IR TFNYIo

Ta39n17 MR NANIZEN TR TTNNAHWIRAZDAINNITHAANI AN e LN 1e 16

n’nzm’nﬂ&imi;ua%mamsmmmmzqmmw NRAN RN

Tag &ilunit tanaini

ﬁqmﬂ% 2555

fyaal MRG5380235



FBIWITIRLUFNY I

Ta39n13 MR MNANIZEN TN TTNWHILAZDAIINITHRANIAN T LN

n’mﬂéfn’rszﬂ's'mvlaiuﬁuaumamsmmﬂu,azqmmw RGN

A5 unit tonaInm

AMLZIAINIINATNEAS NHIINYINYSIINANHAAS

ﬁ‘IISIJﬁ‘Ir!MTﬂﬂﬁ’]ﬁﬂd’]%ﬂmzﬂi‘iﬂﬂ’ﬁﬂ’]i‘é}.ﬂwﬁms}’] ﬁqﬁnaﬂ%naanuaﬁua%ums
0y

LAZANRIINYINLSITNANEAT

< ¢ < o 1o @ <
(ﬂ’J’INLﬂ%i%‘i’l%ld’l%ﬁtﬂ%iladﬂﬁﬂﬂ dna. Lag d@nn. 1N%’ltﬂ%ﬁ€ldtﬁ%ﬁ?ﬂlﬂ&dﬂ1ﬂ)



unAAga

T &lA3IN1T: MRG5380235

%aimamizmsmnmﬁmm:aulumsﬁmw"’wmua:é’mwmmﬁmNﬁ@ﬂ”msﬂmim ﬂlﬁﬂ’]']zﬂ’ﬁ&l

lausiuauminisaaiauazgunIwnaaimui

$01n3sy uazanntin: FUTHUNE NEWK AR ININRDTITNANRAS
BLaus: sup@engr.tu.ac.th

szoznalazens: 2 O

UNAALD: TIUIWALUBIILRUDNAINUIVEINEILANUFUNWTIZHINOAIINITHAN DO TINANAR

msw”wmmaaszuuLLa:ﬂ’;'m"L&imLuaumaomm@LLazqmmwﬁuﬁﬂuﬁNmsﬁuNﬁ@ﬁuﬁﬁ Tun3%

o

v v o Aa a { A o o a X

Ed EIVL@]W@.I‘LL’]LL‘iJ‘lJ"ﬂ’]aa\‘i‘l’]']dﬂmmﬂ’]@]{‘llBﬂizﬂﬂﬂ’liwa@]Lﬁ‘a?Lﬂi’]zﬁ%?ﬂ’]vlﬁau’ﬂtLﬂ@]‘ﬂ%’ﬂ’]ﬂﬂ?i
A a a v Ao ' A a A a AN o
LRANNAARUATINBAINA ﬂLWQI’Iﬂ%ﬂ’]i%Wﬂ@]TML%SJ’]Z&N I@]Elﬂ??’)Lﬂ?ﬁ:ﬁuvLﬂi’]‘]JTJNLE]’W]T]%J

13 awNIN19a14 DIARALAZA NN INAAN WL blae ;ﬁfﬁ'ﬂ ATNNTILATIZHLT

s & v & 1 a a 1 1 v Adg A'l =1 o
ALAUTINALFN AAUITNITAATIZH LA yﬂﬂmmvl,ml,umﬂﬂwammumamm@ummwuuﬂiga

v W v

a A a = o ; A d'l a a o Qs dl
aumﬂwawamﬁmvlim HIBLUBIZUUNIINAANDAIINIIWRIUINDN

ANNan : mm"l,mmuaumaaqﬂadﬁ, NMISUNRARWAT, LULFIRAIRINANNLT, MIWAIWITEITELIL



Abstract

Project Code: MRG5380235

Project Title: Optimizing Product Launch Decisions under Product Quality and Demand

Uncertainty

Investigator: Sappinandana Akamphon

E-mail Address: sup@engr.tu.ac.th

Project Period: 2 years

Abstract: This report explores the interactions among the decision of production speed, yield,
learning, and demand uncertainty during production ramp-up. A dynamic net revenue model for
production ramp-up coupled with learning and demand uncertainty is built to identify optimal
ramp-ups under various contexts. Various numerical simulations are explored to determine the
robustness of the optimal production ramp-ups under demand uncertainty. Results demonstrate
that, in general, slower production ramp-ups are more profitable under increasing demand and
product quality uncertainty. However, in high profit margin products, optimal production ramp-

ups are much less sensitive to demand uncertainty.

