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CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results
that will be used in the later chapter.

Throughout this research, we let R stand for the set of all real numbers and
N the set of all natural numbers.

2.1 Basic results

Definition 2.1.1. Let E be a linear space over the field K (R or C). A function
|- ]| : E — R is said to be a norm on E if it satisfies the following conditions:

1) [|z|| > 0,Vz € E;

(1)
2) ||z =0 &z =0;
B3) [l +yll < llzll + llyll, Vo, y € E;
(4) [|azx| = |a|||z],Vx € E and Yo € K.
Definition 2.1.2. Let (E,|| - ||) be a normed space.

(1) A sequence {z,} C E is said to converge strongly in X if there exists
x € E such that lim |z, —z|| = 0. That is, if for any € > 0 there exists a positive
n—-a;o

integer N such that ||z, —z| < €,Vn > N. We often write lim z, =zorz, — x

n—=ao

to mean that x is the limit of the sequence {x,,}.

(2) A sequence {x,} C E is said to be a Cauchy sequence if for any € > 0
there exists a positive integer N such that ||z, — x,|| < ¢,V m,n > N. That is,
{z,} is a Cauchy sequence in E if and only if ||z, — x,|| — 0 as m,n — oc.

Definition 2.1.3. A normed space FE is called complete if every Cauchy sequence
in I/ converges to an element in E.

Definition 2.1.4. A complete normed linear space over field K is called a Banach
space over K.

Definition 2.1.5. Let C' be a nonempty subset of normed space F. A mapping
T : C — C is said to be lipschitzian if there exists a constant £ > 0 such that
for all z,y € C

[Te =Tyl < kllz —yl| (2.1.1)

The smallest number k for which 2.1.1/ holds is called the Lipschitz constant of T.

Definition 2.1.6. A lipschitzian mapping 7' : C — ' with Lipschitz constant
k < 1 is said to be a contraction mapping.



Definition 2.1.7. An element x € C' is said to be a fized point of a mapping
T:C—Cift Te =ux.

Definition 2.1.8. [Banach’s contraction mapping principle] Let (M, d) be
a complete metric spaces and let T' : M — M be a contraction. Then T has a
unique fixed point x.

Definition 2.1.9. Let F' and F be linear spaces over the field K.

(1) A mapping T : F — E is called a linear operatorif T(z+y) =Tz +Ty
and T'(ax) = oTx,Vx,y € F and Va € K.

(2) A mapping T': F' — Kis called a linear functional on F if T a is linear
operator.

Definition 2.1.10. A sequence {x,} in a normed spaces is said to converge weakly
to some vector x if lim,,_ ., f(z,) = f(x) holds for every continuous linear func-
tional f. We often write x,, — x to mean that {z,} converge weakly to z.

Definition 2.1.11. Let ' and F be normed spaces over the field K and 7" : F' —
E a linear operator. T is said to be bounded on F' if there exists a real number
M > 0 such that ||T'(z)|| < M||z||,Vx € F.

Definition 2.1.12. Sequence {x,}°, in a normed linear space X is said to be a
bounded sequence if there exists M > 0 such that ||z,|| < M,Vn € N.

Definition 2.1.13. Let I’ and E be normed spaces over the field K, T': I — FE
an operator and ¢ € . We say that T is continuous at c if for every € > 0 there
exists § > 0 such that ||T'(z) — T'(¢)|| < € whenever ||z —c¢|| < d and x € F. If T is
continuous at each x € F', then T is said to be continuous on F.

Definition 2.1.14. Let E and F' be normed spaces. The mapping T': F — F'is
said to be completely continuous if and only if T'(C') is a compact subset of F' for
every bounded subset C' of E.

Definition 2.1.15. A mapping T : C' — C is said to be semicompact if, for
any sequence {z,} in C' such that ||z, — Tz,| — 0 as n — oo, there exists
subsequence {,,} of {x,} such that {z,,} converges strongly to » € C.

Definition 2.1.16. A subset C' of a normed linear space E is said to be convex
set in X if A\x + (1 — A\)y € C for each x,y € C and for each scalar A € [0, 1].

Definition 2.1.17. Let E be a real normed space and C' a nonempty subset of E.
A mapping T : C' — (' is said to be

(a) nonexpansive whenever ||Tz — Ty|| < ||z — y||,Vz,y € C;

(b) asymptotically nonexpansive on C if there exists a sequence {k,} in
[1,00), with lim,, . k, = 1 such that

17"z = Ty < kallz = yll (2.1.2)



for all x,y € C' and each n > 1;

(c) strict pseudo-contractive mapping if there exists a constant 0 < k < 1
such that
1Tz — Ty||* < [lo = ylI* + k[[(I = T) = (I = T)yl*, (2.1.3)
for all z,y € C. (If (2.1.3) holds, we also say that T is a k-strict pseudo-
contraction.)

It is know that if T"is O-strict pseudo-contractive mapping, 7" is nonexpansive
mapping.
(d) asymptotically k-strict pseudo-contractive if there exists a constant 0 <

k < 1 satisfying
|77 = T)? < (L y)lle — yl2 + R = T — (T - Ty, (2.14)

for all z,y € C and for all n € N where v, > 0 for all n such that lim,, .. v, = 0.

(e) asymptotically nonexpansive in the intermediate sense [6] provided T is
uniformly continuous and

limsup sup ([|[T7"2 —T"y|| — ||z — y[|) < 0.

n—oo z,yeC
It is clear that every nonexpansive mapping is asymptotically nonexpansive and
every asymptotically nonexpansive mapping is uniformly Lipschitzian.

(f) asymptotically k-strict pseudo-contractive mapping [39] with sequence
{7n} if there exist a constant k € [0, 1) and a sequence {7, } in [0, 1) with lim,, . 7,
= 0 such that

1772 — T < (1 + )z — gl + klle — Tz — (g — Ty)|* (2.15)
for all z,y € C'and n € N.

Definition 2.1.18. [74] Let C' be a nonempty subset of a Hilbert space H. A
mapping T : C' — C will be called an asymptotically k-strict pseudo-contractive
mapping in the intermediate sense with sequence {v,} if there exist a constant
k € 10,1) and a sequence {v,} in [0, 1) with lim, . v, = 0 such that

limsup sup ([|T"z=T"y|*~(1+7,) |z —y|*—kl[la—T"z—(y=T"y)|*) < 0. (2.1.6)

n—oo x,yeC

Throughout this paper we assume that

Cn := max{0, supC(HT":c =Ty = L+ )|z = ylI* = klle = T — (y = T"y)|*)}-
T,ye

Then ¢, > 0 for all n € N, ¢, — 0 as n — oo and (2.1.0) reduces to the
relation

1772 = Tyl < A+ )lle =yl + kllz =Tz — (y =Ty +cn  (2.1.7)
forall z,y e Cand n € N



Definition 2.1.19. Let H be a real Hilbert space with norm ||-|| and inner product
(-,-) and let C be a closed convex subset of H. For every point z € H, there exists
a unique nearest point in C', denote by Pox, such that

|z — Pox|| < ||z —vy||, forallyeC.

Pe is called the metric projection of H onto C. It is well known that Py is a
nonexpansive mapping of H onto C'.

Definition 2.1.20. Let F be a real Banach space and E* the dual space of E. Let
K be a nonempty, closed and convex subset of E. A (one-parameter) nonexpansive
semigroup is a family § = {7'(¢) : t > 0} of self-mappings of K such that

) T(0)z =z for all z € K
i) T(t+s)x=T(t)T(s)x for all t,s > 0 and x € K

iii) for each € K, the mapping 7'(-)z is continuous;

(i
(
(
(iv) for each t > 0, T'(t) is nonexpansive, that is,
[T(t)x =Tyl < lz—yll, Vo,ye K.

We denote F' by the common fixed points set of §, that is, F':= (1,5, F/(T'(t)).

Definition 2.1.21. Let C' be a nonempty subset of a real Banach space £ and
F . CxC — R, where R is the set of real numbers, be a bifunction. The equilibrium
problem is to find x € C such that

F(z,y) >0, YyeC. (2.1.8)
The solutions set of (2.1.8)) is denoted by EP(F).
For solving the equilibrium problem, we assume that:

Al) F(z,x) =0 for all z € C;

(A1)

(A2) F is monotone, i.e. F(x,y)+ F(y,z) <0 for all z,y € C;

(A3) for all z,y,z € C, limsupy o F(tz + (1 — t)z,y) < F(z,y);
4)

(A

Definition 2.1.22. A Banach space FE is called strictly convex if M < 1 for all
z,y € E with ||z|| = |ly]| = 1 and = # y. A Banach space E is called uniformly
conveg if for each € > 0 there is a 6 > 0 such that for z,y € F with ||z|], |ly]] < 1
and ||z — vyl > € ||z +y| < 2(1 —6) holds. The modulus of convexity of E is
defined by

for all x € C, F(z,-) is convex and lower semi-continuous.

) 1
o(e) = inf {1 = |5+ v+ Izl Iyl <1, llz = oll = €},

for all € € [0,2]. E is uniformly convex if dg(0) = 0, and dg(e) > 0 for all
0 < e < 2. It is known that every uniformly convex Banach space is strictly convex
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and reflexive. Let S(E) = {x € E : ||z|| = 1}. Then the norm of E is said to be
Gateaux differentiable if

i 1% 29l = [l2]

im

t—0 t

exists for each z,y € S(F). In this case E is called smooth. The norm of E is said
to be Fréchet differentiable if for each x € S(E), the limit is attained uniformly
for y € S(E). The norm of E is called uniformly Fréchet differentiable, if the limit
is attained uniformly for z,y € S(E). It is well known that (uniformly) Fréchet
differentiability of the norm of E implies (uniformly) Gateaux differentiability of
the norm of E.

Definition 2.1.23. The duality mapping J : E — 2F" is defined by
J(@)={az" € B (z,2") = |lz]|* = [|[="|]*}

for all z € F.

It is also known that if F is uniformly smooth, then J is uniformly norm-
to-norm continuous on bounded subsets of E (see [88] for more details).

Definition 2.1.24. Let E be a smooth Banach space. The function ¢ : ExXE — R
is defined by

$@,y) = ll=lI* = 2(z, Jy) + ly|I*

for all x,y € E.

From the definition of ¢, we see that

(Il = llyl)* < éz.y) < (Il + llyll)”

and
o(z,y) = o(z,2) + ¢(2,y) + 2(z — 2, Jz — Jy)
for all x,y,z € E.

Definition 2.1.25. Let C' be a closed and convex subset of a smooth Banach
space F and let T' be a mapping from C into itself. A point p in C is said to be
an asymptotic fived point of T [§] if C' contains a sequence {x,} which converges
weakly to p such that lim,, . ||z, — Tz,|| = 0.

The set of asymptotic fixed points of T will be denoted by F (7).
A mapping T is said to be relatively nonexpansive [8, 9] if ﬁ(T) = F(T) and
o(p, Tz) < ¢(p,x) for all p € F(T) and x € C. A point p in C is said to be a
strong asymptotic fized point of T if C' contains a sequence {x,} which converges
strongly to p such that lim,, . ||z, — Tx,|| = 0.

The set of strong asymptotic fixed points of T" will be denoted by F (T). A

mapping T is said to be weak relatively nonezpansive [110] if F(T) = F(T) and
o(p, Tz) < ¢(p,z) for all p € F(T) and z € C.
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It is obvious by definition that the class of weak relatively nonexpansive
mappings contains the class of relatively nonexpansive mappings. Indeed, for any

mapping T : C — C, we see that F(T) C F(T) C F(T). Therefore, if T is a

relatively nonexpansive mapping, then F(T') = F (T) = F (7).

Definition 2.1.26. Let E be a reflexive, strictly convex and smooth Banach space
and let C' be a nonempty, closed and convex subset of E. The generalized projection
mapping, introduced by Alber [3], is a mapping IIo : E — C, that assigns to
an arbitrary point x € FE the minimum point of the function ¢(y,x), that is,
Ilo(z) = Z, where Z is the solution to the minimization problem

&(Z,z) = min{p(y,x) : y € C}.

In a Hilbert space, Il is coincident with the metric projection denoted by
Pe.

Definition 2.1.27. Let E be a reflexive, strictly convex and smooth Banach space.
It is known that A : E — 2F" is maximal monotone if and only if R(J + \A) = E*
for all A > 0, where R(B) stands for the range of B.

Define the resolvent of A by Jxa = (J + AA)71J for all A > 0. It is known
that Jy4 is a single-valued mapping from E to D(A) and A7'(0*) = F(Jy4) for all
A > 0. For each A > 0, the Yosida approximation of A is defined by

1
A\(z) = X(J(a:) — JJaa(2)).
for all z € E. We know that Ay(z) € A(Jya(z)) for all A > 0 and z € E.
Definition 2.1.28. A continuous strictly increasing function ¢ : [0, 00) — [0, 00)
is said to be gauge function if ¢(0) = 0 and lim; ., ¢(t) = c©.

Definition 2.1.29. Let F be a normed space and ¢ a gauge function. Then the
mapping J, : E — 2P defined by

Jo(@) = {f" € E": (2, f7) = |zlellz), If = ¢z}, z€E
is called the duality mapping with gauge function .

In the particular case ¢(t) = ¢, the duality mapping J, = J is called the
normalized duality mapping.

In the case p(t) = t77!, ¢ > 1, the duality mapping J, = J, is called the
generalized duality mapping. It follows from the definition that J,(z) = %J (x)
and J,(z) = [|z]|9%J(z), ¢ > 1.

Remark 2.1.30. For the gauge function ¢, the function ® : [0,00) — [0,00) defined

by .
(I)(t):/o o(s)ds (2.1.9)

is a continuous convex and strictly increasing function on [0,00). Therefore, ® has
a continuous inverse function ® 1.
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It is noted that if 0 < k < 1, then ¢(kz) < ¢(z). Further

(k) = /Oktgo(s)ds _ k/otgo(k:x)dx < k/otgp(m)dx —h(0).

Remark 2.1.31. For each x in a Banach space E, J,(x) = 0®(||z|), where O denotes
the sub-differential.

We also know the following facts:
(i) J, is a nonempty, closed and convex set in E* for each z € E.
(ii) J, is a function when E* is strictly convex.

(iii) If J, is single-valued, then

Jo(Ax) =

and

(@ =y, Jo(x) = Jo()) = (e(lz]l) = (lyD) (=l = llyll), Vz.y € E.

Following Browder [7], we say that a Banach space E has a weakly continu-
ous duality mapping if there exists a gauge ¢ for which the duality mapping J, is
single-valued and continuous from the weak topology to the weak* topology, that
is, for any {z,} with ,, — x, the sequence {.J,(x,)} converges weakly* to J,(x). It
is known that the space /P has a weakly continuous duality mapping with a gauge
function ¢(t) = tP~! for all 1 < p < co. Moreover, ¢ is invariant on [0, 1].



CHAPTER 3

MAIN RESULTS

3.1 Strong convergence theorem by hybrid method for non-
Lipschitzian mapping

In this section, We introduce the hybrid method of modified Mann’s it-
eration for an asymptotically k-strict pseudo-contractive mapping 7" in the inter-
mediate sense which is necessarily lipschitzian. We establish strong convergence
theorem for such method.

Fixed point iteration processes for nonexpansive mappings and asymptoti-
cally nonexpansive mappings in Hilbert spaces and Banach spaces including Mann
and Ishikawa iteration processes have been studied extensively by many authors to
solve nonlinear operator equations as well as variational inequalities: see [0, 32, 39,
90]. However, Mann and Ishikawa iterations processes have only weak convergence
even in Hilbert space: see [39, 90)].

Iteration method for finding a fixed point of an asymptotically k-strict
pseudo-contractive mapping 7' is the modified Mann’s iteration method studied
in [50} [75], 77, 94] which generates a sequence {x,} via

Tpt1 = @y + (1 — )Tz, n >0, (3.1.1)

where the initial guess zyp € C' is arbitrary and the sequence {a,}>2, line in the
interval (0, 1).

