is well defined) and the body is free of the body force. For 
convenience in further development, a reference Cartesian coordinate system 1 2 3{ ; , , }x x x0  

with the origin 0 is introduced. 

cS 

cS 

cS 

cS 

0:uS u u  

0:tS t t  

0 u tS S S   


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2.2 Basic Field Equations 
 

Behavior of the body   is governed by a classical theory of linear elasticity as briefly 
indicated below. In the absence of the body force, the stress field ( )σ σ x  (with its 

components in the reference coordinate system 1 2 3{ ; , , }x x x0  denoted by ij ) must be 

divergence free everywhere, i.e., 
 

, 0ij j                                  (2.1) 
 

where ,() () /j jx   . From here to what follows, all indices range from 1 to 3 and repeated 

indices imply the summation over their range. The stress field ( )σ σ x  is related linearly to 
the strain field ( )ε ε x  via the generalized Hooke’s law, i.e.,  
 

ij ijkl klE                                  (2.2) 
 

where ijklE  are prescribed elastic constants which are spatially independent and satisfy 

following symmetries: ijkl ijlk jikl klijE E E E   . For the special case of isotropy, the elastic 

constants involve only two independent material parameters and take a simple form: 
 

( )ijkl ik jl il jk ij klE                                       (2.3) 
 

where   and   are Lame’s constants and ij  is Kronecker-delta symbol. The relationship 

between the strain field ( )ε ε x  and the displacement field ( )u u x  are governed by 
linearized kinematics or infinitesimal deformation theory, i.e.,

  

 , ,

1

2ij i j j iu u                                  (2.4) 

 

In addition, the traction t  at any point on a sufficiently smooth surface can be related to the 
stress at the same point as 

  

i ij jt n                                 (2.5) 
 

where n  is a unit normal to the surface. The relations (2.1), (2.2) and (2.4) are basic field 
equations governing all unknown field quantities ( )u u x , ( )ε ε x  and ( )σ σ x .

 
 
2.3 Standard Integral Relations 
 

By applying Somigliana’s identity to a body  , it leads to a boundary integral relation for the 
displacement at any interior point x (see Rungamornrat and Mear, 2008a):  
 

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

          + ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c

p p
p j j ij i j

S S

p p
j j ij i j

S S

u U t dA S n u dA

U t dA S n u dA

 

     

  

 

 

x ξ x ξ ξ ξ x ξ ξ ξ

ξ x ξ ξ ξ x ξ ξ ξ
                         (2.6) 
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where ( ) ( ) ( )j j jt t t   ξ ξ ξ  denotes the sum of tractions on both crack surfaces; 

( ) ( ) ( )j j ju u u   ξ ξ ξ  denotes the jump of the displacement across the crack surface; 

( )p
jU ξ x  is the displacement fundamental solution; and ( )p

ijS ξ x  is the generalized stress 

fundamental solution. The explicit form for ( )p
jU ξ x  and ( )p

ijS ξ x  for general anisotropy 

is given by  
 

1
2

0

1
( ) ( , ) ( )

8
p
j kl i jU z z ds

r


 

  
z r

ξ x z z z                             (2.7) 

( )
( )

p
p k

ij ijkl
l

U
S E


 

 

ξ x

ξ x                                                     (2.8) 

 
where  r ξ x , rr , ( , )kl i iklj jz E zz z  and the closed contour integral is to be evaluated 

over a unit circle z  = 1 on a plane defined by 0rz . It is important to remark that the 

fundamental solutions ( )p
jU ξ x  and ( )p

ijS ξ x  are singular at ξ x  of  (1/ )rO  and 
2(1/ )rO , respectively. For the special case of isotropy, ( )p

jU ξ x  and ( )p
ijS ξ x  take a 

simple form: 
 

2

1
( ) (3 4 )

16 (1 )
p jp

j pjU
r r

 
 

  
 

     
ζ                                                   (2.9) 

2 3

31 1 2
( ) ( )

8 (1 )
p i jp

ij p ij i pj j piS
r r r

        
 

 
      

ζ                                            (2.10) 

 
where  ζ ξ x ,   is Poisson ratio, and   is elastic shear modulus. It is worth noting that in 

the integral relation (2.6), the integrals over the entire crack surfaces c cS S   reduces to the 

integrals over a single surface cS   due to the fact that cS   and cS   are geometrically identical 

with opposite unit normal vectors and the functions ( )p
jU ξ x  and ( )p

ijS ξ x  are continuous 

on the crack surfaces.    
By taking derivative of the integral relation (2.6) to obtain the displacement gradient 

and then applying the relations (2.2) and (2.4), it leads to a boundary integral relation for the 
stress at any interior point x : 
 

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

             ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c

k lk
lk lj j ij i j

S S

k lk
lj j ij i j

S S

S t dA n u dA

S t dA n u dA


 

       

    

 

 

x ξ x ξ ξ ξ x ξ ξ ξ

ξ x ξ ξ ξ x ξ ξ ξ
                       (2.11) 

 
where ( )lK

iJ ξ x  is a function defined in terms of the elastic constants ijklE  by  
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( )
( )

p
ijlk

ij lkpq
q

S
E


 

  


ξ x
ξ x                             (2.12) 

 
It is remarked that the function ( )lK

iJ ξ x  is singular at a point ξ x  of 2(1/ )rO .  

 It is worth noting that the boundary integral relations (2.6) and (2.11) can be used to 
determine the displacement and stress at any interior point x provided that all unknown data 
of the displacement and traction on the boundary and the crack surface is completely known. 
By taking an appropriate limit process of the boundary integral relation (2.6) to a point on the 
total boundary of the body, it yields the displacement boundary integral equation. For a body 
containing no crack, such integral equation is sufficient for determining all unknown data on 
the boundary. However, for a body containing cracks, such equation is mathematically 
degenerate since it contains incomplete information of the traction on the crack surface (i.e., 
it contains only the sum of the traction). To overcome this mathematical difficulty, techniques 
based on the domain decomposition to partition a body along the crack surfaces were 
proposed (e.g., Blandford et al, 1981; Saez et al, 1997). However, such strategy possesses 
several major drawbacks; for instance, the large number of additional unknowns that are 
introduced along the cut, the difficulty of the decomposition for a body containing non-planar 
or multiple cracks, and the treatment of singularity of the traction along the cut ahead of the 
crack front. An attractive alternative is to employ the traction boundary integral equation for 
the crack surface. Such equation can readily be obtained from the boundary integral relation 
for the stress (2.11) via taking appropriate limit process to a point on the crack surface cS  . 

While the conventional traction boundary integral equation is sufficient for analysis of crack 
problems, it contains both strongly singular and hyper-singular kernels that render the 
involved integrals difficult to be treated theoretically and numerically. To alleviate the strong 
mathematical requirement posed by the conventional traction boundary integral equation, 
various regularization procedures have been introduced to obtain singularity-reduced integral 
equations (e.g., Weaver, 1977; Bui, 1977, Gu and Yew, 1988; Xu and Ortiz, 1993; Bonnet, 
1995; Xu, 2000; Li and Mear, 1998; Li et al., 1998; Rungamornrat, 2008a,b).        
 
2.4 Decompositions of kernels 
 

To aid the regularization procedure described further below, the strongly singular kernel
( )p

ijS ξ x  and the hyper singular kernel ( )lK
iJ ξ x  are, first, decomposed into two parts as 

follows (see details of development in the work of Rungamornrat and Mear (2008a) and 
Rungamornrat and Senjuntichai (2009)):  
 

( ) ( ) ( )p p p
ij ij ism mj

s

S H G



    


ξ x ξ x ξ x                                                            (2.13) 

( ) ( ) ( )lk tk
ij ijkl lsm irt mj

s r

E C  
 
 

      
 

ξ x ξ x ξ x                                                         (2.14) 

 
where ism  denotes the alternating symbol; ( ) ξ x  denotes the Dirac-delta distribution 

centered at x; and ( )p
ijH ξ x , ( )p

mjG ξ x  and ( )tk
mjC ξ x  are functions defined by  
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3
( )

4
p i i

ij jp

x
H

r





  ξ x                                                              (2.15) 

1
2

0

( ) ( , ) ( )
8
mqa qjklp

mj kp a l

E
G z z ds

r






 

  
z r

ξ x z z z                                               (2.16a) 

1
2

0

( ) ( , ) ( )
8

kjap
tk mtsl
mj ap s l

A
C z z ds

r


 

  
z r

ξ x z z z                                               (2.16b) 

    

with the constants kjap
mtslA  defined by 

    

1

3
kjap
mtsl ptd pmq djpl qkms lmps djkqA E E E E     

 
                                                (2.17) 

    

It is evident that the function ( )p
ijH ξ x  is independent of material constants and singular at a 

point ξ x  of 2(1/ )rO  whereas ( )p
mjG ξ x  and ( )tk

mjC ξ x  depends primarily on material 

properties and singular at a point ξ x  of (1/ )rO . For the special case of isotropy, the 

kernels ( )p
mjG ξ x  and ( )tk

mjC ξ x  admit following closed form in terms of elementary 

functions 
 

2

( )( )1
( ) (1 2 )

8 (1 )
p p a ap

mj mpj ajm

x x
G v

v r r

 
 


  

      
x   (2.18) 

 

2

( )( )
( ) (1 ) 2

4 (1 )
k k j jtk

mj tk mj km tj kj tm tm

x x
C v v

v r r

        


  
        

x  (2.19) 

 
2.5 Completely regularized boundary integral relation for displacement 
 

To establish the singularity reduced integral relation for the displacement at any interior point 
x, the special decomposition (2.13) is first substituted into the integral relation (2.6) and then 
performing the integration by parts of terms associated with the function ( )p

mjG ξ x . The final 

result is given by    
    

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

          + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c c

p p p
p j j ij i j mj m j

S S S

p p p
j j ij i j mj m j

S S S

u U t dA H n u dA G D u dA

U t dA H n u dA G D u dA

  

        

    

  

  

x ξ x ξ ξ ξ x ξ ξ ξ ξ x ξ ξ

ξ x ξ ξ ξ x ξ ξ ξ ξ x ξ ξ

                                       (2.20) 
where mD  is a surface differential operator defined by 
 

m i ism
s

D n 






    (2.21) 
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Note that the condition ju  vanishes along the crack front have been utilized. By taking limit 

0 cS S S    x y  of (2.20), we obtain a boundary integral equation for the displacement 

as 
 

0 0 0

*( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                 + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

c c c

p p p
p j j ij i j mj m j

S S S

p p p
j j ij i j mj m j

S S S

c u U t dA H n u dA G D u dA

U t dA H n u dA G D u dA

  

        

    

  

  

y y ξ y ξ ξ ξ y ξ ξ ξ ξ y ξ ξ

ξ y ξ ξ ξ y ξ ξ ξ ξ y ξ ξ

                                       (2.22) 
 
where c(y) = 1/2 if the surface is sufficiently smooth at a point y (i.e., the unit normal n is 
well-defined at a point y), otherwise c(y)  (0, 1) and * ( )pu y  is defined by 

 

*
( );              

( )
( ) ( );  

p o

p

p p c

u S
u

u u S  

 
 

y y
y

y y y
             (2.23) 

 
By multiplying (2.22) by a sufficiently smooth test function ( )pt y  and then integrating the 

result over the total boundary 0 cS S S   , we obtain a weakly-singular, weak-form 

boundary integral equation for the displacement as 
 

*1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                 ( ) ( ) ( ) ( ) ( )

                                 ( ) ( ) ( ) ( ) ( ) ( )

p
p p p j j

S S S

p
p mj m j

S S

p
p ij i j

S S

t u dS t U dS dS

t G D dS dS

t H n dS dS







 

 

 

  

 

 

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ξ y ξ ξ ξ y

 





             (2.24) 

 
where  
 

( );                       
( )

( ) ( );  

j o

j

j j j c

t S

t t t S


  

 
   

ξ ξ
ξ

ξ ξ ξ
  ,  (2.25) 

( );                         
( )

( ) ( );  

j o

j

j j j c

u S

u u u S


  

 
   

ξ ξ
ξ

ξ ξ ξ
 .  (2.26) 

 

and the function c(y) simply reduces to 1/2 due to the assumption that the total boundary of 
the body is piecewise smooth (i.e., a set of points y where the unit normal n is not well-
defined is of measure zero). It should be remarked that the boundary integral equation (2.24) 
contains only weakly singular kernels { ( )p

jU ξ x , ( )p
mjG ξ x , ( ) ( )p

ij iH nξ y ξ } of O(1/r) 

(also see details in the work of Xiao (1998)). 
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2.6 Completely regularized boundary integral relation for traction 
 

To obtain a weakly singular, weak-form boundary integral equation for the traction, a similar 
procedure as described above is employed. First, the special decompositions (2.13) and (2.14) 
are substituted into the boundary integral relation for the stress (2.11) and then the integration 
by parts via Stokes’ theorem is performed. The singularity-reduced boundary integral relation 
for the stress is given by 
 

 

(x) ( ) υ ( ) ( ) ( )π ( ) ( )

