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ABSTRACT

Project Code: MRG5380159

Project Title: Accurate and efficient numerical techniques for computing fracture data for
arbitrary cracks in 3D linear elastic media
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Abstract: This investigation proposed an accurate and efficient numerical technique for
stress analysis of un-cracked body and cracks in three-dimensional elastic media. The
technique is established in a general context allowing the treatment of arbitrary-shaped cracks
in both infinite and finite bodies, three-dimensional media made of generally anisotropic
elastic materials, infinite bodies containing localized complex zones, and fractures with nano-
scale influences. A pair of weakly singular, weak-form boundary integral equations for the
displacement and traction is developed and successfully implemented in terms of the weakly
singular, symmetric Galerkin boundary element method SGBEM and SGBEM-FEM coupling
to determine the unknown crack-face and related boundary data. The crucial features of the
proposed numerical technique are associated with the reduction of one spatial dimension of
the key governing equation and all kernels contained in the involved boundary integral
equations are only weakly singular allowing standard continuous interpolation functions to be
used in the numerical approximation. Once the jump and sum crack-face displacement data is
determined, it forms a sufficient set of information essential for independently extracting the
mixed-mode stress intensity factors and the T-stresses. The accuracy of this data in the
vicinity of the crack front is enhanced by using special crack-tip elements that contain proper
shape functions and extra degrees of freedom along the crack front. With incorporation of
these special elements, a pair of explicit and concise expressions for the stress intensity
factors and for the T-stresses can be derived. To investigate the accuracy and efficiency of the
proposed numerical technique, extensive numerical experiments are performed on various
boundary value problems involving un-cracked bodies and cracks in both infinite and finite
media. From the numerical study, the proposed technique is found promising and
computationally robust for three-dimensional fracture analysis.

Keywords: cracks, integral equations, SGBEM, nano-scale influence, stress intensity factors,
T-stresses



UNANED

sHaln3ans: MRG5380159

A )=\ a a o A Y =\ a a ) v o 9 Y
‘U@Iﬂiﬂﬂ"ﬁ: 53L‘UEJ‘IJ’J‘EL“]NG]’Jm“llTIQﬂ@]ENLLﬁ$3J‘]J§$’€T‘VI‘ﬁﬂ'lWﬁWWi‘]Jﬂ'lu’mHl@HﬁﬂTUﬂﬁ

uanindmivsesuaninlag lumnasganguiaduauiia

% J v d

4 av J [ d a a a
‘dﬂﬁuﬂ?%ﬂi iﬁ.ﬂi.ﬁ]gﬂ] TNOUTIAU LT 71.979. %iWQﬁ mui}uwm”l% ﬂWﬂ’J"I)'TJﬁ’JﬂiﬂJTEJ‘ﬁ']

v q

AUZIINTTUIANS %qumﬂmi'amﬁmmﬁﬂ
d
A Jaroon.r@chula.ac.th and Teerapong.S@chula.ac.th
szaznalnsams: 21

LY aw Y 2

' . dy o = a A o d' = a a 4 ]
NANED: N1 i]Eluu'llﬁuE]i81L’]JEﬁJ’J‘ﬁLGINGlﬂlﬁﬂlﬂgﬂﬁﬂﬁlmgﬂﬂigﬁﬂ‘ﬁﬂ'I‘WGl‘Llf‘l’li’JLﬂi’l%ﬁWﬁu’JﬂlLiﬁ‘Uﬂﬁ

=

Fd
@ @ ast o o

H 4 ' v
agdavguanuiiananiinas hifisesuanin  sufievitawnaianyulunsoum liiamisoiiasssos

aan wa o

F ' Y ¥ ~ o w o A o oA L oAA 2
LWIﬂj']’gqj;ﬂi'NGlﬂc']Gl:u’)@lthﬁmﬂﬂﬂl@llagm"uaulmﬂfﬂjﬂﬂ 'N]Qfﬂilllﬁﬂ%jmqﬂqﬂjﬁﬂﬂﬂwgu‘ﬂwﬂmﬁuu VYUNU

a 1% Y d'dl ] o 9 Y d'a a A [ a
NANN ’JGIQVI,‘JGUSTJLGIJGWIMET’JNEJ’OEJ%U%@M LLﬂ%ﬂﬂlﬂ’ViﬁﬂEJLWIﬂﬁT’JT]Wﬁ]ﬁﬂH’EJ'VI‘ﬁWﬁGluiZWUHWIu TUNITLIN

@

o o’g a o o o o Aa A ng o Yo [ o = an Ia
ﬂ?wuﬁ‘wummﬂgmm’mmumimmmmm‘wmw AUV gﬂumﬂﬁvmmuwmuﬁmmm‘ﬁmmmﬂu

an @

~ a o = 1 an d a 4 @ ] 1 Aa
unmimamuﬁgmmaﬂﬁmm LHagIsiyay ‘ﬁiilJﬂ‘]JTl‘ﬁle\lvlumﬂmiluﬁlﬁ@ﬁWlithﬂ‘i"l‘]JﬂWIN’Ji@EJLWIﬂ%JWJ

1 a Qc!d' o A o w [ dQQd' é aa 4
1Az YO UIAVD ALY YAAUVDITZIVIVITNUUAUDADAUNITNINUUADUNANAAAIMUING LAZIADTIUANN

9y (2 dy 1

A A o da & o o q ¥ Yo oo A
’JT]LﬂEJ’J“lIENﬂ‘]J’diJﬂﬁlﬁWHfﬁNﬂ’JﬂJlﬂuLﬂﬂﬁ1u@1 ‘nﬂwmmm%ﬂmwwummmm L‘Ll’thl‘L!ﬂ']i

a9

3

o v {9 o o a Yy Ao v
ﬂizmmmmullﬂ lr%ll'lmﬁLﬂEI'J"UE]\3ﬂ‘]Jﬂ15ﬂigiﬂﬂL!ﬁgﬂ'lﬁﬁf]ll"“ﬂ\?ﬂ'li"U‘t]ﬂUUW'ﬁE]fJLLﬁﬂTI'Jﬁﬂ']u'Jmllﬂ
o 9 ) ' Ay Y v 9 o 1A
ﬁ']il']ﬁﬂcl,"laf}slufﬂiﬂ']ﬂ'WI'J‘]J?$ﬂf]Uﬂ')']llLﬁllllEUf]Qﬂﬂ?ulﬂullﬁxﬂu?ﬂlﬁﬁ“ﬂqﬂ mmgﬂmwawamvamﬂmm

a [ 2 J i a Aa I @ 1 a o ¥
‘]Jﬁl’mnl“llE)‘]Jiﬁ]fl!l@]ﬂ%ﬁ?ﬁnﬂiﬂﬂi‘ﬂﬂ?ﬂ”lmﬂﬂi%ﬂfuﬁ’luﬂﬂEJ‘Wlﬁﬂﬂhﬁﬂﬂﬂfuﬁﬂiﬁlmﬂwmﬂ UAagIeAUUU

QU

v H Y v v
AnudaszuANNveUTeeuans1Y wonntimsldsudiuietivhldawnsonaunges lumsauiua,

Uszneuanuduvosnnuduiazmitenssiildlagases  mIasrvaeuanugndowazlsz@ninimues
v

FPUEUATIFIA IRV NI T UD p1eNIINAaoUTIA NV M I VT yMIAve LIANNANNHAINK NN



' 9
= 9 [ o

Meveanuiag iveuanazhtiveuwaiinansniives lifisesuanin HAZINMIANYIAINATINDI

Lo

= Qdd’ o =\ a o d' [ a 4 k) [ Aaa
TLVYVITNUUTUDBUAIY E‘ﬂiﬂiﬂlﬂﬁﬂ1u’Jﬂ!‘m‘ﬁﬂﬂ%ﬂ‘]Jﬂ1§’JLﬂ'§1$‘ViﬂmﬁWi@ﬂLlﬁﬂiﬁ’ﬂu’MQﬁﬁJNﬁ

O o 9 v J a a @ (3 Y Y
MAINY: 081ANTN, aumsdsnus, SGBEM, answaluszavuunly, a21lsznounnuuvesninuniy,

) =
NUIYLIIN



TABLE OF CONTENTS

Acknowledgements ii

Abstract (English) iii

Abstract (Thai) iv
Table of contents Vi
List of figures viii
List of Tables Xiv
Chapter I INTRODUCTION 1
1.1 Motivation and research significance 1
1.2 Background and review 2
1.3 Objectives 5
1.4 Scope of work 5
1.5 Methodology 6
1.6 Contribution 6
Chapter I FORMULATION 8
2.1 Problem description 8
2.2 Basic field equations 9
2.3 Standard integral relations 9
2.4 Decomposition of kernels 11
2.5 Completely regularized boundary integral relation for displacement 12
2.6 Completely regularized boundary integral relation for traction 14
2.7 Symmetric formulation for SGBEM 15
2.8 Formulation for SGBEM-FEM coupling 16
2.9 Formulation for cracks in infinite medium with nano-scale influence 21
Chapter 111  NUMERICAL IMPLEMENTATION 26
3.1 Discretization 26
3.2 Numerical integration 28

Vi



3.3 Evaluation of kernels
3.4 Determination of stress intensity factors and T-stresses
3.5 Coupling of SGBEM and commercial FE package
Chapter IV NUMERICAL RESULTS
4.1 Results from SGBEM
4.2 Results from SGBEM-FEM coupling
4.3 Influence of nano-scale influence
Chapter V. CONCLUSION
References
Appendix A Publications
Appendix B Reprints

vii

29
29
32
34
34
49
61
70
72
76
77



2.1
2.2

2.3

2.4

3.1

411

412

413

414

415

416
4.1.7
4138
419

LIST OF FIGURES

Schematic of a three-dimensional body containing cracks

(@) Schematic of three-dimensional infinite medium containing crack and

Localized complex zone and (b) schematic of BEM-region Q° and
FEM-region QF
(a) Schematic of three-dimensional infinite elastic medium containing

an isolated crack and (b) prescribed traction on crack surfaces

Schematics of (a) the bulk material, (b) the zero-thickness layer S

and (c) the zero-thickness layer S

Schematic of crack-tip element and local coordinate system for
calculation of stress intensity factors and T-stresses

Schematic of penny-shaped crack in infinite medium under

(a) remote uniaxial tension and (b) remote pure bending

Three meshes adopted in the analysis of penny-shaped crack

under uniformly distributed pressure

Normalized mode-I stress intensity factor versus angular coordinate
for penny-shaped crack in isotropic infinite medium under remote
pure bending

Normalized normal T-stress versus angular coordinate

for penny-shaped crack in isotropic infinite medium under remote
pure bending

Configuration of compact tension (CT) specimen recommended by
ASTM E399-90 (1997)

Configuration of compact tension (CT) specimen used in the analysis
Coarse mesh or Mesh-1 for CT specimen thickness t/a=1
Medium mesh or Mesh-2 for CT specimen thickness t/a=1

Fine mesh or Mesh-3 for CT specimen thickness t/a =1

viii

18

21

22

30

34

35

36

36

38
38
39
40
40



4.1.10 Normalized mode-I stress intensity factor along the crack front
for CT specimen thickness t/a =1. Results are reported for
three meshes and three materials and s denotes the distance
measured from the center of the crack front

4.1.11 Normalized mode-I stress intensity factor along the crack front
for CT specimen thickness t/a = 4. Results are reported for
three meshes and three materials and s denotes the distance
measured from the center of the crack front

4.1.12 Normalized mode-I stress intensity factor along the crack front
for CT specimen for sufficiently large thicknesses along with the
plane strain solution from ASTM E399-90 (1997). Results are
reported for isotropic material with v =0.1 and s denotes the
distance measured from the center of the crack front

4.1.13 Normalized mode-I stress intensity factor along the crack front
for CT specimen for sufficiently large thicknesses along with the
plane strain solution from ASTM E399-90 (1997). Results are
reported for isotropic material with v = 0.3 and s denotes the
distance measured from the center of the crack front

4.1.14 Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various thicknesses and v =0

4.1.15 Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various thicknesses and v =0.1

4.1.16 Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various thicknesses and v =0.3

4.1.17 Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various thicknesses and v =0.5

4.1.18 Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various Poisson’s ratios and t/a =1

4.1.19 Normalized mode-I stress intensity factor versus the normalized

distance along the crack front for various Poisson’s ratios and t/a =5

41

42

43

43

44

45

45

46

47

47



4.1.20

4121

421

4.2.2

4.2.3

424

425

4.2.6

4.2.7

4.2.8

4.2.9

4.2.10

Normalized mode-I stress intensity factor versus the normalized
distance along the crack front for various Poisson’s ratios and t/a =10
Normalized mode-I stress intensity factor versus the normalized

distance along the crack front for various Poisson’s ratios and t/a =40

(a) Schematic of three-dimensional infinite medium containing spherical

void and (b) schematic of BEM-region and FEM-region

Three meshes adopted in the analysis for FEM-region; meshes for
BEM-region are identical to the interface mesh of FEM-region
Normalized radial displacement versus normalized radial coordinate
for isotropic, linearly elastic material with v =0.3

Normalized radial stress versus normalized radial coordinate

for isotropic, linearly elastic material with v =0.3

Normalized radial displacement versus normalized radial coordinate
for isotropic, linearly elastic material with v =0.3. Results are
obtained from mesh-3 for both the coupling technique and

the FEM with domain truncation

Normalized radial stress versus normalized radial coordinate

for isotropic, linearly elastic material with v =0.3. Results are
obtained from mesh-3 for both the coupling technique and

the FEM with domain truncation

Normalized radial displacement versus normalized radial coordinate
for isotropic hardening material with E, =0

Normalized radial stress versus normalized radial coordinate

for isotropic hardening material with E, =0

(a) Schematic of infinite medium containing penny-shaped crack,

(b) crack under uniform normal traction c,, and (c) crack under

uniform shear traction t,

(@) Schematic of selected FEM-region and the remaining BEM-region

and (b) three meshes adopted in the analysis

48

48

49

50

51

o1

52

53

54

54

55

55



4211

4212

4.2.13

4.2.14

4.2.15

4.2.16

431

4.3.2

Normalized mode-1l and mode-I11 stress intensity factors for
isolated penny-shaped crack subjected to shear traction.

Results are reported for isotropic material with v=10.3, zinc

and graphite reinforced composite

Schematic of infinite medium containing spherical void of radius
a and penny-shaped crack of radius a and subjected to uniform
pressure at surface of void

(a) Decomposition of domain into BEM-region and FEM-region
by a fictitious spherical surface of radius 4a and (b) three meshes
adopted in analysis

Normalized mode-1 stress intensity factors of penny-shaped crack
embedded within infinite medium containing spherical void under
uniform pressure

Normalized mode-I stress intensity factor of penny-shaped crack
embedded within infinite medium containing spherical void under
uniform pressure. Results are reported for isotropic hardening
material with E,=E and E=E/3

Maximum normalized mode-I stress intensity factor versus applied
pressure at surface of void. Results are reported for isotropic linearly
elastic material with v =0.3 and two isotropic hardening materials
(a) Schematic of a penny-shaped crack of radius a embedded in

an isotropic, linear elastic infinite medium subjected to uniformly

distributed normal traction t; = —t; =t°; (b) Meshes adopted in the

analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements
and 105 nodes. Mesh-3: 128 elements and 401 nodes

Penny-shaped crack under uniformly distributed normal traction,

for E =107 GPa, v =0.33 and residual surface tension z° =0.6056 N /m:
(a) Normalized crack opening displacement, (b) Normalized stress o, /t°

in the vicinity of crack-front, (c) Normalized stress o, /t° in the vicinity

of crack-front, and (d) Normalized stress o, /t° in the vicinity of crack-front

Xi

57

58

58

59

60

60

62

63



4.3.3

434

435

4.3.6

4.3.7

438

4.3.9

Penny-shaped crack under uniformly distributed normal traction,

for E =107 GPa, v =0.33 for different residual surface tension z°:
(a) Normalized crack opening displacement and (b) Normalized stress
o, /1° in the vicinity of crack-front

Penny-shaped crack under uniformly distributed normal traction,

for different crack radii a, =a/A =0.5,1.0,5.0for E =107 GPa, v =0.33,
7° =0.6056 N /m: (a) Normalized crack opening displacement and

(b) Normalized stress o, /t° in the vicinity of crack-front

(@) Schematics of an elliptical crack embedded in an isotropic, linear

elastic infinite medium subjected to uniformly distributed normal traction
t; = —t; =t° and (b) Meshes adopted in the analysis

Elliptical crack under uniformly distributed normal traction, for different
aspect ratios a/b=1,2,3 for E =107 GPa, v=0.33, r* =0.6056 N/m:
(a) Normalized crack opening displacement along minor axis and

(b) Normalized stress o, /t° in the vicinity of crack-front along minor axis
Elliptical crack under uniformly distributed normal traction for different
residual surface tension z° , for E =107 GPa, v =0.33, for different aspect

ratios a/b=2,3: (a) Normalized crack opening displacement along minor

axis and (b) Normalized stress o, /t° in the vicinity of crack-front along

minor axis

Elliptical crack under uniformly distributed normal traction for different

crack radii a,=a/A =0.5,1.0,5.0for E =107 GPa, v=0.33, z°* =0.6056 N/m,

for different aspect ratios a/b=2,3: (a) Normalized crack opening

displacement along minor axis and (b) Normalized stress o, /t° in the

vicinity of crack-front along minor axis
(a) Schematic of a pair of penny-shaped cracks of radius a embedded in

an isotropic, linear elastic infinite medium subjected to uniformly

xii

64

64

65

65

66

67



4.3.10

4311

distributed normal traction t; = —t; =t° and (b) Meshes adopted for

each crack. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements
and 105 nodes. Mesh-3: 128 elements and 401 nodes

Normalized crack opening displacement for a pair of penny-shaped cracks
with radius @, =10 and h/a = 2.4 under uniformly distributed normal

traction, for E =107GPa, v =0.33 and z° =0.6056 N /m

Normalized maximum crack opening displacement for a pair of identical

penny-shaped cracks under uniform normal traction, for E = 107 GPa,

v=0.33: (2)-(c) &, =1 and (d)-(f) &, =10.

Xiii

67

68

69



411

41.2

413

421

422

LIST OF TABLES

Normalized mode-1 stress intensity factors and normal T-stress T;; for
isolated penny-shaped crack subjected to remote uniaxial tension.
Results are reported for v=0.3

Normalized mode-1 stress intensity factors and normal T-stress Ty, for
isolated penny-shaped crack embedded in transversely isotropic medium
and subjected to uniform pressure

Elastic constants (GPa) for zinc and cadmium. The axis of material symmetry
is taken to direct along the xs-coordinate direction

Non-zero elastic constants for zinc and graphite-reinforced composite
(where axis of material symmetry is taken to direct along the
Xs-coordinate direction)

Normalized mode-I stress intensity factor for isolated penny-shaped

crack subjected to uniform normal traction

Xiv

35

37

39

56

56



CHAPTER I
INTRODUCTION

1.1 Motivation and Research Significance

Flaws and cracks are induced naturally within materials constituting both engineering
and non-engineering components either during manufacturing processes or during their
service life applications. Presence of such defects in the components generally produces
stress concentration and reduction of the global strength, results in fatigue growth and
damage accumulations, and finally can lead to ultimate failure and loss of functions of such
components. Therefore, fracture analysis and design becomes an essential and necessary
ingredient in the damage/fatigue evaluation and assessment process in order to ensure safety
and integrity of the designed components. For various classes of materials (e.g. glass,
composites, concrete, rock, cast iron, etc.), the fracture-induced failure mechanism assumes
in a brittle fashion and any inelastic deformation is merely contained within a small region in
the vicinity of the crack front (viz. small scale yielding pertains). As a result, a mathematical
model based upon linear elasticity is well-suited and sufficient for performing a stress
analysis of such cracked bodies. It is known that a crack induced within a body acts as a local
stress riser and, upon the linear elasticity theory, a local stress field is essentially singular
along the crack front. The dominant behavior of such local singular stress field is commonly
and completely characterized by a singular term resulting from a careful study of asymptotic
fields in the neighborhood of the crack front. Such dominant term is known as the K-field and
involves generally three parameters termed mode-I, mode-Il and mode-Ill stress intensity
factors. These fracture data (i.e. stress intensity factors) are vital and play an important role in
linear elastic fracture analysis. In particular, knowledge of the stress intensity factors not only
provides a measure of the dominant stress field around the crack front but also forms a basis
in the investigation of crack growth and fatigue analysis. Besides the K-field, the second term
in the asymptotic expansion (known as the T-stress) has recently gained significant attention
from various investigators. This term is nonsingular but generates a constant stress field in the
region ahead of the crack front. The T-stress has been found significantly useful in several
circumstances such as prediction of the size and shape of a crack-tip plastic zone,
investigation of the level of crack-tip stress tri-axiality and crack-tip constraint, investigation
of stability behavior of crack growth, etc. The stress intensity factors along with the T-stress
forms a two-parameter fracture model widely used in the recent failure/damage evaluation
and assessment.

While asymptotic stress analysis in the local region near the crack front provides
essential information about characteristics of some of leading terms in the expansion and their
dependence on crack configuration, geometry of the body, loading conditions and material
properties, it yields no information on the values of the stress intensity factors and the T-
stress along the crack front and this still requires solving the boundary value problem
associated with the entire cracked body. Note also that complexity posed by the presence of
the stress singularity in the local region near the crack front and the need to formulate the
problem within the three-dimensional context render such full boundary value problem
theoretically and computationally challenging. Another nontrivial task is associated with the



post-process, once the problem is globally resolved, in order to accurately extract those
essential fracture data (i.e. the stress intensity factors and the T-stress). On the basis of a
careful literature search, works related to this specific area (see more details in the following
section of background and review) are still relatively limited and this motivates the current
investigation. In this study, we propose an efficient and accurate means to extract both the
stress intensity factors and the T-stress for cracks in three-dimensional elastic bodies. The
technique is to be established in a general context allowing the treatment of cracks in both
infinite media and finite bodies, arbitrary crack configurations including planar and non-
planar cracks, generally anisotropic elastic materials, and consideration of nano-scale
influence and soft elastic solids. Results from the proposed investigation are anticipated not
only to provide an alternative, more accurate and more efficient approach to existing
techniques but also to ideally close the still existing gap of knowledge.

1.2 Background and Review

It is well known that both the stress intensity factors and the T-stress are essential
fracture data that plays a significant role in linear elastic fracture mechanics (LEFM); in
particular, they completely characterize the first two leading terms in the asymptotic
expansion of the local stress field in the neighborhood of the crack front (e.g. Williams, 1957,
Cotterell and Rice, 1980; Ting, 1985; Leblond, 1989; Leblond and Torlai, 1992). The stress
intensity factors provide a measure of the dominant behavior of the local stress field while the
latter represents the constant terms in that asymptotic expansion. From an extensive study on
the asymptotic behavior of fields near the crack front along with a careful dimensional
analysis, both the stress intensity factors and the T-stress has been found strongly dependent
on the crack configuration and overall geometry of the cracked body, properties of
constituting materials, and loading conditions (e.g. Broek, 1982; Sanford, 2003; Anderson,
2005). Nevertheless, values of the stress intensity factors and the T-stress cannot be obtained
directly from the asymptotic analysis but it still requires solving the boundary value problem
associated with the entire cracked body.

As a result of complexity posed by the presence of stress singularity along the crack
front, analytical solutions for corresponding boundary value problems (or more precisely the
solutions for the stress intensity factors and the T-stress) are limited to simple crack
configurations (e.g. straight cracks in 2D problems and penny-shaped and elliptical cracks in
3D problems), simple loading conditions (e.g. pure mode-I loading and pure shear traction),
simple domains (e.g. infinite 2D and 3D bodies), and simple linear elastic materials (e.g.
isotropic solids). Some of those relevant investigations include the work of Westergaard
(1939), Kassir and Sih (1975), Fabrikant (1989), Chen (2000), Wang (2004), Kirilyuk and
Levchuk (2007). In three-dimensional applications, fractures problems are often mixed-mode
and geometries of the body and cracks can possibly be very sophisticated and this, therefore,
requires robust computational techniques to accurately obtain such fracture data.

Boundary integral equation methods (BIEMs) has been found efficient and attractive
for linear elasticity and linear fracture analysis since the spatial dimension of the key
governing equation is less than that of the domain by one (e.g. Brebbia and Dominguez,
1983; Cruse, 1988). This crucial feature renders this group of methods gaining significant
benefit in terms of computational efficiency and effort required for mesh generation; in
particular, only the boundary of the domain and the crack surface require discretization. Such
advantage becomes more apparent when three-dimensional problems and bodies containing



multiple or non-planar cracks are involved. Various investigators have successfully
implemented the BIEMs to model cracks in both linear elastic infinite domain (e.g. Weaver,
1977; Gu and Yew, 1988; Xu and Ortiz, 1993; Xu, 2000) and finite domain (e.g. Martha et
al., 1992; Pan and Yuan, 2000; Li et al., 1998; Frangi et al., 2002; Ariza et al., 2004;
Rungamornrat and Mear, 2008b; Rungamornrat and Mear, 2011). Besides that the boundary
value problem associated with the entire cracked body must be solved accurately and
efficiently, an algorithm to extract the stress intensity factors and the T-stressed at any point
along the crack front from the solved crack-face data must receive special attention since it
significantly influences the accuracy of numerical solutions.

For stress intensity factor calculation, quarter-point elements have commonly been
employed in various investigations to capture the square root singularity of the local stress
field near the crack front (e.g. Xu and Ortiz, 1993; Xu, 2000; Ariza et al., 2004). Although
such elements provide proper shape functions that can represent the singular term in the local
stress expansion, the order of approximation is still relatively low and, therefore, sufficiently
small quarter-point elements must be used along the crack front in order to obtain reasonably
accurate results. In addition, a nontrivial extrapolation technique must be adopted to post-
process crack-face data on the quarter-point element to obtain the stress intensity factors. Li
et al. (1998) implemented a weakly singular, symmetric Galerkin boundary element method
(SGBEM) with use of special crack-tip elements along the crack front to perform stress
analysis of isotropic, linearly elastic cracked bodies. This special crack-tip element possesses
two superior features than those of the quarter-point element in that its shape functions can
represent local stress field near the crack front to sufficiently high order and it contains extra
degrees of freedom along the crack front that correspond directly to the gradient of the
relative crack-face displacement. The former feature allows the use of a relatively large size
of crack-tip elements while the latter feature provides a means to extract the stress intensity
factors in a straightforward fashion. Frangi et al. (2002) offered an identical weakly singular
SGBEM to that by Li et al. (1998) but, instead of using special crack-tip elements, they
simply utilized standard elements along the crack front along with a special (unidentified)
extrapolation technique to compute the stress intensity factors for cracks in isotropic elastic
media. While their presented numerical results exhibit good accuracy, use of standard basis
functions to accurately capture the singular field near the crack front and the extrapolation
technique employed are still questionable. Later, Rungamornrat and Mear (2008b)
generalized the crack-tip elements developed by Li et al (1998) and then utilized them in the
implementation of the weakly singular SGBEM for modeling cracks in three-dimensional
anisotropic media. While their boundary integral equations were derived within the context of
general anisotropy and the numerical scheme to extract the stress intensity factors has proven
promising, numerical results were reported only for cracks in isotropic and transversely
isotropic solids. On the basis of a careful literature search, no other recent advance in
boundary integral equation methods for calculation of the stress intensity factors for cracks in
elastic media has been found. In this investigation, we propose an accurate and more efficient
numerical scheme for computing the mixed-mode stress intensity factors for cracks of
arbitrary shape contained in three-dimensional isotropic and generally anisotropic media. The
weakly singular SGBEM, developed in a broad context by Rungamornrat and Senjuntichai
(2009) and Rungamornrat (2009), is to be employed as a supporting computational tool for
solving the boundary value problem associated with the entire cracked body.



A vast number of researches towards the development of both analytical and
numerical techniques for determining the T-stress of cracks in linearly elastic media has also
been well recognized and gained significant attention from various investigators in the past
three decades. Some of those relevant works are briefly summarized below not only to
demonstrate the history and current advances in this specific area but also to identify the gap
of knowledge to be emphasized in the present investigation. Within the context of two-
dimensional boundary value problems, Rice (1974) originally studied the influence of the T-
stress on the estimation of the plastic zone size and shape using Barrenblatt-Dugdale yielding
model. Du and Hancock (1991) investigated the influence of the T-stress on the plastic zone
size and shape for a plane strain crack using Von-Mises yield criterion and they concluded
that the plastic zone is enlarged and rotated forward for the negative T-stress and is reduced
and rotated backward for the positive T-stress. Fett (1997) determined the T-stress in an edge
cracked rectangular finite plate by first using a boundary collocation technique to construct
Green’s functions for a pair of normal point forces and then applied them to obtain a solution
for the prescribed arbitrary normal traction. Later, Fett (1998) employed the same technique
to calculate the T-stress in rectangular plates and circular disks with edged crack and center
crack subjected to both tensile and bending loads. Wang (2001) used weight-function
technique and finite element method to determine the T-stress for various test specimens
including a single edge cracked plate (SECP), a double edge cracked plate (DECP) and a
center cracked plate (CCP) under uniform, linear, parabolic and cubic normal traction acting
to the crack surfaces. Fett and Rizzi (2006) applied the weight-function technique and finite
element method to compute T-stress of a compact tension crack (CT), a double cantilever
crack (DCC) and an edge cracked bar (ECB) loaded by near-tip normal traction. Fett et al.
(2006) studied the T-stress for kinked and forked cracks in two-dimensional isotropic plate
subjected to traction on the crack surface by using a technique of Green’s function. Zhou et
al. (2013) employed a symplectric expansion method to determine the T-stress for an edged
crack in an isotropic, linearly elastic plate bonded by two different materials. This symplectic
expansion method was found to be capable of treating either mixed or complex boundary
conditions.