In 2007, Takahashi, Takeuchi and Kubota [90] introduced the modification
Mann iteration method for a family of nonexpansive mappings {7,,}. Let xo € H.
For Cy = C and uy; = Pp,x, define a sequence {u,} of C as follows:

Yn = Qply + (]- - an)Tnuna
Crot1={2 € Cy: [lyn — 2|l < lun — 2|I}, (3.1.2)

Unt1 = P, o, 1 €N,

n41
where 0 < o, < a < 1 for all n € N. Then they prove that the sequence {u,}
converges strongly to 2o = Pp(r)®o. In 2008, Kumam [46], introduce an iterative
scheme by a new hybrid method for finding a common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of an equilibrium problem
and the set of solutions of the variational inequality for a-inverse-strongly monotone
mappings in a real Hilbert space.

In 2008, Inchan [30], introduce the modified Mann iteration processes for
an asymptotically nonexpansive mapping. Let C' be a nonempty closed bounded
convex subset of a Hilbert space H, T be an asymptotically nonexpansive mapping



14

of C into itself and let zg € C. For C; = C and z1 = Pr, (), define {x,} as
follows way:

Yn = OpTp + (1 - Oén)Tnxnu
Croi1 =1{2€Cp: |lyn — 2|I* < |lzn — 2||*> + 6, }, (3.1.3)

Tpy1 = Po,. o, n €N,

n+1

where 6, = (1 — a,,)(k* — 1)(diamC)? — 0 asn — oo and 0 < a;,, < a < 1 for all
n € N. Then him prove that {z,} converges strongly to zy = Pp(r)o.

Recently, Inchan and Nammanee [31], introduce the modified Mann iteration
processes for an asymptotically k-strict pseudo-contractive mapping. Let C' be a
nonempty closed convex subset of a Hilbert space H, T' be an asymptotically k-
strict pseudo-contractive mapping of C' into itself such that F(T) # 0 and let
xg € C. For C; = C and 21 = Pg,(z9), define {z,,} as follows way:

Yn = QpZy + (1 — )Tz,
Cop1 = {2 € Cp i lyn — 2|1 < [lzn — 2[° + [k — an(1 — a)]l|2n — T, ||* + 6},
Tpny1 = Po,. o, n €N,
(3.1.4)
where 6, = (diamC)*(1— )y, — 0 as n — oo and limsup,, . a, < 1—k. Then
they prove that {x,} converges strongly to 2o = Ppr)ao.

Inspired and motivated by these fact, we introduce the modified Mann it-
eration processes for an asymptotically k-strict pseudo-contractive mapping in the
intermediate sense by idear in (3.1.4). Let C be a closed convex subset of a Hilbert
space H, T : C' — C be an asymptotically k-strictly pseudo-contractive mapping
in the intermediate sense and let xy € C. For C) = C and z; = Pg,(zg), define
{z,} as follows way:

Yn = Qndp + (1 - an)Tn-Trm
Cri1 = {2 € Ot [lyn — 2|” < lwn — 2l + [k — an(1 — ap)l|wn — T™an|* + 0,
+cn

Tny1 = Pe, %0, n €N,

n+1
(3.1.5)
where 6,, = (diamC)?*(1 — a,,)y, — 0, (n — 00).

We shall prove that the iteration generated by (3.1.5) converges strongly to
zZ0 — PF(T)ZL‘().

In the sequel, the following lemmas are needed to prove our main results.
Lemma 3.1.1. [50] There holds the identity in a Hilbert space H :
(i) =z +yl* = llz* + [yl + 2(z, y), Yo,y € H.

(it) Az + (1= Nyl = Ml2[* + (1 = Mlyl* = A1 = N}z = y[|* for all
x,y € H and X € 0,1].
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Lemma 3.1.2. [65] Let C be a closed convex subset of a real Hilbert space H.
Given x € H and y € C. Then y = Pox if and only if there holds the inequality

(x—y,y—2)>0, VzeCl.

Lemma 3.1.3. [7]] Let C' be a nonempty subset of a Hilbert space H and let
T :C — C a uniformly continuous asymptotically k-strict pseudo-contractive in
the intermediate sense with sequence {v,}. Let {z,} be a sequence in C' such that
|zn — Zpsa|l — 0 and ||z, — T"x,|| — 0 as n — oo. Then ||z, — Tx,|| — 0 as
n — oo.

Lemma 3.1.4. [7)] Let C' be a nonempty closed convex subset of Hilbert space H
and T : C — C' a continuous asymptotically k-strict pseudo-contractive mapping
in the intermediate sense. Then I — T is demiclosed at zero in the sense that {x,}
is sequence in C such that x, — = € C and limsup,,_, ||z, — T"x,|| = 0, then

(I-T)z=0.

Now, we prove strong convergence theorem by hybrid method for asymp-
totically k-strict pseudo-contractive mapping in the intermediate sense in Hilbert
spaces.

Theorem 3.1.5. Let H be a Hilbert space and let C' be a nonempty closed con-
vex bounded subset of H. Let T be a uniformly continuous asymptotically k-strict
pseudo-contractive mapping in the intermediate sense of C into itself such that
F(T) # 0 and let xg € C. For C; = C and x1 = P, xo, assume that the control
sequence {ay,}5° is chosen so that limsup,,_, . o, < 1 —k. Then {z,} generated
by (5.1.5) converges strongly to 2o = Ppr)o.

Proof. We first show that F(T) C C, for all n € N, by induction. For any
z € F(T) we have z € C' = C hence F(T) C Cy. Let F(T) C C,, for each m € N.
For uw € F(T') C C,,. By lemma [3.1.1, we have,

[Ym — ull® = lom@m + (1 — ) T"@m — ull?
= [l (@m — u) + (1 = @) (T2 — w)||?
= | — uf? + (1 — ) | Tz — ul|* — o (1 — i) |2 — T
< amllzm —ull?+ (1= an)[(L+ ) [2m — ull? + k|2 — T2 * + )
— (1 = ) [T — T™ 20|
= (1+ (1 — am)vm) lzm — ull* + (k — @) (1 — am) |2 — T2 1> + €
< [ —ul*+ (1=t ) Yonl| 2 —ul|* + [k = (1 =) ][ €m =T @ ||+
< o —ul]? + [k — am(l — a)]l|Tm — T2 + O + e (3.1.6)

It follows that u € Cy,41 and F(T) C Cpy1, hence F(T) C C, for all n € N.
Next, we show that C), is closed and convex for all n € N. It follows obvious that
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C7 = C is closed and convex. Suppose that C), is closed and convex for each
m € N. Let z; € C,41 C O, with z; — 2. Since C,, is closed, z € (), and
[y — 2l < |2 — 2|® + [k — an(l = am)][|2m — T™20||* + 05 + . Then

Y — 2% = |ym — 2 + 2 — 2|
= 1ym — 21> + 12 — 211> + 2(ym — 2, 25 — 2)
<lzj — zml* + [k — am(l — am)|Tm — T™ @ ]* + Om + cm
Hllzg — 2l + 2llym — 2lll12; — 2.
Taking 7 — oo,
[Yym — 201> < Mz = 2l® + [k = @ (L = an)l|2m = T"@m|1* + O + con-

Hence z € C,41. Let z,y € Cyiy C Cy, with 2 = az + (1 — )y where a € [0, 1].
Since C,, is convex, z € Cp, and ||y, — z||* < [|x — 2] + [k — am(l — ap)]||2m —
mem||2+9m+cma ||ym_y||2 < ||y_a7m||2+[k_am(1_am)]||xm_mem||2+9m+Cma
we have

[y = 2II* = llym — (ez + (1 — a)y)|I”

= lla(ym — ) + (1 = @) (ym — y)|I?

= allym — [ + (1= a)llym = ylI* = (1 = )| (ym —2) = (Ym — ) |I*
< allz = znl® + [k = am(l = an)l|lzm = T"2m|? + 0m + cm)
+(1 =) (ly = zmll® + [k — (1 — ) ][|2m — T @[> + O + 1)
—a(l = a)lly — z|?

= allz—zu|?+(1=a)lly—2ml* — a(l - a)[[(zm — ) = (@m —y)|
+[k — am(1 = ap)]|Tm — T @l|? + Om + Cm

= [la(@m =)+ (1= a) (@ —y)[*+ [k — o (1= am)][[2m = T2 |
+0,, + cm

= ||zm — 2| + [k — am (1 — ap)]||Tm — T T l|? + Om + -

Then z € C,, 1, it follows that C,,,; is closed and convex. Hence C,, is closed and
convex for all n € N. This implies that {z,} is well-defined. From z,, = Pg, xo. By
Lemma 3.1.2, we have

(ro — Tp, n —y) >0, for all y € C,,.
Moreover, by the same proof of Theorem 3.1 of [31], we have that

lim ||z, — zp41] = 0. (3.1.7)
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On the other hand, z,,,; € C,41 C C,, implies that
1y =z * < llon = zppa | + [k = an(l — a)]llzn — T"20 | + 00 + cay (3.1.8)
By the definition of y,,, we have
[Yn = znll = llanan + (1 — an) T2y — 0|
= (1 —a)||[T"x, — 4.
From (3.1.8), we have
(1= o)’ T"@n — zall* = [[yn — @nl®
= Y0 — Tps1 + Tng1 — 242
<y — zpn | + 1201 — 20l* + 20|y — ot [ |Tag1 — 20|
<Nz = Tna || + [k — an(1 — ap)]l|zn — T2y ||1> + 0, + cp
st — all? + 20 — Bnsallnsr — 2l
= [k —on(L—ap)|llan — T @ |* + 2] 2ps1 = @l (|041 — 20|
Fyn = Zngall) + 0n + cn.
It follows that

((1— O‘n)Q — (k= an(1 —an))) ||z, — Tnxn||2 < 2||wng1 — 2| (|70 — 20| +
[Yyn — ng1l]) + On + cn.

Hence
(I=k—an)[|T" 2y — 2| < 2|20 1 =2 || (12041 =20 |+ |Yn—Tnia |) +0n+cn. (3.1.9)

From limsup,,_,, o, < 1 —k, we can chosen ¢ > 0 such that a,, <1 —Fk — € for
large enough n. From (3.1.7) and (3.1.9), we have

lim ||T"z, — z,| = 0. (3.1.10)
From (3.1.7), (3.1.10) and Lemma 3.1.3, we have
lim ||Tz, — z,|| = 0. (3.1.11)

Since H is reflexive and {z,} is bounded we get that () # w,(x,). From Lemma
3.1.4, we have wy(x,) C F(T). By the fact that ||z, — zo|| < ||z0 — 20l for all n >0
where zg = Pp(r) (o) and the weak lower semi-continuity of the norm, we have

[z = 2ol < flwo = wl| < liminfy, o |20 — 20|

< lirnsupn—>oo ||ZL‘0 - ZL’nH < ||J]0 - ZOH’
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for all w € wy(z,). However, since wy,(x,) C F(T), we must have w = z; for all
W € Wy(xy). Thus wy(x,) = {2z} and then x,, — 2. Hence, x, — 20 = Ppr)(z0)
by

|0 — 20]|* = [|#n — @ol|* 4+ 2(xn — @0, 2o — 20) + [|Z0 — 20|

< 2(||z0 — @ol* 4+ (@ — w0, 2o — 20)) — 0 as n — oo.
This complete the proof. U

3.2 A General Iterative Method for a Nonexpansive Semi-
group in Banach Spaces with Gauge Functions

In this section, we study strong convergence of the sequence generated by implicit
and explicit general iterative methods for a one-parameter nonexpansive semigroup
in a reflexive Banach space which admits the duality mapping J,,, where ¢ is a gauge
function on [0, 00).

In 1967, Halpern [29] introduced the following classical iteration for a non-
expansive mapping T : K — K in a real Hilbert space:

Tpr1 = apu+ (1 —ap)Tz,, n >0, (3.2.1)
where {a,} C (0,1) and u € K.

In 1977, Lions [52] obtained a strong convergence provide the real sequence
{a,, } satisfies the following conditions:

C]': hmn—>00 On = 07 C2 ZZO:O Qp = OQ] C3 llmn—>oo an_aoén71 =0.

Reich [69] also extended the result of Halpern from Hilbert spaces to uni-
formly smooth Banach spaces. However, both Halpern’s and Lion’s conditions
imposed on the real sequence {«,} excluded the canonical choice o, = 1/(n + 1).

In 1992, Wittmann [101] proved that the sequence {z,} converges strongly
to a fixed point of T"if {«,} satisfies the following conditions:

Cl: limy, oo, = 0; C2: 377 J vy, = 00; C3: D7 |any1 — | < 00.

Shioji-Takahshi [80] extended Wittmann'’s result to real Banach spaces with
uniformly Gateaux differentiable norms and in which each nonempty closed convex
and bounded subset has the fixed point property for nonexpansive mappings. The
concept of Halpern iterative scheme has been widely used to approximate the fixed
points for nonexpansive mappings (see, e.g., [4, [15, [17, 37, 68, 102, 103] and the
reference cited therein).

Let f : K — K be a contraction. In 2000, Moudafi [60] introduced the
explicit viscosity approximation method for a nonexpansive mapping 1" as follows:

Tp1 = anf(x,)+ (1 —a,)Tx,, n>0, (3.2.2)
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where «,, € (0,1). Xu [105] also studied the iteration process (3.2.2) in uniformly
smooth Banach spaces.

Let A be a strongly positive bounded linear operator on a real Hilbert space
H: that is, there is a constant 4 > 0 such that

(Az,z) > y|z|*, Vo€ H.

A typical problem is to minimize a quadratic function over the fixed points set of
a nonexpansive mapping on a Hilbert space H:

1
in—(A — (z,b
min o (Az, z) — (2,0),
where C'is the fixed points set of a nonexpansive mapping 7" on H and b is a given
point in H.

In 2006, Marino-Xu [56] introduced the following general iterative method
for a nonexpansive mapping 7" in a Hilbert space H:

Tpi1 = @y f(xn) + (I — ATz, n>1, (3.2.3)

where {a,} C (0,1), f is a contraction on H and A is a strongly positive bounded
linear operator on H. They proved that the sequence {x,} generated by (3.2.3)
converges strongly to a fixed point z* € F(T') which also solves the variational
inequality

((A=~f)z*,z—2*) >0, Vo € F(T)
which is the optimality condition for the minimization problem: min,cc %(Ax, x)—

h(z), where h is a potential function for v f (i.e., h'(x) = v f(x) for x € H).

Suzuki [86] first introduced the following implicit viscosity method for a
nonexpansive semigroup {7'(¢) : ¢ > 0} in a Hilbert space:

T, = auu+ (1—a,)T(t,)z, n>1, (3.2.4)

where {a,} C (0,1) and u € K. He proved strong convergence of iteration (3.2.4)
under suitable conditions. Subsequently, Xu [100] extended Suzuki [86]’s result
from a Hilbert space to a uniformly convex Banach space which admits a weakly
sequentially continuous normalized duality mapping.

Motivated by Chen-Song [21], in 2007, Chen-He [11] investigated the implicit
and explicit viscosity methods for a nonexpansive semigroup without integral in a
reflexive Banach space which admits a weakly sequentially continuous normalized
duality mapping:

T, = apf(zn)+ (1 —an)T(th)x,, n>1, (3.2.5)

Tor1 = anf(xy) + (1 —an)T(ty)z,, n>1, (3.2.6)
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where {a,,} C (0,1).

In 2008, Song-Xu [81] also studied the iterations (3.2.5) and (3.2.6) in a
reflexive and strictly convex Banach space with a Gateaux differentiable norm.
Subsequently, Cholamjiak-Suantai [I8] extended Song-Xu's results to a Banach
space which admits duality mapping with a gauge function. Wangkeeree-Kamraksa
[95] and Wangkeeree et al. [96] obtained the convergence results concerning the
duality mapping with a gauge function in Banach spaces. The convergence of
iterations for a nonexpansive semigroup has been studied by many authors (see,
for instance, [33] 47, 48, 51, 64, 87]).

Let E be a real reflexive Banach space which admits the duality mapping
J, with a gauge ¢. Let {T'(t) : t > 0} be a nonexpansive semigroup on E. Recall
that an operator A is said to be strongly positive if there exists a constant ¥ > 0
such that

(Az, Jo(x)) = ||zl (llz]])

and
|al — BA[ = sup [((af — BA)z, J,(2))],

[l=]|<1

where a € [0,1] and 8 € [—1, 1].