Keywords: Demand Uncertainty, Production Ramp-up, Net Revenue Model, Learning
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1. Executive Summary

Increasing global competition forces manufacturing firms to release new products, or
product launches, at a faster rate than ever. For any firm to survive, it must be capable of
planning profitable product launches, which involves introducing the new products into a
manufacturing facility and scheduling operation times from the beginning until production
reaches full capacity (a set of operation times from the beginning of launch until full capacity
production is called a ramp-up). Product quality during production ramp-up can be difficult to
control as workers are learning new processes or learning to make new components. Piling on
more pressure are economic volatility and constantly shifting customer demand, making sale
forecast a very difficult task. With both product quality and demand uncertain, the problem of
finding an optimal ramp-up can be challenging. Simply planning with the assumption of
deterministic product quality and demand can lead to suboptimal results.

In this report, a net revenue model of production ramp-up is constructed. Production ramp-
up is divided into small, quasi steady-state periods of operation. The model can evaluate the
net revenue of a firm based on its ramp-up and parameters like process improvement rate
(learning) and demand. The magnitude of demand uncertainty is modeled by its standard
deviation.

For performance comparison, there are two objective functions—the total net revenue for
the deterministic demand cases and the expected value of total net revenue for the uncertain
demand cases. These two objective functions are used to search for optimal ramp-ups for their
respective cases. The value of considering uncertainty is simply the difference in the expected
values of the total net revenue of the two ramp-ups. Based on analysis, it is found that
considering uncertainty leads to different ramp-ups when product profit margin is small or
learning rate is low. Incidentally, under these manufacturing contexts, the ramp-ups under
uncertain demand are always slower than that of their deterministic counterparts.

Managerial implications of this study are that for manufacturing firms whose productions
have low learning rate (mostly matured or automatic processes) or have low profit margins

(such as automotive, electronics, and agricultural industries) can benefit significantly from



incorporating product quality and demand uncertainties into planning and scheduling production

ramp-up.
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Increasing global competition means that customers are always looking for the latest model
products on the market. Product lifecycles are becoming shorter while new product introduction
rates have been steadily increasing. Hence, product introduction has become an increasingly
larger part to the operation of a manufacturing firm. To survive, it must succeed financially at
releasing new products. However, releasing new product is not a simple act of making
announcement and putting the new products on store shelves. Before a new product can be
introduced into the market, it must be introduced into a manufacturing facility. At first, the time it
takes to make each new product, or operation time, is slow. The facility then progressively
speeds up manufacturing by reducing the operation time until it reaches full manufacturing
capacity. This progressive increase in production rate is called production ramp-up.

At the center of a production ramp-up is the learning effect, which in this report refers to
the improvement in yield as workers cumulative output increases as opposed to the traditional
meaning of the reduction in unit cost. By gaining experiences, workers become familiarized with
the processes involved in manufacturing the new products and are less prone to making
mistakes, allowing the manager to increase the production rate. It is evident that firms in
various manufacturing industries, from semiconductor to automotive manufacture, have
exhibited significant yield improvements from the learning effect during production ramp-up.

The key decision of operation time during production ramp-up directly affects productivity
and, thus, profitability of the firm. If the facility is operated excessively fast, it can lead to
defective parts as workers may not have sufficient operation time to properly process or are not
yet sufficiently familiar with manufacturing the parts. On the other hand, overly slow production
incurred the opportunity cost from wasted capacity. However, from a learning standpoint,
operating the facility rapidly has high workers will be generating higher cumulative output,
leading to faster improvement. This creates an “intertemporal trade-off between the short-term
opportunity cost of capacity and long-term value of learning.”

Another significant factor that can affect profitability of the firm during production ramp-up
is demand uncertainty. This adds a stochastic dimension to the tradeoff between the

opportunity cost and value of learning. Regardless of the amount of marketing research going
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into the product design, a firm may not be able to perfectly foresee the demand for its new
products. When demand is underestimated, there is additional opportunity cost of
underproduction; and when it is overestimated, capacity is wasted and the manufacturing facility
incurred additional manufacturing costs without generating revenue. To accurately evaluate the
effect of demand uncertainty to the net revenue stream of production ramp-up, these additional
costs should be incorporated.

