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บทที� 1 
บทนํา (Introduction) 

 
ทฤษฎจีดุตรงึ (fixed point theory) นบัเป็นแขนงที$สาํคญัแขนงหนึ$งในสาขาของการวเิคราะหเ์ชงิ

ฟงักช์นั (functional analysis) ในปจัจุบนันกัคณิตศาสตรไ์ดศ้กึษาและวจิยัในแขนงดงักล่าวกนัอยา่ง
ต่อเนื$อง ในการคดิคน้ทฤษฎเีพื$อหาองคค์วามรูใ้หม่ๆ  นั Eนนบัว่ามปีระโยชน์เป็นอยา่งมากต่อทางวชิาการ 
และ การพฒันาประเทศ เป็นที$ยอมรบัว่าทฤษฎแีละองคค์วามรูใ้หม่ๆ  ที$เกดิจากการวจิยันั Eน นอกจากจะมี
ประโยชน์อยา่งมากในการพฒันาความรูเ้ชงิวชิาการในสาขาและแขนงต่างๆ นั Eนแลว้ บางครั Eงยงัสามารถ
นําไปประยกุตใ์นสาขาอื$นๆ และเป็นพืEนฐานสําคญัในการพฒันาทางวทิยาศาสตรพ์ืEนฐาน (basic science) 
ซึ$งเป็นการวจิยัพืEนฐาน (basic research) เพื$อสรา้งองคค์วามรูใ้หม่ อนัถอืเป็นพืEนฐานในการพฒันา
ประเทศชาตต่ิอไป  

ทฤษฎจีดุตรงึนบัว่าเป็นแขนงหนึ$งที$สามารถประยกุตไ์ดอ้ยา่งกวา้งขวาง โดยเฉพาะอย่างยิ$งต่อ
การศกึษาเกี$ยวกบั การมคีําตอบ (existence of solution) และ การมเีพยีงคาํตอบเดยีว ของสมการ 
(uniqueness of solution) ตลอดจนการคดิคน้หาวธิใีนการประมาณหาคาํตอบของสมการต่างๆ ดงันั Eน
การศกึษาทฤษฎต่ีางๆ ที$เกี$ยวขอ้งกบัการมจีดุตรงึของการส่งต่างๆ และ การหาระเบยีบวธิต่ีางๆที$ใชใ้น
การประมาณค่าคาํตอบนั Eนจงึเป็นหวัขอ้ที$มนีกัคณติศาสตรก์ลุ่มหนึ$งจาํนวนมากใหค้วามสนใจศกึษา เมื$อ
ศกึษาการมคีาํตอบของสมการต่างๆแลว้ ปญัหาที$น่าสนใจต่อไปกค็อื เราจะหาคาํตอบของสมการต่างๆ นั Eน
ไดอ้ยา่งไร คาํถามดงักล่าวนีEกท็าํใหม้นีกัคณติศาสตรจ์าํนวนมากสนใจศกึษา คดิคน้ระเบยีบวธิกีารกระทาํ
ซํEาของจดุตรงึ(fixed-point iterations) ต่างๆ ที$ใชใ้นการหาคาํตอบ และ ประมาณคําตอบ เพื$อนําไป
ประยกุตใ์ชเ้กี$ยวขอ้งกบัการแกป้ญัหาในเรื$องของสมการตวัดาํเนินการไมเ่ชงิเสน้ (nonlinear operator 
equations) ในเรื$องของแก้ปญัหาอสมการแปรผนั (variational inequality problem (VIP)) และแกส้มการ
หาคาํตอบของปญัหาดุลภาพ(equilibrium problems (EP)) ปญัหาที$ดทีี$สุด(optimizations problems) 
ปญัหาน้อยที$สุด (minimizations problems) ทั Eงในปรภิูมฮิลิเบติรแ์ละปรภิมูบิานาค ซึ$งปญัหาดงักล่าวเป็น
ปญัหาที$สําคญัที$มปีระโยชน์มากมายในสาขาวชิาต่างๆ เช่น สาขาวชิาฟิสกิส ์ คณติศาสตรป์ระยกุต์ 
วศิวกรรม และสาขาทางเศรษฐศาสตร ์ 

จากความสาํคญัขา้งตน้เป็นผลใหน้กัคณติศาสตรจ์งึไดศ้กึษาและวจิยัในแขนงดงักล่าว กนัอยา่ง
ต่อเนื$อง ซึ$งการวจิยัเกี$ยวกบัการกระทําซํEาของจดุตรงึและการประมาณค่าจดุตรงึที$สาํคญันั Eนสามารถนํามา
แกส้มการหาคําตอบของปญัหาดุลภาพ เช่น ใน ปี 1997 Combettes และ Hirstoaga [25] ไดเ้ริ$มต้นศกึษา
และใชว้ธิกีารทําซํEาในการหาการประมาณค่าที$ดทีี$สุดเพื$อแกป้ญัหาดุลภาพ และไดพ้สิจูน์ทฤษฎบีทการลู่
เขา้แบบเขม้ (strong convergence theorems) และมนีกัคณติศาสตรอ์กีมากมาย นําทฤษฎบีทการทําซํEา
ดงักล่าวมาประยกุตใ์ชใ้นการแกอ้สมการแปรผนั ปญัหาค่าน้อยสุด และปญัหาอื$นๆ ทางคณติศาสตร ์

ดงัความสาํคญัที$ไดก้ล่าวมาแลว้ขา้งตน้ ผูว้จิยัจะกล่าวถงึที$มาของการทําวจิยันีE โดยเริ$มตน้จากในปี 
ค.ศ. 1994 Stampacchaia  [82]    ไดเ้ป็นผูค้ดิคน้ใชว้ธิกีารประมาณค่าแบบซํEาเพื$อแกไ้ขปญัหาอสมการ
การแปรผนัภายใตต้วัดาํเนินการทางเดยีวอยา่งเขม้ และต่อเนื$องแบบลฟิซทิพ ์ ต่อมา Korpelevich [43]  
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เหน็ว่า วธิกีารประมาณค่าแบบซํEาดงักล่าวมขีอ้จาํกดัมากมายเพื$อใหไ้ดม้าซึ$งคําตอบของอสมการการแปร
ผนั จงึไดค้ดิคน้วธิกีารประมาณค่าแบบซํEาขึEนมาใหมซ่ึ$งเรยีกว่า วธิเีอก็ซต์รา้กราเดยีน (Extragradient 
method)   และพบว่าการแกป้ญัหาอสมการการแปรผนัดงักล่าวนั Eน ตวัดาํเนินการไมจ่าํเป็นตอ้งเป็น 
ตวัดาํเนินการทางเดียวอย่างเข้ม และต่อเนื$องแบบลฟิซทิพ ์แต่ขอใหเ้ป็น ตวัดาํเนินการทางเดียว และ
ต่อเนื$องแบบลฟิซทิพ ์ กเ็พยีงพอแลว้  นอกจากวธิกีารประมาณค่าแบบซํEาจะสามารถแกไ้ขปญัหาอสมการ
การแปรผนัแลว้ ยงัสามารถประยกุตใ์ชใ้นการคน้หาจดุตรงึของการส่งแบบไมข่ยายดงัรายละเอยีดดงันีE  
 กําหนดให ้ H  เป็นปรภิูมฮิลิเบริต์บนเซตของจาํนวนจรงิ และ C  เป็นเซตยอ่ยปิด (closed) นูน 
(convex) ของ H  กําหนดการส่ง :A C H→  จะเรยีกการส่ง A  วา่ การส่งทางเดยีว (monotone 
mapping) ถา้ 

, 0, , .Au Av u v C≥ ∀ ∈  
 ปญัหาอสมการการแปรผนั (variational inequality problem(VIP)) คอืการหา 0u C∈  ซึ$งทาํให้
อสมการต่อไปนีEเป็นจรงิ 

0 0, 0 , (1)A u u u u C− ≥ ∀ ∈  
เซตคาํตอบของปญัหาอสมการการแปรผนัจะถูกเขยีนแทนดว้ย ( , )VI C A   

นั $นคอื { }( , ) : , 0VI C A u C Au v u= ∈ − ≥  ปญัหาอสมการการแปรผนันั $นไดถู้กศกึษากนัอยา่ง
กวา้งขวางโดยดไูดจ้ากเอกสารอา้งองิ [19, 26, 33, 64, 97, 99, 102, 103]  สาํหรบัการส่ง  :A C H→  
จะเรยีกว่าเป็นการส่งแบบ α -ทางเดยีวอย่างผกผนั (α -inverse-strongly monotone mapping) ถา้มี
จาํนวนจรงิ 0α >  ซึ$งทาํให ้

2
, ,Au Av u v Au Avα− − ≥ −  

สาํหรบัทุกๆ ,u v C∈  และเรยีก :T C C→  ว่าการส่งแบบไม่ขยาย (nonexpansive mapping)  ถา้ 
Tx Ty x y− ≤ −  

สาํหรบัทุกๆ ,x y C∈  และกําหนดให ้ ( )F T  แทนเซตของจดุตรงึทั Eงหมดของการส่ง T  นั $นคอื 
{ }( ) :F T x C Tx x= ∈ =   จากนิยามดงักล่าวจะเหน็ไดว้่า u  เป็นคาํตอบของอสมการการแปรผนัใน

สมการที$ (1) กต่็อเมื$อ ( )Cu P u Auλ= −  เมื$อ 0λ >  และ CP  เป็นภาพฉายระยะทาง (metric projection) 
นั $นแสดงใหเ้หน็ว่าปญัหาอสมการการแปรผนัเป็นความสมัพนัธส์มมลูกบัปญัหาจดุตรงึ (Fixed point 
problems) จงึเป็นผลใหใ้นปี ค.ศ. 2003  Takahashi และ Toyoda [91]   ไดค้ดิคน้วธิกีารทําซํEาต่อไปนีE 
เพื$อคน้หาคาํตอบรว่มระหว่างจดุตรงึของการส่งแบบไม่ขยายและผลเฉลยของอสมการการแปรผนันั $นคอื
เพื$อคน้หาคาํตอบของ ( ) ( , )F S V C A∩  โดยกําหนดให ้ 0x C∈  และนิยาม ลาํดบั { }nx  โดย 

1 (1 ) ( ) ( 2 )n n n n C n n nx x S P x A xα α λ+ = + − −  
สาํหรบัทุกๆ 0,1,2,...,n = เมื$อ  { } (0,1)nα ⊂ , { } (0,2 )nλ α⊂   และ  :S C C→  เป็นการส่งแบบไม่
ขยายบน C  และ :CP H C→   เป็นภาพฉายระยะทางและ :A C H→  เป็น  α -ทางเดยีวอยา่งผกผนั 
จากนั Eน Takahashi และ Toyoda [91]      กไ็ดพ้สิจูน์ว่าลาํดบั { }nx  ซึ$งนิยามโดยสมการ (2)  ลู่เขา้อยา่ง
อ่อนสู่สมาชกิรว่มของ ( ) ( , )F T VI C A∩  ในปรภิูมฮิลิเบริต์  ต่อมา Iiduka and Takahashi [49] ตอ้งการ
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สรา้งทฤษฎบีทการลู่เขา้อย่างเขม้สู่สมาชกิรว่มของ ( ) ( , )F T VI C A∩  จงึไดก้ําหนดวธิกีารทําซํEาแบบใหม่
ดงันีE กําหนดให ้ 0x u C= ∈  และนิยาม ลาํดบั { }nx  โดย 

1 (1 ) ( ) (3 )n n n C n n nx u S P x A xα α λ+ = + − −  
สาํหรบัทุกๆ 0,1,2,...n =  เมื$อ { } (0,1)nα ⊂ , { } (0,2 )nλ α⊂  และ  :S C C→  เป็นการส่งแบบไม่
ขยายบน C  และ :CP H C→   เป็นภาพฉายระยะทางและ :A C H→  เป็น  α -ทางเดยีวอยา่งผกผนั  
นอกจากนั Eนแลว้โดยใชว้ธิกีารเอก็ซต์รา้กราเดยีน (Extra)  ซึ$งทั Eง Nadezhkina และ Takahashi [61] ไดใ้ช้
การประมาณค่าแบบซํEาชนิดใหมเ่พื$อคน้หาผลเฉลยรว่มของ ( ) ( , )F T VI C A∩  ต่อมา Y. Yao และ J.C. 
Yao [109] ไดแ้นะนําวธิกีารประมาณค่าแบบซํEาเพื$อหาสมาชกิของ ( ) ( , )F T VI C A∩  ดงันีE  

กําหนดให ้ :A C H→  เป็น  α -ทางเดยีวอยา่งผกผนั และ  :S C C→  เป็นการส่งแบบ 
ไมข่ยาย ซึ$ง ( ) ( , )F T VI A C∩ ≠ ∅  กําหนดให ้ 0x u C= ∈  และนิยาม ลาํดบั { }nx และ { }ny   โดย 

1

( )
(4)

( )
n C n n n

n n n n n C n n n

y P x x

x u x SP y Ay

λ

α β γ λ+

= −


= + + −
 

เมื$อ { } { } { }, ,n n nα β γ  เป็นลาํดบัของจาํนวนจรงิในช่วงปิด [0,1]   และ { }nλ  เป็นลาํดบัของจาํนวนจรงิ
ในช่วงปิด [0, 2 ]α  Y. Yao และ J.C. Yao [109] ไดพ้สิจูน์ว่าถา้ลาํดบั { } { } { }, ,n n nα β γ  สอดคลอ้ง
เงื$อนไขบางอย่าง แลว้ลาํดบั { }nx  และ { }ny   นิยามโดย (4) ลู่เขา้อยา่งเขม้สู่จดุตรงึรว่มของเซตคาํตอบ
ของจดุตรงึของการส่งแบบไมข่ยายและเซตของผลเฉลยของอสมการการแปรผนั นั $นคอื   { }nx  และ { }ny  
ลู่เขา้อยา่งเขม้สู่สมาชกิของ ( ) ( , )F T VI A C∩   
 อกีหนึ$งปญัหาทางคณติศาสตรท์ี$เป็นที$สนใจของนกัคณิตศาสตรห์ลายคนในปจัจุบนัคอื ปัญหาเชิง
ดลุยภาพ (equilibrium  problems (EP)) ซึ$งหมายถงึ การหาค่าของ x C∈  ซึ$งสอดคลอ้งกบัอสมการ
ต่อไปนีE  

( , ) 0 , ( 5 )F x y y C≥ ∀ ∈  
เมื$อกําหนดฟงักช์นัโดเมนเชงิคู่ :F C C× → R  และเซตคาํตอบของปญัหาเชงิดุลยภาพ (5) ขา้งบนนีEเรา
จะเขยีนแทนดว้ย ( )EP F  ถา้กําหนดการส่ง :T C H→  ให ้ ( , ) ,F x y Tx y x= 〈 − 〉  สาํหรบัทุกๆ  

,x y C∈  แลว้จะไดว้่า   ( )z EP F∈  กต่็อเมื$อ  , 0,Tz y z y C〈 − 〉 ≥ ∀ ∈   นั $นแสดงใหเ้หน็ว่าคาํตอบของ
ปญัหาเชงิดุลภาพสามารถแกไ้ขบางปญัหาอสมการการแปรผนั นอกจากแลว้จะเหน็ว่าปญัหาต่างๆ ในทาง
ฟิสกิส ์ หรอืในทางเศรษฐศาสตร ์ บางอยา่งสามารถแปลงเป็นสมการหรอือสมการ ใหอ้ยูใ่นรปูอสมการ (5) 
ดงันั Eนการหาผลเฉลยหรอืการประมาณค่าของปญัหาเชงิดุลยภาพ (5) ถอืเป็นการแกไ้ขปญัหาในทางฟิสกิส ์
หรอืในทางเศรษฐศาสตรไ์ดอ้กีทางหนึ$ง ซึ$งสามารถดไูดจ้ากเอกสารอา้งองิ [5], [26] และ [59]  โดยในปี 
1997 Combettes และ Hirstoaga [25]  ไดเ้ริ$มต้นศกึษาและใชว้ธิกีารประมาณค่าแบบซํEาในการประมาณ
ค่าที$ดทีี$สุดเพื$อไปหาคาํตอบ (solutions) ใหก้บัปญัหาเชงิดุลยภาพ และไดพ้สิจูน์ทฤษฎบีทการลู่เขา้อย่าง
เขม้ และเมื$อเรว็ๆ นีE เพื$อคน้หาคําตอบรว่มของ ( ) ( )EP F F T∩  S. Takahashi และ W. Takahashi [89]  
จงึไดศ้กึษาวธิกีารประมาณค่าแบบหนืด (viscosity approximation method) ในปรภิูมฮิลิเบริต์ โดย
กําหนดให ้ :S C C→  เป็นการส่งแบบไมข่ยาย และให ้  1x C∈  และนิยามลาํดบั { }nx และ { }nu  โดย 
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1

1
( ,  )  , 0,

( ) (1 )

n n n n
n

n n n n n

F u y y u u x y C
r

x f x Suα α+

 + − − ≥ ∀ ∈

 = + −

 

สาํหรบัทุกๆ n∈N  เมื$อ { } [0,1]nα ⊂  และ { } (0, )nr ⊂ ∞  ภายใตเ้งื$อนไขที$เหมาะสมบางอย่างสาํหรบั
ลาํดบั  { } { },n nα γ  S. Takahashi และ W. Takahashi [89] ไดพ้สิจูน์ว่า { }nx  และ { }nu  ลู่เขา้อยา่งเขม้สู่
จดุตรงึรว่ม ( ) ( )z F T EP F∈ ∩  เมื$อ ( ) ( ) ( )F T EP Fz P f z∩=  โดยใชแ้นวคดิดงักล่าว ต่อมาในปี ค.ศ. 2007 
Su, Shang และ Qin [83] ไดส้รา้งวธิกีารประมาณค่าแบบซํEาแบบใหมเ่พื$อหาคาํตอบรว่มระหว่าง   เซต
ของจดุตรงึของการส่งแบบไมข่ยาย ( )F S   เซตคาํตอบของอสมการการแปรฝนั ( , )VIP A C  (เมื$อ A  เป็น
การส่งแบบ α − inverse-strongly monotone) และ เซตคาํตอบของปญัหาเชงิดุลยภาพ ( )EP F  ในปรภิูม ิ
ฮลิเบริต์ โดยกําหนดให ้ 1x C∈  และนิยามลําดบัโดย 

   
1

1
( ,  )  , 0,

( ) (1 ) ( ), 1

n n n n
n

n n n n c n n n

F u y y u u x y C
r

x f x SP u Au nα α λ+

 + − − ≥ ∀ ∈

 = + − − ≥

 

และ Su, Shang และ Qin [83] ไดพ้สิจูน์ { }nx  และ { }nu  ลู่เขา้อยา่งเขม้สู่จุดตรงึรว่ม 
( ) ( ) ( , )z F T EP F VI A C∈ ∩ ∩  เมื$อ ( ) ( ) ( , ) ( )F T EP F VI A Cz P f z∩ ∩=  และเมื$อเรว็ๆ นีE Plubtieng และ 

Punpaeng [64]    ไดนํ้าเสนอวธิกีารแกไ้ขปญัหาเชงิดุลยภาพโดยใชว้ธิกีารเอก็ซต์รา้กราเดยีนแบบใหม่ซึ$ง
แตกต่างจาก Su, Shang และ Qin [83] โดยผสมแนวคดิของ S. Takahashi และ W. Takahashi [89] และ 
Y. Yao และ J.C. Yao [109]  ดงันีE กําหนด  1x C∈  และนิยามลาํดบั { }{ },n nx y  และ { }nu  ดงันีE 

   

1

1
( ,  )  , 0,

(6)( ),

( )

n n n n
n

n C n n n

n n n n n C n n n

F u y y u u x y C
r

y P u u

x u x SP y Ay

λ

α β γ λ+

 + − − ≥ ∀ ∈

 = −

 = + + −

 

เมื$อ { } { } { }, ,n n nα β γ  เป็นลาํดบัของจาํนวนจรงิในช่วงปิด [0,1]   และ { }nλ  เป็นลาํดบัของจาํนวนจรงิ
ในช่วงปิด [0, 2 ]α  ซึ$ง Plubtieng และ Punpaeng [63] ไดพ้สิจูน์ว่าถา้ลาํดบั { } { } { }, ,n n nα β γ  สอดคลอ้ง
เงื$อนไขบางอย่าง แลว้ลาํดบั { }nx  และ { }ny   นิยามโดย (6) ลู่เขา้อยา่งเขม้สู่จดุตรงึรว่มของเซตคาํตอบ
ของจดุตรงึของการส่งแบบไมข่ยาย เซตของผลเฉลยของอสมการการแปรผนั และ เซตคาํตอบของปญัหา
เชงิดุลยภาพ 
 จากผลงานวจิยัต่างๆ ที$กล่าวมาขา้งตน้จะเหน็ว่าพฒันาการในเรื$องวธิกีารประมาณค่านั Eนไดถู้ก
คดิคน้อยูเ่สมอๆ ในปรภิูมทิี$แตกต่างกนัไป จงึเป็นเหตุผลที$ทาํใหผู้ว้จิยัตอ้งการที$จะคน้หาหรอืนําเสนอ
วธิกีารประมาณค่าแบบใหม่ๆ เพื$อใหส้ามารถประยกุต์ใชก้บัปญัหาทางคณติศาสตรใ์นรปูแบบต่างๆ หรอื
บางปญัหาในทาง ฟิสกิส ์และ ทางเศรษฐศาสตร ์ไดม้ากขึEน พรอ้มทั Eงยงัเป็นการก่อใหเ้กดิองคค์วามรู ้ หรอื
ทฤษฎใีหม่ๆ  ในทางการวเิคราะหเ์ชงิฟงักช์นัหรอืสาขาอื$นๆ ที$เกี$ยวขอ้ง  

 ดงันั Eน การคดิคน้เพื$อใหเ้กดิวธิกีารประมาณค่าแบบซํEาของจดุตรงึชนิดใหม่ๆ  และทฤษฎกีารลู่เขา้สู่
จดุตรงึจงึเป็นองคค์วามรูใ้หมท่ี$คาดว่าจะไดร้บั นอกจากนั Eนแลว้ยงัสามารถใชว้ธิกีารประมาณค่าดงักล่าว
เพื$อประยกุตใ์ชห้าคาํตอบของปญัหาเชงิดุลยภาพ และ ปญัหาอสมการการแปรผนั ปญัหาค่าน้อยสุด และ
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ปญัหาอื$นๆ ทางคณติศาสตร ์  ซึ$งองคค์วามรูใ้หมท่ี$ไดน้ั Eนจะเป็นพืEนฐานที$สําคญัในการพฒันาสาขาวชิาการ
วเิคราะหเ์ชงิฟงัก์ชนัและสาขาวชิาอื$นๆ ที$เกี$ยวขอ้ง ดงัที$ไดก้ล่าวมาแลว้ขา้งต้นอนัจะเป็นพืEนฐานในการ
พฒันาประเทศชาตต่ิอไป 



CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results
that will be used in the later chapter.

