## บทคัดย่อ

รหัสโครงการ MRG5380190

**ชื่อโครงการ** การเตรียม สมบัติ และกลไกการเกิดของกรีนพอลิเมอร์ผสม จากแป้งมัน

สำปะหลัง พอลิเมอร์ละลายน้ำ และยางธรรมชาติอิพ็อกซิไคซ์ ที่เติมสาร

อนินทรีย์ และสารอินทรีย์-อนินทรีย์

ชื่อนักวิจัย และสถาบัน นายสอาค ริยะจันทร์ มหาวิทยาลัยสงขลานครินทร์

E-mail Address saadriyajan@hotmail.com

ระยะเวลาโครงการ มิถุนายน 2553-มิถุนายน 2555

พลาสติกที่ได้จากผลพลอยได้จากน้ำมันปิโตรเลียมส่งผลต่อปัญหาสิ่งแวดล้อม และเริ่มขาดแคลนสารตั้งตนในการผลิตพลาสติก ดังนั้นมีความสนใจแก้ไขปัญหาโดยการใช้พอลิ เมอร์ชีวภาพจากธรรมชาติ วัตถุประสงค์ของงานวิจัยนี้การเตรียม สมบัติ และกลไกการเกิดของ กรีนพอลิเมอร์ผสม จากแป้ง (St) ไคโตแซน (CST) พอลิไวนิลแอลกอฮอลล์ (PVA) และยาง ธรรมชาติ (NR) ขั้นตอนแรกเป็นการเตรียมการดัดแปร PVA ด้วย  ${
m K_2S_2O_8}$  ที่  ${
m 70^{\circ}C}$  ผลการ ทดลองพบว่าความหนืดสารละลาย PVA ที่มี K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> เพิ่มขึ้นเมื่อเวลาที่ใช้ในการดัดแปรและ ความเข้มข้นของ PVA เพิ่มขึ้น อัตราการดัดแปรของ PVA แปรผันโดยตรงกับ  ${\sf K}_2{\sf S}_2{\sf O}_8$  และ อุณหภูมิ และค่าพลังงานกระตุ้นของ PVA มีค่าเท่ากับ 16 kJ/mol ถัดจากนั้น เป็นการศึกษา การหาเอกลักษณ์ และสมบัติของพอลิเมอร์ผสม ENR และ PVA โดยใช้กรดมาเลอิก เป็นสาร เชื่อมขวาง การบวมตัวในน้ำทั้งอุณหภูมิห้องและที่ 70 °C ลดลงเมื่อปริมาณกรดมาเลอิก เพิ่มขึ้นสมบัติทนต่อการดึงของพอลิเมอร์ผสมมีค่าเพิ่มขึ้นตามปริมาณกรดมาเลอิก เป็นการเตรียมพอลิเมอร์ผสมจาก NR St และ PVA โดยวิธีการผสม ลาเท็กซ์และสารละลาย ผลของซิลิกาต่อสมบัติของพอลิเมอร์ผสม การบวมตัวของพอลิเมอร์ผสมลดลงอย่างรวดเร็วเมื่อ ปริมาณซิลิกาและยางธรรมชาติในพอลิเมอร์ผสมเพิ่มขึ้น สมบัติทนต่อแรงดึงและมอดุลัสสะสมมี ค่าเพิ่มขึ้นเมื่อปริมาณซิลิกาเพิ่มขึ้น พอลิเมอร์ผสมมีสมบัติต้านทานต่อแบคทีเรียได้ดี นอกจากนี้ศึกษาผลของ ZnO ต่อสมบัติของพอลิเมอร์ผสมที่เตรียมจาก PVA St และ ENR การบสมตัวของพอลิเมอร์ผสมลดลงเมื่อปริมาณ ZnO มีค่าเพิ่มขึ้น อนุภาคนาโนของ ZnO ช่วย ปรับปรุงสมบัติเชิงกลของพอลิเมอร์ผสมที่ 10% w/w อนุภาคนาโน ZnO ช่วยปรับปรุงอันตร กิริยาระหว่างรอนุภาคนาโน ZnO และพอลิเมอร์เมทริกซ์ซึ่งส่งผลต่อสมบัติของพอลิเมอร์ผสม และมีสมบัติต้านทานต่อเชื้อแบคทีเรีย นอกจากนี้พอลิเมอร์ผสมถูกใช้ในในการห่อหุ้มวิตามิน อี ์ ศึกษาสมบัติและสมบัติต้านทานต่อแบคทีเรียของพอลิเมอร์ผสมจาก PVA และ NR ที่เติมกรด มาเลอิก ซึ่งเป็นสารเชื่อมขวาง สมบัติทนต่อแรงดึงสูงที่สุดในตัวอย่างที่มีกรดมาเลอิกเท่ากับ 