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Abstract
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In this project, firstly, we present some results on fixed point theorems,
variational inequalities problems, system of variational inequalities problems, and their
relationships. Then, by using those knowledge, we prove the results on random fuzzy
variational inclusion problems, which are the main purposes of this project. It is worth to
mention that, the results presented in this project are more general and are viewed as
an extension, refinement, and improvement of the previously known results in the

literature.

Keywords: Variational inequality problem; fixed point problem; random fuzzy mapping;
weak distance; resolvent operator; regularization method, Hilbert spaces, Banach

spaces


mailto:narinp@nu.ac.th
mailto:suthep.s@cmu.ac.th

UNANLa

shalasInIs: MRG-5380247

Falasens: mMItlagauazduaawdsundymaniusuyaaun I Ll i
HIINANTREUD DY

Y a 4 [

{398 ELATUIUNT LT3 1397

MAITIAAFNT  AUANLENEAT WRINLIRLWLIAT
wnIaNUInu: fl. ATFNN el
MAATAHAITNT  AINUIAFNT RN LTl

aua: narinp@nu.ac.th (W3un3 twsslya)

suthep.s@cmu.ac.th (Egm‘w mus[,@"f)

szgzaltasini: 15 ﬁqmﬂu 2553 — 14 ﬁqmyu 2555

lulasamsdt suwsndududrismsdnsmaejunianis Jywiaauniinisudsdu
ez UUT T aguNI NI IRULAT AN NENNBIVBITYRIGN9 JLAETH I6E
o & v & vl o & v @
wasnnuulasnmslfasdanainladnsluduuninlddnsdymesumanaudiu
a v o A & . nql’ v &d o a v a%’o v
pwInddmipuuugudadwihninenanueslasntt waswinldanlasainmddeimly

Dt v { v J
"LmuaaﬁmmgﬁmauﬂaqwLLa:m’mmwwu

AIMAN: BRNNIINITLU THY; ﬂmumfgm‘%a; MIFIATHILUUFY; T28eN190E0988%; 67

o a v ad o v & =1 2 aa a6 a a
giiunauniilyn; il dusadoy; ﬂiﬂuamm@; ﬂsgwmmﬂ


mailto:narinp@nu.ac.th
mailto:suthep.s@cmu.ac.th

UNW

mMIAnw I NINUN B UnasunINMILUsHw laiTandunumaagagrsanaing
= d' 6 q/d' v =< d' = 1 | d' A o o d'
20 § flesnnasdanuiildannmsdnsluitasdindruiuaiasiiodmAydiaunm
ilddzgndldlunsaeviymvesunvuiinasiugiudri giiannluamaninaiy g
g: a =) A€ a 1 . .
WIWINIINEEEaTUIgnTUAZIneeaailszend 1w nonlinear  programming
physics, economics, transportation equilibrium, regional .82 engineering sciences 1w
Ath
(% = d' > = o v a J & 1
lulatiunsdnsuisinungsunaaunimaudsiuldlnmmiandudua g
v laglainmmesumfevaslywesuniinmsudsiuiuunansilas  Hartman uaz
. Q a { < L= QI/ AI &/ &
Stampacchia lull a.a. 1964 lddsumwianfianadudoniluanniau ladszasd
> A U 6 -ai o v 1 1 v
wan da nssiwasdanuilminaansnilddszendlfldaisuninaouaznitennns
a X [ ' a { o o Lo
INTIUK  IWUWINAINEY  wiAaNgInuagNmINSHUISHUNUIN  (variational
i i A o 4 o A . = o
inclusion)  fiatdlumsenien laasdymesumsmsudidunviiawladssansniu
o a & A & oAl o =2
drzgndlfuazldsslondadan - Ssasdanuiildannsfnmidymasumnisuys
a g; A o g o v Gi a . . .
Aunwanulaisuiaylunmah lddszendlfinonumineudym optimization
theory, mathematical finance, decision sciences L8 structural analysis W ne % QIR
A A A [ o aa A o A v A
auanNiawlafelywineinunszuinmImdiaeuradsnadiaauialn launds
faauuaIdynIaInan?
lwtuaeuasmsvammauwiiainsiuminadszgndldasdanuldivan
Anwmnuuneauniansudidunn 1wl 1985 Pang ldugasin wuudiaasvasilym
ANLNIN (equilibrium model) L% the traffic equilibrium problem, the spatial equilibrium
problem, the Nash equilibrium L8z the general equilibrium programming problem
o =2 A . @ o a 2
sannihandnsluguuufitangd(uniformly model) ld TaslfumiAanisdnmasunis
% d' =S [ ] gﬁ A
MILUIHULULTANAG T (product set) Tilumsdnsaana1Inu Pang lalditn1slasuan
sruMINIulsHBaIduEiwILymumsanaguaInaduszuurasagunINIILs
b (system of variational inequalities) WaLY¥NMIANELALINLATZLIUMIRIAIABLVBY
szuuvasasumImMaudsdn  wazldusasliidiuwinnmsdnuiywiaaunmsmsudsiuwon
\ranag Azl wszuuvaseaumINMIulsdmdunsansnauyany  Gatunsdanm
NEINUNITZUIUNNITRIFAABLYRITzULYRIaaNMINUTER  Jenuidusenvaunl

28989

a A & A A = A ) a Ao o
luaﬂqﬂ']ﬁﬁuﬁLl]uﬂ“ﬂi']l]@'l']ﬂ']iﬂﬂﬂ:ﬂLﬂUQﬂUVIQHQLsﬁ(ﬂqeﬂﬂj%ﬂ (fuzzy set theory)

L a & { Y '
Tasuiizulull a. @ 1965 lay Zadeh vInfMIANBUALIAUANNNIEN (random



equations) TILALIWUALFIGUARNIEY  (random  operator)  Wududunsdnsndl
Urzlomdadnsundnisunu asnniimahlddsegndlslumaasnans guans adagu
physical, mathematical and engineering science, probabilistic model Dudn  a9in
wndanazyinsAnslasnanaunauedanuiineIiy  esunInulsiuuazszLY
vo0aNM I addTiy war sunIguineIRuiuaduiumIgy el
& o E R o 4 ox oA A & . A & oA o
psdanuiinnniunisivinduesmihauladuediann  hesnasdanainlesu
o & & A v o
azaveunguuazaanInih lldegndltldlosrnnnmaaing 3 uswsinanandrsdn

= 6 A Aa A ¥ vl v
FINDIFRAILLV DU €) Y]EJﬂ’J’]&lLﬂEI’J?IE]GVL@aﬂ@’JEJ

nninamEduanduldninsinsmaeiunifmuanudumuiszning

5:1J1J°11aaaaumimmﬂiﬁuﬁﬁmmLﬁmﬁaaﬁ’uumﬁ@mwﬁLsﬁ@l'iﬁ"*ﬁﬁml,azawﬂﬂiquu
fatnludslomionnts  lesnndymudszsfiadafifienuddyiaudalunsi’ly
dszgndliuidfgmiiesdes  dedatu  Wuinmudilunsinsiadaiiai
mathematical programming 92WU731 ﬂrymaaumsmmﬂsﬁmzﬁmmLﬁmﬁaaﬁ’uﬁfym
313204 (optimization problem) ¥nlduafiauania n'ﬁﬁnmﬁmﬁuﬁagmaamms
maudsufifanusuiusiuumdengefisadsminaslianuiodasiudywmng
Usean a3 Amme (fuzzy optimization problem) @aufiathandsznaufunisRatsonls
wfnuassumagudsiiunumadglunsfnsifsaiuuusieesluinmemans

1szend (applied sciene) Tindrpdsiuindunnaulaainabs

v
e A Yo a

o & a Ae 2 A A = o A o
aanwlulasanaieidanfiunmsissislienusnlanesfinwuazuidywiivala

U
A =)

"L@Tmﬁmmflmiﬁumulﬁ] fa  ANBINITUIRNNTIUAAWI T INNITHIFIGa UV ITZU LU
ARNNINILL TN BN WINTINDIFUNTUU TN WINE W laaianuAgddasny
a a W -5 1 é -5 1 o v { v
wndanguiradimibuazaunsgy Sansdnmymainansilingejuniduny
= Ad 4 oa 2 A oAl ° o & Ay o o o
ATAUARNMIANINTaLAN muwamaLuaqmM’”L@ammnugﬂ%uﬂvl,@mmmmvlﬂslﬂ@
1 v L QI lg’ d ] ¥ { o Q = =)
agandsruasiidnonmanngin - svendunugundraglunswanidmnnisle

a tﬂ. ‘ﬂl v et 13 ‘3/ ot J
T NngTasanssduingwlumsnawndszineadaly

6 a o
AAUITHIAVDINITIVY

b
v
[

aquszasdaaslasansiiuil A Andungufunuazasdanuslnag ey

1. nzumTtuaawitlumimimaeuvasszuuataaun I SHUNIANFURUS
nuufanneion Insisuazsunguuuligiisaife

2. nyzumTluaawislunamdaauvesszuLasaru NI SHUNIINAY

M aRUEAL uwfeanguirainmisuazaunisguyinigadia



NanN15I8

1. Fixed point problems
Let (X,d) be a metric space and 2%, CB(X), CI(X) denote the collec-

tions of nonempty subsets of X, nonempty closed bounded subsets of X and

nonempty closed subsets of X, respectively. If 7' : X — 2% is a mapping,
then an element z € X is called a fixed point of T if v € T'(x) and Fix(T)
denotes the set of fixed points of 7, that is, Fiz(T) ={x € X :x € T'(z)}.

Recall that the function H on C'B(X) defined by

H(A, B) = max {sup d(z, B), sup d(y, A)}

€A yeB
for all A,B € CB(X) is called the Hausdorff metric, where d(z,B) =
inf{d(z,b)}.

1.1. Yeol Je Cho, Soawapak Hirunworakit, Narin Petrot, Set-Valued Fixed
Points Theorems for Generalized contractive mappings without the Hausdorff
metric, Applied Mathematics Letters 24 (2011) 1959—1967.

The concept of 7— distance on a metric space, which is a generalization
of w- distance, introduced by T. Suzuki [T. Suzuki, Generalized Distance and
Existence Theorems in Complete Metric Spaces, J. Math. Anal. Appl. 253
(2001), 440-458], as following. Let X be a metric space with metric d. Then
a function p from X x X into [0, 00) is called 7 —distance on X if there exists

a function 7 from X X [0, 00) into [0,00) and the followings are satisfied:
(r1) p(x,2) < plx,y) +ply, 2) for all z,y,z € X;

(72) n(z,0) = 0 and n(x,t) > t for all x € X and ¢t € [0,00) and 7 is
concave and continuous in its second variable;

(73) limy, 00 , = @ and lim,, o sup{n(zn, p(zn, Tm)) : m > n} = 0 imply

p(w, z) < liminf, . p(w,x,) for all w € X;

(74) lim,, oo SUp{P(Zpn,Ym)) : m > n} = 0 and lim,,_. n(z,, t,) = 0 imply
limy, o0 7(Yn, tn) = 05



(75) limy, 00 N(2n, P(2n, Tn)) = 0 and lim, o (2, P(2n, ¥n)) = 0 imply
lim,, o0 d(2p, yn) = 0.

We define D,(z,A) = inf{p(z,y)|ly € A}. Then, in this part, we have the

following results.

Theorem 1 Let (X,d) be a metric space and 7" : X — CI(X) is set-valued
contractive mapping. If there exit a function ¢ : [0,00) — [0,1) and a non-

decreasing function 6 : [0, 00) — [¢, 1), ¢ > 0, such that

p(t) < 0(t)
for all ¢ € [0, 00) and

lim sup ¢(t) < limsup 6(¢)

t—rt t—rt

for all » € [0,00), and there exists a 7-distance p on X such that for any
x € X there exists y € T'(z) satisfying

O(p(z,y))p(w,y) < Dp(x, T(z))

and
Dy(y, T(y)) < o(p(z,y))p(x,y).