Throughout this research, we let R stand for the set of all real numbers and
N the set of all natural numbers.

2.1 Basic results

Definition 2.1.1. Let E be a linear space over the field K (R or C). A function
‖ · ‖ : E −→ R is said to be a norm on E if it satisfies the following conditions:

(1) ‖x‖ ≥ 0, ∀x ∈ E;

(2) ‖x‖ = 0 ⇔ x = 0;

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ E;

(4) ‖αx‖ = |α|‖x‖,∀x ∈ E and ∀α ∈ K.

Definition 2.1.2. Let (E, ‖ · ‖) be a normed space.

(1) A sequence {xn} ⊂ E is said to converge strongly in X if there exists
x ∈ E such that lim

n−→∞
‖xn−x‖ = 0. That is, if for any ε > 0 there exists a positive

integer N such that ‖xn−x‖ < ε,∀n ≥ N. We often write lim
n−→∞

xn = x or xn −→ x

to mean that x is the limit of the sequence {xn}.
(2) A sequence {xn} ⊂ E is said to be a Cauchy sequence if for any ε > 0

there exists a positive integer N such that ‖xm − xn‖ < ε, ∀ m,n ≥ N . That is,
{xn} is a Cauchy sequence in E if and only if ‖xm − xn‖ −→ 0 as m, n −→∞.

Definition 2.1.3. A normed space E is called complete if every Cauchy sequence
in E converges to an element in E.

Definition 2.1.4. A complete normed linear space over field K is called a Banach
space over K.

Definition 2.1.5. Let C be a nonempty subset of normed space E. A mapping
T : C −→ C is said to be lipschitzian if there exists a constant k ≥ 0 such that
for all x, y ∈ C

‖Tx− Ty‖ ≤ k‖x− y‖. (2.1.1)

The smallest number k for which 2.1.1 holds is called the Lipschitz constant of T .

Definition 2.1.6. A lipschitzian mapping T : C −→ C with Lipschitz constant
k < 1 is said to be a contraction mapping.



7

Definition 2.1.7. An element x ∈ C is said to be a fixed point of a mapping
T : C −→ C iff Tx = x.

Definition 2.1.8. [Banach’s contraction mapping principle] Let (M, d) be
a complete metric spaces and let T : M −→ M be a contraction. Then T has a
unique fixed point x0.

Definition 2.1.9. Let F and E be linear spaces over the field K.

(1) A mapping T : F −→ E is called a linear operator if T (x+y) = Tx+Ty
and T (αx) = αTx, ∀x, y ∈ F and ∀α ∈ K.

(2) A mapping T : F −→ K is called a linear functional on F if T a is linear
operator.

Definition 2.1.10. A sequence {xn} in a normed spaces is said to converge weakly
to some vector x if limn−→∞ f(xn) = f(x) holds for every continuous linear func-
tional f . We often write xn ⇀ x to mean that {xn} converge weakly to x.

Definition 2.1.11. Let F and E be normed spaces over the field K and T : F −→
E a linear operator. T is said to be bounded on F if there exists a real number
M > 0 such that ‖T (x)‖ ≤ M‖x‖, ∀x ∈ F .

Definition 2.1.12. Sequence {xn}∞n=1 in a normed linear space X is said to be a
bounded sequence if there exists M > 0 such that ‖xn‖ ≤ M, ∀n ∈ N.

Definition 2.1.13. Let F and E be normed spaces over the field K, T : F −→ E
an operator and c ∈ F . We say that T is continuous at c if for every ε > 0 there
exists δ > 0 such that ‖T (x)− T (c)‖ < ε whenever ‖x− c‖ < δ and x ∈ F . If T is
continuous at each x ∈ F , then T is said to be continuous on F.

Definition 2.1.14. Let E and F be normed spaces. The mapping T : E −→ F is
said to be completely continuous if and only if T (C) is a compact subset of F for
every bounded subset C of E.

Definition 2.1.15. A mapping T : C −→ C is said to be semicompact if, for
any sequence {xn} in C such that ‖xn − Txn‖ −→ 0 as n −→ ∞, there exists
subsequence {xnj

} of {xn} such that {xnj
} converges strongly to x ∈ C.

Definition 2.1.16. A subset C of a normed linear space E is said to be convex
set in X if λx + (1− λ)y ∈ C for each x, y ∈ C and for each scalar λ ∈ [0, 1].

Definition 2.1.17. Let E be a real normed space and C a nonempty subset of E.
A mapping T : C −→ C is said to be

(a) nonexpansive whenever ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

(b) asymptotically nonexpansive on C if there exists a sequence {kn} in
[1,∞), with limn−→∞ kn = 1 such that

‖T nx− T ny‖ ≤ kn‖x− y‖ (2.1.2)
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for all x, y ∈ C and each n ≥ 1;

(c) strict pseudo-contractive mapping if there exists a constant 0 ≤ k < 1
such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, (2.1.3)

for all x, y ∈ C. (If (2.1.3) holds, we also say that T is a k-strict pseudo-
contraction.)

It is know that if T is 0-strict pseudo-contractive mapping, T is nonexpansive
mapping.

(d) asymptotically k-strict pseudo-contractive if there exists a constant 0 ≤
k < 1 satisfying

‖T nx− T ny‖2 ≤ (1 + γn)‖x− y‖2 + k‖(I − T n)x− (I − T n)y‖2, (2.1.4)

for all x, y ∈ C and for all n ∈ N where γn ≥ 0 for all n such that limn→∞ γn = 0.

(e) asymptotically nonexpansive in the intermediate sense [6] provided T is
uniformly continuous and

lim sup
n−→∞

sup
x,y∈C

(‖T nx− T ny‖ − ‖x− y‖) ≤ 0.

It is clear that every nonexpansive mapping is asymptotically nonexpansive and
every asymptotically nonexpansive mapping is uniformly Lipschitzian.

(f) asymptotically k-strict pseudo-contractive mapping [39] with sequence
{γn} if there exist a constant k ∈ [0, 1) and a sequence {γn} in [0, 1) with limn−→∞ γn

= 0 such that

‖T nx− T ny‖2 ≤ (1 + γn)‖x− y‖2 + k‖x− T nx− (y − T ny)‖2 (2.1.5)

for all x, y ∈ C and n ∈ N .

Definition 2.1.18. [74] Let C be a nonempty subset of a Hilbert space H. A
mapping T : C −→ C will be called an asymptotically k-strict pseudo-contractive
mapping in the intermediate sense with sequence {γn} if there exist a constant
k ∈ [0, 1) and a sequence {γn} in [0, 1) with limn−→∞ γn = 0 such that

lim sup
n−→∞

sup
x,y∈C

(‖T nx−T ny‖2−(1+γn)‖x−y‖2−k‖x−T nx−(y−T ny)‖2) ≤ 0. (2.1.6)

Throughout this paper we assume that

cn := max{0, sup
x,y∈C

(‖T nx− T ny‖2− (1 + γn)‖x− y‖2− k‖x− T nx− (y− T ny)‖2)}.

Then cn ≥ 0 for all n ∈ N , cn → 0 as n → ∞ and (2.1.6) reduces to the
relation

‖T nx− T ny‖2 ≤ (1 + γn)‖x− y‖2 + k‖x− T nx− (y − T ny)‖2 + cn (2.1.7)

for all x, y ∈ C and n ∈ N
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Definition 2.1.19. Let H be a real Hilbert space with norm ‖·‖ and inner product
〈·, ·〉 and let C be a closed convex subset of H. For every point x ∈ H, there exists
a unique nearest point in C, denote by PCx, such that

‖x− PCx‖ ≤ ‖x− y‖, for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C.

Definition 2.1.20. Let E be a real Banach space and E∗ the dual space of E. Let
K be a nonempty, closed and convex subset of E. A (one-parameter) nonexpansive
semigroup is a family F = {T (t) : t ≥ 0} of self-mappings of K such that

(i) T (0)x = x for all x ∈ K;

(ii) T (t + s)x = T (t)T (s)x for all t, s ≥ 0 and x ∈ K;

(iii) for each x ∈ K, the mapping T (·)x is continuous;

(iv) for each t ≥ 0, T (t) is nonexpansive, that is,

‖T (t)x− T (t)y‖ ≤ ‖x− y‖, ∀x, y ∈ K.

We denote F by the common fixed points set of F, that is, F :=
⋂

t≥0 F (T (t)).

Definition 2.1.21. Let C be a nonempty subset of a real Banach space E and
F : C×C → R, where R is the set of real numbers, be a bifunction. The equilibrium
problem is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (2.1.8)

The solutions set of (2.1.8) is denoted by EP (F ).

For solving the equilibrium problem, we assume that:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0 F
(
tz + (1− t)x, y

) ≤ F (x, y);

(A4) for all x ∈ C, F (x, ·) is convex and lower semi-continuous.

Definition 2.1.22. A Banach space E is called strictly convex if ‖x+y‖
2

< 1 for all
x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. A Banach space E is called uniformly
convex if for each ε > 0 there is a δ > 0 such that for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1
and ‖x − y‖ ≥ ε, ‖x + y‖ ≤ 2(1 − δ) holds. The modulus of convexity of E is
defined by

δE(ε) = inf
{

1−
∥∥∥1

2
(x + y)

∥∥∥ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}

,

for all ε ∈ [0, 2]. E is uniformly convex if δE(0) = 0, and δE(ε) > 0 for all
0 < ε ≤ 2. It is known that every uniformly convex Banach space is strictly convex
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and reflexive. Let S(E) = {x ∈ E : ‖x‖ = 1}. Then the norm of E is said to be
Gâteaux differentiable if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ S(E). In this case E is called smooth. The norm of E is said
to be Fréchet differentiable if for each x ∈ S(E), the limit is attained uniformly
for y ∈ S(E). The norm of E is called uniformly Fréchet differentiable, if the limit
is attained uniformly for x, y ∈ S(E). It is well known that (uniformly) Fréchet
differentiability of the norm of E implies (uniformly) Gâteaux differentiability of
the norm of E.

Definition 2.1.23. The duality mapping J : E → 2E∗ is defined by

J(x) = { x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E.

It is also known that if E is uniformly smooth, then J is uniformly norm-
to-norm continuous on bounded subsets of E (see [88] for more details).

Definition 2.1.24. Let E be a smooth Banach space. The function φ : E×E → R
is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E.

From the definition of φ, we see that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2

and
φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉

for all x, y, z ∈ E.

Definition 2.1.25. Let C be a closed and convex subset of a smooth Banach
space E and let T be a mapping from C into itself. A point p in C is said to be
an asymptotic fixed point of T [8] if C contains a sequence {xn} which converges
weakly to p such that limn→∞ ‖xn − Txn‖ = 0.

The set of asymptotic fixed points of T will be denoted by F̂ (T ).

A mapping T is said to be relatively nonexpansive [8, 9] if F̂ (T ) = F (T ) and
φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and x ∈ C. A point p in C is said to be a
strong asymptotic fixed point of T if C contains a sequence {xn} which converges
strongly to p such that limn→∞ ‖xn − Txn‖ = 0.

The set of strong asymptotic fixed points of T will be denoted by F̃ (T ). A

mapping T is said to be weak relatively nonexpansive [110] if F̃ (T ) = F (T ) and
φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and x ∈ C.
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It is obvious by definition that the class of weak relatively nonexpansive
mappings contains the class of relatively nonexpansive mappings. Indeed, for any
mapping T : C → C, we see that F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ). Therefore, if T is a

relatively nonexpansive mapping, then F (T ) = F̃ (T ) = F̂ (T ).

Definition 2.1.26. Let E be a reflexive, strictly convex and smooth Banach space
and let C be a nonempty, closed and convex subset of E. The generalized projection
mapping, introduced by Alber [3], is a mapping ΠC : E → C, that assigns to
an arbitrary point x ∈ E the minimum point of the function φ(y, x), that is,
ΠC(x) = x̄, where x̄ is the solution to the minimization problem

φ(x̄, x) = min{φ(y, x) : y ∈ C}.

In a Hilbert space, ΠC is coincident with the metric projection denoted by
PC .

Definition 2.1.27. Let E be a reflexive, strictly convex and smooth Banach space.
It is known that A : E → 2E∗ is maximal monotone if and only if R(J + λA) = E∗

for all λ > 0, where R(B) stands for the range of B.

Define the resolvent of A by JλA = (J + λA)−1J for all λ > 0. It is known
that JλA is a single-valued mapping from E to D(A) and A−1(0∗) = F (JλA) for all
λ > 0. For each λ > 0, the Yosida approximation of A is defined by

Aλ(x) =
1

λ

(
J(x)− JJλA(x)

)
.

for all x ∈ E. We know that Aλ(x) ∈ A
(
JλA(x)

)
for all λ > 0 and x ∈ E.

Definition 2.1.28. A continuous strictly increasing function ϕ : [0,∞) → [0,∞)
is said to be gauge function if ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.

Definition 2.1.29. Let E be a normed space and ϕ a gauge function. Then the
mapping Jϕ : E → 2E∗ defined by

Jϕ(x) =
{
f ∗ ∈ E∗ : 〈x, f ∗〉 = ‖x‖ϕ(‖x‖), ‖f ∗‖ = ϕ(‖x‖)}, x ∈ E

is called the duality mapping with gauge function ϕ.

In the particular case ϕ(t) = t, the duality mapping Jϕ = J is called the
normalized duality mapping.

In the case ϕ(t) = tq−1, q > 1, the duality mapping Jϕ = Jq is called the

generalized duality mapping. It follows from the definition that Jϕ(x) = ϕ(‖x‖)
‖x‖ J(x)

and Jq(x) = ‖x‖q−2J(x), q > 1.

Remark 2.1.30. For the gauge function ϕ, the function Φ : [0,∞) → [0,∞) defined
by

Φ(t) =

∫ t

0

ϕ(s)ds (2.1.9)

is a continuous convex and strictly increasing function on [0,∞). Therefore, Φ has
a continuous inverse function Φ−1.
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It is noted that if 0 ≤ k ≤ 1, then ϕ(kx) ≤ ϕ(x). Further

Φ(kt) =

∫ kt

0

ϕ(s)ds = k

∫ t

0

ϕ(kx)dx ≤ k

∫ t

0

ϕ(x)dx = kΦ(t).

Remark 2.1.31. For each x in a Banach space E, Jϕ(x) = ∂Φ(‖x‖), where ∂ denotes
the sub-differential.

We also know the following facts:

(i) Jϕ is a nonempty, closed and convex set in E∗ for each x ∈ E.

(ii) Jϕ is a function when E∗ is strictly convex.

(iii) If Jϕ is single-valued, then

Jϕ(λx) =
sign(λ)ϕ(‖λx‖)

ϕ(‖x‖) Jϕ(x), ∀x ∈ E, λ ∈ R

and

〈x− y, Jϕ(x)− Jϕ(y)〉 ≥ (
ϕ(‖x‖)− ϕ(‖y‖))(‖x‖ − ‖y‖), ∀x, y ∈ E.

Following Browder [7], we say that a Banach space E has a weakly continu-
ous duality mapping if there exists a gauge ϕ for which the duality mapping Jϕ is
single-valued and continuous from the weak topology to the weak∗ topology, that
is, for any {xn} with xn ⇀ x, the sequence {Jϕ(xn)} converges weakly∗ to Jϕ(x). It
is known that the space `p has a weakly continuous duality mapping with a gauge
function ϕ(t) = tp−1 for all 1 < p < ∞. Moreover, ϕ is invariant on [0, 1].



CHAPTER 3

MAIN RESULTS

3.1 Strong convergence theorem by hybrid method for non-
Lipschitzian mapping

In this section, We introduce the hybrid method of modified Mann’s it-
eration for an asymptotically k-strict pseudo-contractive mapping T in the inter-
mediate sense which is necessarily lipschitzian. We establish strong convergence
theorem for such method.

Fixed point iteration processes for nonexpansive mappings and asymptoti-
cally nonexpansive mappings in Hilbert spaces and Banach spaces including Mann
and Ishikawa iteration processes have been studied extensively by many authors to
solve nonlinear operator equations as well as variational inequalities: see [6, 32, 39,
90]. However, Mann and Ishikawa iterations processes have only weak convergence
even in Hilbert space: see [39, 90].

Iteration method for finding a fixed point of an asymptotically k-strict
pseudo-contractive mapping T is the modified Mann’s iteration method studied
in [50, 75, 77, 94] which generates a sequence {xn} via

xn+1 = αnxn + (1− αn)T nxn, n ≥ 0, (3.1.1)

where the initial guess x0 ∈ C is arbitrary and the sequence {αn}∞n=0 line in the
interval (0, 1).

In 2007, Takahashi, Takeuchi and Kubota [90] introduced the modification
Mann iteration method for a family of nonexpansive mappings {Tn}. Let x0 ∈ H.
For C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:





yn = αnun + (1− αn)Tnun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(3.1.2)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then they prove that the sequence {un}
converges strongly to z0 = PF (T )x0. In 2008, Kumam [46], introduce an iterative
scheme by a new hybrid method for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of an equilibrium problem
and the set of solutions of the variational inequality for α-inverse-strongly monotone
mappings in a real Hilbert space.

In 2008, Inchan [30], introduce the modified Mann iteration processes for
an asymptotically nonexpansive mapping. Let C be a nonempty closed bounded
convex subset of a Hilbert space H, T be an asymptotically nonexpansive mapping
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of C into itself and let x0 ∈ C. For C1 = C and x1 = PC1(x0), define {xn} as
follows way:





yn = αnxn + (1− αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(3.1.3)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for all

n ∈ N. Then him prove that {xn} converges strongly to z0 = PF (T )x0.

Recently, Inchan and Nammanee [31], introduce the modified Mann iteration
processes for an asymptotically k-strict pseudo-contractive mapping. Let C be a
nonempty closed convex subset of a Hilbert space H, T be an asymptotically k-
strict pseudo-contractive mapping of C into itself such that F (T ) 6= ∅ and let
x0 ∈ C. For C1 = C and x1 = PC1(x0), define {xn} as follows way:




yn = αnxn + (1− αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k − αn(1− αn)]‖xn − T nxn‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(3.1.4)
where θn = (diamC)2(1−αn)γn → 0 as n →∞ and lim supn−→∞ αn < 1−k. Then
they prove that {xn} converges strongly to z0 = PF (T )x0.

Inspired and motivated by these fact, we introduce the modified Mann it-
eration processes for an asymptotically k-strict pseudo-contractive mapping in the
intermediate sense by idear in (3.1.4). Let C be a closed convex subset of a Hilbert
space H, T : C −→ C be an asymptotically k-strictly pseudo-contractive mapping
in the intermediate sense and let x0 ∈ C. For C1 = C and x1 = PC1(x0), define
{xn} as follows way:





yn = αnxn + (1− αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k − αn(1− αn)]‖xn − T nxn‖2 + θn

+cn},
xn+1 = PCn+1x0, n ∈ N,

(3.1.5)
where θn = (diamC)2(1− αn)γn → 0, (n →∞).

We shall prove that the iteration generated by (3.1.5) converges strongly to
z0 = PF (T )x0.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 3.1.1. [56] There holds the identity in a Hilbert space H:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉,∀x, y ∈ H.

(ii) ‖λx + (1 − λ)y‖2 = λ‖x||2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 for all
x, y ∈ H and λ ∈ [0, 1].
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Lemma 3.1.2. [63] Let C be a closed convex subset of a real Hilbert space H.
Given x ∈ H and y ∈ C. Then y = PCx if and only if there holds the inequality

〈x− y, y − z〉 ≥ 0, ∀z ∈ C.

Lemma 3.1.3. [74] Let C be a nonempty subset of a Hilbert space H and let
T : C → C a uniformly continuous asymptotically k-strict pseudo-contractive in
the intermediate sense with sequence {γn}. Let {xn} be a sequence in C such that
‖xn − xn+1‖ → 0 and ‖xn − T nxn‖ → 0 as n → ∞. Then ‖xn − Txn‖ → 0 as
n →∞.

