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Abstract:

This project began with finding a new curve/surface intersection algorithm
to be used for undercut minimization in 5-axis machining. However, the focus has
later been shifted to the idea of using angular variation of the CL points to minimize
kinematic error in 5-axis machining instead as we discover that the previous idea
results in too long computation time, which is not feasible for 5-axis tool path
planning.

In any case, the new idea is successful. We propose to find a tool path that
minimizes the variation of the rotation angles instead of attempting to minimize the
true kinematic error for 5-axis tool path planning. The reason is that the true
kinematic error is computationally expensive and minimizing it directly takes too
much computation time. On the other hand, the variation of the rotation angles is
comparatively much cheaper to compute. We show that minimizing the angular
variation does result in tool paths that have only slightly higher kinematic error
than minimizing the true kinematic error directly while taking much shorter time to
converge. Our algorithm finds the location of CL points and the orientation of the
target surface relative to the work piece that minimizes the angular variation.
Finally, we verify our result with virtual cutting in VERICUT. The simulation

confirms that our algorithm does yield tool paths with small kinematic errors.

Keywords : five-axis machining, tool path optimization, rotation angles

minimization.



Executive summary

Kinematics of a particular five-axis milling machine can drastically change the
machining accuracy. A tool path designed for one particular configuration and setup can
be totally unacceptable for others. Therefore, the reduction of the kinematic errors due
to particular five axis kinematics is an important problem of the CNC machining.

We propose a new numerical algorithm to reduce the kinematic error using
minimization of the variation of the rotation angles. The method assigns the tool
positions by finding numerically a grid of cutter contact points (CC points) distributed
uniformly in the angular space. The second way to reduce the angle variation is the
optimal setup of the part surface on the mounting table employed in an iterative loop
with the generation of the cutter contact points.

We present an analysis, systematic numerical experiments and cutting results
(ball nose and flat-end cutters) as an evidence of the efficiency and the accuracy
increase produced by the proposed method. The algorithm has been verified by a
virtual prototype of a five-axis machine MAHO600E of the CIM Lab with the Asian

Institute of Technology of Thailand.



Optimization of Five-Axis Machining G-codes in
the Angular Space

1 Introduction

Milling machines are programmable mechanisms for cutting complex industrial
parts designed in such a way that the cutting tool (cutter) is capable of ap-
proaching the desired surface at a given point with a required orientation.

The machine is built of several moving parts designed to establish the re-
quired coordinates and orientations of the tool during the cutting process. The
movements of these parts are guided by a controller which is fed with the so-
called NC program or G-code. The G-code is a set of commands carrying three
spatial coordinates of the tool-tip and a pair of rotation angles needed to es-
tablish the orientation of the tool. Actually, there are many other formats of
the G-codes, however, this format is the most appropriate for machining an
arbitrary sculptured surface.

Therefore, this type of G-code is derived from a tool path Q = (20, Q1,..., Q)
which is a sequence of positions Q, = (M,, I,,), where M, = (z,,y,,2,)T are
the Cartesian coordinates of the tool tip in the machine coordinate system (cut-
ter location points or CL points) and I, = (Ips, Iy, Ip»)T the tool orientation
vector. The rotation angles R, = (ap,bp) are functions of tool orientations.
Therefore, the tool path can also be defined by IT = (Ily, Iy, ..., II,,), where
I, = (M, R,), although the transition from € to II is not unique.

The kinematics of the machine is characterized by:

e Rotation matrices A and B corresponding to the two rotary axes.

e Translations T3 and T34, where T53 is the coordinate of the center of
the A axis in the B-axis coordinate system and T34 the coordinate of the
center of the B-axis in the spindle coordinate system.

e The length of the tool L treated as an additional translation Ty (Ty =
(0,0, L)T or (0,0,—L)T depending on the direction of the tool tip in the
spindle coordinate system.

The tool path optimization problem is often formulated as minimization
of a criterion vector-function which includes several measures of the machining
quality. Typically such quality measures are the difference between the required
and the output surface (accuracy), the length of the tool path, the negative
of the machining strip (strip maximization), the machining time, etc. The
independent variables are ¢,Q1,...,Q,,. In other words, the optimization
improves the quality of the output surface and reduces the machining time by
assigning the positions and orientation of the tool which constitute the tool



path Q. In principle, the positions of the tool do not need to follow any rigid
geometrical pattern. However, the standard manufacturing tool paths are the
zigzag and the spiral path and their modifications such as the multiple zigzag.