          π ( ) ( )

tk j
ik irt mj m j tk j

r S S

j
ik j

S

C D dS G dS
x

H dS

 
 

      

 

 



ξ x ξ ξ ξ x ξ ξ

ξ x ξ ξ

 

                              (2.27) 
 
where the translational property of both kernels P

mJG  and tK
mJC  has been used. It should be 

remarked that the boundary integral relation for the stress (2.27) still contains strongly 
singular kernels of 2(1/ )rO . By further forming the product ( ) ( )l lkn σy x  where Sy  and 

then taking appropriate limit x y , it leads to a boundary integral equation for the traction 
as 
 

*( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

 ( ) ( ) ( ) ( )

tk j
k t mj m j t tk j

S S

j
l lk j

S

t D C D dS D G dS

n H dS

  



   

 

 



y y ξ y ξ ξ ξ y ξ ξ

y ξ y ξ ξ
  (2.28) 

 
where ( ) y = 1/2 if the surface is sufficiently smooth at y otherwise ( ) y   (0, 1) and * ( )kt y  

is defined by 
 

*
( );              

( )
( ) ( );  

k o

k

k k c

t S
t

t t S  

 
 

y y
y

y y y
 .  (2.29) 

 
Upon multiplying the boundary integral equation (2.28) by the following sufficiently smooth 
test function  
 

( ),
( )=

( ),
k o

k
k c

u S

u S
 


 

y y
y

y y





 ,  (2.30) 

 
forming the integration of the result over the total boundary S , performing an integration by 
parts via Stoke’s theorem and using the fact that the test function ( )ku y  satisfies the 

homogeneous condition along the crack front, it finally yields a weakly singular, weak-form 
integral equation for the traction:  
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*1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

                                     ( ) ( ) ( ) ( ) ( )

                                     ( ) ( ) ( )

tk
k k t k mj m j

S S S

j
t k tk j

S S

j
k ik i j

S S

t dS D C D dS dS

D G dS dS

H n

  

 

 

  

 

 

  

 

 

y y y y ξ y ξ ξ y

y ξ y ξ ξ y

y ξ y y

 



 ( ) ( ) ( )dS dSξ ξ y

  (2.31) 

 
Again, from the assumption that the total boundary of the domain is piecewise smooth, the 
function (y) simply reduces to 1/2. It should be remarked that the boundary integral equation 
(2.31) contains only weakly singular kernels { ( )tk

mjC ξ y , ( )p
mjG ξ x , ( ) ( )p

ij iH nξ y y } of 

O(1/r) (also see details in the work of Xiao (1998)). 

 
2.7 Symmetric formulation for SGBEM 
 

Now, a symmetric formulation of the boundary value problem in terms of weakly singular, 
weak form boundary integral equations developed in sections 2.5 and 2.6 is established as a 
basis for the development of the well known numerical technique called the symmetric 
Galerkin boundary element method (SGBEM). More specifically, a system of governing 
integral equations can be obtained as follows: (i) the weakly singular, weak-form integral 
equation for the displacement (2.24) is applied to the surface uS  with 0pt   on the surface

T t cS S S   , (ii) the weakly singular, weak-form integral equation for the traction (2.31) is 

applied to the surface tS  with 0P
~  on u cS S  , and the weakly singular, weak-form 

integral equation for the traction (2.31) is applied to the surface cS   with 0P
~  on u tS S . 

The final set of governing integral equations is given explicitly by 
 

       1, , ,uu ut uc   t t t u t u t   A B B R   (2.32) 

 

       2, , ,ut tt tc   t u u u u u u   B C C R   (2.33) 

 

       3, , ,uc ct cc       t u u u u u u   B C C R  (2.34) 

 
where the bi-linear integral operators PQA , PQB  and PQC  (with P, Q {u, t, c}) are defined by  

 

 , ( ) ( ) ( ) ( ) ( )
P Q

k
PQ k j j

S S

X U Y dS dS  X Y y ξ y ξ ξ yA  (2.35) 

 

 , ( ) ( ) ( ) ( ) ( )

                 ( ) ( ) ( ) ( ) ( ) ( )

P Q

P Q

k
PQ k mj m j

S S

p
p ij i j

S S

X G D Y dS dS

X H n Y dS dS

 

 

 

 

X Y y ξ y ξ ξ y

y ξ y ξ ξ ξ y





B

 (2.36) 
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 , ( ) ( ) ( ) ( ) ( )
P Q

tk
PQ t k mj m j

S S

D X C D Y dS dS  X Y y ξ y ξ ξ yC  (2.37) 

 
and the linear integral operators 1R  and 2R  are defined, in terms of the prescribed data on the 
boundary, by    
 

       1

1
( ) ( ) ( ) , , ,

2
u

p p ut uc uu

S

t u dS    t y y y t t t t t u   R A A B  (2.38) 

 

       2

1
( ) ( ) ( ) , , ,

2
t

k k tt ct tu

S

u t dS     u y y y t u t u u u    R B B C  (2.39) 

 

       3

1
( ) ( ) ( ) , , ,

2
c

k k tc cc cu

S

u t dS


           u y y y t u t u u u    R B B C  (2.40) 

 
It is evident that the governing integral equations (2.32)-(2.34) are in a symmetric form, i.e. 

   , ,uu uut t t t A A ,    , ,tt ttu u u u C C ,    , ,cc cc    u u u u C C , and    , ,ct tc  u u u u C C . 

(2.32)-(2.34) form a complete set of governing integral equations sufficient for solving the 
unknown displacement u  on the surface tS , the unknown traction t  on the surface uS  and 

the unknown jump of the displacement u  on the crack surface cS . For the special case of 

cracks in an infinite medium, a system of integral equations (2.32)-(2.34) simply reduces to a 
single integral equation 
 

   1
, ( ) ( ) ( ) ,

2
c

cc k k cc

S

u t dS


        u u y y y t u  C B  (2.41) 

 
Once all these primary unknowns are determined, other quantities of interest can readily be 
obtained. For instance, the sum of the displacement across the crack surface, denoted by u , 
can be computed from the weak-form equation (2.24) by taking 0pt   on the surface 0S , i.e., 

it can be obtained from    
 

           1
( ) ( ) ( ) , , , , , ,

2
c

p p cu ct cc cu ct cc

S

t u dS


         y y y t t t t t t t u t u t u      A A A B B B  (2.42) 

 
The displacement and stress at any interior point x can also be computed from the singularity-
reduced integral relations (2.20) and (2.27), respectively. 
 
2.8 Formulation for SGBEM-FEM coupling 
 

While the SGBEM (based on the boundary integral equations) has gained significant success 
in the analysis of linear elasticity and fracture problems, the method still contains certain 
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unfavorable features leading to its limited capability to solve various important classes of 
boundary value problems. For instance, the method either becomes computationally 
inefficient or experiences mathematical difficulty when applied to solve problems involving 
nonlinearity and non-homogeneous media. As the geometry of the domain becomes 
increasingly complex and its size and surface to volume ratio are relatively large (requiring a 
large number of elements to reasonably represent the entire boundary of the domain), the 
method tends to consume considerable computational resources in comparison with the 
standard finite element method (FEM). Although the SGBEM yields a symmetric system of 
linear equations, the coefficient matrix is fully dense and each of its entries must be computed 
by means of a double surface integration. To further enhance the modeling capability of the 
SGBEM for analysis of elasticity and fracture problems, a coupling method based on the 
SGBEM and FEM has become an attractive alternative. The fundamental idea is to 
decompose the entire domain into two regions and then apply the SGBEM to model a local 
region with small surface-to-volume ratio and possibly containing the displacement 
discontinuities (e.g. cracks and dislocations) and the FEM to model the remaining majority of 
the domain possibly exhibiting complex behavior (e.g. material nonlinearity and non-
homogeneous data). The primary objective is to compromise between the requirement of 
computational resources and accuracy of predicted results. 
 A pair of weakly singular, weak-form boundary integral equations established in the 
previous sections is in a form well-suited for establishing the formulation of the SGBEM-
FEM coupling. The development of SGBEM-FEM coupling equations for cracks in a finite 
body can be found in the work of Rungamornrat and Mear (2011). In this section, the 
coupling formulation capable of modeling an infinite medium containing cracks and localized 
complex zones is presented.  

Consider a three-dimensional infinite medium   which contains an isolated crack and 
a localized complex zone as shown schematically in Figure 2.2(a). The crack is represented 
by two geometrical coincident surfaces cS   and cS   with their unit outward normal being 

denoted by n and n , respectively, and the localized complex zone is denoted by L . In the 
present study, the medium is assumed to be free of a body force and loading on its remote 
boundary, and both surfaces of the crack are subjected to prescribed self-equilibrated traction 
defined by c c c

   t t t . Now, let us introduce an imaginary surface IS  to decompose the 

body   into two sub-domains, an unbounded ‘BEM-region’ denoted by B and a finite 
‘FEM-region' denoted by F , as indicated in Figure 2.2(b). The surface IS  is selected such 

that the localized complex zone and the crack are embedded entirely in the FEM-region and 
in the BEM-region, respectively (i.e. B

c cS S     and FL  ) and, in addition, the 

BEM-region must be linearly elastic. To clearly demonstrate the role of the interface between 
the two sub-regions in the formulation presented below, we define },,{ BIBIBIS ut  and 

},,{ FIFIFIS ut  as the interface, the unknown traction and the unknown displacement on the 

interface of the BEM-region B  and the FEM-region F , respectively. It is important to 
emphasize that the interfaces BIS  and FIS are in fact identical to the imaginary surface IS . 

While the formulation is presented, for brevity, only for a domain containing a single crack 
and a single localized complex zone, it can readily be extended to treat multiple cracks and 
multiple complex zones; in such particular case, several FEM-regions are admissible. 
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    (a)                                                                        (b) 
 

 
Figure 2.2 (a) Schematic of three-dimensional infinite medium containing crack and localized 
complex zone and (b) schematic of BEM-region B  and FEM-region F  
 
2.8.1 Governing equations for B   
The total boundary of the BEM-region B , denoted by BS , consists of the crack surface 

Bc cS S  on which the traction is fully prescribed and the interface BIS  where neither the 

traction nor the displacement is known a priori. Note again that the subscript ‘B’ is added 
only to emphasize that those surfaces are associated with the BEM-region. To form a set of 
governing integral equations for this region, a pair of weakly singular, weak-form 
displacement and traction boundary integral equations developed in sections 2.5 and 2.6 is 
employed. 

Towards obtaining a system of governing integral equations for the BEM-region B , 
the weakly singular, weak-form boundary integral equation for the traction (2.31) is applied 
directly to the crack surface BcS  (with the test function being chosen such that 0~ v  on BIS ) 

and to the interface BIS  (with the test function being chosen such that 0~ v  on BcS ), and the 

weakly singular, weak-form boundary integral equation for the displacement (2.24) is applied 
only to the interface BIS  (with the test function being chosen such that 0t  on BcS ). A final 

set of three integral equations is given concisely by 
 

( , )    ( , )    ( , )          2 ( , )

( , )  ( , )   ( , )      0

( , )  ( , ) ( , )       2 ( , )

cc Ic BI cI BI Bc c

Ic BI II BI BI II BI BI

Ic BI II BI BI II BI BI BI BI BI

    

   

    

v u t v v u v t

t u t t t u

u u t u u u u t

   

  

   

C B C

B A

C C

F

D

D F

                                      (2.43) 

 
where }

~
,~{ BIBI tu  are sufficiently smooth test functions defined on the interface BIS  and all 

additional integral operators are defined, with subscripts , { , }P Q I c  being introduced to 
clearly indicate the surface of integration, by 

Localized complex zone 

cS 

cS 



n+ 

n– 

Remote boundary 

IS L

cS 

cS 

BIS

L

B

F  BIt
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( , )  ( , ) ( , )II II BI X Y X Y X YBD F                                                                                    (2.45) 

 
It should be noted that the symmetry of the integral operator ( , )PQ X YC  renders the left hand 

side of the system (2.43) being in a symmetric form. Although such symmetric formulation 
can readily be obtained, the right hand side of (2.43) still contains the unknown traction on 
the interface BIt . The treatment of a term ),~( BIBIBI tuF  will be addressed once the formulation 

for the FEM-region F  is established. 
  