Lemma 3.1.4. [74] Let C be a nonempty closed convex subset of Hilbert space H
and T : C −→ C a continuous asymptotically k-strict pseudo-contractive mapping
in the intermediate sense. Then I − T is demiclosed at zero in the sense that {xn}
is sequence in C such that xn ⇀ x ∈ C and lim supn→∞ ‖xn − T nxn‖ = 0, then
(I − T )x = 0.

Now, we prove strong convergence theorem by hybrid method for asymp-
totically k-strict pseudo-contractive mapping in the intermediate sense in Hilbert
spaces.

Theorem 3.1.5. Let H be a Hilbert space and let C be a nonempty closed con-
vex bounded subset of H. Let T be a uniformly continuous asymptotically k-strict
pseudo-contractive mapping in the intermediate sense of C into itself such that
F (T ) 6= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, assume that the control
sequence {αn}∞n=1 is chosen so that lim supn→∞ αn < 1 − k. Then {xn} generated
by (3.1.5) converges strongly to z0 = PF (T )x0.

Proof. We first show that F (T ) ⊂ Cn for all n ∈ N, by induction. For any
z ∈ F (T ) we have z ∈ C = C1 hence F (T ) ⊂ C1. Let F (T ) ⊂ Cm for each m ∈ N.
For u ∈ F (T ) ⊂ Cm. By lemma 3.1.1, we have,

‖ym − u‖2 = ‖αmxm + (1− αm)Tmxm − u‖2

= ‖αm(xm − u) + (1− αm)(Tmxm − u)‖2

= αm‖xm−u‖2 + (1−αm)‖Tmxm−u‖2−αm(1−αm)‖xm−Tmxm‖2

≤ αm‖xm−u‖2 +(1−αm)[(1+γm)‖xm−u‖2 +k‖xm−Tmxm‖2 + cm]

−αm(1− αm)‖xm − Tmxm‖2

= (1 + (1−αm)γm)‖xm−u‖2 +(k−αm)(1−αm)‖xm−Tmxm‖2 + cm

≤ ‖xm−u‖2+(1−αm)γm‖xm−u‖2+[k−αm(1−αm)]‖xm−Tmxm‖2+cm

≤ ‖xm − u‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm (3.1.6)

It follows that u ∈ Cm+1 and F (T ) ⊂ Cm+1, hence F (T ) ⊂ Cn for all n ∈ N.
Next, we show that Cn is closed and convex for all n ∈ N. It follows obvious that
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C1 = C is closed and convex. Suppose that Cm is closed and convex for each
m ∈ N. Let zj ∈ Cm+1 ⊂ Cm with zj → z. Since Cm is closed, z ∈ Cm and
‖ym − zj‖2 ≤ ‖zj − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm. Then

‖ym − z‖2 = ‖ym − zj + zj − z‖2

= ‖ym − zj‖2 + ‖zj − z‖2 + 2〈ym − zj, zj − z〉
≤ ‖zj − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm

+‖zj − z‖2 + 2‖ym − zj‖‖zj − z‖.
Taking j →∞,

‖ym − z‖2 ≤ ‖z − xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm.

Hence z ∈ Cm+1. Let x, y ∈ Cm+1 ⊂ Cm with z = αx + (1− α)y where α ∈ [0, 1].
Since Cm is convex, z ∈ Cm and ‖ym − x‖2 ≤ ‖x− xm‖2 + [k − αm(1− αm)]‖xm −
Tmxm‖2+θm+cm, ‖ym−y‖2 ≤ ‖y−xm‖2+[k−αm(1−αm)]‖xm−Tmxm‖2+θm+cm,
we have

‖ym − z‖2 = ‖ym − (αx + (1− α)y)‖2

= ‖α(ym − x) + (1− α)(ym − y)‖2

= α‖ym−x‖2 +(1−α)‖ym−y‖2−α(1−α)‖(ym−x)− (ym−y)‖2

≤ α(‖x− xm‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm)

+(1−α)(‖y−xm‖2 +[k−αm(1−αm)]‖xm−Tmxm‖2 +θm + cm)

−α(1− α)‖y − x‖2

= α‖x−xm‖2 +(1−α)‖y−xm‖2−α(1−α)‖(xm−x)−(xm−y)‖2

+[k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm

= ‖α(xm−x)+(1−α)(xm−y)‖2+[k−αm(1−αm)]‖xm−Tmxm‖2

+θm + cm

= ‖xm − z‖2 + [k − αm(1− αm)]‖xm − Tmxm‖2 + θm + cm.

Then z ∈ Cm+1, it follows that Cm+1 is closed and convex. Hence Cn is closed and
convex for all n ∈ N. This implies that {xn} is well-defined. From xn = PCnx0. By
Lemma 3.1.2, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Moreover, by the same proof of Theorem 3.1 of [31], we have that

lim
n→∞

‖xn − xn+1‖ = 0. (3.1.7)
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On the other hand, xn+1 ∈ Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + [k − αn(1− αn)]‖xn − T nxn‖2 + θn + cn, (3.1.8)

By the definition of yn, we have

‖yn − xn‖ = ‖αnxn + (1− αn)T nxn − xn‖
= (1− αn)‖T nxn − xn‖.

From (3.1.8), we have

(1− αn)2‖T nxn − xn‖2 = ‖yn − xn‖2

= ‖yn − xn+1 + xn+1 − xn‖2

≤ ‖yn − xn+1‖2 + ‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖
≤ ‖xn − xn+1‖2 + [k − αn(1− αn)]‖xn − T nxn‖2 + θn + cn

+‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖
= [k−αn(1−αn)]‖xn−T nxn‖2 +2‖xn+1−xn‖(‖xn+1−xn‖

+‖yn − xn+1‖) + θn + cn.

It follows that

((1− αn)2 − (k− αn(1− αn)))‖xn − T nxn‖2 ≤ 2‖xn+1 − xn‖(‖xn+1 − xn‖+
‖yn − xn+1‖) + θn + cn.

Hence

(1−k−αn)‖T nxn−xn‖ ≤ 2‖xn+1−xn‖(‖xn+1−xn‖+‖yn−xn+1‖)+θn+cn. (3.1.9)

From lim supn→∞ αn < 1 − k, we can chosen ε > 0 such that αn ≤ 1 − k − ε for
large enough n. From (3.1.7) and (3.1.9), we have

lim
n→∞

‖T nxn − xn‖ = 0. (3.1.10)

From (3.1.7), (3.1.10) and Lemma 3.1.3, we have

lim
n→∞

‖Txn − xn‖ = 0. (3.1.11)

Since H is reflexive and {xn} is bounded we get that ∅ 6= ωw(xn). From Lemma
3.1.4, we have ωw(xn) ⊂ F (T ). By the fact that ‖xn−x0‖ ≤ ‖z0−x0‖ for all n ≥ 0
where z0 = PF (T )(x0) and the weak lower semi-continuity of the norm, we have

‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim infn→∞ ‖x0 − xn‖
≤ lim supn→∞ ‖x0 − xn‖ ≤ ‖x0 − z0‖,
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for all w ∈ ωw(xn). However, since ωw(xn) ⊂ F (T ), we must have w = z0 for all
w ∈ ωw(xn). Thus ωw(xn) = {z0} and then xn ⇀ z0. Hence, xn → z0 = PF (T )(x0)
by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉+ ‖x0 − z0‖2

≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉) → 0 as n →∞.
This complete the proof. ¤

3.2 A General Iterative Method for a Nonexpansive Semi-
group in Banach Spaces with Gauge Functions

In this section, we study strong convergence of the sequence generated by implicit
and explicit general iterative methods for a one-parameter nonexpansive semigroup
in a reflexive Banach space which admits the duality mapping Jϕ, where ϕ is a gauge
function on [0,∞).

In 1967, Halpern [29] introduced the following classical iteration for a non-
expansive mapping T : K → K in a real Hilbert space:

xn+1 = αnu + (1− αn)Txn, n ≥ 0, (3.2.1)

where {αn} ⊂ (0, 1) and u ∈ K.

In 1977, Lions [52] obtained a strong convergence provide the real sequence
{αn} satisfies the following conditions:

C1: limn→∞ αn = 0; C2:
∑∞

n=0 αn = ∞; C3: limn→∞
αn−αn−1

α2
n

= 0.

Reich [69] also extended the result of Halpern from Hilbert spaces to uni-
formly smooth Banach spaces. However, both Halpern’s and Lion’s conditions
imposed on the real sequence {αn} excluded the canonical choice αn = 1/(n + 1).

In 1992, Wittmann [101] proved that the sequence {xn} converges strongly
to a fixed point of T if {αn} satisfies the following conditions:

C1: limn→∞ αn = 0; C2:
∑∞

n=0 αn = ∞; C3:
∑∞

n=0 |αn+1 − αn| < ∞.

Shioji-Takahshi [80] extended Wittmann’s result to real Banach spaces with
uniformly Gâteaux differentiable norms and in which each nonempty closed convex
and bounded subset has the fixed point property for nonexpansive mappings. The
concept of Halpern iterative scheme has been widely used to approximate the fixed
points for nonexpansive mappings (see, e.g., [4, 15, 17, 37, 68, 102, 103] and the
reference cited therein).

Let f : K → K be a contraction. In 2000, Moudafi [60] introduced the
explicit viscosity approximation method for a nonexpansive mapping T as follows:

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (3.2.2)
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where αn ∈ (0, 1). Xu [105] also studied the iteration process (3.2.2) in uniformly
smooth Banach spaces.

Let A be a strongly positive bounded linear operator on a real Hilbert space
H: that is, there is a constant γ̄ > 0 such that

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

A typical problem is to minimize a quadratic function over the fixed points set of
a nonexpansive mapping on a Hilbert space H:

min
x∈C

1

2
〈Ax, x〉 − 〈x, b〉,

where C is the fixed points set of a nonexpansive mapping T on H and b is a given
point in H.

In 2006, Marino-Xu [56] introduced the following general iterative method
for a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 1, (3.2.3)

where {αn} ⊂ (0, 1), f is a contraction on H and A is a strongly positive bounded
linear operator on H. They proved that the sequence {xn} generated by (3.2.3)
converges strongly to a fixed point x∗ ∈ F (T ) which also solves the variational
inequality 〈

(A− γf)x∗, x− x∗
〉 ≥ 0, ∀x ∈ F (T )

which is the optimality condition for the minimization problem: minx∈C
1
2
〈Ax, x〉−

h(x), where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Suzuki [86] first introduced the following implicit viscosity method for a
nonexpansive semigroup {T (t) : t ≥ 0} in a Hilbert space:

xn = αnu + (1− αn)T (tn)xn, n ≥ 1, (3.2.4)

where {αn} ⊂ (0, 1) and u ∈ K. He proved strong convergence of iteration (3.2.4)
under suitable conditions. Subsequently, Xu [106] extended Suzuki [86]’s result
from a Hilbert space to a uniformly convex Banach space which admits a weakly
sequentially continuous normalized duality mapping.

Motivated by Chen-Song [21], in 2007, Chen-He [11] investigated the implicit
and explicit viscosity methods for a nonexpansive semigroup without integral in a
reflexive Banach space which admits a weakly sequentially continuous normalized
duality mapping:

xn = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1, (3.2.5)

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1, (3.2.6)
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where {αn} ⊂ (0, 1).

In 2008, Song-Xu [81] also studied the iterations (3.2.5) and (3.2.6) in a
reflexive and strictly convex Banach space with a Gâteaux differentiable norm.
Subsequently, Cholamjiak-Suantai [18] extended Song-Xu’s results to a Banach
space which admits duality mapping with a gauge function. Wangkeeree-Kamraksa
[95] and Wangkeeree et al. [96] obtained the convergence results concerning the
duality mapping with a gauge function in Banach spaces. The convergence of
iterations for a nonexpansive semigroup has been studied by many authors (see,
for instance, [33, 47, 48, 51, 64, 87]).

Let E be a real reflexive Banach space which admits the duality mapping
Jϕ with a gauge ϕ. Let {T (t) : t ≥ 0} be a nonexpansive semigroup on E. Recall
that an operator A is said to be strongly positive if there exists a constant γ̄ > 0
such that

〈Ax, Jϕ(x)〉 ≥ γ̄‖x‖ϕ(‖x‖)
and

‖αI − βA‖ = sup
‖x‖≤1

|〈(αI − βA)x, Jϕ(x)〉|,

where α ∈ [0, 1] and β ∈ [−1, 1].

Motivated by Chen-Song [21], Chen-He [11], Marino-Xu [56], Colao et al.
[24] and Wangkeeree et al. [96], we study strong convergence of the following
general iterative methods:

xn = αnγf(xn) + (I − αnA)T (tn)xn, n ≥ 1, (3.2.7)

xn+1 = αnγf(xn) + (I − αnA)T (tn)xn, n ≥ 1, (3.2.8)

where {αn} ⊂ (0, 1), f is a contraction on E and A is a positive bounded linear
operator on E.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 3.2.1. [50] Assume that a Banach space E has a weakly continuous duality
mapping Jϕ with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ
(‖x + y‖) ≤ Φ

(‖x‖) +
〈
y, Jϕ(x + y)

〉
.

In particular, for all x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉.

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E.
Then the following holds:

lim sup
n→∞

Φ(‖xn − y‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖x− y‖)

for all x, y ∈ E.
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Lemma 3.2.2. [96] Assume that a Banach space E has a weakly continuous duality
mapping Jϕ with gauge ϕ. Let A be a strongly positive bounded linear operator on
E with coefficient γ̄ > 0 and 0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I − ρA‖ ≤ ϕ(1)(1− ργ̄).

Lemma 3.2.3. [103] Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn, n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(a)
∑∞

n=1 γn = ∞; (b) lim supn→∞ δn ≤ 0 or
∑∞

n=1 |γnδn| < ∞.
Then limn→∞ an = 0.

3.2.1 Implicit iteration scheme

In this section, we prove a strong convergence theorem of an implicit iterative
method (3.2.7).

Theorem 3.2.4. Let E be a reflexive which admits a weakly continuous duality
mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let F = {T (t) : t ≥ 0}
be a nonexpansive semigroup on E such that F 6= ∅. Let f be a contraction on E
with the coefficient α ∈ (0, 1) and A a strongly positive bounded linear operator with

coefficient γ̄ > 0 and 0 < γ < γ̄ϕ(1)
α

. Let {αn} and {tn} be real sequences satisfying
0 < αn < 1, tn > 0 and limn→∞ tn = limn→∞ αn

tn
= 0. Then {xn} defined by (3.2.7)

converges strongly to q ∈ F which solves the following variational inequality:

〈
(A− γf)(q), Jϕ(q − w)

〉 ≤ 0, ∀w ∈ F. (3.2.9)

Proof. First, we prove the uniqueness of the solution to the variational inequality
(3.2.9) in F . Suppose p, q ∈ F satisfy (3.2.9), so we have

〈
(A− γf)(p), Jϕ(p− q)

〉 ≤ 0

and 〈
(A− γf)(q), Jϕ(q − p)

〉 ≤ 0.

Adding the above inequalities, we get

〈
A(p)− A(q)− γ(f(p)− f(q)), Jϕ(p− q)

〉 ≤ 0.

This shows that

〈
A(p− q), Jϕ(p− q)

〉 ≤ γ
〈
(f(p)− f(q), Jϕ(p− q)

〉
,

which implies by the strong positivity of A

γ̄‖p− q‖ϕ(‖p− q‖) ≤ 〈
A(p− q), Jϕ(p− q)

〉 ≤ γα‖p− q‖ϕ(‖p− q‖).
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Since ϕ is invariant on [0, 1],

ϕ(1)γ̄‖p− q‖ϕ(‖p− q‖) ≤ γα‖p− q‖ϕ(‖p− q‖).
It follows that (

ϕ(1)γ̄ − γα
)‖p− q‖ϕ(‖p− q‖) ≤ 0.

Therefore p = q since 0 < γ < γ̄ϕ(1)
α

.

We next prove that {xn} is bounded. For each w ∈ F , by Lemma 3.2.2, we
have

‖xn − w‖ = ‖αnγf(xn) + (I − αnA)T (tn)xn − w‖
= ‖(I − αnA)T (tn)xn − (I − αnA)w + αn(γf(xn)− A(w))‖
≤ ϕ(1)(1− αnγ̄)‖xn − w‖+ αn

(
γα‖xn − w‖+ ‖γf(w)− A(w)‖)

≤ ‖xn − w‖ − αnϕ(1)γ̄‖xn − w‖+ αnγα‖xn − w‖+ αn‖γf(w)− A(w)‖,
which yields

‖xn − w‖ ≤ 1

ϕ(1)γ̄ − γα
‖γf(w)− A(w)‖.

Hence {xn} is bounded. So are {f(xn)} and {AT (tn)xn}.
We next prove that {xn} is relatively sequentially compact. By the reflex-

ivity of E and the boundedness of {xn}, there exists a subsequence {xnj
} of {xn}

and a point p in E such that xnj
⇀ p as j → ∞. Now we show that p ∈ F . Put

xj = xnj
, βj = αnj

and sj = tnj
for j ∈ N, fix t > 0. We see that

‖xj − T (t)p‖ ≤
[t/sj ]−1∑

k=0

‖T ((k + 1)sj)xj − T (ksj)xj+1‖

+ ‖T ([t/sj]sj)xj − T ([t/sj]sj)p‖+ ‖T ([t/sj]sj)p− T (t)p‖
≤ [t/sj]‖T (sj)xj − xj‖+ ‖xj − p‖+ ‖T (t− [t/sj]sj)p− p‖
= [t/sj]βj‖AT (sj)xj − γf(xj)‖+ ‖xj − p‖+ ‖T (t− [t/sj]sj)p− p‖
≤ tβj/sj‖AT (sj)xj − γf(xj)‖+ ‖xj − p‖

+ max{‖T (s)p− p‖ : 0 ≤ s ≤ sj}.
So we have

lim sup
j→∞

Φ(‖xj − T (t)p‖) ≤ lim sup
j→∞

Φ(‖xj − p‖). (3.2.10)

On the other hand, by Lemma 3.2.1 (ii), we have

lim sup
j→∞

Φ(‖xj − T (t)p‖) = lim sup
j→∞

Φ(‖xj − p‖) + Φ(‖T (t)p− p‖). (3.2.11)

Combining (3.2.10) and (3.2.11), we have

Φ(‖T (t)p− p‖) ≤ 0.

This implies that p ∈ F . Further, we see that
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‖xj − p‖ϕ(‖xj − p‖)
=

〈
xj − p, Jϕ(xj − p)

〉

=
〈
(I − βjA)T (sj)xj − (I − βjA)p + βj(γf(xj)− A(p)), Jϕ(xj − p)

〉

=
〈
(I − βjA)T (sj)xj − (I − βjA)p, Jϕ(xj − p)

〉

+ βj

〈
γf(xj)− γf(p), Jϕ(xj − p)

〉
+ βj

〈
γf(p)− A(p), Jϕ(xj − p)

〉

≤ ϕ(1)(1− βj γ̄)‖xj − p‖ϕ(‖xj − p‖)
+ βjγα‖xj − p‖ϕ(‖xj − p‖) + βj

〈
γf(p)− A(p), Jϕ(xj − p)

〉
.

So we have

‖xj − p‖ϕ(‖xj − p‖) ≤ 1

ϕ(1)γ̄ − γα

〈
γf(p)− A(p), Jϕ(xj − p)

〉
.

By the definition of Φ, it is easily seen that

Φ(‖xj − p‖) ≤ ‖xj − p‖ϕ(‖xj − p‖).

Hence

Φ(‖xj − p‖) ≤ 1

ϕ(1)γ̄ − γα

〈
γf(p)− A(p), Jϕ(xj − p)

〉
.

Therefore Φ(‖xj − p‖) → 0 as j →∞ since Jϕ is weakly continuous; consequently,
xj → p as j → ∞ by the continuity of Φ. Hence {xn} is relatively sequentially
compact.

Finally, we prove that p is a solution in F to the variational inequality
(3.2.9). For any w ∈ F , we see that

〈
(I − T (tn))xn − (I − T (tn))w, Jϕ(xn − w)

〉
=

〈
xn − w, Jϕ(xn − w)

〉

− 〈
T (tn)xn − T (tn)w, Jϕ(xn − w)

〉

≥ ‖xn − w‖ϕ‖xn − w‖
− ‖T (tn)xn − T (tn)w‖‖Jϕ(xn − w)‖

≥ ‖xn − w‖ϕ‖xn − w‖
− ‖xn − w‖‖Jϕ(xn − w)‖

= 0.

On the other hand, we have

(A− γf)(xn) = − 1

αn

(I − αnA)(I − T (tn))xn,

which implies

〈
(A− γf)(xn), Jϕ(xn − w)

〉
= − 1

αn

〈
(I − T (tn))xn − (I − T (tn))w, Jϕ(xn − w)

〉

+
〈
A(I − T (tn))xn, Jϕ(xn − w

〉

≤ 〈
A(I − T (tn))xn, Jϕ(xn − w

〉
. (3.2.12)
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Observe
‖xj − T (sj)xj‖ = βj‖γf(xj)− AT (sj)xj‖ → 0,

as j →∞. Replacing n by nj and letting j →∞ in (3.2.12), we obtain

〈
(A− γf)(p), Jϕ(p− w)

〉 ≤ 0, ∀w ∈ F.

So p ∈ F is a solution of variational inequality (3.2.9); and hence p = q by the
uniqueness. In a summary, we have proved that {xn} is relatively sequentially
compact and each cluster point of {xn} (as n → ∞) equals q. Therefore xn → q
as n →∞. This completes the proof.

3.2.2 Explicit iteration scheme

In this section, utilizing the implicit version in Theorem 3.3.9, we consider the
explicit one in a reflexive Banach space which admits the duality mapping Jϕ.