Motivated by Chen-Song [21], Chen-He [11], Marino-Xu [56], Colao et al.
[24] and Wangkeeree et al. [96], we study strong convergence of the following
general iterative methods:

T, = ayflzn) + (I — a,A)T(t)x,, n>1, (3.2.7)

Tor1 = apvf(x,) + (I —a, AT (t)x,, n>1, (3.2.8)

where {a,,} C (0,1), f is a contraction on E and A is a positive bounded linear
operator on F.

In the sequel, the following lemmas are needed to prove our main results.
Lemma 3.2.1. [50] Assume that a Banach space E has a weakly continuous duality
mapping J, with gauge .

(i) For all z,y € E, the following inequality holds:

O(llz +yll) < @(llel]) + (v, Jo(z + ).

In particular, for all x,y € F,
o+ ylI* < fl2]* + 2{y, J (x + y)).

(ii) Assume that a sequence {z,} in E converges weakly to a point x € E.
Then the following holds:

lim sup ®( ||z, — y||) = limsup S([|lz, — z[) + Sl — yl])

n—oo n—oo

forall z,y € E.
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Lemma 3.2.2. [96] Assume that a Banach space E has a weakly continuous duality
mapping J, with gauge @. Let A be a strongly positive bounded linear operator on
E with coefficient ¥ > 0 and 0 < p < @(1)||Al|7L. Then ||I — pAll < o(1)(1 — p7).

Lemma 3.2.3. [103] Assume {a,} is a sequence of nonnegative real numbers such
that

an-i—l S (1 - f}/n)an +7n5n7 n 2 17

where {,} is a sequence in (0,1) and {5,} is a sequence in R such that

(a) Y02 n =00; (b) limsup, . 0, <0 or D> 7 |1m0,| < 0.
Then lim,,_,. a,, = 0.

3.2.1 Implicit iteration scheme

In this section, we prove a strong convergence theorem of an implicit iterative
method (3.2.7).

Theorem 3.2.4. Let E be a reflexive which admits a weakly continuous duality
mapping J, with gauge @ such that ¢ is invariant on [0,1]. Let § = {T'(t) : t > 0}
be a nonexpansive semigroup on E such that F # (). Let f be a contraction on E
with the coefficient a € (0,1) and A a strongly positive bounded linear operator with

coefficient ¥ > 0 and 0 < v < WT(I). Let {a,} and {t,} be real sequences satisfying
0<a, <1, t,>0 andlim, . t, =lim, .o, = =0. Then {x,} defined by (3.2.7)

tn
converges strongly to g € F' which solves the following variational inequality:

(A=~v)(q),J,(¢ —w)) <0, YweF. (3.2.9)

Proof. First, we prove the uniqueness of the solution to the variational inequality
(3.2.9) in F'. Suppose p,q € F satisfy (3.2.9), so we have

(A=) ), Jo(p—q)) <0

and
((A=~f)(q), Jp(g —p)) < 0.
Adding the above inequalities, we get

(Alp) — Alq) =(f(p) = [(0)), Jo(p — q)) <0

This shows that

(Alp—q), Jo(p —q)) < {((f(p) — f(0). Jo(p — @),

which implies by the strong positivity of A

Al = allellp — all) < (Alp — q), Jo(p — q)) < ~vallp —qllelllp — qll)-
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Since ¢ is invariant on [0, 1],

()7l = allelp — all) < vallp — qlle(llp — qll)-

It follows that
(e(1)7 —va)|lp —alle(lp —qll) <0

Therefore p = ¢ since 0 < v < WT(I).

We next prove that {x,} is bounded. For each w € F, by Lemma [3.2.2, we
have

[z —wll = [lanyf(zn) + (I = an A)T (tn)2n — wl|
= N = A)T(tn)zn — (I — anA)w + an(yf (2n) = ( ))II
< o)1 = anY)llzn — wl + on(vallz, — wl + [|7f(w) = A(w)])
< lon = wll = anp(Wllen — wll + anyelz, —wl + Oénlhf(w) A(w)];
which yields .
|2 — w]| < WHWC(W) — A(w).

Hence {x,} is bounded. So are {f(x,)} and {AT(t,)x,}.

We next prove that {x,} is relatively sequentially compact. By the reflex-
ivity of ' and the boundedness of {,}, there exists a subsequence {x,,} of {z,}
and a point p in £ such that x,; — p as j — co. Now we show that p € F'. Put
T = Tp,, B = ay, and 55 = 1, fOI‘] e N, fix t > 0. We see that

/5511
lz; = T@pll < D IT((k+ 1)sj)a; — Tks;)ajl|

Tt f55)s0)2s — Tt /5510l + 1T 55)s,)p — T(O)pl

< [t/sIT(sj)x; — asll + oy — pll + T — [t/s5]s5)p — pll
= [t/s;]BilAT (sj)x; — v f (x| + |z — pll + [T = [t/s5]s5)p — pll
< tB8;/s;l|AT (sj)x; — v f ()l + |25 — pll

+ max{[|T(s)p —pll : 0 < s < s5}.
So we have

limsup @(||lz; — T'(¢)p||) < limsup ®(|[z; — p||). (3.2.10)

Jj—0o0 J—0o0

On the other hand, by Lemma [3.2.1 (ii), we have

limsup &([lz; — T(t)pl]) = limsup (||z; —pl)) + (T ()p —pl}). (3211

J—0 J—o0

Combining (3.2.10) and (3.2.11), we have

(T (t)p —pll) <0

This implies that p € F'. Further, we see that



23

25 = plle(ll; = pll)

= (2 —p, Jo(z; — p))

= ((I = B;A)T(s5)x; — (I = B;A)p + Bi(vf () — A(p)), Jo(x; — p))
= ((I = B;A)T(s5)x; — (I = B;A)p, J,(x; — p))

+ B S (5) = f(0), Jo(xj — p)) + B;(7f () — Ap), Jo(x; — )
e = B)lz; = pllelz; —pl)

+ Bivallz; — plle(lz; = pll) + Bi(vf(p) = A(p), Jo(x; — p)).

IN

So we have
1
. — ; — < - —A F—Dp)).
s = pllella; = pll) < Sy W(vf(p) (p), Jo(; = p))
By the definition of ®, it is easily seen that

O(llz; = pll) < llz; = pllellz; — pll)-

Hence
1

mﬁf(@ — A(p), Jp(x; — p)>-

Therefore ®(||z; — p||) — 0 as j — oo since J,, is weakly continuous; consequently,
xr; — p as j — oo by the continuity of ®. Hence {z,} is relatively sequentially
compact.

O(flz; —pll) <

Finally, we prove that p is a solution in F' to the variational inequality
(3.2.9). For any w € F, we see that

(L= T(t)zn = (= T(t)w Jyfan —w)) = (2= w, Iy, — )
— (T (tn)zn — T(tn)w, Jo(z, —w))

> |zn — wlplle, —wl]
= [T (tn)xn = T(tn)wl||Jo(zn — w)
> |z —wljellzn — ]|

= [l = wl[[Jo(zn — w)]
= 0.

On the other hand, we have

(A7 f)(n) = — (I — an )T — T(ta))n,

n

which implies

(A= D)) Toln = w)) = == (L = T(t))n — (1 = T(t)uw, Tyl — w)

+ (A(I = T(tn))zn, Jo(xn — w)
(A(I = T(tn))n, Jo(x, — w). (3.2.12)

IN
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Observe
z; — T(sj)z;|| = Bjllvf(z;) — AT (s;)z;|| — 0,

as j — o0o. Replacing n by n; and letting j — oo in (3.2.12)), we obtain

(A= )(p), Jo(p —w)) <0, Yw € F.

So p € F is a solution of variational inequality (3.2.9); and hence p = ¢ by the
uniqueness. In a summary, we have proved that {z,} is relatively sequentially
compact and each cluster point of {z,} (as n — o) equals ¢q. Therefore x, — ¢
as n — o0o. This completes the proof. O

3.2.2 Explicit iteration scheme

In this section, utilizing the implicit version in Theorem 13.3.9, we consider the
explicit one in a reflexive Banach space which admits the duality mapping J,.

Theorem 3.2.5. Let FE be a reflexive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1]. Let
{T(t) : t > 0} be a nonexpansive semigroup on E such that F # (. Let f
be a contraction on E with the coefficient a € (0,1) and A a strongly positive
bounded linear operator with coefficient ¥ > 0 and 0 < v < WT(U. Let {a,}
and {t,} be real sequences satisfying 0 < a, < 1, > > o, = oo, t, > 0 and
limy, oo tn = limy oo * = 0. Then {x,} defined by (3.2.8) converges strongly to
q € F which also solves the variational inequality (3.2.9).

Proof. Since a,, — 0, we may assume that o, < ¢(1)|]|A]~" and 1 — a,,(p(1)5 —
va) > 0 for all n. First we prove that {x,} is bounded. For each w € F', by Lemma
3.2.2, we have

[Tt —w| = Nlany f(T(tn)zn) + (I — an )T (tn)zn — w)
lan(Yf(T(tn)zn) — A(w)) + (I — an A)T(t0)zn — (I — anA)uw||

< I = an AT (b = Tkl + aall (T (tn)an) = Aw)]
< o)1 = ad)llza — w0l + awyallen = wl + a7 f(w) - Alw)]

= (1) — an(p(1)7 = 7)) 7 = wll + anllyf (w) - A(w)]|

< (1= an(p(1)7 = 70)) en — wl] + anlip(1)7 — e DL =2

(1)7 — e

It follows from induction that

n>1.

_wHMﬂM—AWN}
o)y —ya f

Thus {z,} is bounded, and hence so are {f(z,)} and {AT(¢,)x,}. From Theorem
3.3.9, there is a unique solution ¢ € F' to the following variational inequality:

WMVWMSmw{wl

{(A=~7f)g, Jo(g —w)) <0, Ywe F.
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Next we prove that

limsup((A —7£)q, Jp(q — 2n11)) < 0.

n—-aoo

Indeed, we can choose a subsequence {z,,} of {z,} such that

limsup (A = 7f)q, Jp(q — @n)) = limsup (A = 7£)q, Jo(q — n,))-

n—so00 J——

Further, we can assume that x,, — p € E by the reflexivity of E and the bound-
edness of {z,,}. Now we show that p € F. Put x; = x,,,, 3; = o, and s; = t,,, for
j €N, fix t > 0. We obtain

[t/s;]—1

|z = TPl < D IT((k + 1)sj)z; — T(ks;)zjall

+ [[T°([t/s5]s5)2; — T([t/s5]s;)pll + 1T ([t/s5]s5)p — T (¢)pll
< [t/silllT(sj)zj — wjpall + |lzg — pll + [T = [t/s5]s5)p — pl]
= [t/s;1B;1AT (sj)x; — v f ()| + [z — pll + [ T(¢ = [t/s;]s5)p — Dl
< 18i/sil| AT (s5)x; — v f ()| + [z — |
+ max{|[T(s)p —pl| : 0 < s < 55}
It follows that limsup,_ . ®(||z; — T'(t)pl|) < limsup,,_,. ®(||z; — p||). From
Lemma [3.2.1] (ii) we have

lim sup ®(||lz; — T'(¢)pl]) = limsup ®(|[x; — pl|) + ST (¢)p — pl|)-

n—-:uoo n—-auoQo

So we have ®(||7(t)p — p||) < 0 and hence p € F'. Since the duality mapping .J,, is
weakly sequentially continuous,

limsup((A = 7f)q, Jo(q = 2ni1)) = limsup((A —7f)q, Jo(q — Tn;41))

n—o00 j—00

= ((A—=7f)qg, Jo(a—p)) <0.

Finally, we show that x, — ¢. From Lemma 3.2.1/ (i), we have

(llznss —al) = @([|( - ana tn>xn—(f—anA>q+an(wf<xn>—vf<q>)

+ an(v£(q) ||)

< o = AT (t)e, — )+ 0 (1) — 7 @)
+ an(vf(q) — (q),J (Tn41 —q))

< o(p(1)(1 - any)en — all + anralz. —all)
+ an(7f(a) — Al9), Jp(ns1 — )

= o((¢(1) = anlp(1)7 = 70)) |20 —all)
+ an(1.f(q) = A9), Jp(2nr1 — q))

< (1= anlp(1)y = 7a))@([|lzn — gll)
+ an(vf(q) — A(q), Jp(2ns1 — q))-
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Note that Y7 | a,, = 0o and limsup,, ., (7f(q) — A(q), Jp(znt1 —¢q)) < 0. Using
Lemma 3.2.3, we have x,, — q as n — oo by the continuity of . This completes
the proof. 0

3.3 Convergence theorems for maximal monotone opera-
tors, weak relatively nonexpansive mappings and equi-
librium problems

This section, we introduce hybrid iterative schemes for solving a system of the zero-
finding problems of maximal monotone operators, the equilibrium problem and the
fixed point problem of weak relatively nonexpansive mappings. We then prove,
in a uniformly smooth and uniformly convex Banach space, strong convergence
theorems by using a shrinking projection method. We finally apply the obtained
results to a system of convex minimization problems.

The problem of finding a zero point of maximal monotone operators plays
an important role in optimizations. This is because it can be reformulated to a
convex minimization problem and a variational inequality problem. Many authors
have studied the convergence of such problems in various spaces (see, for examples,
[10, [17, 20, 28|, 411, 56l ©62, 67, 73, 85, 07, 98, 99, 100, 107, 108]). Initiated by
Martinet [57], in a real Hilbert space H, Rockafellar [72] introduced the following
iterative scheme: x; € H and

Tpy1 = Iy, Tn, Vn > 1, (3.3.1)

where {\,,} C (0,00) and Jy, is the resolvent of A defined by Jy := Jya = (I+XA)~!
for all A > 0 and A is a maximal monotone operator on H. Such an algorithm is
called the proximal point algorithm. It was proved that the sequence {x, } generated
by (3.3.1) converges weakly to an element in A~'(0) provided liminf, .o, A, > 0.
Recently, Kamimura-Takahashi [34] introduced the following iteration in a real
Hilbert space: 1 € H and

Tpt1 = QpTp + (1 - Oén)J)\nl'n, Vn > 1,

where {a,,} C [0,1] and {\,} C (0,00). The weak convergence theorems are also
established in a real Hilbert space under suitable conditions imposed on {a,} and

{An}-

In 2004, Kamimura et al. [36] extended the above iteration process to a
much more general setting. In fact, they proposed the following algorithm: z; € F
and

To1 = J Hand(zn) + (1 — ) I (Jr,20)), Yn > 1,

where {a,} C [0,1], {\,} C (0,00) and Jy := Jya = (J + AA)~1J for all A > 0.
They proved, in a uniformly smooth and uniformly convex Banach space, a weak
convergence theorem.
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Recently, Takahashi-Zembayashi [92] introduced the following iterative scheme
for a relatively nonexpansive mapping 7' : C' — (' in a uniformly smooth and uni-
formly convex Banach space: z; € C' and

Cl - C,

Yo = J HanJzn + (1 — o) JTzy,),

u, € C' such that F(un,,y)+ %(y — Uy, Jup, — Jyn) >0 Yy € C,
Cny1 = {Z €Cy: (b(Zvun) < (b(Z,(L‘n)},

Tpi1 = e, (21), YR >1,

where {a,,} C [0,1] and {r,} C (0,00). Such an algorithm is called the shrinking
projection method which was introduced by Takahashi et al. [90]. They proved
that the sequence {z,} converges strongly to an element in F(T') N EP(F) under
appropriate conditions. The equilibrium problem has been intensively studied by
many authors (see, for examples, [19, 21], 22, 23| [44) 45] 606, [78, [79]).

Motivated by the previous results, we introduce a hybrid iterative scheme for
finding a zero point of maximal monotone operators A; : E — 28" (i =1,2,--- | N)
which is also a common element in the solutions set of an equilibrium prob-
lem for I’ and in the fixed points set of weak relatively nonexpansive mappings
T,:C — C (i=1,2,---). Using the projection technique, we also prove that the
sequence generated by a constructed algorithm converges strongly to an element in
[ﬂfil A7HON] N[N, F(T;)] N EP(F) in a uniformly smooth and uniformly con-
vex Banach space. Finally, we apply our results to a system of convex minimization
problems.

Now, we give some useful preliminaries and lemmas which will be used in
the sequel.

Lemma 3.3.1. [35] Let E be a uniformly convex and smooth Banach space and let
{zn},{yn} be two sequences in E. Iflim, o ¢(2n,yn) = 0 and either {x,} or {y,}
is bounded, then lim,_ ||z, — yn|| = 0.