This report investigates the interaction between the decision variable of operation time
throughout the production ramp-up, yield, yield improvement or learning, and the effect of
demand uncertainty. A dynamic net revenue model of production ramp-up which allows for the
flexibility of periodic changes in operation time is constructed. The model uses net revenue to
find the optimal set of operation times from the introduction of the new product until full capacity
production. Numerical illustrations are used to demonstrate such effect under various

manufacturing contexts.
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In this section, the calculations and assumptions involved in modeling production ramp-up
and evaluating its economic performance is detailed. The decision variables in this model are
the operation times, which are allowed to change at different stage of production ramp-up. The
economic performance is measured by the net revenue at the end of ramp-up. The model is
subsequently utilized along with an optimal search algorithm to determine the set of operation
times (a ramp-up) that maximizes net revenue. In this work, it is assumed that there is no
experimentation effort to induce learning, i.e., yield improvement is only a result of autonomous

learning.

3.1. Dynamic Production Ramp-up Model

A production ramp-up, as mentioned previously, is the duration since the new product is
introduced into the manufacturing facility until the facility reaches full production capacity.
Throughout the duration, the operation time is gradually reduced to speed up production rate.
To evaluate the net revenue during production ramp-up, which consists of multiple periods of
operation with different operation times, the production ramp-up must be divided into a number
of periods of quasi-steady state operation. Let that number be n.

In each period i where 1 < i < n, assume that there is a total available time of T, and that
the minimum possible operation time for the process is t.,,. This minimum operation time is
related to process’s physical limit such as maximum speed of cutting tools or cooling time of a
material. The operation time choice t, is a decision variable in each period, and a set of
operation times T = [t, t,,..., t] is referred to as a ramp-up. The number of product starts with
the available time is thus T/t. Therefore, the cumulative product starts into manufacturing up to
period i is

1
T
V=2 (1)

=Ly

Define yield y, as the fraction of nondefective products out of all that are started into
manufacturing. It is modeled as a function of operation time and manufacturing learning

parameter a, which is the reduction in defect rate due to accumulated experience. To simplify
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the analysis, a specific functional form among defect rate, operation time, and manufacturing

learning is defined according to Terwiesch and Bohn [1] as

t.
Yi=Yo Ll_ q TmJ (2

i

where t.;, is the minimum operation time below which the operation is physically
impossible. The parameter y, captures the base yield which is independent of the operation
time and cannot be improved, while the parameter a represents the benefit of learning on the
reduction of defective product rate. a is modeled using a truncated form of the log-linear
relationship developed by Nadeau et al. [13]

8 = MiN(@,,, MaX (@, bY,2)  (3)
where an, and a,;, are the maximum and minimum observable values for a. The parameter b
is the chance of first product being defective, v is the cumulative output, and q is the learning
rate.

This functional form is consistent with the assumptions in [1] that yield should improve with
increasing operation time but with diminishing returns; and that yield should also improve with
increasing process capability, a quantity that is captured by a. It is different, however, in the
way learning is modeled. According to [1], learning is modeled as a function of experimentation
effort and cumulative time the facility has been processing the new product, which is
independent to operation time choices. In this report, however, it is assumed that the facility is
dedicated to production where learning occurs autonomously, leaving no capacity for
experimentation. Furthermore, many previous works have shown the relationship between yield
improvement and cumulative output. Therefore, learning is modeled after cumulative output
which is a function of the operation times of all preceding periods.

The number of nondefective products in period i can then be expressed as

T Lo
N; =t—_yoL1—ai T‘”J 4)