The optimization could also be subjected to constraints, the most important
of which are the scallop height constraints and the local/global accessibility
constraints.

Our paper is focused on minimization of the difference between the actual
and the desired trajectories. We will call this difference the kinematic error
since, if the tool path is fixed, it depends only on the configuration the par-
ticular machine. Note that the three axis kinematics create linear trajectories.
Therefore, the kinematic errors are easy to evaluate. As opposed to that, the
five-axis machines generate non-linear trajectories which depend on the config-
uration and the setup. In this paper we analyze the particular error with the
understanding that other sources of errors exists such as the chatter (self-excited
vibrations), periodic forced vibrations, thermal deformations, tool deflection er-
rors etc. The machine operating conditions such as the material removal rate,
wet or dry cutting, clamping conditions, the tool wear and other tool imperfec-
tions could be also an important factor. Under certain conditions some of the
above mentioned errors could actually exceed the kinematic errors. However,
our numerical experiments and the actual machining show that the kinematic
errors are also important and could lead to significant inaccuracies (even collu-
sions) in 5 axis CNC machining.

A direct minimization of the kinematic errors requires expensive compu-
tational procedures involving inverse kinematics transformations and variable
positions of the CL or CC points. In this paper we use the following short-cut.
It is well-known that large variations of the rotation angles are the main cause
of these errors. For instance, it is usually beneficial to generate a tool-path
with minimal number of turns (such as the zigzag) or even make the turns in
the air. Therefore, we propose new tool path optimization techniques based on
minimization of the total angle variation which does not invoke a direct evalua-
tion of the tool trajectories. The algorithm minimizing the total angle variation
inserts additional points in the areas of large angle variations and therefore in
the areas of large kinematic errors. The position and orientation of the part on
the mounting table is also subject of optimization so that the orientation angles
of the part relative to the table are independent variables in the closed form
representation of the rotation angles of the tool.

The optimal solution is evaluated by an iterative loop “setup — tool path
— setup — ...7.

We demonstrate that the method provides a considerably better rate of the
decrease of the kinematic error (as a function of the number of the CL points)
with the reference to the equi-arc length distribution of the points. The testing
is performed in terms of the generic Hausdorff distance between the desired
and the actual tool trajectory and between the desired surface and the tool
trajectory.

The efficiency of the algorithm has been tested with a virtual prototype of
MAHOG00E at the CIM Lab of Asian Institute of Technology of Thailand. Since
the virtual machine has been verified and compared with the actual machine,
the results are equivalent to the actual machining in terms of the kinematic
error. Besides, the virtual machine makes it possible to isolate the kinematic
effects from the errors due to other sources mentioned above.



Finally, note that there is always a limit of the angular speed of specific
machine parts. As a result, a shorter tool path with many turns may require
more time than a longer tool path with fewer turns. For example, the maximum
angular velocities of the primary and secondary rotational axis of MAHOG00E
are V4 max = 235°/sec and vp max = 162°/sec. If the maximum angular speed
is exceeded, the controller reduces the angular speed increasing the machining
time. Our optimization algorithm minimizes the total angle variation, thus,
reducing the probability of such an event.

2 Kinematics of the Five Axis Milling Machine

This chapter explains the nonlinearity of the tool trajectories and the impact of
the rotation angles on the trajectory.

Let K = K{parameters}[arguments] = K{R}[M] be a kinematics transfor-
mation from the machine coordinates to the workpiece coordinates. Recall that
M denotes the machine coordinates and R the rotation angles. For simplicity
we denote the transformation by K[M] (when possible) keeping in mind the
dependence on R.