Lemma 3.3.2. [3,135] Let C' be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space E, let x € E and let z € C. Then
z =Te(x) if and only if (y — z, Jx — Jz) <0 for ally € C.

Lemma 3.3.3. [3,135] Let C' be a nonempty, closed and convex subset of a smooth,
strictly convexr and reflexive Banach space E. Then

oz, Iecy) + ¢o(Hey,y) < ¢(x,y) Ve e Candy € E.

Lemma 3.3.4. [58] Let E be a smooth and strictly convex Banach space and let
C be a nonempty, closed and convex subset of E. Let T be a mapping from C' into
itself such that F(T) is nonempty and ¢(u, Tx) < ¢(u, x) for all (u,z) € F(T)xC.
Then F(T) is closed and conver.

Lemma 3.3.5. [41] Let E be a smooth, strictly convex and reflexive Banach space,
let AC E x E* be a mazimal monotone operator with A=1(0*) # 0, and let Jys =
(J+ XA)"T for each A > 0. Then

o(p, Jrna(2)) + ¢(Jaa(z), ) < é(p, z)
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for all x>0, pe A710%), and z € E.

Lemma 3.3.6. [5] Let C' be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let F' be a bifunction from C x C to R satisfying
(A1)-(A4), and let r > 0 and x € E. Then, there exists z € C such that

1
F(z,y)—i—;(y—z,Jz—Jx)ZO, VyeC.

Lemma 3.3.7. [93] Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E, and let F' be a bifunction from C' x C
to R satisfying (A1)-(A4). For all r > 0 and = € E, define the mapping 7, : £ — C
as follows:

1
T.(x)={z€C:F(z,y)+-(y—=2,Jz—Jz) >0, Vye C}.
r
Then, the following hold:
(1) T, is single-valued;

(2) T, is a firmly nonexpansive-type mapping [42], i.e., for all z,y € E,
(Thx — Ty, JTyx — JTy) < T,z — Ty, Jr — Jy);

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

Lemma 3.3.8. [93] Let C be a closed and convex subset of a smooth, strictly
and reflexive Banach space E, let F' be a bifunction from C' x C' to R satisfying
(A1) — (A4), let r > 0. Then

o(p, Trx) + ¢(Trx, x) < ¢(p, ).
forallx € E and p € F(T,).

Finally, we are now ready to prove our mail results.

Theorem 3.3.9. Let E be a uniformly smooth and uniformly convexr Banach space
and let C' be a nonempty, closed and convex subset of E. Let A; : E — 2F" (i =
1,2,--+ ,N) be maximal monotone operators, let F': C' x C'— R be a bifunction,
and let T; : C — C (i = 1,2,---) be weak relatively nonexpansive mappings such
that F = [, A7109)] N [N2, F(T)] N EP(F) # 0. Let {e.}3, C E be the

sequence such that lim, . e, = 0. Define the sequence {x,}>, in C as follows:

T € C = C,
Yn = Iyan 0 Iy-tay, 00 D (T en),
Up = Trnym

Cn+1 = {Z € Cn : SupiZl ¢(Za Tlun) < (b(Z,l'n + en)}a
Tpp1 = e, (21), Vn>1.

If liminf, ..o A, > 0 for each i = 1,2,--- N and liminf, . r, > 0, then the
sequence {x,} converges strongly to q = Ilz(x1).
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Proof. We split the proof into several steps as follows:
Step 1. F C C, for all n > 1.

From Lemma [3.3.4, we know that (12, F|(T;) is closed and convex. From
Lemma 13.3.7 (4), we also know that EP(F) is closed and convex. On the other
hand, since A; (i = 1,2,---, N) are maximal monotone, A;'(0*) are closed and
convex for each i = 1,2, -+, N; consequently, ﬂfil A;71(0%) is closed and convex.
Hence F is a nonempty, closed and convex subset of C.

We next show that C), is closed and convex for all n > 1. Obviously, C; = C'
is closed and convex. Now suppose that C} is closed and convex for some k € N.
Then, for each z € Cy and i > 1, we see that ¢(z, Tjug) < ¢(z,z) is equivalent to

2(z, Jy) — 2(2, JTiug) < [lag]|® — || Tiug]*.
By the construction of the set C} 1, we see that

Cry1 = {2€Cy: Sl>1£) o(z, Tyuy) < ¢z, ) }
= ﬂ {z € Ck: oz, Tiu) < ¢z, mp) }.

=1

Hence Cjy.4 is closed and convex. This shows, by induction, that C), is closed and
convex for all n > 1. It is obvious that F C C} = C'. Now, suppose that F C C}
for some k € N. For any p € F, by Lemma [3.3.5 and Lemma 3.3.8, we have

o(p, Tru) < d(p,ur) = &(p, Tr uk)
< &p, k)
- ¢(p, JA;CVAN © JAQ—IAN,l 0---0 JAiAl(xk + €k))
< gb(p, JA,QV*AN_l CINN24y , 070 JA,gAl(ﬂﬁk + @k))
< 0P, Dazay 0 Iaia, (T + er))
<  o(p, Iaia, (@k + er))
< op,mk + ex). (3.3.2)

This shows that F C Cyy1. By induction, we can conclude that F C ), for all
n>1.

Step 2. lim,, .o ¢(z,, 1) exists.
From z,, = ¢, (z1) and 2,41 = I¢,,, (21) € Chq1 C O, we have
d(xn, 1) < O(xpy1, 1), Yn > 1. (3.3.3)
From Lemma 3.3.3, for any p € F C C,,, we have

¢(wn, 71) = o(llc, (21), 21) < ¢(p, 1) = G(p, 2n) < G(p, 21). (3.3.4)
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Combining (3.3.3) and (3.3.4), we conclude that lim,, . ¢(z,,z1) exists.
Step 3. limy, o || J(Tiyn) — J (20 + €n)|| = 0.

Since x,, = Ilg, (z1) € Cy, C C, for m > n > 1, by Lemma [3.3.3] it follows
that

(T, T) = (T, e, (21)) < (@, 21) — d(Ile, (21), 21)
= (T, x1) — O(Tn, T1).

Letting m,n — oo, we have ¢(x,,,z,) — 0. By Lemma [3.3.1, it follows that
|@m — zn|| — 0 as m,n — oo. Therefore, {x,} is a Cauchy sequence. By the
completeness of the space F and the closedness of ', we can assume that z,, —
q € C as n — oo. In particular, we obtain

lim ||zp41 — @] = 0.
Since e,, — 0, we have
lim ||zp41 — (2, +€,)] = 0. (3.3.5)

Since 41 = Il¢, ., (21) € Cpyq, for each @ > 1,

¢<$n+1, Eun) S ¢(5En+17 T + en)
= <xn+17 J(xn—l—l) - J(xn + 6n)> + <xn+1 - (xn + en); J(xn+1)>

Since FE is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. It follows from (3.3.5) and by the boundedness of {x,} that

lim ¢(xpq1, Tiu,) =0

forall i =1,2,---. So from Lemma [3.3.1, we have
lim ||z,11 — Tiu,|| =0
and

lim ||Tiu, —x,|| =0

n—oo

and, since e, — 0, therefore

lim || Tiu, — (x, +e,)|| = 0. (3.3.6)
for all ¢ = 1,2,---. Since J is uniformly norm-to-norm continuous on bounded
subsets of I,

lim || J(Tyu,) — J(zy + €,)]| =0 (3.3.7)

foralle=1,2,---.

Step 4. lim, . ||Tiu, —uy|| =0foralli =1,2,---.
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Denote ©F, = Jyi 4, 0 Jyi1,  0---0Jyy, foreach i € {1,2,---, N} and
©2% = I for each n > 1. We note that y, = OY(x, + e,) for each n > 1.

To this end, we will show that

lim ‘J(@;(:Bn +e,)) — J(OL (2, + €n)) H =0

foralle=1,2,---,N.
For any p € F, by (3.3.2), we see that

gb(p’ @nN_l(xn + 6n>) < d)(pu @nN_2<xn + en))
< o0y (wn +en))

IN

O(p, (20 + €n))- (3.3.8)

Since p € F, by Lemma [3.3.5 and (3.3.8)), it follows that

gb(yn, N (x, + en))
o(p, O (0 + €n)) — O(p, yn)
¢, (0 + €n)) — AP, Yn)
<b(p, (Tn + en)) O(ps un)
¢(p’ (Tn + en)) — o(p, Tiuy)

Hxn + 6n||2 - HTLunH2 - 2<pa J(xn + en) - J(Tzun)>

VAN VAN VANRVAN

From (3.3.0) and (3.3.7), we get that limn_,ooqb(yn,@flv_l(xn + en)) = 0. So we
obtain
lim |y, — €, (20 + €a)|| = 0. (3.3.9)

Again, since p € F,
o(e)~ 1(:1:n + en), Oz, + €,))
<o, O P zn+€)) — d(p. ON Hzn + €1))

(
(p, Ty + € ) ¢(pv 6711\[_1($n + en))
(p, (0 + €3)) — &(p, Tyuy).

From (3.3.0) and (3.3.7), we get that

< S

IN A

lim ¢(0) " (zn + €n), OF (2 + €4)) = 0.

n—oo

It also follows that

lim ||©) (), + en) — O) (2, + €,)|| = 0.

n—oo

Continuing in this process, we can show that

lim | (2, +e,) —O) P (zn+en)|| =+ = lim [|©) (2, +en) — (xn+en)| = 0.

n—oo n—oo
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So, we now conclude that

lim ‘@;(xn ten) — Oz, + e[ =0 (3.3.10)
for each ¢ = 1,2,--- , N. By the uniform norm-to-norm continuity of .J, we also
have ' .

lim ‘J(@;(xn +en)) = J (O (y + €0)) H —0 (3.3.11)

for each i = 1,2,--- , N. Using (3.3.10)), it is easily seen that

lim ||y, — (2, + €,)]| = 0. (3.3.12)

n—oo

From w,, =T, y,, by Lemma 3.3.8] it follows that

O(unsyn) = A(TrYns Yn)

¢, yn) — O, T, yn)

P(p; Tn + €n) — A(p, un)
O(p,xn + €n) — (p, Tiun).

IA N CIA

This implies that lim,, .. ¢(u,,y,) = 0 and hence

Tim flu, =y, = 0. (3.3.13)
Combining (3.3.0), (3.3.12) and (3.3.13), we obtain

nll_{go | T, — un|| =0 (3.3.14)
for all 7 > 1.

Step 5. g € (2, F(T).

Since z,, — ¢ and e, — 0, =, + e, — ¢. So from (3.3.12) and (3.3.13),
we have u, — ¢. Note that T; (i = 1,2,---) are weak relatively nonexpansive.
Using (3.3.14), we can conclude that ¢ € F(T;) = F(T;) for all « > 1. Hence

q € i, F(T).
Step 6. ¢ € N, A71(0%).

Noting that O (z, + €,) = Jyi 4,04 ' (z, + €,) for each i =1,2,--- | N, we
obtain

Y

n

HAA; sz_l (zn + €n)

J(OL (2 + €n)) — J(Oh(zn + €,)) H

From (3.3.11) and liminf, .., A}, > 0, we have

lim ||Ay; 0 (2, + €n)|| = 0. (3.3.15)

n—od
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We note that (@;(asn + en), Ay Oz, + en)> € G(4;) for each i =1,2,--- ,N.
If (w,w*) € G(4;) for each i = 1,2,--- , N, then it follows from the monotonicity
of A; that

<w* — Ay O (e, w — Oz, + en)> >0, (3.3.16)
We see that O (z, + e,) — q for each i = 1,2,--- | N. Thus, from (3.3.15) and

(3.3.16), we have
(w*,w—q) > 0.

By the maximality of A;, it follows that ¢ € A;'(0*) for each i = 1,2,--- , N.
Therefore ¢ € (X, A71(0%).
Step 7. g € EP(F).

From w,, =T, y,, we have

1
F(up,y) + —(y — up, Ju, — Jy,) >0, Vy e C.

T'n
By (A2), we have

Juy, — Jyp 1
ly — w12 =Tl S L = )

n n

v

Note that M — 0 since liminf, ., 7, > 0. From (A4) and w, — ¢, we get
F(y,q) <0f0rally€C For 0 <t < 1and y € C, define y, = ty + (1 — t)q.
Then y; € C, which implies that F(y;,q) < 0. From (Al), we obtain that 0 =
F(ye, ye) < tF(ye,y) + (1 = ) F(y,q) < tF(ys,y). Thus F(y;,y) > 0. From (A3),
we have F(q,y) > 0 for all y € C. Hence ¢ € EP(F). From Step 5, Step 6 and
Step 7, we now can conclude that ¢ € F.

Step 8. ¢ = [Ix(x1).
From z,, = Il¢g, (x1), we have
(J(x1) = J(20), 20 — 2) >0, VzeC,.
Since F C C,, we also have
(J(x1) — J(2p), 2, — 2) >0, Vz€ETF. (3.3.17)
Letting n — oo in (3.3.17)), we obtain
<J(931) —J(q),q— z> >0, VzelF.

This shows that ¢ = lIz(x;) by Lemma [3.3.2. We thus complete the proof. m

As a direct consequence of Theorem 3.3.9, we can also apply to a system of
convex minimization problems.
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Theorem 3.3.10. Let E be a uniformly smooth and uniformly convexr Banach space
and let C' be a nonempty, closed and convex subset of E. Let f; : E — (—o00, 0] (i =
1,2,--+ ,N) be proper lower semi-continuous convex functions, let F': C' x C'— R
be a bifunction, and let T; : C' — C (i = 1,2,---) be weak relatively nonexpansive
mappings such that F := [ﬂﬁil(afjl)(()*)] N[N, F(T)] N EP(F) # 0. Let
{en}2, C E be the sequence such that lim,,_. e, = 0. Define the sequence {x,}°,
i C as follows:

( T € Cl = C,
2h = arg minyer { fiy) + s Iyl + 3y, T(@a+ ea)) |,

2N = arg minger { fv1(y) + geb=r vl + = (. T ) |
o = arg minyer { fly) + gy Iyl + 5 (v, T ) |

U =15, Yn,

Cuir = {2 € Cu s supioy 6(2, Toun) < 92,0+ e2) |-

Tpy1 =1le,  (21), Vn>1.

\

If liminf, ..o A\, > 0 for each i = 1,2,--- N and liminf, .7, > 0, then the
sequence {x,} converges strongly to q = Ilx(xy).

Proof. By Rockafellar’s theorem [70, [71], O f; are maximal monotone operators for
each i = 1,2,--- ,N. Let X' > 0 for each ¢ = 1,2,--- , N. Then 2z’ = Jygy,(x) if
and only if
) 1 )
0 € Ofi(z")+ V(J(ZZ) — J(z))
= o ()
ALY 2 ’

which is equivalent to

1

+ )\Z(H?JQ” - <ya J(x)))}

Using Theorem [3.3.9, we thus complete the proof. O

7 = arg ryrgg{fi(y)
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Abstract

We introduce the hybrid method of modified Mann’s iteration for
an asymptotically k-strict pseudo-contractive mapping 7' in the inter-
mediate sense which is necessarily lipschitzian. We establish strong con-
vergence theorem for such method. The result extend and improve the
recent ones announced by Inchan and Nammanee, Inchan and concern
result of Takahashi, Takeuchi and Kubota [Strong convergence theorems
by hybrid methods for families of nonexpansive mappings in Hilbert
space, J. Math. Anal. Appl. 341 (2008), 276-286], and many others.
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1 Introduction

Let C' be a nonempty subset of a Hilbert space H and T : C' — C a
mapping. Recall the following concepts.

(i) T is nonexpansive if [|Tx — Ty| < ||z — y|| for all z,y € C.
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ii) T is asymptotically nonexpansive (cf. [4]) if there exists a sequence {k, }
of positive numbers satisfying lim,, .., k, = 1 and [|T"z — T™y|| < ky,||x — y||
for all integers n > 1 and x,y € C.

iii) 7" is uniformly Lipschitzian if there exists a constant L > 0 such that
| Tz — T"y|| < L||z — y|| for all integers n > 1 and all z,y € C.