3.2. Deterministic Net Revenue Model

It is assumed that pricing is the decision of the manufacturing firm so the selling price p is

fixed. Early in production ramp-up demand for the product is high, but this will decrease over
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time as the product gradually loses its ‘new’ appeal. Therefore, it is assumed that the starting
demand is d, and it decays at a rate of o) per period. As this report focuses on the dynamics
inside the plant, it is viewed that the demand and its decay rate are exogenous to the model. If
demand in a period is higher than the number of nondefective products, it is assumed that
customers will not wait for products at a later period as there can be many other similar
products available. Only the amount of products made to meet demand in each period is sold;
unmet demand is irrecoverable. Surplus products, S, are stored for later sale. The number of
products sold, s, in period i is
S = min(d&i‘l, N, + Si) (5)

where the first term is the demand in period i. The second term is the number of products
available for sale in the same period, which is equal to the number of nondefective products in
the period plus the number of surplus products from all preceding weeks. The number of

surplus products at any period can be recursively defined as

0 ;1=0
S, = :
S +N;-s ;0<i<n
A variable cost per product start is c. Therefore, the deterministic net revenue generated in

each period is

m=ps-cr ()

i

Based on Eq. (7), it would seem straightforward to derive the operation time that
maximizes the number of nondefective products in a period. However, as learning is dependent
on the cumulative output and thus the operation time, all subsequent period operation time
decisions are dependent on the current period decision. The optimal operation time for a period
is not necessarily the one that maximizes the net revenue in this period. In fact, it may be an
operation time that generates more learning so that future periods may benefit.

The added complexity of considering demand is that the number of products sold is no
longer singly dependent on the operation time decision. Equation (5)-(7) shows that while

operation time directly translates to production ramp-up cost, it is not always directly related to

revenue. When manufacturing is constrained by demand, decreasing operation time increases
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the revenue up until production volume exceeds demand. Beyond this point, faster operation
time only leads to product surplus which needs to be stored for sale later.
The deterministic total net revenue is the discounted net revenue streams over production

ramp-up periods. Taking r as the discount rate, the deterministic total net revenue is

I, () =Zl (1fir)‘ (8

The operation time choice in a given period affects its net revenue in two ways. First, the
choice affects the revenue as it depends on the nondefective output. For the operation time
choice to maximize the revenue, it must maximize the number of nondefective output. Second,
the choice also affects the costs in subsequent periods as they depend on learning and thus
the cumulative output.

However, if demand is lower than the capacity, then the revenue depends on the operation
time choice up until the nondefective output reaches the demand. Beyond this point, reducing
the operation time does not generate additional revenue, but the additional output would still

enhance the future value of learning.

3.3. Incorporating Demand Uncertainty

To incorporate demand uncertainty into consideration, it is assumed that starting demand
is no longer a deterministic value d but instead a randomly distributed number with an average
of d and standard deviation of O. Instead of evaluating a ramp-up’s performance by the total
net revenue based on Eq. (8), the objective function is now an expected value of total net
revenue based on the distribution of demand. The magnitude of uncertainty in demand is
captured by its standard deviation. The expected net revenue in period i is the revenue from
expected sale minus the cost.

E[z]= pE[si]—c-tr— ©
i

The objective function to be used to search for optimal production ramp-up is the

discounted expected net revenue stream over the launch period. Taking r as the discount rate,

the objective function becomes

I, (7) = ;% (10)
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3.4. Optimizing Production Ramp-ups

Due to the way learning is modeled as a function of cumulative output, each successive
operation time choice influences learning and enhances production capacity of the systems to a
varying degree, the problem of expected net revenue maximization becomes path-dependent,
and optimization algorithms such as dynamic programming or do not guarantee global optimum.
In this report, optimal ramp-ups are determined using a combination of excel and crystal ball,
an excel add-on which provides means to search for an optimal set of solutions using OptQuest
module.

In this report, the objective function for the deterministic demand case is the total net
revenue defined in Eq. (8), while for the uncertain demand case it is the expected total net
revenue defined in Eq. (10). The constraints on the operation times are that they are non-
increasing, i.e. the operation time of current week is smaller than or equal to that of the
preceding period. This condition is imposed to imitate a typical production ramp-up that
gradually improves production rate. The second condition is that the operation times are
integers. In reality, the operation time can be any real number; this constraint was added simply
to reduce the optimization time. For each scenario, the simulation is repeated at least 100000
times to ensure that the confidence intervals are sufficiently small and the differences in

expected net revenues between cases are statically significant.