Then we have the following:

(a) For each zy € X, there exists an orbit {z,} € O(T,z,) such that
{Dy(zn,T(z,))} is decreasing to zero and the sequence {z,} is a Cauchy
sequence.

(b) If {z,,} converges to z and the function f(z) := D,(x,T(x)) is T-
orbitally lower semi-continuous at z with respect to xy then z € F(T).
Moreover, if T'(z) = z then p(z, z) = 0.

Theorem 2 Let (X, d) be a complete space. Suppose that 7' : X — CI1(X) be
a set-valued mapping of X into itself. If there exists a function ¢ : [0, 00) —
[0,1) such that

limsup p(r) < 1

r—tt



for any t € [0,00) and there exists a 7-distance p on X such that, for any

x € X, there exists y € T'(x) satisfying

p(x,y) < (2 —p(p(z,y)))Dp(x, T(x))

and
Dy(y, T(y)) < o(p(z,y))p(z,y).

Then we have the following:

(a) For any xy € X, there exist an orbit {z,} € O(T, ) and z € X such

that lim x,, = z.

n—oo

(b) If the function f(x) := D,(x,T(x)) is T-orbitally lower semi-continuous
at z with respect to xy then z € F(T'). Moreover, if T(z) = z then

p(z,z) = 0.

Also, in the presented paper, some interesting remarks and examples are

also discussed.

1.2. Jittiporn Suwannawit and Narin Petrot, Common Fixed point the-
orems for hybrid generalized multivalued, Thai Journal of Mathematics, 9(2)
(2011), 417—427

Let X be a metric space. A subset C' C X is said to be approximative if

the multivalued mapping
Pe(x)={ce C:d(z,c) = D(z,C)}, Ve e X

has nonempty values. The multivalued mapping 7 : X — 2% is said to have
approximative values if 7'(x) is approximative for each = € X.
Let oc€ (0, 00], R: = [0, ). Let ¢ : R — [0,00) satisfy

(i) ¢(t) <t for each t € (0, );
(i) ¢ is nondecreasing on R;

(il1) ¢ is upper-semicontinuous.



Define ®[0,oc) = {p : ¢ satisfies (i)-(iii) above}.

From now on, for a metric space X, we let I' = sup{d(z,y) : =,y € X}
and set c=T"if ' = 00, and o> T" if I' < oc.

Let J denotes an interval on [0,00) containing 0, that is an interval of
the form [0,7],[0,7) or [0,00), and we use the abbreviation ¢" for the nth
iterate of a function . A nondecreasing function ¢ : J — J is said to be a
Bianchini-Grandolfi gauge function on J if 32 " (1) < oo for all ¢ € J.

Suppose that S, T : E — 2% and ¢ € ®[0, ) satisfy

H(Sz, Ty) < ¢(p(x,y)),
for each =,y € E, where

p(z,y) = max{d(z,y), D(Sz,x), D(Ty,y), 5 [D(y, Sx) + D(z, Ty)]}.

DN | —

Then the pair S,T" is called the hybrid generalized multivalued ¢-weak con-
traction mapping.

Motivated and spirted by the research going on this field, in this work we
prove that there is a common fixed point of hybrid generalized multivalued

p-weak contractions S, 7" on complete metric spaces X.

Theorem 1 Let (X,d) be a complete metric space. Let S,7T be a pair of
hybrid generalized multivalued ¢-weak contractions on X. Assume that S, 7T
have the approximative values and (), is a Bianchini-Grandolfi gauge function
on some interval J C R_. If there is # € E such that either D(z,Sz) € J or
D(z,Tx) € J then the mappings S and T have a common fixed point u € X.

We also use the following concepts to present some further results.
Let oc€ (0,00], RE = [0, ). Let f:[0,00) — [0,00) satisfy

(i) f(0) =0 and f(t) > 0 for each ¢ € (0, x);
(ii) f is nondecreasing on R_;
(iii) f is continuous on R;;

(iv) f(a+0b) < f(a)+ f(b) for all a,b € [0, 00).



Define F[0,oc) = {f : [ satisfies (i)-(iv) above}.

Theorem 2 Let (X, d) be a complete metric space and S, T : X — 2% be
a pair of multivalued mappings. Suppose that ¢ € ®[0, o) and f € F|0, x)
satisfy

fH(Sz, Ty)) < o(f(p(z,y)))

for each z,y € X. Assume that S,T" have the approximative values and ¢,
is a Bianchini-Grandolfi gauge function on some interval J C RZ. If there
is x € X such that either f(D(x,Sx)) € J or f(D(x,Tx)) € J then the
mappings S and 7" have a common fixed point u € X.

2. Variational inequalities problems on Hilbert spaces
In this part we will use the following notations. Let H be a real Hilbert

space whose inner product and norm are denoted by (-, -) and ||-||, respectively.

Let C be a nonempty closed convex subset of H.

2.1. Yeol Je Cho and Narin Petrot, Regularization and Iterative method
for general variational inequality problem in Hilbert spaces, Journal of In-
equalities and Applications 2011, 2011:21.

In 1988, Noor [M. A. Noor, General variational inequalities, Appl. Math.
Lett. 1 (1988) 119-121] introduced and studied a class of variational in-
equalities, which is known as general variational inequality, GV 1o (A, g), as
following: Find u* € H, g(u*) € C such that

(A(u"),g(v) = g(u")) =0, Yve H :g(v) €C, (D

where C' is a nonempty closed convex subset of a real Hilbert space H with
inner product (-,-), and T, ¢ : H — H be mappings.

Motivated and inspired by the research going in this direction, in this paper,
we present a method for finding a solution of the problem (1) which is related
to the solution set of an inverse strongly monotone mapping as following: Find
u* € H,g(u*) € S(T') such that

(A(u"), g(v) — g(u")) =20, Vv e H :g(v) €C, 2)



when A is a generalized monotone mapping, 7" : ' — H is an inverse
strongly monotone mapping and S(7) = {x € C': T'(z) = 0}. We will denote
by GVIc(A,g,T) for a set of solution to the problem (2).

Let o € (0,1) be a fixed positive real number. We now construct a reg-
ularization solution u, for (2), by solving the following general variational
inequality problem: find u, € H, g(u,) € C such that

(A(ug)+a(Tog)(ua)+ag(ua), g(v)—g(us)) >0 Yve H, glv) e C, 0<pu<l1.
(3)

Theorem 1 (Regularization) Let C' be a closed convex subset of a Hilbert
space H and g : H — H be a mapping such that C C g(H). Let A: H — H
be a hemicontinuous on C' and g-monotone mapping, 1" : C' — H be A-inverse
strongly monotone mapping. If g is an expanding affine continuous mapping
and GV Ic(A,g,T) # 0, then the following conclusions are true:

(a) For each o € (0, 1), the problem (3) has the unique solution .

(b) If a | 0 then {g(u,)} converges. Moreover, lim+g(ua) = g(u*) for some
a—0
ut € GVIo(A, g, T).

(c) There exists a positive constant M such that

M5 — )

lg(a) = glug)|l* € ——5— @)

when 0 < a < < 1.

We also consider the regularization inertial proximal point algorithm

(en[A(zni1)+ab(Tog)(zni1) +ang(zni1)]+9(2ns1) —9(20), 9(v) = g(2n11)) = 0

VveH, gw)eK ,z € H g() € K. (5)

Theorem 2 (Iterative Method) Assume that all hypothesis of the Theorem 1
are satisfied. If the parameters ¢, and «, are chosen positive real numbers
such that

(C1) lima,, =0,



(C2) lim 22nst — ),

n—o0 n+1

(C3) liminf ¢, > 0,

then the sequence {g(z,)} defined by (5) converges strongly to the element
g(u*) as n — 400, where u* € GVIk(A,g,T).

2.2. Suthep Suantai and Narin Petrot, Existence and stability of iterative
algorithms for the system of nonlinear quasi mixed equilibrium problem,
Applied Mathematics Letters 24 (2011) 308—313.

Let ®1,®,: Hx H — H be given two bi-functions satisfying ®;(z,z) =0
for all x € H,i=1,2. Let T; : H x H — H be a nonlinear mapping for each
i = 1,2. In this work, let CC(H) be denoted for the family of all nonempty
subsets of H and let C; : H — CC(H) be a point-to-set mappings which
associate a convex set C;(x) with any element = of H, for each i = 1,2. We
consider the problem of finding (z*,y*) € H x H such that z* € C;(z%),y* €
Cs(y*) and

s VZ S Cl(ZL’*),

0
(6)
Do (y*, 2) + (To(z*, y*),z —y*) >0, Vze Cy(y*).

We have considered the following class of mappings in this part.
A mapping 7' : ' H — 'H is said to be v-strongly monotone if there exists a

constant > 0 such that
<T$—Ty,l‘—y> > l/||l’—y||2, V%QGH-
And it is said to be (7, 0)-Lipschitz if there exist constants 7,0 > 0 such that

T (w1, y1) — T(w2, )| < 7ll2r — 22| +0lln — 32|, Va1, 22, 91,92 € H.

Theorem 1 (Existence theorem) For each ¢ = 1,2, let &, : H x H — R
be a monotone function and C; : H — CC(H). Let Ty : H x H — H be a
v1-strongly monotone with respect to the first argument and (77, 01)-Lipschitz
mapping and 75 : H x H — H be a v,p-strongly monotone with respect to



the second argument and (7, 09)-Lipschitz mapping. Suppose that there are

positive real numbers p;, po which satisfy the following condition:

(1= 20101 + p372)2 + pare < 1 — 11,
(1 — 2pavy + p%@z)% + pior <1 —ns.

Then the set of solution of the problem (6) is a singleton.

Theorem 1 not only gives the conditions for the existence solution of the
problems (6) but also provide the algorithm to find such solution for any
initial vector (xg,v0) € H x H. In fact, by proceeding along the same lines
as in Theorem 1, one can also show that the sequences {(z,,y,)}, defined by
following Mann type perturbed iterative algorithm (MTA),

Tpt+1 = (1 - Ozn)l‘n + O-/nngl Ci(z )[ n - plTI(xna yn)]a (7)
Y1 = (1 — an)yn + O‘njcgz,cz(yn)[yn = p2T2 (2, yn)],

converges strongly to the unique solution of the problem (6), when {«,}
is a sequence of real numbers such that o, € (0,1) and >~ a, = oc.
The stability analysis for (7) is also discussed. Firstly, we have observed the
following facts. Let (z,y) € H x H. Then (z,y) is a solution of the problem
(6) if and only if there exist positive real numbers p;, po such that (z,y) is a
fixed point of the map G, ,, : H X H — H x H defined by

GP17P2($?y) = (A,Ol(x7y)aBp2($ay))7 \V/([L’,y) G H X H> (8)

where A :'H x 'H — H are defined by

> B
Am (x,y) = (1 - )\).2? + )‘ngl C1 x)[ p1T1(x,y)]

BP2 (ZE, y) = (1 - A)y + )‘ng Ca(y) [y - 02T2($7 y)]?
where A\ € (0,1) is a fixed constant.