Let K~'[W] be an inverse transformation such that YW, M, R, K~ [K[M]] =
M and K[K7HW]] = W. Let I, = (W, R,), i1 = (Wpi1, Rpi1) be two suc-
cessive coordinates of the tool path, W, W41 denote two successive spatial po-
sitions of the tool path and R,, R,11 the corresponding rotation angles. In order
to calculate the tool trajectory between W, and W1, we first invoke the inverse
kinematics to transform the part-surface coordinates into the machine coordi-
nates My, = (p, Yp, 2p)T and Mpi1 = (Xpi1,Yps1, 2p+1) " (see Fig.??). Namely,
M, = K~*{R,}[W,]. Second, the rotation angles R = R(t) = (a(t),b(t)) and
the machine coordinates M = M(t) = (x(t), y(t), 2(t))T are assumed to change
linearly between the prescribed points t = s, t = 5,41, namely,

M(Sp, Sp+1 t) = Lp+1(t)Mp+1 + Lp(t)M;m
R(sp,spr1,t) = Lpy1(t)Rps1 + Lp(t) Ry,

where Lpi1(t) = (£ = sp)/ (Sp41 = 8p); Lp(t) = (sp41 = 1)/(sp1 — 5p), and T is
the fictitious time coordinate s, < ¢t < s,41. Transforming M back to W for
every t yields a trajectory of the tool tip in the workpiece coordinates given by

W(sp, spt1,t) = K{R(t) }M (t)] = K{Lpt1(t) Rpt1+Ly () Rp}[Lp1(¢) Mpi1+Lyp(t) My).

In order to represent the tool path in terms of the workpiece coordi-
nates, we eliminate M, and Mpy; by using the inverse transformation M, =
K=Y R,}[W,]. Substituting M, and M, yields

W(sp, sp+1,t) = K{R(Sp, Sp+1. t)}[Lp+1(t)’Cd{Rerl}[anLl]"‘Lp(t)’Cil{Rp}[Wp”

Introduce the following coordinate systems: the workpiece coordinate system
01, a coordinate system of the first rotary part Oz, a coordinate system of the
second rotary part Oz and a coordinate system of the spindle O4. We shall call
the first rotary axis the A-axis and the second rotary axis the B-axis. Consider
a particular but popular machine kinematics characterized by two rotary axis



on the table (the so-called 2-0 machine, many variations of Maho by Deckel
Gildemeister, Hermle 5 axis machines and many other models.). In this case

M = K '=K YHR}W] = G.Bb] (Ala] (W + Tiz) + Taz) + T34 — Ty,
arctan % if I, >0 and I, >0,
a = arctan % +7n  if I, <0, (1)
arctan I—z + 271 otherwise,
b = —arcsinl,,
where
0 0 -1
Go,=10 1 0
1 0 O

and Ty = (0,0, —L)7.

Furthermore, (1) is not a unique solution. First of all, a is periodic with
the period 27w. Actually, b is also 27- periodic, however, for this particular
configuration b must belong to [—105°,105°].

Therefore, in order to reduce the angle variations a must be 2m-corrected,
that is, if ap — ap—1 > 7 then (ap)new = ap — 27 and if a, — ap—1 < —7 then
(@p)new = ap + 2m. Note that many modern controllers perform this correction
automatically.

Second, if (a, b) satisfies (1), then (a —7,—b—m) and (a+m, —b—7) are also
the solutions. The fourth solution is given by (a — 2m,b) if a > 0 or (a + 27,b)
otherwise. Further details and a shortest path optimization method with regard
to the multiple solutions above are given in [8]. Similar multiple solutions can
be derived for other 5 axis configurations.

Note that angle a is undefined at stationary points where I, = I, = 0. In
this case, angle a can be evaluated using interpolation in a neighborhood of the
stationary point. Alternatively, the tool path can be modified so that it avoids
the stationary positions.

3 kinematic Error and the Angle Variation

In this section we will introduce the kinematic error and the total angle variation.
Let WP (sp, $pt1,t) € S(u,v) be a curve between W), and W), extracted from
the surface in such a way that it represents the desired tool path between II,
and II,,1. We define the error as the deviation between WP (s, s,41,t) and

W(Spv Sp+1, t) given by
€= Z €p.p+1
p

where €, 11 = dist (WP (sp, sp+1,t), W(sp, Sp41,t)) and dist() is an appropriate
distance in the corresponding functional space.