For three-dimensional fracture analysis and modeling, Wang (2002) determined the T-
stress for a semi-elliptical, surface-breaking crack in an isotropic, linear elastic finite thick
plate subjected to tensile and bending loads at both ends. In his work, the finite element
method was utilized to determine field quantities and the interaction integral formula was
adopted to extract the T-stress along the crack front. In 2003, Wang and Bell extended the
work of Wang (2003) to be capable of modeling more general end loading conditions such as
uniform, linear, parabolic, and cubic loads. Later, Wang (2004) presented an analytical
solution for the T-stress of a penny-shaped crack embedded in an isotropic linear elastic
infinite body under the action of remote tension and bending by using the potential-theory-
based method and Hankel’s transformation. Qu and Wang (2006) modeled a corner quarter-
elliptical crack in a thick plate under the tensile and bending loads at both ends by using the
finite element method along with the interaction integral formula to obtain the T-stress.
Kirilyuk and Levchuk (2007) generalized the work of Wang (2004) to solve for the elastic T-
stress of a flat-elliptical crack in an isotropic, linearly elastic, infinite body under remote
tension and bending by using the method of potential theory and a special collection of
harmonic functions. Schutte and Molla-Abbasi (2007) and Molla-Abbasi and Schutte (2008)
applied the potential-theory-based method, technique of Green’s function, Hankel’s



transformation and a finite element method to calculate the T-stress of both penny-shaped and
flat-elliptical cracks embedded in a three-dimensional isotropic infinite domain under remote
mixed-mode tractions. The influence of the T-stress on estimation of the plastic zone size
using the Von-Mises yielding criterion was also investigated. Lewis and Wang (2008)
employed the finite element technique to compute the elastic T-stress for a circumferential
crack in an isotropic finite cylinder subjected to either tensile and bending loads at its ends or
uniform, linear, parabolic and cubic normal tractions on the crack surface. Recently, Meshii
et al. (2010) used the finite element method to determine the elastic T-stress of a semi-
elliptical crack embedded in a three-dimensional isotropic finite cylinder under uniform,
linear, parabolic and cubic normal tractions on the crack surface.

While various investigations have been devoted to the development of techniques to
determine of the T-stress, most of existing works were restricted only to either cracks in two-
dimensional, isotropic bodies (e.g., Shah et al., 2006; Yu et al., 2006; Ananthasayanam et al.,
2007; Profant et al., 2008; Chen et al. 2008; Chen et al., 2009) or three-dimensional problems
with specific crack and domain configurations (e.g. Lewis and Wang, 2008; Molla-Abbasi
and Schutte, 2008). The principal investigator is unaware of any advance of techniques that
are capable of comprehensively solving the elastic T-stress for cracks of arbitrary geometry
embedded in a general, three-dimensional media made of generally anisotropic materials
(e.g., transversely isotropic and orthotropic solids), and this serves as the key motivation of
the proposed investigation aiming to fill such gap of knowledge.

1.3 Objectives

The key objectives of the current investigation are

(1) to develop a proper mathematical model, in terms of weakly singular boundary
integral equations and other appropriate forms, that governs the data essential and
sufficient for computing the fracture information along the crack front including
the crack opening displacement, mixed-mode stress intensity factors and the
elastic T-stress for cracks in three-dimensional, linearly elastic media with and
without consideration of nano-scale influence, and

(2) to develop efficient and accurate numerical techniques such as the SGEBM and
SGBEM-FEM coupling to extract fracture information along the crack front (e.g.,
crack opening displacement, stress intensity factors, and the T-stress) for isolated
cracks in both isotropic and generally anisotropic linearly elastic infinite and finite
media

1.4 Scope of Work

Scope of the present study and assumptions relevant to the development are summarized as
follows:
(1) the boundary value problem considered in this investigation is linear and
governed by the theory of local linear elasticity;
(2) a body associated with the boundary value problem is three-dimensional and can
be either infinite (associated with a whole space) or finite;
(3) a body is assumed to be free of a body force;
(4) a constituting material is assumed to be linearly elastic and spatially independent
(or homogeneous) but there is no restriction of its properties on the directional



dependence. The latter allows the treatment of both isotropic and generally
anisotropic materials; and

(5) the crack configuration or geometry can be represented by a piecewise smooth
surface otherwise it is arbitrary. Planar and non-planar cracks, embedded and
surface breaking cracks, single and multiple cracks can be treated.

1.5 Methodology

The present study consists of several main tasks with methodology, procedures, and involved
fundamental theories for each task being briefly summarized as follows:

(1) basic field equations governing the body containing cracks (i.e., equilibrium
equations, strain-displacement relation, and constitutive law) are derived from the
classical theory of linear elasticity where the constituting material is assumed to be
fully anisotropic;

(2) the nano-scale influence is modeled by Gurtin-Murdoch surface elasticity model;

(3) key governing equations are formulated in terms of weakly-singular, weak-form
boundary integral equations for the displacement and traction where the special
decompositions of strongly singular and hyper-singular kernels are utilized along
with the integration by parts via Strokes’ theorem;

(4) the key governing equation to describe the nano-scale influence follows the
standard technique of weight residual;

(5) symmetric formulations for various types of boundary value problems are
established by properly employing both the displacement and traction boundary
integral equations and the final form involves unknown displacement and traction
on the ordinary boundary and the unknown jump and sum of the displacement
across the crack surface;

(6) selected numerical techniques based on the weakly-singular, symmetric Galerkin
boundary element method (SGBEM) and the coupling with standard finite element
method (FEM) are implemented to construct the approximate solution of all
primary unknowns (i.e., displacement and traction on the ordinary boundary and
jump and sum of the displacement across the crack surface);

(7) special local interpolation functions (enriched by square-root functions along with
the introduction of extra degrees of freedom along the crack front) are employed
to accurately model the jump and sum of the displacement across the crack surface
in the vicinity of the crack front;

(8) extrapolation-free formula for determining both the stress intensity factors and
elastic T-stresses are established in terms of the solved jump and sum of the
displacement local to the crack front; and

(9) formulation, numerical procedure, and implementation of an in-house computer
code are extensively verified with reliable benchmark solutions

1.6 Contribution

The significant contribution gained from the present study is an accurate and efficient
numerical technique for computing the essential fracture data such as relative crack-face
displacement, the mixed-mode stress intensity factors, and the T-stress for cracks in three-
dimensional elastic media with and without the consideration of nano-scale influence. The



attractive features of the proposed technique are that it allows the treatment of cracks in both
infinite and finite media, is applicable to cracks of arbitrary configuration (including both
planar and non-planar cracks and embedded and surface breaking cracks), and applies to both
isotropic and generally anisotropic materials. The numerical technique will be implemented
in terms of a computer code that is user friendly and constitutes a well-suited tool for stress
analysis of elastic bodies containing cracks. This robust computational tool could potentially
be beneficial in the investigation of various aspects of fracture phenomena, e.g. crack growth
simulation and fatigue/damage evaluation and assessment. In addition, the developed
numerical procedure can readily be coupled with a standard finite element method to solve a
larger class of boundary value problems (e.g., problems involving cracks and localized
nonlinear zones and treatment of nano-scale influence to simulate the behavior and responses
of nano-cracks).



CHAPTER Il
FORMULATION

This chapter summarizes the problem description, basic field equations, the conventional
boundary integral relations for the displacement and stress, the decomposition of strongly
singular and hyper-singular kernels, the development of completely regularized boundary
integral equations, and the formulation of the governing equations for the boundary value
problem of a medium containing cracks.

2.1 Problem Description

S, =S, US,

S,u=u,

Figure 2.1: Schematic of a three-dimensional body containing cracks

Let us consider a three-dimensional body ©Q which is made of a homogeneous, generally
anisotropic, linearly elastic material with prescribed elastic constants E;,, and contains an

embedded crack and a surface breaking crack as shown schematically in Figure 2.1. The body
is assumed to be nice in the sense that any differential and integral operations involved in the
development presented further below are valid when they are performed on this body. The

total boundary of the body consists of the ordinary boundary, denoted by S, and the surface
of the cracks, represented by two geometrically identical surfaces S and S_. The ordinary
boundary S, can be decomposed into a surface S, on which the displacement is prescribed
(i.e.,, u=u, VxeS§,) and asurface S, on which the traction is prescribed (i.e., t=t, VX,
) whereas, on the crack surface, the traction is fully prescribed (i.e., t=t,, ¥xe S, US_). In

the present study, all the surfaces S, , S, and S_ are assumed to be sufficiently smooth (i.e.,

the unit normal vector is well defined) and the body is free of the body force. For
convenience in further development, a reference Cartesian coordinate system {0;X,, X,, X, }

with the origin 0 is introduced.



2.2 Basic Field Equations

Behavior of the body Q is governed by a classical theory of linear elasticity as briefly
indicated below. In the absence of the body force, the stress field 6 =0(x) (with its

components in the reference coordinate system {0;x,X,,%} denoted by o) must be
divergence free everywhere, i.e.,

0;,;=0 (2.1)

where () ; =0()/ ox;. From here to what follows, all indices range from 1 to 3 and repeated

indices imply the summation over their range. The stress field ¢ =6(X) is related linearly to
the strain field € =¢(x) via the generalized Hooke’s law, i.e.,

0y = Ejuéu (2.2)

where E;,, are prescribed elastic constants which are spatially independent and satisfy
following symmetries: E;, = E;, =E;, =E,; . For the special case of isotropy, the elastic
constants involve only two independent material parameters and take a simple form:

Eijkl :/u(é‘iké‘jl +5i|5jk)+/1§ij5kl (2.3)

where x and A are Lame’s constants and & is Kronecker-delta symbol. The relationship

between the strain field €=¢g(X) and the displacement field u=u(x) are governed by
linearized kinematics or infinitesimal deformation theory, i.e.,

1

1
& :E(u” +u;;) (2.4)
In addition, the traction t at any point on a sufficiently smooth surface can be related to the
stress at the same point as
t, = oyn, (2.5)
where n is a unit normal to the surface. The relations (2.1), (2.2) and (2.4) are basic field
equations governing all unknown field quantities u =u(x), € =¢(X) and ¢ =o(X).
2.3 Standard Integral Relations

By applying Somigliana’s identity to a body Q, it leads to a boundary integral relation for the
displacement at any interior point x € Q (see Rungamornrat and Mear, 2008a):

u,(x) = [UPE=X)2t; ©)AE) - [ SPE-X)N (€)Au;(E)dAE)
N N (2.6)
+{UP -t ©)dAE) - [ S¢ E—)n )y, (6)dAE)



where Xt (&) =t;(§")+t;(€") denotes the sum of tractions on both crack surfaces;
Au;(€)=u;(€")—u;(&") denotes the jump of the displacement across the crack surface;
U/ (§~-x) is the displacement fundamental solution; and Sp(§—x) is the generalized stress

fundamental solution. The explicit form for UP(§-x) and S7(§—x) for general anisotropy
is given by

1

UPE0 =g § @ 2)izzds() 27)
S0 =, 2Lz @9

where r=&-X, r =||r|| (z,2), = z;E;;z; and the closed contour integral is to be evaluated
over a unit circle |z| = 1 on a plane defined by z-r=0. It is important to remark that the
fundamental solutions Uf(§-x) and S?(§-x) are singular at £=x of O(1/r) and

O(1/r?), respectively. For the special case of isotropy, US(@E-%) and S/ (E-x) take a
simple form:

b(ry 1 - CoS
u,.(g)_mﬂ(l_v)m{(s )3, +=2 } (2.9)
3§p§i§j}

r3

'@ =t N 5 5, - 5,) (2.10)
8 ) r

@-v
where {=&—X, v is Poisson ratio, and g is elastic shear modulus. It is worth noting that in
the integral relation (2.6), the integrals over the entire crack surfaces S, wS_ reduces to the
integrals over a single surface S; due to the fact that S and S_ are geometrically identical
with opposite unit normal vectors and the functions U/ (§-x) and S (§—x) are continuous

on the crack surfaces.

By taking derivative of the integral relation (2.6) to obtain the displacement gradient
and then applying the relations (2.2) and (2.4), it leads to a boundary integral relation for the
stress at any interior point X :

o3 () == [ S} E—X)Zt; (E)IAE) + [ =} € —)n, (&) Au; (E)dAE)

‘ : (2.11)
— [ S E-xt; (©)dAE) + [ Zf & —x)n, (©)u; (6)dAE)

where £ (&—x) is a function defined in terms of the elastic constants E;,, by

10



oSl (& -
Z5 (€—x) = |kpq% (212)

It is remarked that the function ZX (& —x) is singular at a point &= x of ¢O(1/r?).

It is worth noting that the boundary integral relations (2.6) and (2.11) can be used to
determine the displacement and stress at any interior point x provided that all unknown data
of the displacement and traction on the boundary and the crack surface is completely known.
By taking an appropriate limit process of the boundary integral relation (2.6) to a point on the
total boundary of the body, it yields the displacement boundary integral equation. For a body
containing no crack, such integral equation is sufficient for determining all unknown data on
the boundary. However, for a body containing cracks, such equation is mathematically
degenerate since it contains incomplete information of the traction on the crack surface (i.e.,
it contains only the sum of the traction). To overcome this mathematical difficulty, techniques
based on the domain decomposition to partition a body along the crack surfaces were
proposed (e.g., Blandford et al, 1981; Saez et al, 1997). However, such strategy possesses
several major drawbacks; for instance, the large number of additional unknowns that are
introduced along the cut, the difficulty of the decomposition for a body containing non-planar
or multiple cracks, and the treatment of singularity of the traction along the cut ahead of the
crack front. An attractive alternative is to employ the traction boundary integral equation for
the crack surface. Such equation can readily be obtained from the boundary integral relation

for the stress (2.11) via taking appropriate limit process to a point on the crack surfaceS; .

While the conventional traction boundary integral equation is sufficient for analysis of crack
problems, it contains both strongly singular and hyper-singular kernels that render the
involved integrals difficult to be treated theoretically and numerically. To alleviate the strong
mathematical requirement posed by the conventional traction boundary integral equation,
various regularization procedures have been introduced to obtain singularity-reduced integral
equations (e.g., Weaver, 1977; Bui, 1977, Gu and Yew, 1988; Xu and Ortiz, 1993; Bonnet,
1995; Xu, 2000; Li and Mear, 1998; Li et al., 1998; Rungamornrat, 2008a,b).

2.4 Decompositions of kernels

To aid the regularization procedure described further below, the strongly singular kernel
S; (€—x) and the hyper singular kernel N (&—x) are, first, decomposed into two parts as

follows (see details of development in the work of Rungamornrat and Mear (2008a) and
Rungamornrat and Senjuntichai (2009)):

Si(E=X)=HfE-X)+g G (E—x%) (2.13)

Ism ag

Zlk (e.a X)_ Eukld(g X)+glsm a

ctk 2.14
oE noE €-x) (2.14)

where &, denotes the alternating symbol; &(§—x) denotes the Dirac-delta distribution

centered at x; and HP(E-X), G, (§—x) and Ctk (§—x) are functions defined by

11



HP(E—x) =5, 5 % (2.15)

» 4 r’
Gl (&~ x) =g i ‘”k' gS (2,2)02,2,05(2) (2.16a)
Ch(E-x)= Aﬁﬁi $ (2.2)52,205(2) (2.16b)
7[ z-r=0

with the constants A% defined by

tsl

a 1
A:]Jtslp = gptdgpmq {Edjpl Eqkms - 3 Elmps Edjkq} (217)

It is evident that the function H?(§—x) is independent of material constants and singular at a

point &=x of O(/r?) whereas G? . (E—x) and cx . (E—x) depends primarily on material
properties and singular at a point §=x of ¢(1/r). For the special case of isotropy, the
kernels G;(§-x) and cx i (E—X) admit following closed form in terms of elementary
functions

ey (&~ 1)E %)

Gy (E—x)= B v)r| (1 V)&, + = gajm} (2.18)
tk I (ék_xk)(‘:gj_xj)

C (g X) m (1_V)§tk§mj + ZVé‘km&tj - 5kj§tm - r2 5’(m:| (219)

2.5 Completely regularized boundary integral relation for displacement

To establish the singularity reduced integral relation for the displacement at any interior point
X, the special decomposition (2.13) is first substituted into the integral relation (2.6) and then

performing the integration by parts of terms associated with the function G, . (E—X) . The final
result is given by

u,(x) = [UP(E-x)2t; ()dAE) - j HP &), (€)Au; (8)dAE) + j G, (E—x)D,Au; (£)dA()

Se

+ j U (&)t (E)dAE) - j HP (& —x)n, (&), (E)dAE)+ jG &-X)D,u; (€)dAE)

(2.20)
where D,, is a surface differential operator defined by
D, =Ny, (2.21)
¢,
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Note that the condition Au; vanishes along the crack front have been utilized. By taking limit

X—>yeS=S5,uUS of (2.20), we obtain a boundary integral equation for the displacement
as

c)U; () = [UPE-y)St ©HAE) - [ HP €~ y)n ©)Au;€)dAE) + [ G5 (& -y)D,Au; (€)dAE)
+[UPE-y)t @UAG) - [ HP E-y)n (@), (©)dAE) + [ GF (&~ y)D,u, ©)dAE)
0 0 0 (2.22)

where c(y) = 1/2 if the surface is sufficiently smooth at a point y (i.e., the unit normal n is
well-defined at a point y), otherwise c(y) € (0, 1) and u;(y) is defined by

*

u,(y) =

X S
{up(y) yeS, (223)

U (y)+u,(y); yes;

By multiplying (2.22) by a sufficiently smooth test function f (y) and then integrating the

+

result over the total boundary S=S;,US;, we obtain a weakly-singular, weak-form
boundary integral equation for the displacement as

% [£,0)u)dS(y) = [T, () U E-y)7, ©)dS E)dS (y)
+ [£,00)] G (6 -y)D,v, (©)dS (E)dS () (2.24)

- [E,0)[HY E-yIn(©)o,©)ds ©)ds(y)

where
t;(8); EeSs,
”j(g):{ztj=t;(g)+tj(g); Eest (2.25)
u; (€); Ees,
(&) = , 2.26
%) {Aufu;(&)—uj(é):éesi (229

and the function c(y) simply reduces to 1/2 due to the assumption that the total boundary of
the body is piecewise smooth (i.e., a set of points y where the unit normal n is not well-
defined is of measure zero). It should be remarked that the boundary integral equation (2.24)

contains only weakly singular kernels {U?(&-x), Gy (E-X), HP(E-y)n (&)} of O(1/r)
(also see details in the work of Xiao (1998)).
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2.6 Completely regularized boundary integral relation for traction

To obtain a weakly singular, weak-form boundary integral equation for the traction, a similar
procedure as described above is employed. First, the special decompositions (2.13) and (2.14)
are substituted into the boundary integral relation for the stress (2.11) and then the integration
by parts via Stokes’ theorem is performed. The singularity-reduced boundary integral relation
for the stress is given by

0(9) = 2| [CE (E=X)D,v, €IS () + [ G E—X)m, (B)S @)

irt 6Xr d
- [Hi (E-x)m,©)ds(e)
(2.27)

where the translational property of both kernels GP, and C! has been used. It should be
remarked that the boundary integral relation for the stress (2.27) still contains strongly
singular kernels of ¢(1/r?). By further forming the product n,(y)o, (X) where ye$S and

then taking appropriate limit x — y, it leads to a boundary integral equation for the traction
as

PG (Y) = D, [ C (6 - y)D,0; (£)dS (&) + D, [ G} (& - y) 7, (2)dS &)
> _ s (2.28)
- [nHLE-Y)7, ©)dS @)

where p(y) = 1/2 if the surface is sufficiently smooth at y otherwise p(y) e (0, 1) and t, (y)
is defined by

R t (¥); yes,
£(y) = . 2.29
) {tz 0) -t @) yes: 229

Upon multiplying the boundary integral equation (2.28) by the following sufficiently smooth
test function

l]k (Y), y € S0

. L (2.30)
AU, (y), Y €S,

Oy (Y):{

forming the integration of the result over the total boundary S, performing an integration by
parts via Stoke’s theorem and using the fact that the test function Al (y) satisfies the

homogeneous condition along the crack front, it finally yields a weakly singular, weak-form
integral equation for the traction:

14



26,005 0)d5() = [ D5, 1) C4 E-Y)D,0, @S @S ()
2
+[D5,()[ 6L &~ y)r, @S ©)dS Y) (2.31)

+[0,0)[HLE-y)n ()7, ©)ds ©)ds y)

Again, from the assumption that the total boundary of the domain is piecewise smooth, the
function p(y) simply reduces to 1/2. It should be remarked that the boundary integral equation
(2.31) contains only weakly singular kernels {Cfnkj E-Y),Gr(E-x),H E-y)n(y)} of

O(1/r) (also see details in the work of Xiao (1998)).

2.7 Symmetric formulation for SGBEM

Now, a symmetric formulation of the boundary value problem in terms of weakly singular,
weak form boundary integral equations developed in sections 2.5 and 2.6 is established as a
basis for the development of the well known numerical technique called the symmetric
Galerkin boundary element method (SGBEM). More specifically, a system of governing
integral equations can be obtained as follows: (i) the weakly singular, weak-form integral

equation for the displacement (2.24) is applied to the surface S, with f, =0 on the surface
S; =S, uS/;, (ii) the weakly singular, weak-form integral equation for the traction (2.31) is
applied to the surface S, with 0, =0 on S, US;, and the weakly singular, weak-form
integral equation for the traction (2.31) is applied to the surface S; with v, =0 on S, US,.
The final set of governing integral equations is given explicitly by

A, (Bt)+F, (Tu)+ B, (T.Au) =R () (2.32)
R, (t.0)+& (a,u)+€ (0,Au) =R, () (2.33)
R (1, AG)+E, (AG,U)+E, (AT, Au) =R, (AD) (2.34)

where the bi-linear integral operators <., , %, and §,, (with P, Q {u, t, c}) are defined by

Ay (X,Y)= [ X, () [ US &)Y, (©)dS (©)dS(y) (2.35)

Boo (X.Y)= [ X, ) [ G4 &~ y)D,Y, (©)dS ©)dS )

y (2.36)
~ [ X,0) [ HI G-y)n @)Y, ©)ds @S (y)

15



o (X.Y)= [ DX, (y) [ Ck(E-y)D,Y;(€)dSE)dS(y) (2.37)

and the linear integral operators & and R, are defined, in terms of the prescribed data on the
boundary, by

R (6)= [£,0)u,0)80) 4, (£5) - 4, (£.58)- &, (E0) (2.38)
#,(0) == [0,0))IS )~ (1,0) -, (2t,0)-4, (6.u) (2.39)
@(AG):—%jAak ()AL (Y)dS(y) — &, (t, AG) - B, (Zt,AG) -5, (Ad,u) (2.40)

c

It is evident that the governing integral equations (2.32)-(2.34) are in a symmetric form, i.e.
A, (L) =4, (t1), 6 (0,u) =6 (u,0), 8, (Al,Au)=§ (Au,Al), and €, (AG,u) =14, (u,Al).
(2.32)-(2.34) form a complete set of governing integral equations sufficient for solving the
unknown displacement u on the surface S,, the unknown traction t on the surface S, and

the unknown jump of the displacement Au on the crack surface S;. For the special case of

cracks in an infinite medium, a system of integral equations (2.32)-(2.34) simply reduces to a
single integral equation

6. (AT, Au) = —% [ Ad, (y)At, (v)ds(y) - B, (t, Ad) (2.41)

Once all these primary unknowns are determined, other quantities of interest can readily be
obtained. For instance, the sum of the displacement across the crack surface, denoted by Zu,

can be computed from the weak-form equation (2.24) by taking t, =0 on the surface S, i.e.,
it can be obtained from

N |-

jfp(y)Zup(y)dS(y) =, (Tt)+4, (L) +4 (L.2)+ B, (Tu)+ R, (Tu)+ B, (T, Au) (2.42)
s
The displacement and stress at any interior point x can also be computed from the singularity-

reduced integral relations (2.20) and (2.27), respectively.

2.8 Formulation for SGBEM-FEM coupling

While the SGBEM (based on the boundary integral equations) has gained significant success
in the analysis of linear elasticity and fracture problems, the method still contains certain
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unfavorable features leading to its limited capability to solve various important classes of
boundary value problems. For instance, the method either becomes computationally
inefficient or experiences mathematical difficulty when applied to solve problems involving
nonlinearity and non-homogeneous media. As the geometry of the domain becomes
increasingly complex and its size and surface to volume ratio are relatively large (requiring a
large number of elements to reasonably represent the entire boundary of the domain), the
method tends to consume considerable computational resources in comparison with the
standard finite element method (FEM). Although the SGBEM yields a symmetric system of
linear equations, the coefficient matrix is fully dense and each of its entries must be computed
by means of a double surface integration. To further enhance the modeling capability of the
SGBEM for analysis of elasticity and fracture problems, a coupling method based on the
SGBEM and FEM has become an attractive alternative. The fundamental idea is to
decompose the entire domain into two regions and then apply the SGBEM to model a local
region with small surface-to-volume ratio and possibly containing the displacement
discontinuities (e.g. cracks and dislocations) and the FEM to model the remaining majority of
the domain possibly exhibiting complex behavior (e.g. material nonlinearity and non-
homogeneous data). The primary objective is to compromise between the requirement of
computational resources and accuracy of predicted results.

A pair of weakly singular, weak-form boundary integral equations established in the
previous sections is in a form well-suited for establishing the formulation of the SGBEM-
FEM coupling. The development of SGBEM-FEM coupling equations for cracks in a finite
body can be found in the work of Rungamornrat and Mear (2011). In this section, the
coupling formulation capable of modeling an infinite medium containing cracks and localized
complex zones is presented.

Consider a three-dimensional infinite medium Q which contains an isolated crack and
a localized complex zone as shown schematically in Figure 2.2(a). The crack is represented

by two geometrical coincident surfaces S’ and S_ with their unit outward normal being
denoted by n*and n~, respectively, and the localized complex zone is denoted by Q" . In the

present study, the medium is assumed to be free of a body force and loading on its remote
boundary, and both surfaces of the crack are subjected to prescribed self-equilibrated traction

defined by t, =t; =—t_. Now, let us introduce an imaginary surface S, to decompose the
body Q into two sub-domains, an unbounded ‘BEM-region’ denoted by Q®and a finite
‘FEM-region' denoted by QF , as indicated in Figure 2.2(b). The surface S, is selected such
that the localized complex zone and the crack are embedded entirely in the FEM-region and
in the BEM-region, respectively (i.e.S7US; cQ® and Q" < QF) and, in addition, the
BEM-region must be linearly elastic. To clearly demonstrate the role of the interface between
the two sub-regions in the formulation presented below, we define {S;,tg ,uUg} and
{Sq . ts,ug } as the interface, the unknown traction and the unknown displacement on the
interface of the BEM-region Q° and the FEM-region QF, respectively. It is important to
emphasize that the interfaces Sy, and S, are in fact identical to the imaginary surfaces, .

While the formulation is presented, for brevity, only for a domain containing a single crack
and a single localized complex zone, it can readily be extended to treat multiple cracks and
multiple complex zones; in such particular case, several FEM-regions are admissible.
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Localized complex zone

Remote boundary

(a) (b)

Figure 2.2 (a) Schematic of three-dimensional infinite medium containing crack and localized
complex zone and (b) schematic of BEM-region Q® and FEM-region QF

2.8.1 Governing equations for Q°
The total boundary of the BEM-region Q°, denoted by S, consists of the crack surface
Sg. =S, on which the traction is fully prescribed and the interface S, where neither the

traction nor the displacement is known a priori. Note again that the subscript ‘B’ is added
only to emphasize that those surfaces are associated with the BEM-region. To form a set of
governing integral equations for this region, a pair of weakly singular, weak-form
displacement and traction boundary integral equations developed in sections 2.5 and 2.6 is
employed.

Towards obtaining a system of governing integral equations for the BEM-region Q°,
the weakly singular, weak-form boundary integral equation for the traction (2.31) is applied
directly to the crack surface S;_ (with the test function being chosen such that v=0 on S,)

and to the interface Sg, (with the test function being chosen such that v =0 on S;,), and the
weakly singular, weak-form boundary integral equation for the displacement (2.24) is applied
only to the interface S, (with the test function being chosen such that t=0 on S;_). A final
set of three integral equations is given concisely by

G (V,Au) - + B (ty, V)  +6,(V,Up) =—2%,(V,t.)
ﬂc (fBI ’Au) +"4I (EBI ’tBI) + '{Z)II (EBI ’uBI ) = O (243)
aC(GBI’Au) +@II (tBI’GBI) +‘6II (GBI’UBI) :_2‘%I ([:IBI’tBI)

where {GB,,"EB,} are sufficiently smooth test functions defined on the interface S;, and all
additional integral operators are defined, with subscripts P,Q e{l,c} being introduced to
clearly indicate the surface of integration, by
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Fo (0 Y) =2 XN )ESY) (2.44)

D, (X)Y) :‘ﬁl (X,Y) —& (X)Y) (2.45)

It should be noted that the symmetry of the integral operator §,,(X,Y) renders the left hand
side of the system (2.43) being in a symmetric form. Although such symmetric formulation
can readily be obtained, the right hand side of (2.43) still contains the unknown traction on
the interface tg, . The treatment of a term &, (U, ,t5,) Will be addressed once the formulation

for the FEM-region QF is established.