Now we give a definition, for stability analysis. Let H be a Hilbert space
and let A, B : H x H — 'H be nonlinear mappings. Let G: H X H — H x H
be defined as G(z,y) = (A(z,y), B(x,y)) for any (z,y) € H x H, and let
(x0,Y0) € H x 'H. Assume that (2,41, Yn+1) = f(G, 2, y,) defines an iteration



procedure which yields a sequence of {(x,,y,)} in H x H. Suppose that
F(G) ={(z,y) e HxH : G(z,y) = (z,y)} # 0 and {(z,,y,)} converges
to some (z*,y*) € F(G). Let {(uy,,v,)} be an arbitrary sequence in H x H
and ¢, = |[(un,v) — f(G,Zn,yn)||, for all n > 0. If lime, = 0 implies that

n—oo

lim (u,,v,) = (z*,y*), then the iterative procedure {(x,,y,)} is said to be

n—oo

G -stable or stable with respect to G.

Theorem 2 (Stability analysis) Assume that all conditions of the Theorem

1 hold. Let {(u,,v,)} be an arbitrary sequence in H x H and define {9,,} C
[0,00) by

On = || (Uny1, V1) = (Coy Dy, )

where

Dy = (1= an)yn + andgy oy Un — p2To (20, Y],

where (z,,y,) is defined in (7), for each n € N. If G, ,, defined as in (8)

then the iterative procedure (7) is G, ,,-stable.

2.3. Ioannis K. Argyros, Yeol Je Cho and Narin Petrot, Approxima-
tion methods for common solutions of generalized equilibrium, systems of
nonlinear variational inequalities and ftixed point problems, Computers and
Mathematics with Applications 60 (2010) 2292—2301.

Let ¢ : C' — R be a real-valued function, () : C' — H be a mapping and
®:H xC xC — R be an equilibrium-like function, that is, ®(w,u,v) +
O(w,v,u) = 0 for all (w,u,v) € H x C x C. We consider the following

generalized equilibrium problem:

Find z* € C such that

(1.1)
O(Qz,z%,y) + ¢(y) — (") 20, VyeCl.

We denote the set of solutions of the generalized equilibrium problem (1.1)
by GEP(C,Q,®, ).

On the other hand, for two nonlinear mappings A, B : C' — H, we consider

10



the following system of nonlinear variational inequalities problems:

Find (z*,y*) € C x C such that
(My*+ 2" —y*,z—2") >0, VzeC, (1.3)
(pBx* +y* —x*,x —y*) >0, VreCl,

where A\ and p are positive numbers.

Recall that a mapping S : C' — (' is said to be Lipschitz continuous if
there exists a positive constant L > 0 such that

Sz — Sy|| < Lljz —y|, Vz,yeC.

In the case L = 1, the mapping S is known as a nonexpansive mapping.
If S:C — C is a mapping, we denote the set of fixed points of S by F'(S),
that is, F'(S) ={zr € C: Sz = x}.

Let ¢ : C' — R be a real-valued function, () : C' — H be a mapping and
®:HxCxC — R be an equilibrium-like function. Let » be a positive

number. For any = € C, we consider the following problem:

Find y € C such that

15
D(Qu,y,2) +o(z) —o(y) + Hy—x,z2—y) >0, VzeCl, =

which is known as the auxiliary generalized equilibrium problem.

Let T : C' — C be the mapping such that, for each z € C, T")(z) is the
solution set of the auxiliary problem (1.5), i.e.,

T (z) = {y € C: ®(Qu,y, z)+g0(z)—g0(y)+%<y—:c,z—y> >0,VzeC}, VreC.
In this part, we have assumed the following Condition (A):

(@) T™ is single-valued;

(b) T is nonexpansive;

(©) F(T") = GEP(C,Q,®,¢).

11



Now, assuming that the Condition (A) is satisfied, then we can introduce

the following algorithm:

Algorithm (I). Let p and A be two positive numbers. Let A, B : C' — H and
S : C'— C be mappings. For any u, z; € C, there exist sequences {u,}, {yn},
{zn} and {z,} in C such that

((I)(Q{Bn, U, v) + ©(0) = @(uy) + +(Up — Ty, v — ) >0, Yo eC,
Yn = Po(x, — pBry,),
zn = Po(yn — AMyn),

(g1 = Qpt + by + Cn (V15T + Yoy + Y32,), VR 2> 1,

where {a,}, {b,}, {c,} are real sequences in [0, 1] and 1, 72,73 € (0,1) such
that a, + b, +¢c, =1 forall n > 1 and v, + 72 + 73 = 1.

Theorem 1 Let C' be a nonempty closed convex subset of a Hilbert space
H. Let A,B : C — H be two nonlinear mappings and S : C' — C be a

nonexpansive mapping. Assume that the Condition (A) is satisfied and
Q=GEP(C,Q,®,9)NF(S)NF(D) # 0,
where the mapping D is defined by
D(z) = Po|Po(x — pBx) — MAPo(xz — pBx)], Vx e C.

Let u € C be fixed and {u,}, {yn}, {zn}, {zn} be four sequences in C
generated by Algorithm (I). If the following conditions are satisfied:

(i) (I — AA) and (I — pB) are nonexpansive mappings, where p and \ are
positive constants;

(i) lim, oca, =0 and > 7 a, = oo;
(iii) 0 < liminf, . b, <limsup, . b, <1,

then the sequence {z,} defined by the Algorithm (I) converges strongly to a
point ¥ = Pou. Moreover, if §y = Po(T — pBZ), then (Z,%) is a solution to the
problem (1.3).

12



Also, some applications of this main results are also presented (please

kindly see appendix).

2.4. Narin Petrot, Some existence theorems for nonconvex variational
inequalities problems,Abstract and Applied Analysis, Volume 2010, Article ID
472760, 9 pages.

In this part, by using nonsmooth analysis knowledge, we provide the con-
ditions for existence solutions of the variational inequalities problems in non-
convex setting. We also show that the strongly monotonic assumption of the
mapping may not need for existence of solutions. In fact, we have considered

the following problem: find z*, y* € C' such that

* *—T*GNP*
{y a* — pTy* € N¢ (%), (n

xf —y* —nTx* € Ng(y*),

where p and 7 are fixed positive real numbers, C' is a closed subset of H and
T :C — H is a mapping.

We are deal with the following concepts. For a given r € (0, +o¢], a subset
C of H is said to be uniformly prox-regular with respect to r if for all 7 € C
and for all 0 # z € NJ(T), one has

1
Z o —TY< e 7|2, VreC
2]l 2r

We make the convention = = 0 for r = +o0.
It is well-known that

only if it is proximally smooth of radius » > 0. Thus, for the case of r = oo,

o 3=

closed subset of a Hilbert space is convex if and

the uniform r-prox-regularity K is equivalent to the convexity of /K. Moreover,
it is clear that the class of uniformly prox-regular sets is sufficiently large to
include the class p-convex sets, C':'submanifolds (possibly with boundary) of
H, the images under a C'*! diffeomorphism of convex sets and many other

nonconvex sets.

Theorem 1 Let C' be an uniformly r-prox-regular closed subset of a Hilbert
space H and T': C' — H be a nonlinear mapping. Let 77,7, : C — H be

such that 77 is a p;-Lipschitz continuous and v-strongly monotone mapping,

13



T, is a pe-Lipschitz continuous mapping. If 7' = 77 + 75 and the following

conditions are satisfied
(@) MP"opcy < &, where 6y = sup{|lu — v|j;u,v € T(C)};

(b) there exists s € (M”"dp ), &) such that

Yts — o . Yts — p2 1
—<<Pa7]<m1n{ +C7 ) (12)
ts(pi — 13) to(pi —n3) 7 tspta

_ (2 2\(2_
where M#" = max{p,n}, t, = = and ¢ = Y\ R
S\l 2

Then the problem (11) has a solution.

Notice that, in the presented paper, an iterative method for finding the
solution of problem (11) is also showed and some special cases are also

discussed.

3. Variational inequalities problems on Banach spaces

Let E be a real Banach space with its topological dual E*, and (-, -) be the
generalized duality pairing between E and E*. Let C B(E*) be the family of
all nonempty bounded and closed subsets of £*. The Hausdorff metric, H(, ),
on C'B(E™*) is defined by

H(C,D) = max {supd(m, D), supd(C, y)} , VC,D e CB(E").

zeC yeD

3.1. Poom Kumama, Narin Petrot and Rabian Wangkeeree, Existence
and iterative approximation of solutions of generalized mixed quasi-variational-
like inequality problem in Banach spaces, Applied Mathematics and Compu-
tation 217 (2011) 7496—7503.

Let K be a nonempty convex subset of F, in this paper, we devote our
study to a class of generalized mixed quasi-variational-like inequality problem,
which is stated as follows:

Let T, A: K — CB(E*) be two set-valued mappings. N : E* x E* — E*
and n : K x K — E be two single-valued mappings. Let ¢ : £ X E —

14



(—o0,+00]| be a real bi-function. For a given w* € E*, we shall study the

following problem :

find v € K,z,y € E* such that z € T(u),y € A(u)
<N(l’,y) - W*ﬂl(UaU» + (,D(U,U) - QO(U,U) > 0, Vv € K.
(13)
In case of (13), we will denote by (u,x,y) € GMQV LIP(T, A, N,n, ).

GMQVLIP(T,A,N,n, )

We have considered the following classes of mappings. Let T, A : K —
CB(E*) be two set-valued mappings. Let N : E* x E* — E* n: KxK — K
be mappings. Then

(i) T is said to be n-cocoercive with respect to the first argument of N (-, ),
if there exists a constant 7 > 0, such that

(N(z,)=N(a2',-),n(u,v)) > 7||N(z, ) =N, )|?, Yu,v € K,z € T(u),z’ €T(v);

(i) N(-,-) is Lipschitz continuous in the second argument with respect to
the set-valued mapping A, if there exists a constant o > 0 such that

INCy) = NGy < allu—oll, Va0 € K,y € Au),y’ € Av);

(iii) N(-,-) is n-strongly monotone in the first argument with respect to the

set-valued mapping 7' if there exists a constant £ > 0 such that
(N(z,)=N(,-),n(u,v)) > &llu—v|]?, Yu,v € K,z € T(u),r" € T(v).

Similarly, n-strongly monotone of N(-,-) in the second argument with

respect to the set-valued mapping A can be defined;

(iv) T is said to be H-Lipschitz continuous if there exists a constant v > 0
such that
H((T(u), T(v)) < yllu—vl, Yu,ve K;

(v) n is Lipschitz continuous, if there exists a constant J > 0 such that
7w, v)[| < 6llu —of,
for any u,v € K.

15



In this work, we have assume that N : F* x B* — E* n: K x K — FE be

two mappings satisfying the following conditions (.A):
(@ n(u,v) =n(u,z) +n(z,v) for each u,v,z € K;

(b) for each fixed (u,z,y) € K x E* x E*,v > (N(x,y),n(u,v)) is a

concave function.

(c) for each fixed v € K, the functional (u,x,y) — (N(x,y),n(u,v)) is
weakly lower semi-continuous function from K x E* x E* to R, i. e.,

Up — U, T, — x and y, — y imply (N(x,y),n(u,v)) < lUminf(N(z,, yn), n(tn,, v)).

n—oo

Theorem 1(Existence theorem) Let E be a real reflexive Banach space with
the dual space E*, and K be a nonempty convex subset of E. Let T, A :
K — CB(E*) be two set-valued mappings. Let N : E* x E* — E*, and
n:KxK— E.Let ¢: EXE — (—00,+00| be skew-symmetric and weakly
continuous such that int{u € K : ¢(u,u) < oo} # 0 and ¢(u,-) is proper
convex, for each v € E. Suppose that:

(i) T is n-cocoercive with respect to the first argument of N(-,-) with

constant T;
(ii) n is Lipschitz continuous with constant § > 0;

(iii) N(-,-) is Lipschitz continuous and 7-strongly monotone in the second

argument with respect to A with constant o« > 0 and 3 > 0, respectively.

If condition (A) is satisfied, then GMQV LIP(T, A, N,n, ) # 0.