2.8.2 Governing equations for F   
Let us consider, next, the FEM-region F . For generality, the entire boundary of this 
particular region can be decomposed into two surfaces: the interface FIS  on which both the 

traction FIt  and the displacement FIu  are unknown a priori and the surface FTS  on which the 

traction FTt  is fully prescribed. The existence of the surface FTS  is apparent for the case that 
the FEM-region contains embedded holes or voids. It is also important to emphasize that in 
the development of a key governing equation for F , the traction FIt  is treated, in a fashion 
different from that for the BEM-region, as unknown data instead of the primary unknown 
variable. In addition, to be capable of modeling a complex localized zone embedded within 
the FEM-region, a constitutive model governing the material behavior utilized in the present 
study is assumed to be sufficiently general allowing the treatment of material nonlinearity, 
anisotropy and inhomogeneity. The treatment of such complex material models has been 
extensively investigated and well-established within the context of nonlinear finite element 
methods (e.g., Oden and Carey, 1984; Bathe, 1990; Belytschko et al., 2000) and those 
standard procedures also apply to the current implementation and will not be presented for 
brevity. Here, we only outline the key governing equation for the FEM-region and certain 
unknowns and data necessary connected to those for the BEM-region.  
 Following standard formulation of the finite element technique, the weak-form 
equation governing the FEM-region can readily be obtained via the weight residual technique 
or the principle of virtual work, and the final weak-form equation can be expressed in a 
concise form by 
   

),~(2),~(2  ),~( FTFTFTFIFIFIFF tutuσu FFK                                                                           (2.46) 
 
where σ  denotes a stress tensor; u~  is a suitably well-behaved test function defined over the 
domain F ; FIu~  and FTu~  are the restriction of the test function u~  on the interfaces FIS  and 

FTS , respectively; and all involved integral operators are defined, with subscripts },{ TIP , 
by 
   





F

dVijijFF )()()(~  ),~( yyyσuK                                                                                         (2.47) 
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F                                                                                       (2.48) 

 
in which )(~ yij  denotes the virtual strain tensor defined by   2//~/~  )(~

ijjiij yuyu  y . 

Note again that a function form of the stress tensor in terms of the primary unknown depends 
primarily on a constitutive model employed. For a special case of the FEM-region being 
made of a homogeneous, linearly elastic material, the stress tensor can be expressed directly 
and explicitly in terms of elastic constants ijklE  and the strain tensor

 

ε  (i.e., klijklij E  ), and 

within the context of an infinitesimal deformation theory (i.e.,   2///  )( ijjiij yuyu  y ), 

the integral operator FFK  can be expressed directly in terms of the displacement u  as  
  





F

dVuEu lkijkljiFF )()()(~  ),~( ,, yyyuuK                                                                                 (2.49) 

 
It should be remarked that the factor of one-half in the definition (2.48) has been introduced 
for convenience to cast this term in a form analogous to that for BPF  given by (2.44), and this, 
as a result, leads to the factor of two appearing on the right hand side of (2.46). It is also 
worth noting that the first term on the right hand side of (2.46) still contains the unknown 
traction on the interface FIt . 
 
2.8.3 Governing equations for    
A set of governing equations of the entire domain   can directly be obtained by combining a 
set of weakly singular, weak-form boundary integral equations (2.43) and the virtual work 
equation (2.46). In particular, the last equation of (2.43) and the equation (2.46) are properly 
combined and this finally leads to 
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   
  

  

C B C

B A

C C

F

D

D K ( , )      2 ( , )FT FT FT u σ u t E F

               (2.50) 

 
where E  is given by 
     

 ),~(),~(2 FIFIFIBIBIBI tutu FFE                                                                                        (2.51) 
 
From the continuity of the traction and displacement across the interface of the BEM-region 
and FEM-region (i.e. 0ytyt  )()( FIBI  and )()( yuyu FIBI   for all FIBII SSS y ), the 

test functions BIu~  and u~  are chosen such that )(~)(~ yuyu FIBI   for all FIBII SSS y  and, 
as a direct consequence,  E identically vanishes. It is therefore evident that the left hand side 
of (2.50) involves only prescribed boundary data and, in addition, if the integral operator 

FFK  possesses a symmetric form, (2.50) constitutes a symmetric formulation for the 
boundary value problem currently treated.    
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2.9 Formulation for cracks in infinite medium with nano-scale influence 
 

In this section, a pair of weakly singular, weak-form integral equations (2.24) and (2.31) is 
employed along with the finite element equation to formulate a set of governing equations for 
cracks in an infinite medium with consideration of the nano-scale influence. The primary 
objective is to investigate the elastic field and related fracture information for cracks of nano-
size in which the surface free energy and the size-dependency of responses are significant. 
 
 
 
 
 
 
 
 
 
 
 

 
                                 (a)                                                                 (b) 

 
Figure 2.3 (a) Schematic of three-dimensional infinite elastic medium containing an isolated 
crack and (b) prescribed traction on crack surfaces 
 

Consider a three-dimensional, infinite, elastic medium  containing an isolated, 
planar crack as shown schematically in Figure 2.3(a). The reference Cartesian coordinate 
system 1 2 3{ ; , , }O x x x  is also shown. The bulk material is made of a homogeneous, isotropic, 

linearly elastic material with shear modulus   and Poisson’s ratio . The crack surfaces 

which are geometrically identical are represented by cS  and cS  and with corresponding 

outward unit normal n  and n , respectively. The medium is assumed to be free of body 

forces and remote loading but subjected to prescribed tractions 0t  and 0t  on cS   and cS , 

respectively (Figure 2.3(b)). In addition, infinitesimally thin layers on the crack surfaces 
(mathematically modeled by zero thickness layers perfectly bonded to the crack surfaces) 
possess constant residual surface tension under unstrained conditions which is denoted by s . 

In the formulation of the boundary value problem, the medium is decomposed into 

three parts: the bulk material, the zero-thickness layer cS   and the zero-thickness layer cS  as 

shown in Figure 2.4. The bulk material is simply the whole medium without the two 
infinitesimally thin layers on the crack surfaces. Since both layers have zero thickness, the 
geometry of the bulk material is therefore identical to that of the whole medium (i.e., it can 

also be completely described by the region  and the two crack surfaces cS  and cS ). 

The key difference between the bulk material and the original medium is that the bulk 

material is homogeneous and the crack surfaces cS   and cS  in the bulk material part are 

subjected to unknown tractions (exerted directly by the two layers) bt  and bt , respectively. 
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The layer cS   is treated as a two-sided surface with one side subjected to the prescribed 

traction 0t  and the other side subjected to the traction st  exerted by the bulk material 

(Figure 2.4(b)). Similarly, the layer cS  is treated as a two-sided surface with one side 

subjected to the prescribed traction 0t  and the other side subjected to the traction st  exerted 
by the bulk material (Figure 2.4(c)). In what follows, Greek subscripts denote field quantities 
associated with the surface and take the values 1, 2 while the Latin subscripts take the values 
1, 2, 3. We remark that, in the development to follow, it will suffice to make reference to the 

single crack surface .c cS S   

 
 
 
 
 

 
 
 
 
 
 
 

(a)                                                  (b)                                 (c) 
 

Figure 2.4 Schematics of (a) the bulk material, (b) the zero-thickness layer cS  and (c) the 

zero-thickness layer cS  

 
2.9.1 Governing equations for bulk material 
Since the bulk material is made of homogeneous, isotropic, linear elastic material, its 
behavior is governed by the classical theory of linear elasticity. By specializing results 
developed in sections 2.5 and 2.6 to isolated cracks in infinite media, the weakly singular, 
weak-form displacement and traction boundary integral equations in terms of the traction data 

bt  and bt  and the displacement data bu  and bu  on the crack surfaces cS  and cS   become 
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where b b b
j j jt t t    , b b b

j j ju u u    , { , }p kt u    are sufficiently smooth test functions, and the 

kernels { , , }p p tk
j mj mjU G C  for isotropic elastic materials are given explicitly by (2.9), (2.18), and 

(2.19), respectively. 
 
2.9.2 Governing equations for two layers 

The two layers cS  and cS  shown in Figure 2.4(b) and 2.4(c) are considered as 

infinitesimally thin membranes adhered perfectly to the bulk material. The behavior of these 
two layers is modeled by Gurtin-Murdoch surface elasticity theory by ignoring terms 
associated with the surface elastic constants. It has been pointed out by various investigations 
that the influence of the surface Lamé constants on the out-of-plane responses in the region 
very near the surface is negligibly weak (e.g., Intarit, 2012; Intarit, 2013; Nan and Wang, 
2012; Pinyochotiwong et al., 2013). The simplified version of the Gurtin-Murdoch model is 
therefore considered suitable for modeling planar crack problems when mode-I behavior is of 
primary interest.  

The equilibrium equations, the surface constitutive relations and the strain-

displacement relationship of the layers cS   and cS

 are therefore given by (Gurtin and 

Murdoch, 1975; Gurtin and Murdoch, 1978) 
 

, 0s s o
i i it t       (2.54) 

 

,2s s s s s s s su                     ,  3 3,
s s su    (2.55) 

 

 1
, ,2

s s su u         (2.56) 

 
where , ,s s s

i iu    represent stress, strain and displacement components within the layer. To 

construct the weak-form equation, we multiply the equilibrium equation (2.54) with a 
sufficiently smooth test function s

iu  and then integrate the result over the entire crack surface 

to obtain 
 

0
, 0

c c c

s s s s s
i i i i i i

S S S

u dS u t dS u t dS 
  

         (2.57) 

 
By using the fact that s  is spatially independent, it can be readily verified that , 0s

   . 

With such condition along with carrying out the integration by parts of the first term using the 
Gauss-divergence theorem, it leads to 
 

0
3, 3 3 3

c c c c

s s s s s s s
i i i i

S S S S

u dS u t dS u n dS u t dS    
   

           (2.58) 

 
Substituting (2.55) into (2.56) finally yields 
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Note that the weak-form equation (2.59) applies to both crack surfaces. For instance, the 
weak-form equations for the surface cS  and surface cS   can be obtained explicitly by  
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where superscripts “+” and “–” are added to differentiate quantities defined on each crack 
surface. Since the integral equations governing the bulk are derived in terms of the unknown 
sum and jump of quantities across the crack surface, it is natural to establish the weak-form 
equations governing the surface in terms of the same type of unknowns. This can be readily 
accomplished by forming two linear combinations of (2.60) and (2.61) as follows: (i) 
choosing s s s

i i iu u u       and then adding (2.60) to (2.61) and (ii) choosing s s s
i i iu u u       

and then subtracting (2.60) from (2.61). Such pair of equivalent weak-form equations is given 
by 
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where superscripts “” and “” indicate the sum and jump of quantities across the crack 
surface. It should be remarked further that since the jump of the displacement along the 
crack-front vanishes identically, the test function s

iu   is chosen to satisfy the homogeneous 

condition 0s
iu    on cS  . The weak-form equations (2.62) and (2.63) now take the form 
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Equations (2.64) and (2.65) constitute a set of weak-form equations governing the unknown 

quantities { , , , }s s s s
i i i iu t u t    . It is worth noting that the formulation presented above is not 

restricted only to applied normal traction to the crack surface, although the mathematical 
model of the surface is suitable for pure mode-I loading. Due to the vanishing ,

s
  , the 
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equilibrium equation (2.54) indicates that the applied shear traction is transmitted directly to 
the crack surface of the bulk material.   
 
2.9.3. Governing equations for whole medium 

Since the two layers cS  and cS  are adhered perfectly to the bulk material, the displacements 

and tractions along the interface of the two layers and the bulk material must be continuous. 
This yields the following continuity conditions: 
 

s b
i i iu u u       (2.66) 

 
s b
i i iu u u       (2.67) 
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s b
i i it t t        (2.69) 

 
Substituting (2.66)-(2.69) into (2.52), (2.53), (2.64) and (2.65) leads to a system of four 
equations involving four unknown functions { , , , }i i i iu t u t    . By choosing appropriate test 

functions, (2.53) and (2.65) can be combined and the unknown it
  can be eliminated. The 

final system of three equations involving three unknown functions { , , }i i iu u t    is given by 
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where the additional bilinear integral operators , ,A B E  are defined by  
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where the linear integral operators 1 2{ , }R R  are defined, in terms of prescribed data 0t  and 

0t , by 
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 CHAPTER III 
 

NUMERICAL IMPLEMENTATION 
 
 
This section briefly summarizes numerical procedures adopted to construct numerical 
solutions of a set of governing equations (2.32)-(2.34), (2.50), and (2.70), and to post-process 
certain quantities of interest such as stress intensity factors, T-stresses, and stress at interior 
points. The discretization of all governing equations by standard Galerkin strategy is 
discussed first. Then, components essential for numerical evaluation of weakly singular and 
nearly singular double surface integrals, evaluations of kernels for general anisotropic 
materials, and determination of general mixed-mode stress intensity factors and T-stress are 
addressed. Finally, the key strategy for establishing the coupling between the in-house weakly 
singular SGBEM code and the reliable commercial finite element package is discussed. 
 
3.1 Discretization 
 

A standard Galerkin strategy is adopted to construct an approximate version of a system of 
governing equations (2.32)-(2.34) for SGBEM, (2.50) for SGBEM-FEM coupling, and (2.70) 
for consideration of nano-scale influence.  

For the case of SGBEM, only the boundary of the domain and/or the crack surface 
need to be discretized. In such discretization, interpolation functions constructed locally 
based on standard two-dimensional isoparametric C0 elements (e.g, 8-node quadrilateral and 
6-node triangular elements) are employed throughout to approximate all primary unknowns 
except for the jump of the displacement across the crack surface where special 9-node crack-
tip elements are employed to accurately capture its asymptotic behavior near the singularity 
zone. Shape functions of these special elements are properly enriched by square-root 
functions (resulting from asymptotic expansion of fields in the vicinity of the crack front) 
and, in addition, extra degrees of freedom are introduced along the edge of elements adjacent 
to the crack front to directly represent the gradient of the relative crack-face displacement 
(see details development in the work of Li et al. (1998) and Rungamornrat and Mear 
(2008b)). These positive features also enable the calculation of the mixed-mode stress 
intensity factors (i.e., mode-I, mode-II and mode-III stress intensity factors) in an accurate 
and efficient manner with use of reasonably coarse meshes. Unlike the jump of the 
displacement, the sum of the displacement across the crack face is approximated by standard 
C0 interpolation functions everywhere.  