2.8.2 Governing equations for QF
Let us consider, next, the FEM-region QF. For generality, the entire boundary of this
particular region can be decomposed into two surfaces: the interface S;, on which both the

traction tg, and the displacement u., are unknown a priori and the surface S.; on which the

traction t; is fully prescribed. The existence of the surface S, is apparent for the case that
the FEM-region contains embedded holes or voids. It is also important to emphasize that in
the development of a key governing equation for QF, the traction t,, is treated, in a fashion
different from that for the BEM-region, as unknown data instead of the primary unknown
variable. In addition, to be capable of modeling a complex localized zone embedded within
the FEM-region, a constitutive model governing the material behavior utilized in the present
study is assumed to be sufficiently general allowing the treatment of material nonlinearity,
anisotropy and inhomogeneity. The treatment of such complex material models has been
extensively investigated and well-established within the context of nonlinear finite element
methods (e.g., Oden and Carey, 1984; Bathe, 1990; Belytschko et al., 2000) and those
standard procedures also apply to the current implementation and will not be presented for
brevity. Here, we only outline the key governing equation for the FEM-region and certain
unknowns and data necessary connected to those for the BEM-region.

Following standard formulation of the finite element technique, the weak-form
equation governing the FEM-region can readily be obtained via the weight residual technique
or the principle of virtual work, and the final weak-form equation can be expressed in a
concise form by

Kee (U,0) = 2%, (GFI Ae) + 2%, (GFT’tFT) (2.46)

where o denotes a stress tensor; U is a suitably well-behaved test function defined over the
domain QF; U, and U, are the restriction of the test function T on the interfaces S, and

S, respectively; and all involved integral operators are defined, with subscripts P €{l,T},
by

Hee (,0) = [&,(y)o, (V)AV (¥) (2.47)

QF
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F (V) =3 [X 0N, 0)dS() 2.49)

Sep

in which ;(y) denotes the virtual strain tensor defined by ;(y) = (00, /dy; + 00, /dy,)/2.

Note again that a function form of the stress tensor in terms of the primary unknown depends
primarily on a constitutive model employed. For a special case of the FEM-region being
made of a homogeneous, linearly elastic material, the stress tensor can be expressed directly
and explicitly in terms of elastic constants E;, and the strain tensor ¢ (i.e.,c; = Ej,¢,), and

within the context of an infinitesimal deformation theory (i.e., g;(y) = (auilﬁyj +0u;/oy; )/2),
the integral operator K can be expressed directly in terms of the displacement u as

Fere (U,U) = _[Ji,j(y)Eijkluk,l(y)dV ) (2.49)

It should be remarked that the factor of one-half in the definition (2.48) has been introduced
for convenience to cast this term in a form analogous to that for %, given by (2.44), and this,

as a result, leads to the factor of two appearing on the right hand side of (2.46). It is also
worth noting that the first term on the right hand side of (2.46) still contains the unknown

traction on the interface t, .

2.8.3 Governing equations for Q
A set of governing equations of the entire domain Q can directly be obtained by combining a
set of weakly singular, weak-form boundary integral equations (2.43) and the virtual work
equation (2.46). In particular, the last equation of (2.43) and the equation (2.46) are properly
combined and this finally leads to

G (V,AU)  +RBc(ty,, V) +E,(V,ug) =-2%:(V,tc)
B (EBI JAu) +.4, (fsl ty) +9, (EBI ,Ug,) =0 (2.50)
G (Ug, AU) +D, (tg,,0g) +6, (Og,Up )~ T (T, 0) =&+ 2% (Ugr,ter)

where £ is given by

82_2[51%| (Ug te) + &, (GFI’tFI)] (2.51)

From the continuity of the traction and displacement across the interface of the BEM-region
and FEM-region (i.e. tg (y)+t; (y)=0 and ug (y)=ug(y) forall yeS, =S;, =S;), the
test functions Uy, and U are chosen such that Ug, (y) =Ug, (y) forall ye S, =S;, =S, and,
as a direct consequence, £ identically vanishes. It is therefore evident that the left hand side
of (2.50) involves only prescribed boundary data and, in addition, if the integral operator
JHr possesses a symmetric form, (2.50) constitutes a symmetric formulation for the
boundary value problem currently treated.
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2.9 Formulation for cracks in infinite medium with nano-scale influence

In this section, a pair of weakly singular, weak-form integral equations (2.24) and (2.31) is
employed along with the finite element equation to formulate a set of governing equations for
cracks in an infinite medium with consideration of the nano-scale influence. The primary
objective is to investigate the elastic field and related fracture information for cracks of nano-
size in which the surface free energy and the size-dependency of responses are significant.

(@) (b)

Figure 2.3 (a) Schematic of three-dimensional infinite elastic medium containing an isolated
crack and (b) prescribed traction on crack surfaces

Consider a three-dimensional, infinite, elastic medium Q containing an isolated,
planar crack as shown schematically in Figure 2.3(a). The reference Cartesian coordinate

system {O; X, X,, X} is also shown. The bulk material is made of a homogeneous, isotropic,
linearly elastic material with shear modulus x and Poisson’s ratio v. The crack surfaces
which are geometrically identical are represented by S and S; and with corresponding
outward unit normal n* and n~, respectively. The medium is assumed to be free of body
forces and remote loading but subjected to prescribed tractions t* and t° on S and S_,

respectively (Figure 2.3(b)). In addition, infinitesimally thin layers on the crack surfaces
(mathematically modeled by zero thickness layers perfectly bonded to the crack surfaces)

possess constant residual surface tension under unstrained conditions which is denoted by z°.
In the formulation of the boundary value problem, the medium is decomposed into

three parts: the bulk material, the zero-thickness layer S. and the zero-thickness layer S_ as

shown in Figure 2.4. The bulk material is simply the whole medium without the two
infinitesimally thin layers on the crack surfaces. Since both layers have zero thickness, the
geometry of the bulk material is therefore identical to that of the whole medium (i.e., it can

also be completely described by the region Q and the two crack surfaces S_ and S;).
The key difference between the bulk material and the original medium is that the bulk
material is homogeneous and the crack surfaces S, and S_ in the bulk material part are

subjected to unknown tractions (exerted directly by the two layers) t™ and t™, respectively.
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The layer S, is treated as a two-sided surface with one side subjected to the prescribed

traction t* and the other side subjected to the traction t*° exerted by the bulk material
(Figure 2.4(b)). Similarly, the layer S_ is treated as a two-sided surface with one side
subjected to the prescribed traction t™ and the other side subjected to the traction t™° exerted
by the bulk material (Figure 2.4(c)). In what follows, Greek subscripts denote field quantities

associated with the surface and take the values 1, 2 while the Latin subscripts take the values
1, 2, 3. We remark that, in the development to follow, it will suffice to make reference to the

single crack surface S, =S_.
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Figure 2.4 Schematics of (a) the bulk material, (b) the zero-thickness layer S. and (c) the
zero-thickness layer S;

2.9.1 Governing equations for bulk material

Since the bulk material is made of homogeneous, isotropic, linear elastic material, its
behavior is governed by the classical theory of linear elasticity. By specializing results
developed in sections 2.5 and 2.6 to isolated cracks in infinite media, the weakly singular,
weak-form displacement and traction boundary integral equations in terms of the traction data

t™ and t and the displacement data u™ and u™ on the crack surfaces S; and S_ become
% [ & Uy dsy) =] T W[ UL E-NE ©)dSE)dsy)
+ T, G E-Y)Du* ©)dS @)dS(y) (252)
J B W] HEE-yn @up ©)dsE)ds(y)
—% J, B asy) =], DEW)[, Cry(&-y)D,u" (©)dSE)dS(Y)

+f, DAY, GA G-V (©)dSE)ds(y) (2.53)
+f, GO, HiE=yn (M E)ds@)ds(y)
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where t* =t°+t,°, ™ =u;"-u,’,
kernels {Uj",Grﬁj,C;‘]‘j} for isotropic elastic materials are given explicitly by (2.9), (2.18), and

(2.19), respectively.

t,f‘ ,0°'} are sufficiently smooth test functions, and the

2.9.2 Governing equations for two layers
The two layers S, and S, shown in Figure 2.4(b) and 2.4(c) are considered as

infinitesimally thin membranes adhered perfectly to the bulk material. The behavior of these
two layers is modeled by Gurtin-Murdoch surface elasticity theory by ignoring terms
associated with the surface elastic constants. It has been pointed out by various investigations
that the influence of the surface Lamé constants on the out-of-plane responses in the region
very near the surface is negligibly weak (e.g., Intarit, 2012; Intarit, 2013; Nan and Wang,
2012; Pinyochotiwong et al., 2013). The simplified version of the Gurtin-Murdoch model is
therefore considered suitable for modeling planar crack problems when mode-1 behavior is of
primary interest.

The equilibrium equations, the surface constitutive relations and the strain-

displacement relationship of the layers S and S_ are therefore given by (Gurtin and
Murdoch, 1975; Gurtin and Murdoch, 1978)

O+t +17 =0 (2.54)
Oy =T0,5+7°8,0,,—20°6,+T\U, , , 03, =TU, (2.55)
g, =%(u,+05,) (2.56)
where o7, U7 represent stress, strain and displacement components within the layer. To

construct the weak-form equation, we multiply the equilibrium equation (2.54) with a
sufficiently smooth test function G} and then integrate the result over the entire crack surface

to obtain

[Ga3, 08 + [ Gteds + [ Gitds =0 (2.57)
:

S S

By using the fact that z° is spatially independent, it can be readily verified that 0,5, =0.

With such condition along with carrying out the integration by parts of the first term using the
Gauss-divergence theorem, it leads to

[ 65 05,08 — [ arteds = [ G5o3,n,dS + [ a;tlds (2.58)
:

st as: st

Substituting (2.55) into (2.56) finally yields
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o[ 65 u5,d8 - [ GtdS = [ a3o3,n,dS + [ artPds (2.59)
S/ s N

s¢ S

C

Note that the weak-form equation (2.59) applies to both crack surfaces. For instance, the
weak-form equations for the surface S; and surface S_ can be obtained explicitly by

o [ a5ug5ds - [ ateds = [ a;ogon,ds + [ 67 %ds (2.60)
Sy Se oSy SE

o [ G5us5ds — [ G°dS = [ G5%oon,dS + [ Gt °dS (2.61)
s’ st oy ¢

where superscripts “+” and “-" are added to differentiate quantities defined on each crack

surface. Since the integral equations governing the bulk are derived in terms of the unknown
sum and jump of quantities across the crack surface, it is natural to establish the weak-form
equations governing the surface in terms of the same type of unknowns. This can be readily
accomplished by forming two linear combinations of (2.60) and (2.61) as follows: (i)
choosing G;° =0° =0 and then adding (2.60) to (2.61) and (ii) choosing G'* =0°*=0>
and then subtracting (2.60) from (2.61). Such pair of equivalent weak-form equations is given
by

o [ agussds - [ 67ds = [ o5 ds + [ 67t ds (2.62)
s* st s8¢ S¢

o [ ashusnds — [ ateds = [ as’osan,ds + [ a2 t?ds (2.63)
st st ast st

where superscripts “X£” and “A” indicate the sum and jump of quantities across the crack
surface. It should be remarked further that since the jump of the displacement along the

crack-front vanishes identically, the test function G** is chosen to satisfy the homogeneous
condition G* =0 on 8S. . The weak-form equations (2.62) and (2.63) now take the form

o [ aguss,ds - [ atds = [ gt ds (2.64)
st Se ¢

o [ a5hushds — [ Gpehds = [ gt ds (2.65)
Ss Se Ss

Equations (2.64) and (2.65) constitute a set of weak-form equations governing the unknown

quantities {u’*, t*, u™, t™}. It is worth noting that the formulation presented above is not

restricted only to applied normal traction to the crack surface, although the mathematical
model of the surface is suitable for pure mode-I loading. Due to the vanishing o, ,, the
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equilibrium equation (2.54) indicates that the applied shear traction is transmitted directly to
the crack surface of the bulk material.

2.9.3. Governing equations for whole medium
Since the two layers S and S_ are adhered perfectly to the bulk material, the displacements

and tractions along the interface of the two layers and the bulk material must be continuous.
This yields the following continuity conditions:

ut =u =u’ (2.66)
U= =u =u* (2.67)
=t =t (2.68)
£ =—t" =t (2.69)

Substituting (2.66)-(2.69) into (2.52), (2.53), (2.64) and (2.65) leads to a system of four

equations involving four unknown functions {u®, t*, u”, t}. By choosing appropriate test

functions, (2.53) and (2.65) can be combined and the unknown t* can be eliminated. The

A 2

final system of three equations involving three unknown functions {u®, u*, t*} is given by

aZ(@”,u*) +2(0%, 1) =Z(07)

BE ) A () -B.(T7,uY) =0 (2.70)
~R.(t*,0%) +&£(@ut) =BT

where the additional bilinear integral operators &, 2, & are defined by

Z(XY) = [ X 0)Ys, (V)3 () (2:71)
1

BXCY) =2 [ X, ()Y, ()dS () (2.72)

EXY)=-E (X,Y)+d(XY) (2.73)

where the linear integral operators {%£, &} are defined, in terms of prescribed data t** and
tOA , by

ZX) = [ X O (s () (2.74)

A0 =3[ X O ()S() 2.75)
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CHAPTER 111
NUMERICAL IMPLEMENTATION

This section briefly summarizes numerical procedures adopted to construct numerical
solutions of a set of governing equations (2.32)-(2.34), (2.50), and (2.70), and to post-process
certain quantities of interest such as stress intensity factors, T-stresses, and stress at interior
points. The discretization of all governing equations by standard Galerkin strategy is
discussed first. Then, components essential for numerical evaluation of weakly singular and
nearly singular double surface integrals, evaluations of kernels for general anisotropic
materials, and determination of general mixed-mode stress intensity factors and T-stress are
addressed. Finally, the key strategy for establishing the coupling between the in-house weakly
singular SGBEM code and the reliable commercial finite element package is discussed.

3.1 Discretization

A standard Galerkin strategy is adopted to construct an approximate version of a system of
governing equations (2.32)-(2.34) for SGBEM, (2.50) for SGBEM-FEM coupling, and (2.70)
for consideration of nano-scale influence.

For the case of SGBEM, only the boundary of the domain and/or the crack surface
need to be discretized. In such discretization, interpolation functions constructed locally
based on standard two-dimensional isoparametric C° elements (e.g, 8-node quadrilateral and
6-node triangular elements) are employed throughout to approximate all primary unknowns
except for the jump of the displacement across the crack surface where special 9-node crack-
tip elements are employed to accurately capture its asymptotic behavior near the singularity
zone. Shape functions of these special elements are properly enriched by square-root
functions (resulting from asymptotic expansion of fields in the vicinity of the crack front)
and, in addition, extra degrees of freedom are introduced along the edge of elements adjacent
to the crack front to directly represent the gradient of the relative crack-face displacement
(see details development in the work of Li et al. (1998) and Rungamornrat and Mear
(2008b)). These positive features also enable the calculation of the mixed-mode stress
intensity factors (i.e., mode-1, mode-11 and mode-Ill stress intensity factors) in an accurate
and efficient manner with use of reasonably coarse meshes. Unlike the jump of the
displacement, the sum of the displacement across the crack face is approximated by standard
C? interpolation functions everywhere.

For SGBEM-FEM coupling, the discretization of the governing equations of the
BEM-region is achieved in the same fashion as described above whereas, for the finite
element equations, all primary unknowns are approximated by standard three-dimensional,
isoparametric C° elements (e.g., ten-node tetrahedral elements, fifteen-node prism elements
and twenty-node brick elements). Details of discretization procedure and element-wise
interpolation functions can be found in various literatures (e.g., Oden and Carey, 1984; Bathe,
1990; Belytschko et al., 2000). It is important to note that meshes on the interfaces of the two
regions conform (i.e., the two discretized interfaces are geometrically identical). A simple
means to generate those conforming interfaces is to mesh the FEM-region first and then use
its surface mesh as the interface mesh of the BEM-region. With this strategy, all nodal points
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on both discretized interfaces are essentially coincident. The key advantage of using
conforming meshes is that the strong continuity of the displacement, the traction, and the test
functions across the interface can be enforced exactly and, as a result, the condition £€=0 is
also satisfied in the discretization level. It should be emphasized also that nodes on the
interface of the BEM-region contains six degrees of freedom (i.e., three displacement degrees
of freedom and three traction degrees of freedom) while nodes on the FEM-region contains
only three displacement degrees of freedom.

For the SGBEM-FEM coupling with consideration of surface stress effects, standard
C? interpolation functions are utilized in the approximation of both trial and test functions. In
particular, the following approximation for the test functions and the trial functions is
introduced:

ZU3(p i Py ZUS(q i@ (3.1)
U 3(p-1+iPp u = ZUS(q i@ (3.2)

N ~

ZT (p-+iPp s t = Z g1+ P (3.3)

p=1

where N is the number of nodal points; @, is nodal basis functions at node g; Uf(q_l)w

Ugqnei» and Ty, are nodal degrees of freedom associated with the sum of the

displacement, the jump of the displacement and the sum of the traction across the crack

surfaces, respectively; and U;fp i US(p .0 and Ts(p ). are arbitrary nodal quantities.
Substituting (3.1)-(3.3) into (2.70) along with using the arbitrariness of U3(p i US(p—1)+i ,and

Tg(pfl)+i , leads to a system of linear algebraic equations

A B 07(u*] (R
BT C DT !={0 (3.4)
0o D' E||U*| [R

where the sub-matrices A,B,C,D,E are associated with the bilinear operators &, %, 4,%,&
; sub-vector R,,R, correspond to the linear operators £, ; U™ is vector of nodal

quantities of the sum of the displacement; U* is vector of nodal quantities of the jump of the
displacement and T*> is vector of nodal quantities of the sum of the traction. The sub-
matrices A, B, C, D, E and sub-vectors R;,R, are given explicitly by

ALkt essto 19 = Jy, P (g, (1)IS(Y) (35)

[Blseia 91 = [, AP, (NP (NI () (36)
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[Chip syist0-01 = [ Po (. U} (€ = V)P ()dS(£)dS(y) (3.7)

DLy 1yi5t0 11 = =g Pp ()] Gry (€ = Y)D, @ (£)dS(§)dS ()
+o @] Hiy (€ =)0, ()0, ()dS (§)dS(y)

[E]a(p—1)+i,3(q—1)+j = _J. : D®, (y)J.sg Cr:j (&-Y) D, P, (£)dS(&)dS(y) + [A]a(p—1)+i,3(q—1)+j (3.9)

(3.8)

1
[Riksipi =5 . @5 ()AS() (3.10)
1
Rk i =5 [, @ 0" (1)AS() (3.11)
[UE]3(q*1)+i - U?:z(qfl)+i , [UA]3(qfl)+i - U?:A(qfl)+i ; [Tz]a(qui =T3?q—1)+i (3.12)

3.2 Numerical integration

For the finite element equations, all integrals arising from the discretization of the weak-form
equation contain only regular integrands without the kernel and, as a result, they can be
efficiently and accurately integrated by standard Gaussian quadrature. In the contrary,
numerical evaluation of integrals arising from the discretization of the boundary integral
equations is nontrivial since it involves the treatment of three types of double surface
integrals (i.e., regular double surface integrals, weakly singular double surface integrals and
nearly singular double surface integrals). The regular double surface integral arises when it
involves a pair of remote outer and inner elements (i.e., the distance between any source and
field points is relatively large when compared to the size of the two elements). This renders
its integrand nonsingular and well-behaved and, as a result, allows the integral to be
accurately and efficiently integrated by standard Gaussian quadrature.

The weakly singular double surface integral arises when the outer surface of
integration is the same as the inner surface. For this particular case, the source and field
points can be identical and this renders the integrand singular of order 1/r. While the integral
of this type exists in an ordinary sense, it was pointed out by Xiao (1998) that the numerical
integration by Gaussian quadrature becomes computationally inefficient and such inaccurate
evaluation can significantly pollute the quality of approximate solutions. To circumvent this
situation, a series of transformations such as a well-known triangular polar transformation
and a logarithmic transformation is applied first both to remove the singularity and to
regularize the rapid variation of the integrand. The final integral contains a nonsingular
integrand well-suited to be integrated by Gaussian quadrature. Details of this numerical
quadrature can be found in the work of Li and Han (1985), Hayami and Brebbia (1988) and
Xiao (1998).

The most challenging task is to compute nearly singular integrals involving relatively
close or adjacent inner and outer elements. Although the integrand is not singular, it exhibits
rapid variation in the zone where both source and field points are nearly identical. Such
complex behavior of the integrand was found very difficult and inefficient to be treated by
standard Gaussian quadrature Xiao (1998). To improve the accuracy of such quadrature, the
triangular polar transformation is applied first and then a series of logarithmic transformations
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is adopted for both radial and angular directions to further regularize the rapid-variation
integrand. The resulting integral was found well-suited for being integrated by standard
Gaussian quadrature (e.g., Hayami, 1992; Hayami and Matsumoto, 1994; Xiao, 1998).

3.3 Evaluation of kernels

To further reduce the computational cost required to form the coefficient matrix contributed
from the BEM-region, all involved kernels n(E)HP(E-Yy), m(Y)HPE-Y), UP(E-Y),

GnE-Y), Cr‘r‘fj (§—y) must be evaluated in an efficient manner for any pair of source and
field points {&,y}. For the first two kernels n;(§)H;(E~y) and n,(y)H; (E~Y), they only

involve the calculation of a unit normal vector n and the elementary function H;”. This can

readily be achieved via a standard procedure. For the last three kernels, the computational
cost is significantly different for isotropic and anisotropic materials. For isotropic materials,
such kernels only involve elementary functions and can therefore be evaluated in a

straightforward fashion. On the contrary, the kernels U (-y), G;(§-Y) and Cfn"j (&—y)for

general anisotropy are expressed in terms of a line integral over a unit circle (see equations
(2.7), (2.16a) and (2.16b)). Direct evaluation of such line integral for every pair of points
(&, y) arising from the numerical integration is obviously computationally expensive. To

avoid this massive computation, a well-known interpolation technique (e.g., Rungamornrat
and Mear, 2008b; Rungamornrat and Mear, 2011) is employed to approximate values of those
kernels. Specifically, the interpolant of each kernel is formed based on a two-dimensional
grid using standard quadratic shape functions. Values of kernels at all grid points are obtained
by performing direct numerical integration of the line integral via Gaussian quadrature and
then using the relations (2.7), (2.16a) and (2.16b). The accuracy of such approximation can
readily be controlled by the refinement of the interpolation grid.

3.4 Determination of stress intensity factors and T-stresses

Stress intensity factors and T-stresses are quantities that play an important role in linear
elastic fracture mechanics in the prediction of crack growth initiation and propagation
direction and also in the fatigue-life assessment. This fracture data provides a complete
measure of the dominant behavior of the stress field in a local region surrounding the crack
front. To obtain highly accurate stress intensity factors and T-stresses, we supply the
proposed numerical technique with two crucial components, one associated with the use of
special crack-tip elements to accurately capture the near-tip field and the other corresponding
to the use of an explicit formula to extract such fracture data. The latter feature is a direct
consequence of the extra degrees of freedom being introduced along the crack front to
represent the gradient of relative crack-face displacement and the finite in-plane strain
components local to the crack front. Once a discretized system of algebraic equations is
solved, nodal quantities along the crack front and nodal sum of the displacement on the crack-
tip elements are extracted and then post-processed to obtain the stress intensity factors and T-
stresses, respectively.

An explicit expression for the mixed-mode stress intensity factors in terms of nodal
data along the crack front, local geometry of the crack front, and material properties is shown
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briefly below (details of the development can be found in the work of Li et al. (1998) for
cracks in isotropic media and Rungamornrat and Mear (2008b) for cracks in general
anisotropic media).

Consider a crack-tip element located along the crack front where x. denotes the
coordinate of a node located on the crack front, {Xc; X1, X2, X3} is a local Cartesian coordinate
system with origin at x. and {e;, e,, es} be a set of orthonormal base vectors as shown
schematically in Figure 3.1.

e

%
3 \
Figure 3.1 Schematic of crack-tip element and local coordinate system for calculation of

stress intensity factors and T-stresses

The mode-1, mode-I1, and mode-11 stress intensity factors, denoted by {K, K, K}, are
defined by

K, Oy

K, = lim 27x <o, (3.13)
% —0"

K O3

where the quantities {o»,, o012, o3} are components of the stress tensor with respected to the
local Cartesian coordinate system. While the definition (3.13) is fundamental, it is not well-
suited within the context of a weakly singular SGBEM. This is due to that certain components
of the generalized stress ahead of the crack front must be post-processed and that the limit
must properly be carried out.

An alternative expression of the stress intensity factors equivalent to the definition
(3.13), in terms of the relative crack-face displacement data in the neighborhood of the crack
front, was proposed by Xu (2000) for general anisotropic materials. Such expression is given
explicitly by
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L \/“p(x)}
kj(X;)=— B,p( )l (3.14)
—X

where k, =K, , k, =K, , k; =K, and

2z

ij(xc)=i [[(aa), —(ab),(b.b)(b,a), [ (3.15)

0

inwhich a and b are orthonormal vectors contained in the x, —X, plane, (a,b);, =a,E b,

n —njml
¢ is an angle between the vectors a and e, as indicated in Figure 3.1, and Au, denote the

relative crack-face displacement. It is worth noting that components of all quantities
appearing in (3.14) and (3.15) are taken with respect to the local coordinate system defined at

point X, . By exploiting Taylor series expansion along with the crucial feature of the crack-tip
element, the expression (3.14) can further be simplified to

T *
kK, (x.)= /mBJP(xC)uP(xC) (3.16)

where £ is angle satisfying sin S =—¢, &,,
0 0) = YUl (E-D) (317)
= Zrc (gc,_l)H , (3.18)
n
1 or, B
e, =30y D, (3.19)
r.(&n) =x(& n)-x., (3.20)

with (&,,-1) denotmg the natural coordinates of X, and u;,, representing the components of

nodal data at the i node, u(,), with respect to the local coordinate system. It is important to
point out that the formula (3.16) allows the stress intensity factors to be computed only in
terms of the data at nodes located on the crack front. This is due to the fact that ;(&,,—1)

vanishes for nodes not on the crack front.

The T-stresses along the crack front, referring to the local coordinate system shown in
Figure 3.1, contains three independent components denoted by Ti1, T3z and T13 where the first
two components are termed the normal T-stresses and the last one is a shear T-stress. Values

of the T-stresses T11, Ta3 and T3 at the point X, can be related to the finite part of the strain

tensor at the limiting point of the point X, on the crack surface, denoted by &, , via the stress-
strain relation:
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T = Bjadu (3.21)

1

where T;; = Tj;, &j = g, the components T2, T12 and T3 are known and equal to the prescribed
traction at a limiting point of the point X_on the crack surface. The components &1, &3 and

&3 can be computed from the information of the sum of the displacement across the crack
surface in the neighborhood of the point X, via the following relations

oxu, 10Xu

1

— = lim 1 3.22
o= lim = (%) (3.22)

oxu, 10zu

= | = 3.23

ZHX OXy 2 0Xq x, ) (3.23)

e = Liim {82u1+82u3}:£{62u o3u, }( B (3.24)

4rox | OXg  OX 41 0x;  OX

The derivatives involved in the expressions (3.22)-(3.24) can readily be computed within the
crack-tip elements. By using the prescribed information of T, T12 and T,3 and the computed
strain components &1, &3 and &3, the unknown strain components &, &2 and &3 and the T-
stresses Ti1, Ta3 and Ty3 at the point X, can be determined by solving a system of six linear

algebraic equations (3.21).

3.5 Coupling of SGBEM and commercial FE package

To further enhance the modeling capability of the SGBEM-FEM coupling, the weakly
singular SGBEM can be coupled with a reliable commercial finite element package that
supports user-defined subroutines. The key objective is to exploit available vast features of
such FE package (e.g., mesh generation, user-defined elements, powerful linear and nonlinear
solvers, and various material models, etc.) to treat a complex, localized FEM-region and
utilize the SGBEM in-house code to supply information associated with the majority of the
domain that is unbounded and possibly contains isolated discontinuities.

In the coupling procedure, the governing equation for the BEM-region is first
discretized into a system of linear algebraic equations. The corresponding coefficient matrix
and the vector involving the prescribed data are constructed using the in-house code and they
can be viewed as a stiffness matrix and a load vector of a ‘super element’ containing all
degrees of freedom of the BEM-region. This piece of information is then imported into the
commercial FE package via a user-defined-subroutine channel and then assembled with
element stiffness matrices contributed from the discretized FEM-region. Since meshes of both
interfaces (one associated with the BEM-region and the other corresponding to the FEM-
region) are conforming, the assembly procedure can readily be achieved by using a proper
numbering strategy. Specifically, nodes on the interface of the BEM-region are named
identical to nodes on the interface of the FEM-region (associated with the same displacement
degrees of freedom). It is important to emphasize that all interface nodes of the BEM-region
possess six degrees of freedom (i.e. three displacement degrees of freedom and three traction
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degrees of freedom) but there are only three (displacement) degrees of freedom per interface
node of the FEM-region. To overcome such situation, each interface node of the BEM-region
is fictitiously treated as double nodes where the first node is chosen to represent the
displacement degrees of freedom and is numbered in the same way as its coincident interface
node of the FEM-region whereas the second node is chosen with different name to represent
the traction degrees of freedom. With this particular scheme, the assembling procedure
follows naturally that for a standard finite element technique.

