Abstract

Project Code: MRG5380171

Project Title: Apoptosis and the expression of Bcl-2 family and transforming growth factor β 1

(TGFeta1) signaling proteins in canine myxomatous mitral valve disease

Investigator: Dr. Sirilak Disatian Department of Veterinary Medicine, Faculty of Veterinary

Sciences, Chulalongkorn University, Bangkok

E-mail address: sirilakd@hotmail.com

Project Period: 1 year

Myxomatous mitral valve disease (MMVD) is the most common acquired heart disease in dogs.

An increased cell density has been reported in myxomatous valves. Cell proliferation is unlikely a major

mechanism of increased cellularity. Decreasing in cell death or anti-apoptosis may play roles implicating

persistence of cells in diseased valves. To determine apoptosis, the expression of cleaved caspase-3, DNA

fragmentation (TUNEL marker) and apoptotic bodies was evaluated in normal (n=15), early stage (n=20) and

late stage (n=20) MMVD valves. Cells in normal and both stages of MMVD expressed the TUNEL marker

and cleaved caspase-3, but not apoptotic bodies. The percentage of TUNEL marker and cleaved caspase-3

positive nuclei was non-significantly different in three groups of dogs (p<0.05). To determine the relationship

between TGF β 1 signaling and apoptosis, the expression of activated TGF β 1 signaling protein,

phosphorylated Smad2/3 (p-Smad2/3) and Bcl-2 family proteins (bax and bcl-2) was reviewed. P-Smad2/3

and pro-apoptotic protein, bax were up-regulated in myxomatous valve; whereas, anti-apoptotic protein, bcl-2

was decreased. P-Smad2/3 expression increased only in late stage MMVD. These data suggest that cells in

myxomatous valves undergo pro-apoptotic condition; however, these cells do not undergo execute apoptosis.

The apoptosis remains unchanged during disease progression. The role of TGF β 1-Smad signaling pathways

in inducing pro-apoptotic state is unclear.

Keywords: apoptosis, bax/bcl-2, dogs, myxomatous valves, TGF β

บทคัดย่อ

รหัสโครงการ: MRG5380171

ชื่อโครงการวิจัย: การตายของเซลล์และการปรากฏของโปรตีนในตระกูลบีซีแอลสอง และทรานสฟอร์ม มิ่งโกรว์ท แฟคเตอร์ เบต้า 1 ในโรคลิ้นหัวใจไมทรัลเสื่อมในสุนัข

ชื่อนักวิจัย: อ.สพ.ญ.ดร. สิริลักษณ์ ดิษเสถียร ภาควิชาอายุรศาสตร์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ

E-mail address: sirilakd@hotmail.com

ระยะเวลาโครงการ: 1 ปี

โรคลิ้นหัวใจไมทรัลเสื่อมเป็นโรคหัวใจที่เป็นภายหลังกำเนิดที่พบได้บ่อยในสุนัข มีรายงานการ เพิ่มขึ้นของจำนวนเซลล์ในลิ้นหัวใจที่เสื่อม โดยที่การเพิ่มการแบ่งตัวของเซลล์ (cell proliferation) อาจ ไม่ใช่กลไกสำคัญในการเพิ่มจำนวนเซลล์ การตายที่ลดลงหรือการยับยั้งกระบวนการตายของเซลล์ (apoptosis) อาจเป็นกลไกที่ทำให้เซลล์ในลิ้นหัวใจที่เป็นโรคยังคงอยู่ การศึกษานี้ทำการประเมินการ ตายของเซลล์ โดยดูจากการปรากฏของ cleave caspase-3 การแตกของสายดีเอ็นเอ (TUNEL marker) และ apoptotic bodies ในลิ้นหัวใจของสุนัขปกติ (n=15) สุนัขที่มีปัญหาลิ้นหัวใจเสื่อมช่วงแรก (n=20) และช่วงท้าย (n=20) ผลการศึกษาพบการปรากฏของ TUNEL marker และ cleaved caspase-3 ในลิ้น หัวใจปกติและลิ้นหัวใจที่เป็นโรค แต่ไม่พบการปรากฏของ apoptotic bodies ร้อยละการปรากฏของ TUNEL marker และ cleave caspase-3 ไม่แตกต่างกันอย่างมีนัยสำคัญทางสถิติในสุนัขทั้งสามกลุ่ม (p<0.05) ทำการศึกษาความสัมพันธ์ระหว่าง TGFβ1 signaling และการตายของเซลล์ โดยดูการ ปรากฏของ phosphorylated Smad2/3 (p-Smad2/3) และโปรตีนในตระกูล Bcl-2 (bax และ bcl-2) พบว่า p-Smad2/3 และ *bax* ซึ่งเป็นโปรตีนเหนี่ยวนำการตาย มีการปรากฏเพิ่มขึ้นในลิ้นหัวใจที่เกิดการ เสื่อม ในขณะที่ bcl-2 โปรตีนที่ทำหน้าที่ในการยับยั้งการตายของเซลล์มีการปรากฏลดลง พบว่าการ ปรากฏของ p-smad2/3 จะมีการเพิ่มขึ้นเฉพาะในลิ้นหัวใจที่เกิดการเสื่อมช่วงท้าย โดยสรุปจากข้อมูลที่ ได้ เซลล์ในลิ้นหัวใจเสื่อมน่าจะมีการเปลี่ยนแปลงเข้าสู่ภาวะเหนี่ยวนำให้เกิดการตาย (pro-apoptotic) อย่างไรก็ตามเซลล์เหล่านี้ไม่ได้เข้าสู่กระบวนการตายโดยสมบูรณ์ การตายของเซลล์ไม่มีการ เปลี่ยนแปลงในระหว่างการเกิดโรค ส่วนบทบาทของ TGF**β**1-Smad signaling ในการเหนี่ยวนำการ ตายของเซลล์ยังไม่เป็นที่ทราบแน่ชัด

คำหลัก: การตายของเซลล์ bax/bcl-2 สุนัข ลิ้นหัวใจเสื่อม TGF**β**1