Also, in this paper, we have constructed an iterative method for finding the
solution of considered problem.

4. Random fuzzy variational inequalities problems on Banach spaces

Throughout this part, let (£2,.4, 1) be a complete o-finite measure space
and X be a separable real Banach space endowed with dual space X*, the

16



norm ||.|| and the dual pair (.,.) between X and X*. We denote by B(X),
CB(X) and H(.,.) the class of Borel o-fileds in X, the family of all nonempty
closed bounded subsets of X and the Hausdorff metric

H(A, B) = max{sup in}fB d(x,y),sup inf d(z,y)}

r€EAYE yeB T€

on C'B(X), respectively.

4.1. Narin Petrot and Javad Balooee, A New Class of General Nonlin-
ear Random Set-valued Variational Inclusion Problems Involving A-maximal
m-relaxed n-accretive Mappings and Random Fuzzy Mappings in Banach
Spaces, Journal of Inequalities and Applications 2012, 2012:98.

In what follows, we denote the collection of all fuzzy sets on X by
§(X) = {A4lA : X — [0,1]}. For any set K, a mapping S from K into
$(X) is called a fuzzy mapping. If S : K — §(X) is a fuzzy mapping, then
S(z), for any z € K, is a fuzzy set on §(X) (in the sequel, we denote S(x)
by S,) and S,(y), for any y € X, is the degree of membership of y in S,.
For any A € §(X) and « € [0, 1], the set

(A)g ={r € X : A(x) > o}
is called a a-cut set of A.

We have considered the following classes of mappings. A fuzzy mapping
S :Q — F(X) is called measurable if, for any o € (0,1], (S§(.))a : 2 — X
is a measurable set-valued mapping. A fuzzy mapping S : 2 x X — F(X) is
called a random fuzzy mapping if, for any x € X, S(.,z) : Q@ — F(X) is a

measurable fuzzy mapping.

Now, let us introduce our main considered problem.

Suppose that S, 7,P,Q,G : Q x X — §F(X) are random fuzzy mappings,
Ap: OxX > Xandn: OXxXXxX —=>X, N: OxXxXxX — X
are random single-valued mappings. Further, let a,b,¢,d,e : X — [0,1] be
any mappings and M : 2 x X x X — X be a random set-valued mapping
such that, for each fixed t € Q and z(t) € X, M(t,.,2(t)) : X — X be an
A-maximal m-relaxed n-accretive mapping with I'm(p) NdomM (¢, ., z(t)) # 0.
Now, we consider the following problem:

17



For any element i : 2 — X and any measurable function A : Q — (0, +00),
find measurable mappings x, v, u,v,¥,w : {2 — X such that for each ¢ € (),
2(t) € X, Spaw)(v(t) = a(x(t)), Toaw (u(t)) = b((t)), Praw(v(t)) = c(x(t)),
Qtar)(V(t)) = d(x(t)), Graw(w(t)) = e(x(t)) and

h(t) € Ny(v,u,v) + At) My (ps(x) — 9, w), Vt €. (14)

The problem (14) is called the general nonlinear random A-maximal m-
relaxed n-accretive equation with random relaxed cocoercive mappings and

random fuzzy mappings in Banach spaces.

The generalized duality mapping J,: X — X* is defined by
Jo(@) ={f" € X"+ (x, f*) = =1 I /]| = ="'}, Ve e X,

where ¢ > 1 is a constant. In particular, .J; is usual normalized duality mapping.
It is known that, in general, J,(x) = ||z||?2J5(x) for all z # 0 and J, is single-
valued if X* is strictly convex. In the sequel, we always assume that X is a
real Banach space such that J, is single-valued. If X is a Hilbert space, then
J, becomes the identity mapping on X.

The modulus of smoothness of X is the function px : [0,00) — [0, 00)
defined by

1
px(t) = sup{g (o +yll +llz —yl) =1 [lzll < L, [ly| < t}.
A Banach space X is called uniformly smooth if

i PXE) _
t—0 t

Further, a Banach space X is called g-uniformly smooth if there exists a

constant ¢ > 0 such that
px(t) <ct?, g>1.

It is well-known that Hilbert spaces, L,(or [,) spaces, 1 < p < oo, and the
Sobolev spaces WP, 1 < p < oo, are all g-uniformly smooth.

Concerned with the characteristic inequalities in g-uniformly smooth Banach

spaces,we have the following result. Let X be a real uniformly smooth Banach
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space. Then X is g-uniformly smooth if and only if there exists a constant
cq > 0 such that for all z,y € X,

[l +yll" < Nzl + gy, Jo(2)) + cqllyll .

Theorem 1 Let X be a g-uniformly smooth Banach space, A, p, n, M, N,
S, 7, P, Q, G, h, A be the same as in the problem (14) and S,T, P,Q, G :
Q2 x X — CB(X) be five random set-valued mappings induced by S, 7, P,
9, G, respectively. Further, suppose that

(a) p is (7, w)-relaxed cocoercive and 7-Lipschitz continuous;

(b) A is r-strongly n-accretive and o-Lipschitz continuous;

(c) n is 7-Lipschitz continuous;

(d) S, T, P, Q and G are §—ﬁ -Lipschitz continuous, C—]:[ -Lipschitz contin-
uous, ¢-H -Lipschitz continuous, o-H -Lipschitz continuous and -H -Lipschitz
continuous, respectively;

(e) N is e-Lipschitz continuous in the second argument, d-Lipschitz contin-
uous in the third argument and x-Lipschitz continuous in the fourth argument;

(f) There exist measurable functions p : € — (0,4+00) and p : Q@ —

(0, 400) with p(t) € (0, %), for all ¢ € €2, such that

[T () = JH S GO < p@)l2) —y@), Ve € Q) y(t), (1) € X(15)
and

(1) = o(t) + p(t)e(t) + /1= qw(t) + (¢v(t) + c)mi(t) < 1,

o(t)(m(t) + (>>+p(t><e<t>s<t>+6<t><<> K(t)s(t)) (16)

<71 = 9®)(r(t) — p(AB)m(L)).

Then there exists a set of measurable mappings z*, v*, u*, v*, ", w* : @ — X

which is a random solution of the problem (14).

Also, in this paper, we have constructed an iterative method for finding the

solution of considered problem.
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existence theorems for fixed-point problems of the considered mapping. Hence, our results
can be viewed as a generalization and improvement of many recent results.
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1. Introduction and preliminaries

Let (X, d) be a metric space and let 2%, CB(X), and CI(X) denote the collections of nonempty subsets of X, nonempty
closed bounded subsets of X, and nonempty closed subsets of X, respectively. If T : X — 2% is a mapping, then an element
x € X is called a fixed point of T if x € T (x). We denote by F(T) the set of fixed points of T; thatis, F(T) = {x € X : x € T(x)}.

Recall that the function H on CB(X) defined by

H(A, B) = max{supd(x, B), supd(y, A)}
XxeA yeB
for all A, B € CB(X) is called the Hausdorff metric, where d(x, B) = inf,cp{d(x, b)}. By using the concept of the Hausdorff
metric, Nadler [1] established the following result for fixed-point problems for a multi-valued contractive mapping in a
complete metric space, which in turn is a generalization of the well-known Banach contraction principle [2].

Theorem 1.1 ([1]). Let (X, d) be a complete space and let T be a mapping from X into CB(X). Assume that there exists k € (0, 1)
such that

H(T (), T(y)) < kd(x,y)
forallx,y € X. Then there exists z € X such that z € T(z).

Nadler's fixed-point theorem for multi-valued contractive mappings has been generalized in many directions and applied
in nonlinear analysis (see [3-13,1,14-18]).

* Corresponding author.
E-mail addresses: yjcho@gnu.ac.kr (Y.J. Cho), b_e_e_55@hotmail.com (S. Hirunworakit), narinp@nu.ac.th (N. Petrot).
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In 1996, the concept of a w-distance on a metric space was introduced by Kada et al. [7] as follows.

Definition 1.2 ([7]). Let (X, d) be a metric space. A function w : X x X — [0, 00) is called a w-distance on X if the following
conditions are satisfied:

(w1) w(x,2) < wi,y) + oy, 2) forallx,y,z € X;
(wy) amapping w(x, -) : X — [0, o0) is lower semi-continuous for each fixed x € X;
(w3) forany e > 0, there exists § > 0 such that w(z, x) < § and w(z,y) < § imply thatd(x,y) < e forallx,y,z € X.

They also gave some examples of the w-distance and, by using the concept of such a w-distance, they generalized
Caristi’s fixed-point theorem [3], Ekeland’s variational principle [5], and Takahashi’s nonconvex minimization theorem [17].
In particular, if (X, d) is a metric space, then the metric d is a w-distance on (X, d), which makes this class of great importance.

In 2009, Latif and Abdou [10] proved the following fixed-point theorem.

Theorem 1.3 ([10]). Let (X, d) be a complete metric space with a w-distance w. Let T : X — Cl(X) be a set-valued mapping
satisfying the following conditions:

(i) there exists a function ¢ : [0, 0c0) — [0, 1) and a function 8 : [0, c0) — [c, 1), with ¢ > 0 and 8 nondecreasing, such that

o(t) < 6(t),limsup¢(r) < limsupb(r)
r—tt r—t+
forallt € [0, 00);
(ii) for any x € X, there exists y € T (x) such that

O(w(x, y))w(x,y) < W(x, T(x))
and

Wy, T(y) = p(ok, y)wk,y);
(iii) the real-valued function f on X defined by f (x) = W (x, T(x)) is lower semi-continuous, where W (u, K) = infyex w(u, y).

Then there exists z € X such that f(z) = 0. Further, if w(z,z) = 0, thenz € F(T).

Note that, if we take ¢ =: h < k,h € (0, 1), then we obtain the result presented by Latif and Abdou [9]. Moreover,
if o = d, then Theorem 1.3 reduces to a fixed-point theorem presented by Ciri¢ [4], Klim and Wardowski [8], Latif and
Albar [11], and Feng and Liu [6].

Evidently, Theorem 1.3 generalizes and improves a number of well-known fixed-point results given by many authors.
Thus, in this paper, we are interested in providing some fixed-point theorems related to Theorem 1.3.

To do so, let us recall the concept of a T-distance on a metric space, which is a generalization of the w-distance, introduced
by Suzuki [14], as follows.

Definition 1.4 ([14]). Let X be a metric space with metric d. Then a function p from X x X into [0, co) is called the t-distance
on X if there exists a function » from X x [0, co) into [0, co) and the followings are satisfied:

(1) p(x,2) < p(x,¥) +p(y,2) forallx, y,z € X;

(r2) n(x,0) =0and n(x,t) > tforallx € X and t € [0, 00), and 7 is concave and continuous in its second variable;

(t3) limy 00 X, = x and lim,,_, o, Sup{n(z,, p(zn, X)) : m > n} = 0 imply that p(w, x) < liminf,_, . p(w, x,) for all
w e X,

(t4) lim;_, o sup{p(X,, ym) : m > n} = 0 and lim;_, o 7(X;, t,) = 0 imply that lim;,_, oo 7(Yn, tn) = 0;

(t5) limy— o0 1(2n, p(zn, X;)) = 0 and limy,_, o (2, p(zn, Yn)) = 0 imply that lim,_, o, d(X,, y,) = 0.

In this paper, we will develop some fixed-point theorems by using the concept of the t-distance. In order to obtain
fixed-point theorems by using the t-distance, the following concepts and lemmas (see [15]) are crucial.

Definition 1.5. Let (X, d) be a metric space and let p be a t-distance on X. Then a sequence {x,} in X is called p-Cauchy if there
exists afunctionn : X x[0, co) — [0, co) satisfying (72)—(75) and a sequence {z,} in X such that lim,, sup{n(z,, p(z,, Xm)) :
m>n}=0.