Once the coupling analysis is complete, nodal quantities associated with the BEM-
region are extracted from the output file generated by the FE package and then post-processed
for quantities of interest. For instance, the displacement and stress within the BEM-region can
readily be computed from the standard displacement and stress boundary integral relations
presented in sections 2.5 and 2.6, and the stress intensity factors and T-stresses can be
calculated using an explicit expression proposed in section 3.4.
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CHAPTER IV
NUMERICAL RESULTS

To demonstrate the accuracy and capabilities of the SGBEM and SGBEM-FEM coupling
with and without consideration of nano-scale influence, extensive numerical experiments on
various boundary value problems involving finite and infinite bodies.

4.1 Results from SGBEM

Problems with existing analytical solutions are considered first. These problems serve not
only to verify the formulation of governing equations and its numerical implementation but
also as a means to investigate the dependence of the numerical solutions on mesh refinement.
The method is then applied to solve more complex boundary value problems. Analytical
solutions to these problems are not available, and they may be of little direct technological
relevance. They are chosen for analysis here simply because the additional complexity
introduced by the crack configurations and geometry of the body allows us to further explore
the effectiveness of the proposed technique for solving complex problems.

4.1.1 Penny-shaped crack in isotropic elastic medium under remote loading

Consider an isolated penny-shaped crack of radius a embedded in an infinite medium as
shown in Figure 4.1.1. The medium is subjected to either remote uniaxial tension or remote
pure bending (see Figure 4.1.1). In the analysis, the material is chosen to be isotropic, linearly
elastic with Young’s modulus E and Poisson ratio v =0.3 in order to allow the comparison
with the analytical solutions proposed by Wang (2004). To demonstrate the convergent
behavior of numerical results for both stress intensity factors and T-stresses, three meshes
shown in Figure 4.1.2 are adopted in the numerical study.

3

e
fxs“fcl)/'//x A

X, X
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(a) (b)

Figure 4.1.1 Schematic of penny-shaped crack in infinite medium under (a) remote uniaxial
tension and (b) remote pure bending
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Mesh-1 Mesh-2 Mesh-3

Figure 4.1.2 Three meshes adopted in the analysis of penny-shaped crack under uniformly
distributed pressure

The mode-1 stress intensity factor K; and the normal T-stress T;; obtained from the
three meshes for the remote uniaxial tension loading condition are reported in Table 4.1.1.
The computed results are normalized by the following exact solution obtained from the work

of Wang (2004): K, ... =20,val/z and T, =—(1+2v)o, /2. It is evident from this set

11,exact
of results that numerical solutions for both the stress intensity factors and the T-stresses show
excellent agreement with the benchmark solution. In particular, the coarsest mesh with only 8
elements yield the results with error less than 1%. The highly accurate feature results directly
from the use of special crack-tip elements along the crack tip to accurately capture the jump
of the displacement across the crack surface in the vicinity of the crack boundary. For the
medium subjected to remote pure bending, both the mode-I stress intensity factor and the
normal T-stress varies as a function of position along the crack front. The normalized mode-I
stress intensity factors obtained from the three meshes are reported in Figure 4.1.3 whereas
the normalized normal T-stress are shown in Figure 4.1.4 along with the following solution

provided by Wang (2004): K =40, \alrcosf/3 and T, =—(3/4+vI2)o,c0s0.

| ,exact 1,exact

Table 4.1.1 Normalized mode-I stress intensity factors and normal T-stress T;; for isolated
penny-shaped crack subjected to remote uniaxial tension. Results are reported for v =0.3.

Mesh Ki 1K, et T Ty vt
1 0.9949 0.9917
2 1.0003 0.9984
3 1.0006 0.9978

4.1.2 Penny-shaped crack in transversely isotropic medium under uniform pressure

To demonstrate the capability of the technique to treat material anisotropy, let us consider a
similar problem of penny-shaped crack of radius a embedded in a transversely isotropic,
infinite medium as shown schematically in Figure 4.1.1. Non-zero material constants are
chosen to be B = 16.09X106 Si, B0 = 3.35X106 pSi, Ei133 = .."-).(:)lX:I.(.-)6 pSi, Ezzzz =
6.10x10° psi, and Ej313 = 3.83x10° psi. In the analysis, the same three meshes illustrated in
Figure 4.1.2 are employed to investigate the convergence of numerical solutions.
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Exact solution

Mesh-3

Mesh-2

K, Mesh-1
oa

0

Figure 4.1.3 Normalized mode-I stress intensity factor versus angular coordinate for penny-
shaped crack in isotropic infinite medium under remote pure bending

Exact solution
Mesh-3
Mesh-2
Mesh-1

0

Figure 4.1.4 Normalized normal T-stress versus angular coordinate for penny-shaped crack in
isotropic infinite medium under remote pure bending
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The mode-1 stress intensity factor K, and the normal T-stress Ty; obtained from the
three meshes are reported in Table 4.1.2. The computed results for mode-1 stress intensity
factors are normalized by the closed form solution presented by Fabrikant (1989):

K| et = 20,Va/ 7 . For the case of normal T-stress, the computed solutions are normalized

by that obtained from the finest mesh (i.e., Mesh-3) since the analytical solution for such
quantity cannot be found in the literature. It is evident that the proposed technique yields
highly accurate stress intensity factor although the coarse mesh with only few degrees of
freedom has been employed. Similarly, results for the normal T-stress shows the good
convergence with only weak dependence on the level of mesh refinement.

Table 4.1.2 Normalized mode-I stress intensity factors and normal T-stress Ty; for isolated
penny-shaped crack embedded in transversely isotropic medium and subjected to uniform
pressure

Mesh K, 1K, et T/ Tt vesn-s
1 0.9913 0.9897
2 0.9984 0.9948
3 0.9997 1.0000

4.1.3 Influence of thickness on stress intensity factors
Once accuracy and convergence of the implemented SGBEM has been fully tested, it is
applied to solve various complex fracture problems. Here, the technique is utilized to
investigate the influence of the thickness of a body on the value and distribution of the stress
intensity factor along the crack front.

Consider a particular cracked body with its configuration similar to a compact tension
(CT) testing specimen. ASTM E399-90 (1997) has recommended the geometries of the CT

specimen in the experiment for the plane strain fracture toughness K, as shown in Figure

4.1.5. The ratio between the crack length a (measured from the center of each hole to the
crack front) and the specimen width W (measured from the center of each hole to the back
face of the specimen) must be chosen in the range of 0.45 to 0.55 and the thickness is
recommended to be 0.5W . The entire width (measured from the back face to the front face) is
equal to1.25W . A pair of equal and opposite loads is to be applied at the holes of radius
0.25W to open the crack. The distance between the center of each hole and the crack plane is
equal to 0.275W and the distance from the crack plane to the top and bottom surface of the
specimen is equal to 0.6W . Details of a small starter notch in front of the crack plane can be
found in ASTM E399-90 (1997). In the modeling, we choose a configuration as shown in
Figure 4.1.6 to represent the CT specimen shown in Figure 4.1.5. The difference between this
model and the actual CT specimen is due to the removal of the notch and then replacing it by
a through-the-thickness crack. It is worth noting that this simplification should not
significantly alter the behavior of the problem but substantially reduces the meshing effort. In
the analysis, we choose a/W =0.5 and the thickness of the specimen is varied in order to
investigate its influence on the distribution of the stress intensity factor. The applied loads at
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both holes are assumed to be uniformly distributed over the upper part of the upper hole and
the lower part of the hole.

X3

0.6W

X,

10.275W |0.275W |
1.2W

0.6W

1

w
1.25W

Figure 4.1.5 Configuration of compact tension (CT) specimen recommended by ASTM
E399-90 (1997)
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Figure 4.1.6 Configuration of compact tension (CT) specimen used in the analysis
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In the construction of a finite element mesh on the boundary of the CT specimen and
the crack surface, the number of distorted elements and elements with a large aspect ratio is
minimized, a finer mess is utilized in regions where fields are anticipated to be complex such
as regions near the crack front and vertices, and a mesh with smooth transition is employed to
connect the fine mesh region and the coarse mesh region. Three types of elements are utilized
in the discretization of the CT specimen: (i) standard 6-node triangular elements and standard
8-node quadrilateral elements, (ii) 9-node quadrilateral crack-tip elements, and (iii) special 9-
node quadrilateral elements. More specifically, elements in the second category are utilized
only along the entire crack front whereas on the front and back faces of the specimen, two
elements of the last type must be used to connect the crack-tip element and the standard
elements. The remaining boundary and crack surface are discretized by elements in the first
category.

In the present study, three meshes, a coarse mesh denoted by Mesh-1, a medium mesh
denoted by Mesh-2 and a fine mesh denoted by Mesh-3, are constructed as shown in Figures
4.1.7-4.1.9 for a specimen of thickness t/a=1. In the analysis, we consider three different
materials, one associated with an isotropic material with Poisson’s ratio v =0.30 and the
other two corresponding to the transversely isotropic material with elastic constants chosen to
be those for zinc and cadmium as given in Table 4.1.3. It should be noted that for the last two
materials, the axis of material symmetry is chosen to direct perpendicular to the crack surface.

Table 4.1.3 Elastic constants (GPa) for zinc and cadmium. The axis of material symmetry is
taken to direct along the xs-coordinate direction.

Materials Ellll E1122 E1133 E3333 E1313
Zinc 161 34.2 50.1 61 38.3
Cadmium 115.8 39.8 40.6 51.4 20.4
| ]
NEN |
Crack surface Holes

Figure 4.1.7 Coarse mesh or Mesh-1 for CT specimen thickness t/a=1
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Crack surface Holes

Figure 4.1.8 Medium mesh or Mesh-2 for CT specimen thickness t/a =1

Crack surface

Figure 4.1.9 Fine mesh or Mesh-3 for CT specimen thickness t/a =1
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Numerical results for the mode-I stress intensity factor along the crack front are reported for
three materials and three meshes in Figure 4.1.10. It is evident that results obtained from the
Mesh-2 and Mesh-3 are almost identical while those from the Mesh-1 exhibit slight
difference especially very near the vertices where the stress intensity factor drops very
rapidly. This should imply the rapid convergence and the weak dependency on the level of
mesh refinement for both isotropic and anisotropic cases. Next, we investigate the
convergence behavior of numerical results for the same specimen but with the thickness
t/a=4. Meshes used in the analysis for this particular case are obtained by simply scaling
coordinates in the direction along the thickness of the three meshes shown in Figures 4.1.7-
4.1.9. Again, results of the mode-I stress intensity factor (see Figure 4.1.11) lead to the same
conclusion as the previous case and, in particular, stretching meshes in the thickness direction
by four times still does not alter the convergence characteristic of the numerical solutions. It
is worth noting that approximate solutions of this high quality can be achieved via the use of
relatively coarse meshes due mainly to the application of special crack-tip elements along the
crack front. Since the medium mesh and the fine mesh yields results of comparable accuracy
while the latter consumes substantially more computational time, a level of refinement similar
to that for the former mesh will be used in the construction of meshes for a CT specimen of
other thicknesses in the parametric study to explore the behavior of the stress intensity factor.

11
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Figure 4.1.10 Normalized mode-I stress intensity factor along the crack front for CT
specimen thickness t/a =1. Results are reported for three meshes and three materials and s
denotes the distance measured from the center of the crack front.
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Figure 4.1.11 Normalized mode-I stress intensity factor along the crack front for CT
specimen thickness t/a=4. Results are reported for three meshes and three materials and s
denotes the distance measured from the center of the crack front.

To verify the numerical results obtained from the weakly singular SGBEM,
comparisons with existing benchmark solutions for a two-dimensional plane strain case and
for isotropic materials are performed. Consider a CT specimen of sufficiently large thickness
to ensure the existence of a plane strain condition in the central region of the crack front.
Numerical results obtained from a mesh with the same level of refinement as the medium
mesh shown in Figure 4.1.8 are reported along with the plane strain solution proposed by
ASTM E399-90 (1997) in Figure 4.1.12 for Poisson ratio v =0.1 and in Figure 4.1.13 for
Poisson ratio v =0.3. It is evident that the SGBEM solutions (in the region exhibiting the
plane strain condition) show very good agreement with the benchmark solution. Besides this
verification, it should be noted that extensive verification of the weakly singular SGBEM and
its formulation used in the present study was already performed by Li et al. (1998) and
Rungamornrat and Mear (2008b) for various crack problems associated with both isotropic
and transversely isotropic media.

To construct meshes for the CT specimen of various thicknesses, the medium mesh
for t/a =1 shown in Figure 4.1.8 is used as a prototype. Two following simple strategies, (i)
mesh stretching along the crack front direction and (ii) adding an inner layer, are employed.
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The mesh stretching is applied first to obtain a series of meshes for several thicknesses

without adding nodes and elements but simply scaling

the coordinate along the crack front.
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Figure 4.1.12 Normalized mode-I stress intensity factor along the crack front for CT
specimen for sufficiently large thicknesses along with the plane strain solution from ASTM
E399-90 (1997). Results are reported for isotropic material with v =0.1 and s denotes the

distance measured from the center of the crack front.
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Figure 4.1.13 Normalized mode-I stress intensity factor along the crack front for CT
specimen for sufficiently large thicknesses along with the plane strain solution from ASTM
E399-90 (1997). Results are reported for isotropic material with v =0.3 and s denotes the

distance measured from the center of the crack front.
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To explore the influence of the specimen thickness and material constants on the
behavior of the stress intensity along the crack front for the isotropic case, we perform the

analysis for various thicknesses t/ae{1,2,3,4,5,10,20,40} and several values of Poisson’s

ratio v €{0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} for each thickness. It
should be noted that the stress intensity factor exhibits material dependence only on the
Poisson’s ratio v not the Young’s modulusE. The normalized mode-l stress intensity

factors, denoted by K,t\/W/ P, is reported as a function of the normalized distance along the

crack front, denoted by s/t, in Figure 4.1.14 for v =0, Figure 4.1.15 for v =0.10, Figure
4.1.16 for v =0.30, and Figure 4.1.17 for v =0.50. For each plot, the plane strain stress
intensity factor proposed by ASTM E-399 is also reported to allow the comparison and
discussion. From this set of results, following findings are summarized.

For Poisson’s ratio v =0, the plane strain condition dominates the entire crack front
with no regard of the specimen thickness and, in addition, the computed results exhibit
excellent agreement with the benchmark solution except in the region close to the surface
breaking points. The slightly oscillated behavior of numerical solutions observed in that
region is due to the fact that the (reduced-order) special crack-tip element and the adjacent
modified boundary element containing the vertices cannot accurately capture the asymptotic
field. Note in addition that the stress field at the vertex, for this particular case, is singular of
the same order as that for the interior point of the crack front. For small Poisson’s ratio (i.e.
v <0.1), the stress intensity factor varies along the crack front but such variation is still
insignificant for all thicknesses considered. The rapid decrease of the stress intensity factor is
observed in the neighborhood of the surface breaking point. This implies that the singularity

of the stress field at the vertex is of order less than 1/\/F.

tla=1 t/a=10
K, tvW
P tla=2 —tla=20
t/a=3 — t/a=140
ta=4 e ASTM E-399
tla=5

s/t

Figure 4.1.14 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various thicknesses and v =0
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Figure 4.1.15 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various thicknesses and v =0.1
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Figure 4.1.16 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various thicknesses and v =0.3
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Figure 4.1.17 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various thicknesses and v = 0.5

For moderate and large Poisson’s ratio (i.e. v >0.2), the variation of the stress
intensity factor across the thick becomes more significant and depends primarily on the
specimen thickness. For a specimen with small thickness (i.e. t/a<5), the stress intensity
factor attains its maximum value at the center of the crack front and monotonically decreases
to zero at the two vertices. The slight rate of decrease is observed for the majority of the crack
front except in a layer near the outer boundary where the rapid drop occurs. In addition, the
three-dimensional analysis yields the stress intensity factor higher than the plane strain value
for a large portion of the crack front. For a specimen with sufficiently large thickness (i.e.
t/a>10), the stress intensity factor starts to converge to the plane strain value in the central
region of the crack front and the converged zone spreads towards the vertices as the thickness
increases. For a specimen with the maximum thickness t/a =40, the plane strain dominated
zone covers more than 70% of the crack front for all values of Poisson’s ratio treated.

To additionally demonstrate the influence of the Poisson’s ratio on both the
distribution and magnitude of the stress intensity factor across the thickness, we create
different plots between Klt\/VV/ P and s/t by fixing the specimen thickness but varying the
Poisson’s ratio. Results are reported in Figure 4.1.18 for a thinnest specimen (t/a=1), in
Figure 4.1.19 for t/a =5, in Figure 4.1.20 for t/a =10, and in Figure 4.1.21 for t/a=40. It
can be concluded from these plots that the thickness of a specimen significantly affects the
characteristic of the distribution (i.e. shape) of the stress intensity factor along the crack front
while the Poisson’s ratio only influence its magnitude. More specifically, the larger the
Poisson’s ratio, the higher the stress intensity factor is observed.
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Figure 4.1.18 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various Poisson’s ratios and t/a =1
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Figure 4.1.19 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various Poisson’s ratios and t/a =5
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Figure 4.1.20 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various Poisson’s ratios and t/a =10
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Figure 4.1.21 Normalized mode-I stress intensity factor versus the normalized distance along
the crack front for various Poisson’s ratios and t/a =40

48



4.2 Results from SGBEM-FEM coupling

As a means to verify both the formulation and the numerical implementations of the SGBEM-
FEM coupling, numerical experiments are first carried out for boundary value problems in
which the analytical solution exists. In the analysis, a series of meshes is adopted in order to
investigate both the convergence and accuracy of the numerical solutions. Once the method is
tested, it is then applied to solve more complex boundary value problems in order to
demonstrate its capability and robustness. For brevity of the presentation, a selected set of
results are reported and discussed as follows.

4.2.1 Isolated spherical void under uniform pressure

Consider an isolated spherical void of radius a embedded in a three-dimensional infinite
medium as shown schematically in Figure 4.2.1(a). The void is subjected to uniform pressure
G,. In the analysis, two constitutive models are investigated: one associated with an
isotropic, linearly elastic material with Young’s modulus E and Poisson ratio v=0.3 and
the other chosen to represent an isotropic hardening material obeying J,-flow theory of
plasticity (e.g., Lubiliner, 1990). For the latter material, the uniaxial stress-strain relation is
assumed in a bilinear form with E; and E, denoting the modulus in the elastic regime and
the modulus of the hardening zone, respectively, and o, and ¢, denoting the initial yielding

stress and its corresponding strain, respectively.

[ ; I
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Figure 4.2.1 (a) Schematic of three-dimensional infinite medium containing spherical void
and (b) schematic of BEM-region and FEM-region

To test the coupling technique, we first decompose the body into two regions by a
fictitious spherical surface of radius 5a and centered at the origin as shown by a dashed line
in Figure 4.2.1. It is important to remark that such a surface must be chosen relatively large
compared to the void to ensure that the inelastic zone that may exist (for the second
constitutive model) is fully contained in the FEM-region. In the experiments, three different
meshes are adopted as shown in Figure 4.2.2. Although meshes for the BEM-region are not
shown, they can simply obtain from the interface meshes of the FEM-region. As clearly
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illustrated in the figure, mesh-1, mesh-2 and mesh-3 consist of 12, 32, 144 boundary elements
and 24, 128, 1152 finite elements, respectively.

mesh-1 mesh-2

Figure 4.2.2 Three meshes adopted in the analysis for FEM-region; meshes for BEM-region
are identical to the interface mesh of FEM-region

4.2.1.1 Results for isotropic linearly elastic material

For linear elasticity, this particular boundary value problem admits the closed form solution
(e.g., Sokolnikoff, 1956). Since the problem is spherically symmetric, only the radial
displacement u, and the normal stress components {c,c,,,G,,} are non-zero and they are

given explicitly by (note that these quantities are referred to a standard spherical coordinate
system {r,0,¢} with its origin located at the center of the void)

1+v a°
Ur(r)ZEGOF (421)

04() =20,(1) = 20,,1) =0, @22)

This analytical solution is employed as a means to validate the proposed formulation and the
numerical implementation. Numerical solutions for the radial displacement obtained from the
three meshes are reported and compared with the exact solution in Figure 4.2.3. As evident
from this set of results, the radial displacement obtained from the mesh-2 and the mesh-3 is
highly accurate with only slight difference from the exact solution while that obtained from
the mesh-1 is reasonably accurate except in the region very near the surface of the void. The
discrepancy of solutions observed in the mesh-1 is due to that the level of refinement is too
coarse to accurately capture the geometry and responses in the local region near the surface of
the void.

We further investigate the quality of numerical solutions for stresses. Since all non-
zero stress components are related by equation (4.2.2), only results for the radial stress
component are reported. Figure 5 shows the normalized radial stress obtained from the three
meshes and the exact solution versus the normalized radial coordinate. It is observed that the
mesh-3 yields results that are almost indistinguishable from the exact solution, whereas the
mesh-1 and mesh-2 give accurate results for relatively large r and the level of accuracy
decreases as the distance r approachesa. It is noted by passing that the degeneracy of the
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accuracy in computing stress is common in a standard, displacement-based, finite element
technique.

0.70
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Figure 4.2.3 Normalized radial displacement versus normalized radial coordinate for
isotropic, linearly elastic material with v =0.3
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Figure 4.2.4 Normalized radial stress versus normalized radial coordinate for isotropic,
linearly elastic material with v =0.3
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To demonstrate the important role of the SGBEM in the treatment of an unbounded
part of the domain instead of truncating the body as practically employed in the finite element
modeling, we perform another FE analysis of the FEM-region alone without coupling with
the BEM-region but imposing zero displacement condition at its interface. The radial
displacement and the radial stress obtained for this particular case using the mesh-3 are
reported along with the exact solution and those obtained from the coupling technique in
Figures 4.2.5 and 4.2.6, respectively. As evident from these results, numerical solutions
obtained from the FEM with a domain truncation strategy deviate from the exact solution
when it moves close to the truncation surface while the proposed technique yields almost
identical results to the exact solution. The concept of domain truncation to obtain a finite
body is simple but it still remains to choose a proper truncation surface and boundary
conditions to be imposed on that surface to mimic the original boundary value problem. This
coupling technique provides an alternative to treat the whole domain without any truncation
and difficulty to treat the remote boundary.

4.2.1.2 Isotropic hardening material
For this particular case, we focus attention to the material with no hardening modulus (i.e.,

E, =0) since the corresponding boundary value problem admits the closed form solution. For
a sufficiently high applied pressurec,, a layer close to the boundary of the void become
inelastic and the size of such inelastic zone (measured by the radius r,) becomes larger as o,

increases. By incorporating J,-flow theory of plasticity and spherical symmetry, the radial
displacement and the radial stress can be obtained exactly as given below.

0.70
0.60 F
050 |

LE 0% - 4 Domain truncation

Gr - g o Current technique

0 3 .
030F Exact solution
020
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E Lo Lo Lo : .S AN

0090 1.0 2.0 3.0 4.0 5.0 6.0

r/a

Figure 4.2.5 Normalized radial displacement versus normalized radial coordinate for
isotropic, linearly elastic material with v =0.3. Results are obtained from mesh-3 for both
the coupling technique and the FEM with domain truncation.
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Figure 4.2.6 Normalized radial stress versus normalized radial coordinate for isotropic,
linearly elastic material with v = 0.3. Results are obtained from mesh-3 for both the coupling
technique and the FEM with domain truncation.
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where the Poisson ratio v is taken to be 0.3 and r, = ae[z“y 3] is the radius of an inelastic
zone. In the analysis, the pressure o, =1.625c, is chosen to ensure that the medium contains

an inelastic zone; in fact, this selected applied pressure corresponds tor, =1.615a. Numerical

results obtained from the current technique are reported along with the exact solution in
Figure 4.2.7 for the normalized radial displacement and in Figure 4.2.8 for the normalized
radial stress. It can be concluded from computed solutions that they finally converge to the
exact solution as the mesh is refined. In particular, results obtained from the mesh-3 are
nearly indistinguishable from the benchmark solution. It should be pointed out that results
obtained from the same level of mesh refinement for this particular case are less accurate than
those obtained for the linear elasticity case. This is due to complexity posed by the presence
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of an inelastic zone near the surface of the void and, in order to capture this behavior
accurately, it requires sufficiently fine meshes.
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Figure 4.2.7 Normalized radial displacement versus normalized radial coordinate for isotropic
hardening material with E, =0
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Figure 4.2.8 Normalized radial stress versus normalized radial coordinate for isotropic
hardening material with E, =0
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4.2.2 Isolated penny-shaped crack in infinite medium
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Figure 4.2.9 (a) Schematic of infinite medium containing penny-shaped crack, (b) crack
under uniform normal traction c,,, and (c) crack under uniform shear traction t,

Consider, next, a penny-shaped crack of radius a which is embedded in a linearly elastic,
infinite medium as shown schematically in Figure 4.2.9(a). The body is made of either an
isotropic material with Poisson’s ratio v = 0.3 or zinc and graphite-reinforced composite.
The last two materials are transversely isotropic with the axis of material symmetry directing
along the xz-axis and their elastic constants are given in Table 4.2.1. The crack is subjected to

two types of traction boundary conditions: the uniform normal traction o, (i.e.t; =t, =0, t3 =
G,) as shown in Figure 4.2.9(b) and the uniform shear traction t, along the x;-axis (i.e. t; =
Ty, t2 = t3 = 0) as shown in Figure 4.2.9(c).
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Figure 4.2.9 (a) Schematic of selected FEM-region and the remaining BEM-region and (b)
three meshes adopted in the analysis
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Table 4.2.1 Non-zero elastic constants for zinc and graphite-reinforced composite (where axis
of material symmetry is taken to direct along the x3-coordinate direction)

. (x10° psi
Non-zero elastic constants - - - -
Zinc Graphite-reinforced composite
Einn 16.09 14.683
E1122 3.35 6.986
E1133 5.01 5.689
Es333 6.10 144,762
Eis13 3.83 4.050

The first loading condition gives rise to a pure opening-mode problem with the mode-
| stress intensity factor along the crack front being constant and independent of material
properties while the second loading condition yields non-zero mode-Il1 and mode-I11 stress
intensity factors that vary along the crack front. The analytical solutions for both cases can be
found in the work of Fabrikant (1989). As a means to verify the coupling formulation and
implementation, we choose the FEM-region to be a cube of dimensions 2ax2ax2a centered at
(0, 0, 2a) as illustrated in Figure 4.2.10(a). In the analysis, we generate three meshes for both
the crack surface and the FEM-region as shown in Figure 4.2.10(b).

For the first loading condition, numerical solutions for the mode-1 stress intensity factor
normalized by the exact solution are reported in Table 4.2.2 for all three materials. Clearly
from these results, the current technique yields highly accurate stress intensity factors with
error less than 1.5%, 0.6% and 0.1% for mesh-1, mesh-2 and mesh-3, respectively. The weak
dependence of numerical solutions on the level of mesh refinement is due mainly to the use of
special crack-tip elements to model the near-tip field and directly capture the gradient of
relative crack-face displacement along the crack front. Relatively coarse mesh can therefore
be employed in the analysis to obtain sufficiently accurate stress intensity factors.

Table 4.2.2 Normalized mode-I stress intensity factor for isolated penny-shaped crack
subjected to uniform normal traction

Isotropic material, K, /K, , . Transversely isotropic material, K, /K, ..
Mesh ’ Zinc Graphite-reinforced composite
0 =0 0 =90 0 =06 =90 0 =0 0 =90
1 0.9919 0.9920 0.9890 | 0.9890 0.9841 0.9841
2 1.0008 1.0008 1.0001 | 1.0001 1.0053 1.0053
3 1.0002 1.0002 1.0004 | 1.0004 1.0006 1.0001
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For the second loading condition, the normalized mode-l11 and mode-IIl stress
intensity factors (K, and K,) are shown in Figure 4.2.11 for isotropic material, zinc and

graphite-reinforced composite. Based on this set of results, it can be concluded again that
numerical solutions obtained from the three meshes are in excellent agreement with the exact
solution; in particular, a coarse mesh also yields results of high accuracy. It should also be
remarked that for this particular loading condition, the material anisotropy play a significant
role on values of the mixed-mode stress intensity factors.

4.2.3 Infinite medium containing both penny-shaped crack and spherical void

As a final example, we choose to test the proposed technique by solving a more complex
boundary value problem in order to demonstrate its capability. Let us consider an infinite
medium containing a spherical void of radius a and a penny-shaped crack of the same radius

as shown schematically in Figure 4.2.12. The medium is subjected to uniform pressure G, on

the surface of the void whereas the entire surface of the crack is traction free. In the analysis,
two constitutive models are investigated: one associated with an isotropic, linearly elastic
material with Young’s modulus E and Poisson ratio v =0.3 and the other corresponding to
an isotropic hardening material with the bilinear uniaxial stress-strain relation similar to that
previously employed. The primary quantity to be sought is the mode-I stress intensity factor
along the crack front induced by the application of the pressure to the void. In addition,
influence of an inelastic zone induced in the high load intensity region on such fracture data is
also of interest.