For SGBEM-FEM coupling, the discretization of the governing equations of the 
BEM-region is achieved in the same fashion as described above whereas, for the finite 
element equations, all primary unknowns are approximated by standard three-dimensional, 
isoparametric C0 elements (e.g., ten-node tetrahedral elements, fifteen-node prism elements 
and twenty-node brick elements). Details of discretization procedure and element-wise 
interpolation functions can be found in various literatures (e.g., Oden and Carey, 1984; Bathe, 
1990; Belytschko et al., 2000). It is important to note that meshes on the interfaces of the two 
regions conform (i.e., the two discretized interfaces are geometrically identical). A simple 
means to generate those conforming interfaces is to mesh the FEM-region first and then use 
its surface mesh as the interface mesh of the BEM-region. With this strategy, all nodal points 
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on both discretized interfaces are essentially coincident. The key advantage of using 
conforming meshes is that the strong continuity of the displacement, the traction, and the test 
functions across the interface can be enforced exactly and, as a result, the condition 0 E  is 
also satisfied in the discretization level. It should be emphasized also that nodes on the 
interface of the BEM-region contains six degrees of freedom (i.e., three displacement degrees 
of freedom and three traction degrees of freedom) while nodes on the FEM-region contains 
only three displacement degrees of freedom. 

For the SGBEM-FEM coupling with consideration of surface stress effects, standard 
C0 interpolation functions are utilized in the approximation of both trial and test functions. In 
particular, the following approximation for the test functions and the trial functions is 
introduced: 
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where N  is the number of nodal points; q  is nodal basis functions at node q; 3( 1)q iU
  , 

3( 1)q iU 
  , and 3( 1)q iT 

   are nodal degrees of freedom associated with the sum of the 

displacement, the jump of the displacement and the sum of the traction across the crack 
surfaces, respectively; and 3( 1)

s
p iU 
 

 , 3( 1)p iU  
 , and 3( 1)p iT  

  are arbitrary nodal quantities. 

Substituting (3.1)-(3.3) into (2.70) along with using the arbitrariness of 3( 1)
s

p iU 
 

 , 3( 1)p iU  
 , and 

3( 1)p iT  
 , leads to a system of linear algebraic equations 
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where the sub-matrices , , , ,A B C D E  are associated with the bilinear operators , , , ,A B EA B

; sub-vector 1 2,R R  correspond to the linear operators 1 2,R R ; U  is vector of nodal 

quantities of the sum of the displacement;

 

U  is vector of nodal quantities of the jump of the 
displacement and T  is vector of nodal quantities of the sum of the traction. The sub-
matrices , , , ,A B C D E  and sub-vectors 1 2,R R  are given explicitly by  
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3.2 Numerical integration 
 

For the finite element equations, all integrals arising from the discretization of the weak-form 
equation contain only regular integrands without the kernel and, as a result, they can be 
efficiently and accurately integrated by standard Gaussian quadrature. In the contrary, 
numerical evaluation of integrals arising from the discretization of the boundary integral 
equations is nontrivial since it involves the treatment of three types of double surface 
integrals (i.e., regular double surface integrals, weakly singular double surface integrals and 
nearly singular double surface integrals). The regular double surface integral arises when it 
involves a pair of remote outer and inner elements (i.e., the distance between any source and 
field points is relatively large when compared to the size of the two elements). This renders 
its integrand nonsingular and well-behaved and, as a result, allows the integral to be 
accurately and efficiently integrated by standard Gaussian quadrature.   

The weakly singular double surface integral arises when the outer surface of 
integration is the same as the inner surface. For this particular case, the source and field 
points can be identical and this renders the integrand singular of order 1/r. While the integral 
of this type exists in an ordinary sense, it was pointed out by Xiao (1998) that the numerical 
integration by Gaussian quadrature becomes computationally inefficient and such inaccurate 
evaluation can significantly pollute the quality of approximate solutions. To circumvent this 
situation, a series of transformations such as a well-known triangular polar transformation 
and a logarithmic transformation is applied first both to remove the singularity and to 
regularize the rapid variation of the integrand. The final integral contains a nonsingular 
integrand well-suited to be integrated by Gaussian quadrature. Details of this numerical 
quadrature can be found in the work of Li and Han (1985), Hayami and Brebbia (1988) and 
Xiao (1998).  

The most challenging task is to compute nearly singular integrals involving relatively 
close or adjacent inner and outer elements. Although the integrand is not singular, it exhibits 
rapid variation in the zone where both source and field points are nearly identical. Such 
complex behavior of the integrand was found very difficult and inefficient to be treated by 
standard Gaussian quadrature Xiao (1998). To improve the accuracy of such quadrature, the 
triangular polar transformation is applied first and then a series of logarithmic transformations 
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is adopted for both radial and angular directions to further regularize the rapid-variation 
integrand. The resulting integral was found well-suited for being integrated by standard 
Gaussian quadrature (e.g., Hayami, 1992; Hayami and Matsumoto, 1994; Xiao, 1998). 
 
3.3 Evaluation of kernels 
 

To further reduce the computational cost required to form the coefficient matrix contributed 
from the BEM-region, all involved kernels )()( yξξ p

iji Hn , )()( yξy p
iji Hn , )( yξ p

iU , 

)( yξ p
mjG , )( yξ tk

mjC  must be evaluated in an efficient manner for any pair of source and 

field points },{ yξ . For the first two kernels )()( yξξ p
iji Hn  and )()( yξy p

iji Hn , they only 

involve the calculation of a unit normal vector n  and the elementary function p
ijH . This can 

readily be achieved via a standard procedure. For the last three kernels, the computational 
cost is significantly different for isotropic and anisotropic materials. For isotropic materials, 
such kernels only involve elementary functions and can therefore be evaluated in a 
straightforward fashion. On the contrary, the kernels ( )p

iU ξ y , ( )p
mjG ξ y  and ( )tk

mjC ξ y for 

general anisotropy are expressed in terms of a line integral over a unit circle (see equations 
(2.7), (2.16a) and (2.16b)). Direct evaluation of such line integral for every pair of points 
( , )ξ y  arising from the numerical integration is obviously computationally expensive. To 
avoid this massive computation, a well-known interpolation technique (e.g., Rungamornrat 
and Mear, 2008b; Rungamornrat and Mear, 2011) is employed to approximate values of those 
kernels. Specifically, the interpolant of each kernel is formed based on a two-dimensional 
grid using standard quadratic shape functions. Values of kernels at all grid points are obtained 
by performing direct numerical integration of the line integral via Gaussian quadrature and 
then using the relations (2.7), (2.16a) and (2.16b). The accuracy of such approximation can 
readily be controlled by the refinement of the interpolation grid. 
 
3.4 Determination of stress intensity factors and T-stresses 
 

Stress intensity factors and T-stresses are quantities that play an important role in linear 
elastic fracture mechanics in the prediction of crack growth initiation and propagation 
direction and also in the fatigue-life assessment. This fracture data provides a complete 
measure of the dominant behavior of the stress field in a local region surrounding the crack 
front. To obtain highly accurate stress intensity factors and T-stresses, we supply the 
proposed numerical technique with two crucial components, one associated with the use of 
special crack-tip elements to accurately capture the near-tip field and the other corresponding 
to the use of an explicit formula to extract such fracture data. The latter feature is a direct 
consequence of the extra degrees of freedom being introduced along the crack front to 
represent the gradient of relative crack-face displacement and the finite in-plane strain 
components local to the crack front. Once a discretized system of algebraic equations is 
solved, nodal quantities along the crack front and nodal sum of the displacement on the crack-
tip elements are extracted and then post-processed to obtain the stress intensity factors and T-
stresses, respectively. 

An explicit expression for the mixed-mode stress intensity factors in terms of nodal 
data along the crack front, local geometry of the crack front, and material properties is shown 
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briefly below (details of the development can be found in the work of Li et al. (1998) for 
cracks in isotropic media and Rungamornrat and Mear (2008b) for cracks in general 
anisotropic media). 
 Consider a crack-tip element located along the crack front where xc denotes the 
coordinate of a node located on the crack front, {xc; x1, x2, x3} is a local Cartesian coordinate 
system with origin at xc and {e1, e2, e3} be a set of orthonormal base vectors as shown 
schematically in Figure 3.1. 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Schematic of crack-tip element and local coordinate system for calculation of 
stress intensity factors and T-stresses 
 
The mode-I, mode-II, and mode-III stress intensity factors, denoted by  , ,I II IIIK K K , are 

defined by 
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where the quantities {22, 12, 23} are components of the stress tensor with respected to the 
local Cartesian coordinate system. While the definition (3.13) is fundamental, it is not well-
suited within the context of a weakly singular SGBEM. This is due to that certain components 
of the generalized stress ahead of the crack front must be post-processed and that the limit 
must properly be carried out.   
 An alternative expression of the stress intensity factors equivalent to the definition 
(3.13), in terms of the relative crack-face displacement data in the neighborhood of the crack 
front, was proposed by Xu (2000) for general anisotropic materials. Such expression is given 
explicitly by 
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where 1 IIk K , 2 Ik K , 3 IIIk K  and 
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in which a  and b  are orthonormal vectors contained in the 1 2x x  plane, ( , ) jm n njml la E ba b , 

  is an angle between the vectors a  and 1e  as indicated in Figure 3.1, and pu  denote the 

relative crack-face displacement. It is worth noting that components of all quantities 
appearing in (3.14) and (3.15) are taken with respect to the local coordinate system defined at 
point cx . By exploiting Taylor series expansion along with the crucial feature of the crack-tip 

element, the expression (3.14) can further be simplified to 
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where   is angle satisfying 1sin .n  e e ,  
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(ξ, ) (ξ, )c cn n r x x ,  (3.20) 
 

with (ξ , 1)c   denoting the natural coordinates of cx  and ( )
e
p iu  representing the components of 

nodal data at the ith node, ( )
e
iu , with respect to the local coordinate system. It is important to 

point out that the formula (3.16) allows the stress intensity factors to be computed only in 
terms of the data at nodes located on the crack front. This is due to the fact that (ξ , 1)i c   

vanishes for nodes not on the crack front. 
 The T-stresses along the crack front, referring to the local coordinate system shown in 
Figure 3.1, contains three independent components denoted by T11, T33 and T13 where the first 
two components are termed the normal T-stresses and the last one is a shear T-stress. Values 
of the T-stresses T11, T33 and T13 at the point cx  can be related to the finite part of the strain 

tensor at the limiting point of the point cx on the crack surface, denoted by kl , via the stress-

strain relation:   
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ij ijkl klT E    (3.21) 

 
where Tij = Tji, ij = ji, the components T22, T12 and T23 are known and equal to the prescribed 
traction at a limiting point of the point cx on the crack surface. The components 11, 33 and 

13 can be computed from the information of the sum of the displacement across the crack 
surface in the neighborhood of the point cx via the following relations  
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The derivatives involved in the expressions (3.22)-(3.24) can readily be computed within the 
crack-tip elements. By using the prescribed information of T22, T12 and T23 and the computed 
strain components 11, 33 and 13, the unknown strain components 22, 12 and 23 and the T-
stresses T11, T33 and T13 at the point cx can be determined by solving a system of six linear 

algebraic equations (3.21).  
 
3.5 Coupling of SGBEM and commercial FE package 
 

To further enhance the modeling capability of the SGBEM-FEM coupling, the weakly 
singular SGBEM can be coupled with a reliable commercial finite element package that 
supports user-defined subroutines. The key objective is to exploit available vast features of 
such FE package (e.g., mesh generation, user-defined elements, powerful linear and nonlinear 
solvers, and various material models, etc.) to treat a complex, localized FEM-region and 
utilize the SGBEM in-house code to supply information associated with the majority of the 
domain that is unbounded and possibly contains isolated discontinuities. 

In the coupling procedure, the governing equation for the BEM-region is first 
discretized into a system of linear algebraic equations. The corresponding coefficient matrix 
and the vector involving the prescribed data are constructed using the in-house code and they 
can be viewed as a stiffness matrix and a load vector of a ‘super element’ containing all 
degrees of freedom of the BEM-region. This piece of information is then imported into the 
commercial FE package via a user-defined-subroutine channel and then assembled with 
element stiffness matrices contributed from the discretized FEM-region. Since meshes of both 
interfaces (one associated with the BEM-region and the other corresponding to the FEM-
region) are conforming, the assembly procedure can readily be achieved by using a proper 
numbering strategy. Specifically, nodes on the interface of the BEM-region are named 
identical to nodes on the interface of the FEM-region (associated with the same displacement 
degrees of freedom). It is important to emphasize that all interface nodes of the BEM-region 
possess six degrees of freedom (i.e. three displacement degrees of freedom and three traction 
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degrees of freedom) but there are only three (displacement) degrees of freedom per interface 
node of the FEM-region. To overcome such situation, each interface node of the BEM-region 
is fictitiously treated as double nodes where the first node is chosen to represent the 
displacement degrees of freedom and is numbered in the same way as its coincident interface 
node of the FEM-region whereas the second node is chosen with different name to represent 
the traction degrees of freedom. With this particular scheme, the assembling procedure 
follows naturally that for a standard finite element technique. 