The definitions above can be simplified by replacing the desired trajectories
WP (s, spi1,t) by linear trajectories given by W (s, spi1,t) = Wyi1Lpi1(t)+
W,Ly(t). However, as opposed to the machines coordinates M, the trajecto-
ries in the workpiece coordinates are mot linear. Still, we may use the linear
trajectories as a reference, noting that ¢ = dist(WP W) < dist(WP, WL) +



dist(WL, W), where L is a piecewise linear approximation of S. Hence, when
the points are close enough, the error is approximately e ~ ez = dist(W, W).
If the orientation of the tool is fixed through the entire cut, then ¢, = 0. In
other words, the 3-axis mode leads to e€;, = 0 since all the trajectories become
linear. Does this mean that 3 axis machining is more accurate? Not at all.
High accuracy of the five-axis machining comes from direct control of the tool
orientations relative to the surface. Many complex parts can be produced only
in 5 axis mode.

Mathematically it means that minimization with regard to €, is subjected
to constraints specifying the orientations of the tool.

Finally, the linearization is the simplest option which can be used even when
the actual surface is not known, for instance, when the the G-code is given but
the surface is not specified.

Also note that, the desired trajectory WP can be extracted from the surface
by a variety of ways, for example, using interpolation in the parametric space,
the geodesic curves, etc.

Let us now introduce the total weighted angle variation. Consider two po-
sitions €, and Q,;. We assume the kinematic error is an increasing function
of the distance between two positions in the Cartesian and the angular space.
Practical experiments show that the angular steps are often more important
than the spatial step. In particular, decreasing the angular steps leads to larger
decrease in the error than decreasing the spatial step. Therefore, we define total
weighted angle variation

0= Z |WD(5pa 5p+1at)‘ (aa |ap+1 - ap| + oy |bp+1 - bp|) ) (2)

p

where |WP (s, sp11,t)| denotes the arc length of the curve W2 (sp, sp+1,t) and
o, and oy, are predefined scalars. For MAHOGO0OE, the angles a)’s and b,’s are
equivalent in the sense that changing a,’s does not affect the kinematic error
more than changing b,’s, and vice versa. Therefore, we use o = o = 1 in our
experiments below. Note that this assumption may not hold for other machines.

4 Minimization of the Angle Variation

In this section, we describe our algorithm that minimizes the total weighted
angle variation of the tool path by distributing a fixed number of CL points
and rotating and translating the target surface relative to the mounting table
optimally at the same time. Define the rotated and translated surface

S(u,v;d,r) = R (r3)Ry(r2) Ry (r1)S(u,v) +d, 0<wu,v <1,



where d € R?, r € R3, and

[1 0 0
R,(rm) = 0 cosr; —sinrp |,
0 sinr; cosri
[ cosra 0 —sinry |
Ry (7’2) = 0 1 0 5
sinrg 0 cosro
[ cosrs —sinrg 0 ]
R.(r3) = sinrs cosrs 0
0 0 1

That is, S(u,v;d,r) is the target surface S(u,v) rotated around a-, y-, and
z-axes by 71, 9, and r3 radians, respectively, and then translated by d. Let
(Wo, W1, ..., W,,) be the sequence of given CL points generated from S (for
example, the sequence of turning points of the zigzag on the rotated and trans-
lated surface) and n, > 0 be the chosen number of CL points to be inserted
between W, and W 1. Let tp1,p2,...,t,n, denote the location of the in-
serted points between W, and W,;1. In other words, our algorithm inserts CL
points at WP (sp, sp41,tp1), WP (8p, Spi1,tp2), -« s WP (8p, 8p41, tp.n,) between
W, and W,41 (we then calculate the corresponding orientation vectors I;’s at
these points). Therefore, the optimization problem is given by

mindﬁr,tm7...,tm,1,nm71 1) (d7 r,to1,. .- ,tm—l,nm,l)
subject to s <tpt <tpa <+ <tpn, <8m (P=0,...,m—1)
M(sp, Sp+1,tpi) € M (p=0,....m—1;i=1,...,np)
R(sp,spr1,tpi) € R (p=0,....m—1;i=1,...,n,)
WP (s, spi1,tpi) € 1474 (p=0,....m—-1;i=1,...,np)
(3)
where § (d,r, t017...7tm,1’nm71) is the total weighted angle variation (2) of
the tool path generated from S(u,v;d,r) with the inserted CL points at
01y s tm—1.m 1> M(Sp, Sp+1, tpi) denotes the machine coordinate of WP (s, sp41, tpi),
M denotes the set of admissible machine coordinates, R denotes the set of ad-
missible rotation angles, and W denotes the set of admissible workpiece coor-
dinates. Note that M , R, and W depend on the physical constraints of the
target five-axis machine and the workpiece. Some machines may not have these
restrictions and in such cases the last three constraints in (3) can be ignored.