Lemma 1.6. Let (X, d) be a metric space and let p be a t-distance on X. If a sequence {x,} in X satisfies lim sup{p(x,, Xm) :
n—oo
m > n} = 0, then {x,} is a p-Cauchy sequence.

Lemma 1.7. Let (X, d) be a metric space and let p be a t-distance on X. If {x,} is a p-Cauchy sequence, then {x,} is a Cauchy
sequence. Moreover, if {y,} is a sequence satisfying lim sup{p(x,, ym) : m > n} = 0, then {y,} is a p-Cauchy sequence and
n—oo

lim, d(xn, yn) = 0.
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Let (X, d) be a metric space. For any fixed xy € X, a sequence {x,,} = {xo, X1, X2, ...} C X such thatx,,1 € T(x,) is called
an orbit of xy with respect to mapping T : X — 2X. We will denote by O(T, xo) the set of all orbital sequences of x, with
respect to mapping T.

Definition 1.8. Let (X, d) be a metric space and let X, z € X. A mapping f : X — R is said to be T-orbitally lower semi-
continuous at z with respect to xg if {x,} € O(T, xo) and x,, — z imply that f (z) < liminf,_, o f (x,).

2. Main results

Let (X, d) be a metric space and let A be a subset of X. If p is a t-distance on X and x € X, from now on, we define
Dy(x, A) = inf{p(x, )|y € A}.
In this section, inspired by Latif and Abdou [10], we now give some results which generalize Theorem 1.3.

Theorem 2.1. Let (X, d) be a metric space and let T : X — Cl(X) be a set-valued mapping. If there exists a function
¢ : [0, 00) — [0, 1) and a nondecreasing function 6 : [0, o0) — [c, 1), ¢ > 0, such that

p(t) < 0(t) (2.1)
forallt € [0, 0o0) and

limsup ¢(t) < limsup 6(t) (2.2)

t—rt t—rt

forallr € [0, 00), and there exists a t-distance p on X such that, for any x € X, there exists y € T (x) satisfying

0(p(x, ¥))p(x,y) < Dp(x, T(x)) (2.3)

and

Dy(y, T¥)) < p(px, y)p(X,y), (2.4)
then we have the following.

(a) Foreach xo € X, there exists an orbit {x,} € O(T, xo) such that {Dp(x,, T(x,))} is decreasing to zero and the sequence {x,}
is a Cauchy sequence.

(b) If {xn} converges to z and the function f (x) := D,(x, T(x)) is T-orbitally lower semi-continuous at z with respect to xo, then
z € F(T). Moreover, if T(z) = z, thenp(z,z) = 0.

Proof. To prove (a), let x, € X be given. First, we show that there exists a sequence {xq, X1, X2, ...} in (X, d) such that
Xnt1 € T(xy) and {D,(xn, T(x,))} is a decreasing sequence that converges to zero. Indeed, by (2.3) and (2.4), we can choose
X1 € T(xg) such that

60 (p(xo, x1))p(X0, X1) < Dp(xo, T(x0)) (2.5)
and
Dp(x1, T(x1)) < @(p(X0, X1))P(X0, X1). (2.6)
By using (2.5) and (2.6), we get
(%0, X1))
Dy(x1, T(x1)) < %Dp(xo, T(x0))- (2.7)

Now, define a function ¢ : [0, c0) — [0, c0) by

0
V() = 50

forall t € [0, 00). Notice that, from (2.1) and (2.2), it follows that

P(t) <1 (2.8)
forallt € [0, 00), and

limsup yr(t) < 1 (2.9)

t—rt

forall r € [0, c0). Moreover, by (2.7), we also have

Dy (x1, T(x1)) < ¥ (p(x0, X1))Dp(x0, T(X0)).
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Again, by using (2.3) and (2.4), we can choose x; € T(xy) such that
O (p(x1, %2))p(x1, X2) < Dp(x1, T(x1))

and
Dy(x2, T(x2)) < ¢(p(X1, X2))P(X1, X2).

Moreover, by the definition of v, we have
Dy(x2, T(x2)) = ¥ (p(X1, X2))Dp (x1, T(x1)).

Continuing this process and denoting p, = p(X;, X,+1) and D, = D,(x,, T(x,)), we can obtain an iterative sequence
{xn}o2 o such that x, 1 € T(xy),

& (Pn)pn < Dn, (2.10)
and

Dny1 < ¢(Pn)Pn (2.11)
forall n > 0, and so, from (2.10) and (2.11),

Dny1 < ¥ (pn)Dn. (2.12)

Thus, it follows from (2.12) and (2.8) that
Dyy1 < Dy

for all n > 0; that is, we have that {D,} is a strictly monotone decreasing sequence. Moreover, since 6 is a nondecreasing
function, we know that {p,} is also a strictly monotone decreasing sequence. Consequently, there exist § > Oand 8 > 0
such that

lim D, =6 and lim p, = 8.
n—oo n—oo

Furthermore, it follows from (2.12) that

8 =< (limsup ¥ (pn))8 = (lim sup ¥ (pn))3.

n—oo p—B

Since limsup,, _, s ¥ (pn) < 1, we conclude that § = 0.
Next, we show that {x,}°2, is a Cauchy sequence. Let us consider a behavior of the sequence {p,}2,.Since 0 < ¢ < 6(t)
forall t € [0, 00), it follows from (2.10) that cp, < 8(p,)pn < Dy, and hence

Pn < —Dy. (2.13)

Now, put = limsup,, _,o+ ¥ (pn). Then, by (2.9), we can choose a real number g such that g € («, 1), and so there exists
a positive integer ny such that ¥ (p,) < q for all n > n4. Thus, from (2.12), we have D,, < gD,_1 for all n > n;. This implies
that

D < q" "Dy (2.14)
forallm > n > n; + 1. Moreover, from (2.13) and (2.14), we get
1
Pm < —q" "Dy (2.15)
c

forallm > n > n; + 1. This implies that

a 1& 1 1
< _ kfﬂD < _ - D
E pk_CE q n_C _l_q n

k=n k=n

forallm > n > ny + 1. Thus, using this together with lim,_, ., D, = 0 and Lemma 1.6, we know that {x,} is a p-Cauchy
sequence. Consequently, from Lemma 1.7, we see that (a) is followed.

To prove (b), assume that lim,_, o X, = z and that the function f (x) :== D, (x, T(x)) is T-orbitally lower semi-continuous
at z with respect to xq. Thus it follows that

0 < D,(z,T(2)) = f(z) < liminff(x,) < lim D, = 0.
n—oo n—oo

Thus f (z) = 0. Consequently, there exists a sequence {z,} C T(z) such that lim,_, o, p(z, z,) = 0. Therefore,

0 < limsup{p(xp, z;n) : m > n} < limsup{p(x,,z) + p(z,z,) : m > n} =0.
n n
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This implies, by Lemma 1.7 and the closedness of T (z), that z € T(z).
If T(z) = z then, by using (2.4), we see that 0 < p(z,z) = D,(z, Tz) < ¢(p(z,2))p(z, z). Since ¢([0, c0)) C [0, 1), we
must have p(z, z) = 0. This completes the proof. O

Immediately, from Theorem 2.1, we can obtain the following result.

Corollary 2.2. Let (X, d) be a complete metric space. Suppose that T : X — CI(X) satisfies all the conditions of Theorem 2.1. If
a real-valued function f (x) = D, (x, T(x)) is lower semi-continuous on (X, d), then there exists z € X such that z € F(T).

Remark 2.3. Since the class of T-mappings is wider than the class of w-mappings, Corollary 2.2 can be viewed as a
generalization of Theorem 1.3. Moreover, we do not need the assumption t(z,z) = 0, which has been proposed in
Theorem 1.3.

Next, we provide another generalization of Theorem 1.3.
Theorem 2.4. Let (X, d) be a complete metric space. Suppose that T : X — CI(X) is a set-valued mapping of X into itself. If
there exists a function ¢ : [0, co) — [0, 1) such that

limsupep(r) <1 (2.16)

s tt
forany t € [0, 0c0), and there exists a T-distance p on X such that, for any x € X, there exists y € T (x) satisfying

p(x,y) = (2 —(x,¥)Dp(x, T(x)) (2.17)
and

Dy(y. T®) = ¢(px, y)pX. y), (2.18)
then we have the following.

(a) Forany xq € X, there exist an orbit {x,} € O(T, xg) and z € X such that lim,_, ., X, = z.
(b) If the function f(x) := Dp(x, T(x)) is T-orbitally lower semi-continuous at z with respect to xo, then z € F(T). Moreover, if
T(z) =z, thenp(z,z) = 0.

Proof. (a) First, since ¢(p(x,y)) < 1forallx,y € X, it follows that 2 — ¢(p(x,y)) > 1forallx,y € X.Letx, € X be any
initial point. Then, by (2.17) and (2.18), there exists x; € T(xp) such that

p(Xo, X1) < (2 — @(p(X0, X1)))Dp (X0, T (X0)) (2.19)
and

Dy(x1, T(x1)) < @(p(X0, X1))P(Xo, X1). (2.20)
Thus, it follows from (2.19) and (2.20) that

Dy(x1, T(x1)) = ¢(p(X0, X1))(2 — ¢(P(X0, X1)))Dp (X0, T (Xo)). (2.21)

Now, define a function v : [0, c0) — [0, +00) by

V(t) = et)(2 — (1)) (2.22)
forany t € [0, 0o). Notice that ¢(t) < 1and limsup,_,+ ¢(r) < 1forany t € [0, 0o). This gives

YO =R —e®) =1-(1—9(@)* <1 (2.23)
and

limsupy(r) < 1 (2.24)

rstt

foranyt € [0, co). Moreover, by (2.21) and (2.22), we can write
Dp(x1, T(x1)) < ¥ (p(Xo, X1))Dp (X0, T (X0)). (2.25)
Next, again by using (2.17), (2.18) and (2.22), we can find x, € T(x1) such that
P(x1,X2) = (2 = @(p(X1, X2)))Dp(x1, T(X1))
and

Dp(X2, T(x2)) < ¥ (p(X1, x2))Dp(x1, T(x1)).
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Continuing this process, we can choose an iterative sequence {x,}52, such that x,; 1 € T(x,),

p(xn’ Xn+1) = (2 - (p(p(xna Xn+1)))Dp(Xn» T(Xn))’ (2-26)
and

Dp(xn+1, T(Xn+1)) =< 1//(P(Xn, Xn+1))Dp(xnv T(Xn)) (2-27)
foralln > 0.