Theorem 3.2.5. Let E be a reflexive Banach space which admits a weakly con-
tinuous duality mapping Jϕ with gauge ϕ such that ϕ is invariant on [0, 1]. Let
{T (t) : t ≥ 0} be a nonexpansive semigroup on E such that F 6= ∅. Let f
be a contraction on E with the coefficient α ∈ (0, 1) and A a strongly positive

bounded linear operator with coefficient γ̄ > 0 and 0 < γ < γ̄ϕ(1)
α

. Let {αn}
and {tn} be real sequences satisfying 0 < αn < 1,

∑∞
n=1 αn = ∞, tn > 0 and

limn→∞ tn = limn→∞ αn

tn
= 0. Then {xn} defined by (3.2.8) converges strongly to

q ∈ F which also solves the variational inequality (3.2.9).

Proof. Since αn → 0, we may assume that αn < ϕ(1)‖A‖−1 and 1 − αn(ϕ(1)γ̄ −
γα) > 0 for all n. First we prove that {xn} is bounded. For each w ∈ F , by Lemma
3.2.2, we have

‖xn+1 − w‖ = ‖αnγf(T (tn)xn) + (I − αnA)T (tn)xn − w‖
= ‖αn(γf(T (tn)xn)− A(w)) + (I − αnA)T (tn)xn − (I − αnA)w‖
≤ ‖I − αnA‖‖T (tn)xn − T (tn)w‖+ αn‖γf(T (tn)xn)− A(w)‖
≤ ϕ(1)(1− αnγ̄)‖xn − w‖+ αnγα‖xn − w‖+ αn‖γf(w)− A(w)‖
=

(
ϕ(1)− αn(ϕ(1)γ̄ − γα)

)‖xn − w‖+ αn‖γf(w)− A(w)‖
≤ (

1− αn(ϕ(1)γ̄ − γα)
)‖xn − w‖+ αn(ϕ(1)γ̄ − γα))

‖γf(w)− A(w)‖
ϕ(1)γ̄ − γα

.

It follows from induction that

‖xn+1 − w‖ ≤ max

{
‖x1 − w‖, ‖γf(w)− A(w)‖

ϕ(1)γ̄ − γα

}
, n ≥ 1.

Thus {xn} is bounded, and hence so are {f(xn)} and {AT (tn)xn}. From Theorem
3.3.9, there is a unique solution q ∈ F to the following variational inequality:

〈
(A− γf)q, Jϕ(q − w)

〉 ≤ 0, ∀w ∈ F.
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Next we prove that

lim sup
n−→∞

〈(A− γf)q, Jϕ(q − xn+1)〉 ≤ 0.

Indeed, we can choose a subsequence {xnj
} of {xn} such that

lim sup
n−→∞

〈
(A− γf)q, Jϕ(q − xn)

〉
= lim sup

j−→∞

〈
(A− γf)q, Jϕ(q − xnj

)
〉
.

Further, we can assume that xnj
⇀ p ∈ E by the reflexivity of E and the bound-

edness of {xn}. Now we show that p ∈ F . Put xj = xnj
, βj = αnj

and sj = tnj
for

j ∈ N, fix t > 0. We obtain

‖xj+1 − T (t)p‖ ≤
[t/sj ]−1∑

k=0

‖T ((k + 1)sj)xj − T (ksj)xj+1‖

+ ‖T ([t/sj]sj)xj − T ([t/sj]sj)p‖+ ‖T ([t/sj]sj)p− T (t)p‖
≤ [t/sj]‖T (sj)xj − xj+1‖+ ‖xj − p‖+ ‖T (t− [t/sj]sj)p− p‖
= [t/sj]βj‖AT (sj)xj − γf(xj)‖+ ‖xj − p‖+ ‖T (t− [t/sj]sj)p− p‖
≤ tβj/sj‖AT (sj)xj − γf(xj)‖+ ‖xj − p‖

+ max{‖T (s)p− p‖ : 0 ≤ s ≤ sj}.
It follows that lim supn−→∞ Φ(‖xj − T (t)p‖) ≤ lim supn−→∞ Φ(‖xj − p‖). From
Lemma 3.2.1 (ii) we have

lim sup
n−→∞

Φ(‖xj − T (t)p‖) = lim sup
n−→∞

Φ(‖xj − p‖) + Φ(‖T (t)p− p‖).

So we have Φ(‖T (t)p− p‖) ≤ 0 and hence p ∈ F . Since the duality mapping Jϕ is
weakly sequentially continuous,

lim sup
n−→∞

〈(A− γf)q, Jϕ(q − xn+1)〉 = lim sup
j−→∞

〈(A− γf)q, Jϕ(q − xnj+1)〉
= 〈(A− γf)q, Jϕ(q − p)〉 ≤ 0.

Finally, we show that xn → q. From Lemma 3.2.1 (i), we have

Φ
(‖xn+1 − q‖) = Φ

(∥∥(I − αnA)T (tn)xn − (I − αnA)q + αn

(
γf(xn)− γf(q)

)

+ αn

(
γf(q)− A(q)

)∥∥
)

≤ Φ
(∥∥(I − αnA)(T (tn)xn − q) + αn

(
γf(xn)− γf(q)

)∥∥
)

+ αn

〈
γf(q)− A(q), Jϕ(xn+1 − q)

〉

≤ Φ
(
ϕ(1)(1− αnγ̄)‖xn − q‖+ αnγα‖xn − q‖

)

+ αn

〈
γf(q)− A(q), Jϕ(xn+1 − q)

〉

= Φ
((

ϕ(1)− αn(ϕ(1)γ̄ − γα)
)‖xn − q‖

)

+ αn

〈
γf(q)− A(q), Jϕ(xn+1 − q)

〉

≤ (
1− αn(ϕ(1)γ̄ − γα)

)
Φ

(‖xn − q‖)

+ αn

〈
γf(q)− A(q), Jϕ(xn+1 − q)

〉
.
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Note that
∑∞

n=1 αn = ∞ and lim supn−→∞
〈
γf(q)−A(q), Jϕ(xn+1− q)

〉 ≤ 0. Using
Lemma 3.2.3, we have xn → q as n → ∞ by the continuity of Φ. This completes
the proof.

3.3 Convergence theorems for maximal monotone opera-
tors, weak relatively nonexpansive mappings and equi-
librium problems

This section, we introduce hybrid iterative schemes for solving a system of the zero-
finding problems of maximal monotone operators, the equilibrium problem and the
fixed point problem of weak relatively nonexpansive mappings. We then prove,
in a uniformly smooth and uniformly convex Banach space, strong convergence
theorems by using a shrinking projection method. We finally apply the obtained
results to a system of convex minimization problems.

The problem of finding a zero point of maximal monotone operators plays
an important role in optimizations. This is because it can be reformulated to a
convex minimization problem and a variational inequality problem. Many authors
have studied the convergence of such problems in various spaces (see, for examples,
[10, 17, 20, 28, 41, 56, 62, 67, 73, 85, 97, 98, 99, 100, 107, 108]). Initiated by
Martinet [57], in a real Hilbert space H, Rockafellar [72] introduced the following
iterative scheme: x1 ∈ H and

xn+1 = Jλnxn, ∀n ≥ 1, (3.3.1)

where {λn} ⊂ (0,∞) and Jλ is the resolvent of A defined by Jλ := JλA = (I+λA)−1

for all λ > 0 and A is a maximal monotone operator on H. Such an algorithm is
called the proximal point algorithm. It was proved that the sequence {xn} generated
by (3.3.1) converges weakly to an element in A−1(0) provided lim infn→∞ λn > 0.
Recently, Kamimura-Takahashi [34] introduced the following iteration in a real
Hilbert space: x1 ∈ H and

xn+1 = αnxn + (1− αn)Jλnxn, ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞). The weak convergence theorems are also
established in a real Hilbert space under suitable conditions imposed on {αn} and
{λn}.

In 2004, Kamimura et al. [36] extended the above iteration process to a
much more general setting. In fact, they proposed the following algorithm: x1 ∈ E
and

xn+1 = J−1
(
αnJ(xn) + (1− αn)J(Jλnxn)

)
, ∀n ≥ 1,

where {αn} ⊂ [0, 1], {λn} ⊂ (0,∞) and Jλ := JλA = (J + λA)−1J for all λ > 0.
They proved, in a uniformly smooth and uniformly convex Banach space, a weak
convergence theorem.
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Recently, Takahashi-Zembayashi [92] introduced the following iterative scheme
for a relatively nonexpansive mapping T : C → C in a uniformly smooth and uni-
formly convex Banach space: x1 ∈ C and





C1 = C,
yn = J−1

(
αnJxn + (1− αn)JTxn

)
,

un ∈ C such that F (un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1(x1), ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Such an algorithm is called the shrinking
projection method which was introduced by Takahashi et al. [90]. They proved
that the sequence {xn} converges strongly to an element in F (T ) ∩ EP (F ) under
appropriate conditions. The equilibrium problem has been intensively studied by
many authors (see, for examples, [19, 21, 22, 23, 44, 45, 66, 78, 79]).

Motivated by the previous results, we introduce a hybrid iterative scheme for
finding a zero point of maximal monotone operators Ai : E → 2E∗ (i = 1, 2, · · · , N)
which is also a common element in the solutions set of an equilibrium prob-
lem for F and in the fixed points set of weak relatively nonexpansive mappings
Ti : C → C (i = 1, 2, · · · ). Using the projection technique, we also prove that the
sequence generated by a constructed algorithm converges strongly to an element in[ ⋂N

i=1 A−1
i (0∗)

]∩ [ ⋂∞
i=1 F (Ti)

]∩EP (F ) in a uniformly smooth and uniformly con-
vex Banach space. Finally, we apply our results to a system of convex minimization
problems.

Now, we give some useful preliminaries and lemmas which will be used in
the sequel.

Lemma 3.3.1. [35] Let E be a uniformly convex and smooth Banach space and let
{xn}, {yn} be two sequences in E. If limn→∞ φ(xn, yn) = 0 and either {xn} or {yn}
is bounded, then limn→∞ ‖xn − yn‖ = 0.

Lemma 3.3.2. [3, 35] Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E, let x ∈ E and let z ∈ C. Then
z = ΠC(x) if and only if 〈y − z, Jx− Jz〉 ≤ 0 for all y ∈ C.

Lemma 3.3.3. [3, 35] Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E. Then

φ(x, ΠCy) + φ(ΠCy, y) ≤ φ(x, y) ∀x ∈ C and y ∈ E.

Lemma 3.3.4. [58] Let E be a smooth and strictly convex Banach space and let
C be a nonempty, closed and convex subset of E. Let T be a mapping from C into
itself such that F (T ) is nonempty and φ(u, Tx) ≤ φ(u, x) for all (u, x) ∈ F (T )×C.
Then F (T ) is closed and convex.

Lemma 3.3.5. [41] Let E be a smooth, strictly convex and reflexive Banach space,
let A ⊂ E × E∗ be a maximal monotone operator with A−1(0∗) 6= ∅, and let JλA =
(J + λA)−1J for each λ > 0. Then

φ
(
p, JλA(x)

)
+ φ

(
JλA(x), x

) ≤ φ(p, x)
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for all λ > 0, p ∈ A−1(0∗), and x ∈ E.

Lemma 3.3.6. [5] Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let F be a bifunction from C × C to R satisfying
(A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 3.3.7. [93] Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E, and let F be a bifunction from C×C
to R satisfying (A1)-(A4). For all r > 0 and x ∈ E, define the mapping Tr : E → C
as follows:

Tr(x) =
{
z ∈ C : F (z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [42], i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 3.3.8. [93] Let C be a closed and convex subset of a smooth, strictly
and reflexive Banach space E, let F be a bifunction from C × C to R satisfying
(A1)− (A4), let r > 0. Then

φ(p, Trx) + φ(Trx, x) ≤ φ(p, x).

for all x ∈ E and p ∈ F (Tr).

Finally, we are now ready to prove our mail results.

Theorem 3.3.9. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let Ai : E → 2E∗ (i =
1, 2, · · · , N) be maximal monotone operators, let F : C × C → R be a bifunction,
and let Ti : C → C (i = 1, 2, · · · ) be weak relatively nonexpansive mappings such
that F :=

[ ⋂N
i=1 A−1

i (0∗)
] ∩ [ ⋂∞

i=1 F (Ti)
] ∩ EP (F ) 6= ∅. Let {en}∞n=1 ⊂ E be the

sequence such that limn→∞ en = 0. Define the sequence {xn}∞n=1 in C as follows:




x1 ∈ C1 = C,
yn = JλN

n AN
◦ JλN−1

n AN−1
◦ · · · ◦ Jλ1

nA1
(xn + en),

un = Trnyn,
Cn+1 =

{
z ∈ Cn : supi≥1 φ(z, Tiun) ≤ φ(z, xn + en)

}
,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = ΠF(x1).
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Proof. We split the proof into several steps as follows:

Step 1. F ⊂ Cn for all n ≥ 1.

From Lemma 3.3.4, we know that
⋂∞

i=1 F (Ti) is closed and convex. From
Lemma 3.3.7 (4), we also know that EP (F ) is closed and convex. On the other
hand, since Ai (i = 1, 2, · · · , N) are maximal monotone, A−1

i (0∗) are closed and
convex for each i = 1, 2, · · · , N ; consequently,

⋂N
i=1 A−1

i (0∗) is closed and convex.
Hence F is a nonempty, closed and convex subset of C.

We next show that Cn is closed and convex for all n ≥ 1. Obviously, C1 = C
is closed and convex. Now suppose that Ck is closed and convex for some k ∈ N.
Then, for each z ∈ Ck and i ≥ 1, we see that φ(z, Tiuk) ≤ φ(z, xk) is equivalent to

2〈z, Jxk〉 − 2〈z, JTiuk〉 ≤ ‖xk‖2 − ‖Tiuk‖2.

By the construction of the set Ck+1, we see that

Ck+1 =
{
z ∈ Ck : sup

i≥1
φ(z, Tiuk) ≤ φ(z, xk)

}

=
∞⋂
i=1

{
z ∈ Ck : φ(z, Tiuk) ≤ φ(z, xk)

}
.

Hence Ck+1 is closed and convex. This shows, by induction, that Cn is closed and
convex for all n ≥ 1. It is obvious that F ⊂ C1 = C. Now, suppose that F ⊂ Ck

for some k ∈ N. For any p ∈ F , by Lemma 3.3.5 and Lemma 3.3.8, we have

φ(p, Tiuk) ≤ φ(p, uk) = φ(p, Trk
yk)

≤ φ(p, yk)

= φ
(
p, JλN

k AN
◦ JλN−1

k AN−1
◦ · · · ◦ Jλ1

kA1
(xk + ek)

)

≤ φ
(
p, JλN−1

k AN−1
◦ JλN−2

k AN−2
◦ · · · ◦ Jλ1

kA1
(xk + ek)

)

· · ·
≤ φ

(
p, Jλ2

kA2
◦ Jλ1

kA1
(xk + ek)

)

≤ φ
(
p, Jλ1

kA1
(xk + ek)

)

≤ φ(p, xk + ek). (3.3.2)

This shows that F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all
n ≥ 1.

Step 2. limn→∞ φ(xn, x1) exists.

From xn = ΠCn(x1) and xn+1 = ΠCn+1(x1) ∈ Cn+1 ⊂ Cn, we have

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ≥ 1. (3.3.3)

From Lemma 3.3.3, for any p ∈ F ⊂ Cn, we have

φ(xn, x1) = φ(ΠCn(x1), x1) ≤ φ(p, x1)− φ(p, xn) ≤ φ(p, x1). (3.3.4)
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Combining (3.3.3) and (3.3.4), we conclude that limn→∞ φ(xn, x1) exists.

Step 3. limn→∞
∥∥J(Tiyn)− J(xn + en)

∥∥ = 0.

Since xm = ΠCm(x1) ∈ Cm ⊂ Cn for m > n ≥ 1, by Lemma 3.3.3, it follows
that

φ(xm, xn) = φ
(
xm, ΠCn(x1)

) ≤ φ
(
xm, x1)− φ(ΠCn(x1), x1

)

= φ(xm, x1)− φ(xn, x1).

Letting m,n → ∞, we have φ(xm, xn) → 0. By Lemma 3.3.1, it follows that
‖xm − xn‖ → 0 as m,n → ∞. Therefore, {xn} is a Cauchy sequence. By the
completeness of the space E and the closedness of C, we can assume that xn →
q ∈ C as n →∞. In particular, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0.

Since en → 0, we have

lim
n→∞

‖xn+1 − (xn + en)‖ = 0. (3.3.5)

Since xn+1 = ΠCn+1(x1) ∈ Cn+1, for each i ≥ 1,

φ(xn+1, Tiun) ≤ φ(xn+1, xn + en)

=
〈
xn+1, J(xn+1)− J(xn + en)

〉
+

〈
xn+1 − (xn + en), J(xn+1)

〉
.

Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. It follows from (3.3.5) and by the boundedness of {xn} that

lim
n→∞

φ(xn+1, Tiun) = 0

for all i = 1, 2, · · · . So from Lemma 3.3.1, we have

lim
n→∞

‖xn+1 − Tiun‖ = 0

and
lim

n→∞
‖Tiun − xn‖ = 0

and, since en → 0, therefore

lim
n→∞

‖Tiun − (xn + en)‖ = 0. (3.3.6)

for all i = 1, 2, · · · . Since J is uniformly norm-to-norm continuous on bounded
subsets of E,

lim
n→∞

∥∥J(Tiun)− J(xn + en)
∥∥ = 0 (3.3.7)

for all i = 1, 2, · · · .
Step 4. limn→∞ ‖Tiun − un‖ = 0 for all i = 1, 2, · · · .
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Denote Θi
n = Jλi

nAi
◦ Jλi−1

n Ai−1
◦ · · · ◦ Jλ1

nA1
for each i ∈ {1, 2, · · · , N} and

Θ0
n = I for each n ≥ 1. We note that yn = ΘN

n (xn + en) for each n ≥ 1.

To this end, we will show that

lim
n→∞

∥∥∥J
(
Θi

n(xn + en)
)− J

(
Θi−1

n (xn + en)
)∥∥∥ = 0

for all i = 1, 2, · · · , N .

For any p ∈ F , by (3.3.2), we see that

φ
(
p, ΘN−1

n (xn + en)
) ≤ φ

(
p, ΘN−2

n (xn + en)
)

≤ φ
(
p, ΘN−3

n (xn + en)
)

· · ·
≤ φ

(
p, (xn + en)

)
. (3.3.8)

Since p ∈ F , by Lemma 3.3.5 and (3.3.8), it follows that

φ
(
yn, ΘN−1

n (xn + en)
)

≤ φ
(
p, ΘN−1

n (xn + en)
)− φ(p, yn)

≤ φ
(
p, (xn + en)

)− φ(p, yn)

≤ φ
(
p, (xn + en)

)− φ(p, un)

≤ φ
(
p, (xn + en)

)− φ(p, Tiun)

= ‖xn + en‖2 − ‖Tiun‖2 − 2
〈
p, J(xn + en)− J(Tiun)

〉
.

From (3.3.6) and (3.3.7), we get that limn→∞ φ
(
yn, ΘN−1

n (xn + en)
)

= 0. So we
obtain

lim
n→∞

∥∥yn −ΘN−1
n (xn + en)

∥∥ = 0. (3.3.9)

Again, since p ∈ F ,

φ
(
ΘN−1

n (xn + en), ΘN−2
n (xn + en)

)

≤ φ
(
p, ΘN−2

n (xn + en)
)− φ

(
p, ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

)− φ
(
p, ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

)− φ
(
p, Tiun

)
.

From (3.3.6) and (3.3.7), we get that

lim
n→∞

φ
(
ΘN−1

n (xn + en), ΘN−2
n (xn + en)

)
= 0.

It also follows that

lim
n→∞

∥∥ΘN−1
n (xn + en)−ΘN−2

n (xn + en)
∥∥ = 0.

Continuing in this process, we can show that

lim
n→∞

∥∥ΘN−2
n (xn +en)−ΘN−3

n (xn +en)
∥∥ = · · · = lim

n→∞

∥∥Θ1
n(xn +en)− (xn +en)

∥∥ = 0.
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So, we now conclude that

lim
n→∞

∥∥∥Θi
n(xn + en)−Θi−1

n (xn + en)
∥∥∥ = 0 (3.3.10)

for each i = 1, 2, · · · , N . By the uniform norm-to-norm continuity of J , we also
have

lim
n→∞

∥∥∥J
(
Θi

n(xn + en)
)− J

(
Θi−1

n (xn + en)
)∥∥∥ = 0 (3.3.11)

for each i = 1, 2, · · · , N . Using (3.3.10), it is easily seen that

lim
n→∞

‖yn − (xn + en)‖ = 0. (3.3.12)

From un = Trnyn, by Lemma 3.3.8, it follows that

φ(un, yn) = φ(Trnyn, yn)

≤ φ(p, yn)− φ(p, Trnyn)

≤ φ(p, xn + en)− φ(p, un)

≤ φ(p, xn + en)− φ(p, Tiun).

This implies that limn→∞ φ(un, yn) = 0 and hence

lim
n→∞

‖un − yn‖ = 0. (3.3.13)

Combining (3.3.6), (3.3.12) and (3.3.13), we obtain

lim
n→∞

‖Tiun − un‖ = 0 (3.3.14)

for all i ≥ 1.

Step 5. q ∈ ⋂∞
i=1 F (Ti).