3.5. Value of Demand Uncertainty Consideration

The benefit of incorporating demand uncertainty to help identify optimal production ramp-
ups can be evaluated by comparing the expected net revenue difference of ramp-up optimized
from deterministic demand (Eq. (8)) and those optimized from uncertain demand (Eq. (10)).
With this value, manufacturing contexts that are more vulnerable to demand uncertainty can be
identified and characterized. If T, is the optimal ramp-up for deterministic demand and T, is the
optimal ramp-up for uncertain demand. The value of demand uncertainty consideration, V, is
simply

V =I1,(z,)-11,(z,) (11)

When considering demand uncertainty, it is possible to show the asymmetry between the

values of increased net revenue from improved yield and those of learning. If under a given
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manufacturing context, T, is faster than T, it signifies that the future value of learning is worth
more than the increased net revenue from increased nondefective products in the current

period, and vice versa.
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4. NanIInNaasg

A number of numerical examples are solved in this section in order to provide better
understanding to the optimal ramp-up in various manufacturing contexts. Consider a typical
automotive underbody manufacturing facility. The discount rate is 0.3% per period (week). The
cost per start is $500. The available manufacturing time T is 80 hour per period. The minimum
possible operation time ., is 60 s, which means the maximum production capacity is 4,800
vehicles per period. Without the loss of generality, the starting demand is assumed normally
distributed with an average of 4500 vehicles per period with 0= 0.95, and the magnitude of
demand uncertainty is modeled by its standard deviation. According to the available data from
manufacturing experts, there are minimal yield loss during steady state operation (y, = 1) and

learning parameter b = 0.8 and g = 0.32.

4.1. A Typical Optimal Ramp-up

By setting the standard deviation of demand to 400, the optimal ramp-up and resulting

weekly yield during production ramp-up are shown in Fig. 1.

. 1009
240 - 100%
'I
L 0,
2 180 | Op Time / 90%
£
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[ .
8_ 60 | Yield _.-" -
. r (]
g ¥
0 : : : —L 50%
0 5 10 15 20

Weeks since Start of Ramp-up

Fig. 1 An optimal production ramp-up and resulting yields for the example case with standard
deviation of demand = 400.

Fig. 1 illustrates a typical suggested production ramp-up and resultant yields. The
operation time in the first week steadily decreases as yields improve due to manufacturing
learning. The operation time reaches a minimum possible operating time of 60 s and yield
reaches 100% in week 16.

While the goal of this report is to present the effect of demand uncertainty on the optimal

ramp-ups, it is difficult to show all of the optimal operation times in a ramp-up versus varying
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demand uncertainty in a single diagram without some clarity loss. To remedy this issue, the
author feels that presenting the optimal ramp-ups as 20-week average operation times allows

for more effective figures.

4.2. Capacity Utilization

Here, the report will investigate whether demand-constrained system and capacity-
constrained system are affected differently by demand uncertainty. First, consider a system that
is operating at near maximum capacity—where the average starting demand (4500) is close to

the maximum capacity (4800).

190 4
180 4
170 4
160 -

150 -

Average Operation Time

140 + T T T T )
0 400 800 1200 1600 2000

Standard Deviation of Demand

Fig. 2: Average operation times under varying demand uncertainty for a capacity-constrained
production (average demand = 4500).

Under increasing demand uncertainty, the model suggests slower optimal production ramp-
ups, as illustrated in Fig. 2. This is because the disadvantages resulting from excessive speed
are twofold: 1) excessive speed leads to low yield and 2) even though lower yields lead to more
learning and improved capacity in later period, there is an increased risk of unsold products.
The disadvantage from a slower production ramp-up, on the other hand, is only the opportunity

cost.
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Fig. 3: Average operation times under varying demand uncertainty for a demand-constrained
production (average demand = 2400).

Consider now a case where the average demand is much lower than the maximum
capacity (2400 vs 4800). Similar to the capacity-constrained case, increasing demand
uncertainty also leads to slower optimal production ramp-ups, as shown in Fig. 3. The
increases in average operation times from the deterministic to the most uncertain demands are
also comparable (28% vs 30%), exhibiting that the level of demand- or capacity-constrained of
manufacturing system has very little effect on the robustness of optimal ramp-ups under

demand uncertainty.

4.3. Product Profit Margin

Product profit margin refers to the difference between the selling price and the production
cost of the product. Even with a fixed price, profit margin during production ramp-up can vary
because yield changes. For clarity and simplicity, product profit margin refers to the ratio
between the selling price and cost per start.