Graphite:
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_ Isotropic:
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Figure 4.2.11 Normalized mode-11 and mode-Ill stress intensity factors for isolated penny-
shaped crack subjected to shear traction. Results are reported for isotropic material with v=
0.3, zinc and graphite reinforced composite.
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Figure 4.2.12 Schematic of infinite medium containing spherical void of radius a and penny-
shaped crack of radius a and subjected to uniform pressure at surface of void

In the modeling, we first decompose the medium into the FEM-region and the BEM-
region using a fictitious spherical surface of radius 4a centered at the same location as the
void as shown in Figure 4.2.13(a). Three meshes are adopted in numerical experiments as
shown in Figure 14(b). In particular, the FEM-region, the interface and the crack surface
consists of {24, 12, 8}, {128, 32, 16}, and {1024, 128, 64} elements for mesh-1, mesh-2 and
mesh-3, respectively. It should be noted also that the mesh-1 is obviously very coarse; in
particular, only eight elements are utilized to discretize the entire crack surface and only four
relatively large crack-tip elements are used along the crack front.
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Figure 4.2.13 (a) Decomposition of domain into BEM-region and FEM-region by a fictitious
spherical surface of radius 4a and (b) three meshes adopted in analysis
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First, the analysis is carried out for the elastic material with Poisson ratio v=10.3 and
the computed mode-I stress intensity factors are normalized and then reported as a function of
angular position along the crack front for all three meshes in Figure 4.2.14. This set of results
implies that the obtained numerical solutions exhibit good convergence; in particular, results
obtained from the mesh-2 and mesh-3 are of comparable quality while results obtained from
the mesh-1 still deviate from the converged solution. As confirmed by this convergence
study, only the mesh-3 is used to generate other sets of useful results.

Next, we consider a medium made of an isotropic hardening material. In the analysis,

we choose the modulus E,=E and Poisson ratio v=0.3 for the linear regime and choose
either E,=E/3 or E,=0 for the hardening regime. With this set of material parameters, the

behavior in the linear regime (for a small level of applied pressure) is identical to that
obtained in the previous case. To investigate the influence of the inelastic zone induced near
the surface of the void on the stress intensity factor along the crack front, we carry out various

experiments by varying the applied pressure c,. The distribution of the stress intensity factor
along the crack front is reported in Figure 4.2.15 for a hardening material with E;=E and
E,=E/3under five levels of the applied pressure c,€{0.255,,1.005,,1.2556,,1.505,,1.75c }
. The body is entirely elastic at 6,=0.255, slightly passes the initial yielding at 5,=1.00c,
and possesses a larger inelastic zone as the pressure increases further.
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Figure 4.2.14 Normalized mode-I stress intensity factors of penny-shaped crack embedded
within infinite medium containing spherical void under uniform pressure
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Figure 4.2.15 Normalized mode-I stress intensity factor of penny-shaped crack embedded
within infinite medium containing spherical void under uniform pressure. Results are reported
for isotropic hardening material with E,=E and E,=E/3.
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Figure 4.2.16 Maximum normalized mode-1 stress intensity factor versus applied pressure at
surface of void. Results are reported for isotropic linearly elastic material with v=0.3 and
two isotropic hardening materials.
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It is obvious from Figure 4.2.15 that the presence of an elastic zone significantly alters the
normalized values of the stress intensity factor from the linear elastic solution and such
discrepancy becomes more apparent as the level of applied pressure increases. The localized
inelastic zone acts as a stress riser; i.e. it produces the stress field of higher intensity around
the crack and this therefore yields the higher normalized stress intensity factor when
compared with the linear elastic case. Figure 4.2.16 shows an additional plot between the
maximum normalized stress intensity factors versus the normalized applied pressure for both
an isotropic linearly elastic material and two isotropic hardening materials (associated with
E,=0 and E,=E/3). Results for both materials are identical for a low level of the applied

pressure (since the entire body is still elastic) and, for a higher level of the applied pressure,
the maximum stress intensity factor for the case of the hardening material is significant larger
than that for the linear elastic material. In addition, such discrepancy tends to increase as the
hardening modulus decreases.

4.3 Influence of nano-scale influnece

First, to verify the formulation and numerical implementation, the penny-shaped crack in an
unbounded domain is considered, to compare results with existing benchmark solutions. Next
the elliptical crack and two interacting penny-shaped cracks in an unbounded domain are
considered. In the analysis, three meshes with different levels of refinement are utilized to
investigate the convergence of solutions. Nine-node isoparametric elements are used to
discretize the entire crack-front while the other parts of the crack surfaces are discretized by
eight-node and six-node isoparametric elements. The material Si [100] is used for all of
numerical examples, where properties of the bulk material and residual surface tension

E =107GPa, v =0.33and 7° =0.6056N /m are obtained from Miller and Shenoy (2000).

For convenience in the handling of numerical analysis, presentation of results and
demonstration of the influence of residual surface tension, all involved quantities are
normalized in a proper fashion. For instance, the unknown sum of the traction is normalized

by the shear modulus x (i.e., t> =t*/u); the unknown sum and jump of the crack-face
displacement are normalized by a special length scale A:rs/,u:0.01506 nm (i.e.,
us =u®/A and ul =u*/A); all characteristic lengths representing the geometry of the crack
such as the crack radius a, semi-major axis a and semi-minor axis b are normalized by the
length scale A (e.g., a,=a/A and b,=b/A); and the prescribed traction on the crack
surface is normalized by the shear modulus x (i.e., t, :tiO/y) .

4.3.1 Penny-shaped crack in infinite domain

As a means for verifying the current technique, the problem of a penny-shaped crack of
radius a embedded in an isotropic, linear elastic infinite medium is considered (Figure
4.3.1(a)). The crack is subjected to self-equilibrated, uniformly distributed normal traction
t; =-t; =t°. This problem has been previously solved by Intarit et al. (2012) and Intarit

(2013) using Hankel integral transforms with a solution technique for dual integral equations
and will be the benchmark solution to validate the proposed FEM-SGBEM technique. The
three meshes of the crack surface are shown in Figure 4.3.1(b).
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Figure 4.3.1 (a) Schematic of a penny-shaped crack of radius a embedded in an isotropic,
linear elastic infinite medium subjected to uniformly distributed normal traction t; = —t; =t°;

(b) Meshes adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements
and 105 nodes. Mesh-3: 128 elements and 401 nodes.

The normalized crack opening displacement and normalized stresses in the vicinity of
crack-front, when the influence of the residual surface tension is taken into account, are
shown in Figure 4.3.2. Results are compared with those obtained by an analytical technique
proposed by Intarit et al. (2012) and Intarit (2013). It is seen that the current technique yields
solutions that agree very well with the benchmark solutions for both crack opening
displacement and stresses oi1, 022, o33 in the vicinity of crack-front. To further examine the
influence of residual surface tension, the normalized crack opening displacement and the
normalized vertical stress oz3 in the vicinity of crack-front with different values of residual
surface tension z°ranging from 0 to 1.0 N/m are shown in Figure 4.3.3. It can be concluded
that the residual surface tension exhibits significant influence on the crack opening
displacement and the vertical stress. In particular, as z° becomes larger, the deviation of
results from the classical case (i.e., without residual surface tension) significantly increases
and, clearly, it makes the elastic medium much stiffer.

To demonstrate the size-dependent behavior of results due to the presence of residual
surface tension, the crack opening displacement and the vertical stress in the vicinity of the
crack-front are shown in Figure 4.3.4 for both the classical case and the present study. It is
evident that, by including the residual surface tension effects in the mathematical model, the
solutions exhibit size-dependent behavior. In particular, the normalized crack opening
displacement and vertical stress in the vicinity of crack-front depend significantly on the
crack size and this is in contrast with the classical case where the normalized crack opening
displacement and normalized vertical stress are independent of crack radius.

4.3.2 Elliptical crack in infinite domain

To demonstrate the capability of the proposed technique for treating mode-1 cracks of
arbitrary shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is
considered (see Figure 4.3.5(a)). The crack-front is parameterized in terms the parameter t by

x, =acost, X,=bsint, x,=0; te[0,2r] (4.3.)
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where a and b are the major and minor semi-axes of the crack, respectively. The crack is

subjected to a self-equilibrated,

uniformly distributed normal traction

ty =-t; =t°.

Numerical results are presented for the aspect ratio a/b=1,2,3 with the three meshes shown

in Figure 4.3.5(b) used to model the elliptic crack.
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Figure 4.3.2 Penny-shaped crack under uniformly distributed normal traction, for
E =107 GPa, v =0.33 and residual surface tension z° =0.6056 N /m: (a) Normalized crack

opening displacement, (b) Normalized stress all/t0 in the vicinity of crack-front, (c)

Normalized stress o, /t° in the vicinity of crack-front, and (d) Normalized stress o, /t° in

the vicinity of crack-front.
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Figure 4.3.3 Penny-shaped crack under uniformly distributed normal traction, for
E =107 GPa, v =0.33 for different residual surface tension z°: (a) Normalized crack

opening displacement and (b) Normalized stress o, /t° in the vicinity of crack-front,
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(b)

Figure 4.3.5 (a) Schematics of an elliptical crack embedded in an isotropic, linear elastic
infinite medium subjected to uniformly distributed normal traction t; =-t; =t° and (b)
Meshes adopted in the analysis

The normalized crack opening displacement and the normalized stress 033/t0 along
the minor axis, when the influence of the residual surface tension is included, are presented in
Figure 4.3.6 for aspect ratio a/b=1,2,3. Clearly, converged results of crack opening
displacement are obtained with Mesh-2 and Mesh-3 for all three aspect ratios (see Figure
4.3.6(a)). As be seen in Figure 4.3.6, when the aspect ratio a/b increases, the influence of

residual surface tension on the crack opening displacement and the stresses in the vicinity of
crack decreases.
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Figure 4.3.6 Elliptical crack under uniformly distributed normal traction, for different aspect
ratios a/b=1,2,3 for E=107GPa, v=0.33, 7°=0.6056 N/m: (a) Normalized crack

opening displacement along minor axis and (b) Normalized stress <733/tO in the vicinity of
crack-front along minor axis.
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In order to investigate the influence of residual surface tension, the normalized crack
opening displacement and the normalized vertical stress o33 in the vicinity of crack-front with
different values residual surface tensionz*ranging from 0 to 1.0 N/m are shown in Figure
4.3.7. Aspect ratios a/b=2,3 are considered in this case. As shown in Figure 4.3.7, the

influence of residual surface tension is also significant and the medium is stiffer when the
residual surface tension increases. To examine the size-dependent behavior of results due to
the influence of residual surface tension, the crack opening displacement and the vertical

stress in the vicinity of crack-front for a, =0.5,1.0, 5.0 and two aspect ratios a/b=2,3 are

shown in Figure 4.3.8. As can be seen in Figure 4.3.8, the normalized crack opening
displacement and normalized stresses in the vicinity of crack-front are size-dependent. It is
contrary to the classical case (i.e., without residual surface tension effects), the solutions are
size-independent. When the crack-size or the aspect ratio decreases, the influence of residual
surface tension becomes significant in the sense that the medium is stiffer.

4.3.3 Two interacting penny-shaped cracks in an unbounded domain

As a final example, we demonstrate another feature of the current technique, viz. modeling
multiple cracks, by considering a pair of identical penny-shaped cracks of radius a embedded
in an isotropic, linear elastic unbounded domain as shown in Figure 4.3.9(a). The distance
between the centers of the two cracks is denoted by h. Both cracks are subjected to a self-

equilibrated, uniformly distributed normal traction t; = —t; =t°.
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Figure 4.3.7 Elliptical crack under uniformly distributed normal traction for different residual
surface tension z° , for E =107 GPa, v =0.33, for different aspect ratios a/b=2,3 : (a)
Normalized crack opening displacement along minor axis and (b) Normalized stress o, /t°
in the vicinity of crack-front along minor axis.
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Figure 4.3.8 Elliptical crack under uniformly distributed normal traction for different crack
radii a,=a/A=0.51.0,5.0for E=107GPa, v=0.33, 7°=0.6056 N/m, for different
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Normalized stress o, /t° in the vicinity of crack-front along minor axis.

Here, the influence of the interaction between the two cracks on the maximum crack
opening displacement is considered. To investigate size-dependent behavior, two cases are
considered where the normalized radii of the identical penny-shaped cracks are taken as

a, =1 and 10. The three meshes showing in Figure 4.3.9(b) are used to test the convergence
of numerical solution.
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Figure 4.3.9 (a) Schematic of a pair of penny-shaped cracks of radius a embedded in an
isotropic, linear elastic infinite medium subjected to uniformly distributed normal traction
t; =-t; =t° and (b) Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes.

Mesh-2: 32 elements and 105 nodes. Mesh-3: 128 elements and 401 nodes.
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The normalized crack opening displacement of one of the penny-shaped cracks with
radius a, =10 is shown in Figure 4.3.10 for h/a=2.4. It is seen that convergent results of

the normalized crack opening displacement are obtained and the residual surface tension has
a significant influence on the crack opening displacement. To study the interaction between
two cracks, the normalized maximum crack opening displacement is plotted for different
values of h/a in Figure 4.3.10. It can be seen in Figure 4.3.10 that, in agreement with

previous examples of a penny-shaped crack and an elliptical crack, the maximum crack
opening displacement decreases when the residual surface tension increases. The medium
becomes much stiffer with the presence of the residual surface tension.

It can also be observed from Figure 4.3.11(a), (b) and (c) that results for the case of
two interacting cracks converge very fast to those of a single crack when the residual surface
tension increases. In particular, as the value of h/a is greater than 8, 5 and 3.5 for the

classical case, 7° =0.6056N /m, and z° =1N/m, respectively, the normalized maximum
crack opening displacement of the two interacting crack and that of the single crack are
nearly identical. This not only implies the significant reduction of the interaction between the
two cracks due to the presence of the residual surface tension but also provides the applicable
range of the aspect ratio h/a to allow the replacement of the two-crack model by a single

crack model. In addition, as clearly indicated in Figure 4.3.11(a) and (d), the interaction
between the two interacting cracks for the classical case is size-independent (i.e., solutions of
the two cracks converge asymptotically to that of the single crack in the identical manner). In
the contrary, when the residual surface tension is incorporated in the mathematical model, the
size-dependent behavior can be clearly observed by comparing results in Figure 4.3.11(b), (e)
and results in Figure 4.3.11(c), (f), respectively. The decrease in the crack size also lowers the
interaction between the two cracks.
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Figure 4.3.10 Normalized crack opening displacement for a pair of penny-shaped cracks with
radius a, =10 and h/a =2.4 under uniformly distributed normal traction, for E =107 GPa,

v=0.33 and z° =0.6056N /m.
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CHAPTER YV
CONCLUSION

An efficient and accurate numerical technique based on the weakly singular
symmetric Galerkin boundary element method (SGBEM) and the coupling of SGBEM and
the standard finite element method (FEM) have been successfully developed, in the present
study, for analysis of three-dimensional linear elasticity and fracture problems. The technique
has been established in a general context allowing various boundary value problems including
problems associated with determination of the stress intensity factors and T-stresses of cracks
in isotropic and generally anisotropic elastic infinite and finite media, problems concerning
an infinite medium containing localized complex zone and cracks, and problems related to
nano-cracks, to be treated.

In the formulation, a pair of weakly singular, weak-form boundary integral equations
for the displacement and the traction has been established capable for treating both infinite
and finite media made of isotropic and generally anisotropic media. Such boundary integral
equations are completely regularized using a systematic technique based on the special
decompositions of strongly singular and hyper singular kernels and the integration by parts
via Stokes’ theorem. All involved kernels are only weakly singular of order 1/r and this
renders all involved integrals exist in an ordinary sense and their validity only requires the
continuity of the boundary data. The pair of displacement and traction boundary integral
equations has been used in the formulation of governing equations for cracks in isotropic and
anisotropic elastic media and the resulting symmetric formulation constitutes a basis for the
development of the weakly singular SGBEM. In addition, such pair of boundary integral
equations has also been used along with the domain decomposition and principle of virtual
work to establish the SGBEM-FEM coupling formulation for modeling a three-dimensional
infinite medium containing localized complex zone and isolated cracks. Finally, the
formulation for modeling cracks of nano-size (with proper treatment of nano-scale influence
via the surface elasticity theory) in an infinite elastic media has been established in a coupling
form between the boundary integral equations and weak-form equations.

Standard numerical procedure based on the SGBEM and FEM has been adopted to
construct numerical solutions of involved systems of governing equations. Galerkin
approximation strategy with standard continuous interpolation functions has been used to
discretize both the boundary integral equations and weak-form finite element equations.
Except for a local region along the crack front, special continuous interpolation functions
have been utilized to approximate the relative crack-face displacement in the vicinity of the
crack front. Use of such special interpolation functions allows the near tip field to be captured
accurately by relatively coarse meshes. To further enhance the computational accuracy and
efficiency, all involved kernels for generally anisotropic materials have been computed using
the interpolation technique in order to avoid the massive calculations associated with the
direct evaluation of line integrals for all pairs of source and field points resulting from the
numerical quadrature. In addition, the weakly singular and nearly singular double surface
integrals resulting from the discretization of the governing boundary integral equations have
been evaluated numerically using a special quadrature scheme. A family of variable
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transformations has been introduced to eliminate the weak singularity and regularize the rapid
variation of all integrands to ensure that the final integrals can be efficiently integrated by
standard Gaussian quadrature. Once all primary unknowns have been solved, various
quantities such as stress intensity factors, T-stresses, displacements and stresses within the
body have been post-processed. In the present study, the stress intensity factors and the T-
stresses have been computed accurately via two explicit, interpolation-free formula related to
the jump and sum of the displacement across the crack surface in the vicinity of the crack
front, respectively. Finally, the coupling procedure between the in-house SGBEM code and
the reliable commercial finite element packages has been established to employ their
advanced computational features.

To verify both the formulation of governing equations and numerical implementation
of SGBEM and SGBEM-FEM coupling, numerical results have been extensively compared
with available benchmark solutions for various boundary value problems. It can be concluded
from such numerical study that the proposed technique yield highly accurate results,
especially the crack opening displacement, stress intensity factors, and T-stresses, and
obtained results also exhibit good convergence behavior. Due to the use of special crack-tip
elements along the crack front, relatively coarse meshes can yield results of reasonably high
accuracy. From extensive numerical experiments on complex and relatively large-scale
problem, the proposed technique has been found promising and robust and, as a result,
constituted an attractive computational tool for analysis of three-dimensional elasticity and
fracture problems.

While the formulation and the proposed technique have been restricted mainly to
three-dimensional elastic media, they can possibly be extended to treat multi-field media such
as those made from piezoelectric materials, piezo-magnetic materials, and piezo-electro-
magnetic materials. In addition, the current technique can be generalized to treat other body
models such as half-space domain and bi-material domain.

71



[1]

[2]
(3]
[4]
[5]
[6]

[7]

8]
[9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

REFERENCES

Ananthasayanam B, Capitaneanu M, Joseph PF. Determination of higher order
coefficients and zones of dominance using a singular integral equation approach.
Engineering Fracture Mechanics, 74, 2007, pp. 2009-2131.

Anderson TL. Fracture Mechanics: Fundamentals and Applications, third edition.
Taylor & Francis, New York, 2005.

Ariza MP, Dominguez J. Boundary element formulation for 3D transversely isotropic
cracked bodies. International Journal for Numerical Methods in Engineering, 60, 2004,
pp. 719-753.

Bathe KJ. Finite Element Procedures, Prentice-Hall, New Jersey, 1990.

Belytschko T, Liu WK, Moran B. Nonlinear finite elements for continua and structures,
John Wiley & Sons, New York, 2000.

Blandford GE, Ingraffea AR, Ligget JA. Two-dimensional stress intensity factor
computation using boundary element method. International Journal for Numerical
Methods in Engineering, 17, 1981, pp. 387-440.

Bonnet M. Regularized direct and indirect symmetric variational BIE formulations for
three-dimensional elasticity. Engineering Analysis with Boundary Elements, 15, 1995,
pp. 93-102.

Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element methods.
Applied Mechanics Review, 51, 1998, pp. 669-703.

Broek D. Elementary Engineering Fracture Mechanics, third edition. Martinus Nijhoff
Publishers, Boston, 1982.

Bui HD. An integral equations method for solving the problem of a plane crack of
arbitrary shape. Journal of Mechanics and Physics of Solids, 25, 1977, pp. 29-39.

Chen YZ. Closes form solutions of T-stress in plane elasticity crack problems.
International Journal of Solids and Structures, 37, 2000, pp. 1629-1637.

Chen YZ, Wang ZX, Lin XY. Crack front position and crack back position techniques
for evaluating the T-stress at crack tip using functions of a complex variable. Journal of
Mechanics of Materials and Structures, 3, 2008, pp. 1659-1673.

Chen YZ, Wang ZX, Lin XY. Evaluation of the T-stress for interacting cracks.
Computational Materials Science, 45, 2009, pp. 349-357.

Cotterell B, Rice JR. Slightly curved or kinked cracks. International Journal of
Fracture, 16, 1980, pp. 155-169.

Cruse TA, Dominguez J. Boundary Element Analysis in Computational Fracture
Mechanics. Kluwer Academic Publishers, Dordrecht, 1988.

Du ZZ, Hancock JW. The effect of non-singular stresses on crack tip constraint. Journal
of the Mechanics and Physics of Solids, 39, 1991, pp. 555-567.

Fabrikant VI. Applications of Potential Theory in Mechanics: A Selection of New
Results. Kluwer Academic Publishers, Dordrecht, 1989.

Fett T. A Green's function for T-stresses in an edge-cracked rectangular plate.
Engineering Fracture Mechanics, 54, 1997, PP. 365-373.

Fett T. T-stresses in rectangular plates and circular disks. Engineering Fracture
Mechanics, 60, 1998, pp. 631-652.

Fett T, Rizzi G. T-stress of cracks loaded by near-tip tractions. Engineering Fracture
Mechanics, 73, 2006, pp. 1940-1946.

72



[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

Fett T, Rizzi G, Bahr H-A. Green’s functions for the T-stress of small kink and fork
cracks. Engineering Fracture Mechanics, 73, 2006, pp. 1426-1435.

Frangi A, Novati G, Springhetti R, Rovizzi M. 3D fracture analysis by the symmetric
Galerkin BEM. Computational Mechanics, 28, 2002, pp. 220-232.

Gu H, Yew CH. Finite element solution of a boundary integral equation for mode |
embedded three-dimensional fractures. International Journal for Numerical Methods in
Engineering, 26, 1988, pp. 1525-1540.

Gurtin ME, Murdoch Al. A continuum theory of elastic material surfaces. Archive for
Rational Mechanics and Analysis, 57, 1975, pp. 291-323.

Gurtin ME, Murdoch Al. Surface stress in solids. International Journal of Solids and
Structures, 14, 1978, pp. 431-440.

Hayami K, Brebbia CA. Quadrature methods for singular and nearly singular integrals
in 3-D boundary element method, Boundary Element X, pp. 237-264, Springer-Verlag,
Berlin, 1988.

Hayami K. A projection transformation method for nearly singular surface boundary
element integrals. In: Brebbia, c.a., Orszag, S.A. (eds) Lecture notes in Engineering,
1992, 73, pp. 1-2. Springer-Verlag, Berlin.

Hayami K, Matsumoto H. A numerical quadrature for nearly singular boundary element
integrals. Engineering Analysis with Boundary Elements, 13, 1994, pp. 143-154.

Intarit P, Senjuntichai T, Rungamornrat J, Rajapakse RKND. Stress analysis of penny-
shaped crack considering the effects of surface elasticity. Proceedings of 20th Annual
International Conference on Composites or Nano Engineering (ICCE-20), Ramada
Beijing North Hotel, Beijing, P.R. China 2012,

Intarit P. Solutions of elastic medium with surface stress effects, Ph.D. Dissertation,
Chulalongkorn University, Thailand, 2013.

Kassir MK, Sih GC. Mechanics of fracture, Three-dimensional crack problems, volume
2. Noordhoff International Publishing, Leyden, 1975.

Kirilyuk VS, Levchuk OI. Elastic T-stress solutions for flat elliptical cracks under
tension and bending. Engineering Fracture Mechanics, 74, 2007, pp. 2881-2891.
Leblond JB. Crack paths in plane situations — I: General form of the expansion of the
stress intensity factors. International Journal of Solids and Structures, 25, 1989, pp.
1311-1325.

Leblond JB and Torlai O. The stress field near the front of an arbitrarily shaped crack in
a three-dimensional elastic body. Journal of Elasticity, 29, 1992, pp. 97-131.

Lewis T, Wang X. The T-stress solutions for through-wall circumferential cracks in
cylinders subjected to general loading conditions. Engineering Fracture Mechanics, 75,
2008, pp. 3206-3225.

Li S, Mear ME, Xiao L. Symmetric weak-form integral equation method for three-
dimensional fracture analysis. Computer Methods in Applied Mechanics and
Engineering, 151, 1998, pp. 435-459.

Li HB, Han GM. A new method for evaluating singular integral in stress analysis of
solids by the direct boundary element method. International Journal for Numerical
Methods in Engineering, 21, 1985, pp. 2071-2098.

Lubiliner J. Plasticity theory, Macmillan Publishing Company, New York, 1990.

73



[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Martha LF, Gray LJ, Ingraffea AR. Three-dimensional fracture simulation with a
single-domain, direct boundary element formulation. International Journal for
Numerical Methods in Engineering, 35, 1992, pp. 1907-1921.

Meshii T, Tanaka T, Lu K. T-Stress solutions for a semi-elliptical axial surface crack in
a cylinder subjected to mode-I non-uniform stress distributions. Engineering Fracture
Mechanics, 77, 2010, pp. 2467-2478.

Miller RE, Shenoy VB. Size-dependent elastic properties of nanosized structural
elements. Nanotechnology, 11, 2000, pp.139-147

Molla-Abbasi K, Schutte H. On the full set of elastic T-stress terms of internal elliptical
cracks under mixed-mode loading condition. Engineering Fracture Mechanics, 75,
2008, pp. 1545-1568.

Nan H, Wang B. Effect of residual surface stress on the fracture of nanoscale materials.
Mechanics Research Communications, 44, 2012, pp. 30-34.

Oden JT, Carey GF. Finite elements: Special problems in solid mechanics, volume 5,
Prentice-Hall, New Jersey, 1984.

Pan E, Yuan FG. Boundary element analysis of three-dimensional cracks in anisotropic
solids. International Journal for Numerical Methods in Engineering, 48, 2000, pp. 211-
237.

Pinyochotiwong Y, Rungamornrat J, Senjuntichai T. Rigid frictionless indentation on
elastic half space with influence of surface stresses. International Journal of
Engineering Science, 71, pp. 15-35.

Profant T, Sevecek O, Kotoul M. Calculation of K-factors and T-stress for cracks in
anisotropic bimaterials. Engineering Fracture Mechanics, 75, 2008, pp. 3707-3727.

Qu J, Wang X. Solutions of T-stresses for quarter-elliptical corner cracks in finite
thickness plates subject to tension and bending. International Journal of Pressure
Vessels and Piping, 83, 2006, pp. 593-606.

Rice JR. Limitations to the small scale yielding approximation for crack tip plasticity.
Journal of the Mechanics and Physics of Solids, 22, 1974, pp. 17-26.

Rungamornrat J, Mear ME. Weakly-singular, weak-form integral equations for cracks
in three-dimensional anisotropic media. International Journal of Solids and Structures,
45, 2008a, pp. 1283-1301.

Rungamornrat J, Mear ME. A weakly-singular SGBEM for analysis of cracks in 3D
anisotropic media. Computer Methods in Applied Mechanics and Engineering, 197,
2008b, pp. 4319-4332.

Rungamornrat J. Determination of strength of singularity induced by discontinuity in a
three-dimensional, linear, finite domain. Proceedings of the 12" International
Conference on Fracture, Ottawa, Canada, July 12-17, 2009.

Rungamornrat J, Senjuntichai T. Regularized boundary integral representations for
dislocation for dislocations and cracks in smart media. Smart Materials and Structures,
18, 2009, 074010(14pp).

Rungamornrat J, Mear ME. SGBEM-FEM coupling for analysis of cracks in 3D
anisotropic media. International Journal for numerical methods in Engineering, 86,
2011, pp.224-248.

Saez A, Ariza MP, Dominguez J. Three-dimensional fracture analysis in transversely
isotropic solids. Engineering Analysis with Boundary Elements, 20, 1997, pp. 287-298.
Sanford RJ. Principles of Fracture Mechanics. Prentice Hall, New Jersey, 2003.

74



[57]
[58]
[59]
[60]
[61]
[62]
[63]

[64]

[65]
[66]
[67]
[68]

[69]

[70]

[71]

[72]

Schutte H, Molla-Abbasi K. On the full set of elastic T-stress terms of internal circular
cracks under mixed-mode loading conditions. Engineering Fracture Mechanics, 74,
2007, pp. 2770-2787.

Shah PD, Tan CL, Wang X. T-stress solutions for two-dimensional crack problems in
anisotropic elasticity using the boundary element method. Fatigue & Fracture of
Engineering Materials & Structures, 29, 2006, pp. 343-356.

Sokolnikoff IS. Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.
Ting TCT. Asymptotic solution near the apex of an elastic wedge with curved
boundaries. Quarterly of Applied Mathematics, 42, 1985, pp. 467-476.

Wang X. Elastic T-stress for cracks in test specimens subjected to non-uniform stress
distribution. Engineering Fracture Mechanics, 69, 2002, pp. 1339-1352.