5 Numerical Algorithm

Observe that the objective function in (3) is generally non-differentiable and
should be minimized by a derivative-free technique such as genetic algorithms
[3, 1, 10, 11], pattern search methods [4, 5], or Nelder-Mead method [9, 2].
During our preliminary tests, we found that solving (3) as is takes an impractical
amount of computation time. Therefore, our algorithm employs the pattern
search method combined with the split-step technique. We alternate between
optimizing the surface orientation while keeping the inserted CL points fixed
and optimizing the inserted points while keeping the surface orientation fixed



until the process converged. Specifically, we separate (3) into the orientation
optimization

mind,r 1) (d, r, {01, . 7tm71,nm,1)
M(sp, spt1,tpi) € M (p=0,....m—-1i=1,...,np)
subject to R(sp,sp+1,tpi) € R (p=0,....m—1i=1,...,np)
WP (sp,5pi1,tpi) € W (p=0,...,m—1;i=1,...,n,)

where to1, ..., tm—1n,, , are fixed, and the insertion optimization
mint017---7tnl—1,nm_1 5 (d, r,to1,. .. atm—l,nm,l)
subject to 50 <tp1 <tpa < -+ <tpn, <8m (P=0,...,m—1)

M(sp,spt1,tpi) € M (p=0,....m—1Li=1,...,np)
R(sp,Sp+1,tps) € R (p=0,....m—1i=1,...,np)

WP (sp,spr1,tpi) € W (p=0,....om—1i=1,...,n,)

()
where d and r are fixed. Our algorithm then proceeds as follows:

o Initialize d©, r©, ¢{), ... ¢ .

e For k=0,1,...
(k)

— Solve (4) using t;; = t;;°. Let (d, ) be the minimum point of this

problem.
— Solve (5) using d = d and r = F. Let (té’;*% .. ,ti:fﬂ’)nmil) be the

minimum point of this problem.
e End

In practice, we iterate until the algorithm converges.

It should be noted that the locations of inserted CL points between W,
and Wy1 do not affect the weighted angle variation values of the tool path
from Wy up to W), and from W,1; up to W,, besides the possibility that R,41
may be 27-corrected differently depending on the location of the last inserted
point ¢, (or, depending on how 27-correction is implemented, it can be R,
instead that is 2m-corrected differently). Therefore, the insertion step can be
performed between one pair of the original CL points (W,, W,41) at a time
starting from one end of the tool path to improve computation time at the cost
of minor reduction in accuracy. That is, first finding the optimal o1, ..., ton,
that minimizes the weighted angle variation between Wy and W7, then finding
the optimal #11, ..., t1p, that minimizes the weighted angle variation between
W1 and W5, and so on.

Finally, we note that the techniques to avoid gouging for a flat-end cutter
by Lee and Ji [6], Lo [7], or Makhanov and Anotaipaiboon [8] can be incorpo-
rated into our algorithm. This is performed by inclining the tool while keeping
the CC points at the chosen inserted points WD(sp7 Sp+1,tpi)’s and using the
resulted CL points to evaluate § during the optimization. By this technique,
our algorithm finds the tool path that avoids gouging with the minimum total
weighted angle variation.

?



6 Numerical Examples and Cutting Experiments

In this section we demonstrate that the total weighted angle variation does
indeed reduce the kinematic error by a significant amount. To do so, we esti-
mate the kinematic error with the Hausdorff distance between the actual tool
path trajectory {W(sp,sp+1,t) :p=0,...,m —1} and the desired trajectory
{WD(sp, Sp+1,t) :p=10,...,m— 1}. Recall that the Hausdorff distance be-
tween two sets X and Y is defined by

dg(X,Y) =max < sup inf ||z — y||, sup inf ||z — .
(X, ) = max { sup inf o = ol sup i o o1}
In our experiments, we use the 2-norm for all computation of the Hausdorff