Since xn → q and en → 0, xn + en → q. So from (3.3.12) and (3.3.13),
we have un → q. Note that Ti (i = 1, 2, · · · ) are weak relatively nonexpansive.

Using (3.3.14), we can conclude that q ∈ F̃ (Ti) = F (Ti) for all i ≥ 1. Hence
q ∈ ⋂∞

i=1 F (Ti).

Step 6. q ∈ ⋂N
i=1 A−1

i (0∗).

Noting that Θi
n(xn + en) = Jλi

nAi
Θi−1

n (xn + en) for each i = 1, 2, · · · , N , we
obtain

∥∥∥Aλi
n
Θi−1

n (xn + en)
∥∥∥ =

1

λi
n

∥∥∥J
(
Θi−1

n (xn + en)
)− J

(
Θi

n(xn + en)
)∥∥∥.

From (3.3.11) and lim infn→∞ λi
n > 0, we have

lim
n→∞

∥∥Aλi
n
Θi−1

n (xn + en)
∥∥ = 0. (3.3.15)
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We note that
(
Θi

n(xn + en), Aλi
n
Θi−1

n (xn + en)
)
∈ G(Ai) for each i = 1, 2, · · · , N .

If (w, w∗) ∈ G(Ai) for each i = 1, 2, · · · , N , then it follows from the monotonicity
of Ai that 〈

w∗ − Aλi
n
Θi−1

n (xn + en), w −Θi
n(xn + en)

〉
≥ 0. (3.3.16)

We see that Θi
n(xn + en) → q for each i = 1, 2, · · · , N . Thus, from (3.3.15) and

(3.3.16), we have
〈w∗, w − q〉 ≥ 0.

By the maximality of Ai, it follows that q ∈ A−1
i (0∗) for each i = 1, 2, · · · , N .

Therefore q ∈ ⋂N
i=1 A−1

i (0∗).

Step 7. q ∈ EP (F ).

From un = Trnyn, we have

F (un, y) +
1

rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

By (A2), we have

‖y − un‖‖Jun − Jyn‖
rn

≥ 1

rn

〈y − un, Jun − Jyn〉
≥ −F (un, y) ≥ F (y, un), ∀y ∈ C.

Note that ‖Jun−Jyn‖
rn

→ 0 since lim infn→∞ rn > 0. From (A4) and un → q, we get
F (y, q) ≤ 0 for all y ∈ C. For 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)q.
Then yt ∈ C, which implies that F (yt, q) ≤ 0. From (A1), we obtain that 0 =
F (yt, yt) ≤ tF (yt, y) + (1 − t)F (yt, q) ≤ tF (yt, y). Thus F (yt, y) ≥ 0. From (A3),
we have F (q, y) ≥ 0 for all y ∈ C. Hence q ∈ EP (F ). From Step 5, Step 6 and
Step 7, we now can conclude that q ∈ F .

Step 8. q = ΠF(x1).

From xn = ΠCn(x1), we have

〈
J(x1)− J(xn), xn − z

〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, we also have

〈
J(x1)− J(xn), xn − z

〉 ≥ 0, ∀z ∈ F . (3.3.17)

Letting n →∞ in (3.3.17), we obtain

〈
J(x1)− J(q), q − z

〉 ≥ 0, ∀z ∈ F .

This shows that q = ΠF(x1) by Lemma 3.3.2. We thus complete the proof.

As a direct consequence of Theorem 3.3.9, we can also apply to a system of
convex minimization problems.
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Theorem 3.3.10. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let fi : E → (−∞,∞] (i =
1, 2, · · · , N) be proper lower semi-continuous convex functions, let F : C ×C → R
be a bifunction, and let Ti : C → C (i = 1, 2, · · · ) be weak relatively nonexpansive
mappings such that F :=

[ ⋂N
i=1(∂f−1

i )(0∗)
] ∩ [ ⋂∞

i=1 F (Ti)
] ∩ EP (F ) 6= ∅. Let

{en}∞n=1 ⊂ E be the sequence such that limn→∞ en = 0. Define the sequence {xn}∞n=1

in C as follows:





x1 ∈ C1 = C,

z1
n = arg miny∈E

{
f1(y) + 1

2λ1
n
‖y‖2 + 1

λ1
n

〈
y, J(xn + en)

〉}
,

· · ·
zN−1

n = arg miny∈E

{
fN−1(y) + 1

2λN−1
n

‖y‖2 + 1

λN−1
n

〈
y, J(zN−2

n )
〉}

,

yn = arg miny∈E

{
fN(y) + 1

2λN
n
‖y‖2 + 1

λN
n

〈
y, J(zN−1

n )
〉}

,

un = Trnyn,

Cn+1 =
{

z ∈ Cn : supi≥1 φ(z, Tiun) ≤ φ(z, xn + en)
}

,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = ΠF(x1).

Proof. By Rockafellar’s theorem [70, 71], ∂fi are maximal monotone operators for
each i = 1, 2, · · · , N . Let λi > 0 for each i = 1, 2, · · · , N . Then zi = Jλi∂fi

(x) if
and only if

0 ∈ ∂fi(z
i) +

1

λi

(
J(zi)− J(x)

)

= ∂
(
fi +

1

λi

(‖ · ‖2

2
− J(x)

))
(zi),

which is equivalent to

zi = arg min
y∈E

{
fi(y) +

1

λi

(‖y‖2

2
− 〈y, J(x)〉)

}
.

Using Theorem 3.3.9, we thus complete the proof.
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Abstract

We introduce the hybrid method of modified Mann’s iteration for
an asymptotically k-strict pseudo-contractive mapping T in the inter-
mediate sense which is necessarily lipschitzian. We establish strong con-
vergence theorem for such method. The result extend and improve the
recent ones announced by Inchan and Nammanee, Inchan and concern
result of Takahashi, Takeuchi and Kubota [Strong convergence theorems
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1 Introduction

Let C be a nonempty subset of a Hilbert space H and T : C → C a
mapping. Recall the following concepts.

(i) T is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
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ii) T is asymptotically nonexpansive (cf. [4]) if there exists a sequence {kn}
of positive numbers satisfying limn→∞ kn = 1 and ‖T nx − T ny‖ ≤ kn‖x − y‖
for all integers n ≥ 1 and x, y ∈ C.

iii) T is uniformly Lipschitzian if there exists a constant L > 0 such that
‖T nx − T ny‖ ≤ L‖x − y‖ for all integers n ≥ 1 and all x, y ∈ C.

(iv) T is asymptotically nonexpansive in the intermediate sense [2] provided
T is uniformly continuous and

lim sup
n→∞

sup
x,y∈C

(‖T nx − T ny‖ − ‖x − y‖) ≤ 0.

It is clear that every nonexpansive mapping is asymptotically nonexpansive
and every asymptotically nonexpansive mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings in the intermediate
sense was introduced by Bruck, Kuczumow and Reich [2] and iterative methods
for the approximation of fixed points of such types of non-Lipschitzian map-
pings have been studied by Agarwal, O’Regan and Sahu [1], Bruck, Kuczumow
and Reich [2], Chidume, Shahzad and Zegeye [3], Kim and Kim [9] and many
others.

In 2008, Kim and Xu [11] introduced the concept of asymptotically k-strict
pseudo-contractive mappings in Hilbert space as below:

Definition 1.1. Let C be a nonempty subset of a Hilbert space H. A map-
ping T : C → C is said to be an asymptotically k-strict pseudo-contractive
mapping with sequence {γn} if there exist a constant k ∈ [0, 1) and a sequence
{γn} in [0, 1) with limn→∞ γn = 0 such that

‖T nx − T ny‖2 ≤ (1 + γn)‖x − y‖2 + k‖x − T nx − (y − T ny)‖2 (1)

for all x, y ∈ C and n ∈ N .

They studied weak and strong convergence theorems for this class of map-
pings. It is important to note that every asymptotically k-strict pseudo-
contractive mapping with sequence {γn} is a uniformly L-Lipschitzian mapping

with L = sup{k+
√

1+(1−k)γn

1+k
: n ∈ N}.

Recently, Sahu et al.[16] introduced the concept of asymptotically k-strict
pseudo-contractive mappings in the intermediate sense which are not neces-
sarily Lipschitzian (see Lemma 2.6 [16]) as below:

Definition 1.2. Let C be a nonempty subset of a Hilbert space H. A map-
ping T : C → C will be called an asymptotically k-strict pseudo-contractive
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mapping in the intermediate sense with sequence {γn} if there exist a constant
k ∈ [0, 1) and a sequence {γn} in [0, 1) with limn→∞ γn = 0 such that

lim sup
n→∞

sup
x,y∈C

(‖T nx − T ny‖2 − (1 + γn)‖x − y‖2 − k‖x − T nx − (y − T ny)‖2) ≤ 0.

(2)

Throughout this paper we assume that

cn := max{0, sup
x,y∈C

(‖T nx−T ny‖2−(1+γn)‖x−y‖2−k‖x−T nx−(y−T ny)‖2)}.

Then cn ≥ 0 for all n ∈ N , cn → 0 as n → ∞ and (2) reduces to the
relation

‖T nx − T ny‖2 ≤ (1 + γn)‖x − y‖2 + k‖x − T nx − (y − T ny)‖2 + cn (3)

for all x, y ∈ C and n ∈ N

Remark 1.3. If cn = 0 for all n ∈ N in (3) then T is an asymptotically
k-strict pseudocontractive mapping with sequence {γn}.

Fixed point iteration processes for nonexpansive mappings and asymptot-
ically nonexpansive mappings in Hilbert spaces and Banach spaces including
Mann and Ishikawa iteration processes have been studied extensively by many
authors to solve nonlinear operator equations as well as variational inequali-
ties: see [5, 13, 17, 20]. However, Mann and Ishikawa iterations processes have
only weak convergence even in Hilbert space: see [10, 20].

Iteration method for finding a fixed point of an asymptotically k-strict
pseudo-contractive mapping T is the modified Mann’s iteration method studied
in [12, 18, 19, 21] which generates a sequence {xn} via

xn+1 = αnxn + (1 − αn)T nxn, n ≥ 0, (4)

where the initial guess x0 ∈ C is arbitrary and the sequence {αn}∞n=0 line in
the interval (0, 1).

In 2007, Takahashi, Takeuchi and Kubota [20] introduced the modification
Mann iteration method for a family of nonexpansive mappings {Tn}. Let
x0 ∈ H . For C1 = C and u1 = PC1x0, define a sequence {un} of C as follows:

⎧⎪⎨
⎪⎩

yn = αnun + (1 − αn)Tnun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(5)
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where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then they prove that the sequence
{un} converges strongly to z0 = PF (T )x0. In 2008, Kumam [8], introduce an
iterative scheme by a new hybrid method for finding a common element of
the set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem and the set of solutions of the variational inequality for
α-inverse-strongly monotone mappings in a real Hilbert space.

In 2008, Inchan [6], introduce the modified Mann iteration processes for an
asymptotically nonexpansive mapping. Let C be a nonempty closed bounded
convex subset of a Hilbert space H , T be an asymptotically nonexpansive
mapping of C into itself and let x0 ∈ C. For C1 = C and x1 = PC1(x0), define
{xn} as follows way:⎧⎪⎨

⎪⎩

yn = αnxn + (1 − αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(6)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for

all n ∈ N. Then him prove that {xn} converges strongly to z0 = PF (T )x0.

Recently, Inchan and Nammanee [7], introduce the modified Mann iteration
processes for an asymptotically k-strict pseudo-contractive mapping. Let C be
a nonempty closed convex subset of a Hilbert space H , T be an asymptotically
k-strict pseudo-contractive mapping of C into itself such that F (T ) 	= ∅ and
let x0 ∈ C. For C1 = C and x1 = PC1(x0), define {xn} as follows way:⎧⎪⎨
⎪⎩

yn = αnxn + (1 − αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k − αn(1 − αn)]‖xn − T nxn‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(7)

where θn = (diamC)2(1 − αn)γn → 0 as n → ∞ and lim supn→∞ αn < 1 − k.
Then they prove that {xn} converges strongly to z0 = PF (T )x0.

Inspired and motivated by these fact, it is the purpose of this paper to
introduce the modified Mann iteration processes for an asymptotically k-strict
pseudo-contractive mapping in the intermediate sense by idear in (7). Let C be
a closed convex subset of a Hilbert space H , T : C → C be an asymptotically
k-strictly pseudo-contractive mapping in the intermediate sense and let x0 ∈ C.
For C1 = C and x1 = PC1(x0), define {xn} as follows way:⎧⎪⎨
⎪⎩

yn = αnxn + (1 − αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + [k − αn(1 − αn)]‖xn − T nxn‖2 + θn + cn},
xn+1 = PCn+1x0, n ∈ N,

(8)
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where θn = (diamC)2(1 − αn)γn → 0, (n → ∞).

We shall prove that the iteration generated by (8) converges strongly to
z0 = PF (T )x0.

2 Preliminary

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T )
the set of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. Let H be a
real Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉 and let C be a closed
convex subset of H . For every point x ∈ H , there exists a unique nearest point
in C, denote by PCx, such that

‖x − PCx‖ ≤ ‖x − y‖, for all y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a
nonexpansive mapping of H onto C.

We collect some lemmas which will be used in the proof for the main result.

Lemma 2.1. [14] There holds the identity in a Hilbert space H:

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉, ∀x, y ∈ H.

(ii) ‖λx + (1 − λ)y‖2 = λ‖x||2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2 for all
x, y ∈ H and λ ∈ [0, 1].

Lemma 2.2. [15] Let C be a closed convex subset of a real Hilbert space
H. Given x ∈ H and y ∈ C. Then y = PCx if and only if there holds the
inequality

〈x − y, y − z〉 ≥ 0, ∀z ∈ C.

Lemma 2.3. [16] Let C be a nonempty subset of a Hilbert space H and let
T : C → C a uniformly continuous asymptotically k-strict pseudo-contractive
in the intermediate sense with sequence {γn}. Let {xn} be a sequence in C such
that ‖xn−xn+1‖ → 0 and ‖xn−T nxn‖ → 0 as n → ∞. Then ‖xn−Txn‖ → 0
as n → ∞.

Lemma 2.4. [16] Let C be a nonempty closed convex subset of Hilbert space
H and T : C → C a continuous asymptotically k-strict pseudo-contractive
mapping in the intermediate sense. Then I − T is demiclosed at zero in the
sense that {xn} is sequence in C such that xn ⇀ x ∈ C and lim supn→∞ ‖xn −
T nxn‖ = 0, then (I − T )x = 0.
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3 Main Results

In this section, we prove strong convergence theorem by hybrid method
for asymptotically k-strict pseudo-contractive mapping in the intermediate
sense in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space and let C be a nonempty closed
convex bounded subset of H. Let T be a uniformly continuous asymptotically
k-strict pseudo-contractive mapping in the intermediate sense of C into itself
such that F (T ) 	= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0, assume that
the control sequence {αn}∞n=1 is chosen so that lim supn→∞ αn < 1 − k. Then
{xn} generated by (8) converges strongly to z0 = PF (T )x0.

Proof. We first show that F (T ) ⊂ Cn for all n ∈ N, by induction. For any
z ∈ F (T ) we have z ∈ C = C1 hence F (T ) ⊂ C1. Let F (T ) ⊂ Cm for each
m ∈ N. For u ∈ F (T ) ⊂ Cm. By lemma 2.1, we have,

‖ym − u‖2 = ‖αmxm + (1 − αm)T mxm − u‖2

= ‖αm(xm − u) + (1 − αm)(T mxm − u)‖2

= αm‖xm − u‖2 + (1 − αm)‖T mxm − u‖2 − αm(1 − αm)‖xm − T mxm‖2

≤ αm‖xm − u‖2 + (1 − αm)[(1 + γm)‖xm − u‖2

+k‖xm − T mxm‖2 + cm] − αm(1 − αm)‖xm − T mxm‖2

= (1 + (1 − αm)γm)‖xm − u‖2 + (k − αm)(1 − αm)‖xm − T mxm‖2 + cm

≤ ‖xm − u‖2 + (1 − αm)γm‖xm − u‖2

+[k − αm(1 − αm)]‖xm − T mxm‖2 + cm

≤ ‖xm − u‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm (1)

It follows that u ∈ Cm+1 and F (T ) ⊂ Cm+1, hence F (T ) ⊂ Cn for all n ∈ N.
Next, we show that Cn is closed and convex for all n ∈ N. It follows obvious
that C1 = C is closed and convex. Suppose that Cm is closed and convex for
each m ∈ N. Let zj ∈ Cm+1 ⊂ Cm with zj → z. Since Cm is closed, z ∈ Cm

and ‖ym − zj‖2 ≤ ‖zj − xm‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm.
Then

‖ym − z‖2 = ‖ym − zj + zj − z‖2

= ‖ym − zj‖2 + ‖zj − z‖2 + 2〈ym − zj , zj − z〉
≤ ‖zj − xm‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm

+‖zj − z‖2 + 2‖ym − zj‖‖zj − z‖.
Taking j → ∞,

‖ym − z‖2 ≤ ‖z − xm‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm.
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Hence z ∈ Cm+1. Let x, y ∈ Cm+1 ⊂ Cm with z = αx + (1 − α)y where
α ∈ [0, 1]. Since Cm is convex, z ∈ Cm and ‖ym − x‖2 ≤ ‖x − xm‖2 + [k −
αm(1 − αm)]‖xm − T mxm‖2 + θm + cm, ‖ym − y‖2 ≤ ‖y − xm‖2 + [k − αm(1 −
αm)]‖xm − T mxm‖2 + θm + cm, we have

‖ym − z‖2 = ‖ym − (αx + (1 − α)y)‖2

= ‖α(ym − x) + (1 − α)(ym − y)‖2

= α‖ym − x‖2 + (1 − α)‖ym − y‖2 − α(1 − α)‖(ym − x) − (ym − y)‖2

≤ α(‖x − xm‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm)

+(1 − α)(‖y − xm‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm)

−α(1 − α)‖y − x‖2

= α‖x − xm‖2 + (1 − α)‖y − xm‖2 − α(1 − α)‖(xm − x) − (xm − y)‖2

+[k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm

= ‖α(xm − x) + (1 − α)(xm − y)‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2

+θm + cm

= ‖xm − z‖2 + [k − αm(1 − αm)]‖xm − T mxm‖2 + θm + cm.

Then z ∈ Cm+1, it follows that Cm+1 is closed and convex. Hence Cn is
closed and convex for all n ∈ N. This implies that {xn} is well-defined. From
xn = PCnx0. By Lemma 2.2, we have

〈x0 − xn, xn − y〉 ≥ 0, for all y ∈ Cn.

Moreover, by the same proof of Theorem 3.1 of [7], we have that

lim
n→∞

‖xn − xn+1‖ = 0. (2)

On the other hand, xn+1 ∈ Cn+1 ⊂ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + [k − αn(1 − αn)]‖xn − T nxn‖2 + θn + cn,
(3)

By the definition of yn, we have

‖yn − xn‖ = ‖αnxn + (1 − αn)T nxn − xn‖
= (1 − αn)‖T nxn − xn‖.
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From (3), we have

(1 − αn)2‖T nxn − xn‖2 = ‖yn − xn‖2

= ‖yn − xn+1 + xn+1 − xn‖2

≤ ‖yn − xn+1‖2 + ‖xn+1 − xn‖2

+2‖yn − xn+1‖‖xn+1 − xn‖
≤ ‖xn − xn+1‖2 + [k − αn(1 − αn)]‖xn − T nxn‖2

+θn + cn + ‖xn+1 − xn‖2 + 2‖yn − xn+1‖‖xn+1 − xn‖
= [k − αn(1 − αn)]‖xn − T nxn‖2

+2‖xn+1 − xn‖(‖xn+1 − xn‖ + ‖yn − xn+1‖)
+θn + cn.

It follows that

((1−αn)2 − (k−αn(1−αn)))‖xn −T nxn‖2 ≤ 2‖xn+1 −xn‖(‖xn+1 − xn‖+
‖yn − xn+1‖) + θn + cn.

Hence

(1 − k − αn)‖T nxn − xn‖ ≤ 2‖xn+1 − xn‖(‖xn+1 − xn‖ + ‖yn − xn+1‖) + θn + cn.
(4)

From lim supn→∞ αn < 1 − k, we can chosen ε > 0 such that αn ≤ 1 − k − ε
for large enough n. From (2) and (4), we have

lim
n→∞

‖T nxn − xn‖ = 0. (5)

From (2), (5) and Lemma 2.3, we have

lim
n→∞

‖Txn − xn‖ = 0. (6)

Since H is reflexive and {xn} is bounded we get that ∅ 	= ωw(xn). From Lemma
2.4, we have ωw(xn) ⊂ F (T ). By the fact that ‖xn − x0‖ ≤ ‖z0 − x0‖ for all
n ≥ 0 where z0 = PF (T )(x0) and the weak lower semi-continuity of the norm,
we have

‖x0 − z0‖ ≤ ‖x0 − w‖ ≤ lim infn→∞ ‖x0 − xn‖
≤ lim supn→∞ ‖x0 − xn‖ ≤ ‖x0 − z0‖,

for all w ∈ ωw(xn). However, since ωw(xn) ⊂ F (T ), we must have w = z0 for
all w ∈ ωw(xn). Thus ωw(xn) = {z0} and then xn ⇀ z0. Hence, xn → z0 =
PF (T )(x0) by

‖xn − z0‖2 = ‖xn − x0‖2 + 2〈xn − x0, x0 − z0〉 + ‖x0 − z0‖2
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≤ 2(‖z0 − x0‖2 + 〈xn − x0, x0 − z0〉) → 0 as n → ∞.
This complete the proof. �

Using this Theorem 3.1, we have the following corollaries.