40% w/w หลังจากวัลคาร์ในซ์ที่ 120°C เป็นเวลา 12 ชั่วโมง นอกจากพอลิเมอร์ผสมแสดง สมบัติการต้านทานแบคทีเรีย Staphylococcus aureus ATCC25923 Escherichia coli ATCC25922 และ Acinetobacter baumannii JVC 1053 ซึ่งสามารถนำยางนี้ไปใช้งานได้คย่าง ส่วนที่สี่เป็นการศึกษาการเตรียมกาวจากสกิมอิพ็อกซิไดซ์จากยางสป็อนนิเคชัน กว้างขวาง PVAที่เติมสารแทคทิไฟเออร์ซึ่งเตรียมโดยวิธีสารละลาย โปรตีนต่ำ ผสมกับ (S-LPSR) ตามลำดับศึกษาผลของปริมาณ PVA ต่อสมบัติทางด้านการยึดติดของกาว PSA ที่เมื่อปริมาณ PVA ที่สูงขึ้น ส่งผลทำให้กาว PSAที่ที่เติมสารแทคทิไฟเออร์ 60%w/w มีสมบัติการคืบสูงขึ้น แต่อาจทำให้กาวมีพลังงานพื้นผิว และสมบัติการดึงลอก และสมบัติความเหนียว ลดลงเล็กน้อย นอกจากนี้ยังพบว่า กาว PSA ที่เตรียมจากยางสกิม E-LPSR ให้สมบัติการยึดติดได้ดีกว่าจาก ยางสกิม LPSR เนื่องจากเกิดอันตรกิริยาระหว่างระหว่าง E-LPSR และ PVA ดีกว่าส่งผลต่อ สมบัติของกาวซึ่งถูกยืนโดยเทคนิค SEM และเทคนิคมุมสัมผัสเชิงฟิสิกส์ โดยพบว่า ปริมาณ PVA ที่เหมาะสมสำหรับการเตรียมกาว PSA คือ ที่ปริมาณ 10 phr ซึ่งทำให้พอลิเมอร์อยู่ใน ลักษณะเป็นอิมัลชัน ส่วนที่ห้าเป็นการเตรียม ENR-g-CST และ NR-g-St ซึ่งถูกเตรียมในรูปลา เท็กซ์โดยใช้  $K_2S_2O_8$  เป็นตัวริเริ่มปฏิกิริยา การเกิดหมู่อีเธอร์ของ ENR-g-CSTซึ่งถูกยืนยันที่ 1154 และ 1089 cm<sup>-1</sup> โดย ATR-FTIR และ 3.60 ppm โดย <sup>1</sup>H-NMR ปริมาณเจลของ ENR-g-CST ที่ 5% CST มีค่าสูงที่สุดเมื่อเปรียบเทียบกับตัวอย่างอื่นๆ สภาวะที่เกิดการกราฟต์ ระหว่าง ENR และCST ที่เหมาะสมคือ ที่ 65 °C เป็นเวลา 3 h ของเกิดปฏิกิริยา อัตราส่วน ระหว่าง ENR/CST ที่ 9:1. สำหรับ NR-g-St การบวมตัวในน้ำของยางดัดแปรลดลงตามปริมาณ St นอกจากนี้สมบัติทนต่อแรงดึงของยางดัดแปรที่มี 50 St phr ให้สมบัติเชิงกลสูงที่สุด นอกจากนี้ได้ NR-g-St เป็นพอลิเมอร์เมนเบรนของการห่อหุ้มปุ๋ยยูเรีย และง่ายต่อการสลายตัว ในดิน ผลการทดลองพบว่าผลิตภัณฑ์นี้สามารถควบคุมการปลดปล่อยปุ๋ยและช่วยในการเก็บน้ำ ซึ่งเหมาะสมในการเกษตรกรรม สุดท้ายเป็นการศึกษาผลของกากชาต่อสมบัติกายภาพและ สมบัติการวัลคาร์ในซ์ของยางคอมพาวด์ สภาวะการวัลคาร์ในซ์ที่เหมาะสม ที่ t90 และทอร์ก ของตัวอย่างมีค่าเพิ่มขึ้นตามปริมาณกากชาที่อยู่ในยางคอมพาวด์ มอดุลัส ความแข็งและการ ทนต่อน้ำมันของยางคอมพาวด์มีค่าเพิ่มขึ้นตามปริมาณกากชา สภาวะที่เหมาะสมของพอลิเมอร์ คอมพอสิตคือ 30 phr กากชาที่ดัดแปรด้วย เมทิล เมทราอะไครเลต และ 30 phr ของเขม่าดำ ยางคอมพาวด์ที่กากชามีกลิ่นหอม เมื่อเปรียบกับตัวอย่างที่ไม่เติมกากชา