distances.
The first surface for our experiments is given by

100w — 50

S(u,v) = 100v — 50 0<u,v<1

—400v(v — 1) (3.55u — 14.8u? + 21.15u® — 9.9u*) — 140

We shall refer to the surface in (6) as the “double bells.” The surface is also
shown in Figure 1. For the first experiment, we compare the following three
types of tool paths: (i) an unoptimized tool path (with equally-spaced inserted
points between the two endpoints of every track and d = r = 0), (ii) a tool path
generated with insertion optimization only, and (iii) a tool path generated with
both orientation and insertion optimization. Table 1 shows the total weighted
angle variations and the esimated kinematic error (i.e., the Hausdorff distance
between the actual and the desired trajectories) of the three types of tool paths
with ten tracks and varying number of inserted points (n,) per track. Figures 2,
3, and 4 show the three tool paths and their actual trajectories for n, = 8 case,
respectively. Blue crosses in these figures represent the CL points along the tool
paths. Figure 5 rotates Figure 4 to the same orientation as the other two for
easier comparison. Note that we reduce the resolution of the plotted surface
in these figures so that the tool paths can be seen more easily. We see that
our optimization method, which minimizes the total weighted angle variations,
does decrease the estimated kinematic error for all of the test cases. We also
see that fully-optimized tool paths have smaller kinematic error compared to
insertion-optimization-only ones for all of the cases. This shows that orientation
optimization is indeed useful. Note that smaller § does not always imply smaller
dpr (such as between the fully-optimized tool path of n, = 4 case and the fully-
optimized tool path of n, = 8 one). Such occasional discrepancy is to be
expected as the total weighted angle variation is only an approximation of the
actual kinematic error.

Consider now examples of the virtual machining by prototyping MAHOG600E
in VERICUT. This virtual machine has been tested and compared with the ac-
tual machine. Therefore, the results of the virtual machining are equivalent
to the actual machining in terms of the kinematic error. Besides, the virtual
machine allows to differentiate between the kinematic effects and the errors orig-
inated from other sources such as tool deflection, chatters, and thermal deforma-
tions. Figure 6 shows the simulated result from VERICUT of the double-bells
surface using the unoptimized tool path. Figure 7 shows the result using the



Figure 1: The first target surface for the experiments (the “double bells”).

Table 1: The total weighted angle variations (¢) and the Hausdorff distance from
the desired tool paths (dg) of the three types of tool paths for the double-bell
surface. All tool paths have ten tracks.

Unoptimized Insertion only Fully optimized
) dy 0 dy ) dy
2 | 1248.7641 | 9.8456 | 239.8314 | 6.9870 | 110.598 | 6.6368
4| 790.7744 | 6.9576 | 230.1996 | 4.0306 82.566 | 3.2421
6 | 584.4124 | 5.4528 | 185.806 | 3.3030 | 80.2953 | 2.2186
8 | 468.6081 | 4.1537 | 191.7998 | 2.9517 | 110.7122 | 2.3537
10 389.423 | 3.3335 | 185.1702 | 2.5509 | 97.2301 | 1.7139

Tp

Figure 2: The unoptimized tool path (with equally-spaced CL points) for the
double-bells surface with a flat-end tool head having radius of 8 mm. The tool
path has 10 tracks with 10 CL points per track (n, = 8). Blue crosses represent
the CL points.



Figure 3: The tool path generated with insertion optimization only for the
double-bells surface with a flat-end tool head having radius of 8 mm. The tool
path has 10 tracks with 10 CL points per track (n, = 8). Blue crosses represent
the CL points.

Figure 4: The tool path generated with both orientation and insertion opti-
mization for the double-bells surface with a flat-end tool head having radius of
8 mm. The tool path has 10 tracks with 10 CL points per track (n, = 8). Blue
crosses represent the CL points.
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Figure 5: The tool path generated with both orientation and insertion opti-
mization for the double-bells surface with a flat-end tool head having radius of
8 mm after having been rotated back to the original orientation. The tool path
has 10 tracks with 10 CL points per track (n, = 8). Blue crosses represent the
CL points.

tool path generated with insertion optimization only. Figure 8 shows the result
using the tool path generated with both orientation and insertion optimization.
All three cuts are done with a flat-end tool head with radius of 8 mm. The
three tool paths all have 20 tracks and 20 CL points per track and are shown in
Figures 9, 10, and 11, respectively. Note that Figure 11 has been rotated to the
original orientation for better comparison with the other two tool paths. We see
that our optimization reduces the kinematic error for the same number of CL
points. Also observe that the cut from the fully-optimized tool path has smaller
kinematic error compared to the cut from the insertion-optimization-only one.