Once the coupling analysis is complete, nodal quantities associated with the BEM-
region are extracted from the output file generated by the FE package and then post-processed 
for quantities of interest. For instance, the displacement and stress within the BEM-region can 
readily be computed from the standard displacement and stress boundary integral relations 
presented in sections 2.5 and 2.6, and the stress intensity factors and T-stresses can be 
calculated using an explicit expression proposed in section 3.4. 
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CHAPTER IV 
 

NUMERICAL RESULTS 
 
 
To demonstrate the accuracy and capabilities of the SGBEM and SGBEM-FEM coupling 
with and without consideration of nano-scale influence, extensive numerical experiments on 
various boundary value problems involving finite and infinite bodies. 
 
4.1 Results from SGBEM 
 

Problems with existing analytical solutions are considered first. These problems serve not 
only to verify the formulation of governing equations and its numerical implementation but 
also as a means to investigate the dependence of the numerical solutions on mesh refinement. 
The method is then applied to solve more complex boundary value problems. Analytical 
solutions to these problems are not available, and they may be of little direct technological 
relevance. They are chosen for analysis here simply because the additional complexity 
introduced by the crack configurations and geometry of the body allows us to further explore 
the effectiveness of the proposed technique for solving complex problems. 
  
4.1.1 Penny-shaped crack in isotropic elastic medium under remote loading   
Consider an isolated penny-shaped crack of radius a  embedded in an infinite medium as 
shown in Figure 4.1.1. The medium is subjected to either remote uniaxial tension or remote 
pure bending (see Figure 4.1.1). In the analysis, the material is chosen to be isotropic, linearly 
elastic with Young’s modulus E  and Poisson ratio 3.0  in order to allow the comparison 
with the analytical solutions proposed by Wang (2004). To demonstrate the convergent 
behavior of numerical results for both stress intensity factors and T-stresses, three meshes 
shown in Figure 4.1.2 are adopted in the numerical study. 
 

 
 
 

 
 

 
 

 
 

  
 

 
 

 
 
 
Figure 4.1.1 Schematic of penny-shaped crack in infinite medium under (a) remote uniaxial 
tension and (b) remote pure bending 
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                        Mesh-1                                Mesh-2                                   Mesh-3 

 
Figure 4.1.2 Three meshes adopted in the analysis of penny-shaped crack under uniformly 
distributed pressure 
 
 The mode-I stress intensity factor KI and the normal T-stress T11 obtained from the 
three meshes for the remote uniaxial tension loading condition are reported in Table 4.1.1. 
The computed results are normalized by the following exact solution obtained from the work 

of Wang (2004): , 02 /I exactK a   and 11, 0(1 2 ) / 2exactT     . It is evident from this set 

of results that numerical solutions for both the stress intensity factors and the T-stresses show 
excellent agreement with the benchmark solution. In particular, the coarsest mesh with only 8 
elements yield the results with error less than 1%. The highly accurate feature results directly 
from the use of special crack-tip elements along the crack tip to accurately capture the jump 
of the displacement across the crack surface in the vicinity of the crack boundary. For the 
medium subjected to remote pure bending, both the mode-I stress intensity factor and the 
normal T-stress varies as a function of position along the crack front. The normalized mode-I 
stress intensity factors obtained from the three meshes are reported in Figure 4.1.3 whereas 
the normalized normal T-stress are shown in Figure 4.1.4 along with the following solution 

provided by Wang (2004): , 4 a/ cos /3I exact oK     and 11, (3 / 4 / 2) cosexact oT      .       

 
Table 4.1.1 Normalized mode-I stress intensity factors and normal T-stress T11 for isolated 
penny-shaped crack subjected to remote uniaxial tension. Results are reported for 3.0 . 
 

Mesh ,/I I exactK K  11 11,/ exactT T  

1 0.9949 0.9917 

2 1.0003 0.9984 

3 1.0006 0.9978 

  
4.1.2 Penny-shaped crack in transversely isotropic medium under uniform pressure  
To demonstrate the capability of the technique to treat material anisotropy, let us consider a 
similar problem of penny-shaped crack of radius a  embedded in a transversely isotropic, 
infinite medium as shown schematically in Figure 4.1.1. Non-zero material constants are 
chosen to be E1111 = 16.09x106 psi, E1122 = 3.35x106 psi, E1133 = 5.01x106 psi, E3333 = 
6.10x106 psi, and E1313 = 3.83x106 psi. In the analysis, the same three meshes illustrated in 
Figure 4.1.2 are employed to investigate the convergence of numerical solutions. 
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Figure 4.1.3 Normalized mode-I stress intensity factor versus angular coordinate for penny-
shaped crack in isotropic infinite medium under remote pure bending 

 
Figure 4.1.4 Normalized normal T-stress versus angular coordinate for penny-shaped crack in 
isotropic infinite medium under remote pure bending 
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 The mode-I stress intensity factor KI and the normal T-stress T11 obtained from the 
three meshes are reported in Table 4.1.2. The computed results for mode-I stress intensity 
factors are normalized by the closed form solution presented by Fabrikant (1989): 

, 02 /I exactK a  . For the case of normal T-stress, the computed solutions are normalized 

by that obtained from the finest mesh (i.e., Mesh-3) since the analytical solution for such 
quantity cannot be found in the literature. It is evident that the proposed technique yields 
highly accurate stress intensity factor although the coarse mesh with only few degrees of 
freedom has been employed. Similarly, results for the normal T-stress shows the good 
convergence with only weak dependence on the level of mesh refinement.  
      
Table 4.1.2 Normalized mode-I stress intensity factors and normal T-stress T11 for isolated 
penny-shaped crack embedded in transversely isotropic medium and subjected to uniform 
pressure 
 

Mesh ,/I I exactK K  11 11, 3/ MeshT T   

1 0.9913 0.9897 

2 0.9984 0.9948 

3 0.9997 1.0000 

 
4.1.3 Influence of thickness on stress intensity factors  
Once accuracy and convergence of the implemented SGBEM has been fully tested, it is 
applied to solve various complex fracture problems. Here, the technique is utilized to 
investigate the influence of the thickness of a body on the value and distribution of the stress 
intensity factor along the crack front.   

Consider a particular cracked body with its configuration similar to a compact tension 
(CT) testing specimen. ASTM E399-90 (1997) has recommended the geometries of the CT 
specimen in the experiment for the plane strain fracture toughness ICK  as shown in Figure 

4.1.5. The ratio between the crack length a  (measured from the center of each hole to the 
crack front) and the specimen width W (measured from the center of each hole to the back 
face of the specimen) must be chosen in the range of 0.45 to 0.55 and the thickness is 
recommended to be W5.0 . The entire width (measured from the back face to the front face) is 
equal to1.25W . A pair of equal and opposite loads is to be applied at the holes of radius 

W25.0  to open the crack. The distance between the center of each hole and the crack plane is 
equal to W275.0  and the distance from the crack plane to the top and bottom surface of the 
specimen is equal to W6.0 . Details of a small starter notch in front of the crack plane can be 
found in ASTM E399-90 (1997). In the modeling, we choose a configuration as shown in 
Figure 4.1.6 to represent the CT specimen shown in Figure 4.1.5. The difference between this 
model and the actual CT specimen is due to the removal of the notch and then replacing it by 
a through-the-thickness crack. It is worth noting that this simplification should not 
significantly alter the behavior of the problem but substantially reduces the meshing effort. In 
the analysis, we choose 5.0/ Wa  and the thickness of the specimen is varied in order to 
investigate its influence on the distribution of the stress intensity factor. The applied loads at 
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both holes are assumed to be uniformly distributed over the upper part of the upper hole and 
the lower part of the hole. 
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Figure 4.1.5 Configuration of compact tension (CT) specimen recommended by ASTM 
E399-90 (1997)   
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Figure 4.1.6 Configuration of compact tension (CT) specimen used in the analysis 
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In the construction of a finite element mesh on the boundary of the CT specimen and 
the crack surface, the number of distorted elements and elements with a large aspect ratio is 
minimized, a finer mess is utilized in regions where fields are anticipated to be complex such 
as regions near the crack front and vertices, and a mesh with smooth transition is employed to 
connect the fine mesh region and the coarse mesh region. Three types of elements are utilized 
in the discretization of the CT specimen: (i) standard 6-node triangular elements and standard 
8-node quadrilateral elements, (ii) 9-node quadrilateral crack-tip elements, and (iii) special 9-
node quadrilateral elements. More specifically, elements in the second category are utilized 
only along the entire crack front whereas on the front and back faces of the specimen, two 
elements of the last type must be used to connect the crack-tip element and the standard 
elements. The remaining boundary and crack surface are discretized by elements in the first 
category.  

In the present study, three meshes, a coarse mesh denoted by Mesh-1, a medium mesh 
denoted by Mesh-2 and a fine mesh denoted by Mesh-3, are constructed as shown in Figures 
4.1.7-4.1.9 for a specimen of thickness / 1t a  . In the analysis, we consider three different 
materials, one associated with an isotropic material with Poisson’s ratio 0.30   and the 
other two corresponding to the transversely isotropic material with elastic constants chosen to 
be those for zinc and cadmium as given in Table 4.1.3. It should be noted that for the last two 
materials, the axis of material symmetry is chosen to direct perpendicular to the crack surface. 
 
Table 4.1.3 Elastic constants (GPa) for zinc and cadmium. The axis of material symmetry is 
taken to direct along the x3-coordinate direction. 
 

Materials 
1111E  1122E  1133E  3333E  1313E  

Zinc 161 34.2 50.1 61 38.3 
Cadmium 115.8 39.8 40.6 51.4 20.4 

 

                   

 
 

Figure 4.1.7 Coarse mesh or Mesh-1 for CT specimen thickness / 1t a    
Crack surface Holes 
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Figure 4.1.8 Medium mesh or Mesh-2 for CT specimen thickness / 1t a    
 

 

 
 
 
 

Figure 4.1.9 Fine mesh or Mesh-3 for CT specimen thickness / 1t a    

Crack surface Holes 

Crack surface Holes 
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Numerical results for the mode-I stress intensity factor along the crack front are reported for 
three materials and three meshes in Figure 4.1.10. It is evident that results obtained from the 
Mesh-2 and Mesh-3 are almost identical while those from the Mesh-1 exhibit slight 
difference especially very near the vertices where the stress intensity factor drops very 
rapidly. This should imply the rapid convergence and the weak dependency on the level of 
mesh refinement for both isotropic and anisotropic cases. Next, we investigate the 
convergence behavior of numerical results for the same specimen but with the thickness

/ 4t a  . Meshes used in the analysis for this particular case are obtained by simply scaling 
coordinates in the direction along the thickness of the three meshes shown in Figures 4.1.7-
4.1.9. Again, results of the mode-I stress intensity factor (see Figure 4.1.11) lead to the same 
conclusion as the previous case and, in particular, stretching meshes in the thickness direction 
by four times still does not alter the convergence characteristic of the numerical solutions. It 
is worth noting that approximate solutions of this high quality can be achieved via the use of 
relatively coarse meshes due mainly to the application of special crack-tip elements along the 
crack front. Since the medium mesh and the fine mesh yields results of comparable accuracy 
while the latter consumes substantially more computational time, a level of refinement similar 
to that for the former mesh will be used in the construction of meshes for a CT specimen of 
other thicknesses in the parametric study to explore the behavior of the stress intensity factor. 

       
Figure 4.1.10 Normalized mode-I stress intensity factor along the crack front for CT 
specimen thickness / 1t a  . Results are reported for three meshes and three materials and s 
denotes the distance measured from the center of the crack front. 
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Figure 4.1.11 Normalized mode-I stress intensity factor along the crack front for CT 
specimen thickness / 4t a  . Results are reported for three meshes and three materials and s 
denotes the distance measured from the center of the crack front. 
 

To verify the numerical results obtained from the weakly singular SGBEM, 
comparisons with existing benchmark solutions for a two-dimensional plane strain case and 
for isotropic materials are performed. Consider a CT specimen of sufficiently large thickness 
to ensure the existence of a plane strain condition in the central region of the crack front. 
Numerical results obtained from a mesh with the same level of refinement as the medium 
mesh shown in Figure 4.1.8 are reported along with the plane strain solution proposed by 
ASTM E399-90 (1997) in Figure 4.1.12 for Poisson ratio 1.0  and in Figure 4.1.13 for 
Poisson ratio 3.0 . It is evident that the SGBEM solutions (in the region exhibiting the 
plane strain condition) show very good agreement with the benchmark solution. Besides this 
verification, it should be noted that extensive verification of the weakly singular SGBEM and 
its formulation used in the present study was already performed by Li et al. (1998) and 
Rungamornrat and Mear (2008b) for various crack problems associated with both isotropic 
and transversely isotropic media. 