Wang X. Elastic T-stress solutions for semi-elliptical surface cracks in finite thickness
plates. Engineering Fracture Mechanics, 70, 2003, pp. 731-756.

Wang X. Elastic T-stress solutions for penny-shaped cracks under tension and bending.
Engineering Fracture Mechanics, 71, 2004, pp. 2283-2298.

Wang X, Bell R. Elastic T -stress solutions for semi-elliptical surface cracks in finite
thickness plates subject to non-uniform stress distributions. Engineering Fracture
Mechanics, 71, 2004, pp. 1477-1496.

Weaver J. Three-dimensional crack analysis. International Journal of Solids and
Structures, 13, 1977, pp. 321-330.

Westergaard HM. Bearing pressures and cracks. Journal of Applied Mechanics, 6, 1939,
pp. A49-A53.

William ML. On the stress distribution at the base of a stationary crack. Journal of
Applied Mechanics, 24, 1957, pp. 109-114.

Xiao L, Symmetric weak-form integral equation method for three dimensional fracture
analysis, Ph.D. Dissertation, The University of Texas at Austin, Texas, 1998.

Xu G, Ortiz M. A variational boundary integral method for the analysis of 3-D cracks of
arbitrary geometry modeled as continuous distributions of dislocation loops.
International Journal for Numerical Methods in Engineering, 36, 1993, pp. 3675-3701.
Xu G. A variational boundary integral method for the analysis of three-dimensional
cracks of arbitrary geometry in anisotropic elastic solids. Journal of Applied Mechanics,
67, 2000, pp. 403-408.

Yu J, Tan CL, Wang X. T-stress solutions for crack emanating from a circular hole in a
finite plate. International Journal of Fracture, 140, 2006, pp. 293-298.

Zhou Z, Xu X, Leung YTA, Huang Y. Stress intensity factors and T-stress for an edge
interface crack by symplectic expansion. Engineering Fracture Mechanics, 102, 2013,
pp. 334-347.

75



Appendix A Publications

International paper 1 (published):

Rungamornrat J, Sripirom S. “Stress Analysis of Three-dimensional Media Containing
Localized Zone by FEM-SGBEM Coupling”. Mathematical Problems in Engineering,
2011, Article Number 702082, 27 pages, doi:10.1155/2011/702082. Impact Factor
(2012): 1.383

International paper 2 (under review):

Nguyen TB, Rungamornrat J, Senjuntichai T, Wijeyewickrema AC. “FEM-SGBEM
coupling for modeling of mode-1 planar cracks in three-dimensional elastic media with
residual surface tension effects”. Engineering Analysis with Boundary Elements, Under
review. Impact Factor (2012): 1.596

76



Appendix B Reprints

77



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2011, Article ID 702082, 27 pages
doi:10.1155/2011/702082

Research Article

Stress Analysis of Three-Dimensional
Media Containing Localized Zone by FEM-SGBEM
Coupling

Jaroon Rungamornrat and Sakravee Sripirom

Department of Civil Engineering, Faculty of Engineering, Chulalongkorn University,
Bangkok 10330, Thailand

Correspondence should be addressed to Jaroon Rungamornrat, jaroon.r@chula.ac.th
Received 24 May 2011; Accepted 5 August 2011
Academic Editor: Delfim Soares Jr.

Copyright © 2011 J. Rungamornrat and S. Sripirom. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

This paper presents an efficient numerical technique for stress analysis of three-dimensional
infinite media containing cracks and localized complex regions. To enhance the computational
efficiency of the boundary element methods generally found inefficient to treat nonlinearities and
non-homogeneous data present within a domain and the finite element method (FEM) potentially
demanding substantial computational cost in the modeling of an unbounded medium containing
cracks, a coupling procedure exploiting positive features of both the FEM and a symmetric
Galerkin boundary element method (SGBEM) is proposed. The former is utilized to model a
finite, small part of the domain containing a complex region whereas the latter is employed to treat
the remaining unbounded part possibly containing cracks. Use of boundary integral equations to
form the key governing equation for the unbounded region offers essential benefits including the
reduction of the spatial dimension and the corresponding discretization effort without the domain
truncation. In addition, all involved boundary integral equations contain only weakly singular
kernels thus allowing continuous interpolation functions to be utilized in the approximation and
also easing the numerical integration. Nonlinearities and other complex behaviors within the
localized regions are efficiently modeled by utilizing vast features of the FEM. A selected set of
results is then reported to demonstrate the accuracy and capability of the technique.

1. Introduction

A physical modeling of three-dimensional solid media by an idealized mathematical domain
that occupies the full space is standard and widely used when inputs and responses of
interest are only localized in a zone with its length scale much smaller than that of the body.
Influence of the remote boundary of a domain on such responses is generally insignificant
for this particular case and can, therefore, be discarded in the modeling without loss of
accuracy of the predicted solutions. Such situations arise in various engineering applications
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such as the simulation of crack growth in hydraulic fracturing process in which the fracture
is generally treated as an isolated crack in an infinite medium, the evaluation and assessment
of service life of large-scale structures in which the influence of embedded initial defects can
be characterized by small pre-existing flaws, and the determination of effective properties
of materials possessing a microstructure such as cracks, voids, inclusions, and localized
inelastic zones. Unlike the stress analysis of linear elasticity problems, complexity of a
mathematical model can substantially increase when an infinite body contains additionally a
line of singularity and/or a localized nonlinear region. The former situation arises naturally
when a surface of displacement discontinuities (e.g., cracks and dislocations) is present
whereas the latter may result from applications of high-intensity loads, complex constitutive
laws, containment of small defects and inhomogeneities, and localized non-mechanical
effects (such as temperature change). Besides various practical applications, such present
complexity renders the modeling itself theoretically and computationally challenging.

Various analytical techniques (e.g., integral transform methods, methods based on
stress and displacement representations, techniques related to potential theories, etc.) have
been proposed and used extensively in the stress analysis of solid media (e.g., [1-5]).
However, their applications are very limited to either two-dimensional boundary value
problems involving simple data or three-dimensional problems with extremely idealized
settings. Such limitation becomes more apparent when complexity of involved physical
phenomena increases (e.g., complexity introduced by the presence of material nonlinearities,
inhomogeneities, and embedded singularities). For those particular situations, a more
sophisticated mathematical model is generally required in order to accurately predict
responses of interest, and, as a major consequence, an analytical or closed-form solution of the
corresponding boundary value problem cannot readily be obtained and numerical techniques
offer better alternatives in the solution procedure.

The finite element method (FEM) and the boundary element method (BEM) are two
robust numerical techniques extensively used in the modeling of various field problems. Both
techniques possess a wide range of applications, and there are various situations that favor
the FEM over the BEM and vice versa. The FEM has proven to be an efficient and powerful
method for modeling a broad class of problems in structural and solid mechanics (e.g., [6-8]).
In principle, the basis of the FEM is sufficiently general allowing both nonlinearities and inho-
mogeneities present within the domain to be treated. In addition, a final system of discrete
algebraic equations resulting from this method possesses, in general, desirable properties
(e.g., symmetry, sparseness, positive definiteness of the coefficient matrix, etc.). Nevertheless,
the conventional FEM still exhibits some major shortcomings and requires nontrivial
treatments when applied to certain classes of problems. For instance, a standard discretization
procedure cannot directly be applied to boundary value problems involving an infinite
domain. A domain truncation supplied by a set of remote boundary conditions is commonly
employed to establish an approximate domain of finite dimensions prior to the discretization.
It should be noted that defining such suitable truncated surface and corresponding boundary
conditions remains the key issue and it can significantly influence the quality of approximate
solutions. Another limited capability of the method to attain adequately accurate results
with reasonably cheap computational cost is apparent when it is applied to solve fracture
problems. In the analysis, it generally requires substantially fine meshes in a region
surrounding the crack front in order to accurately capture the complex (singular) field and
extract essential local fracture information such as the stress intensity factors (e.g., [9-11]).

The boundary element method (BEM) has been found computationally efficient
and attractive for modeling certain classes of linear boundary value problems since, for
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a homogeneous domain that is free of distributed sources, the key governing equation
involves only integrals on the boundary of the domain (e.g., [12-23]). As a direct
consequence, the discretization effort and cost are significantly reduced, when compared
to the FEM, due to the reduction of spatial dimensions of the governing equation by
one. Another apparent advantage of the method is associated with its simplicity in the
modeling of an infinite media. In such particular situation, the remote boundary of the
domain can basically be discarded without loss via an appropriate treatment of remote
conditions (e.g., [14, 17, 19, 23]). Among various strategies utilized to form the BEM, the
weakly singular symmetric Galerkin boundary element method (SGBEM) has become a well-
established and well-known technique and, during the past two decades, has proven robust
for three-dimensional analysis of linear elasticity problems (e.g., [15, 16]), linearly elastic
infinite media containing isolated cracks (e.g., [14, 19, 23]), and cracks in finite bodies (e.g.,
[16, 18, 20, 21, 23]). Superior features of this particular technique over other types of the
BEM are due mainly to that all kernels appearing in the governing integral equations are
only weakly singular of O(1/r) and that a final system of linear algebraic equations resulting
from the discretization possesses a symmetric coefficient matrix. The weakly singular nature
not only renders all involved integrals to be interpreted in an ordinary sense and evaluated
numerically using standard quadrature but also allows standard C° interpolation functions to
be employed in the approximation procedure. It has been also demonstrated that the weakly
singular SGBEM along with the proper enrichment of an approximate field near the crack
front yields highly accurate fracture data (e.g., mixed-mode stress intensity factors) even
that relatively coarse meshes are employed in the discretization (e.g., [18, 21, 23]). While the
weakly singular SGBEM has gained significant success in the analysis of linear elasticity and
fracture problems, the method still contains certain unfavorable features leading to its limited
capability to solve various important classes of boundary value problems. For instance, the
method either becomes computationally inefficient or experiences mathematical difficulty
when applied to solve problems involving nonlinearity and nonhomogeneous media. As the
geometry of the domain becomes increasingly complex and its size and surface to volume
ratio are relatively large (requiring a large number of elements to reasonably represent the
entire boundary of the domain), the method tends to consume considerable computational
resources in comparison with the standard FEM. Although the SGBEM yields a symmetric
system of linear equations, the coefficient matrix is fully dense and each of its entries must be
computed by means of a double surface integration.

In the past two decades, various investigators have seriously attempted to develop
efficient and accurate numerical procedures for analysis of elasticity and fracture problems by
exploiting positive features of both the BEM and the FEM. The fundamental idea is to
decompose the entire domain into two regions and then apply the BEM to model a
linearly elastic region with small surface-to-volume ratio and possibly containing the dis-
placement discontinuities (e.g., cracks and dislocations) and the FEM to model the remaining
majority of the domain possibly exhibiting complex behavior (e.g., material nonlinearity and
nonhomogeneous data). The primary objective is to compromise between the requirement
of computational resources and accuracy of predicted results. Within the context of linear
elasticity, there have been several investigations directed towards the coupling of the
conventional BEM and the standard FEM (e.g., [24-26]) and the coupling of the strongly
singular SGBEM and the standard FEM (e.g., [27-30]). It should be emphasized that the
former type of coupling procedure generally destroys the desirable symmetric feature of
the entire system of linear algebraic equations whereas the latter type requires special
numerical treatment of strongly and hyper singular integrals (e.g., [31, 32]). Extensive review
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of various types of coupling between boundary integral equation methods and finite element
techniques can be found in [33]. Among those existing techniques, a particular symmetric
coupling strategy between the weakly singular SGBEM and the standard FEM has been found
computationally efficient and has recently become an attractive alternative for performing
comprehensive stress and fracture analysis. This is due primarily to (i) the symmetry feature
of the SGBEM that leads to the symmetric coupling formulation and (ii) the weakly singular
nature of all involved boundary integrals requiring simpler theoretical and numerical
treatment in comparison with strongly singular and hypersingular integrals. Xiao [16] first
presented such coupling formulation for cracks in isotropic, linearly elastic finite bodies;
more precisely, a pair of weakly singular, weak-form displacement and traction integral
equations was utilized along with the principle of virtual work and the proper enforcement of
continuity conditions on the interface to establish the symmetric coupling formulation. Later,
Frangi and Novati [34] successfully implemented Xiao’s formulation to analyze cracked
bodies subjected to pure traction boundary conditions. Besides its accuracy and robustness,
the technique was still restricted to the conforming discretization of the interface between the
two regions. Springhetti et al. [35] relaxed such limitation by allowing the weak enforcement
of continuity across the interface and also generalized the technique to treat both potential
and elastostatic problems. Nevertheless, their main focus is on uncracked bodies made of
linearly isotropic materials. Recently, Rungamornrat and Mear [36] extended the work of
Xiao [16] to enable the treatment of both material anisotropy and nonmatching interface.
While this particular coupling scheme has been well-established for decades, on the basis of
an extensive literature survey, applications of this technique to model a problem of an infinite
space containing isolated cracks and localized complex zones have not been recognized.

In this paper, a numerical procedure based on the symmetric coupling between the
weakly singular SGBEM and the standard FEM is implemented to perform three-dimensional
stress analysis of an infinite medium containing displacement discontinuities and localized
complex zones. Vast features of the FEM are exploited to allow the treatment of very general
localized zones, for instance, those exhibiting material nonlinearity, material nonuniformity,
and other types of complexity. The weakly singular SGBEM is utilized to readily and
efficiently model the remaining unbounded region. A pair of weakly singular boundary
integral equations proposed by Rungamornrat and Mear [22] is employed as a basis for
the development of SGBEM, and this, therefore, allows the treatment of the unbounded
region that is made of an anisotropic linearly elastic material and contains cracks. It is
worth emphasizing that while the present study is closely related to the work of Frangi and
Novati [34], Springhetti et al. [35], and Rungamornrat and Mear [36], the proposed technique
offers additional crucial capabilities to treat an infinite domain, material nonlinearity
in localized zones, and general material anisotropy. Following sections of this paper
present basic equations and the coupling formulation, essential components for numerical
implementations, numerical results and discussions, and conclusions and useful remarks.

2. Formulation

Consider a three-dimensional infinite medium, denoted by Q, containing a crack and a
localized complex zone as shown schematically in Figure 1(a). The crack is represented by
two geometrical coincident surfaces S and S with their unit outward normal being denoted
by n* and n~, respectively, and the localized complex zone is denoted by QL. In the present
study, the medium is assumed to be free of a body force and loading on its remote boundary,
and both surfaces of the crack are subjected to prescribed self-equilibrated traction defined by
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tc = t& = ~t.. Now, let us introduce an imaginary surface Sy to decompose the body € into
two subdomains, an unbounded “BEM-region” denoted by QF and a finite “FEM-region”
denoted by QF, as indicated in Figure 1(b). The surface S; is selected such that the localized
complex zone and the crack are embedded entirely in the FEM-region and in the BEM-region,
respectively (i.e, St U S: ¢ QF and QF c QF), and, in addition, the BEM-region must be
linearly elastic. To clearly demonstrate the role of the interface between the two subregions in
the formulation presented below, we define {Sgy, tgr, upr} and {Sry, trr, ur;} as the interface,
the unknown traction, and the unknown displacement on the interface of the BEM-region QF
and the FEM-region Qf, respectively. It is important to emphasize that the interfaces Sg; and
Sy are in fact identical to the imaginary surface S;. While the formulation is presented, for
brevity, only for a domain containing a single crack and a single localized complex zone, it can
readily be extended to treat multiple cracks and multiple complex zones; in such particular
case, multiple FEM-regions are admissible.

2.1. Governing Equations for QF

The total boundary of the BEM-region QF, denoted by Sg, consists of the reduced crack
surface Spc = S{- on which the traction is fully prescribed and the interface Sp; where neither
the traction nor the displacement is known a priori. Note again that the subscript “B” is
added only to emphasize that those surfaces are associated with the BEM-region. To form
a set of governing integral equations for this region, a pair of weakly singular, weak-form
displacement and traction boundary integral equations developed by Rungamornrat and
Mear [22] is employed. These two integral equations were derived from standard boundary
integral relations for the displacement and stress along with a systematic regularization
technique. The final form of completely regularized integral equations is well suited for
establishing the symmetric formulation for the weakly singular SGBEM. Such pair of integral
equations is given here, for convenience in further reference, by

1 ~ -
3], Bouwmasw = [ o) [ ute-yueaseasy
o wp [ che-yow@as@dsy) @
Sar Sg
- R [ m@HiG -y @das@dse),
[ ewamnmase - [ paw | ce-y@ds@dsy)
+[ Doy [ che-ybw@dseasy @2
Sp Sp

+ I Ui (y) I ni(y) Hj (& - y)t;(2)dS()dS(y),
Sp Spi

where #x and %y are sufficiently smooth test functions; D,,(-) = ni€ism0(-)/0¢s is a surface
differential operator with &;s,, denoting a standard alternating symbol; v;(§) = u;(§) for
$ € Spr and Au;(g) for § € Spc with Au;(g) = u;(g) - u]T(g) denoting the jump in
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Localized complex zone

Remote boundary

(a) (b)

Figure 1: (a) Schematic of three-dimensional infinite medium containing crack and localized complex zone
and (b) schematic of BEM-region Q% and FEM-region QF.

the displacement across the crack surface; the geometry-dependent constant c(y) is defined
by c(y) =1/2for ¢ € Spr and 1 for ¢ € Spc. All involved kernels, that is, Hf’].(g -y), uf(g -y),

G’:n]. (¢&-y), Cﬁil‘]. (& —y), are given, for generally anisotropic materials, by

H}(¢-y) = —%, (2.3)
Ul g-y) =K@ -y), 2.4)
Ghi(& =) = eamEajacKly (6 - ), (2.5)
Cj(&—y) = ALPS KGn (€ - y), (2.6)

where 6; is a standard Kronecker-delta symbol; E;jy; are elastic moduli; Atkoe and K;;‘ (¢é-y)

mjdn
are defined by
1
Ai’;j?;n = €pam€pbt<EbkndEujeo - §EajkbEdneo>, (2.7)
i 1
k -1
Ki(G-y) =g, ﬂrzo(z, z);) zizjds(2), (2.8)

inwhichr=¢-y,r =1, (z,2) k= z;Eijx1z; and the closed contour integral is to be evaluated
over a unit circle ||z|| = 1 on a plane defined by z-r = 0. It is evident that the kernel HZ. (¢-y)is
given in an explicit form independent of material properties and the kernels ni(g)HZ &-vy),

ni(y)HS. (&-y), Llf (&-y), anj(g—y), Ci’;j (¢—y) are singular only at ¢ =y of O(1/r) (see details

in Xiao [16] for discussion of the singularity behavior of the kernel H Z(g -y)). It should be
remarked that for isotropic materials, the kernels uf.’(g -y), an J &-vy), C;’; ! (& —y) possess an
explicit form in terms of elementary functions (see [18, 22]).

Towards obtaining a system of governing integral equations for the BEM-region QF,
the weak-form boundary integral equation for the traction (2.2) is applied directly to the
crack surface Spc (with the test function being chosen such that v = 0 on Spr) and to
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the interface Sg; (with the test function being chosen such that v = 0 on Spc), and the weak-

form boundary integral equation for the displacement (2.1) is applied only to the interface
Sgr. A final set of three integral equations is given concisely by

HAcc (v, Au) + Bic(tpr, V) + HAc1(V, upr) = -2Fsc(V, tc),
Bic <¥31, Au> +Cyy <¥31,t31) + Dy (IBI/ uBI) =0, (2.9)

Aic(upr, Au) + Dy (tpr, Upr) + <411 (Upr, upr) = —2¥ s (g, tar),

where {iip;, tsr} are test functions defined on the interface Sp; and all involved bilinear
integral operators are defined, with subscripts P,Q € {I,C} being introduced to clearly
indicate the surface of integration, by

Jpg<x,Y>=jS Dtxk<y)fs CIK.(& ~ y) D Y;(2)dS()dS (y), (2.10)
BP BQ

BV = [ x| GG -yDaY@ds@dsy)

2.11)
- LM Xi(y) LBP nu@HE, (& - Y)Y, ()dS@)dS(y),

Crix,Y) - LB, Xi(y) LM UK - y)Vi()AS@)dS(y), @12)

For X0 =3 [ XX, .13)

DX Y) =B1(X,Y) - Fpr(X,Y). (2.14)

It should be noted that the linear operator «#pgo(X,Y) is in a symmetric form satisfying the
condition #pg (X, Y) = Hop(Y,X), and, as a consequence, it renders the left hand side of the
system (2.9) being in a symmetric form. Although such symmetric formulation can readily
be obtained, the right-hand side of (2.9) still contains the unknown traction on the interface
tgr. The treatment of a term Fp;(tipr, tgr) will be addressed once the formulation for the FEM-
region QF is established.

2.2. Governing Equations for QF

Let us consider, next, the FEM-region QF. For generality, the entire boundary of this
particular region can be decomposed into two surfaces: the interface Sr; on which both
the traction tr; and the displacement ur; are unknown a priori and the surface Srr on
which the traction trr is fully prescribed. The existence of the surface Sgr is apparent for
the case that the FEM-region contains embedded holes or voids. It is also important to
emphasize that, in the development of a key governing equation for QF, the traction tp;
is treated, in a fashion different from that for the BEM-region, as unknown data instead of
the primary unknown variable. In addition, to be capable of modeling a complex localized
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zone embedded within the FEM-region, a constitutive model governing the material behavior
utilized in the present study is assumed to be sufficiently general allowing the treatment
of material nonlinearity, anisotropy, and inhomogeneity. The treatment of such complex
material models has been extensively investigated and well established within the context
of nonlinear finite element methods (e.g., [6, 37, 38]), and those standard procedures also
apply to the current implementation and will not be presented for brevity. Here, we only
outline the key governing equation for the FEM-region and certain unknowns and necessary
data connected to those for the BEM-region.

Following standard formulation of the finite element technique, the weak-form
equation governing the FEM-region can readily be obtained via the principle of virtual work
[6-8] and the final equation can be expressed in a concise form by

Krr(U,0) = 2Frr(Urr, ter) + 2Fer (Urr, ter), (2.15)

where 0 is a stress tensor; 1 is a suitably well-behaved test function defined over the domain
QF; Uipr and tipr are the restriction of @ on the interface Sp; and boundary Srr, respectively;
the integral operators are defined, with subscripts P € {I,T}, by

11 0) = [ & m)ayavey) @.16)

FroX ¥ =3 [ XyYmds) .17)

in which &;;(y) denotes the virtual strain tensor defined by &;;(y) = (di;/0y; + 01i;/0y;) /2.
Note again that a function form of the stress tensor in terms of the primary unknown depends
primarily on a constitutive model employed. For a special case of the FEM-region being made
of a homogeneous, linearly elastic material, the stress tensor can be expressed directly and
explicitly in terms of elastic constants Eijki and the strain tensor € (i.e., oij = E,-jklekl), and,
within the context of an infinitesimal deformation theory (i.e., &;;(y) = (0u;/0y;+0u;/0y;)/2),
the integral operator X rr can be expressed directly in terms of the displacement u as

JCFF(ﬁ, u) = IQF ﬁi,]' (y)Eijkluk,l (y)dV(y) (2.18)

It should be remarked that the factor of one half in the definition (2.17) has been introduced
for convenience to cast this term in a form analogous to that for $gp given by (2.13), and
this, as a result, leads to the factor of two appearing on the right-hand side of (2.15). It is also
worth noting that the first term on the right-hand side of (2.15) still contains the unknown
traction on the interface tr;.

2.3. Governing Equations for Q

A set of governing equations of the entire domain Q can directly be obtained by combining
a set of weakly singular, weak-form boundary integral equations (2.9) and the virtual work
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equation (2.15). In particular, the last equations of (2.9) and (2.15) are properly combined,
and this finally leads to

Acc(V, Au) + Bic(tpr, V) + Hcr(V,upr) = -2¥sc(V, tc),
Bic GBI, Au) +Cpy GBL tBI) +9Dyr (IBI/ uBI) =0, (2.19)

Arc(Upr, Au) + Brr(tar, Upr) + A1 (upr, upr) — Krr(W, 0) = € = 2Frr (Urr, ter),
where £ is given by

& = =2[Fpr(upr, tgr) + Frr(urr, ter)]. (2.20)

From the continuity of the traction and displacement across the interface of the BEM-region
and FEM-region (i.e., tp;(y) + tri(y) = 0 and up;(y) = ur;(y) for ally € S; = Spr = Sry), the
test functions tip; and u are chosen such that up;(y) = tr;(y) forally € S; = Spr = Spr and, as
a direct consequence, ¢ identically vanishes. It is therefore evident that the right-hand side of
(2.19) involves only prescribed boundary data, and, in addition, if the integral operator Xrr
possesses a symmetric form, (2.19) constitutes a symmetric formulation for the boundary
value problem currently treated.

3. Numerical Implementation

This section briefly summarizes numerical procedures adopted to construct approximate
solutions of a set of governing equations (2.19) and to postprocess certain quantities of
interest. The discretization of the BEM-region and the FEM-region is first discussed. Then,
components essential for numerical evaluation of weakly singular and nearly singular
double-surface integrals, evaluations of kernels, and determination of general mixed-mode
stress intensity factors are addressed. Finally, the key strategy for establishing the coupling
between the in-house weakly singular SGBEM code and the reliable commercial finite
element package is discussed.

3.1. Discretization

Standard Galerkin strategy is adopted to construct an approximate solution of the governing
equation (2.19). For the BEM-region QB, only the crack surface Spc and the interface Sg;
need to be discretized. In such discretization, standard isoparametric C° elements (e.g.,
8-node quadrilateral and 6-node triangular elements) are employed throughout except
along the crack front where special 9-node crack-tip elements are employed to accurately
capture the asymptotic field near the singularity zone. Shape functions of these special
elements are properly enriched by square root functions, and, in addition, extra degrees of
freedom are introduced along the element boundary adjacent to the crack front to directly
represent the gradient of the relative crack-face displacement [18, 21, 23]. These positive
features also enable the calculation of the mixed-mode stress intensity factors (i.e., mode-
I, mode-II, and mode-III stress intensity factors) in an accurate and efficient manner with



10 Mathematical Problems in Engineering

use of reasonably coarse meshes. For the FEM-region QF | standard three-dimensional,
isoparametric C’ elements (e.g., ten-node tetrahedral elements, fifteen-node prism elements,
and twenty-node brick elements) are utilized throughout in the domain discretization.

It is important to note that the BEM-region and the FEM-region are discretized such
that meshes on the interface of the two regions conform (i.e., the two discretized interfaces
are geometrically identical). A simple means to generate those conforming interfaces is to
mesh the FEM-region first and then use its surface mesh as the interface mesh of the BEM-
region. With this strategy, all nodal points on both discretized interfaces are essentially
coincident. The key advantage of using conforming meshes is that the strong continuity of
the displacement, the traction, and the test functions across the interface can be enforced
exactly, and, as a result, the condition & = 0 is also satisfied in the discretization level.
It should be emphasized also that nodes on the interface of the BEM-region contain six
degrees of freedom (i.e., three displacement degrees of freedom and three traction degrees
of freedom) while nodes on the FEM-region contain only three displacement degrees of
freedom.

3.2. Numerical Integration

For the FEM-region, all integrals arising from the discretization of the weak-form equation
contain only regular integrands, and, as a result, they can be efficiently and accurately
integrated by standard Gaussian quadrature. On the contrary, numerical evaluation of
integrals arising from the discretization of the BEM-region is nontrivial since it involves the
treatment of three types of double surface integrals (i.e., regular integrals, weakly singular
integrals, and nearly singular integrals). The regular double surface integral arises when it
involves a pair of remote outer and inner elements (i.e., the distance between any source and
field points is relatively large when compared to the size of the two elements). This renders its
integrand nonsingular and well-behaved and, as a result, allows the integral to be accurately
and efficiently integrated by standard Gaussian quadrature.

The weakly singular double surface integral arises when the outer surface of
integration is the same as the inner surface. For this particular case, the source and field points
can be identical and this renders the integrand singular of order 1/r. While the integral of this
type exists in an ordinary sense, it was pointed out by Xiao [16] that the numerical integration
by Gaussian quadrature becomes computationally inefficient and such inaccurate evaluation
can significantly pollute the quality of approximate solutions. To circumvent this situation,
a series of transformations such as a well-known triangular polar transformation and a
logarithmic transformation is applied first both to remove the singularity and to regularize
the rapid variation of the integrand. The final integral contains a nonsingular integrand well
suited to be integrated by Gaussian quadrature. Details of this numerical quadrature can be
found in [16, 39, 40].