Finally, we perform virtual cutting of a second target surface in VERICUT.
The surface is a Bézier surface of order (4,4) and is shown in Figure 12 below.
We shall refer to this surface as the “valley.” This surface has higher curvature
than the double-bells and thus requires larger number of CL points to cut with
reasonable accuracy.

Figure 13 shows the simulated result from VERICUT of the valley surface
using the unoptimized tool path. Figure 14 shows the result using the tool
path generated with both orientation and insertion optimization. Both cuts
are done with a flat-end tool head with radius of 3.5 mm. The two tool paths
have 50 tracks and 30 CL points per track and are shown in Figures 15 and 16,
respectively. Figure 16 has been rotated to the original orientation. As before,
we see that our optimization reduces the error in the simulated cut.

7 Conclusions

We propose a method to minimize kinematic error in five-axis machining by
optimally inserting CL points between given key CL points in the tool path and
rotating and translating the target surface relative to the workpiece. Instead of
using the true kinematic error as the objective function in the optimization, we
propose to minimize the total weighted angle variation as it is much simpler to
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Figure 6: The simulated result from VERICUT of the double-bells surface using
the unoptimized tool path (with equally-spaced CL points) with a flat-end tool
head having radius of 8 mm. The tool path has 20 tracks with 20 CL points
per track (n, = 18).

Figure 7: The simulated result from VERICUT of the double-bells surface using
the tool path generated with insertion optimization only with a flat-end tool
head having radius of 8 mm. The tool path has 20 tracks with 20 CL points
per track (n, = 18).
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Figure 8: The simulated result from VERICUT of the double-bells surface using
the tool path generated with both orientation and insertion optimization with
a flat-end tool head having radius of 8 mm. The tool path has 20 tracks with
20 CL points per track (n, = 18).

Figure 9: The unoptimized tool path (with equally-spaced CL points) for the
double-bells surface with a flat-end tool head having radius of 8 mm. The tool
path has 20 tracks with 20 CL points per track. Blue crosses represent the CL
points.
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Figure 10: The tool path generated with insertion optimization only for the
double-bells surface with a flat-end tool head having radius of 8 mm. The tool
path has 20 tracks with 20 CL points per track. Blue crosses represent the CL
points.

Figure 11: The tool path generated with both orientation and insertion opti-
mization for the double-bells surface with a flat-end tool head having radius of
8 mm after having been rotated back to the original orientation. The tool path
has 20 tracks with 20 CL points per track. Blue crosses represent the CL points.
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Figure 12: The second target surface for the virtual cutting.

B VIEW 1 - Stock (Workpi

Figure 13: The simulated result from VERICUT of the valley surface using the
unoptimized tool path with a flat-end tool head having radius of 3.5 mm. The
tool path has 50 tracks with 30 CL points per track (n, = 28).
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Y VIEW 1 - Stock (Workpiece)

Figure 14: The simulated result from VERICUT of the valley surface using the
tool path generated with both orientation and insertion optimization with a
flat-end tool head having radius of 3.5 mm. The tool path has 50 tracks with
30 CL points per track (n, = 28).

Figure 15: The unoptimized tool path (with equally-spaced CL points) for the
valley surface with a flat-end tool head having radius of 3.5 mm. The tool path
has 50 tracks with 30 CL points per track. Blue crosses represent the CL points.
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Figure 16: The tool path generated with both orientation and insertion opti-
mization for the valley surface with a flat-end tool head having radius of 3.5 mm
after having been rotated back to the original orientation. The tool path has
50 tracks with 30 CL points per track. Blue crosses represent the CL points.

compute and approximates the true kinematic error quite well. Our experimen-
tal results show that the weighted angle variation minimization does minimize
the kinematic error, too, as we expect. We also see that doing both insertion
and orientation optimization yields more accurate tool paths than doing only
insertion optimization. Finally, we verify our results with VERICUT simula-
tion of a MAHOG600E machine and see that the optimized tool paths yield more
accurate surfaces in the simulation, too.
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