คำสำคัญ: ยางธรรมชาติ พอลิเมอร์ชีวภาพ แป้ง พอลิไวนิลแอลกอฮอลล์ ไคโตแซน

## **Abstract**

Project Code: MRG5380190

Project Title: Preparation, properties and mechanism formation of inorganic and organic-

inorganic green polymer blend based on cassava starch, water-soluble

polymer and epoxidised natural rubber

Investigator: Mr. Sa-Ad Riyajan, Prince of Songkla University

E-mail Address: saadriyajan@hotmail.com

Project Period: June 2009-June 2012

Non-biodegradable petroleum-based plastics have become a menace to the environment and the diminishing petrochemical resources. Therefore, an increasing attention has been paid on the development of environmentally benign natural biopolymer. Our purpose is to study the preparation, property and mechanism formation of green biopolymer thermoplastics or green polymer blend from starch (St), chitosan (CST), poly (vinyl alcohol) (PVA), and natural rubber (NR). Firstly, the preparation of modified PVA with K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> and PVA was dissolved in aqueous by heating at 70°C and then K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> was added in PVA solution under stirring. It is clear that the viscosity of PVA solution in the presence of K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> increased as function of reaction time and PVA content in solution. Rate of modified PVA was proportional to K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> contents and temperature and its activation energy was 16 kJ/mol. Next, this work describes the characterization and properties of a 'green' polymer blend based on ENR and PVA with maleic acid as a crosslinker. The swelling of the sample in the presence of higher amounts of maleic acid in water and water at 70 °C decreased with an increasing amount of the maleic acid content. The tensile strength of samples in the presence of maleic acid after the curing reaction was remarkably increased. Thirdly, the preparation of biodegradable polymer blend was made from NR latex, St solution and PVA solution by a latex-solution casting method. The effect of silica content and NR content on the physical properties of the polymer blend was investigated. The swelling ratio of the polymer blend dramatically decreased as a function of silica content and NR content. With the increase in silica content, the tensile strength and storage modulus of the blend films was also improved. The polymer blend shows also good antibacterial activity. In addition, the effect of ZnO on the properties of polymer blend obtained from PVA, St and ENR was also investigated. The swelling ratio of the polymer blend decreased as a function of ZnO nanoparticle. ZnO nanoparticle played a very vital on the mechanical properties of biopolymer composite. At 10% w/w ZnO nanoparticle, the strong interaction between ZnO nanoparticle and the polymer matrix contributed to the improvement of bionanocomposite properties and antibacterial activity. Moreover, the green polymer composite was used to apply the encapsulated of vitamin E. The properties and antibacterial activity of polymer blend films prepared from PVA and NR blends, in the presence of maleic acid was estimated. The highest tensile strength of the samples was observed with 40% w/w maleic acid after a 24 h curing time at 120°C. In addition, the polymer blend showed good antibacterial activity with Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, and Acinetobacter baumannii JVC 1053 and could find many applications. In the fourth part, the objective of this study was to develop a bioadhesive (PSA) from epoxidized skim rubber (E-LPSR) from saponified low protein skim rubber (S-LPSR) blended with poly (vinyl alcohol) (PVA) containing tackifier, via solution and emulsion, respectively. The effect of PVA on the properties of the PSA was investigated. The creep properties of PSA and E-PSA in presence of 60 hydrocarbon resin were improved by adding 10 phr of PVA but the surface free energy, tack strength and peel strength of two adhesives was slightly decreased. Moreover, the adhesive properties of E-PSA was high that of PSA. Because the compatibility and interaction between the blend of LPSR/PVA and E-LPSR/PVA affected the adhesion properties of the PSAs produced based on evaluation by SEM, and contact angle measurement. The optimal concentration of PVA for a good pressure-sensitive adhesive was found to be 10 phr because of its emulsion form. In fifth part, the ENR-g-CST and NR-g-St was prepared in latex form using potassium persulphate as an initiator. The ether linkage of the ENR-g-CST was conformed at 1154 and 1089 cm<sup>-1</sup> by ATR-FTIR and 3.60 ppm by <sup>1</sup>H-NMR. The gel content of ENR-g-CST at 5% CST showed the highest value compared with other samples. The optimum condition of grafting ENR with chitosan was found at 65 °C for 3 h of reaction time, ratio of ENR/CST at 9:1. In case of NR-g-St, in water medium, the swelling ratio of the modified NR decreased as function of St. In addition, the tensile strength of modified NR in the presence of modified St at 50 phr was the highest value comparing to other samples. Finally, the NR-g-St was used a polymer membrane for controlling urea fertilizer and easily degrade in soil. This product with good controlled-release and water-retention could be especially useful in agricultural and horticultural applications. Finally, the influence of tea leave waste on the physical properties and vulcanization properties of NR compound was investigated. The optimum cure (t90) and torque of the sample increased with increasing tea leave waste in NR compound. The modulus and hardness and oil resistance of the resulting NR increased with increasing tea leave waste. The polymer composite possesses the best properties at 30 phr of modified tea leave with methyl methacrylate (MMA) and 30 phr of carbon black. The NR compound with tea leave shows good odor comparing to the sample without tea leave.

**Keywords:** Natural rubber, Biopolymer, Starch, Poly (vinyl alcohol), chitosan