To understand how product profit margin affect robustness of the optimal ramp-up,
consider the case for a production ramp-up of a low profit margin product—where the ratio of
selling price to cost per start is low (p/c = 1.5). Fig. 4 shows that the model suggests slower
ramp-ups as demand uncertainty increases. When profit margin is low and selling price is
comparable to cost per start, opportunity cost is worth as much as unsold finished products.
Thus, there is no incentive to hasten or slow production based on revenue. On the other hand,

increasing the operation time guarantees cost reduction through increased yield and reduced
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number of products started—a deterministic cost saving. Therefore, as demand uncertainty

increases, the suggested optimal ramp-ups become slower.
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Fig. 4 Average operation times under varying demand uncertainty for a low profit margin
product (p/c = 1.5).

Consider now a case for a high profit margin product (p/c = 5). As shown in Fig. 5, the
most contrasting aspect of the result compared to low profit margin case is the insensitivity of
the optimal ramp-ups to demand uncertainty. This is because the selling price is high, loss of
sale is worth much more than unsold finished product; maximizing expected net revenue
becomes a simple matter of maximizing the number of finished products. Therefore, increasing
demand uncertainty does not affect the robustness of the optimal ramp-ups of high profit
margin products.
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Fig. 5 Average operation times under varying demand uncertainty for a high profit margin
product (p/c = 5).
The difference in behavior of low and high profit margin products clearly exhibits strength
of the effect that a profit margin has on the robustness of optimal ramp-ups under demand

uncertainty.
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4.4. Manufacturing Learning Rate

For a manufacturing firm with fast learning (q = 0.5), i.e. where the production process is
still immature or mostly labor-based, the production capability improvement is rapid and
therefore the average operation times are faster. The model suggests that the optimal ramp-up
should slow down as the magnitude of demand uncertainty increases. In fact, the suggested
average operation time during ramp-up for when the standard deviation of demand is 2000

increases by 28% compared to deterministic demand (i.e. when standard deviation is 0.)
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Fig. 6 Average operation times under varying demand uncertainty for a fast manufacturing
learning system

Consider a firm with slow learning (q = 0.15), i.e. where the production process is mature
or mostly mechanical, the capability improvement is slow, leading to slower production ramp-
ups and thus longer average operation times. When standard deviation of demand is 2000, the
suggested average operation time increases by 12%. Comparing to the case of fast
manufacturing learning, the optimal ramp-up is less sensitive to demand uncertainty. The ramp-
up was already slow to begin with and it cannot slow down much further since it still needs to

satisfy the demand.
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Fig. 7 Average operation times under varying demand uncertainty for a slow manufacturing

learning system.
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5. agﬂwaminmam

The report presents the findings on the effect demand uncertainty has on optimal
production ramp-ups under various manufacturing contexts. By developing a dynamic net
revenue model of production ramp-up with manufacturing learning and coupled with uncertain
demand, optimal production ramp-ups can be identified through maximization of expected net
revenues. The findings shed light on the robustness of suggested optimal ramp-ups under the
effects of varying profit margins and manufacturing learning rates.

Numerical illustrations demonstrate that, in certain manufacturing contexts, explicit
consideration of the stochastic nature of demand can be crucial to the financial performance of
production ramp-up. This is especially true for production of low profit margin products with
slow learning rates.

The constraint on production, whether it is capacity or demand, has no effect on the
changes in optimal ramp-ups under demand uncertainty. Net revenue changes due to capacity
utilization is unaffected by demand, resulting in similar changes in optimal ramp-ups regardless
of the constraints.

Product profit margin is crucial to the robustness of the optimal production ramp-ups under
demand uncertainty. For low profit margin products, managers should consider slowing down
the ramp-up as demand becomes increasingly uncertain. For such a case, cost saving is the
way to increase expected net revenue. On the contrary, optimal production ramp-ups for high
profit margin products are virtually insensitive to demand uncertainty; generating net revenue is
easily achieved by producing more products to satisfy demand since the cost per start is
inexpensive.

Manufacturing learning rates do not have as equally significant an impact as profit margin.
A fast learning system is more affected than a slow learning system. A fast learning system
tends to ramp up operation time faster, so there is more room to slow down the system, save
on cost, and still be able to satisfy demand.

The report has investigated in details the robustness of optimal production ramp-up due to

demand uncertainty, which affects revenue. Future research should address uncertainty in
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factors that affect cost structure of production. It may also be interesting to explore uncertainties

that affect cost and revenue simultaneously, and to investigate the interaction among them.
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