(iv) T is asymptotically nonexpansive in the intermediate sense [2] provided
T is uniformly continuous and

limsup sup (||T"z — T"y|| — ||z — y||) < 0.

n—oo  x,ye

It is clear that every nonexpansive mapping is asymptotically nonexpansive
and every asymptotically nonexpansive mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings in the intermediate
sense was introduced by Bruck, Kuczumow and Reich [2] and iterative methods
for the approximation of fixed points of such types of non-Lipschitzian map-
pings have been studied by Agarwal, O’'Regan and Sahu [1], Bruck, Kuczumow
and Reich [2], Chidume, Shahzad and Zegeye [3], Kim and Kim [9] and many
others.

In 2008, Kim and Xu [11] introduced the concept of asymptotically k-strict
pseudo-contractive mappings in Hilbert space as below:

Definition 1.1. Let C' be a nonempty subset of a Hilbert space H. A map-
ping T : C — C s said to be an asymptotically k-strict pseudo-contractive
mapping with sequence {7,} if there exist a constant k € [0,1) and a sequence
{Vn} in [0,1) with lim, . v, = 0 such that

1T = T"y[I* < (1 +y0)llz = ylI* + kllo = Tz = (y = T"y)|I> (1)

forall z,y € C andn € N.

They studied weak and strong convergence theorems for this class of map-
pings. It is important to note that every asymptotically k-strict pseudo-
contractive mapping with sequence {7, } is a uniformly L-Lipschitzian mapping

with L = sup{w :n € N}

Recently, Sahu et al.[16] introduced the concept of asymptotically k-strict
pseudo-contractive mappings in the intermediate sense which are not neces-
sarily Lipschitzian (see Lemma 2.6 [16]) as below:

Definition 1.2. Let C' be a nonempty subset of a Hilbert space H. A map-
ping T : C'" — C will be called an asymptotically k-strict pseudo-contractive
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mapping in the intermediate sense with sequence {v,} if there exist a constant
k €10,1) and a sequence {~,} in [0,1) with lim,,_o v, = 0 such that

limsup sup (| 7"z —T"y|I* = (1 +a)lle —yl* = kllz = "z = (y = T"y)I*) < 0.
n—oo  x,ye
(2)

Throughout this paper we assume that

¢n := max{0, supC(IIT”x—T”yHZ—(1+%)Ilw—yll2—kHw—T”:r—(y—T”y)IF)}.
x,Yye

Then ¢, > 0 for alln € N, ¢, — 0 as n — oo and (2) reduces to the
relation

17" = T"y|* < L+ )lle =yl + kllo =T — (y = T"y)|P + e (3)
forall z,y € C andn € N

Remark 1.3. If ¢, = 0 for alln € N in (3) then T is an asymptotically
k-strict pseudocontractive mapping with sequence {v,}.

Fixed point iteration processes for nonexpansive mappings and asymptot-
ically nonexpansive mappings in Hilbert spaces and Banach spaces including
Mann and Ishikawa iteration processes have been studied extensively by many
authors to solve nonlinear operator equations as well as variational inequali-
ties: see [5, 13, 17, 20]. However, Mann and Ishikawa iterations processes have
only weak convergence even in Hilbert space: see [10, 20].

[teration method for finding a fixed point of an asymptotically k-strict
pseudo-contractive mapping 7" is the modified Mann’s iteration method studied
in [12, 18, 19, 21] which generates a sequence {z,} via

Tpt1 = Ay + (1 — )T x,, n >0, (4)

where the initial guess zy € C' is arbitrary and the sequence {a,}5°, line in
the interval (0,1).

In 2007, Takahashi, Takeuchi and Kubota [20] introduced the modification
Mann iteration method for a family of nonexpansive mappings {7, }. Let
xg € H. For Cy = C and uy = Pg, o, define a sequence {u,} of C' as follows:

Yn = QpUp + (1 - &n)Tnuna
Coi1 =12 € Cp: [lyn — 2|| < [lun — 2|}, (5)

Unt1 = Po, %0, n €N,

n+1
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where 0 < «a,, < a < 1 for all n € N. Then they prove that the sequence
{un} converges strongly to 2o = Pr(rzo. In 2008, Kumam [8], introduce an
iterative scheme by a new hybrid method for finding a common element of
the set of fixed points of a nonexpansive mapping, the set of solutions of an
equilibrium problem and the set of solutions of the variational inequality for
a-inverse-strongly monotone mappings in a real Hilbert space.

In 2008, Inchan [6], introduce the modified Mann iteration processes for an
asymptotically nonexpansive mapping. Let C' be a nonempty closed bounded
convex subset of a Hilbert space H, T be an asymptotically nonexpansive
mapping of C' into itself and let xy € C. For C; = C and z1; = Pg,(zg), define
{z,} as follows way:

Yn = QpTp + (1 - &n)Tnxna
C1n-l—1 = {Z S Cn : ||yn - ZH2 S ||In - ZH2 + Qn}v (6>

Tpt1 :PC Xo, HEN,

n+1

where 6,, = (1 — a,,) (k2 — 1)(diamC)* — 0 asn — oo and 0 < o, < a < 1 for
all n € N. Then him prove that {x,} converges strongly to zy = Prr)o.

Recently, Inchan and Nammanee [7], introduce the modified Mann iteration
processes for an asymptotically k-strict pseudo-contractive mapping. Let C' be
a nonempty closed convex subset of a Hilbert space H, T be an asymptotically
k-strict pseudo-contractive mapping of C' into itself such that F(T') # 0 and
let zg € C. For Cy = C and x; = Pg, (), define {z,} as follows way:

Yn = QpTy + (1 - Oén)Tn-rny
Co1 ={2 € Cot[lyn — 21> < Ml — 2[” + [k — (1 — @)z — T2 || + 0},

Tni1 = Peo, ., 9, n €N,

n+1

(7)
where 6,, = (diamC)?*(1 — a,,)y, — 0 as n — oo and limsup,,_,, @, < 1 — k.
Then they prove that {z,} converges strongly to zy = Prr)o.

Inspired and motivated by these fact, it is the purpose of this paper to
introduce the modified Mann iteration processes for an asymptotically k-strict
pseudo-contractive mapping in the intermediate sense by idear in (7). Let C be
a closed convex subset of a Hilbert space H, T': C' — C' be an asymptotically
k-strictly pseudo-contractive mapping in the intermediate sense and let xy € C.
For Cy = C and xy = Pg, (), define {x,} as follows way:

Yn = QnTy + (1 - C“n>Tnxna
Coi1={2€Cp: lyn — 2|I* < |lon — 2|1 + [k — an(1 — a)|||ln — T2 |1? + 0n + 0}y

Tny1 = Pe, 0, n €N,

n+1

(8)
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where 0,, = (diamC)?*(1 — a,,)v, — 0, (n — 00).

We shall prove that the iteration generated by (8) converges strongly to
20 — P F(T)xo-

2 Preliminary

A point x € C is a fixed point of T" provided Tx = x. Denote by F(T')
the set of fixed points of T'; that is, F(T) = {x € C : Tx = x}. Let H be a
real Hilbert space with norm || - || and inner product (-, -) and let C be a closed
convex subset of H. For every point x € H, there exists a unique nearest point
in C, denote by Pcx, such that

|lx — Pox|| < ||z —vyl|, forallyeC.

Ppg is called the metric projection of H onto C. It is well known that Pg is a
nonexpansive mapping of H onto C'.

We collect some lemmas which will be used in the proof for the main result.

Lemma 2.1. [1}] There holds the identity in a Hilbert space H :
(i) l +ylI* = llz* + [[yl* + 2(z, y), Vo, y € H.

(ii) Az + (1 = Nyll* = Allz]]* + (1 = Myl = A1 = Nz — y||* for all
x,y € H and X\ € [0,1].

Lemma 2.2. [15] Let C be a closed convex subset of a real Hilbert space
H. Given x € H andy € C. Then y = Pcox if and only if there holds the
inequality

(r—y,y—2) >0, VzeCl.

Lemma 2.3. [16] Let C' be a nonempty subset of a Hilbert space H and let
T :C — C a uniformly continuous asymptotically k-strict pseudo-contractive
in the intermediate sense with sequence {7, }. Let {x,} be a sequence in C' such
that ||z, — xpi1| — 0 and ||z, —T"x,|| — 0 as n — oo. Then ||z, —Tz,|| — 0
as n — 00.

Lemma 2.4. [16] Let C be a nonempty closed convex subset of Hilbert space
H and T : C — C a continuous asymptotically k-strict pseudo-contractive
mapping in the intermediate sense. Then I — T 1is demiclosed at zero in the
sense that {x,} is sequence in C' such that z,, = x € C' and limsup,,_, ||z, —
T"z,|| =0, then (I —T)xz = 0.
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3 Main Results

In this section, we prove strong convergence theorem by hybrid method
for asymptotically k-strict pseudo-contractive mapping in the intermediate
sense in Hilbert spaces.

Theorem 3.1. Let H be a Hilbert space and let C' be a nonempty closed
convex bounded subset of H. LetT' be a uniformly continuous asymptotically
k-strict pseudo-contractive mapping in the intermediate sense of C' into itself
such that F(T) # 0 and let xy € C. For Cy = C and x1 = P, o, assume that
the control sequence {c,}o2 | is chosen so that limsup,,_,. o, < 1—k. Then
{xn} generated by (8) converges strongly to zo = Pp(r)xo.

Proof. We first show that F'(T) C C, for all n € N, by induction. For any
z € F(T) we have z € C = C} hence F(T) C C;. Let F(T) C C,, for each
m € N. For u € F(T) C C,,. By lemma 2.1, we have,

[ym — ul]® = [Jmm + (1 = o) T — ul|?
| (@ —u) + (1 = ) (T T — u)H2

= O‘mHIm - u||2 +(1— O‘m)”Tml'm - u||2 - am(l - O‘m)”xm - memH2

< apllem = ull® + (1 = an)[(1+ ) lom — ul®
F kT — T™ 2|2 + ] — am (1 — o) || — T™ 2|
= (I+ 1= am)vm)l|Tm — u||2 + (k= am)(1 — am)|[2m — memH2 +Cm
<l = ull* + (1 = )yl — ull?
+[k — am(1 — a)]|Zm — T Tm||* + cm
< Nl — ul)? 4+ [k — am(1 — am)]||zm — T T ||* + O + Cm (1)

It follows that u € Cy,11 and F(T') C Cpyq1, hence F(T) C C, for all n € N.
Next, we show that C, is closed and convex for all n € N. It follows obvious
that 'y = C'is closed and convex. Suppose that C,, is closed and convex for
each m € N. Let z; € Cp,y1 C Gy, with z; — 2. Since (), is closed, z € Cy,
and [lym — 5[* < 2 — 2wl + [k — a1 — aw)||2m — T™Tml|* + 0m + cn.
Then
Yy = 2% = Nym — 2 + 2j — 2|
= ym — 2l + 2 = 2l + 2(ym — 25,2 — 2)
< zj— 2mll? + [k — am(l = am)l|Tm — T"Zml|* + O + Cm
+llzg = 2l* + 2llym — zllz5 — 2.

Taking 7 — oo,

Hym - Z||2 < HZ - meQ + [k —am(1 - O‘m)]me - memH2 + 0 + -
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Hence z € Cpyq. Let 2,y € Cpyr C Cp, with 2 = ax + (1 — a)y where
a € [0,1]. Since C,, is convex, z € Cy, and ||y, — z||* < ||z — zn||? + [k —
am (1 = am)|@m — T @1 + O + oy 1Ym — Yl < Nly — 2] + [k — (1 —
am))|Tm — T™@m||* + Om + cm, we have

[y — (@ + (1 = a)y)[|?

= le(ym —2) + (1 — ) (ym — v)

allym — 2 + (1 = ) lym = ylI* = a(l = )| (ym — 2) = (Ym — ¥)

o[z — meQ + [k — am (1 — ap)]l|lzm — mean2 + O + Cm)

+(1 —a)(lly — meQ + [k — am(1 — o) l|zm — memH2 + O + Cm)

—a(l - a)lly — |

= allr —anl* + (1 = )|y — znll® — a(l = a)l[(wm — ) = (xm —y)
+[k — am(1 — am)]|Zm — T Tm||> + O + cm

= |la(zmn —2) + (1 = a)(@n = P + [k = an(l — ap)][[zm — T
+0, + cm

= |lzm — 2|]* + [k — am (1 — an)]|Zm — Tz ||* + O + .

lym — 21*
I”

I*

IN

Then z € C),41, it follows that C),,1 is closed and convex. Hence C), is
closed and convex for all n € N. This implies that {x,} is well-defined. From
x, = Po,x9. By Lemma 2.2, we have

(xo — xp,x, —y) >0, for all y € C,.
Moreover, by the same proof of Theorem 3.1 of [7], we have that
Tl = ]| = 0. @)
On the other hand, x,,; € C,,1 C C,, implies that

Hyn - xn—&—lHQ < Hxn - xn+1||2 + [k - an(l - O‘n)]Hxn - Tnl'nH2 + 0n + c,
(3)
By the definition of y,,, we have
Hyn - xn” = Hanxn + (1 —an)Tx, — xn”

= (1 —ap)||T"x, — z,|.
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From (3), we have

(1 - O‘n)QHTnxn - xn||2 = Hyn - anQ

= Hyn — Tp+l T Tpy1 — anQ

< Nlyn =z l® + 20 — 2l
2|y — Zpsa | |2nr1 — zn
< len = 2o+ [k = an(l = an)ll|lon — T,

+0n + cn + || Tng1 — anQ + 2[|yn — Tnga ||| Tni1 — 24l
= [k—an(l—ap)ll|lz, - Tnan2
+2)| 201 — nll(|2nr1 — Zall + Y0 — ot l])
+0,, + ¢,,.
It follows that

(1= an)? = (k = an(1 —an)llan =T 2 lI* < 2l|zn1 — 2ol (201 — 20l +
Hyn - xn+1H) + en + Cp.

Hence

(1 =k = an) [ T"xp = 2ol < 20|2nt1 = zall([ 2011 = 20l + [[Yn = Tnsa[l) + 60 + cn.

(4)

From limsup,,_,,, o, < 1 — k, we can chosen € > 0 such that a,, <1 —-Fk —¢
for large enough n. From (2) and (4), we have

lim ||T"z, — z,|| = 0. (5)

n—:oo

From (2), (5) and Lemma 2.3, we have

lim || Tx, — z,| =0. (6)

n—oo

Since H is reflexive and {z,,} is bounded we get that () # w,,(x,). From Lemma
2.4, we have wy,(z,) C F(T'). By the fact that ||z, — x| < ||z0 — xo]| for all
n > 0 where 2g = Pr(1) (x0) and the weak lower semi-continuity of the norm,
we have

lzo — 20| < ||lxo — w|| < liminf, o ||xo — 4|
< limsup,,_ |70 — 2| < [J20 — 20,

for all w € wy,(z,). However, since wy,(z,) C F(T), we must have w = z, for
all w € wy(x,). Thus wy(r,) = {20} and then x, — zy. Hence, x,, — 2o =
P F(T) (-To) by

|z — 20l|* = |2 — 2o ||* + 2(xn — 20, 10 — 20) + ||Z0 — 20]|?
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< 2(|Jz0 — wol|* + (xn — 20, To — 20)) — 0 as n — oo.
This complete the proof. O

Using this Theorem 3.1, we have the following corollaries.

Corollary 3.2. [7] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let T be an asymptotically k-strict pseudo-contractive
mapping of C into itself such that F(T) # 0 and let vy € C. For C; = C
and x1 = Peo,xg, assume that the control sequence {a,}5°, is chosen so that
limsup, . an, < 1 —k. Then {x,} generated by (7) converges strongly to
20 = Pp(1)o.

Corollary 3.3. [6] Let H be a Hilbert space and let C' be a nonempty closed
conver subset of H. Let T be an asymptotically nonexpansive mapping of C
into itself such that F(T) # 0 and let xg € C. For C; = C and x1 = Pg, o,
defined {z,} as follows;

Yn = QpTp + (1 - C“n>Tnxn7
On—H - {Z S On : Hyn - Z||2 S ||xn - Z||2 +9TL}’ (7>

Tny1 = Pe, %0, n €N,

n+1
where 0,, = (1 — ay,) (k2 — 1)(diamC)* — 0 asn — o0 and 0 < o, < a < 1 for
alln € N. Then {x,} generated by (7) converges strongly to zo = Pp)xo.