From now on, put p, = p(Xy, Xp41) and D, = D, (X, T(x,)) for all n > 0. Then, from (2.26) and (2.27), and ¢(t) < 1, for
allt > 0, we get

Dn+l =< llj(pn)Dn (228)
and
Dy < pn < 2Dy (2.29)

Furthermore, by (2.23) and (2.28), we know that {D,}:2 is a strictly decreasing sequence of nonnegative real numbers.
Therefore, there exists § > 0 such that

lim D, = 6. (2.30)

n—-oo

Thus, by (2.29), we see that the sequence {p,}52, is also bounded, and so there exists 8 > § such that

liminfp, = 8. (2.31)

n—-oo
Now, we claim that § = 0. Consider the following possible two cases.
Case 1: If 8 > §, then, from (2.30) and (2.31), we can find a positive integer ny such that

-6

3§Dn§5+ﬂT (2.32)

and
B—34

B— 7 <P (2.33)

for all n > ng. Thus, by using (2.32), (2.33) and (2.26), we have
p—3é B8 B34

§+3 —a =ﬂ—T <Pn = (2 —=¢Pn)Dn = (2 —¢(pn)) 3+T

for all n > ng. This gives
2(B—9)
1+ ——<1 1-—
+ BT B + (1 —o/n)
for all n > ng, which implies that
206 -97°
—(1= 2 |22 77
(1 —Pn)” < [38+ﬁ}
for all n > ng. Thus we have
20697
=1-(©1- 21— |==—Z| =n

v (Pn) (1= @) < [ %18 }
for all n > ng. Thus, it follows from (2.28) that

D11 < hD, (2.34)
for all n > ngy. Consequently, from (2.32) and (2.34), we obtain

2 k k p—34
) = Dn0+k = tho+k71 = h Dno+k72 == h Dno = h s+ T (2-35)

for all k > 1. Since h € (0, 1), we have limy_, », h* = 0. Using this and (2.35), we have § = 0.
Case 2: If B = §, then, from (2.31), we can find a subsequence {py, };2, of {p,} such that

lim p,, =34.
k— o0
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Thus, by (2.24), it follows that

lim sup ¥ (p,,) < 1. (2.36)

Pny, -5t
Also, from (2.28), we have

Dpq1 = 14 (p”k )an :
Thus, it follows from (2.30) that

8= kliﬁngo Dy 41 < lim sup(y (pn, )Dy,) = (limsup v (pp, ))3.

k—+00 pnk_,3+
Since lim Supp, s+ ¥ (pr,) < 1, this inequality implies that § = 0. Therefore, from Cases 1 and 2, we conclude that

lim D, = 0, (2.37)

n—oo

and so our claim is proved.
Now, using (2.24), (2.28), (2.29) and (2.37), as in the proof of Theorem 2.1, we know that {x,}2 ; is a Cauchy sequence.
(b) The proof is similar to that of Theorem 2.1. O

Remark 2.5. Theorem 2.4 recovers a result presented by Latif and Abdou [10].

As a special case of Theorem 2.4, we can obtain the result presented by Ciri¢ [4] as follows.

Theorem 2.6 ([4]). Let (X, d) be a complete space. Suppose that T : X — CI(X) is a set-valued mapping of X into itself. If there
exists a function ¢ : [0, co) — [0, 1) such that

limsupp(r) < 1 (2.38)

et
forany t € [0, co) and, for any x € X, there exists y € T(x) satisfying

d(x,y) = (2 — @(d(x,y)))D(x, T(x)) (2.39)
and

Dy.T(y)) < ¢(d(x,y)d(x,y), (2.40)

then T has a fixed point in X provided that f (x) = D(x, T(x)) is lower semi-continuous.

In [10], the authors give an example showing that Theorem 1.3 is a genuine generalization of the result of Theorem 2.6.
Here, we provide another one.

Example 2.7. Let X = [0, o0) and letd : X x X — [0, c0) be a usual metric. Let T : X — CI(X) be defined by

1, . 15 15
=X, ifxe |0, —)U[l—,1];
2 32 32
17 1 ) 15
T(x) = { } ifx=—;

96 4 32’

1 2x — 1 .
|:O, —:| U { } ifx € (1, 00).
4 2

Now, we show that the given mapping T does not satisfy the assumptions of Theorem 2.6. To do this, let us consider a

point x = % Then we have T(x) = [0, }1] U {1}, and it follows that D(x, T(x)) = % Now, let ¢ : [0, 00) — [0, 1) be any

real-valued function. Notice that only the real number y = 1 € T(x) satisfies (2.39) and, consequently,

1 3
D(y,Ty) =d <1, 5) =d (5, 1) =dx,y).

Therefore, since ¢ ([0, 00)) C [0, 1), we see that (2.40) cannot be satisfied.
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On the other hand, we show that T satisfies all hypotheses of our Theorem 2.4. Define now a function ¢ : [0, c0) — [0, 1)

by
. r 7 7 1
t, ifxe|0,—|U|l—,=];
24 24 2

7.

24’
M1

ift € —,oo).
2

p(t) = ift =

vl ool L1 1| 0

Then, obviously, such a function ¢ satisfies (2.16) of Theorem 2.4.
Further, let us define a functionp : X x X — [0, c0) by

dx,y), if{x,y} C[0,1];
px.y) = {1, if {x. y} ¢ [0, 1].

It follows that p is a w-distance on X, and hence, it is a T-distance (see [16]).
We consider the following cases.

Case 1: Forx € [0, 2) U (32, 1], we have T(x) = {3x?}. Consequently, fory = 1x?, we get

1,1,
Dy(y, T() = p 5% g%
_1 1o (o1
_2<x—|—2x>(x 2x>
—1<+12)( )
=3 X 2x px,y

IA

8 1,
5 (x— X )p(x,y)

p(P&x,y)px,y).
Moreover, we have

p(x,y) = Dp(x, Tx) < 2 — @(p(x, ¥)))Dp(x, Tx).

. __ 15 _ 17
Case 2: Letx = 33.Fory = 5 € T(x), we have

7 5\ 7
pix.y) = o, < (2 - g) 33 = @~ @& y)D (. Tx)

and

17 1 (17)2 17 7
% 2 (96)2> <56 <3 72 = ¢@xy)IpK.y).

Case 3: Letx € (1, 0o). Notice that D,(x, Tx) = 1.If we now choose y = }1 € T(x), then

D,(y. TW) =p (

4
px,y) =1< (2 - E) (D=2 —-eM)) =2 — @@ )))Dyx, Tx)

and

4216
Therefore, from above three cases, we see that (2.17) and (2.18) of Theorem 2.4 are satisfied.

Moreover, we have
1, 15 15
X—=x", xe€|0,—JU[|(—,1];
2 32 32

11 1 1 1 7 4
D,(y, T(y)) =p( ) =p (Z’ 5) =3 < (g) (D) =@, y)px,y).

f@) =Dy, T(x)) = 7 . 15
—, ifx =—;
32 32
1, ifx € (1, 00),

which is a lower semi-continuous function. Therefore, all assumptions of Theorem 2.4 are satisfied. In fact, we can check
that F(T) = {0}.
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Remark 2.8. We do not use the concept of the Hausdorff metric in the proofs of Theorems 2.1 and 2.4.

3. Conclusion

We note that the results presented by Latif and Abdou [10] are interesting and important. Therefore, in this paper, we
have considered and improved their result, Theorem 1.3. In particular, we have been interested in considering and proving
the main results by using concepts of the generalized distance, namely the t-distance. Hence, the results presented in this
paper are general and, consequently, they can be applied in various ways.
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1 Introduction and Preliminaries

Let E be a complete metric space with distance d(-, -). Let 2¥ denote the family
consisting of all nonempty subsets of E. We define the Hausdorff pseudometric,
H :2F x 2F — [0, 00] by

H(A, B) = max{D(a, B),D(A,b)},

where D(a, B) = bingd(a, b), D(A,b) = ingd(a, b).
€ ac
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Definition 1.1. Let E be a metric space. A subset C' C F is said to be approxi-
mative if the multivalued mapping

Po(z) ={ce C:d(x,c) = D(z,C)}, VxeE

has nonempty values. The multivalued mapping 7 : E — 2F is said to have
approzimative values if T'(z) is approximative for each x € E.

Let oce (0,00], RE = [0, ). Let ¢ : RE — [0, 00) satisfy
(i) o(t) <t for each t € (0, oc);
(ii) ¢ is nondecreasing on RZ;
(iii) ¢ is upper-semicontinuous.
Define ®[0, <) = {¢ : ¢ satisfies (i)-(iii) above}.

From now on, for a metric space E, we let I' = sup{d(x,y) : x,y € E} and set
oc=TifI' =00, and o> T if " < 0.
Definition 1.2. Let E be a matric space. Suppose that S,T : E — 2F and
© € P[0, x) satisty
H(Sz, Ty) < ¢(p(z,y)),

for each x,y € F, where

N =

p(,y) = max {d@:, y). D(S.2), D(Ty,y)., & [D(y, S2) + D(a, Ty)]} |

Then the pair S, T is called the hybrid generalized multivalued p-weak contraction
mapping.

Remark 1.3. Let E be a Banach algebra with the norm || - || and the metric d(-, )
generated by it. In Definition 1.2, let p(x,y) = d(z,y); so

H(Tz,Ty) < ¢(d(z,y))

for all z,y € E. Then the multivalued mapping T is called a nonlinear D-
contraction with a contraction function ¢ (see [1, 2]). In addition, let p(t) = kt
with k > 0 and p(z,y) = d(z,y); then

H(Tz,Ty) < p(d(z,y))
forallx,y € E. In this case the mapping T is nothing but the multivalued Lipschitz

operator defined by [3]. Moreover, if 0 < k < 1 then the mapping T is called a
multivalued contraction on E which was first studied by Markin [{] and Nadler [5].
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During the last few decades, since the pioneering works of Markin [4] and
Nadler [5], an extensive literature has been developed, consisting in many theorems
which deal with fixed points for multi-valued mappings (see [6, 7, 8, 9, 10]), or
may be related to various classes of ¢-contractions, which are obtained for different
collection of properties of the function ¢ (see for example, [11, 12, 13]), especially
the monograph of Rus [14, 15], for the good survey and several still open problems.
Equally important is the concept of hybrid contractive mapping of the metric fixed-
point theory which have been obtained by mathematical researcher, for example
[16, 17, 18, 19, 20].

Motivated and spirted by the research going on this field, in this work we prove
that there is a common fixed point of hybrid generalized multivalued p-weak con-
tractions .S, T on complete metric spaces E. Since the concept of hybrid generalized
multivalued ¢-weak contraction includes almost concepts of the generalization of
Banach contraction principle as special cases (both singlevalued and multivalued
settings), results obtained in this paper continue to hold for those problems. Our
results can be viewed as a refinement and improvement of the previously known
results for metric fixed-point theory. To reach the goal, we also need the following
concepts:

Let J denotes an interval on [0,00) containing 0, that is an interval of the
form [0, 7], [0,7) or [0,00), and we use the abbreviation ¢™ for the nth iterate of a
function ¢.

Definition 1.4. A nondecreasing function ¢ : J — J is said to be a Bianchini-
Grandolfi gauge function [21] on J if 322 0™ (t) < oo for all ¢t € J.

As for the investigations of the Bianchini-Grandolfi gauge function we also
refer to [22]. The following lemma is quite important one.

Lemma 1.5 ([23]). Let E be a metric space and B be a nonempty subset of E.
Then D(z,B) < d(z,y) + D(y, B), for any z,y € E.

2 Common Fixed Point Theorems

Theorem 2.1. Let (E,d) be a complete metric space. Let S, T be a pair of hybrid
generalized multivalued @-weak contractions on E. Assume that S,T have the
approzimative values and |, is a Bianchini-Grandolfi gauge function on some
interval J C RE. If there is © € E such that either D(z,Sx) € J or D(z,Tx) € J
then the mappings S and T have a common fized point u € E.