To construct meshes for the CT specimen of various thicknesses, the medium mesh 
for / 1t a   shown in Figure 4.1.8 is used as a prototype. Two following simple strategies, (i) 
mesh stretching along the crack front direction and (ii) adding an inner layer, are employed. 
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The mesh stretching is applied first to obtain a series of meshes for several thicknesses 
without adding nodes and elements but simply scaling the coordinate along the crack front.   

       
Figure 4.1.12 Normalized mode-I stress intensity factor along the crack front for CT 
specimen for sufficiently large thicknesses along with the plane strain solution from ASTM 
E399-90 (1997). Results are reported for isotropic material with 1.0  and s denotes the 
distance measured from the center of the crack front. 

       
 

Figure 4.1.13 Normalized mode-I stress intensity factor along the crack front for CT 
specimen for sufficiently large thicknesses along with the plane strain solution from ASTM 
E399-90 (1997). Results are reported for isotropic material with 3.0  and s denotes the 
distance measured from the center of the crack front. 
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To explore the influence of the specimen thickness and material constants on the 
behavior of the stress intensity along the crack front for the isotropic case, we perform the 
analysis for various thicknesses  / 1, 2,3,4,5,10,20,40t a  and several values of Poisson’s 

ratio  {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} for each thickness. It 
should be noted that the stress intensity factor exhibits material dependence only on the 
Poisson’s ratio   not the Young’s modulus E . The normalized mode-I stress intensity 

factors, denoted by PWtK I / , is reported as a function of the normalized distance along the 
crack front, denoted by ts / , in Figure 4.1.14 for 0 , Figure 4.1.15 for 10.0 , Figure 
4.1.16 for 30.0 , and Figure 4.1.17 for 50.0 . For each plot, the plane strain stress 
intensity factor proposed by ASTM E-399 is also reported to allow the comparison and 
discussion. From this set of results, following findings are summarized. 

For Poisson’s ratio 0 , the plane strain condition dominates the entire crack front 
with no regard of the specimen thickness and, in addition, the computed results exhibit 
excellent agreement with the benchmark solution except in the region close to the surface 
breaking points. The slightly oscillated behavior of numerical solutions observed in that 
region is due to the fact that the (reduced-order) special crack-tip element and the adjacent 
modified boundary element containing the vertices cannot accurately capture the asymptotic 
field. Note in addition that the stress field at the vertex, for this particular case, is singular of 
the same order as that for the interior point of the crack front. For small Poisson’s ratio (i.e. 

1.0 ), the stress intensity factor varies along the crack front but such variation is still 
insignificant for all thicknesses considered. The rapid decrease of the stress intensity factor is 
observed in the neighborhood of the surface breaking point. This implies that the singularity 

of the stress field at the vertex is of order less than r/1 . 

 
 

Figure 4.1.14 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various thicknesses and   = 0 
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Figure 4.1.15 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various thicknesses and   = 0.1 
 

 
Figure 4.1.16 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various thicknesses and   = 0.3 
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Figure 4.1.17 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various thicknesses and   = 0.5 
 
 

For moderate and large Poisson’s ratio (i.e. 2.0 ), the variation of the stress 
intensity factor across the thick becomes more significant and depends primarily on the 
specimen thickness. For a specimen with small thickness (i.e. 5/ at ), the stress intensity 
factor attains its maximum value at the center of the crack front and monotonically decreases 
to zero at the two vertices. The slight rate of decrease is observed for the majority of the crack 
front except in a layer near the outer boundary where the rapid drop occurs. In addition, the 
three-dimensional analysis yields the stress intensity factor higher than the plane strain value 
for a large portion of the crack front. For a specimen with sufficiently large thickness (i.e. 

10/ at ), the stress intensity factor starts to converge to the plane strain value in the central 
region of the crack front and the converged zone spreads towards the vertices as the thickness 
increases. For a specimen with the maximum thickness 40/ at , the plane strain dominated 
zone covers more than 70% of the crack front for all values of Poisson’s ratio treated. 

To additionally demonstrate the influence of the Poisson’s ratio on both the 
distribution and magnitude of the stress intensity factor across the thickness, we create 
different plots between PWtK I /  and ts /  by fixing the specimen thickness but varying the 
Poisson’s ratio. Results are reported in Figure 4.1.18 for a thinnest specimen ( 1/ at ), in 
Figure 4.1.19 for 5/ at , in Figure 4.1.20 for 10/ at , and in Figure 4.1.21 for 40/ at . It 
can be concluded from these plots that the thickness of a specimen significantly affects the 
characteristic of the distribution (i.e. shape) of the stress intensity factor along the crack front 
while the Poisson’s ratio only influence its magnitude. More specifically, the larger the 
Poisson’s ratio, the higher the stress intensity factor is observed.                     
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Figure 4.1.18 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various Poisson’s ratios and 1/ at  
 
 

 
Figure 4.1.19 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various Poisson’s ratios and 5/ at  
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Figure 4.1.20 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various Poisson’s ratios and 10/ at  
 
 

 
Figure 4.1.21 Normalized mode-I stress intensity factor versus the normalized distance along 
the crack front for various Poisson’s ratios and 40/ at  
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4.2 Results from SGBEM-FEM coupling 
 

As a means to verify both the formulation and the numerical implementations of the SGBEM-
FEM coupling, numerical experiments are first carried out for boundary value problems in 
which the analytical solution exists. In the analysis, a series of meshes is adopted in order to 
investigate both the convergence and accuracy of the numerical solutions. Once the method is 
tested, it is then applied to solve more complex boundary value problems in order to 
demonstrate its capability and robustness. For brevity of the presentation, a selected set of 
results are reported and discussed as follows. 
 
4.2.1 Isolated spherical void under uniform pressure  
Consider an isolated spherical void of radius a  embedded in a three-dimensional infinite 
medium as shown schematically in Figure 4.2.1(a). The void is subjected to uniform pressure

0 . In the analysis, two constitutive models are investigated: one associated with an 

isotropic, linearly elastic material with Young’s modulus E  and Poisson ratio 3.0  and 
the other chosen to represent an isotropic hardening material obeying 2J -flow theory of 
plasticity (e.g., Lubiliner, 1990). For the latter material, the uniaxial stress-strain relation is 
assumed in a bilinear form with 1E  and 2E  denoting the modulus in the elastic regime and 

the modulus of the hardening zone, respectively, and y  and y  denoting the initial yielding 

stress and its corresponding strain, respectively. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

          (a)                                                                          (b) 
 

Figure 4.2.1 (a) Schematic of three-dimensional infinite medium containing spherical void 
and (b) schematic of BEM-region and FEM-region 
 

To test the coupling technique, we first decompose the body into two regions by a 
fictitious spherical surface of radius a5  and centered at the origin as shown by a dashed line 
in Figure 4.2.1. It is important to remark that such a surface must be chosen relatively large 
compared to the void to ensure that the inelastic zone that may exist (for the second 
constitutive model) is fully contained in the FEM-region. In the experiments, three different 
meshes are adopted as shown in Figure 4.2.2. Although meshes for the BEM-region are not 
shown, they can simply obtain from the interface meshes of the FEM-region. As clearly 
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mesh-1 mesh-2 mesh-3 

illustrated in the figure, mesh-1, mesh-2 and mesh-3 consist of 12, 32, 144 boundary elements 
and 24, 128, 1152 finite elements, respectively.  

 
 
 

 
 
 

 
 
 
 
 

 

Figure 4.2.2 Three meshes adopted in the analysis for FEM-region; meshes for BEM-region 
are identical to the interface mesh of FEM-region 

   
4.2.1.1 Results for isotropic linearly elastic material 
For linear elasticity, this particular boundary value problem admits the closed form solution 
(e.g., Sokolnikoff, 1956). Since the problem is spherically symmetric, only the radial 
displacement ru  and the normal stress components },,{  rr  are non-zero and they are 

given explicitly by (note that these quantities are referred to a standard spherical coordinate 
system },,{ r  with its origin located at the center of the void) 
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This analytical solution is employed as a means to validate the proposed formulation and the 
numerical implementation. Numerical solutions for the radial displacement obtained from the 
three meshes are reported and compared with the exact solution in Figure 4.2.3. As evident 
from this set of results, the radial displacement obtained from the mesh-2 and the mesh-3 is 
highly accurate with only slight difference from the exact solution while that obtained from 
the mesh-1 is reasonably accurate except in the region very near the surface of the void. The 
discrepancy of solutions observed in the mesh-1 is due to that the level of refinement is too 
coarse to accurately capture the geometry and responses in the local region near the surface of 
the void.   

We further investigate the quality of numerical solutions for stresses. Since all non-
zero stress components are related by equation (4.2.2), only results for the radial stress 
component are reported. Figure 5 shows the normalized radial stress obtained from the three 
meshes and the exact solution versus the normalized radial coordinate. It is observed that the 
mesh-3 yields results that are almost indistinguishable from the exact solution, whereas the 
mesh-1 and mesh-2 give accurate results for relatively large r  and the level of accuracy 
decreases as the distance r  approaches a . It is noted by passing that the degeneracy of the 
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accuracy in computing stress is common in a standard, displacement-based, finite element 
technique.      
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.3 Normalized radial displacement versus normalized radial coordinate for 
isotropic, linearly elastic material with 3.0  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.4 Normalized radial stress versus normalized radial coordinate for isotropic, 
linearly elastic material with 3.0  
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To demonstrate the important role of the SGBEM in the treatment of an unbounded 
part of the domain instead of truncating the body as practically employed in the finite element 
modeling, we perform another FE analysis of the FEM-region alone without coupling with 
the BEM-region but imposing zero displacement condition at its interface. The radial 
displacement and the radial stress obtained for this particular case using the mesh-3 are 
reported along with the exact solution and those obtained from the coupling technique in 
Figures 4.2.5 and 4.2.6, respectively. As evident from these results, numerical solutions 
obtained from the FEM with a domain truncation strategy deviate from the exact solution 
when it moves close to the truncation surface while the proposed technique yields almost 
identical results to the exact solution. The concept of domain truncation to obtain a finite 
body is simple but it still remains to choose a proper truncation surface and boundary 
conditions to be imposed on that surface to mimic the original boundary value problem. This 
coupling technique provides an alternative to treat the whole domain without any truncation 
and difficulty to treat the remote boundary. 

 
4.2.1.2 Isotropic hardening material 
For this particular case, we focus attention to the material with no hardening modulus (i.e., 

02 E ) since the corresponding boundary value problem admits the closed form solution. For 

a sufficiently high applied pressure 0 , a layer close to the boundary of the void become 

inelastic and the size of such inelastic zone (measured by the radius 0r ) becomes larger as 0  

increases. By incorporating 2J -flow theory of plasticity and spherical symmetry, the radial 
displacement and the radial stress can be obtained exactly as given below. 
 

     
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.2.5 Normalized radial displacement versus normalized radial coordinate for 
isotropic, linearly elastic material with 3.0 . Results are obtained from mesh-3 for both 
the coupling technique and the FEM with domain truncation. 
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Figure 4.2.6 Normalized radial stress versus normalized radial coordinate for isotropic, 
linearly elastic material with 3.0 . Results are obtained from mesh-3 for both the coupling 
technique and the FEM with domain truncation. 
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where the Poisson ratio   is taken to be 0.3 and 















 3

1

2

0

0

yaer is the radius of an inelastic 

zone. In the analysis, the pressure y 625.10  is chosen to ensure that the medium contains 

an inelastic zone; in fact, this selected applied pressure corresponds to ar 615.10  . Numerical 

results obtained from the current technique are reported along with the exact solution in 
Figure 4.2.7 for the normalized radial displacement and in Figure 4.2.8 for the normalized 
radial stress. It can be concluded from computed solutions that they finally converge to the 
exact solution as the mesh is refined. In particular, results obtained from the mesh-3 are 
nearly indistinguishable from the benchmark solution. It should be pointed out that results 
obtained from the same level of mesh refinement for this particular case are less accurate than 
those obtained for the linear elasticity case. This is due to complexity posed by the presence 
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of an inelastic zone near the surface of the void and, in order to capture this behavior 
accurately, it requires sufficiently fine meshes.  
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 4.2.7 Normalized radial displacement versus normalized radial coordinate for isotropic 
hardening material with 02 E  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.8 Normalized radial stress versus normalized radial coordinate for isotropic 
hardening material with 02 E  
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4.2.2 Isolated penny-shaped crack in infinite medium  
 
 

 
 

 
 

 
 

  
 

 
 
 
 
 
 

Figure 4.2.9 (a) Schematic of infinite medium containing penny-shaped crack, (b) crack 
under uniform normal traction 0 , and (c) crack under uniform shear traction 0    
 

Consider, next, a penny-shaped crack of radius a  which is embedded in a linearly elastic, 
infinite medium as shown schematically in Figure 4.2.9(a). The body is made of either an 
isotropic material with Poisson’s ratio   = 0.3 or zinc and graphite-reinforced composite. 
The last two materials are transversely isotropic with the axis of material symmetry directing 
along the x3-axis and their elastic constants are given in Table 4.2.1. The crack is subjected to 
two types of traction boundary conditions: the uniform normal traction 0  (i.e. t1 = t2 = 0, t3 =

0 ) as shown in Figure 4.2.9(b) and the uniform shear traction 0  along the x1-axis (i.e. t1 =

0 , t2 = t3 = 0) as shown in Figure 4.2.9(c).  