Corollary 3.4. ([20] Theorem 4.1) Let H be a Hilbert space and C be a
nonempty closed convex subset of H. LetT' be a nonexpansive mapping of C
into H such that F(T) # 0 and let o € H. For Cy = C and u; = P, xy,
define a sequence {u,} of C as follows:

Yn = QpUp + (1 - Oén)TUn,

Cnp1 =A{2 € Co: [lyn — 2[| < [Jun — 21}, (8)
Uny1 = Pe, o, n €N,

where 0 < o, < a < 1 for all n € N. Then {u,} converges strongly to
20 — PF(T)-IO-
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We study strong convergence of the sequence generated by implicit and explicit general iterative
methods for a one-parameter nonexpansive semigroup in a reflexive Banach space which admits
the duality mapping J,, where ¢ is a gauge function on [0, ). Our results improve and extend
those announced by G. Marino and H.-K. Xu (2006) and many authors.

1. Introduction

Let E be a real Banach space and E* the dual space of E. Let K be a nonempty, closed, and
convex subset of E. A (one-parameter) nonexpansive semigroup is a family § = {T(t) : t > 0}
of self-mappings of K such that

G
(ii

(ii

) T(0)x = x forall x € K,

YT(t+s)x=T()T(s)x forallt,s >0and x € K,

) for each x € K, the mapping T'(-)x is continuous,
)

(iv) for each t > 0, T(t) is nonexpansive, that is,

ITHx-THt)y|| <||x-v|, VxyekK (1.1)

We denote F by the common fixed points set of §, that is, F := (5o F(T(t)).



2 Journal of Applied Mathematics

In 1967, Halpern [1] introduced the following classical iteration for a nonexpansive
mapping T : K — K in a real Hilbert space:

Xp1 =agu+ (1-a,)Tx, n>0, (1.2)

where {a,} € (0,1) and u € K.

In 1977, Lions [2] obtained a strong convergence provide the real sequence {a,} satis-
ties the following conditions:

Cl: limy o oy = 0; C2: 32ty = 00; C3: limy, oo (a4 — @y-1) /% = 0.

Reich [3] also extended the result of Halpern from Hilbert spaces to uniformly smooth
Banach spaces. However, both Halpern’s and Lion’s conditions imposed on the real sequence
{a,} excluded the canonical choice a, =1/(n + 1).

In 1992, Wittmann [4] proved that the sequence {x,} converges strongly to a fixed
point of T if {a,} satisfies the following conditions:

Cl: limy, o oty = 0; C2: > 77 gy = 00; C3: X077 |1 — | < o0

Shioji and Takahashi [5] extended Wittmann's result to real Banach spaces with uni-
formly Gateaux differentiable norms and in which each nonempty closed convex and
bounded subset has the fixed point property for nonexpansive mappings. The concept of
the Halpern iterative scheme has been widely used to approximate the fixed points for
nonexpansive mappings (see, e.g., [6—12] and the reference cited therein).

Let f : K — K be a contraction. In 2000, Moudafi [13] introduced the explicit viscosity
approximation method for a nonexpansive mapping T as follows:

Xp+1 = ‘an(xn) +(1-a,)Tx,, n2>0, (1.3)

where a, € (0,1). Xu [14] also studied the iteration process (1.3) in uniformly smooth Banach
spaces.

Let A be a strongly positive bounded linear operator on a real Hilbert space H, that is,
there is a constant y > 0 such that

(Ax,x) >¥llx|>, VYxeH. (1.4)

A typical problem is to minimize a quadratic function over the fixed points set of a
nonexpansive mapping on a Hilbert space H:

1
ine _ 1.
minz (Ax, x) - (x,b), (1.5)

where C is the fixed points set of a nonexpansive mapping T on H and b is a given point in
H.

In 2006, Marino and Xu [15] introduced the following general iterative method for a
nonexpansive mapping T in a Hilbert space H:

X1 = anY f(xn) + (I —anA)Tx,, n2>1, (1.6)
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where {a,} C (0,1), f is a contraction on H, and A is a strongly positive bounded linear
operator on H. They proved that the sequence {x,} generated by (1.6) converges strongly to
a fixed point x* € F(T) which also solves the variational inequality

((A-yf)x*,x-x*) >0, VxeF(T), (1.7)

which is the optimality condition for the minimization problem: min,ec(1/2)(Ax, x) — h(x),
where h is a potential function for yf (i.e., h'(x) = yf(x) for x € H).

Suzuki [16] first introduced the following implicit viscosity method for a nonexpan-
sive semigroup {T(t) : t > 0} in a Hilbert space:

Xp=apu+ (1—a,)T(ty)x,, n>1, (1.8)

where {a,} € (0,1) and u € K. He proved strong convergence of iteration (1.8) under suitable
conditions. Subsequently, Xu [17] extended Suzuki’s [16] result from a Hilbert space to a
uniformly convex Banach space which admits a weakly sequentially continuous normalized
duality mapping.

Motivated by Chen and Song [18], in 2007, Chen and He [19] investigated the implicit
and explicit viscosity methods for a nonexpansive semigroup without integral in a reflexive
Banach space which admits a weakly sequentially continuous normalized duality mapping:

Xn = anf(xn) + (A -a)T(ty)x,, n2x1, (1.9)

Xn+l = “nf(xn) + (1= an)T(ty)xn, n>1, (1.10)

where {a,} C (0,1).

In 2008, Song and Xu [20] also studied the iterations (1.9) and (1.10) in a reflexive and
strictly convex Banach space with a Gateaux differentiable norm. Subsequently, Cholamjiak
and Suantai [21] extended Song and Xu's results to a Banach space which admits duality
mapping with a gauge function. Wangkeeree and Kamraksa [22] and Wangkeeree et al. [23]
obtained the convergence results concerning the duality mapping with a gauge function in
Banach spaces. The convergence of iterations for a nonexpansive semigroup and nonlinear
mappings has been studied by many authors (see, e.g., [24-38]).

Let E be a real reflexive Banach space which admits the duality mapping ], with a
gauge ¢. Let {T(t) : t > 0} be a nonexpansive semigroup on E. Recall that an operator A is
said to be strongly positive if there exists a constant y > 0 such that

(Ax, Jo(x)) 2 Ylixllollx]),
laT = pA|| = sup |((al - pA)x, Jy(x))

llxll<1

(1.11)

7

where a € [0,1] and € [-1,1].
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Motivated by Chen and Song [18], Chen and He [19], Marino and Xu [15], Colao et al.
[39], and Wangkeeree et al. [23], we study strong convergence of the following general itera-
tive methods:

Xn = any f(xp) + (I —a, A)T(ty)x,, n2>1, (1.12)
Xne1 = Y f(x0) + (I — a2, A)T (tn)x,, n21, (1.13)

where {a,} C (0,1), f is a contraction on E and A is a positive bounded linear operator on E.

2. Preliminaries

A Banach space E is called strictly convex if ||x + y||/2 < 1 for all x,y € E with ||x]| = ||y|| =1
and x #y. A Banach space E is called uniformly convex if for each e > 0 there is a 6 > 0 such
that for x, y € E with ||x||, ||y|| £ 1 and ||[x - y|| > €, |x + y|| £ 2(1 - 6) holds. The modulus of
convexity of E is defined by

. 1
6c(e) = 1nf{l - Hz(x+y)H x|yl <1 |[x -y = e}, (2.1)

for all € € [0,2]. E is uniformly convex if 6g(0) = 0, and 6g(e) > 0 for all 0 < € < 2. It is known
that every uniformly convex Banach space is strictly convex and reflexive. Let S(E) = {x €
E : ||x|| = 1}. Then the norm of E is said to be Gateaux differentiable if

g 1t = Dl 2.2)
t—0 t

exists for each x,y € S(E). In this case E is called smooth. The norm of E is said to be Fréchet
differentiable if for each x € S(E), the limit is attained uniformly for y € S(E). The norm of E is
called uniformly Fréchet differentiable, if the limit is attained uniformly for x, y € S(E). Itis well
known that (uniformly) Fréchet differentiability of the norm of E implies (uniformly) Gateaux
differentiability of the norm of E.

Let pg : [0,00) — [0, 00) be the modulus of smoothness of E defined by

pe(t) =sup{ 5 (Ilx+ll + [x =yl -1: xeSE), Iyl <t}. @3)

A Banach space E is called uniformly smooth if pp(t)/t — 0ast — 0. See [40-42] for
more details.
We need the following definitions and results which can be found in [40, 41, 43].

Definition 2.1. A continuous strictly increasing function ¢ : [0,00) — [0, o0) is said to be
gauge function if ¢(0) = 0 and lim;_, -, ¢p(f) = oo.
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Definition 2.2. Let E be a normed space and ¢ a gauge function. Then the mapping J, : E —
2E" defined by

Jo@) = {f € E": (x, f*) = xlloCllx), [|f*]| = ¢(llxD}, x€E, (2.4)

is called the duality mapping with gauge function ¢.

In the particular case ¢(t) = t, the duality mapping J, = ] is called the normalized
duality mapping.

In the case ¢(t) = t97!, g > 1, the duality mapping J, = J, is called the generalized
duality mapping. It follows from the definition that J,(x) = ¢(||x[[)/[lx[[J(x) and J,;(x) =
2 (x), g > 1.

Remark 2.3. For the gauge function ¢, the function @ : [0,0) — [0, o0) defined by
t
D(t) = f p(s)ds (2.5)
0

is a continuous convex and strictly increasing function on [0, o). Therefore, @ has a continu-
ous inverse function @'

It is noted that if 0 < k < 1, then ¢(kx) < ¢(x). Further

kt t t
dkt) = | ¢(s)ds = kj p(kx)dx < kf p(x)dx = k(t). (2.6)
0 0 0

Remark 2.4. For each x in a Banach space E, J,(x) = 0®(||x||), where 0 denotes the sub-
differential.

We also know the following facts:

(i) J, is a nonempty, closed, and convex set in E* for each x € E,
(i) J, is a function when E* is strictly convex,

(iii) If J, is single-valued, then

_ sign(Vp(lAx]) e en
oy vl VreEAdeR 27)

(x =y, Jo(x) = Jo(y)) = (o(llxI) = ol D) Ulxll = [l¥]),  ¥x,y €E.

Jo(Ax)

Following Browder [43], we say that a Banach space E has a weakly continuous duality
mapping if there exists a gauge ¢ for which the duality mapping J, is single-valued and
continuous from the weak topology to the weak* topology, that is, for any {x,} with x, — x,
the sequence {],(x,)} converges weakly* to J,(x). It is known that the space €7 has a weakly
continuous duality mapping with a gauge function ¢(t) = tP~! for all 1 < p < oo. Moreover, ¢
is invariant on [0, 1].
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Lemma 2.5 (See [44]). Assume that a Banach space E has a weakly continuous duality mapping J,
with gauge ¢.

(i) For all x,y € E, the following inequality holds:
©([lx + yll) < D(Uxll) + (. Jp (x + ))- (28)
In particular, for all x,y € E,

lc+yI” < 1% + 2(y, T (x + ). (2.9)

(ii) Assume that a sequence {x,} in E converges weakly to a point x € E. Then the following
holds:

lim sup® (||, - y||) = limsup®(|lxc, — x]|) + O([|x - y||) (2.10)

n—oo n— oo

orall x,y € E.
f y

Lemma 2.6 (See [23]). Assume that a Banach space E has a weakly continuous duality mapping J,
with gauge ¢. Let A be a strongly positive bounded linear operator on E with coefficient y > 0 and
0<p < @()I|AI™. Then [II - pAll < p(1)(1 - pY).

Lemma 2.7 (See [12]). Assume that {a,} is a sequence of nonnegative real numbers such that

aps1 < (1 - Yn)an + Yn6nr n2 1/ (211)

where {y,} is a sequence in (0,1) and {6,} is a sequence in R such that
(@) 324 Y = 007 (b) limsup, 6, < 0 0r 52, |yubin| < o0,
Then lim,, _, ,a, = 0.

3. Implicit Iteration Scheme
In this section, we prove a strong convergence theorem of an implicit iterative method (1.12).

Theorem 3.1. Let E be a reflexive which admits a weakly continuous duality mapping ], with gauge
@ such that ¢ is invariant on [0,1]. Let § = {T(t) : t > 0} be a nonexpansive semigroup on E such that
F#0. Let f be a contraction on E with the coefficient & € (0,1) and A a strongly positive bounded
linear operator with coefficient y > 0 and 0 < y < yp(1)/a. Let {a,} and {t,} be real sequences
satisfying 0 < a, < 1, t, > 0 and lim,,_, ot, = lim, o, /t, = 0. Then {x,} defined by (1.12)
converges strongly to q € F which solves the following variational inequality:

((A=vf)(a),Jp(q-w)) <0, VweF. (3.1)
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Proof. First, we prove the uniqueness of the solution to the variational inequality (3.1) in F.
Suppose that p, g € F satisfy (3.1), so we have

((A=yf)(p) Jo(p-q)) <0,

(3.2)
((A-vf)(@).Jy(a-p)) <0.
Adding the above inequalities, we get
(Alp) - Ala) -v(f(p) - f(@)). Jy(p—q)) <O. (33)
This shows that
(Alp-a) Jo(p—a)) <v{f(p) = f(a). Jy(P—49)), (34)
which implies by the strong positivity of A
vl =allo(llp -all) < (A(p-a). Jo(p = 9)) < vallp - alle(llp - 4l)- (3.5)
Since ¢ is invariant on [0, 1],
eMYllp - allellp - all) < vallp - allellp - 4l)- (3.6)
It follows that
(WY =ya)|lp - allo(llp - all) <0. (3.7)
Therefore p = g since 0 < y < (yop(1))/a.
We next prove that {x,} is bounded. For each w € F, by Lemma 2.6, we have
llxc, — w0l = ”‘Xan(xn) + (I —anA)T (tn)xn - w”
= ||(I = anA)T (tn)xn — (I — 2y A)w + an (y f (xn) — Aw)) || 3)
<) (1 = any)llxn —w|| +an(yallx, —w| + ||y f(w) - A(w)]|)
< loen = wll = anp(V)yllxn = w|| + anyalxn — w| + an|y f (w) - A(w)||,
which yields
loew =01l € [y fa0) ~ AGw)| (39)
nTE My e ‘ '

Hence {x,} is bounded. So are { f(x,)} and { AT (t,)x,}.
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We next prove that {x,} is relatively sequentially compact. By the reflexivity of E and
the boundedness of {x,}, there exists a subsequence {x,, } of {x,} and a point p in E such that
Xp, — pasj — oo. Now we show thatp € F. Put x; = xy,, f; = a, and s; = t,,; for j € N, fix
t > 0. We see that

[t/si]-1

|lxj - T)p|| < 1T ((k +1)sj)x; = T(ks;)xju]|
k=0

by

t
< H 175 -1+ 1~ ) +

+ +

(o
R
(-

| | - vrcn e o+

tB;
< S—;llAT(Sf)xj =yf )|+ |lx - pll

+max{||T(s)p-p|| : 0 < s < s}

So we have

limsup®@(||x; - T(H)p||) <limsup®@(||x; - pl|)- 3.11)

jooo joo
On the other hand, by Lemma 2.5 (ii), we have

tim sup®(|}z; - T(0pl]) = limsup®d(|lx; ~pll) + ©(ITOR ~pl). (312

jooe jooe
Combining (3.11) and (3.12), we have

o(||[Ttp-p|) <O. (3.13)
This implies that p € F. Further, we see that

lxj = pllo(llx; = pll) = (xj = p. T (x; = p))
=((I-BjA)T(sj)x; = (I - BjA)p, Jo(x; - p))
+Bi(rf(x;) =vf(P) Jo(xj =) + By f () = A(p). Jy (x; = P))
<oA= B7)llx; = pllollx - pl)

+Biyal|lx; - plle(llx; —p|) +Bi{yf (p) = Ap), Jo(x; - p))-
(3.14)
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So we have
1
Xj— Xj— S—— -A(p), Jo(x; - . 3.15
Il =Pl =Pl < Caye— 2 rf () = AW). Jo(x; =) (3.15)
By the definition of @, it is easily seen that
O(llx; = pl) < lIx; = pllollx =PI (3.16)
Hence
1
D(|[x; — S— -A(p), Jo(xi—p)). 3.17
(b =Pl < e —y2 (7 () = AR) Jo () =) (3.17)

Therefore @(||x; —p||) — Oasj — oo since J, is weakly continuous; consequently, x; — p as
j — oo by the continuity of ®. Hence {x,} is relatively sequentially compact.

