

บทคัดย่อ

รหัสโครงการ: MRG5380214

ชื่อโครงการ: การเสริมกำลังคานคอกนกรีตเสริมเหล็กด้วยเพอร์โตรีซีเมนต์ตามระดับของความเสียหาย

ชื่อนักวิจัย และสถาบัน : ดร.ธีระพจน์ ศุภวิริยะกิจ มหาวิทยาลัยพะเยา

อีเมล: teeraphot@hotmail.com

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

งานวิจัยนี้มีจุดมุ่งหมายเพื่อสาหะหาวิธีการพื้นสภาพคานคอกนกรีตเสริมเหล็กที่เสียหายแล้ว อันเนื่องมาจากการรับน้ำหนักเกินกว่าสภาพการใช้งานที่ระดับความเสียหายต่างๆ กัน คานคอกนกรีตเสริมเหล็กถูกออกแบบมาให้เกิดวิบัติใน 2 รูปแบบ คือการวินบัดดิภัยได้แรงดัด และการวินบัดดิภัยได้แรงเฉือน แผ่นเพอร์โตรีซีเมนต์ได้ถูกนำมาใช้เป็นวัสดุเสริมกำลังโดยใช้เหล็กเดือยรับแรงเฉือนยืดเป็นอุปกรณ์ยึดระหว่างแผ่นเพอร์โตรีซีเมนต์ให้เข้ากับคานคอกนกรีตเสริมเหล็ก โดยยึดติดด้านท้องคานหากคานวินบัดดิในรูปแบบแรงดัด หรือยึดติดข้างคานหากคานวินบัดดิภัยได้แรงเฉือน ขนาดคานที่ใช้ทดสอบคือ $200 \times 400 \times 2000$ ม.ม. ส่วนระดับความเสียหายภัยได้แรงดัดและแรงเฉือนที่ให้เกิดขึ้นก่อนการซ่อมแซมที่ระดับ 60, 80 และ 100 เปอร์เซ็นต์ ผลการวิจัยพบว่า ภัยได้แรงดัดคานคอกนกรีตเสริมเหล็กจะถูกเสริมด้วยแผ่นเพอร์โตรีซีเมนต์ด้านรับแรงดึงสามารถรับน้ำหนักได้มากกว่า 16.9 เปอร์เซ็นต์ และรูปแบบการวินบัดดิยังคงเป็นแบบหนียาเข่นเดิม ส่วนภัยได้แรงเฉือนคานคอกนกรีตเสริมเหล็กจะถูกเสริมด้วยแผ่นเพอร์โตรีซีเมนต์ด้านข้างสามารถรับน้ำหนักได้มากขึ้นระหว่าง 32.7 ถึง 39.7 เปอร์เซ็นต์ และสามารถเปลี่ยนรูปแบบการวินบัดดิเดิมแบบเปราะให้เป็นแบบหนียาไว้ได้ ดังนั้นโดยภาพรวมแล้ว การวิจัยนี้สามารถสรุปได้ว่าวิธีการซ่อมแซมด้วยแผ่นเพอร์โตรีซีเมนต์ประสบความสำเร็จในการพื้นคืนสภาพ

คำหลัก : การพื้นฟูกำลัง แบบเพอร์โตรีซีเมนต์ การวินบัดดิภัยได้แรงดัด การวินบัดดิภัยได้แรงเฉือน เหล็กเดือย

Abstract

Project Code : MRG5380214

Project Title : Rehabilitating of Reinforced Concrete Beam using Ferrocement based on Degree of Damages

Investigator : Dr. Teeraphot Supaviriyakit , University of Phayao

E-mail Address : teeraphot@hotmail.com

Project Period : 2 year

Abstract:

This research aims to investigate a method of rehabilitation of the damaged reinforced concrete beams subjected to load over its serviceability at different levels of damages. The concrete beams are designed under two different modes of failure: flexural and shear modes. Ferrocement is used as a reinforcing material using shear dowel to attach between the reinforced concrete beams and the ferrocement laminates that depend on failure modes: the soffit of beams in flexural mode or the side of beams in shear mode. Normal beams of 200 x 400 x 2000 size with the levels of flexural damages of 60, 80 and 100 percent were used in the study. The reinforced concrete beams were strengthened and able to support a load of 16.9 percent higher under the same failure mode after using ferrocement laminates on tension face to reinforce with shear dowel according to shear flow at 250, 185, and 150 mm respectively,. Regarding beams with transverse reinforcement at the levels of shear damages of 60, 80, and 100 percent, the ferrocement laminates were attached on side of the beam at every 130, 100, and 75 mm. respectively. The results show that the beams were able to support a load of 32.7 to 39.7 percent higher. In addition, the procedure changed the failure modes of the beams; that is, they changed from brittle failure to ductile failure. Overall, this procedure of repair was successful.

Keywords : rehabilitation, ferrocement laminates, shear failure, flexural failure, shear dowel