Corollary 3.2. [7] Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T be an asymptotically k-strict pseudo-contractive
mapping of C into itself such that F (T ) 	= ∅ and let x0 ∈ C. For C1 = C
and x1 = PC1x0, assume that the control sequence {αn}∞n=1 is chosen so that
lim supn→∞ αn < 1 − k. Then {xn} generated by (7) converges strongly to
z0 = PF (T )x0.

Corollary 3.3. [6] Let H be a Hilbert space and let C be a nonempty closed
convex subset of H. Let T be an asymptotically nonexpansive mapping of C
into itself such that F (T ) 	= ∅ and let x0 ∈ C. For C1 = C and x1 = PC1x0,
defined {xn} as follows;

⎧⎪⎨
⎪⎩

yn = αnxn + (1 − αn)T nxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
xn+1 = PCn+1x0, n ∈ N,

(7)

where θn = (1− αn)(k2
n − 1)(diamC)2 → 0 as n → ∞ and 0 ≤ αn ≤ a < 1 for

all n ∈ N. Then {xn} generated by (7) converges strongly to z0 = PF (T )x0.

Corollary 3.4. ([20] Theorem 4.1) Let H be a Hilbert space and C be a
nonempty closed convex subset of H. Let T be a nonexpansive mapping of C
into H such that F (T ) 	= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0,
define a sequence {un} of C as follows:

⎧⎪⎨
⎪⎩

yn = αnun + (1 − αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(8)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then {un} converges strongly to
z0 = PF (T )x0.
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We study strong convergence of the sequence generated by implicit and explicit general iterative
methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits
the duality mapping Jϕ, where ϕ is a gauge function on [0,∞). Our results improve and extend
those announced by G. Marino and H.-K. Xu (2006) and many authors.

1. Introduction

Let E be a real Banach space and E∗ the dual space of E. Let K be a nonempty, closed, and
convex subset of E. A (one-parameter) nonexpansive semigroup is a family F = {T(t) : t ≥ 0}
of self-mappings of K such that

(i) T(0)x = x for all x ∈ K,

(ii) T(t + s)x = T(t)T(s)x for all t, s ≥ 0 and x ∈ K,

(iii) for each x ∈ K, the mapping T(·)x is continuous,

(iv) for each t ≥ 0, T(t) is nonexpansive, that is,

∥
∥T(t)x − T(t)y

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ K. (1.1)

We denote F by the common fixed points set of F, that is, F :=
⋂

t≥0 F(T(t)).
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In 1967, Halpern [1] introduced the following classical iteration for a nonexpansive
mapping T : K → K in a real Hilbert space:

xn+1 = αnu + (1 − αn)Txn, n ≥ 0, (1.2)

where {αn} ⊂ (0, 1) and u ∈ K.
In 1977, Lions [2] obtained a strong convergence provide the real sequence {αn} satis-

fies the following conditions:
C1: limn→∞αn = 0; C2:

∑∞
n=0 αn = ∞; C3: limn→∞(αn − αn−1)/α2

n = 0.
Reich [3] also extended the result of Halpern fromHilbert spaces to uniformly smooth

Banach spaces. However, both Halpern’s and Lion’s conditions imposed on the real sequence
{αn} excluded the canonical choice αn = 1/(n + 1).

In 1992, Wittmann [4] proved that the sequence {xn} converges strongly to a fixed
point of T if {αn} satisfies the following conditions:

C1: limn→∞αn = 0; C2:
∑∞

n=0 αn = ∞; C3:
∑∞

n=0 |αn+1 − αn| < ∞.
Shioji and Takahashi [5] extended Wittmann’s result to real Banach spaces with uni-

formly Gâteaux differentiable norms and in which each nonempty closed convex and
bounded subset has the fixed point property for nonexpansive mappings. The concept of
the Halpern iterative scheme has been widely used to approximate the fixed points for
nonexpansive mappings (see, e.g., [6–12] and the reference cited therein).

Let f : K → K be a contraction. In 2000, Moudafi [13] introduced the explicit viscosity
approximation method for a nonexpansive mapping T as follows:

xn+1 = αnf(xn) + (1 − αn)Txn, n ≥ 0, (1.3)

where αn ∈ (0, 1). Xu [14] also studied the iteration process (1.3) in uniformly smooth Banach
spaces.

LetA be a strongly positive bounded linear operator on a real Hilbert spaceH, that is,
there is a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.4)

A typical problem is to minimize a quadratic function over the fixed points set of a
nonexpansive mapping on a Hilbert space H:

min
x∈C

1
2
〈Ax, x〉 − 〈x, b〉, (1.5)

where C is the fixed points set of a nonexpansive mapping T on H and b is a given point in
H.

In 2006, Marino and Xu [15] introduced the following general iterative method for a
nonexpansive mapping T in a Hilbert space H:

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 1, (1.6)
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where {αn} ⊂ (0, 1), f is a contraction on H, and A is a strongly positive bounded linear
operator on H. They proved that the sequence {xn} generated by (1.6) converges strongly to
a fixed point x∗ ∈ F(T)which also solves the variational inequality

〈(

A − γf
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T), (1.7)

which is the optimality condition for the minimization problem: minx∈C(1/2)〈Ax, x〉 − h(x),
where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).

Suzuki [16] first introduced the following implicit viscosity method for a nonexpan-
sive semigroup {T(t) : t ≥ 0} in a Hilbert space:

xn = αnu + (1 − αn)T(tn)xn, n ≥ 1, (1.8)

where {αn} ⊂ (0, 1) and u ∈ K. He proved strong convergence of iteration (1.8) under suitable
conditions. Subsequently, Xu [17] extended Suzuki’s [16] result from a Hilbert space to a
uniformly convex Banach space which admits a weakly sequentially continuous normalized
duality mapping.

Motivated by Chen and Song [18], in 2007, Chen and He [19] investigated the implicit
and explicit viscosity methods for a nonexpansive semigroup without integral in a reflexive
Banach space which admits a weakly sequentially continuous normalized duality mapping:

xn = αnf(xn) + (1 − αn)T(tn)xn, n ≥ 1, (1.9)

xn+1 = αnf(xn) + (1 − αn)T(tn)xn, n ≥ 1, (1.10)

where {αn} ⊂ (0, 1).
In 2008, Song and Xu [20] also studied the iterations (1.9) and (1.10) in a reflexive and

strictly convex Banach space with a Gâteaux differentiable norm. Subsequently, Cholamjiak
and Suantai [21] extended Song and Xu’s results to a Banach space which admits duality
mapping with a gauge function. Wangkeeree and Kamraksa [22] and Wangkeeree et al. [23]
obtained the convergence results concerning the duality mapping with a gauge function in
Banach spaces. The convergence of iterations for a nonexpansive semigroup and nonlinear
mappings has been studied by many authors (see, e.g., [24–38]).

Let E be a real reflexive Banach space which admits the duality mapping Jϕ with a
gauge ϕ. Let {T(t) : t ≥ 0} be a nonexpansive semigroup on E. Recall that an operator A is
said to be strongly positive if there exists a constant γ > 0 such that

〈

Ax, Jϕ(x)
〉 ≥ γ‖x‖ϕ(‖x‖),

∥
∥αI − βA

∥
∥ = sup

‖x‖≤1

∣
∣
〈(

αI − βA
)

x, Jϕ(x)
〉∣
∣,

(1.11)

where α ∈ [0, 1] and β ∈ [−1, 1].



4 Journal of Applied Mathematics

Motivated by Chen and Song [18], Chen and He [19], Marino and Xu [15], Colao et al.
[39], and Wangkeeree et al. [23], we study strong convergence of the following general itera-
tive methods:

xn = αnγf(xn) + (I − αnA)T(tn)xn, n ≥ 1, (1.12)

xn+1 = αnγf(xn) + (I − αnA)T(tn)xn, n ≥ 1, (1.13)

where {αn} ⊂ (0, 1), f is a contraction on E and A is a positive bounded linear operator on E.

2. Preliminaries

A Banach space E is called strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1
and x /=y. A Banach space E is called uniformly convex if for each ε > 0 there is a δ > 0 such
that for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε, ‖x + y‖ ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{

1 −
∥
∥
∥
∥

1
2
(

x + y
)
∥
∥
∥
∥
: ‖x‖,∥∥y∥∥ ≤ 1,

∥
∥x − y

∥
∥ ≥ ε

}

, (2.1)

for all ε ∈ [0, 2]. E is uniformly convex if δE(0) = 0, and δE(ε) > 0 for all 0 < ε ≤ 2. It is known
that every uniformly convex Banach space is strictly convex and reflexive. Let S(E) = {x ∈
E : ‖x‖ = 1}. Then the norm of E is said to be Gâteaux differentiable if

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ S(E). In this case E is called smooth. The norm of E is said to be Fréchet
differentiable if for each x ∈ S(E), the limit is attained uniformly for y ∈ S(E). The norm of E is
called uniformly Fréchet differentiable, if the limit is attained uniformly for x, y ∈ S(E). It is well
known that (uniformly) Fréchet differentiability of the norm of E implies (uniformly) Gâteaux
differentiability of the norm of E.

Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{
1
2
(∥
∥x + y

∥
∥ +

∥
∥x − y

∥
∥
) − 1 : x ∈ S(E),

∥
∥y

∥
∥ ≤ t

}

. (2.3)

A Banach space E is called uniformly smooth if ρE(t)/t → 0 as t → 0. See [40–42] for
more details.

We need the following definitions and results which can be found in [40, 41, 43].

Definition 2.1. A continuous strictly increasing function ϕ : [0,∞) → [0,∞) is said to be
gauge function if ϕ(0) = 0 and limt→∞ϕ(t) = ∞.
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Definition 2.2. Let E be a normed space and ϕ a gauge function. Then the mapping Jϕ : E →
2E

∗
defined by

Jϕ(x) =
{

f∗ ∈ E∗ :
〈

x, f∗〉 = ‖x‖ϕ(‖x‖), ∥
∥f∗∥∥ = ϕ(‖x‖)}, x ∈ E, (2.4)

is called the duality mapping with gauge function ϕ.

In the particular case ϕ(t) = t, the duality mapping Jϕ = J is called the normalized
duality mapping.

In the case ϕ(t) = tq−1, q > 1, the duality mapping Jϕ = Jq is called the generalized
duality mapping. It follows from the definition that Jϕ(x) = ϕ(‖x‖)/‖x‖J(x) and Jq(x) =
‖x‖q−2J(x), q > 1.

Remark 2.3. For the gauge function ϕ, the function Φ : [0,∞) → [0,∞) defined by

Φ(t) =
∫ t

0
ϕ(s)ds (2.5)

is a continuous convex and strictly increasing function on [0,∞). Therefore, Φ has a continu-
ous inverse function Φ−1.

It is noted that if 0 ≤ k ≤ 1, then ϕ(kx) ≤ ϕ(x). Further

Φ(kt) =
∫kt

0
ϕ(s)ds = k

∫ t

0
ϕ(kx)dx ≤ k

∫ t

0
ϕ(x)dx = kΦ(t). (2.6)

Remark 2.4. For each x in a Banach space E, Jϕ(x) = ∂Φ(‖x‖), where ∂ denotes the sub-
differential.

We also know the following facts:

(i) Jϕ is a nonempty, closed, and convex set in E∗ for each x ∈ E,

(ii) Jϕ is a function when E∗ is strictly convex,

(iii) If Jϕ is single-valued, then

Jϕ(λx) =
sign(λ)ϕ(‖λx‖)

ϕ(‖x‖) Jϕ(x), ∀x ∈ E, λ ∈ R,

〈

x − y, Jϕ(x) − Jϕ
(

y
)〉 ≥ (

ϕ(‖x‖) − ϕ
(∥
∥y

∥
∥
))(‖x‖ − ∥

∥y
∥
∥
)

, ∀x, y ∈ E.

(2.7)

Following Browder [43], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ϕ for which the duality mapping Jϕ is single-valued and
continuous from the weak topology to the weak∗ topology, that is, for any {xn} with xn ⇀ x,
the sequence {Jϕ(xn)} converges weakly∗ to Jϕ(x). It is known that the space �p has a weakly
continuous duality mapping with a gauge function ϕ(t) = tp−1 for all 1 < p < ∞. Moreover, ϕ
is invariant on [0, 1].
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Lemma 2.5 (See [44]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ.

(i) For all x, y ∈ E, the following inequality holds:

Φ
(∥
∥x + y

∥
∥
) ≤ Φ(‖x‖) + 〈

y, Jϕ
(

x + y
)〉

. (2.8)

In particular, for all x, y ∈ E,

∥
∥x + y

∥
∥
2 ≤ ‖x‖2 + 2

〈

y, J
(

x + y
)〉

. (2.9)

(ii) Assume that a sequence {xn} in E converges weakly to a point x ∈ E. Then the following
holds:

lim sup
n→∞

Φ
(∥
∥xn − y

∥
∥
)

= lim sup
n→∞

Φ(‖xn − x‖) + Φ
(∥
∥x − y

∥
∥
)

(2.10)

for all x, y ∈ E.

Lemma 2.6 (See [23]). Assume that a Banach space E has a weakly continuous duality mapping Jϕ
with gauge ϕ. Let A be a strongly positive bounded linear operator on E with coefficient γ > 0 and
0 < ρ ≤ ϕ(1)‖A‖−1. Then ‖I − ρA‖ ≤ ϕ(1)(1 − ργ).

Lemma 2.7 (See [12]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤
(

1 − γn
)

an + γnδn, n ≥ 1, (2.11)

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
(a)

∑∞
n=1 γn = ∞; (b) lim supn→∞δn ≤ 0 or

∑∞
n=1 |γnδn| < ∞.

Then limn→∞an = 0.

3. Implicit Iteration Scheme

In this section, we prove a strong convergence theorem of an implicit iterative method (1.12).

Theorem 3.1. Let E be a reflexive which admits a weakly continuous duality mapping Jϕ with gauge
ϕ such that ϕ is invariant on [0, 1]. Let F = {T(t) : t ≥ 0} be a nonexpansive semigroup on E such that
F /= ∅. Let f be a contraction on E with the coefficient α ∈ (0, 1) and A a strongly positive bounded
linear operator with coefficient γ > 0 and 0 < γ < γϕ(1)/α. Let {αn} and {tn} be real sequences
satisfying 0 < αn < 1, tn > 0 and limn→∞tn = limn→∞αn/tn = 0. Then {xn} defined by (1.12)
converges strongly to q ∈ F which solves the following variational inequality:

〈(

A − γf
)(

q
)

, Jϕ
(

q −w
)〉 ≤ 0, ∀w ∈ F. (3.1)
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Proof. First, we prove the uniqueness of the solution to the variational inequality (3.1) in F.
Suppose that p, q ∈ F satisfy (3.1), so we have

〈(

A − γf
)(

p
)

, Jϕ
(

p − q
)〉 ≤ 0,

〈(

A − γf
)(

q
)

, Jϕ
(

q − p
)〉 ≤ 0.

(3.2)

Adding the above inequalities, we get

〈

A
(

p
) −A

(

q
) − γ

(

f
(

p
) − f

(

q
))

, Jϕ
(

p − q
)〉 ≤ 0. (3.3)

This shows that

〈

A
(

p − q
)

, Jϕ
(

p − q
)〉 ≤ γ

〈

f
(

p
) − f

(

q
)

, Jϕ
(

p − q
)〉

, (3.4)

which implies by the strong positivity of A

γ
∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ 〈

A
(

p − q
)

, Jϕ
(

p − q
)〉 ≤ γα

∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
)

. (3.5)

Since ϕ is invariant on [0, 1],

ϕ(1)γ
∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ γα

∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
)

. (3.6)

It follows that

(

ϕ(1)γ − γα
)∥
∥p − q

∥
∥ϕ

(∥
∥p − q

∥
∥
) ≤ 0. (3.7)

Therefore p = q since 0 < γ < (γϕ(1))/α.
We next prove that {xn} is bounded. For each w ∈ F, by Lemma 2.6, we have

‖xn −w‖ =
∥
∥αnγf(xn) + (I − αnA)T(tn)xn −w

∥
∥

=
∥
∥(I − αnA)T(tn)xn − (I − αnA)w + αn

(

γf(xn) −A(w)
)∥
∥

≤ ϕ(1)
(

1 − αnγ
)‖xn −w‖ + αn

(

γα‖xn −w‖ + ∥
∥γf(w) −A(w)

∥
∥
)

≤ ‖xn −w‖ − αnϕ(1)γ‖xn −w‖ + αnγα‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥,

(3.8)

which yields

‖xn −w‖ ≤ 1
ϕ(1)γ − γα

∥
∥γf(w) −A(w)

∥
∥. (3.9)

Hence {xn} is bounded. So are {f(xn)} and {AT(tn)xn}.
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We next prove that {xn} is relatively sequentially compact. By the reflexivity of E and
the boundedness of {xn}, there exists a subsequence {xnj} of {xn} and a point p in E such that
xnj ⇀ p as j → ∞. Now we show that p ∈ F. Put xj = xnj , βj = αnj and sj = tnj for j ∈ N, fix
t > 0. We see that

∥
∥xj − T(t)p

∥
∥ ≤

[t/sj ]−1∑

k=0

∥
∥T

(

(k + 1)sj
)

xj − T
(

ksj
)

xj+1
∥
∥

+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

xj − T

([

t

sj

]

sj

)

p

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

p − T(t)p

∥
∥
∥
∥
∥

≤
[

t

sj

]

∥
∥T

(

sj
)

xj − xj

∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

=

[

t

sj

]

βj
∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

≤ tβj

sj

∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥

+max
{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ sj

}

.

(3.10)

So we have

lim sup
j→∞

Φ
(∥
∥xj − T(t)p

∥
∥
) ≤ lim sup

j→∞
Φ
(∥
∥xj − p

∥
∥
)

. (3.11)

On the other hand, by Lemma 2.5 (ii), we have

lim sup
j→∞

Φ
(∥
∥xj − T(t)p

∥
∥
)

= lim sup
j→∞

Φ
(∥
∥xj − p

∥
∥
)

+ Φ
(∥
∥T(t)p − p

∥
∥
)

. (3.12)

Combining (3.11) and (3.12), we have

Φ
(∥
∥T(t)p − p

∥
∥
) ≤ 0. (3.13)

This implies that p ∈ F. Further, we see that

‖xj − p‖ϕ(‖xj − p‖) =
〈

xj − p, Jϕ
(

xj − p
)〉

=
〈(

I − βjA
)

T
(

sj
)

xj −
(

I − βjA
)

p, Jϕ
(

xj − p
)〉

+ βj
〈

γf
(

xj

) − γf
(

p
)

, Jϕ
(

xj − p
)〉

+ βj
〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

≤ ϕ(1)
(

1 − βjγ
)∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
)

+ βjγα
∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
)

+ βj
〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

.

(3.14)
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So we have

∥
∥xj − p

∥
∥ϕ

(∥
∥xj − p

∥
∥
) ≤ 1

ϕ(1)γ − γα

〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

. (3.15)

By the definition of Φ, it is easily seen that

Φ
(∥
∥xj − p

∥
∥
) ≤ ∥

∥xj − p
∥
∥ϕ

(∥
∥xj − p

∥
∥
)

. (3.16)

Hence

Φ
(∥
∥xj − p

∥
∥
) ≤ 1

ϕ(1)γ − γα

〈

γf
(

p
) −A

(

p
)

, Jϕ
(

xj − p
)〉

. (3.17)

ThereforeΦ(‖xj − p‖) → 0 as j → ∞ since Jϕ is weakly continuous; consequently, xj → p as
j → ∞ by the continuity of Φ. Hence {xn} is relatively sequentially compact.

Finally, we prove that p is a solution in F to the variational inequality (3.1). For any
w ∈ F, we see that

〈

(I − T(tn))xn − (I − T(tn))w, Jϕ(xn −w)
〉

=
〈

xn −w, Jϕ(xn −w)
〉

− 〈

T(tn)xn − T(tn)w, Jϕ(xn −w)
〉

≥ ‖xn −w‖ϕ‖xn −w‖
− ‖T(tn)xn − T(tn)w‖∥∥Jϕ(xn −w)

∥
∥

≥ ‖xn −w‖ϕ‖xn −w‖
− ‖xn −w‖∥∥Jϕ(xn −w)

∥
∥

= 0.

(3.18)

On the other hand, we have

(

A − γf
)

(xn) = − 1
αn

(I − αnA)(I − T(tn))xn, (3.19)

which implies

〈(

A − γf
)

(xn), Jϕ(xn −w)
〉

= − 1
αn

〈

(I − T(tn))xn − (I − T(tn))w, Jϕ(xn −w)
〉

+
〈

A(I − T(tn))xn, Jϕ(xn −w)
〉

≤ 〈

A(I − T(tn))xn, Jϕ(xn −w)
〉

.

(3.20)

Observe

∥
∥xj − T

(

sj
)

xj

∥
∥ = βj

∥
∥γf

(

xj

) −AT
(

sj
)

xj

∥
∥ → 0, (3.21)
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as j → ∞. Replacing n by nj and letting j → ∞ in (3.20), we obtain

〈(

A − γf
)(

p
)

, Jϕ
(

p −w
)〉 ≤ 0, ∀w ∈ F. (3.22)

So p ∈ F is a solution of variational inequality (3.1); and hence p = q by the uniqueness. In a
summary, we have proved that {xn} is relatively sequentially compact and each cluster point
of {xn} (as n → ∞) equals q. Therefore xn → q as n → ∞. This completes the proof.