Finally, we prove that p is a solution in F to the variational inequality (3.1). For any
w € F, we see that

<(I =T (tn))xn— (I - T(tn))w/]tp(xn - w)> = <xn - w, ]tp(xn - w)>

- <T(tn)xn - T(tn)w/ ]tp(xn - w)>

2 ||loxn — wllepllxn — wl|
- ”T(tn)xn - T(tn)w” II]tp(xn - w)” (318)

2 |loxn = wllgl|xn — wl|
= Nlxn = wll|| Ty (3 = w) ||

=0.

On the other hand, we have
(A=7f) ) =~ (I~ AT ~T(t), (319)

which implies

<(A - Yf) (xn)r]tp(xn - w)> = _[Xln<(1 =T (tn))xn— (I - T(tn))wrjtp(xn - w)>
+ (AT = T(t) X, Jy (tn — ) (3.20)
< <A(I =T (tn))xn, ](p(x‘rl - w)>

Observe

lxj = T(sj)x;|| = Billyf (xj) = AT (s) x| — 0, (3.21)
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as j — oo. Replacing n by n; and letting j — oo in (3.20), we obtain
(A=v)) ) Jp(p-w)) <0, VweF. (3.22)

So p € F is a solution of variational inequality (3.1); and hence p = g by the uniqueness. In a
summary, we have proved that {x,} is relatively sequentially compact and each cluster point
of {x,} (asn — oo) equals q. Therefore x, — gasn — oo. This completes the proof. O

4. Explicit Iteration Scheme

In this section, utilizing the implicit version in Theorem 3.1, we consider the explicit one in a
reflexive Banach space which admits the duality mapping J,,.

Theorem 4.1. Let E be a reflexive Banach space which admits a weakly continuous duality mapping
Jo with gauge ¢ such that ¢ is invariant on [0,1]. Let {T(t) : t > 0} be a nonexpansive semigroup
on E such that F#0. Let f be a contraction on E with the coefficient « € (0,1) and A a strongly
positive bounded linear operator with coefficient y > 0and 0 <y <y ¢(1)/a. Let {a,} and {t,} be
real sequences satisfying 0 < an, <1, 377 ay = o0, ty, > 0 and limy, oty = lim, 0, /t, = 0.
Then {x,} defined by (1.13) converges strongly to q € F which also solves the variational inequality
(3.1).

Proof. Since a,, — 0, we may assume that a,, < oD A" and 1 —a,(p(1)y —ya) > 0 for all n.
First we prove that {x,} is bounded. For each w € F, by Lemma 2.6, we have
lxns1 —wl| = ”aan(xn) + (I =, A)T (tn)xn — w”
= ” (I - anA)T(ty)xn — (I —a,A)w + “n()’f(xn) - A(w)) ”

< o)1= any)llxn = wll + anyalxn — wl + au||y f (w) - A(w)||

= (p(1) = an (V)Y = ya)) |12 = || + ata]|y f (w) = A(w) ]| b
< (1= an(p(VF — y)) l1xn = ]l + (9 (1) — ya1)) ”Yf(;(“l’;?"_f‘y(:") I
It follows from induction that
R E max{ s - o 1L~ 2] } n21 2)

Thus {x,} is bounded, and hence so are { f(x,)} and { AT (t,)x,}. From Theorem 3.1, there is
a unique solution g € F to the following variational inequality:

((A-yf)a,Jy(g-w)) <0, YweF. (4.3)
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Next we prove that

limsup((A - yf)q,J(q = xn1)) <0. (44)

n— oo

Indeed, we can choose a subsequence {x,, } of {x,} such that

limsup((A - £)q, J(q - %)) = limsup (A= yf)q, Jy (4= %2,) ) (4.5)

n—oo ]—>OO

Further, we can assume that Xp, = pE€E by the reflexivity of E and the boundedness of {x,}.
Now we show that p € F. Put x; = x,,,, fj = an; and s; = 1y, for j €N, fix t > 0. We obtain

[t/Sj]—l

[|xje1 = T(t)p]| < IT((k +1)sj)x; = T (ksj)xju]]
k=0

L(ERER(E

t
<[ |pres st s«

+ +

(o
e w
(-

_ [Sij]ﬁfllAT(si)xj rF) -l +

tp;
< S_;||AT(Sf)xf =yl + llx -l

+max{||T(s)p-p|| : 0 < s <sj}.

It follows that limsup, , @ (||x; - T(t)p||) < limsup, , ®(||x;—pl|). From Lemma 2.5 (ii) we
have

lim sup®(l; ~ T(H)p[]) = lim sup®(x; - p[|) + DT O)p - p])- (4.7)

n—oo

So we have @(||T(t)p - pll) < 0 and hence p € F. Since the duality mapping J, is weakly
sequentially continuous,

limsup((A=y£)q, Jp (4 = Xnn)) = limsup ((A=1£)q, Jp (4 = %a1) )
nme U (4.8)

=((A-yf)a.J,(a-p)) <O.
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Finally, we show that x, — g. From Lemma 2.5 (i), we have

(|| = ql]) = DT - an AT (tn)xn = (I = anA)q + an(yf (xn) = ¥ (q))
+an(yf(q) - A(@)))

< O(||(I - anA) (T (ta)xn = ) + an(yf (xn) = vf (@) ])
+an(yf(q) = A@), Jy(xn1 - 9))

<O(p(1) (1 = an¥) || — ql| + anyal|x. - q]|)
+an(yf(q) = A@), Jp (X1 - q))

= O((p(1) — an (V)7 — ya)) [ xn 4l
+an(yf(9) = Aq), Jp(Xn1 = q))

< (1= an(p)y - ya) ) ([|xn — ql|)
+an(yf(q) = A(q), Jp(Xne1 - 9))-

(4.9)

Note that Y72 a, = oo and limsup, . _(yf(q) — A(9), Jo(xn1—9)) < 0. Using Lemma 2.7, we
have x, — gasn — oo by the continuity of ®@. This completes the proof. O

Remark 4.2. Theorems 3.1 and 4.1 improve and extend the main results proved in [15] in the
following senses:

(i) from a nonexpansive mapping to a nonexpansive semigroup,

(ii) from a real Hilbert space to a reflexive Banach space which admits a weakly contin-
uous duality mapping with gauge functions.
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1 Introduction

Let E be a real Banach space and C' a nonempty subset of E. Let £* be the dual
space of E. We denote the value of 2* € E* at z € E by (2*,z). Let T : C — C be
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a nonlinear mapping. We denote by F(T') the fixed points set of T', that is, F(T') =
{r€C:2x="Tz}. Let A: E — 2F" be a set-valued mapping. We denote D(A) by
the domain of A, that is, D(A) = {z € E: Az # ()} and also denote G(A) by the
graph of A, that is, G(A) = {(x,z*) € E x E* : z* € Az}. A set-valued mapping
A is said to be monotone if (z* — y*,x —y) > 0 whenever (z,z*), (v,y*) € G(A).
It is said to be mazimal monotone if its graph is not contained in the graph of any
other monotone operators on E. It is known that if A is maximal monotone, then
the set A=1(0*) = {z € E: 0* € Az} is closed and convex.

The problem of finding a zero point of maximal monotone operators plays an
important role in optimizations. This is because it can be reformulated to a convex
minimization problem and a variational inequality problem. Many authors have
studied the convergence of such problems in various spaces (see, for examples, [0,

, L1, 12016, 22,23, 25, 29, 30, 38, 39, 40, 41, 42, 13]). Initiated by Martinet [20],
in a real Hilbert space H, Rockafellar [28] introduced the following iterative scheme:

z1 € H and
Tnt1 = JIn,Tn, YN >1, (1.1)

where {\,} C (0,00) and J), is the resolvent of A defined by Jy := Jya = (I+AA)~!
for all A > 0 and A is a maximal monotone operator on H. Such an algorithm is
called the proxzimal point algorithm. It was proved that the sequence {x,} generated
by (1.1) converges weakly to an element in A~1(0) provided liminf, . A, > 0. Re-
cently, Kamimura-Takahashi [13] introduced the following iteration in a real Hilbert

space: x1 € H and
Tpgl = QnTn + (1 — ap )y, Tn, VR >1,

where {ay,} C [0,1] and {\,} C (0,00). The weak convergence theorems are also

established in a real Hilbert space under suitable conditions imposed on {ay,} and
{\n}.

In 2004, Kamimura et al. [15] extended the above iteration process to a much
more general setting. In fact, they proposed the following algorithm: z; € E and

Tnpr = I (and (@) + (1= an) J(Jr,20)), V> 1,

where {a,} C [0,1], {\} C (0,00) and Jy := Jya = (J + AA)~1J for all A > 0.
They proved, in a uniformly smooth and uniformly convex Banach space, a weak

convergence theorem.

Let F': C' x C — R, where R is the set of real numbers, be a bifunction. The
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equilibrium problem is to find x € C' such that
F(z,y) >0, YyeC. (1.2)

The solutions set of (1.2) is denoted by EP(F).

For solving the equilibrium problem, we assume that:

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e. F(z,y)+ F(y,z) <0 for all z,y € C,

(A3) for all x,y,z € C, limsupy o F (tz + (1 — t)z,y) < F(=,y);

(A4) for all z € C, F(x,-) is convex and lower semi-continuous.

Recently, Takahashi-Zembayashi [37] introduced the following iterative scheme

for a relatively nonexpansive mapping 7' : ¢ — C in a uniformly smooth and

uniformly convex Banach space: x1 € C' and

C,=C,
Yn = I andzy + (1 — an)JTzy),

up € C' such that F(un,y)+ %<y — Up, JUup — Jyn) >0 Yy € C,
Crnt1=1{2 € Cn : d(2,un) < (2, 20)},

Tpp1 =, (21), Yn>1,

where {a,,} C [0,1] and {r,} C (0,00). Such an algorithm is called the shrinking
projection method which was introduced by Takahashi et al. [35]. They proved
that the sequence {z,} converges strongly to an element in F(7) N EP(F') under
appropriate conditions. The equilibrium problem has been intensively studied by

many authors (see, for examples, [5, 7, 8, 9, 18, 19, 24, 32, 33]).

Motivated by the previous results, we introduce a hybrid iterative scheme for
finding a zero point of maximal monotone operators 4; : E — 2F" (i =1,2,--- | N)
which is also a common element in the solutions set of an equilibrium problem
for F' and in the fixed points set of weak relatively nonexpansive mappings 7; :
C — C (i = 1,2,--+). Using the projection technique, we also prove that the
sequence generated by a constructed algorithm converges strongly to an element in
[ﬂz LATHO0M]N[NGS, F(T;)]NEP(F) in a uniformly smooth and uniformly convex
Banach space. Finally, we apply our results to a system of convex minimization

problems.
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2 Preliminaries and lemmas

In this section, we give some useful preliminaries and lemmas which will be used

in the sequel.

Let E be a real Banach space and let U = {z € E : ||z|| = 1} be the unit sphere
of E. A Banach space F is said to be strictly convex if for any x,y € U,

x #y implies |z +yl| <2.

A Banach space F is said to be uniformly convez if for each e € (0, 2], there exists
6 > 0 such that for any =,y € U,

|z —y|| > e implies |z 4+ y| < 2(1—79).

It is known that a uniformly convex Banach space is reflexive and strictly convex.
The function 0 : [0, 2] — [0, 1] which called the modulus of converity of E is defined
as follows:

(5(6):inf{1— HHy

2

|- wyeB Nzl =yl =1, o —yll = <.

Then E is uniformly convex if and only if () > 0 for all € € (0,2]. A Banach space
E is said to be smooth if the limit

t —
ety — o]

t—0 t (21)

exists for all z,y € U. It is also said to be uniformly smooth if the limit (2.1) is
attained uniformly for x,y € U. The duality mapping J : E — 27" is defined by

J(@)={a" € B : w,a") = ||z|* = |2"|*}

for all x € E. It is also known that if F is uniformly smooth, then J is uniformly

norm-to-norm continuous on bounded subsets of E (see [34] for more details).

Let E be a smooth Banach space. The function ¢ : E x E — R is defined by
$a,y) = |lz|* = 2{z, Jy) + |yl
for all x,y € E. From the definition of ¢, we see that

(Il = lyl)? < ¢z, y) < (12l + Iyl

and
O(z,y) = d(x,2) + p(z,y) + 2(x — 2, Jz — Jy)
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for all z,y,z € F.

Let C be a closed and convex subset of E' and let T' be a mapping from C' into
itself. A point p in C is said to be an asymptotic fized point of T' [3] if C' contains
a sequence {x,} which converges weakly to p such that lim, . ||z, — Tx,| = 0.
The set of asymptotic fixed points of T' will be denoted by F (T). A mapping T is
said to be relatively nonezpansive [3, 1] if F(T) = F(T) and ¢(p, Tz) < ¢(p, z) for
all p € F(T) and x € C. A point p in C is said to be a strong asymptotic fixed
point of T if C' contains a sequence {z,} which converges strongly to p such that
lim,, oo ||Zn, — Tzp|| = 0. The set of strong asymptotic fixed points of 7" will be
denoted by f(T) A mapping T is said to be weak relatively nonexpansive [11] if
F(T) = F(T) and ¢(p,Tz) < ¢(p,z) for all p € F(T) and z € C. It is obvious by
definition that the class of weak relatively nonexpansive mappings contains the class
of relatively nonexpansive mappings. Indeed, for any mapping 17" : C' — C, we see
that F(T) C F(T) C F(T). Therefore, if T is a relatively nonexpansive mapping,
then F(T) = F(T) = F(T).

Non-trivial examples of weak relatively nonexpansive mappings which are not

relatively nonexpansive can be found in [31].

Let E be a reflexive, strictly convex and smooth Banach space and let C' be
a nonempty, closed and convex subset of E. The generalized projection mapping,
introduced by Alber [1], is a mapping Il : E — C, that assigns to an arbitrary
point x € E the minimum point of the function ¢(y, x), that is, IIo(z) = &, where

Z is the solution to the minimization problem

¢(z,z) = min{¢(y,z) : y € C}.
In a Hilbert space, Il is coincident with the metric projection denoted by Pc.

Lemma 2.1. [11] Let E be a uniformly convex and smooth Banach space and let
{zn}, {yn} be two sequences in E. If lim,_ o0 ¢(n,yn) = 0 and either {z,} or {yn}

is bounded, then lim,_.o ||Trn, — ynl| = 0.

Lemma 2.2. [, 11] Let C be a nonempty, closed and convexr subset of a smooth,
strictly convexr and reflexive Banach space E, let x € E and let z € C. Then
z=Te(z) if and only if (y — z,Jx — Jz) <0 for ally € C.

Lemma 2.3. [I, 11] Let C be a nonempty, closed and convex subset of a smooth,

strictly convex and reflexive Banach space E. Then

o(x, eoy) + o(lley,y) < ¢(z,y) Ve e C andy € E.



6 K. Nammanee, S. Suantai and P. Cholamjiak

Lemma 2.4. [21] Let E be a smooth and strictly convex Banach space and let C be
a nonempty, closed and convex subset of E. Let T be a mapping from C into itself
such that F(T) is nonempty and ¢(u, Tx) < ¢(u,z) for all (u,z) € F(T)x C. Then

F(T) is closed and convez.

Let E be a reflexive, strictly convex and smooth Banach space. It is known
that A : E — 2F" is maximal monotone if and only if R(J 4+ A) = E* for all A > 0,
where R(B) stands for the range of B.

Define the resolvent of A by Jxa = (J + AA)~1J for all A > 0. It is known
that Jy4 is a single-valued mapping from E to D(A) and A~1(0*) = F(Jy4) for all
A > 0. For each A > 0, the Yosida approximation of A is defined by

1
Ax(z) = X(J(m) — JJxa(z)).
for all z € E. We know that A)(x) € A(J)\A(x)) forall A\ >0 and z € E.

Lemma 2.5. [16] Let E be a smooth, strictly convexr and reflexive Banach space,
let A C E x E* be a mazimal monotone operator with A=1(0%) # 0, and let Jya =
(J +MA)"LT for each X > 0. Then

o(p, Ina(x)) + ¢(Iralz),z) < é(p, x)
for all A >0, pec AY0%), and z € E.