Proof. Without loss of generality, we will assume that there is ug € E such that
D(ug, Sup) € J. Take ug € FE, since Sug is approximative it follows that there ex-
ists u1 € Sug such that d(ug,u1) = D(ug, Sug). Next, since Tu; is approximative,
there exists uy € Tuy such that d(uy,us) = D(u1,Tu1). Moreover,

d(uy,us) = D(u1,Tur) < sup D(z,Tur) < H(Sug, Tuq).
TESuo
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It follows that
d(u1,uz) < H(Sug, Tuy) < o(p(ug,ur))

d(UQ, ul), D(ul,Tul), D(UQ, SUQ), [D(uo,Tul) + D(ul, SUO)]}>

N | =

max {d(uo, up), d(ug,usz), d(ug, u1), % [d(ug, u1) + d(uq, uz)]})
< ¢ (max{d(ug,u1),d(us,uz)}). (2.1)

Write w = max{d(ug, u1),d(u1,us)}. Observe that, if w = 0 then ug = u; = us
and it follows that ug = u1 € Sug and ug = us € Tuy = T'ug, i.e., ug is a common
fixed point of mappings S and T, and then our proof is completed. On the other
hand, if 0 < w = d(u1,u2) then using ¢(t) <t for ¢t € (0, ), from (2.1) we have

d(ur,u2) < o(d(ur,uz)) < d(ug, uz)
which is a contradiction. Therefore, w = d(ug,u;) and from (2.1) we obtain
d(ur, uz) < (p(uo, u1)) < @(d(uo, ur)) < d(uo,un). (2.2)

We continue the procedure of constructing w, inductively, we can choose a
sequence {u,} in F such that for all n > 1, us, € Tugn—1, Uant1 € Suay, and

d(uan, Uznt1) = D(U2n, Suan), d(Unt1, Uon+2) = D(uont1, Tuoni1).
Moreover,

D(u2n7 Su?n) S sup D(:Eu Su2n) S H(TUZn—la Su?n)u

rETUusp—1
and

D(uznt1,Tuznt+1) < sup  D(z, Suapn) < H(Suzn, Tuznt1)

€T Uan+1

for all n > 1. Therefore, by using an argument similar to the above we get,

d(uzn, u2n+1) < @(p(uzn—1,u2n)) < d(tzn—1,u2,) (2.3)

and
d(uznt1,u2n+2) < @(p(u2n, u2n+1)) < d(uzn, U2n+1) (2.4)

for all n > 1. Thus, from (2.3) and (2.4), we get
d(umun-i-l) < go(p(un_l,un)) < d(un—lvun) (2'5)
for all n > 1. Using (2.2) and (2.5), we repeat the procedure to obtain

d(un,un+1) < <p(p(un,1,un)) < @Q(d(unf%unfl)) <--e < gp”(d(uo,ul))
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for all n > 1. Therefore, for positive integers m, k, we get

d(uk, Wkpm) < d(wp, Ugg1) + d(Ukg1, Ukt2) + -+ + d(Ukgm—1, Uktm)

k+m—1 ) k4+m—1 .
< Y Pd(ug,m)) = > @ (D(uo, Sug)).
i=k i=k

Since D(ug, S(uo)) € J and ¢|, is a Bainchini-Grandolfi gauging function on .J,
the above inequality implies that {u,} is a Cauchy sequence in E. By virtue of
the completeness of F, there exists u € F such that u,, — u for n — co. Now, we
prove that v € Tu and v € Su, i.e., v is a common fixed point of S and T'. To do
this, we note that

D(uzp, Su) < H(Tuzn—1,5u) < ¢(p(ugn—1,u))
= (max {d('Uanlvu)a D(ugn—1,Tu2n-1), D(u, Su),

LD (g 1, Su) + D(u, TUQH)]})

2
<y (max {d(ugn_l,u), d(u2n—1,u2n), D(u, Su),
%[d(ugn_l, u) + D(u, Su) + d(u, ugn)]}>

Denote by

a(un,u) =: max {d(u%,l, w), d(uon—1, U2n), D(u, Su),

1

2

the right hand side of the above inequality. Then, a(uy,u) — D(u, Su) as n — oo.

Therefore, in view of Lemma 1.5 and the upper semi-continuity of ¢, we get

D(u, Su) = lim D(ugy,, Su) < limsup o(a(u,,w)) < @(D(u, Su)).

n—oo

[D(uzn_1,u) + D(u, Su) + d(u, usn )] }

This implies D(u, Su) = 0. Since Su is approximative, there exists y € Su such
that d(u,y) =0, i.e., u = y. Hence u € Su. As

D(u,Tu) < H(Su,Tu)

<y (max {d(u,u), D(u, Tu), D(u, Su), = [D(u, T) + D(u, Su)]})

1

2
= (D (u, Tu)),

which gives D(u,Tu) = 0, and this reduces to w € Twu. This completes the

proof. O

Remark 2.2. Under the hypothesis of Theorem 2.1, S and T have a unique com-
mon fized point if the following condition is satisfied:

d(z,y) < H(Sz,Ty), Vz,y € E. (C)
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Proof. Let u and v be common fixed points of S and T'. Then, by the condition
(C), we have

d(u,v) < H(Su,Tv) < @(p(u, v))

[D(u, Tv) + D(v, Su)]})

[d(u,v) + D(v, Tv) + d(v,u) + D(u, Su)]}) = @(d(u,v)).

N =

< ¢ (max atu o),

Hence u = v. The proof is completed. O

By Theorem 2.1, we get the following results immediately.

Corollary 2.3. Let (E,d) be a complete metric space. Let T be a hybrid general-
ized multivalued p-weak contractions on E. Assume that T has the approzimative
values and |, is a Bianchini-Grandolfi gauge function on some interval J C R;
If there is © € E such that D(x,Tx) € J then the mapping T has a fized point
u ekl

Corollary 2.4. Let (E,d) be a complete metric space. Let S,T be a pair of hybrid
generalized multivalued p-weak contractions on E. If S;T have the approximative
values and Y .o, p'(t) < oo for all t € (0,), then the pair S,T has a common
fized point u € E.

3 Further Results
Let oc€ (0,00], RE = [0, 00). Let f: [0,00) — [0, 00) satisfy
(i) f(0) =0 and f(t) > 0 for each t € (0, c);
(i)
(iii)
)

(iv

f is nondecreasing on R;;
f is continuous on R;;

fla+0b) < f(a)+ f(b) for all a,b € [0, 00).

Define F[0,oc) = {f : f satisfies (i)-(iv) above}.

Example 3.1. The following examples were partially given in [24]:

(i) Let ¢ is nonnegative, nondecreasing, Lebesgue integrable on [0, ) and sat-
isfies

/t @(s)ds >0, te(0,cx).
0

Define f(t) = fot @(s)ds then f € F[0,x).



Common Fixed Point Theorem for Hybrid Generalized Multivalued 423

(i1) Let 1 be a nonnegative, Lebesgue integrable on [0, o) and satisfies
t
/ P(s)ds >0, te(0,x)
0

and 6 be a nonnegative, Lebesgue integrable on [0, fOO( Y(s)ds) and satisfies

/OtH(s)ds S0, te [o,/:ms)ds).

If ¢ and 0 are nondecreasing and we define f(t) = fof”tw(s)ds O(T)dr, then
[ e Fl0,x).

Using above concepts, Theorem 2.1 could be further extended to more general
results. In fact, the proof of next Theorem is similar to that of Theorem 2.1,
however, for the sake of completeness we will present it.

Theorem 3.2. Let (E,d) be a complete metric space and S, T : E — 2F be a pair
of multivalued mappings. Suppose that ¢ € ®[0,x) and f € F[0,x) satisfy

fH(Sz,Ty)) < o(f(p(z,y))) (3.1)

for each x,y € E. Assume that S,T have the approzimative values and |, is a

Bianchini- Grandolfi gauge function on some interval J C R; If there is x € B
such that either f(D(z,Sz)) € J or f(D(x,Tx)) € J then the mappings S and T
have a common fized point u € E.

Proof. Without loss of generality, we will assume that there is ug € E such that
f(D(ug, Sup)) € J. Take ug € E, since Suy is approximative it follows that there
exists u; € Sug such that d(ug, u;) = D(ug, Sup). Next, since T'uy is approxima-
tive, there exists us € Tuy such that d(u1,u2) = D(u1, Tuy). Moreover,

d(uy,us) = D(u1,Tur) < sup D(z,Tur) < H(Sug, Tuq).
zrESuo

It follows that

fld(u1,u2)) < f(H(Suo, Tu1)) < o(f(p(uo, u1)))
o (s (et 00 7 Bt 500
( ( x{duo,u1 d(ur,us), d(uo,ul),%[d(uo,ul)—i—d(ul,ug)]}))

< o(f (max{d(ug, u1), d(u1,uz2)})). (3.2)

[D(uo, Tur) + D(uq, Suo)]})>

N~

Write w = max{d(ug, u1),d(u1,us)}. Observe that, if w = 0 then ug = u1 = us
and it follows that ug = u1; € Sug and ug = ug € Tuy = T'ug, i.e., ug is a common
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fixed point of mappings S and T, and then our proof is completed. On the other
hand, if 0 < w = d(u1,u2) then using ¢(t) <t for ¢t € (0, ), from (3.2) we have

fld(ur,u2)) < o(f(d(ur,uz2))) < f(d(ui,uz))

which is a contradiction. Therefore, w = d(ug,u;) and from (3.2) we obtain

fd(ur,u2)) < @(f(p(uo, u1))) < (f(d(uo, ur)))- (3.3)

We continue the procedure of constructing u, inductively, we can choose a
sequence {u,} in F such that for all n > 1, us, € Tugn—1, Uant1 € Suay, and

d(uan, Uznt1) = D(U2n, Suan), d(Unt1, Uan+2) = D(uont1, Tuony1).
Moreover,

D(u2n7 Su?n) S sup D(‘T? Su2n) S H(TUZn—la Su?n)u

rx€ET Uy 1
and

D(ugni1, Tusni1) < sup  D(x, Suzyn) < H(Suzn, Tuzni1)

r€TU2n 41

for all n > 1. Therefore, by using an argument similar to the above we get,

Fd(uzn, u2nt1)) < o(f(p(u2n—1,u2,))) < f(d(u2n—1,u2n)), (3.4)

" fld(uznt1, uzn+2)) < ©(f(p(u2n, uzni1))) < fd(uzn, uzni1)) (3.5)
for all n > 1. Thus, from (3.4) and (3.5), we get

fd(tn, ung1)) < o(f(p(un—1,un))) < f(d(un—1,un)) (3.6)
for all n > 1. Using (3.3) and (3.6), we repeat the procedure to obtain
Fld(un, uni1)) < @(f(p(un—1,un))) < ¢ (f(d(un—2,un-1))) < - < " (f(d(uo,u1)))

for all n > 1. Therefore, for positive integers m, k, we get

Fd(ups wrtm)) < f(d(uky wkt1) + d(Uptr, Ug2) + -+ d(Ukpm—1, Wktm)
< fld(ug, ups1)) + fd(ups1, urg2)) + -+ f(d(Urim—1, Uktm))

k+m—1 . k+m—1 )
< D @ (fduo,m) = Y ¢ (f(D(uo, Sug))).
ik i—k

Since f(D(uo,S(uo))) € J and ¢, is a Bainchini-Grandolfi gauging function on
J, in light of the continuity of the function f, the above inequality implies that
{un} is a Cauchy sequence in E. By virtue of the completeness of F, there exists
u € E such that u,, — u for n — oco. Now, we prove that u € Tw and u € Su, i.e.,



Common Fixed Point Theorem for Hybrid Generalized Multivalued 425

u is a common fixed point of S and T. Now, since f is a nondecreasing function,
we have

f(D(uzn, Su)) < f(H(Tuzp-1,5u)) < o(f(p(uzn-1,u)))
= (f (max {d(u%,l,u), D(ugn—1,Tuon—1), D(u, Su),

% [D(ugn_1,Su) + D(u, Tuzpn_1)] }))

< (f (max {d(ugn_1,u), d(u2n—1,u2n), D(u, Su),

1

5 [d(uzn-1,u) + D(u, Su) + d(u,uz)] }) ).