4. Explicit Iteration Scheme

In this section, utilizing the implicit version in Theorem 3.1, we consider the explicit one in a
reflexive Banach space which admits the duality mapping Jϕ.

Theorem 4.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jϕ with gauge ϕ such that ϕ is invariant on [0,1]. Let {T(t) : t ≥ 0} be a nonexpansive semigroup
on E such that F /= ∅. Let f be a contraction on E with the coefficient α ∈ (0, 1) and A a strongly
positive bounded linear operator with coefficient γ > 0 and 0 < γ < γ ϕ(1)/α. Let {αn} and {tn} be
real sequences satisfying 0 < αn < 1,

∑∞
n=1 αn = ∞, tn > 0 and limn→∞tn = limn→∞αn/tn = 0.

Then {xn} defined by (1.13) converges strongly to q ∈ F which also solves the variational inequality
(3.1).

Proof. Since αn → 0, we may assume that αn < ϕ(1)‖A‖−1 and 1−αn(ϕ(1)γ − γα) > 0 for all n.
First we prove that {xn} is bounded. For each w ∈ F, by Lemma 2.6, we have

‖xn+1 −w‖ =
∥
∥αnγf(xn) + (I − αnA)T(tn)xn −w

∥
∥

=
∥
∥(I − αnA)T(tn)xn − (I − αnA)w + αn

(

γf(xn) −A(w)
)∥
∥

≤ ϕ(1)
(

1 − αnγ
)‖xn −w‖ + αnγα‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥

=
(

ϕ(1) − αn

(

ϕ(1)γ − γα
))‖xn −w‖ + αn

∥
∥γf(w) −A(w)

∥
∥

≤ (

1 − αn

(

ϕ(1)γ − γα
))‖xn −w‖ + αn

(

ϕ(1)γ − γα
))

∥
∥γf(w) −A(w)

∥
∥

ϕ(1)γ − γα
.

(4.1)

It follows from induction that

‖xn+1 −w‖ ≤ max

{

‖x1 −w‖,
∥
∥γf(w) −A(w)

∥
∥

ϕ(1)γ − γα

}

, n ≥ 1. (4.2)

Thus {xn} is bounded, and hence so are {f(xn)} and {AT(tn)xn}. From Theorem 3.1, there is
a unique solution q ∈ F to the following variational inequality:

〈(

A − γf
)

q, Jϕ
(

q −w
)〉 ≤ 0, ∀w ∈ F. (4.3)
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Next we prove that

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn+1
)〉 ≤ 0. (4.4)

Indeed, we can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn

)〉

= lim sup
j→∞

〈(

A − γf
)

q, Jϕ
(

q − xnj

)〉

. (4.5)

Further, we can assume that xnj ⇀ p ∈ E by the reflexivity of E and the boundedness of {xn}.
Now we show that p ∈ F. Put xj = xnj , βj = αnj and sj = tnj for j ∈ N, fix t > 0. We obtain

∥
∥xj+1 − T(t)p

∥
∥ ≤

[t/sj ]−1∑

k=0

∥
∥T

(

(k + 1)sj
)

xj − T
(

ksj
)

xj+1
∥
∥

+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

xj − T

([

t

sj

]

sj

)

p

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥
T

([

t

sj

]

sj

)

p − T(t)p

∥
∥
∥
∥
∥

≤
[

t

sj

]

∥
∥T

(

sj
)

xj − xj+1
∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

=

[

t

sj

]

βj
∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥ +

∥
∥
∥
∥
∥
T

(

t −
[

t

sj

]

sj

)

p − p

∥
∥
∥
∥
∥

≤ tβj

sj

∥
∥AT

(

sj
)

xj − γf
(

xj

)∥
∥ +

∥
∥xj − p

∥
∥

+max
{∥
∥T(s)p − p

∥
∥ : 0 ≤ s ≤ sj

}

.

(4.6)

It follows that lim supn→∞Φ(‖xj −T(t)p‖) ≤ lim supn→∞Φ(‖xj −p‖). From Lemma 2.5 (ii)we
have

lim sup
n→∞

Φ
(∥
∥xj − T(t)p

∥
∥
)

= lim sup
n→∞

Φ
(∥
∥xj − p

∥
∥
)

+ Φ
(∥
∥T(t)p − p

∥
∥
)

. (4.7)

So we have Φ(‖T(t)p − p‖) ≤ 0 and hence p ∈ F. Since the duality mapping Jϕ is weakly
sequentially continuous,

lim sup
n→∞

〈(

A − γf
)

q, Jϕ
(

q − xn+1
)〉

= lim sup
j→∞

〈(

A − γf
)

q, Jϕ
(

q − xnj+1

)〉

=
〈(

A − γf
)

q, Jϕ
(

q − p
)〉 ≤ 0.

(4.8)
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Finally, we show that xn → q. From Lemma 2.5 (i), we have

Φ
(∥
∥xn+1 − q

∥
∥
)

= Φ
(∥
∥(I − αnA)T(tn)xn − (I − αnA)q + αn

(

γf(xn) − γf
(

q
))

+αn

(

γf
(

q
) −A

(

q
))∥
∥
)

≤ Φ
(∥
∥(I − αnA)

(

T(tn)xn − q
)

+ αn

(

γf(xn) − γf
(

q
))∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

≤ Φ
(

ϕ(1)
(

1 − αnγ
)∥
∥xn − q

∥
∥ + αnγα

∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

= Φ
((

ϕ(1) − αn

(

ϕ(1)γ − γα
))∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

≤ (

1 − αn

(

ϕ(1)γ − γα
))

Φ
(∥
∥xn − q

∥
∥
)

+ αn

〈

γf
(

q
) −A

(

q
)

, Jϕ
(

xn+1 − q
)〉

.

(4.9)

Note that
∑∞

n=1 αn = ∞ and lim supn→∞〈γf(q)−A(q), Jϕ(xn+1 −q)〉 ≤ 0. Using Lemma 2.7, we
have xn → q as n → ∞ by the continuity of Φ. This completes the proof.

Remark 4.2. Theorems 3.1 and 4.1 improve and extend the main results proved in [15] in the
following senses:

(i) from a nonexpansive mapping to a nonexpansive semigroup,

(ii) from a real Hilbert space to a reflexive Banach space which admits a weakly contin-
uous duality mapping with gauge functions.
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In this work, we introduce hybrid iterative schemes for solving a system
of the zero-finding problems of maximal monotone operators, the equilibrium
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1 Introduction

Let E be a real Banach space and C a nonempty subset of E. Let E∗ be the dual
space of E. We denote the value of x∗ ∈ E∗ at x ∈ E by 〈x∗, x〉. Let T : C → C be

∗Corresponding author

Email addresses: kamonrat.na@up.ac.th (K. Nammanee), scmti005@chiangmai.ac.th (S. Suan-

tai), prasitch2008@yahoo.com (P. Cholamjiak).

1



2 K. Nammanee, S. Suantai and P. Cholamjiak

a nonlinear mapping. We denote by F (T ) the fixed points set of T , that is, F (T ) =
{x ∈ C : x = Tx}. Let A : E → 2E∗

be a set-valued mapping. We denote D(A) by
the domain of A, that is, D(A) = {x ∈ E : Ax 6= ∅} and also denote G(A) by the
graph of A, that is, G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. A set-valued mapping
A is said to be monotone if 〈x∗ − y∗, x − y〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ G(A).
It is said to be maximal monotone if its graph is not contained in the graph of any
other monotone operators on E. It is known that if A is maximal monotone, then
the set A−1(0∗) = {z ∈ E : 0∗ ∈ Az} is closed and convex.

The problem of finding a zero point of maximal monotone operators plays an
important role in optimizations. This is because it can be reformulated to a convex
minimization problem and a variational inequality problem. Many authors have
studied the convergence of such problems in various spaces (see, for examples, [6,
10, 11, 12, 16, 22, 23, 25, 29, 30, 38, 39, 40, 41, 42, 43]). Initiated by Martinet [20],
in a real Hilbert space H, Rockafellar [28] introduced the following iterative scheme:
x1 ∈ H and

xn+1 = Jλnxn, ∀n ≥ 1, (1.1)

where {λn} ⊂ (0,∞) and Jλ is the resolvent of A defined by Jλ := JλA = (I +λA)−1

for all λ > 0 and A is a maximal monotone operator on H. Such an algorithm is
called the proximal point algorithm. It was proved that the sequence {xn} generated
by (1.1) converges weakly to an element in A−1(0) provided lim infn→∞ λn > 0. Re-
cently, Kamimura-Takahashi [13] introduced the following iteration in a real Hilbert
space: x1 ∈ H and

xn+1 = αnxn + (1− αn)Jλnxn, ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {λn} ⊂ (0,∞). The weak convergence theorems are also
established in a real Hilbert space under suitable conditions imposed on {αn} and
{λn}.

In 2004, Kamimura et al. [15] extended the above iteration process to a much
more general setting. In fact, they proposed the following algorithm: x1 ∈ E and

xn+1 = J−1
(
αnJ(xn) + (1− αn)J(Jλnxn)

)
, ∀n ≥ 1,

where {αn} ⊂ [0, 1], {λn} ⊂ (0,∞) and Jλ := JλA = (J + λA)−1J for all λ > 0.
They proved, in a uniformly smooth and uniformly convex Banach space, a weak
convergence theorem.

Let F : C × C → R, where R is the set of real numbers, be a bifunction. The
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equilibrium problem is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.2)

The solutions set of (1.2) is denoted by EP (F ).

For solving the equilibrium problem, we assume that:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for all x, y, z ∈ C, lim supt↓0 F
(
tz + (1− t)x, y

)
≤ F (x, y);

(A4) for all x ∈ C, F (x, ·) is convex and lower semi-continuous.

Recently, Takahashi-Zembayashi [37] introduced the following iterative scheme
for a relatively nonexpansive mapping T : C → C in a uniformly smooth and
uniformly convex Banach space: x1 ∈ C and



C1 = C,

yn = J−1
(
αnJxn + (1− αn)JTxn

)
,

un ∈ C such that F (un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = ΠCn+1(x1), ∀n ≥ 1,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Such an algorithm is called the shrinking
projection method which was introduced by Takahashi et al. [35]. They proved
that the sequence {xn} converges strongly to an element in F (T ) ∩ EP (F ) under
appropriate conditions. The equilibrium problem has been intensively studied by
many authors (see, for examples, [5, 7, 8, 9, 18, 19, 24, 32, 33]).

Motivated by the previous results, we introduce a hybrid iterative scheme for
finding a zero point of maximal monotone operators Ai : E → 2E∗

(i = 1, 2, · · · , N)
which is also a common element in the solutions set of an equilibrium problem
for F and in the fixed points set of weak relatively nonexpansive mappings Ti :
C → C (i = 1, 2, · · · ). Using the projection technique, we also prove that the
sequence generated by a constructed algorithm converges strongly to an element in[⋂N

i=1 A−1
i (0∗)

]
∩

[⋂∞
i=1 F (Ti)

]
∩EP (F ) in a uniformly smooth and uniformly convex

Banach space. Finally, we apply our results to a system of convex minimization
problems.
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2 Preliminaries and lemmas

In this section, we give some useful preliminaries and lemmas which will be used
in the sequel.

Let E be a real Banach space and let U = {x ∈ E : ‖x‖ = 1} be the unit sphere
of E. A Banach space E is said to be strictly convex if for any x, y ∈ U ,

x 6= y implies ‖x + y‖ < 2.

A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2], there exists
δ > 0 such that for any x, y ∈ U ,

‖x− y‖ ≥ ε implies ‖x + y‖ < 2(1− δ).

It is known that a uniformly convex Banach space is reflexive and strictly convex.
The function δ : [0, 2] → [0, 1] which called the modulus of convexity of E is defined
as follows:

δ(ε) = inf
{

1−
∥∥∥x + y

2

∥∥∥ : x, y ∈ E, ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε
}

.

Then E is uniformly convex if and only if δ(ε) > 0 for all ε ∈ (0, 2]. A Banach space
E is said to be smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (2.1) is
attained uniformly for x, y ∈ U . The duality mapping J : E → 2E∗

is defined by

J(x) = { x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for all x ∈ E. It is also known that if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on bounded subsets of E (see [34] for more details).

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E. From the definition of φ, we see that(
‖x‖ − ‖y‖

)2 ≤ φ(x, y) ≤
(
‖x‖+ ‖y‖

)2

and
φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉
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for all x, y, z ∈ E.

Let C be a closed and convex subset of E and let T be a mapping from C into
itself. A point p in C is said to be an asymptotic fixed point of T [3] if C contains
a sequence {xn} which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0.
The set of asymptotic fixed points of T will be denoted by F̂ (T ). A mapping T is
said to be relatively nonexpansive [3, 4] if F̂ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for
all p ∈ F (T ) and x ∈ C. A point p in C is said to be a strong asymptotic fixed
point of T if C contains a sequence {xn} which converges strongly to p such that
limn→∞ ‖xn − Txn‖ = 0. The set of strong asymptotic fixed points of T will be
denoted by F̃ (T ). A mapping T is said to be weak relatively nonexpansive [44] if
F̃ (T ) = F (T ) and φ(p, Tx) ≤ φ(p, x) for all p ∈ F (T ) and x ∈ C. It is obvious by
definition that the class of weak relatively nonexpansive mappings contains the class
of relatively nonexpansive mappings. Indeed, for any mapping T : C → C, we see
that F (T ) ⊂ F̃ (T ) ⊂ F̂ (T ). Therefore, if T is a relatively nonexpansive mapping,
then F (T ) = F̃ (T ) = F̂ (T ).

Non-trivial examples of weak relatively nonexpansive mappings which are not
relatively nonexpansive can be found in [31].

Let E be a reflexive, strictly convex and smooth Banach space and let C be
a nonempty, closed and convex subset of E. The generalized projection mapping,
introduced by Alber [1], is a mapping ΠC : E → C, that assigns to an arbitrary
point x ∈ E the minimum point of the function φ(y, x), that is, ΠC(x) = x̄, where
x̄ is the solution to the minimization problem

φ(x̄, x) = min{φ(y, x) : y ∈ C}.

In a Hilbert space, ΠC is coincident with the metric projection denoted by PC .

Lemma 2.1. [14] Let E be a uniformly convex and smooth Banach space and let
{xn}, {yn} be two sequences in E. If limn→∞ φ(xn, yn) = 0 and either {xn} or {yn}
is bounded, then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.2. [1, 14] Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E, let x ∈ E and let z ∈ C. Then
z = ΠC(x) if and only if 〈y − z, Jx− Jz〉 ≤ 0 for all y ∈ C.

Lemma 2.3. [1, 14] Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E. Then

φ(x,ΠCy) + φ(ΠCy, y) ≤ φ(x, y) ∀x ∈ C and y ∈ E.
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Lemma 2.4. [21] Let E be a smooth and strictly convex Banach space and let C be
a nonempty, closed and convex subset of E. Let T be a mapping from C into itself
such that F (T ) is nonempty and φ(u, Tx) ≤ φ(u, x) for all (u, x) ∈ F (T )×C. Then
F (T ) is closed and convex.

Let E be a reflexive, strictly convex and smooth Banach space. It is known
that A : E → 2E∗

is maximal monotone if and only if R(J +λA) = E∗ for all λ > 0,
where R(B) stands for the range of B.

Define the resolvent of A by JλA = (J + λA)−1J for all λ > 0. It is known
that JλA is a single-valued mapping from E to D(A) and A−1(0∗) = F (JλA) for all
λ > 0. For each λ > 0, the Yosida approximation of A is defined by

Aλ(x) =
1
λ

(
J(x)− JJλA(x)

)
.

for all x ∈ E. We know that Aλ(x) ∈ A
(
JλA(x)

)
for all λ > 0 and x ∈ E.

Lemma 2.5. [16] Let E be a smooth, strictly convex and reflexive Banach space,
let A ⊂ E × E∗ be a maximal monotone operator with A−1(0∗) 6= ∅, and let JλA =
(J + λA)−1J for each λ > 0. Then

φ
(
p, JλA(x)

)
+ φ

(
JλA(x), x

)
≤ φ(p, x)

for all λ > 0, p ∈ A−1(0∗), and x ∈ E.

Lemma 2.6. [2] Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let F be a bifunction from C × C to R satisfying
(A1)-(A4), and let r > 0 and x ∈ E. Then, there exists z ∈ C such that

F (z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.7. [36] Let C be a closed and convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E, and let F be a bifunction from C × C to R
satisfying (A1)-(A4). For all r > 0 and x ∈ E, define the mapping Tr : E → C as
follows:

Tr(x) =
{
z ∈ C : F (z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
.

Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping [17], i.e., for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
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(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 2.8. [36] Let C be a closed and convex subset of a smooth, strictly and re-
flexive Banach space E, let F be a bifunction from C×C to R satisfying (A1)− (A4),
let r > 0. Then

φ(p, Trx) + φ(Trx, x) ≤ φ(p, x).

for all x ∈ E and p ∈ F (Tr).

3 Strong convergence theorems

In this section, we are now ready to prove our main theorem.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let Ai : E → 2E∗

(i =
1, 2, · · · , N) be maximal monotone operators, let F : C × C → R be a bifunction,
and let Ti : C → C (i = 1, 2, · · · ) be weak relatively nonexpansive mappings such
that F :=

[⋂N
i=1 A−1

i (0∗)
]
∩

[⋂∞
i=1 F (Ti)

]
∩ EP (F ) 6= ∅. Let {en}∞n=1 ⊂ E be the

sequence such that limn→∞ en = 0. Define the sequence {xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

yn = JλN
n AN

◦ JλN−1
n AN−1

◦ · · · ◦ Jλ1
nA1

(xn + en),

un = Trnyn,

Cn+1 =
{
z ∈ Cn : supi≥1 φ(z, Tiun) ≤ φ(z, xn + en)

}
,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = ΠF (x1).

Proof. We split the proof into several steps as follows:

Step 1. F ⊂ Cn for all n ≥ 1.

From Lemma 2.4, we know that
⋂∞

i=1 F (Ti) is closed and convex. From Lemma
2.7 (4), we also know that EP (F ) is closed and convex. On the other hand, since
Ai (i = 1, 2, · · · , N) are maximal monotone, A−1

i (0∗) are closed and convex for each
i = 1, 2, · · · , N ; consequently,

⋂N
i=1 A−1

i (0∗) is closed and convex. Hence F is a
nonempty, closed and convex subset of C.
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We next show that Cn is closed and convex for all n ≥ 1. Obviously, C1 = C

is closed and convex. Now suppose that Ck is closed and convex for some k ∈ N.
Then, for each z ∈ Ck and i ≥ 1, we see that φ(z, Tiuk) ≤ φ(z, xk) is equivalent to

2〈z, Jxk〉 − 2〈z, JTiuk〉 ≤ ‖xk‖2 − ‖Tiuk‖2.

By the construction of the set Ck+1, we see that

Ck+1 =
{
z ∈ Ck : sup

i≥1
φ(z, Tiuk) ≤ φ(z, xk)

}
=

∞⋂
i=1

{
z ∈ Ck : φ(z, Tiuk) ≤ φ(z, xk)

}
.

Hence Ck+1 is closed and convex. This shows, by induction, that Cn is closed and
convex for all n ≥ 1. It is obvious that F ⊂ C1 = C. Now, suppose that F ⊂ Ck

for some k ∈ N. For any p ∈ F , by Lemma 2.5 and Lemma 2.8, we have

φ(p, Tiuk) ≤ φ(p, uk) = φ(p, Trk
yk)

≤ φ(p, yk)

= φ
(
p, JλN

k AN
◦ JλN−1

k AN−1
◦ · · · ◦ Jλ1

kA1
(xk + ek)

)
≤ φ

(
p, JλN−1

k AN−1
◦ JλN−2

k AN−2
◦ · · · ◦ Jλ1

kA1
(xk + ek)

)
· · ·

≤ φ
(
p, Jλ2

kA2
◦ Jλ1

kA1
(xk + ek)

)
≤ φ

(
p, Jλ1

kA1
(xk + ek)

)
≤ φ(p, xk + ek). (3.1)

This shows that F ⊂ Ck+1. By induction, we can conclude that F ⊂ Cn for all
n ≥ 1.

Step 2. limn→∞ φ(xn, x1) exists.

From xn = ΠCn(x1) and xn+1 = ΠCn+1(x1) ∈ Cn+1 ⊂ Cn, we have

φ(xn, x1) ≤ φ(xn+1, x1), ∀n ≥ 1. (3.2)

From Lemma 2.3, for any p ∈ F ⊂ Cn, we have

φ(xn, x1) = φ(ΠCn(x1), x1) ≤ φ(p, x1)− φ(p, xn) ≤ φ(p, x1). (3.3)

Combining (3.2) and (3.3), we conclude that limn→∞ φ(xn, x1) exists.

Step 3. limn→∞
∥∥J(Tiyn)− J(xn + en)

∥∥ = 0.
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Since xm = ΠCm(x1) ∈ Cm ⊂ Cn for m > n ≥ 1, by Lemma 2.3, it follows that

φ(xm, xn) = φ
(
xm,ΠCn(x1)

)
≤ φ

(
xm, x1)− φ(ΠCn(x1), x1

)
= φ(xm, x1)− φ(xn, x1).

Letting m,n → ∞, we have φ(xm, xn) → 0. By Lemma 2.1, it follows that ‖xm −
xn‖ → 0 as m,n →∞. Therefore, {xn} is a Cauchy sequence. By the completeness
of the space E and the closedness of C, we can assume that xn → q ∈ C as n →∞.
In particular, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0.