The most challenging task is to compute nearly singular integrals involving relatively
close or adjacent inner and outer elements. Although the integrand is not singular, it
exhibits rapid variation in the zone where both source and field points are nearly identical.
Such complex behavior of the integrand was found very difficult and inefficient to be
treated by standard Gaussian quadrature [16]. To improve the accuracy of such quadrature,
the triangular polar transformation is applied first and then a series of logarithmic
transformations is adopted for both radial and angular directions to further regularize the
rapid variation integrand. The resulting integral was found well-suited for being integrated
by standard Gaussian quadrature [16, 40—42].
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3.3. Evaluation of Kernels

To further reduce the computational cost required to form the coefficient matrix contributed
from the BEM-region, all involved kernels ni(g)Hi].(g -y), ni(y)Hij(g -y), uf(g -y),
an J &-vy), Cfﬁj(g —y) must be evaluated in an efficient manner for any pair of source and
field points {¢,y}. For the first two kernels n; (g)Hi]. (¢ —y) and ni(y)HZ. (¢ —y), they only
involve the calculation of a unit normal vector n and the elementary function Hf; As a
result, this task can readily be achieved via a standard procedure. For the last three kernels,
the computational cost is significantly different for isotropic and anisotropic materials. For

isotropic materials, such kernels only involve elementary functions and can therefore be
evaluated in a straightforward fashion. On the contrary, the kernels Uf (¢&-y), an ].(g -y), and

C;’;j (¢ —y) for general anisotropy are expressed in terms of a line integral over a unit circle
(see (2.4)-(2.6), and (2.8)). Direct evaluation of such line integral for every pair of points (¢,y)
arising from the numerical integration is obviously computationally expensive. To avoid this
massive computation, a well-known interpolation technique (e.g., [21, 23, 36]) is adopted
to approximate values of those kernels. Specifically, the interpolant of each kernel is formed
based on a two-dimensional grid using standard quadratic shape functions. Values of kernels
at all grid points are obtained by performing direct numerical integration of the line integral
(2.8) via Gaussian quadrature and then using the relations (2.4)—(2.6). The accuracy of such
approximation can readily be controlled by refining the interpolation grid.

3.4. Determination of Stress Intensity Factors

Stress intensity factors play an important role in linear elastic fracture mechanics in the
prediction of crack growth initiation and propagation direction and also in the fatigue-life
assessment. This fracture data provides a complete measure of the dominant behavior of the
stress field in a local region surrounding the crack front. To obtain highly accurate stress
intensity factors, we supply the developed coupling technique with two crucial components,
one associated with the use of special crack-tip elements to accurately capture the near-
tip field and the other corresponding to the use of an explicit formula to extract such
fracture data. The latter feature is a direct consequence of the extra degrees of freedom being
introduced along the crack front to represent the gradient of relative crack-face displacement.
Once a discretized system of algebraic equations is solved, nodal quantities along the crack
front are extracted and then postprocessed to obtain the stress intensity factors.

An explicit expression for the mixed-mode stress intensity factors in terms of nodal
data along the crack front, local geometry of the crack front, and material properties can be
found in the work of Li et al. [18] for cracks in isotropic media and Rungamornrat and Mear
[23, 36] for cracks in general anisotropic media. In the current investigation, both formulae
are implemented.

3.5. Coupling of SGBEM and Commercial FE Package

To further enhance the modeling capability, the weakly singular SGBEM can be coupled with
a reliable commercial finite element code that supports user-defined subroutines. The key
objective is to exploit available vast features of such FE package (e.g., mesh generation, user-
defined elements, powerful linear and nonlinear solvers, and various material models, etc.)
to treat a complex, localized FEM-region and utilize the SGBEM in-house code to supply
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information associated with the majority of the domain that is unbounded and possibly
contains isolated discontinuities.

In the coupling procedure, the governing equation for the BEM-region is first
discretized into a system of linear algebraic equations. The corresponding coefficient matrix
and the vector involving the prescribed data are constructed using the in-house code, and
they can be viewed as a stiffness matrix and a load vector of a “super element” containing
all degrees of freedom of the BEM-region. This piece of information is then imported into
the commercial FE package via a user-defined subroutine channel and then assembled with
element stiffness matrices contributed from the discretized FEM-region. Since meshes of
both interfaces (one associated with the BEM-region and the other corresponding to the
FEM-region) are conforming, the assembly procedure can readily be achieved by using
a proper numbering strategy. Specifically, nodes on the interface of the BEM-region are
named identical to nodes on the interface of the FEM-region (associated with the same
displacement degrees of freedom). It is important to emphasize that all interface nodes
of the BEM-region possess six degrees of freedom (i.e., three displacement degrees of
freedom and three traction degrees of freedom) but there are only three (displacement)
degrees of freedom per interface node of the FEM-region. To overcome such situation, each
interface node of the BEM-region is fictitiously treated as double nodes where the first
node is chosen to represent the displacement degrees of freedom and is numbered in the
same way as its coincident interface node of the FEM-region whereas the second node is
chosen with different name to represent the traction degrees of freedom. With this particular
scheme, the assembling procedure follows naturally that for a standard finite element
technique.

Once the coupling analysis is complete, nodal quantities associated with the BEM-
region are extracted from the output file generated by the FE package and then postprocessed
for quantities of interest. For instance, the displacement and stress within the BEM-region
can readily be computed from the standard displacement and stress boundary integral
relations [17, 22], and the stress intensity factors can be calculated using an explicit expression
proposed in [18, 23].

4. Numerical Results and Discussion

As a means to verify both the formulation and the numerical implementations, we first
carry out numerical experiments on boundary value problems in which the analytical
solution exists. In the analysis, a series of meshes is adopted in order to investigate both
the convergence and accuracy of the numerical solutions. Once the method is tested, it is
then applied to solve more complex boundary value problems in order to demonstrate its
capability and robustness. For brevity of the presentation, a selected set of results are reported
and discussed as follows.

4.1. Isolated Spherical Void under Uniform Pressure

Consider an isolated spherical void of radius a embedded in a three-dimensional infinite
medium as shown schematically in Figure 2(a). The void is subjected to uniform pressure oy.
In the analysis, two constitutive models are investigated: one associated with an isotropic,
linearly elastic material with Young’s modulus E and Poisson ratio v = 0.3 and the other
chosen to represent an isotropic hardening material obeying J>-flow theory of plasticity [43].
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Figure 2: (a) Schematic of three-dimensional infinite medium containing spherical void and (b) schematic
of BEM-region and FEM-region.

Mesh-1

Figure 3: Three meshes adopted in the analysis for FEM-region; meshes for BEM-region are identical to the
interface mesh of FEM-region.

For the latter material, the uniaxial stress-strain relation is assumed in a bilinear form with E;
and E, denoting the modulus in the elastic regime and the modulus of the hardening zone,
respectively, and o, and ¢, denoting the initial yielding stress and its corresponding strain,
respectively.

To test the coupling technique, we first decompose the body into two regions by a
fictitious spherical surface of radius 5a and centered at the origin as shown by a dashed
line in Figure 2(b). It is important to remark that such a surface must be chosen relatively
large compared to the void to ensure that the inelastic zone that may exist (for the second
constitutive model) is fully contained in the FEM-region. In the experiments, three different
meshes are adopted as shown in Figure 3. Although meshes for the BEM-region are not
shown, they can simply obtain from the interface meshes of the FEM-region. As clearly
illustrated in the figure, mesh-1, mesh-2, and mesh-3 consist of 12, 32, 144 boundary elements
and 24, 128, 1152 finite elements, respectively.

4.1.1. Results for Isotropic Linearly Elastic Material

For linear elasticity, this particular boundary value problem admits the closed form solution
(e.g., [44]). Since the problem is spherically symmetric, only the radial displacement u, and
the normal stress components {c;,,0ge,0p¢} are nonzero and they are given explicitly by
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Figure 4: Normalized radial displacement versus normalized radial coordinate for isotropic, linearly elastic
material with v = 0.3.

(note that these quantities are referred to a standard spherical coordinate system {r,6, ¢}
with its origin located at the center of the void)

u,(r) = 1;—;00‘:—2, (4.1)
3
Ore(r) = —2000(r) = ~204(r) = —oo<§> . 42)

This analytical solution is employed as a means to validate the proposed formulation and the
numerical implementation. Numerical solutions for the radial displacement obtained from
the three meshes are reported and compared with the exact solution in Figure 4. As evident
from this set of results, the radial displacements obtained from the mesh-2 and the mesh-3 are
highly accurate with only slight difference from the exact solution while that obtained from
the mesh-1 is reasonably accurate except in the region very near the surface of the void. The
discrepancy of solutions observed in the mesh-1 is due to that the level of refinement is too
coarse to accurately capture the geometry and responses in the local region near the surface
of the void.

We further investigate the quality of numerical solutions for stresses. Since all nonzero
stress components are related by (4.2), only results for the radial stress component are
reported. Figure 5 shows the normalized radial stress obtained from the three meshes and
the exact solution versus the normalized radial coordinate. It is observed that the mesh-
3 yields results that are almost indistinguishable from the exact solution, whereas the
mesh-1 and mesh-2 give accurate results for relatively large r, and the level of accuracy
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Figure 5: Normalized radial stress versus normalized radial coordinate for isotropic, linearly elastic
material with v = 0.3.

decreases as the distance r approaches a. It is noted by passing that the degeneracy of the
accuracy in computing stress is common in a standard, displacement-based, finite element
technique.

To demonstrate the important role of the SGBEM in the treatment of an unbounded
part of the domain instead of truncating the body as practically employed in the finite
element modeling, we perform another FE analysis of the FEM-region alone without
coupling with the BEM-region but imposing zero displacement condition at its interface.
The radial displacement and the radial stress obtained for this particular case using the
mesh-3 are reported along with the exact solution and those obtained from the coupling
technique in Figures 6 and 7, respectively. As evident from these results, numerical solutions
obtained from the FEM with a domain truncation strategy deviate from the exact solution
as approaching the truncation surface while the proposed technique yields almost identical
results to the exact solution. The concept of domain truncation to obtain a finite body is
simple, but it still remains to choose a proper truncation surface and boundary conditions
to be imposed on that surface to mimic the original boundary value problem. This coupling
technique provides an alternative to treat the whole domain without any truncation and
difficulty to treat the remote boundary.

4.1.2. Isotropic Hardening Material

For this particular case, we focus attention to the material with no hardening modulus (i.e.,
E, = 0) since the corresponding boundary value problem admits the closed form solution.
For a sufficiently high applied pressure oy, a layer close to the boundary of the void becomes
inelastic and the size of such inelastic zone (measured by the radius ry) becomes larger as
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Figure 6: Normalized radial displacement versus normalized radial coordinate for isotropic, linearly elastic
material with v = 0.3. Results are obtained from mesh-3 for both the coupling technique and the FEM with
domain truncation.
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Figure 7: Normalized radial stress versus normalized radial coordinate for isotropic, linearly elastic
material with v = 0.3. Results are obtained from mesh-3 for both the coupling technique and the FEM
with domain truncation.



Mathematical Problems in Engineering 17

5

A Mesh-1 e  Mesh-3
O Mesh-2 ——  Exact solution

Figure 8: Normalized radial displacement versus normalized radial coordinate for isotropic hardening
material with E, = 0.

0y increases. By incorporating J>-flow theory of plasticity and spherical symmetry, the radial
displacement and the radial stress can be obtained exactly as given below:

T G T )

oy(1+v)<rg> e
T = _2 7 = 0/
{ 3E r (4.3)

( r
20y ln<z> —0p, Tt <y,

Orr (1) = S 20, /10\?
BE.
L 3 \r

u,(r) = <

where the Poisson ratio v is taken to be 0.3 and ry = ae((%0/20)-(1/3)) ig the radius of an inelastic
zone.

In the analysis, the pressure oy = 1.6250, is chosen to ensure that the medium contains
an inelastic zone; in fact, this selected applied pressure corresponds to ry = 1.615a. Numerical
results obtained from the current technique are reported along with the exact solution in
Figure 8 for the normalized radial displacement and in Figure 9 for the normalized radial
stress. It can be concluded from computed solutions that they finally converge to the exact
solution as the mesh is refined. In particular, results obtained from the mesh-3 are nearly
indistinguishable from the benchmark solution. It should be pointed out that results obtained
from the same level of mesh refinement for this particular case are less accurate than those
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Figure 9: Normalized radial stress versus normalized radial coordinate for isotropic hardening material
with E; = 0.
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Figure 10: (a) Schematic of infinite medium containing penny-shaped crack, (b) crack under uniform
normal traction oy, and (c) crack under uniform shear traction 7.

obtained for the linear elastic case. This is due to the complexity posed by the presence of an
inelastic zone near the surface of the void, and, in order to capture this behavior accurately, it
requires sufficiently fine meshes.

4.2. Isolated Penny-Shaped Crack in Infinite Medium

Consider, next, a penny-shaped crack of radius a which is embedded in a linearly elastic,
infinite medium as shown schematically in Figure 10(a). The body is made of either an
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Figure 11: (a) Schematic of selected FEM-region and the remaining BEM-region and (b) three meshes
adopted in the analysis.

Table 1: Nonzero elastic constants for zinc and graphite-reinforced composite (where axis of material
symmetry is taken to direct along the x3-coordinate direction).

Nonzero elastic constants . (x10°) psi . . .
Zinc Graphite-reinforced composite

Enn 16.09 14.683

Ei12 3.35 6.986

E1133 5.01 5.689

Essss 6.10 144.762

Eis13 3.83 4.050

isotropic material with Poisson’s ratio v = 0.3 or zinc and graphite-reinforced composite.

The last two materials are transversely isotropic with the axis of material symmetry directing
along the x3-axis, and their elastic constants are given in Table 1. The crack is subjected to
two types of traction boundary conditions: the uniform normal traction oy (i.e., t; = t, =
0, t3 = 0p) as shown in Figure 10(b) and the uniform shear traction 7y along the x;-axis (i.e.,
t1 =1, tp =t3 =0) as shown in Figure 10(c).

The first loading condition gives rise to a pure opening-mode problem with the mode-
I stress intensity factor along the crack front being constant and independent of material
properties, while the second loading condition yields nonzero mode-II and mode-III stress
intensity factors that vary along the crack front. The analytical solutions for both cases can
be found in the work of Fabrikant [4]. As a means to verify the coupling formulation and
implementation, we choose the FEM-region to be a cube of dimensions 2a x 2a x 2a centered
at (0, 0, 2a) as illustrated in Figure 11(a). In the analysis, we generate three meshes for both
the crack surface and the FEM-region as shown in Figure 11(b).

For the first loading condition, numerical solutions for the mode-I stress intensity
factor normalized by the exact solution are reported in Table 2 for all three materials. Clearly
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Table 2: Normalized mode-I stress intensity factor for isolated penny-shaped crack subjected to uniform
normal traction.

Isotropic material, Kj/Kj, exact Transversely isotropic material, K1 /K exact
Mesh Zinc Graphite-reinforced composite
6°=0 6° =90 0°=0 6° =90 6°=0 6° =90
1 0.9919 0.9920 0.9890 0.9890 0.9841 0.9841
1.0008 1.0008 1.0001 1.0001 1.0053 1.0053
3 1.0002 1.0002 1.0004 1.0004 1.0006 1.0001

from these results, the current technique yields highly accurate stress intensity factors with
error less than 1.6%, 0.6%, and 0.1% for mesh-1, mesh-2, and mesh-3, respectively. The weak
dependence of numerical solutions on the level of mesh refinement is due mainly to the use
of special crack-tip elements to model the near-tip field and directly capture the gradient of
relative crack-face displacement along the crack front. Relatively coarse meshes can therefore
be employed in the analysis to obtain sufficiently accurate stress intensity factors.

For the second loading condition, the normalized mode-II and mode-III stress intensity
factors (K, and K3) are shown in Figure 12 for isotropic material, zinc and graphite-
reinforced composite. Based on this set of results, it can be concluded again that numerical
solutions obtained from the three meshes are in excellent agreement with the exact solution;
in particular, a coarse mesh also yields results of high accuracy. It should also be remarked
that for this particular loading condition, the material anisotropy plays a significant role on
values of the mixed-mode stress intensity factors.

4.3. Infinite Medium Containing Both Penny-Shaped Crack and
Spherical Void

As a final example, we choose to test the proposed technique by solving a more complex
boundary value problem in order to demonstrate its capability. Let us consider an infinite
medium containing a spherical void of radius a and a penny-shaped crack of the same radius
as shown schematically in Figure 13. The medium is subjected to uniform pressure oy on the
surface of the void, whereas the entire surface of the crack is traction-free. In the analysis,
two constitutive models are investigated: one associated with an isotropic, linearly elastic
material with Young’s modulus E and Poisson ratio v = 0.3 and the other corresponding
to an isotropic hardening material with the bilinear uniaxial stress-strain relation similar to
that employed in Section 4.1. The primary quantity to be sought is the mode-I stress intensity
factor along the crack front induced by the application of the pressure to the void. In addition,
influence of an inelastic zone induced in the high-load-intensity region on such fracture data
is also of interest.

In the modeling, we first decompose the medium into the FEM-region and the BEM-
region using a fictitious spherical surface of radius 4a centered at the same location as that
of the void as shown in Figure 14(a). Three meshes are adopted in numerical experiments
as shown in Figure 14(b). In particular, the FEM-region, the interface, and the crack surface
consist of {24, 12, 8}, {128, 32, 16}, and {1024, 128, 64} elements for mesh-1, mesh-2, and
mesh-3, respectively. It should be noted also that the mesh-1 is obviously very coarse; in
particular, only eight elements are utilized to discretize the entire crack surface and only four
relatively large crack-tip elements are used along the crack front.
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Figure 12: Normalized mode-II and mode-III stress intensity factors for isolated penny-shaped crack
subjected to shear traction. Results are reported for isotropic material with v = 0.3, zinc and graphite-
reinforced composite.
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Figure 13: Schematic of infinite medium containing spherical void of radius a and penny-shaped crack of
radius a and subjected to uniform pressure at surface of void.

First, the analysis is carried out for the elastic material with Poisson ratio v = 0.3, and
the computed mode-I stress intensity factors are normalized and then reported as a function
of angular position along the crack front for all three meshes in Figure 15. This set of results
implies that the obtained numerical solutions exhibit good convergence; in particular, results
obtained from the mesh-2 and mesh-3 are of comparable quality while results obtained from
the mesh-1 still deviate from the converged solution. As confirmed by this convergence study,
only the mesh-3 is used to generate other sets of useful results.

Next, we consider a medium made of an isotropic hardening material. In the analysis,
we choose the modulus E; = E and Poisson ratio v = 0.3 for the linear regime and choose
either E, = E/3 or E; = 0 for the hardening regime. With this set of material parameters,
the behavior in the linear regime (for a small level of applied pressure) is identical to that
obtained in the previous case. To investigate the influence of the inelastic zone induced near
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Figure 14: (a) Decomposition of domain into BEM-region and FEM-region by a fictitious spherical surface
of radius 4a and (b) three meshes adopted in analysis.
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Figure 15: Normalized mode-I stress intensity factors of penny-shaped crack embedded within infinite
medium containing spherical void under uniform pressure. Results are reported for isotropic linearly
elastic material with v = 0.3.

the surface of the void on the stress intensity factor along the crack front, we carry out various
experiments by varying the applied pressure oy. The distribution of the stress intensity factor
along the crack front is reported in Figure 16 for a hardening material with E; = E and E; =
E/3 under five levels of the applied pressure oy € {0.250,,1.000,,1.250,,1.500,,1.750, }. The
body is entirely elastic at op = 0.250,, slightly passes the initial yielding at op = 1.000,, and
possesses a larger inelastic zone as the pressure increases further. It is obvious from Figure 16
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Figure 16: Normalized mode-I stress intensity factor of penny-shaped crack embedded within infinite
medium containing spherical void under uniform pressure. Results are reported for isotropic hardening
material with E; = E and E; = E/3.

that the presence of an elastic zone significantly alters the normalized values of the stress
intensity factor from the linear elastic solution and such discrepancy becomes more apparent
as the level of applied pressure increases. The localized inelastic zone acts as a stress riser,
that is, it produces the stress field of higher intensity around the crack, and this therefore
yields the higher normalized stress intensity factor when compared with the linear elastic
case. Figure 17 shows an additional plot between the maximum normalized stress intensity
factors versus the normalized applied pressure for both an isotropic linearly elastic material
and two isotropic hardening materials (associated with E, = 0 and E, = E/3). Results for
both materials are identical for a low level of the applied pressure (since the entire body is still
elastic), and, for a higher level of the applied pressure, the maximum stress intensity factor
for the case of the hardening material is significantly larger than that for the linear elastic
material. In addition, such discrepancy tends to increase as the hardening modulus decreases.

5. Conclusions and Remarks

The coupling procedure between a standard finite element method (FEM) and a weakly
singular, symmetric Galerkin boundary element method (SGBEM) has been successfully
established for stress analysis of a three-dimensional infinite medium. The proposed
technique has exploited the positive features of both the FEM and the SGBEM to enhance
the modeling capability. The vast and very general features of the FEM have been employed
as a basis to treat a localized region that may embed a zone exhibiting complex behavior,
whereas the SGBEM has been used specifically to model the majority of the medium that is
unbounded and possibly contains the surface of displacement discontinuities such as cracks
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Figure 17: Maximum normalized mode-I stress intensity factor versus applied pressure at surface of
void. Results are reported for isotropic linearly elastic material with v = 0.3 and two isotropic hardening
materials.

and dislocations. The coupling formulation has been based primarily on the domain decom-
position technique along with the proper enforcement of continuity of the displacement and
traction on the interface of the two regions (one modeled by the SGBEM and the other by the
FEM) to form the coupling equations. For the FEM subdomain, the key formulation follows
directly the well-known principle of virtual work, whereas, for the SGBEM subdomain, the
governing equation is formulated based on a pair of weakly singular, weak-form boundary
integral equations for the displacement and traction. The advantage of using the weakly
singular integral equations is associated with the permission to apply a space of continuous
interpolation functions in the discretization of primary unknowns on the SGBEM subdomain.

In the numerical implementation, various aspects have been considered in order to
enhance the accuracy and computational efficiency of the coupling technique. For instance,
special crack-tip elements have been employed to better approximate the near-tip field.
Shape functions of these special elements have properly been enriched by a square root
function such that the resulting interpolation functions can capture the relative crack-face
displacement with sufficiently high level of accuracy. As a direct consequence, it allows
relatively large crack-tip elements to be employed along the crack front while still yielding
very accurate stress intensity factors. Another important consideration is the use of an
interpolation strategy to approximate values of kernels for generally anisotropic materials;
this substantially reduces the computational cost associated with the direct evaluation of the
line integral. Finally, special numerical quadratures have been adopted to efficiently evaluate
both the weakly singular and nearly singular double surface integrals. To demonstrate and
gain an insight into the coupling strategy, the formulation has been implemented first in terms
of an in-house computer code for linear elasticity boundary value problems. Subsequently,
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the weakly singular SGBEM has successfully been coupled with a reliable commercial finite
element package in order to exploit its rich features to model more complex localized region
such as inelastic zones and inhomogeneities. As indicated by results from extensive numeri-
cal experiments, the current technique has been found promising and, in particular, numerical
solutions exhibit good convergence and weak dependence on the level of mesh refinement.
As a final remark, while the developed technique is still restricted to an infinite domain
and to conforming interfaces, it offers insight into the SGBEM-FEM coupling strategy in terms
of the formulation, the implementation procedure, and its performance. This coupling strat-
egy can directly be generalized to solve more practical boundary value problems involving
a half space, for example, cracks and localized complex zone near the free surface. Another
crucial extension is to enhance the feature of the current technique by using the weak enforce-
ment of continuity across the interface. This will supply the flexibility of mesh generation.
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Abstract

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-
dimensional linear elastic media by taking the influence of residual surface tension into account, is
presented in this paper. The elastic medium (i.e., the bulk material) is modeled by the classical
theory of linear elasticity, whereas the crack surface is treated as a zero-thickness layer perfectly
bonded to the bulk material with its behavior governed by the special case of Gurtin-Murdoch
surface elasticity model. Governing equations of the bulk material are formulated in terms of
weakly singular, weak-form boundary integral equations, whereas those of the surface are cast in a
weak form using a weighted residual technique. The solution of the final system of governing
equations is subsequently accomplished by using a numerical procedure based primarily on a
standard finite element technique and a weakly singular, symmetric Galerkin boundary element
method. Extensive numerical simulations are conducted and the results are compared with available
benchmark solutions to verify the formulation and numerical implementation. Applications of the
technique to the analysis of nano-crack problems are presented for some selected cases, to study

nano-scale influence and size-dependency behavior.

Keywords: Crack opening displacement, Gurtin-Murdoch model, Nano-cracks, Residual surface

tension, SGBEM, Surface elasticity
1. Introduction

Due to the rapid growth of the application of nano-sized devices and nano-structured materials in
various fields, the physical modeling and corresponding comprehensive analysis to gain an insight
into their complex behavior become important aspects in the optimal design of nano-scale products.
Failure/damage analysis and assessment is one of the essential steps that must be properly
considered to ensure their safety and integrity in the design procedure. To aid such crucial tasks, a
classical approach based on the stress analysis of a body containing assumed pre-existing defects or

cracks is usually considered. While conventional linear elastic fracture mechanics has been well
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established and employed in the modeling of cracks in linear elastic media, an enhancement of the
classical model to incorporate the nano-scale influence is required. Atomistic calculation studies
have pointed out that atoms near the free surface of solids behave differently from their bulk. In this
sense, the whole body is not completely homogeneous, but when its size is in the range of
micrometers or larger, the surface free energy effect can be neglected due to its insignificant
influence on overall material properties. Unlike macro-structures, in the case of nano-sized objects
(e.g., thin films, quantum dots, nano-wires, nano-tubes and nano-composites), the surface to volume
ratio is much higher and, as a direct consequence, the surface free energy effect often plays a crucial
role in the mechanical behavior [1]. Therefore, the classical theory of continuum-based mechanics
commonly used in the modeling of macroscopic bodies cannot be directly applied to treat the

problem of nano-sized cracks.

To be capable of capturing the surface free energy effect, a model that properly takes into
account the surface free energy must be utilized. The most widely used continuum-based models
which incorporate surface free energy effects are those using Gurtin-Murdoch surface elasticity
theory. Gurtin and Murdoch [2, 3] proposed a mathematical framework to study the mechanical
behavior of material surfaces through a continuum-based model which includes surface stress. The
elastic surface is assumed to be very thin and modeled as a mathematical layer of zero thickness.
This layer is perfectly bonded to the bulk material. In addition, such an idealized surface has

different elastic moduli from those of the bulk material.

The Gurtin-Murdoch model has been widely used to study various size-dependent, nano-scale
problems. For instance, He et al. [4], Dingreville et al. [5] and Huang [6] employed the Gurtin-
Murdoch surface elasticity model to clearly elucidate the size-dependent elastic properties of nano-
structured elements such as wires and films, while Tian and Rajapakse [7, 8, 9] applied such model
to demonstrate influence of surface stress effects on stress and displacement fields of nano-
inhomogeneity problems. More recently, Pinyochotiwong et al. [10] investigated the effects of
surface energy in the analysis of an axisymmetric rigid frictionless indentor acting on an isotropic,
linearly elastic half-space by using the complete version of the Gurtin-Murdoch continuum model

for surface elasticity.

The continuum-based surface/interface model of Gurtin and Murdoch has also been employed in
the modeling of nano-sized cracks. Based upon an investigation of an elliptic void, Wu [11] argued
that the presence of the surface stress has the capability of containing the severity of deformations
of a blunt crack. Wang et al. [12] studied the surface stress effect on near-tip stresses for both mode-

I and mode-III blunt cracks and found that when the curvature radius of the crack-front decreases to
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nanometers, surface energy significantly affects the stress intensities near the crack tip. Fu et al. [13,
14] incorporated the surface elasticity model into the finite element method (via ANSYS® and
ABAQUS®) to study the influence of surface stresses on the mode-I and mode-II crack-tip fields
and concluded that when the curvature radius of the blunt crack root decreases to micro-/nano-
meters, surface elasticity exhibits significant influence on the stresses near the crack tip. Fang et al.
[15] analyzed the influence of surface effects on dislocation emission from an elliptically blunt
crack under mode-I and mode-II loading conditions and showed that the impact of surface stresses
on the critical stress intensity factors for dislocation emission becomes remarkable when the size of
the blunted crack is very small, typically of a nanometer scale. Kim et al. [16, 17, 18] examined
mode-I, mode-II and mode-III crack problems including surface stress effects which assumed that
the stresses at the sharp crack-tip are finite. Recently, Nan and Wang [19] considered the effect of
the residual surface tension on the crack surface, to investigate the mode-I crack problem and
demonstrated that the surface effect on the crack deformation and crack-tip field are prominent at
nanoscale. Moreover, the results are influenced by the residual surface tension not only on the
surface near the crack-tip region but also on the entire crack-face. Intarit et al. [20, 21] analytically
investigated a nano-sized, penny-shaped crack in three-dimensional, linear elastic media under

mode-I loading conditions.

On the basis of an extensive literature survey, it can be said that work related to the modeling of
defects/cracks at nano-scale level has been very limited. Most of the studies are restricted to
situations where cracks can be treated either within the context of two-dimensional boundary value
problems [11-19] or within the context of relatively simple three-dimensional problems [20, 21].
However, bodies or components containing existing defects/flaws involved in practical applications
are, in general, relatively complex in terms of geometries, loading conditions, and influences to be
treated (e.g., surface free energy). The existing mathematical models are therefore of limited scope
and insufficient for the prediction of response in practical cases. This, as a result, necessitates the
development of fully three-dimensional models, supplemented by efficient and powerful numerical

procedures.

Numerical techniques based on boundary integral equations have been well-established and
proven powerful for both two-dimensional and three-dimensional fracture analysis (e.g., [22-27]).
The techniques possess attractive characteristics, such as governing equations with spatially reduced
dimensions and simplicity of treating remote boundaries and infinite bodies, rendering them
computationally efficient and convenient for modeling crack problems. The weakly singular,

symmetric Galerkin boundary element method (SGBEM), which is a principal numerical technique
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proposed to model the cracks in the present study, is a particular boundary integral equation method
that has been continuously developed and widely adopted by various investigators in the past four
decades. This special numerical technique has been widely and successfully employed to solve both
linear elasticity and linear elastic fracture problems [28-38], since it has several important features.