 
 
 

 
 

 
 

 
 

  
 
 
 
 
 
 

Figure 4.2.9 (a) Schematic of selected FEM-region and the remaining BEM-region and (b) 
three meshes adopted in the analysis  
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Table 4.2.1 Non-zero elastic constants for zinc and graphite-reinforced composite (where axis 
of material symmetry is taken to direct along the x3-coordinate direction) 
 

Non-zero elastic constants 
(106) psi 

Zinc Graphite-reinforced composite 

E1111 16.09 14.683 

E1122 3.35 6.986   

E1133 5.01 5.689   

E3333 6.10 144.762   

E1313 3.83 4.050 

 
 
The first loading condition gives rise to a pure opening-mode problem with the mode-

I stress intensity factor along the crack front being constant and independent of material 
properties while the second loading condition yields non-zero mode-II and mode-III stress 
intensity factors that vary along the crack front. The analytical solutions for both cases can be 
found in the work of Fabrikant (1989). As a means to verify the coupling formulation and 
implementation, we choose the FEM-region to be a cube of dimensions 2ax2ax2a centered at 
(0, 0, 2a) as illustrated in Figure 4.2.10(a). In the analysis, we generate three meshes for both 
the crack surface and the FEM-region as shown in Figure 4.2.10(b). 

For the first loading condition, numerical solutions for the mode-I stress intensity factor 
normalized by the exact solution are reported in Table 4.2.2 for all three materials. Clearly 
from these results, the current technique yields highly accurate stress intensity factors with 
error less than 1.5%, 0.6% and 0.1% for mesh-1, mesh-2 and mesh-3, respectively. The weak 
dependence of numerical solutions on the level of mesh refinement is due mainly to the use of 
special crack-tip elements to model the near-tip field and directly capture the gradient of 
relative crack-face displacement along the crack front. Relatively coarse mesh can therefore 
be employed in the analysis to obtain sufficiently accurate stress intensity factors.  

 
 
Table 4.2.2 Normalized mode-I stress intensity factor for isolated penny-shaped crack 
subjected to uniform normal traction 
 

Mesh 
Isotropic material, exactKK ,11 /

Transversely isotropic material, exactKK ,11 /   

Zinc Graphite-reinforced composite 

0    90    0   90   0    90    
1 0.9919 0.9920 0.9890 0.9890 0.9841 0.9841 
2 1.0008 1.0008 1.0001 1.0001 1.0053 1.0053 
3 1.0002 1.0002 1.0004 1.0004 1.0006 1.0001 
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For the second loading condition, the normalized mode-II and mode-III stress 
intensity factors ( 2K and 3K ) are shown in Figure 4.2.11 for isotropic material, zinc and 

graphite-reinforced composite. Based on this set of results, it can be concluded again that 
numerical solutions obtained from the three meshes are in excellent agreement with the exact 
solution; in particular, a coarse mesh also yields results of high accuracy. It should also be 
remarked that for this particular loading condition, the material anisotropy play a significant 
role on values of the mixed-mode stress intensity factors. 

    
4.2.3 Infinite medium containing both penny-shaped crack and spherical void 
As a final example, we choose to test the proposed technique by solving a more complex 
boundary value problem in order to demonstrate its capability. Let us consider an infinite 
medium containing a spherical void of radius a  and a penny-shaped crack of the same radius 
as shown schematically in Figure 4.2.12. The medium is subjected to uniform pressure 0  on 

the surface of the void whereas the entire surface of the crack is traction free. In the analysis, 
two constitutive models are investigated: one associated with an isotropic, linearly elastic 
material with Young’s modulus E  and Poisson ratio 3.0  and the other corresponding to 
an isotropic hardening material with the bilinear uniaxial stress-strain relation similar to that 
previously employed. The primary quantity to be sought is the mode-I stress intensity factor 
along the crack front induced by the application of the pressure to the void. In addition, 
influence of an inelastic zone induced in the high load intensity region on such fracture data is 
also of interest.  

  

                                
 
 
Figure 4.2.11 Normalized mode-II and mode-III stress intensity factors for isolated penny-
shaped crack subjected to shear traction. Results are reported for isotropic material with = 
0.3, zinc and graphite reinforced composite. 
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Figure 4.2.12 Schematic of infinite medium containing spherical void of radius a  and penny-
shaped crack of radius a  and subjected to uniform pressure at surface of void 

 
In the modeling, we first decompose the medium into the FEM-region and the BEM-

region using a fictitious spherical surface of radius a4  centered at the same location as the 
void as shown in Figure 4.2.13(a). Three meshes are adopted in numerical experiments as 
shown in Figure 14(b). In particular, the FEM-region, the interface and the crack surface 
consists of {24, 12, 8}, {128, 32, 16}, and {1024, 128, 64} elements for mesh-1, mesh-2 and 
mesh-3, respectively. It should be noted also that the mesh-1 is obviously very coarse; in 
particular, only eight elements are utilized to discretize the entire crack surface and only four 
relatively large crack-tip elements are used along the crack front. 

 
 

 
 
 

 
 

 
 
 

  
 
 
 
 
 
 

 
 

Figure 4.2.13 (a) Decomposition of domain into BEM-region and FEM-region by a fictitious 
spherical surface of radius a4  and (b) three meshes adopted in analysis 
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First, the analysis is carried out for the elastic material with Poisson ratio 3.0  and 
the computed mode-I stress intensity factors are normalized and then reported as a function of 
angular position along the crack front for all three meshes in Figure 4.2.14. This set of results 
implies that the obtained numerical solutions exhibit good convergence; in particular, results 
obtained from the mesh-2 and mesh-3 are of comparable quality while results obtained from 
the mesh-1 still deviate from the converged solution. As confirmed by this convergence 
study, only the mesh-3 is used to generate other sets of useful results. 

Next, we consider a medium made of an isotropic hardening material. In the analysis, 
we choose the modulus EE 1  and Poisson ratio 3.0  for the linear regime and choose 

either 3/2 EE   or 02E  for the hardening regime. With this set of material parameters, the 
behavior in the linear regime (for a small level of applied pressure) is identical to that 
obtained in the previous case. To investigate the influence of the inelastic zone induced near 
the surface of the void on the stress intensity factor along the crack front, we carry out various 
experiments by varying the applied pressure 0 . The distribution of the stress intensity factor 

along the crack front is reported in Figure 4.2.15 for a hardening material with EE 1  and 

3/2 EE  under five levels of the applied pressure }75.1,50.1,25.1,00.1,25.0{0 yyyyy 

. The body is entirely elastic at y 25.00 , slightly passes the initial yielding at y 00.10 , 

and possesses a larger inelastic zone as the pressure increases further.  
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2.14 Normalized mode-I stress intensity factors of penny-shaped crack embedded 
within infinite medium containing spherical void under uniform pressure 
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Figure 4.2.15 Normalized mode-I stress intensity factor of penny-shaped crack embedded 
within infinite medium containing spherical void under uniform pressure. Results are reported 
for isotropic hardening material with EE 1  and 3/2 EE  . 

 
 
 

 
   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 4.2.16 Maximum normalized mode-I stress intensity factor versus applied pressure at 
surface of void. Results are reported for isotropic linearly elastic material with 3.0  and 
two isotropic hardening materials. 
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It is obvious from Figure 4.2.15 that the presence of an elastic zone significantly alters the 
normalized values of the stress intensity factor from the linear elastic solution and such 
discrepancy becomes more apparent as the level of applied pressure increases. The localized 
inelastic zone acts as a stress riser; i.e. it produces the stress field of higher intensity around 
the crack and this therefore yields the higher normalized stress intensity factor when 
compared with the linear elastic case. Figure 4.2.16 shows an additional plot between the 
maximum normalized stress intensity factors versus the normalized applied pressure for both 
an isotropic linearly elastic material and two isotropic hardening materials (associated with 

02E  and 3/2 EE  ). Results for both materials are identical for a low level of the applied 
pressure (since the entire body is still elastic) and, for a higher level of the applied pressure, 
the maximum stress intensity factor for the case of the hardening material is significant larger 
than that for the linear elastic material. In addition, such discrepancy tends to increase as the 
hardening modulus decreases. 
 
4.3 Influence of nano-scale influnece 
 

First, to verify the formulation and numerical implementation, the penny-shaped crack in an 
unbounded domain is considered, to compare results with existing benchmark solutions. Next 
the elliptical crack and two interacting penny-shaped cracks in an unbounded domain are 
considered. In the analysis, three meshes with different levels of refinement are utilized to 
investigate the convergence of solutions. Nine-node isoparametric elements are used to 
discretize the entire crack-front while the other parts of the crack surfaces are discretized by 
eight-node and six-node isoparametric elements. The material Si [100] is used for all of 
numerical examples, where properties of the bulk material and residual surface tension 

107 ,E GPa 0.33  and 0.6056 /s N m   are obtained from Miller and Shenoy (2000). 
For convenience in the handling of numerical analysis, presentation of results and 
demonstration of the influence of residual surface tension, all involved quantities are 
normalized in a proper fashion. For instance, the unknown sum of the traction is normalized 
by the shear modulus   (i.e., 0t t   ); the unknown sum and jump of the crack-face 

displacement are normalized by a special length scale 0.01506s nm     (i.e., 

0u u    and 0u u   ); all characteristic lengths representing the geometry of the crack 

such as the crack radius a, semi-major axis a and semi-minor axis b are normalized by the 
length scale   (e.g., 0a a   and 0b b  ); and the prescribed traction on the crack 

surface is normalized by the shear modulus   (i.e., 0
0i it t  ) . 

 
4.3.1 Penny-shaped crack in infinite domain 
As a means for verifying the current technique, the problem of a penny-shaped crack of 
radius a embedded in an isotropic, linear elastic infinite medium is considered (Figure 
4.3.1(a)). The crack is subjected to self-equilibrated, uniformly distributed normal traction

0
3 3t t t    . This problem has been previously solved by Intarit et al. (2012) and Intarit 

(2013) using Hankel integral transforms with a solution technique for dual integral equations 
and will be the benchmark solution to validate the proposed FEM-SGBEM technique. The 
three meshes of the crack surface are shown in Figure 4.3.1(b). 
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                             (a)                                                                   (b)   
 

Figure 4.3.1 (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic, 
linear elastic infinite medium subjected to uniformly distributed normal traction 0

3 3t t t    ; 

(b) Meshes adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements 
and 105 nodes. Mesh-3: 128 elements and 401 nodes. 
 

The normalized crack opening displacement and normalized stresses in the vicinity of 
crack-front, when the influence of the residual surface tension is taken into account, are 
shown in Figure 4.3.2. Results are compared with those obtained by an analytical technique 
proposed by Intarit et al. (2012) and Intarit (2013). It is seen that the current technique yields 
solutions that agree very well with the benchmark solutions for both crack opening 
displacement and stresses 11, 22, 33 in the vicinity of crack-front. To further examine the 
influence of residual surface tension, the normalized crack opening displacement and the 
normalized vertical stress 33 in the vicinity of crack-front with different values of residual 
surface tension s ranging from 0 to 1.0 N/m are shown in Figure 4.3.3. It can be concluded 
that the residual surface tension exhibits significant influence on the crack opening 
displacement and the vertical stress. In particular, as s  becomes larger, the deviation of 
results from the classical case (i.e., without residual surface tension) significantly increases 
and, clearly, it makes the elastic medium much stiffer.  

To demonstrate the size-dependent behavior of results due to the presence of residual 
surface tension, the crack opening displacement and the vertical stress in the vicinity of the 
crack-front are shown in Figure 4.3.4 for both the classical case and the present study. It is 
evident that, by including the residual surface tension effects in the mathematical model, the 
solutions exhibit size-dependent behavior. In particular, the normalized crack opening 
displacement and vertical stress in the vicinity of crack-front depend significantly on the 
crack size and this is in contrast with the classical case where the normalized crack opening 
displacement and normalized vertical stress are independent of crack radius. 

 
4.3.2 Elliptical crack in infinite domain 
To demonstrate the capability of the proposed technique for treating mode-I cracks of 
arbitrary shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is 
considered (see Figure 4.3.5(a)). The crack-front is parameterized in terms the parameter t  by 
 

 1 2 3cos , sin , 0; 0,2x a t x b t x t       (4.3.1) 
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where a and b are the major and minor semi-axes of the crack, respectively. The crack is 
subjected to a self-equilibrated, uniformly distributed normal traction 0

3 3t t t    . 