Since en → 0, we have
lim

n→∞
‖xn+1 − (xn + en)‖ = 0. (3.4)

Since xn+1 = ΠCn+1(x1) ∈ Cn+1, for each i ≥ 1,

φ(xn+1, Tiun) ≤ φ(xn+1, xn + en)

=
〈
xn+1, J(xn+1)− J(xn + en)

〉
+

〈
xn+1 − (xn + en), J(xn+1)

〉
.

Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. It follows from (3.4) and by the boundedness of {xn} that

lim
n→∞

φ(xn+1, Tiun) = 0

for all i = 1, 2, · · · . So from Lemma 2.1, we have

lim
n→∞

‖xn+1 − Tiun‖ = 0

and
lim

n→∞
‖Tiun − xn‖ = 0

and, since en → 0, therefore

lim
n→∞

‖Tiun − (xn + en)‖ = 0. (3.5)

for all i = 1, 2, · · · . Since J is uniformly norm-to-norm continuous on bounded
subsets of E,

lim
n→∞

∥∥J(Tiun)− J(xn + en)
∥∥ = 0 (3.6)

for all i = 1, 2, · · · .

Step 4. limn→∞ ‖Tiun − un‖ = 0 for all i = 1, 2, · · · .

Denote Θi
n = Jλi

nAi
◦Jλi−1

n Ai−1
◦· · ·◦Jλ1

nA1
for each i ∈ {1, 2, · · · , N} and Θ0

n = I

for each n ≥ 1. We note that yn = ΘN
n (xn + en) for each n ≥ 1.
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To this end, we will show that

lim
n→∞

∥∥∥J
(
Θi

n(xn + en)
)
− J

(
Θi−1

n (xn + en)
)∥∥∥ = 0

for all i = 1, 2, · · · , N .

For any p ∈ F , by (3.1), we see that

φ
(
p, ΘN−1

n (xn + en)
)

≤ φ
(
p, ΘN−2

n (xn + en)
)

≤ φ
(
p, ΘN−3

n (xn + en)
)

· · ·

≤ φ
(
p, (xn + en)

)
. (3.7)

Since p ∈ F , by Lemma 2.5 and (3.7), it follows that

φ
(
yn,ΘN−1

n (xn + en)
)

≤ φ
(
p, ΘN−1

n (xn + en)
)
− φ(p, yn)

≤ φ
(
p, (xn + en)

)
− φ(p, yn)

≤ φ
(
p, (xn + en)

)
− φ(p, un)

≤ φ
(
p, (xn + en)

)
− φ(p, Tiun)

= ‖xn + en‖2 − ‖Tiun‖2 − 2
〈
p, J(xn + en)− J(Tiun)

〉
.

From (3.5) and (3.6), we get that limn→∞ φ
(
yn,ΘN−1

n (xn + en)
)

= 0. So we obtain

lim
n→∞

∥∥yn −ΘN−1
n (xn + en)

∥∥ = 0. (3.8)

Again, since p ∈ F ,

φ
(
ΘN−1

n (xn + en),ΘN−2
n (xn + en)

)
≤ φ

(
p, ΘN−2

n (xn + en)
)
− φ

(
p, ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

)
− φ

(
p, ΘN−1

n (xn + en)
)

≤ φ
(
p, (xn + en)

)
− φ

(
p, Tiun

)
.

From (3.5) and (3.6), we get that

lim
n→∞

φ
(
ΘN−1

n (xn + en),ΘN−2
n (xn + en)

)
= 0.

It also follows that

lim
n→∞

∥∥ΘN−1
n (xn + en)−ΘN−2

n (xn + en)
∥∥ = 0.
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Continuing in this process, we can show that

lim
n→∞

∥∥ΘN−2
n (xn +en)−ΘN−3

n (xn +en)
∥∥ = · · · = lim

n→∞

∥∥Θ1
n(xn +en)−(xn +en)

∥∥ = 0.

So, we now conclude that

lim
n→∞

∥∥∥Θi
n(xn + en)−Θi−1

n (xn + en)
∥∥∥ = 0 (3.9)

for each i = 1, 2, · · · , N . By the uniform norm-to-norm continuity of J , we also have

lim
n→∞

∥∥∥J
(
Θi

n(xn + en)
)
− J

(
Θi−1

n (xn + en)
)∥∥∥ = 0 (3.10)

for each i = 1, 2, · · · , N . Using (3.9), it is easily seen that

lim
n→∞

‖yn − (xn + en)‖ = 0. (3.11)

From un = Trnyn, by Lemma 2.8, it follows that

φ(un, yn) = φ(Trnyn, yn)

≤ φ(p, yn)− φ(p, Trnyn)

≤ φ(p, xn + en)− φ(p, un)

≤ φ(p, xn + en)− φ(p, Tiun).

This implies that limn→∞ φ(un, yn) = 0 and hence

lim
n→∞

‖un − yn‖ = 0. (3.12)

Combining (3.5), (3.11) and (3.12), we obtain

lim
n→∞

‖Tiun − un‖ = 0 (3.13)

for all i ≥ 1.

Step 5. q ∈
⋂∞

i=1 F (Ti).

Since xn → q and en → 0, xn + en → q. So from (3.11) and (3.12), we have
un → q. Note that Ti (i = 1, 2, · · · ) are weak relatively nonexpansive. Using (3.13),
we can conclude that q ∈ F̃ (Ti) = F (Ti) for all i ≥ 1. Hence q ∈

⋂∞
i=1 F (Ti).

Step 6. q ∈
⋂N

i=1 A−1
i (0∗).

Noting that Θi
n(xn + en) = Jλi

nAi
Θi−1

n (xn + en) for each i = 1, 2, · · · , N , we
obtain ∥∥∥Aλi

n
Θi−1

n (xn + en)
∥∥∥ =

1
λi

n

∥∥∥J
(
Θi−1

n (xn + en)
)
− J

(
Θi

n(xn + en)
)∥∥∥.
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From (3.10) and lim infn→∞ λi
n > 0, we have

lim
n→∞

∥∥Aλi
n
Θi−1

n (xn + en)
∥∥ = 0. (3.14)

We note that
(
Θi

n(xn + en), Aλi
n
Θi−1

n (xn + en)
)
∈ G(Ai) for each i = 1, 2, · · · , N . If

(w,w∗) ∈ G(Ai) for each i = 1, 2, · · · , N , then it follows from the monotonicity of
Ai that 〈

w∗ −Aλi
n
Θi−1

n (xn + en), w −Θi
n(xn + en)

〉
≥ 0. (3.15)

We see that Θi
n(xn +en) → q for each i = 1, 2, · · · , N . Thus, from (3.14) and (3.15),

we have
〈w∗, w − q〉 ≥ 0.

By the maximality of Ai, it follows that q ∈ A−1
i (0∗) for each i = 1, 2, · · · , N .

Therefore q ∈
⋂N

i=1 A−1
i (0∗).

Step 7. q ∈ EP (F ).

From un = Trnyn, we have

F (un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

By (A2), we have

‖y − un‖
‖Jun − Jyn‖

rn
≥ 1

rn
〈y − un, Jun − Jyn〉

≥ −F (un, y) ≥ F (y, un), ∀y ∈ C.

Note that ‖Jun−Jyn‖
rn

→ 0 since lim infn→∞ rn > 0. From (A4) and un → q, we get
F (y, q) ≤ 0 for all y ∈ C. For 0 < t < 1 and y ∈ C, define yt = ty + (1− t)q. Then
yt ∈ C, which implies that F (yt, q) ≤ 0. From (A1), we obtain that 0 = F (yt, yt) ≤
tF (yt, y) + (1 − t)F (yt, q) ≤ tF (yt, y). Thus F (yt, y) ≥ 0. From (A3), we have
F (q, y) ≥ 0 for all y ∈ C. Hence q ∈ EP (F ). From Step 5, Step 6 and Step 7, we
now can conclude that q ∈ F .

Step 8. q = ΠF (x1).

From xn = ΠCn(x1), we have〈
J(x1)− J(xn), xn − z

〉
≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, we also have〈
J(x1)− J(xn), xn − z

〉
≥ 0, ∀z ∈ F . (3.16)
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Letting n →∞ in (3.16), we obtain〈
J(x1)− J(q), q − z

〉
≥ 0, ∀z ∈ F .

This shows that q = ΠF (x1) by Lemma 2.2. We thus complete the proof.

As a direct consequence of Theorem 3.1, we can also apply to a system of convex
minimization problems.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let fi : E → (−∞,∞]
(i = 1, 2, · · · , N) be proper lower semi-continuous convex functions, let F : C×C →
R be a bifunction, and let Ti : C → C (i = 1, 2, · · · ) be weak relatively nonexpansive
mappings such that F :=

[⋂N
i=1(∂f−1

i )(0∗)
]
∩

[⋂∞
i=1 F (Ti)

]
∩ EP (F ) 6= ∅. Let

{en}∞n=1 ⊂ E be the sequence such that limn→∞ en = 0. Define the sequence {xn}∞n=1

in C as follows:

x1 ∈ C1 = C,

z1
n = arg miny∈E

{
f1(y) + 1

2λ1
n
‖y‖2 + 1

λ1
n

〈
y, J(xn + en)

〉}
,

· · ·
zN−1
n = arg miny∈E

{
fN−1(y) + 1

2λN−1
n

‖y‖2 + 1
λN−1

n

〈
y, J(zN−2

n )
〉}

,

yn = arg miny∈E

{
fN (y) + 1

2λN
n
‖y‖2 + 1

λN
n

〈
y, J(zN−1

n )
〉}

,

un = Trnyn,

Cn+1 =
{

z ∈ Cn : supi≥1 φ(z, Tiun) ≤ φ(z, xn + en)
}

,

xn+1 = ΠCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = ΠF (x1).

Proof. By Rockafellar’s theorem [26, 27], ∂fi are maximal monotone operators for
each i = 1, 2, · · · , N . Let λi > 0 for each i = 1, 2, · · · , N . Then zi = Jλi∂fi

(x) if and
only if

0 ∈ ∂fi(zi) +
1
λi

(
J(zi)− J(x)

)
= ∂

(
fi +

1
λi

(‖ · ‖2

2
− J(x)

))
(zi),

which is equivalent to

zi = arg min
y∈E

{
fi(y) +

1
λi

(‖y‖2

2
− 〈y, J(x)〉

)}
.

Using Theorem 3.1, we thus complete the proof.
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If E = H is a real Hilbert space, we then obtain the following results:

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let Ai : H → 2H (i = 1, 2, · · · , N) be maximal monotone operators, let
F : C × C → R be a bifunction, and let Ti : C → C (i = 1, 2, · · · ) be weak relatively
nonexpansive mappings such that F :=

[⋂N
i=1 A−1

i (0)
]
∩

[⋂∞
i=1 F (Ti)

]
∩EP (F ) 6= ∅.

Let {en}∞n=1 ⊂ H be the sequence such that limn→∞ en = 0. Define the sequence
{xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

yn = JλN
n AN

◦ JλN−1
n AN−1

◦ · · · ◦ Jλ1
nA1

(xn + en),

un = Trnyn,

Cn+1 =
{
z ∈ Cn : supi≥1 ‖z − Tiun‖ ≤ ‖z − (xn + en)‖

}
,

xn+1 = PCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = PF (x1).

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let fi : H → (−∞,∞] (i = 1, 2, · · · , N) be proper lower semi-continuous con-
vex functions, let F : C×C → R be a bifunction, and let Ti : C → C (i = 1, 2, · · · ) be
weak relatively nonexpansive mappings such that F :=

[⋂N
i=1(∂f−1

i )(0)
]
∩

[⋂∞
i=1 F (Ti)

]
∩

EP (F ) 6= ∅. Let {en}∞n=1 ⊂ H be the sequence such that limn→∞ en = 0. Define the
sequence {xn}∞n=1 in C as follows:

x1 ∈ C1 = C,

z1
n = arg miny∈H

{
f1(y) + 1

2λ1
n
‖y‖2 + 1

λ1
n

〈
y, xn + en

〉}
,

· · ·
zN−1
n = arg miny∈H

{
fN−1(y) + 1

2λN−1
n

‖y‖2 + 1
λN−1

n

〈
y, zN−2

n

〉}
,

yn = arg miny∈H

{
fN (y) + 1

2λN
n
‖y‖2 + 1

λN
n

〈
y, zN−1

n

〉}
,

un = Trnyn,

Cn+1 =
{

z ∈ Cn : supi≥1 ‖z − Tiun‖ ≤ ‖z − (xn + en)‖
}

,

xn+1 = PCn+1(x1), ∀n ≥ 1.

If lim infn→∞ λi
n > 0 for each i = 1, 2, · · · , N and lim infn→∞ rn > 0, then the

sequence {xn} converges strongly to q = PF (x1).

Remark 3.5. Using the shrinking projection method, we can construct a hybrid
proximal point algorithm for solving a system of the zero-finding problems, the
equilibrium problems and the fixed point problems of weak relatively nonexpansive
mappings.
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Remark 3.6. Since every relatively nonexpansive mapping is weak relatively nonex-
pansive, our results also hold if Ti : C → C (i = 1, 2, · · · ) are relatively nonexpansive
mappings.

Acknowledgement. The authors thank the editor and the referee(s) for valu-
able suggestions. The first author was supported by the Thailand Research Fund,
the Commission on Higher Education and the university of Phayao under grant
MRG5380202. The second and the third authors wish to thank the Thailand Re-
search Fund and the Centre of Excellence in Mathematics, Thailand.

References

[1] Y.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and

applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operator

of Accretive and Monotone Type, Marcel Dekker, New York, pp. 15-50 (1996).

[2] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium prob-

lems, Math. Student 63 (1994) 123-145.

[3] D. Butanriu, S. Reich, A.J. Zaslavski, Asymtotic behavior of relatively nonexpansive

operators in Banach spaces, J. Appl. Anal. 7 (2001) 151-174.

[4] D. Butanriu, S. Reich, A.J. Zaslavski, Weakly convergence of orbits of nonlinear opera-

tors in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003) 489-508.

[5] P. Cholamjiak, A hybrid iterative scheme for equilibrium problems, variational inequal-

ity problems and fixed point problems in Banach spaces, Fixed Point Theory Appl.

(2009), Art. ID 719360, 18 pages, 2009.

[6] P. Cholamjiak, Y.J. Cho, S. Suantai, Composite iterative schemes for maximal monotone

operators in reflexive Banach spaces, Fixed Point Theory Appl. 2011, 2011:7, 10 pages.

[7] P. Cholamjiak, S. Suantai, Convergence analysis for a system of equilibrium problems

and a countable family of relatively quasi-nonexpansive mappings in Banach spaces,

Abstr. Appl. Anal. (2010), Art. ID 141376, 17 pages, 2010.

[8] W. Cholamjiak, S. Suantai, A hybrid method for a countable family of multivalued

maps, equilibrium problems, and variational inequality problems, Discrete Dyn. Nat.

Soc. (2010), Art. ID 349158, 14 pages, 2010.



16 K. Nammanee, S. Suantai and P. Cholamjiak

[9] W. Cholamjiak, S. Suantai, A new hybrid algorithm for variational inequality, general-

ized equilibrium problems and a countable family of quasi-nonexpansive mappings, J.

Nonlinear and Convex Anal. 12 (2011) 381-398.

[10] Y.J. Cho, S.M. Kang, H. Zhou, Approximate proximal point algorithms for finding

zeroes of maximal monotone operators in Hilbert spaces, J. Inequal. Appl. (2008), Art.

ID 598191, 10 pages, 2008.

[11] L.-C. Ceng, Y.-C. Liou, E. Naraghirad, Iterative approaches to find zeros of maximal

monotone operators by hybrid approximate proximal point methods, Fixed Point Theory

Appl. (2011), Art. ID 282171, 18 pages, 2011.

[12] O. Güler, On the convergence of the proximal point algorithm for convex minimization,

SIAM J. Control Optim. 29 (1991) 403-419.

[13] S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators

in Hilbert spaces, J. Approx. Theor. 106 (2000) 226-240.

[14] S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a

Banach space, SIAM J. Optim. 13 (2002) 938-945.

[15] S. Kamimura, F. Kohsaka and W. Takahashi, Weak and strong convergence of a max-

imal monotone operators in a Banach space, Set-Valued Anal. 12 (2004) 417-429.

[16] F. Kohsaka and W. Takahashi, Strong convergence of an iterative sequence for maximal

monotone operators in a Banach space, Abstr. Appl. Anal. 3 (2004) 239-249.

[17] F. Kohsaka, W. Takahashi, Existence and approximation of fixed points of firmly

nonexpansive type mappings in Banach spaces, SIAM J. Optim. 19 (2008) 824-835.

[18] P. Kumam, A hybrid approximation method for equilibrium and fixed point problems

for a monotone mapping and a nonexpansive mapping, Nonlinear Anal.: Hybr. Syst. 2

(2008) 1245-1255.

[19] P. Kumam, A new hybrid iterative method for solution of equilibrium problems and

fixed point problems for an inverse strongly monotone operator and a nonexpansive

mapping, J. Appl. Math. Comput. 29 (2009) 263-280.

[20] B. Martinet, Régularisation d’inéquations variationelles par approximations succes-

sives. Rev. Francaise d’Informatique et de Recherche Opérationelle 4 (1970) 154-159.

[21] S. Matsushita, W. Takahashi, A strong convergence theorem for relatively nonexpan-

sive mappings in a Banach space, J. Approx. Theor. 134 (2005) 257-266.



Strong convergence theorems for maximal monotone operators 17

[22] G. Marino, H.-K. Xu, Convergence of generalized proximal point algorithm, Comm.

Pure Appl. Anal. 3 (2004) 791-808.

[23] N. Onjai-uea, P. Kumam, A new iterative scheme for equilibrium problems, fixed point

problems for nonexpansive mappings and maximal monotone operators, Fixed Point

Theory Appl. (In press).

[24] X. Qin, Y.J. Cho, S.M. Kang, Convergence theorems of common elements for equilib-

rium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. 225

(2009) 20-30.

[25] X. Qin, S.M. Kang, Y.J. Cho, Approximating zeros of monotone operators by proximal

point algorithms, J. Glob. Optim. 46 (2010) 75-87.

[26] R.T. Rockafellar, Characterizations of the subdifferentials of convex functions, Pacific

J. Math. 17 (1966) 497-510.

[27] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J.

Math. 33 (1970) 209-216.

[28] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J.

Control Optim. 14 (1976) 877-898.

[29] S. Saewan, P. Kumam, A hybrid iterative scheme for a maximal monotone operator

and two countable families of relatively quasi-nonexpansive mappings for generalized

mixed equilibrium and variational inequality problems, Abstr. Appl. Anal. (2010), Art.

ID 123027, 31 pages, 2010.

[30] P. Sunthrayuth, P. Kumam, A system of generalized mixed equilibrium problems,

maximal monotone operators and fixed point problems with application to optimization

problems, Abstr. Appl. Anal. (2012), Art. ID 316276, 39 pages, 2012.

[31] Y. Su, H.-K. Xu, X. Zhang, Strong convergence theorems for two countable families

of weak relatively nonexpansive mappings and applications, Nonlinear Anal. 73 (2010)

3890-3906.

[32] Y. Shehu, Iterative approximation method for finite family of relatively quasi nonex-

pansive mappings and systems of equilibrium problems, J. Glob. Optim. (In press).

[33] Y. Shehu, A new hybrid iterative scheme for countable families of relatively quasi-

nonexpansive mappings and system of equilibrium problems, Int. J. Math. Math. Sci.

(2011), Art. ID 131890, 23 pages, 2011.



18 K. Nammanee, S. Suantai and P. Cholamjiak

[34] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Its Application,

Yokohama-Publishers, Yokohama, Japan 2000.

[35] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid meth-

ods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341

(2008) 276-286.

[36] W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium

problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal. 70

(2009) 45-57.

[37] W. Takahashi, K. Zembayashi, Strong convergence theorem by a new hybrid method

for equilibrium problems and relatively nonexpansive mappings, Fixed Point Theory

Appl. (2008), Art. ID 528476, 11 pages, 2008.

[38] K. Wattanawitoon, P. Kumam, Hybrid proximal-point methods for zeros of maximal

monotone operators, variational inequalities and mixed equilibrium problems, Int. J.

Math. Math. Sci. (2011), Art. ID 174796, 31 pages, 2011.

[39] K. Wattanawitoon, P. Kumam, Generalized mixed equilibrium problems for maximal

monotone operators and two relatively quasi-nonexpansive mappings, Thai J. Math. 9

(2011) 165-189.

[40] K. Wattanawitoon, P. Kumam, A new iterative scheme for generalized mixed equilib-

rium, variational inequality problems and a zero point of maximal monotone operators,

J. Appl. Math. (2012), Art. ID 692829, 27 pages, 2012.

[41] U. Witthayarat, Y. J. Cho, P. Kumam, Convergence of an iterative algorithm for

common solutions for zeros of maximal accretive operator with applications, J. Appl.

Math. (In press).

[42] Y. Yao, M.A. Noor, On convergence criteria of generalized proximal point algorithms,

J. Comput. Appl. Math. 217 (2008) 46-55.

[43] Y. Yao, N. Shahzad, Strong convergence of a proximal point algorithm with general

errors, Optim. Lett. (In press).

[44] H. Zegeye, N. Shahzad, Strong convergence theorems for monotone mappings and

relatively weak nonexpansive mappings, Nonlinear Anal. 70 (2009) 2707-2716.


	1
	2
	3
	4
	5
	6
	Introduction
	Preliminaries and lemmas
	Strong convergence theorems