For instance, the governing integral equations contain only weakly singular kernels (of ¢(1/r)); the

technique is applicable for modeling cracks with arbitrary configurations and under general loading
conditions and for treating an infinite body efficiently; and the formulation is established in a
symmetric weak-form such that it gives rise to a system of linear equations with a symmetric
coefficient matrix. The first feature renders that all involved integrals exist in an ordinary sense and
their validity requires only the continuity of the boundary data; ie., in the numerical
implementation, it is possible to employ standard C° elements in the approximation of the primary
unknowns and to apply existing quadrature schemes to numerically evaluate all involved integrals
(e.g. [31, 32, 37, 38]). In addition, the last feature also allows the SGBEM to be conveniently
coupled with the standard finite element procedure to enhance its computational efficiency and
capability (e.g. [39, 40]). Extensive review of the weakly singular SGBEM can be found in Bonnet
et al. [41], in Rungamornrat and Mear [37] and Rungamornrat and Senjuntichai [38] for its
application to three-dimensional fracture analysis, in Rungamornrat and Mear [40] for its coupling

with the standard FEM.

In this paper, a computationally efficient numerical technique capable of modeling planar cracks
in three-dimensional isotropic, linear elastic media including the influence of residual surface
tension is presented. The residual surface tension effects are modeled using the well-known Gurtin-
Murdoch theory of surface elasticity. A numerical procedure based primarily on the coupling of a
standard finite element method (FEM) and a weakly singular, symmetric Galerkin boundary
element method is employed. The former technique is utilized to efficiently handle the governing
equation of the surface. Extensive numerical simulations are conducted and the results are
compared with available benchmark solutions to verify the formulation and numerical
implementation. Application of the technique to the analysis of mode-I, nano-sized, crack problems

are presented for some selected cases, to study nano-scale influence and size-dependency behavior.
2. Formulation

This section begins with the clear description and essential assumptions of the boundary value
problem that is the focus of the present study. All basic field equations and the development of
governing equations for both the bulk material and the crack surface are then briefly presented.

Finally, the system of weak-form equations governing the primary unknowns on the crack surface is derived.
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2.1. Problem description

(a) (b)

Fig. 1. (a) Schematic of three-dimensional infinite elastic medium containing an isolated crack;

(b) prescribed traction on crack surfaces.

Consider a three-dimensional, infinite, elastic medium Q containing an isolated, planar crack as

shown schematically in Fig. 1(a). The reference Cartesian coordinate system {O;x,,x,,x;} is also
shown. The bulk material is made of a homogeneous, isotropic, linearly elastic material with shear
modulus & and Poisson’s ratio v. The crack surfaces which are geometrically identical are
represented by S and S, and with corresponding outward unit normal n* and n~, respectively.
The medium is assumed to be free of body forces and remote loading but subjected to prescribed
tractions t™ and t° on S and S_, respectively (Fig. 1(b)). In addition, infinitesimally thin layers

on the crack surfaces (mathematically modeled by zero thickness layers perfectly bonded to the

crack surfaces) possess constant residual surface tension under unstrained conditions which is

denoted by 7°.

In the formulation of the boundary value problem, the medium is decomposed into three parts:
the bulk material, the zero-thickness layer S and the zero-thickness layer S as shown in Fig. 2.

The bulk material is simply the whole medium without the two infinitesimally thin layers on the
crack surfaces. Since both layers have zero thickness, the geometry of the bulk material is therefore

identical to that of the whole medium (i.e., it can also be completely described by the region Q and

the two crack surfaces S’ and S)).

The key difference between the bulk material and the original medium is that the bulk material is

homogeneous and the crack surfaces S, and S, in the bulk material part are subjected to unknown



tractions (exerted directly by the two layers) t" and t, respectively. The layer S’ is treated as a

two-sided surface with one side subjected to the prescribed traction t*° and the other side subjected

to the traction t™ exerted by the bulk material (Fig. 2(b)). Similarly, the layer S is treated as a

two-sided surface with one side subjected to the prescribed traction t™ and the other side subjected

to the traction t° exerted by the bulk material (Fig. 2(c)). In what follows, Greek subscripts denote
field quantities associated with the surface and take the values 1, 2 while the Latin subscripts take

the values 1, 2, 3. We remark that, in the development to follow, it will suffice to make reference to

the single crack surface S, =S,
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Fig. 2. Schematics of (a) the bulk material, (b) the zero-thickness layer S and (c) the zero-

thickness layer S, .

2.2. Governing equations for bulk material

Since the bulk material is made of homogeneous, isotropic, linear elastic material, its behavior is
governed by the classical theory of linear elasticity. From results developed in the work of
Rungamornrat and Mear [36] and Rungamornrat and Senjuntichai [38], the displacement and stress

components at any interior point x, denoted respectively by u,(x) and o, (x), can be expressed in
terms of the traction data t”” and and the displacement data u™” and u™ on the crack surfaces S’

and S, as

u,(x) = [ U&= (©)dS(@)

(1
+], GrE-0D,u©)dS@) - [ HI G~ x)m, () (§)dS(E)
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0,0 = £,Cl,(E-0Du" (©)dS(E)

) b ) b (2)
+, .67, €= (©dSE) - [ HY (&)1} (©)dS()
where D,() = ¢,,n,0()/0&, is a surface differential operator, 17" =" +£,", u)* =u}" —u;", &, is
the standard alternating symbol, the kernels {U ”,G,Z],CZ;,H ”Y for isotropic elastic materials are
given by
1 (&, —x,)(&,—x,)
U'E-x)=—| (3-4v)o  +L—2L"- 3
O l67r(l—v),ur{( V) r ®)
1 L6 mx))e, —x,)
G'(E—x)=—| (1-2v)¢ £L_r= e 4
| -2 o * = am )
CHE-x)=—H | (1-1)5,8, +2v8,8, - 5,5, — L HNE X 5 5)
Ar(1-v)r| / r
—Xx.)0,
H§(§—X)=——(§’ x,z = (6)
drr

with »=||§—x | and v, u are Poisson’s ratio and the shear modulus, respectively. The boundary
integral relations (1) and (2) allow the displacement and stress at any interior point to be determined
once the data t" , t”, u™ and u”are known. To establish the integral equations governing the

unknown data t** , t”*, u™” and u™”, the integral relations (1) and (2) are utilized along with the
limiting process to any point on the crack surface and the standard procedure using Stokes’ theorem
to obtain the weak-form equations. The final weak-form, boundary integral equations are given by

(see details of the development in Rungamornrat and Mear [36] and Rungamornrat and Senjuntichai

[38])

%j& L Wy (NASY) =] 77, UJ &=y (©)dS@)ds(y)
+H W GE=y)D,u (©)dS©)dS(y) )
~J W, H (& = yn @ (©)dSE)dS(y)

_% [, B @S =], DA W[, CiyE-yID,u}* ©dSE)dS(y)
+, DA GiE -y (©)dS@)dS(y) ®)
+, B HiE=y)n, (17 (©)dS@)dS(y)
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bA +b
=t

L=t - tjf” , and {1,71;Z ,ii;} are sufficiently smooth test functions. The pair of

where ufz = u;.b + u;h , t
equations (7) and (8) has been well recognized as the weak-form boundary integral equations for

bx

the sum of the displacement »;" and the jump of the traction tj?A across the crack surface,

respectively. It is worth noting that both integral equations contain only weakly singular kernels

{v7,a,,,C “ H?’n .} of O(1/r). This positive feature renders all involved double surface integrals to

mj> = mj> i

exist in an ordinary sense and their validity requires only C’- boundary data.

2.3. Governing equations for two layers

The two layers S and S, shown in Figs. 2(b) and 2(c) are considered as infinitesimally thin

membranes adhered perfectly to the bulk material. The behavior of these two layers is modeled by
Gurtin-Murdoch surface elasticity theory by ignoring terms associated with the surface elastic
constants. It has been pointed out by various investigations that the influence of the surface Lamé
constants on the out-of-plane responses in the region very near the surface is negligibly weak [10,
19-21]. The simplified version of the Gurtin-Murdoch model is therefore considered suitable for
modeling planar crack problems when mode-I behavior is of primary interest.

The equilibrium equations, the surface constitutive relations and the strain-displacement

relationship of the layers S, and S_ are therefore given by [2, 3]

Oigptt; +17 =0 9)
Oy =T 0, +7°6,0,,—2T¢,,+T U, 5 , O3y =TU;, (10)
fon =310+ 05.) (1)
where o, ¢,,,u; represent stress, strain and displacement components within the layer.

To construct the weak-form equation, we multiply the equilibrium equation (9) with a

sufficiently smooth test function #’ and then integrate the result over the entire crack surface to

obtain

[a ,MdS+j tdS+ [ i:4/ds =0 (12)
Se

2]

By using the fact that z° is spatially independent, it can be readily verified that o, , =0. With

such condition along with carrying out the integration by parts of the first term using the Gauss-

divergence theorem, it leads to



[ jo5,ds - [we:ds = | io3, ﬂdS+j 1°dS (13)

s, s, as,
Substituting (10) into (13) finally yields

o [ 3 ,dS - [@6dS = [ @o,m,dS + [it)ds (14)
Se

s, s, as,

Note that the weak-form equation (14) applies to both crack surfaces. For instance, the weak-form

equations for the surface S’ and surface S, can be obtained explicitly by

r j i1 s, dS — j i°t0dS = [ @ on,dS + [ 4°dS (15)
S,

as,

o [ dS — [t dS = j ity o ndS + [ d°,°dS (16)
S, S, s,

S,

where superscripts “+” and “—" are added to differentiate quantities defined on each crack surface.
Since the integral equations governing the bulk are derived in terms of the unknown sum and jump
of quantities across the crack surface, it is natural to establish the weak-form equations governing

the surface in terms of the same type of unknowns. This can be readily accomplished by forming

two linear combinations of (15) and (16) as follows: (i) choosing &° =i, * =™ and then adding
(15) to (16) and (ii) choosing ii’* =i’ =i* and then subtracting (15) from (16). Such pair of

equivalent weak-form equations is given by

o\ au,dS — | @7t dS = | @ on,dS + | i@t dS (17)
Jaupas - [aras = [ atoinds+ ]

as,

o [auydS — [°°dS = [ i oyn,dS + j 249%4S (18)
SL‘

SL‘

Q
Se—_—

where superscripts “X~” and “A” indicate the sum and jump of quantities across the crack surface. It

should be remarked further that since the jump of the displacement along the crack-front vanishes

identically, the test function % is chosen to satisfy the homogeneous condition #* =0 on 45, .

The weak-form equations (17) and (18) now take the form

fjﬁ;?ﬂu;;ds j P17 dS = j TR (19)

S, s, 5,



o [ @ullds — [ @ dS = [ i *i"ds (20)

S(‘ S{T S(‘
Equations (19) and (20) constitute a set of weak-form equations governing the unknown quantities
W™, £, w”, £*} . It is worth noting that the formulation presented above is not restricted only to
applied normal traction to the crack surface, although the mathematical model of the surface is

suitable for pure mode-I loading. Due to the vanishing o, ,, the equilibrium equation (9) indicates

af.p>

that the applied shear traction is transmitted directly to the crack surface of the bulk material.

2.4. Governing equations for whole medium

Since the two layers S and S, are adhered perfectly to the bulk material, the displacements and

tractions along the interface of the two layers and the bulk material must be continuous. This yields

the following continuity conditions:

u =t = gt Q1)
W =u=u (22)
£t =—1" = (23)
£ =—t" =t (24)

Substituting (21)-(24) into (7), (8), (19) and (20), leads to a system of four equations involving four

unknown functions {u”, t*, u”, "} . By choosing appropriate test functions, (8) and (20) can be
combined and the unknown #* can be eliminated. The final system of three equations involving

three unknown functions {u", u”, ¢} is given by

i? t’z

d(~52 uZ) +‘(1-))(ﬁs2’t2) =‘7;1)(ﬁs2)
Bt u”) +C(t.t°) +D2(t,u") =0 (25)
2,0 +&E@Aut) =RE°

where the bilinear integral operators &, 2,C, 2, are defined by

@XY)=Z [ X, (50, (1)) 26)
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BXY) = [ X, 0,0 @)
eX.Y)=-[ X, (] U&=y, (§)dSE)dS(y) (28)

DX.Y)=-[ X,(y)] G}, (&-¥)D,Y, (E)dSE)dS(y)

+Lﬂ X p(y)Lt H(E—y)n, (E)Y, (£)dS(E)dS(y) (29)

EX,Y)=—[ DX,(y)] CLE-Y)D,Y, (E)dSE)S(y)+&Z(X,Y) (30)
where the linear integral operators {4, %} are defined, in terms of prescribed data t* and t**, by

RX) =3 [, X, W) G

RO == [ X, (W $)S) (32)

3. Numerical implementation

In this section, all numerical treatments including the discretization and numerical integration are
briefly discussed. In general, standard procedures for the weakly singular SGBEM (e.g., [31, 32, 35,
37]) and those for the standard finite element method (e.g., [42-44]) are utilized to form the

discretized system of linear algebraic equations.
3.1. Discretization

Standard Galerkin approximation is employed in the discretization of the system of governing
equations (25). Since all involved boundary integrals contain only weakly singular kernels of
O(1/r), standard C? interpolation functions are utilized in the approximation of both trial and test
functions. In particular, the following approximation for the test functions and the trial functions is

introduced:

N N
1 ZU;(Zp 1)+1q) ’ uzZ = sz(q—l)-H'(I)q (33)
=1 g=1
N N
P =2 Usa®@, s =D U@ (34)

p=1 g=1

11



N N
ZT(p 1)+l ’ z 3(q- 1)+t (33)
p=l g=1

where N is the number of nodal points; @ is nodal basis functions at node g; U3(,, 1)+ > U;‘(q 14

and T3( 1+ are nodal degrees of freedom associated with the sum of the displacement, the jump of
the displacement and the sum of the traction across the crack surfaces, respectively; and U;fpfl)” ,

U3(p—1)+z H

and T3( 1) are arbitrary nodal quantities. Substituting (33)-(35) into (25) along with using

the arbitrariness of U:* 3(piysi o U 3(pnyei» and T3( 1)+ » 1€ads to a system of linear algebraic equations

A B 0]|U* R
B C D|{T*}=:0 (36)
0 D" E||U R

where the sub-matrices A,B,C,D,E are associated with the bilinear operators &, %,C, D, & ; sub-

vector R,R, correspond to the linear operators &, ; U” is vector of nodal quantities of the sum

of the displacement; U* is vector of nodal quantities of the jump of the displacement and T* is

vector of nodal quantities of the sum of the traction. The sub-matrices A, B, C, D, E and sub-

vectors R ,R, are given explicitly by

N

(A s =5 [y Pos (DD, (1)dS() (37)
Bl 000 = |, 59,009, (DS) (38)
[Chigysgnes = =, ©,00], U&= 90, ()dSES(7) (39)
DLy issns =~y @, Go(§— D, (S ()

+ j ®,(y) j H, (&= p)n, (O)® (£)dS()dS(y) 0
[E Ly asies ==, PP, D], Chl€ = 9D, @, )@+ ALy @
R L =5, @, 0P WSW); Rl =5 ], @, 00 (0)dS) @)
[0 = U5 10 By = Ut [Tl = T @)
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3.2. Numerical integration

To evaluate the sub-matrices A, B, C, D, E and sub-vectors R,, R, numerically, the single and

double surface integrals must be properly treated. All single surface integrals contain regular
integrands and can be efficiently and accurately integrated using standard Gaussian quadrature.

Unlike single surface integrals, double surface integrals can be categorized into three types
depending on a pair of elements resulting from the discretization of the surface S, . The first type is

termed a regular double surface integral since its integrand is not singular with only mild variation.
This type of integral arises when both elements in a pair are relatively remote in comparison with
their characteristic size. Similar to the single surface integral, all regular double surface integrals
can be accurately integrated by Gaussian quadrature. The second type, termed weakly singular
double surface integrals, arises when both elements in a pair are identical and, therefore, the
integrand is weakly singular due to the involved kernels. Although these integrals exist in an
ordinary sense, it was pointed out by Xiao [45] that they cannot be accurately integrated by standard
Gaussian quadrature. To circumvent such difficulty, similar techniques based on integrand
regularization via a series of transformations proposed by Li and Han [46], Hayami and Brebbia
[47] and Xiao [45] are employed. The last type of double surface integrals, which are considered
most challenging, is a nearly singular integral. The integrand of these integrals is nearly singular
since both elements in a pair are relatively close in comparison with their characteristic size and this
renders the kernels appearing in those integrals nearly singular and exhibiting rapid variation.
Similar to the weakly singular integrals, Gaussian quadrature cannot be used to integrate nearly
singular integrals efficiently. Special techniques proposed by Hayami [48], Hayami and Matsumoto

[49], and Xiao [45] are adopted to perform the numerical integration.
4. Numerical results

First, to verify the formulation and numerical implementation, the penny-shaped crack in an
unbounded domain is considered, to compare results with existing benchmark solutions. Next the

elliptical crack and two interacting penny-shaped cracks in an unbounded domain are considered.

In the analysis, three meshes with different levels of refinement are utilized to investigate the
convergence of solutions. Nine-node isoparametric elements are used to discretize the entire crack-
front while the other parts of the crack surfaces are discretized by eight-node and six-node
isoparametric elements. The material Si [100] is used for all of numerical examples, where

properties of the bulk material and residual surface tension FE =107GPa, v =0.33and

7" =0.6056 N /m are obtained from Miller and Shenoy [50]. For convenience in the handling of
13



numerical analysis, presentation of results and demonstration of the influence of residual surface

tension, all involved quantities are normalized in a proper fashion. For instance, the unknown sum
of the traction is normalized by the shear modulus u (i.e., #; =t / A ); the unknown sum and jump
of the crack-face displacement are normalized by a special length scale A = z""/ 1 =0.01506 nm
(i.e., ut =u*/A and u> =u*/A); all characteristic lengths representing the geometry of the crack
such as the crack radius @, semi-major axis a and semi-minor axis b are normalized by the length

scale A (e.g., a,=a/A and b,=b/A); and the prescribed traction on the crack surface is

normalized by the shear modulus u (i.e., t, =t / ).

4.1. Penny-shaped crack in an unbounded domain

As a means for verifying the current technique, the problem of a penny-shaped crack of radius a

embedded in an isotropic, linear elastic infinite medium is considered (Fig. 3(a)). The crack is
subjected to self-equilibrated, uniformly distributed normal traction #; = —¢, =¢". This problem has
been previously solved by [20, 21] using Hankel integral transforms with a solution technique for

dual integral equations and will be the benchmark solution to validate the proposed FEM-SGBEM

technique. The three meshes of the crack surface are shown in Fig. 3(b).

)
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b
X

2
1%
1
=
S

ﬁ
%
7
i
N

Mesh-1 Mesh-2 Mesh-3

(a) (b)
Fig. 3. (a) Schematic of a penny-shaped crack of radius @ embedded in an isotropic, linear elastic
infinite medium subjected to uniformly distributed normal traction ¢, =—¢; =¢°; (b) Meshes

adopted in the analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes.
Mesh-3: 128 elements and 401 nodes.

The normalized crack opening displacement and normalized stresses in the vicinity of crack-
front, when the influence of the residual surface tension is taken into account, are shown in

Fig. 4. Results are compared with those obtained by an analytical technique [20, 21]. It is seen that
14



the current technique yields solutions that agree very well with the benchmark solutions for both

crack opening displacement and stresses oy;, 022, 033 in the vicinity of crack-front.

To further examine the influence of residual surface tension, the normalized crack opening
displacement and the normalized vertical stress o33 in the vicinity of crack-front with different
values of residual surface tension z*ranging from 0 to 1.0 N/m are shown in Fig. 5. It can be
concluded that the residual surface tension exhibits significant influence on the crack opening
displacement and the vertical stress. In particular, as 7* becomes larger, the deviation of results
from the classical case (i.e., without residual surface tension) significantly increases and, clearly, it

makes the elastic medium much stiffer.

To demonstrate the size-dependent behavior of results due to the presence of residual surface
tension, the crack opening displacement and the vertical stress in the vicinity of the crack-front are
shown in Fig. 6 for both the classical case and the present study. It is evident that, by including the
residual surface tension effects in the mathematical model, the solutions exhibit size-dependent
behavior. In particular, the normalized crack opening displacement and vertical stress in the vicinity
of crack-front depend significantly on the crack size and this is in contrast with the classical case
where the normalized crack opening displacement and normalized vertical stress are independent of

crack radius.
4.2. Elliptical crack in infinite domain

To demonstrate the capability of the proposed technique for treating mode-I cracks of arbitrary
shape, an elliptical crack embedded in an isotropic, linear elastic infinite domain is considered (see

Fig. 7(a)). The crack-front is parameterized in terms the parameter ¢ by
x,=acost, x,=bsint, x,=0; 1€[0,27] (44)

where a and b are the major and minor semi-axes of the crack, respectively. The crack is subjected

0

to a self-equilibrated, uniformly distributed normal traction #; =—#; =¢ . Numerical results are

presented for the aspect ratio a/b=1,2,3 with the three meshes shown in Fig. 7(b) used to model

the elliptic crack.

The normalized crack opening displacement and the normalized stress o, / t° along the minor
axis, when the influence of the residual surface tension is included, are presented in Fig. 8 for aspect
ratio a/b=1,2,3. Clearly, convergent results of crack opening displacement are obtained with

Mesh-2 and Mesh-3 for all three aspect ratios (see Fig. 8(a)). As be seen in Fig. 8, when the aspect
15



ratio a/b increases, the influence of residual surface tension on the crack opening displacement and

the stresses in the vicinity of crack decreases.
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i A Mesh-2 i .
10F 8 Mesh-3 25 F —— 0,,- Analytical Sol. [20, 21]
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NGy, " Classical Sol. [51] i
B-—tm
0.8 s B - 20 |
L ) ) /, ﬂ\\ L
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Fig. 4. Penny-shaped crack under uniformly distributed normal traction, for £=107 GPa, v =0.33
and residual surface tension 7° =0.6056 N/m : (a) Normalized crack opening displacement, (b)
Normalized stress o, /¢’ in the vicinity of crack-front, (c) Normalized stress o,,/¢’ in the vicinity

of crack-front, and (d) Normalized stress o, /¢’ in the vicinity of crack-front.
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Fig. 5. Penny-shaped crack under uniformly distributed normal traction, for £ =107 GPa, v =0.33

for different residual surface tension 7°: (a) Normalized crack opening displacement and (b)

Normalized stress o, /¢’ in the vicinity of crack-front.
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Fig. 6. Penny-shaped crack under uniformly distributed normal traction, for different crack radii

a,=a/A=0.5,1.0,5.0 for £E=107GPa,v=033 , 7°=0.6056 N/m : (a) Normalized crack

opening displacement and (b) Normalized stress o, / t° in the vicinity of crack-front.
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Fig. 7. (a) Schematics of an elliptical crack embedded in an isotropic, linear elastic infinite medium

subjected to uniformly distributed normal traction ¢, =—#; =¢° and (b) Meshes adopted in the

analysis. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105 nodes. Mesh-3: 128

elements and 401 nodes.
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Fig. 8. Elliptical crack under uniformly distributed normal traction, for different aspect ratios

a/b=1,2,3 for E=107 GPa,v=033 , °=0.6056 N/m :

(a) Normalized crack opening

displacement along minor axis and (b) Normalized stress o, /¢’ in the vicinity of crack-front along

minor axis.
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In order to investigate the influence of residual surface tension, the normalized crack opening
displacement and the normalized vertical stress o33 in the vicinity of crack-front with different
values residual surface tension 7’ ranging from 0 to 1.0 N/m are shown in Fig. 9. Aspect ratio
a/b=2,3 are considered in this case. As shown in Fig. 9, the influence of residual surface tension is

also significant and the medium is stiffer when the residual surface tension increases.

To examine the size-dependent behavior of results due to the influence of residual surface
tension, the crack opening displacement and the vertical stress in the vicinity of crack-front for

a,=0.5,1.0, 5.0 and two aspect ratios a/b=2,3 are shown in Fig. 10. As can be seen in Fig. 10,

the normalized crack opening displacement and normalized stresses in the vicinity of crack-front
are size-dependent. It is contrary to the classical case (i.e., without residual surface tension effects),
the solutions are size-independent. When the crack-size or the aspect ratio decreases, the influence

of residual surface tension becomes significant in the sense that the medium is stiffer.
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Fig. 9. Elliptical crack under uniformly distributed normal traction for different residual surface

tension 7° , for £=107 GPa, v =0.33, for different aspect ratios a/b=2,3 : (a) Normalized

crack opening displacement along minor axis and (b) Normalized stress o,/ t° in the vicinity of

crack-front along minor axis.
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Fig. 10. Elliptical crack under uniformly distributed normal traction for different crack radii

a,=a/A=0.5,1.0,5.0 for £=107 GPa, v=0.33, 7° =0.6056 N/m , for different aspect ratios
a/b=2,3: (a) Normalized crack opening displacement along minor axis and (b) Normalized stress

05, /1" in the vicinity of crack-front along minor axis.

4.3. Two interacting penny-shaped cracks in an unbounded domain

As a final example, we demonstrate another feature of the current technique, viz. modeling multiple
cracks, by considering a pair of identical penny-shaped cracks of radius a embedded in an isotropic,
linear elastic unbounded domain as shown in Fig. 11(a). The distance between the centers of the

two cracks is denoted by /. Both cracks are subjected to a self-equilibrated, uniformly distributed
normal traction £ = —¢; =¢’. Here, the influence of the interaction between the two cracks on the
maximum crack opening displacement is considered. To investigate size-dependent behavior, two
cases are considered where the normalized radii of the identical penny-shaped cracks are taken as

a,=1 and 10. The three meshes showing in Fig. 11(b) are used to test the convergence of
numerical solution.

The normalized crack opening displacement of one of the penny-shaped cracks with radius
a, =10 is shown in Fig. 12 for i/a =2.4. It is seen that convergent results of the normalized crack

opening displacement are obtained and the residual surface tension has a significant influence on

the crack opening displacement.
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To study the interaction between two cracks, the normalized maximum crack opening
displacement is plotted for different values of //a in Fig. 13. It can be seen in Fig. 13 that, in

agreement with previous examples of a penny-shaped crack and an elliptical crack, the maximum
crack opening displacement decreases when the residual surface tension increases. The medium

becomes much stiffer with the presence of the residual surface tension.
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Fig. 11. (a) Schematic of a pair of penny-shaped cracks of radius @ embedded in an isotropic, linear
elastic infinite medium subjected to uniformly distributed normal traction ¢ = —#; =¢° and (b)

Meshes adopted for each crack. Mesh-1: 8 elements and 29 nodes. Mesh-2: 32 elements and 105
nodes. Mesh-3: 128 elements and 401 nodes.
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Fig. 12. Normalized crack opening displacement for a pair of penny-shaped cracks with radius
a, =10 and h/a =2.4 under uniformly distributed normal traction, for £ =107 GPa, v =0.33 and
7° =0.6056 N /m .
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It can also be observed from Figs. 13(a), 13(b) and 13(c) that results for the case of two interacting

cracks converge very fast to those of a single crack when the residual surface tension increases. In

particular, as the value of A/a is greater than 8, 5 and 3.5 for the classical case, 7° =0.6056 N / m ,

and 7° =1N /m, respectively, the normalized maximum crack opening displacement of the two

interacting crack and that of the single crack are nearly identical. This not only implies the

significant reduction of the interaction between the two cracks due to the presence of the residual
surface tension but also provides the applicable range of the aspect ratio //a to allow the

replacement of the two-crack model by a single crack model. In addition, as clearly indicated in
Figs. 13(a) and 13(d), the interaction between the two interacting cracks for the classical case is
size-independent (i.e., solutions of the two cracks converge asymptotically to that of the single
crack in the identical manner). In the contrary, when the residual surface tension is incorporated in
the mathematical model, the size-dependent behavior can be clearly observed by comparing results
in Figs. 13(b), 13(e) and results in Figs. 13(c), 13(f), respectively. The decrease in the crack size

also lowers the interaction between the two cracks.

5. Conclusions

A computationally efficient numerical technique capable of modeling mode-I planar cracks in three-
dimensional, linearly elastic media incorporating the influence of residual surface tension has been
established. The governing equations have been formulated based on the classical theory of linear
elasticity for the bulk medium and the Gurtin-Murdoch surface elasticity model for the
infinitesimally thin layers on the crack surfaces. The system of governing equations has been solved
numerically by using the FEM-SGBEM coupling procedure. Numerical results for the penny-
shaped crack problem have been compared with the analytical solution to validate the proposed
FEM-SGBEM method. By solving both the elliptical crack and two interacting cracks problems, the
current technique has been found computationally promising to treat mode-I planar cracks including
residual surface tension effects, for arbitrary shaped cracks and multiple cracks in three-dimensional
isotropic linear elastic media. It has also been shown that the residual surface tension has a
significant influence on the crack opening displacement and stresses in the vicinity of crack-front.
Consideration of the surface stresses in the mathematical model not only renders the material stiffer
but also introduces the size-dependency behavior of the solution. The presence of residual surface

tension also tends to weaken the interaction between multiple cracks.
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Fig. 13. Normalized maximum crack opening displacement for a pair of identical penny-shaped
cracks under uniformly distributed normal traction, for £ =107 GPa, v =0.33: (a)-(c) a,=1 and

(d)-(D) @, =10.
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