Numerical results are presented for the aspect ratio 1,2,3a b   with the three meshes shown 
in Figure 4.3.5(b) used to model the elliptic crack. 
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Figure 4.3.2 Penny-shaped crack under uniformly distributed normal traction, for 

107 , 0.33E GPa    and residual surface tension 0.6056 /s N m  : (a) Normalized crack 

opening displacement, (b) Normalized stress 0
11 / t  in the vicinity of crack-front, (c) 

Normalized stress 0
22 / t  in the vicinity of crack-front, and (d) Normalized stress 0

33 / t  in 

the vicinity of crack-front. 
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Figure 4.3.3 Penny-shaped crack under uniformly distributed normal traction, for 
107 , 0.33E GPa    for different residual surface tension s : (a) Normalized crack 

opening displacement and (b) Normalized stress 0
33 / t  in the vicinity of crack-front. 
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Figure 4.3.4 Penny-shaped crack under uniformly distributed normal traction, for different 
crack radii 0 / 0.5,1.0,5.0a a   for 107 , 0.33E GPa   , 0.6056 /s N m  : (a) 

Normalized crack opening displacement and (b) Normalized stress 0
33 / t  in the vicinity of 

crack-front. 
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             (a)                                                                       (b) 
 
Figure 4.3.5 (a) Schematics of an elliptical crack embedded in an isotropic, linear elastic 
infinite medium subjected to uniformly distributed normal traction 0

3 3t t t     and (b) 

Meshes adopted in the analysis 
 

The normalized crack opening displacement and the normalized stress 0
33 t  along 

the minor axis, when the influence of the residual surface tension is included, are presented in 
Figure 4.3.6 for aspect ratio 1,2,3.a b   Clearly, converged results of crack opening 
displacement are obtained with Mesh-2 and Mesh-3 for all three aspect ratios (see Figure 
4.3.6(a)). As be seen in Figure 4.3.6, when the aspect ratio a b  increases, the influence of 
residual surface tension on the crack opening displacement and the stresses in the vicinity of 
crack decreases. 
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Figure 4.3.6 Elliptical crack under uniformly distributed normal traction, for different aspect 
ratios / 1,2,3a b   for 107 , 0.33E GPa   , 0.6056 /s N m  : (a) Normalized crack 

opening displacement along minor axis and (b) Normalized stress 0
33 / t  in the vicinity of 

crack-front along minor axis. 
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In order to investigate the influence of residual surface tension, the normalized crack 
opening displacement and the normalized vertical stress 33 in the vicinity of crack-front with 
different values residual surface tension s ranging from 0 to 1.0 N/m are shown in Figure 
4.3.7. Aspect ratios 2,3a b   are considered in this case. As shown in Figure 4.3.7, the 
influence of residual surface tension is also significant and the medium is stiffer when the 
residual surface tension increases. To examine the size-dependent behavior of results due to 
the influence of residual surface tension, the crack opening displacement and the vertical 
stress in the vicinity of crack-front for 0 0.5, 1.0, 5.0a   and two aspect ratios 2,3a b   are 

shown in Figure 4.3.8. As can be seen in Figure 4.3.8, the normalized crack opening 
displacement and normalized stresses in the vicinity of crack-front are size-dependent. It is 
contrary to the classical case (i.e., without residual surface tension effects), the solutions are 
size-independent. When the crack-size or the aspect ratio decreases, the influence of residual 
surface tension becomes significant in the sense that the medium is stiffer. 
 
4.3.3 Two interacting penny-shaped cracks in an unbounded domain 
As a final example, we demonstrate another feature of the current technique, viz. modeling 
multiple cracks, by considering a pair of identical penny-shaped cracks of radius a embedded 
in an isotropic, linear elastic unbounded domain as shown in Figure 4.3.9(a). The distance 
between the centers of the two cracks is denoted by h. Both cracks are subjected to a self-
equilibrated, uniformly distributed normal traction 0

3 3t t t    .  
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Figure 4.3.7 Elliptical crack under uniformly distributed normal traction for different residual 
surface tension s  , for 107 , 0.33E GPa   , for different aspect ratios / 2,3a b    : (a) 

Normalized crack opening displacement along minor axis and (b) Normalized stress 0
33 / t  

in the vicinity of crack-front along minor axis. 
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Figure 4.3.8 Elliptical crack under uniformly distributed normal traction for different crack 
radii 0 / 0.5,1.0,5.0a a   for 107 , 0.33E GPa   , 0.6056 /s N m  , for different 

aspect ratios / 2,3a b  : (a) Normalized crack opening displacement along minor axis and (b) 

Normalized stress 0
33 / t  in the vicinity of crack-front along minor axis. 

 
 Here, the influence of the interaction between the two cracks on the maximum crack 
opening displacement is considered. To investigate size-dependent behavior, two cases are 
considered where the normalized radii of the identical penny-shaped cracks are taken as 

0 1a   and 10.  The three meshes showing in Figure 4.3.9(b) are used to test the convergence 

of numerical solution.  
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Figure 4.3.9 (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an 
isotropic, linear elastic infinite medium subjected to uniformly distributed normal traction 

0
3 3t t t     and (b) Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes. 

Mesh-2: 32 elements and 105 nodes. Mesh-3: 128 elements and 401 nodes. 
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 The normalized crack opening displacement of one of the penny-shaped cracks with 
radius 0 10a   is shown in Figure 4.3.10 for 2.4h a  . It is seen that convergent results of 

the normalized crack opening displacement are obtained and the residual surface tension has 
a significant influence on the crack opening displacement. To study the interaction between 
two cracks, the normalized maximum crack opening displacement is plotted for different 
values of h a  in Figure 4.3.10. It can be seen in Figure 4.3.10 that, in agreement with 
previous examples of a penny-shaped crack and an elliptical crack, the maximum crack 
opening displacement decreases when the residual surface tension increases. The medium 
becomes much stiffer with the presence of the residual surface tension. 
 It can also be observed from Figure 4.3.11(a), (b) and (c) that results for the case of 
two interacting cracks converge very fast to those of a single crack when the residual surface 
tension increases. In particular, as the value of h a  is greater than 8, 5 and 3.5 for the 

classical case, 0.6056 /s N m  , and 1 /s N m  , respectively, the normalized maximum 
crack opening displacement of the two interacting crack and that of the single crack are 
nearly identical. This not only implies the significant reduction of the interaction between the 
two cracks due to the presence of the residual surface tension but also provides the applicable 
range of the aspect ratio h a  to allow the replacement of the two-crack model by a single 
crack model. In addition, as clearly indicated in Figure 4.3.11(a) and (d), the interaction 
between the two interacting cracks for the classical case is size-independent (i.e., solutions of 
the two cracks converge asymptotically to that of the single crack in the identical manner). In 
the contrary, when the residual surface tension is incorporated in the mathematical model, the 
size-dependent behavior can be clearly observed by comparing results in Figure 4.3.11(b), (e) 
and results in Figure 4.3.11(c), (f), respectively. The decrease in the crack size also lowers the 
interaction between the two cracks. 
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Figure 4.3.10 Normalized crack opening displacement for a pair of penny-shaped cracks with 
radius 0 10a   and 2.4h a   under uniformly distributed normal traction, for 107 ,E GPa

0.33   and 0.6056 /s N m  . 
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Figure 4.3.11 Normalized maximum crack opening displacement for a pair of identical penny-shaped 

cracks under uniform normal traction, for E = 107 GPa,  = 0.33: (a)-(c) 0 1a   and (d)-(f) 0 10a  . 
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CHAPTER V 
 

CONCLUSION 
 
 

An efficient and accurate numerical technique based on the weakly singular 
symmetric Galerkin boundary element method (SGBEM) and the coupling of SGBEM and 
the standard finite element method (FEM) have been successfully developed, in the present 
study, for analysis of three-dimensional linear elasticity and fracture problems. The technique 
has been established in a general context allowing various boundary value problems including 
problems associated with determination of the stress intensity factors and T-stresses of cracks 
in isotropic and generally anisotropic elastic infinite and finite media, problems concerning 
an infinite medium containing localized complex zone and cracks, and problems related to 
nano-cracks, to be treated.  

In the formulation, a pair of weakly singular, weak-form boundary integral equations 
for the displacement and the traction has been established capable for treating both infinite 
and finite media made of isotropic and generally anisotropic media. Such boundary integral 
equations are completely regularized using a systematic technique based on the special 
decompositions of strongly singular and hyper singular kernels and the integration by parts 
via Stokes’ theorem. All involved kernels are only weakly singular of order 1/r and this 
renders all involved integrals exist in an ordinary sense and their validity only requires the 
continuity of the boundary data. The pair of displacement and traction boundary integral 
equations has been used in the formulation of governing equations for cracks in isotropic and 
anisotropic elastic media and the resulting symmetric formulation constitutes a basis for the 
development of the weakly singular SGBEM. In addition, such pair of boundary integral 
equations has also been used along with the domain decomposition and principle of virtual 
work to establish the SGBEM-FEM coupling formulation for modeling a three-dimensional 
infinite medium containing localized complex zone and isolated cracks. Finally, the 
formulation for modeling cracks of nano-size (with proper treatment of nano-scale influence 
via the surface elasticity theory) in an infinite elastic media has been established in a coupling 
form between the boundary integral equations and weak-form equations. 

Standard numerical procedure based on the SGBEM and FEM has been adopted to 
construct numerical solutions of involved systems of governing equations. Galerkin 
approximation strategy with standard continuous interpolation functions has been used to 
discretize both the boundary integral equations and weak-form finite element equations. 
Except for a local region along the crack front, special continuous interpolation functions 
have been utilized to approximate the relative crack-face displacement in the vicinity of the 
crack front. Use of such special interpolation functions allows the near tip field to be captured 
accurately by relatively coarse meshes. To further enhance the computational accuracy and 
efficiency, all involved kernels for generally anisotropic materials have been computed using 
the interpolation technique in order to avoid the massive calculations associated with the 
direct evaluation of line integrals for all pairs of source and field points resulting from the 
numerical quadrature. In addition, the weakly singular and nearly singular double surface 
integrals resulting from the discretization of the governing boundary integral equations have 
been evaluated numerically using a special quadrature scheme. A family of variable 
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transformations has been introduced to eliminate the weak singularity and regularize the rapid 
variation of all integrands to ensure that the final integrals can be efficiently integrated by 
standard Gaussian quadrature. Once all primary unknowns have been solved, various 
quantities such as stress intensity factors, T-stresses, displacements and stresses within the 
body have been post-processed. In the present study, the stress intensity factors and the T-
stresses have been computed accurately via two explicit, interpolation-free formula related to 
the jump and sum of the displacement across the crack surface in the vicinity of the crack 
front, respectively. Finally, the coupling procedure between the in-house SGBEM code and 
the reliable commercial finite element packages has been established to employ their 
advanced computational features. 

To verify both the formulation of governing equations and numerical implementation 
of SGBEM and SGBEM-FEM coupling, numerical results have been extensively compared 
with available benchmark solutions for various boundary value problems. It can be concluded 
from such numerical study that the proposed technique yield highly accurate results, 
especially the crack opening displacement, stress intensity factors, and T-stresses, and 
obtained results also exhibit good convergence behavior. Due to the use of special crack-tip 
elements along the crack front, relatively coarse meshes can yield results of reasonably high 
accuracy. From extensive numerical experiments on complex and relatively large-scale 
problem, the proposed technique has been found promising and robust and, as a result, 
constituted an attractive computational tool for analysis of three-dimensional elasticity and 
fracture problems.   

While the formulation and the proposed technique have been restricted mainly to 
three-dimensional elastic media, they can possibly be extended to treat multi-field media such 
as those made from piezoelectric materials, piezo-magnetic materials, and piezo-electro-
magnetic materials. In addition, the current technique can be generalized to treat other body 
models such as half-space domain and bi-material domain.       
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Rungamornrat J, Sripirom S. “Stress Analysis of Three-dimensional Media Containing 

Localized Zone by FEM-SGBEM Coupling”. Mathematical Problems in Engineering, 

2011, Article Number 702082, 27 pages, doi:10.1155/2011/702082. Impact Factor 

(2012): 1.383  

 

International paper 2 (under review): 

Nguyen TB, Rungamornrat J, Senjuntichai T, Wijeyewickrema AC. “FEM-SGBEM 

coupling for modeling of mode-I planar cracks in three-dimensional elastic media with 

residual surface tension effects”. Engineering Analysis with Boundary Elements, Under 
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������%ijjMQRNPQHYOHKaHPGYPQNMEFGHIJQY\GRFNYQROkilGMGRPQHYHKmGnoGOXMPO%#�	!�B��\NPFGZNPQRONŶ pPOijjMQRNPQHYO%q	����"�������
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�����c!r������� %_HXŶNIJLMGZGYPOkiYpYPIĤXRPHIJ~HXIOG%������$S�		%D��T���%DT%:�"%BUsU!ABgC�!������!u��� %8"#���������	
��������������	���������������	������[$r����������
������������������		��������������������
�����������	�������	����%;pYPGIYNPQHYNM�HXIYNMKHImXZGIQRNM\GPFĤOQYLYtQYGGIQYt%#�	![f%��!�B%��![fv��[vzB%BUU[!
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