Lemma 2.6. [2] Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach space E, let F be a bifunction from C x C to R satisfying
(A1)-(A4), and let r > 0 and x € E. Then, there exists z € C such that

1
F(z,y) + ;(y—z,Jz—J@ >0, VYyecd.

Lemma 2.7. [30] Let C be a closed and convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E, and let F' be a bifunction from C x C to R
satisfying (A1)-(A4). For all r > 0 and = € FE, define the mapping T, : E — C as

follows:
T,(z) ={z€C: F(z,y)+ %(y—z,Jz— Jz) >0, VyeC}.
Then, the following hold:
(1) T, is single-valued;
(2) T) is a firmly nonexpansive-type mapping [17], i.e., for all z,y € E,

(Trx — Ty, JTyx — JTy) < (Thx — Ty, Jo — Jy);
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(3) F(Tr) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.8. [36] Let C be a closed and convex subset of a smooth, strictly and re-
flexive Banach space E, let F be a bifunction from CxC' to R satisfying (A1) — (A4),
let ¥ > 0. Then

¢(p7TTI) + ¢(TT'CU’ 1") S ¢(pa ‘T)

forallx € E and p € F(T}).

3 Strong convergence theorems

In this section, we are now ready to prove our main theorem.

Theorem 3.1. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let A; : E — 28" (i =
1,2,--+ ,N) be mazximal monotone operators, let F : C x C — R be a bifunction,
and let T; : C — C (i = 1,2,---) be weak relatively nonexpansive mappings such
that F = [N, A7 (09)] 0 [N, F(T)] NEP(F) # 0. Let {e,}22, C E be the

sequence such that lim,_.. e, = 0. Define the sequence {x,}:° in C as follows:

xr1 € Cl = C,
yn:J)\%}'ANO /\fyflAN,lo"'OJA}zAl(x”+€")’
Un = Ty, Yn,

Chi1 = {z € Oy 1 sup;>1 ¢(2, Tiun) < (2, 2n + en)},
T+l = chﬂ(a:l), Vn > 1.

If liminf, /\fl > 0 for each i = 1,2,--- N and liminf,,_. 7, > 0, then the

sequence {xy} converges strongly to ¢ = Iz (z1).

Proof. We split the proof into several steps as follows:
Step 1. F C C, for all n > 1.

From Lemma 2.4, we know that (2, F(T;) is closed and convex. From Lemma
2.7 (4), we also know that EP(F) is closed and convex. On the other hand, since
A; (i =1,2,---, N) are maximal monotone, A;*(0*) are closed and convex for each
i = 1,2,---, N; consequently, ﬂf\il Ai_l(O*) is closed and convex. Hence F is a

nonempty, closed and convex subset of C.
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We next show that C,, is closed and convex for all n > 1. Obviously, C; = C
is closed and convex. Now suppose that C} is closed and convex for some k£ € N.
Then, for each z € C, and i > 1, we see that ¢(z, Tug) < ¢(z, k) is equivalent to

2(z, Jap) — 2(z, JTyug) < ||zgl* — || Tyug]|.
By the construction of the set Cy.1, we see that

Cryn = {z€Cy: sup ¢z, Tiug) < d(2, 1) }

o0
= ﬂ {z € Cr: oz, Tiug) < d(z,21) }
i=1
Hence Cj41 is closed and convex. This shows, by induction, that C), is closed and
convex for all n > 1. It is obvious that F C C; = C. Now, suppose that F C Cj,
for some k € N. For any p € F, by Lemma 2.5 and Lemma 2.8, we have

o(p, Tyug) < ¢(p,ur) = &(p, Tryyk)
< oy
= o(p TN Ay © N,lAN_lo---oJ)\lchl(:rk—i-ek))
< o(p, ,\N LAy N2 Ay, O'”OJA}CAl(xk'f‘ek))
< 0P, Tazay © Iara, (o + )
< 0P Jaa, (zk +er))
< o(pswk +ek). (3.1)

This shows that 7 C Cyy1. By induction, we can conclude that F C C, for all
n > 1.

Step 2. limy, o0 ¢(xy, x1) exists.
From z,, = Il¢, (1) and z,41 = Ilg,,, (z1) € Cpy1 C Cp, we have

¢(fl?n,l'1) < ¢(xn+1,$1), n > 1. (32)
From Lemma 2.3, for any p € F C C,, we have
¢(zn,21) = ¢(Ilc, (71), 71) < (P, 21) — O(P, Tn) < G(P, 71). (3.3)

Combining (3.2) and (3.3), we conclude that lim,, .o ¢(zp, 1) exists.

Step 3. lim, .o ||J(Tiyn) — J(2n + €n)|| = 0.
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Since z,, = Il¢, (1) € Cy, C Cy, for m > n > 1, by Lemma 2.3, it follows that

(Tms Tn) = ¢(2m, e, (11)) < @(m, 21) — ¢, (1), 21)
= ¢($m,$1) - Qf)(l‘n,l'l).

Letting m,n — oo, we have ¢(zpm,x,) — 0. By Lemma 2.1, it follows that ||z, —
x|l — 0 as m,n — oco. Therefore, {x,} is a Cauchy sequence. By the completeness
of the space F and the closedness of C', we can assume that z,, — ¢ € C as n — oc.
In particular, we obtain

lim @41 — zn| = 0.
n—oo

Since e, — 0, we have
lim ||zp+1 — (2 +€n)]] = 0. (3.4)
n—oo

Since zp4+1 = Ilg, ., (1) € Cpq1, for each i > 1,
¢(xn+17 T’zun) < ¢(xn+17 Ty + 6n)

= <33n+17 J(@pi1) — J(zn + 6n)> + <95n+1 — (75 + €n), J(xn+1)>'

Since E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded
sets. It follows from (3.4) and by the boundedness of {z,} that

m (21, Tittn) = 0

n—oo

for all i =1,2,---. So from Lemma 2.1, we have

lim ||zp41 — Tiug| =0
n—oo

and
lim |Tyu, —x,|| =0
n—oo
and, since e, — 0, therefore
lim || Tiun, — (xn +€,)]| = 0. (3.5)
n—oo
for all ¢ = 1,2,---. Since J is uniformly norm-to-norm continuous on bounded
subsets of F,
lim [|J(Tiun) — J(zn + €n)|| =0 (3.6)

n—oo

foralli=1,2,---.
Step 4. lim, .o || Titn, — un|| =0 for alli =1,2,---.

Denote ©F = Jaia;0dyi-1,, 0+ +-0dya, foreachi € {1,2,--- N} and 00 =1
for each n > 1. We note that y, = OY (z,, +e,,) for each n > 1.
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To this end, we will show that

n—oo

foralli=1,2,---,N.

lim ’J(@;(xn +en)) = J(O5 (2, +en)) H =0

For any p € F, by (3.1), we see that

& (p, O "z + €n))

Since p € F, by Lemma 2.5

AN VAN VAN VAN
S S S ©
=
T =
3 3
+ +
[
S 3

From (3.5) and (3.6

lim Hyn—@N 1(xn—i—€n H =0.

n—oo

Again, since p € F,

-

IA

é(
< ¢(
¢

IN

From (3.5) and (3.6), we get that

), we get that lim, oo @ (yn,

p> ZETL + €n))
P, (an +en)) —
(p, (T + €n)) —

< ¢(p7 @7]:/_2(%1 + en))
< Qb(p» @q]zv_g(xn + en))

IN

d(p, (xn +en)). (3.7)

and (3.7), it follows that

— (P, yn)

— ¢(p,yn)

) — 6P, un)

) — &(p, Tiun)

— | Tiun|)® - 2<p, J(xp +en) —

O (zn + en)) = 0. So we obtain

(3.8)

(@711\1 1(xn +en), @N 2(l'n + en))

- ¢(p7 @7127 1(~Tn + en))
¢(p, O (wn +en))
o(p, Tyuy).

lim ¢(@£1V_l(xn + Gn), 85_2(33” + en)) =0.

n—oo

It also follows that

lim H@N Y, +en) —

n—oo

oN=2(z, + en)H =0.
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Continuing in this process, we can show that
lim H@N *(zn+en) — @fy—fi(a:n—i—en)u —...= lim H@,ll(xn—}-en) —(@n+en)|| = 0.
n—oo n—oo
So, we now conclude that
Tim. \@;(a:n Yen) — O (e, + en)H —0 (3.9)
foreach¢=1,2,--- , N. By the uniform norm-to-norm continuity of J, we also have
lim HJ L@ +en)) — J(O5 (2 +en)) H =0 (3.10)
n—oo
for each i =1,2,--- | N. Using (3.9), it is easily seen that
Jimly, — (20 + €n)l| = 0. (3.11)
From uy, =T}, yn, by Lemma 2.8, it follows that
¢(Un7yn) = d’( rnymyn)
< oo, yn) — (P, Trpyn)
< 9P zn +en) — ¢(p,un)
< B(p,zn +en) — d(p, Tiun).
This implies that lim,, .o ¢(un,yn) = 0 and hence
lim |up, —ynl| = 0. (3.12)
n—oo
Combining (3.5), (3.11) and (3.12), we obtain
lim || Tiun, — un|| =0 (3.13)
n—oo

for all 7 > 1.

Step 5. ¢ € (2, F(T3).

Since x,, — ¢ and e, — 0, z, + €, — ¢. So from (3.11) and (3.12), we have
un, — q. Note that T; (i = 1,2,---) are weak relatively nonexpansive. Using (3.13),
we can conclude that ¢ € F(T}) = F(T;) for all i > 1. Hence q € N2y F(T3).

Step 6. ¢ € N, A;1(0%).

Noting that ©},(z, + en) = Jyi 4,04 (2 + en) for each i = 1,2,--- | N, we
obtain

E
A

| 45,057 a4 en)

J(O N zn +en)) — J(Oh (20 + €4)) H

11
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From (3.10) and lim inf, .« A}, > 0, we have

Tim |4y, OF ! (2 +en)]| = 0. (3.14)

We note that (@il(:cn +en), AA%@Z_I(:CH +en)) € G(A;) foreachi=1,2,--- /| N. If

(w,w*) € G(4;) for each i = 1,2,--- , N, then it follows from the monotonicity of
A; that

<w* - A,\%@ffl(wn +en), w — O (2, + en)> > 0. (3.15)

We see that ©! (2, +e,) — ¢ for each i = 1,2,--- | N. Thus, from (3.14) and (3.15),
we have
(w*,w—q) > 0.

By the maximality of A;, it follows that ¢ € A;*(0*) for each i = 1,2,---,N.
Therefore ¢ € ﬂf\il A7 (0%).

Step 7. g € EP(F).

From u,, = T}, yn, we have

1
F(un,y) + —(y — up, Jup, — Jy,) >0, VyeC.

T'n
By (A2), we have

Ju, — Jyp, 1
IIy—unHM — (Y — Un, Jup — JYn)

n Tn

v

v

Note that w — 0 since liminf, o r,, > 0. From (A4) and w, — ¢, we get
F(y,q) <0forallye C. For 0 <t<1andy e C, define y, =ty + (1 — t)q. Then
y¢ € C, which implies that F(y;,q) < 0. From (A1), we obtain that 0 = F(y;, y) <
tF(ye,y) + (1 — ) F(y,q) < tF(yt,y). Thus F(yt,y) > 0. From (A3), we have
F(q,y) > 0 for all y € C. Hence ¢ € EP(F). From Step 5, Step 6 and Step 7, we

now can conclude that g € F.
Step 8. ¢ = I x(x1).
From z,, = Ill¢, (x1), we have
<J(a:1) —J(zp), xpn — z> >0, Vzel,.
Since F C C,, we also have

(J(21) — J(zn),zn — 2) 20, Vze€F. (3.16)
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Letting n — oo in (3.16), we obtain
(J(@1) ~ J(a)q—2) =0, VzeF.

This shows that ¢ = IIz(z1) by Lemma 2.2. We thus complete the proof. O

As a direct consequence of Theorem 3.1, we can also apply to a system of convex

minimization problems.

Theorem 3.2. Let E be a uniformly smooth and uniformly convex Banach space
and let C be a nonempty, closed and convex subset of E. Let f; : E — (—00, ]
(i=1,2,---,N) be proper lower semi-continuous convex functions, let F': C x C' —
R be a bifunction, and let T; : C — C (i =1,2,---) be weak relatively nonexpansive
mappings such that F := [nfvzl(af;l)(o*)] N[N2, F(5)] N EP(F) # 0. Let
{en}22 C E be the sequence such that lim,_ . e, = 0. Define the sequence {xy}2>

in C as follows:
r1 € C1 =C,
2 = arg minyep { f1() + ghrllvl? + (v, (e +en)) }.

zy ' = arg mingep {fm(y) + =yl + = (v, J(z;y—2)>},
g = arg. minyer { I () + sy Iyl? + 5 (0, ) ]

Up =Ty, Yn,

Cni1 = {Z € Cp : sup;>q d(2, Tiug) < ¢(2, 20 + en)},

Tpy1 =g, (21), Vn>1.

If liminf,, ..o A& > 0 for each i = 1,2,--- ,N and liminf, ..o 7, > 0, then the

sequence {xy} converges strongly to ¢ = Iz (z1).

Proof. By Rockafellar’s theorem [26, 27], df; are maximal monotone operators for
eachi=1,2,--- ,N. Let X' > 0 for each i = 1,2,--- ,N. Then 2" = Jyiy,(x) if and
only if

o
m

01 + 3 (/) — J(2)

P .
o+ 5 (L5 @) &),

which is equivalent to

= arg min { i) + 5 (5 — (g 5@}

ye

Using Theorem 3.1, we thus complete the proof. O

13
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If E = H is a real Hilbert space, we then obtain the following results:

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let A; : H — 2 (i = 1,2,--- | N) be maximal monotone operators, let
F:C x C — R be a bifunction, and let T; : C — C (i =1,2,---) be weak relatively
nonexpansive mappings such that F := [ﬂf\il A;l(O)] N[N, F(T)|NEP(F) # 0.
Let {e,}5°, C H be the sequence such that lim,_.o e, = 0. Define the sequence

{2 }52 in C as follows:

r1€Cy=C,

Yn = J/\ﬁAN OJy\N-14, ©"0© JA}LAl(xn + en),

Up = Trnym

Cpi1 = {Z € Oy sup;>q |2 — Tiunl| < ||z — (20 + en)”}a
Tny1 = Po,,,(21), Vn>1

If liminf, oo A&, > 0 for each i = 1,2,--- ,N and liminf, ..o r, > 0, then the

sequence {x,} converges strongly to q = Pr(x1).

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Let fi : H— (—o0,00] (i =1,2,---,N) be proper lower semi-continuous con-
vex functions, let F': C'xC — R be a bifunction, and letT; : C — C (i =1,2,---) be
weak relatively nonexpansive mappings such that F := [ﬂf\;l(afi_l)(O)] N[NZ, F(T)]N
EP(F) # 0. Let {e,}32, C H be the sequence such that lim,,_. e, = 0. Define the

sequence {xn}o2 in C as follows:

r1 € Cl = C,
2 = arg minyen {1(9) + FrIWI? + 3 (9,20 + en) }

21 = arg mingep {fN—l(y) + 2)\&71 lyll* + ﬁ@a Zévfz>}7
yo = arg minger { () + e lyl? + 3 (o2 ) ),
Unp = Lr,Yn,

Cuit = {2 € Cp s 5wy |12 = Trun| < |12 = (20 + ea) ],
Tny1 = Po,, (21), VYn>1

If liminf, oo Ay, > 0 for each i = 1,2,--- ,N and liminf, .o r, > 0, then the

sequence {x,} converges strongly to q = Pr(z1).

Remark 3.5. Using the shrinking projection method, we can construct a hybrid
proximal point algorithm for solving a system of the zero-finding problems, the
equilibrium problems and the fixed point problems of weak relatively nonexpansive

mappings.
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Remark 3.6. Since every relatively nonexpansive mapping is weak relatively nonex-
pansive, our results also hold if T; : C' — C' (i = 1,2, - - -) are relatively nonexpansive

mappings.
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