Denote by
a(up,u) =: max {d(u%,l, u), d(uon—1, U2n), D(u, Su),

% [D(uzn-1,) + D(uw, Su) + d(u, uzn)] }

the right hand side of the above inequality. Then a(u,,u) — D(u, Su) as n — oo,

and consequently, f(a(un,u)) — f(D(u,Su)) as n — oo. Therefore, in view of
Lemma 1.5 and the upper semi-continuity of , we get

F(D(u, Su)) = f (JH& D(uzn, Su)) = lim f (D(uzn, Su))
< limsup @(f(a(un,u))) < o(f(D(u, Su))).

n—oo

Thus f(D(u,Swu)) = 0, which implies that D(u, Su) = 0. Since Su is approxi-
mative, there exists y € Su such that d(u,y) = 0, i.e., u = y. Hence u € Su.
As

f(D(u, Tu)) < f(H(Su,Tu))
<o (f (max {d(u, w), D(u, Tw), D(u, Su), % [D(u, Tu) + D(u, &m}))
= o(f(D(u, Tu))),

which gives f(D(u,Tu)) = 0, and this reduces to u € Tu. This completes the
proof. O

Remark 3.3. Theorem 3.2 is a genuine generalization of Lemma 3.1 of a paper
by Hong et al. [25], which is the important result for such paper. However, it has
been observed that a proof of such lemma contains an error. The proof of such
lemma at line 14, p. 5, presented as:

fld(umi1; uny1)) < fH(Tum, Tun)) < (f (p(tm; tn, 6))), 3.7)
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where § € (0,1]. It is related to the procedure of constructing the sequence {u,},
that we only have

d(up—1,un) < H(Tup—2,Tup—1)), for n=2,3 ...

Hence, the first inequality is not assuredly hold and this is a point which may break
down the conclusion of such lemma. Because, if the first inequality is not true,
then the conclusion that {uy,} is a Cauchy sequence would be failed, but this result
is an tmportant step in the proof of the lemma.

Acknowledgements : The author would like to thank the referees for his com-
ments and suggestions on the manuscript.
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Abstract

Without the strong monotonicity assumption of the mapping, we provide a
regularization method for general variational inequality problem, when its solution
set is related to a solution set of an inverse strongly monotone mapping.
Consequently, an iterative algorithm for finding such a solution is constructed, and
convergent theorem of the such algorithm is proved. It is worth pointing out that,
since we do not assume strong monotonicity of general variational inequality
problem, our results improve and extend some well-known results in the literature.

Keywords: general variational inequality problem, regularization, inertial proximal
point algorithm, monotone mapping, inverse strongly monotone mapping

1. Introduction
It is well known that the ideas and techniques of the variational inequalities are being
applied in a variety of diverse fields of pure and applied sciences and proven to be pro-
ductive and innovative. It has been shown that this theory provides the most natural,
direct, simple, unified, and efficient framework for a general treatment of a wide class
of linear and nonlinear problems. The development of variational inequality theory can
be viewed as the simultaneous pursuit of two different lines of research. On the one
hand, it reveals the fundamental facts on the qualitative aspects of the solutions to
important classes of problems. On the other hand, it also enables us to develop highly
efficient and powerful new numerical methods for solving, for example, obstacle, uni-
lateral, free, moving, and complex equilibrium problems.

In 1988, Noor [1] introduced and studied a class of variational inequalities, which is
known as general variational inequality, GVIx{(4, g), is as follows: Find u* € H, g(u*) €
K such that

(A(w"), 8(v) —g(u")) =0, Ywe H:g(v) €K, (1.1)

where K is a nonempty closed convex subset of a real Hilbert space H with inner
product (-, -), and T, g¢: H — H be mappings. It is known that a class of nonsymmetric
and odd-order obstacle, unilateral, and moving boundary value problems arising in
pure and applied can be studied in the unified framework of general variational
inequalities (e.g., [2] and the references therein). Observe that to guarantee the exis-
tence and uniqueness of a solution of the problem (1.1), one has to impose conditions
on the operator A and g, see [3] for example in a more general case. By the way, it is

© 2011 Cho and Petrot; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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worth noting that, if A fails to be Lipschitz continuous or strongly monotone, then the
solution set of the problem (1.1) may be an empty one.

Related to the variational inequalities, we have the problem of finding the fixed
points of the nonlinear mappings, which is the subject of current interest in functional
analysis. It is natural to consider a unified approach to these two different problems (e.
g., [3-8]). Motivated and inspired by the research going in this direction, in this article,
we present a method for finding a solution of the problem (1.1), which is related to
the solution set of an inverse strongly monotone mapping and is as follows: Find u* €
H, g(u*) € S(T) such that

(A(u*), g(v) — g(u™)) =0, Vve H:g[v) €K, (1.2)

when A is a generalized monotone mapping, 7: K — H is an inverse strongly mono-
tone mapping, and S(7) = {x € K: T(x) = 0}. We will denote by GVIx(A, g, T) for a set
of solution to the problem (1.2). Observe that, if 7' =: 0, the zero operator, then the
problem (1.2) reduces to (1.1). Moreover, we would also like to notice that although
many authors have proven results for finding the solution of the variational inequality
problem and the solution set of inverse strongly monotone mapping (e.g., [4,8,9]), it is
clear that it cannot be directly applied to the problem GV Ix(A, g, T) due to the pre-
sence of g.

2. Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by (:, -) and
|| - ||, respectively. Let K be a nonempty closed convex subset of H. In this section, we
will recall some well-known results and definitions.

Definition2.1. Let A: H — H be a mapping and K € H. Then, A is said to be semi-
continuous at a point x in K if

%ing(A(x+ th),y) = (A(x),y), x+th e K, y € H.

Definition2.2. A mapping T: K — H is said to be A-inverse strongly monotone, if
there exists a 4 > 0 such that

(T(x) = T(y), x —y) = AMIT(x) = T(Y)II*>, VxyeK.

Recall that a mapping B: K — H is said to be k-strictly pseudocontractive if there
exists a constant k € [0, 1) such that

|IBx — BylI> < [lx — ylI> + klI(I = B)(x) — (I = BY(M)II>, Vx.y€K.

Let I be the identity operator on K. It is well known that if B: K — H is a k-strictly

pseudocontrative mapping, then the mapping 7 := [ - B is a (%)—inverse strongly

monotone, see [4]. Conversely, if T: K — H is a A-inverse strongly monotone with
A€ (0, %], then B :=1- Tis (1 - 2A)-strictly pseudocontrative mapping. Actually, for
all x, y € K, we have

(T(x) = T(y), x —y) = M|T(x) — T(y)II?
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On the other hand, since H is a real Hilbert space, we have

NI =T)(x) = U=T)VIP = llx =yII? + [IT(x) = TM)II* = 2(T(x) = T(y), x = y).
Hence,

I = T)(x) = (I =TYII* = llx = yII* + (1 = 21)1IT(x) — T()II*.

Moreover, we have the following result:

Lemma 2.3. [10]Let K be a nonempty closed convex subset of a Hilbert space H and
B: K — H a k-strictly pseudocontractive mapping. Then, I - B is demiclosed at zero,
that is, whenever {x,} is a sequence in K such that {x,} converges weakly to x € K and
{(I - B)(x,,)} converges strongly to 0, we must have (I - B)(x) = 0.

Definition2.4. Let A, g: H — H. Then A is said to be g-monotone if

(A(x) —A(y), g(x) —8(¥)) =0, ¥x,yeH

For g = I, the identity operator, Definition 2.4 reduces to the well-known definition
of monotonicity. However, the converse is not true.

Now we show an example in proof of our main problem (1.2).

Example 2.5. Let a, b be strictly positive real numbers. Put H = {(x1, x,)| -a < x; < a4,
-b < x5 < b} with the usual inner product and norm. Let K = {(x1, x5) € H: 0 < &7 < x5}
be a closed convex subset of H. Let T: K — H be a mapping defined by T(x) = (I - P,)
(x), where A = {x := (x1, ) € H: x; = x,} is a closed convex subset of H, and P, is a
projection mapping from K onto A. Clearly, T is %—inverse strongly monotone, and S
-1 2

0 -1

is the 2 x 2 identity matrix. Then, we can verify that A is a g-monotone operator.

(T) = An K. Now, if A = |: } is a considered matrix operator and g = -1, where

Indeed, for each x := (x1, x3), ¥y := (y1, y2) € H, we have
_ _ _ . _ -1 2 —(.X'l — )/1)
(A) = A0 53) ~ 800 = (s =y =yl [ 1 2 ) [ h 20
= (x1 —y1)? = 2001 —y1)(x2 —y2) + (2 — 12)°
=((x1 —=y1) = (2 —2))* = 0.
Moreover, if u* := (u}, u}) € GVIg(A, g), then we must have (A(u*), g(y) - gu*)) > 0,
for all y = (y1, y2) € H, g(y) € K. This equivalence becomes
2uy —u} - uy —y1

* — % ’
uy U ="

(2.1)

for all y = (y1, y2) € H, g(y) € K. Notice that g"(K) = {(y1, y») € H|y1 = y»}. Thus, in
view of (2.1), it follows that {x = (x1, x3) € H|x; = x5} € GVI{A, g). Hence, GVIx(A, g,
T) = O.

Remark 2.6. In Example 2.5, the operator A is not a monotone mapping on H.

We need the following concepts to prove our results.

Let R stand for the set of real numbers. Let F: K x K — R be an equilibrium
bifunction, that is, F(i, u) = 0 for every u € K.

Definition2.7. The equilibrium bifunction F : K x K — R is said to be
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(i) monotone, if for all u#, v € K, then we have

F(u,v) + F(v,u) <0, (2.2)

(ii) strongly monotone with constant 7; if for all u, v € K, then we have

F(u,v) + F(v,u) < —t|lu —v||%, (2.3)

(iif) hemicontinuous in the first variable u; if for each fixed v, then we have

tlin% F(u+t(z—u),v) = F(u,v), V(u,z) €K x K. (2.4)

Recall that the equilibrium problem for F: K x K — R is to find u* € K such that

F(u*,v) >0, VveK. (2.5)

Concerning to the problem (2.5), the following facts are very useful.
Lemma 2.8. [11]Let F : K x K — Rbe such that F(u, v) is convex and lower semicon-
tinuous in the variable v for each fixed u € K. Then,

(1) if F(u, v) is hemicontinuous in the first variable and has the monotonic property,
then U* = V¥, where U* is the solution set of (2.5), and V* is the solution set of F(u,
v¥) <0 for all u e K. Moreover, in this case, they are closed and convex;

(2) if F(u, v) is hemicontinuous in the first variable for each v € K and F is strongly
monotone, then U* is a nonempty singleton. In addition, if F is a strongly monotone
mapping, then U* = V* is a singleton set.

The following basic results are also needed.

Lemma 2.9. Let {x,} be a sequence in H. If x,, — x wealky and ||x,|| = ||x||, then x,
— x strongly.

Lemma 2.10. [12]. Let a,, b,, c, be the sequences of positive real numbers satisfying
the following conditions.

(l) Apy1 < (1 - bn)an + G bn <1

(if) Do bn = +00, limn_)wo(z_:) =0,

Then, lim,,_, ... a, = 0.

3. Regularization

Let o € (0, 1) be a fixed positive real number. We now construct a regularization solu-
tion u,, for (1.2), by solving the following general variational inequality problem: find
uy € H, gluy,) € K such that

(A(ug) + o (T 0 g)(ua) + g (tar), §(v) — 8(ua)) = OV € H, g(v) €K, 0 <p <1.(3.1)

Theorem 3.1. Let K be a closed convex subset of a Hilbert space H and g: H — H be
a mapping such that K € g(H). Let A: H — H be a hemicontinuous on K and g-

Page 4 of 11
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monotone mapping, T: K — H be A-inverse strongly monotone mapping. If g is an
expanding affine continuous mapping and GVIK{A, g, T) = &, then the following conclu-
sions are true.

(a) For each o € (0, 1), the problem (3.1) has the unique solution u:
(b) If o | O, then {g(uy)} converges. Moreover, alg{){ 8(uq) = g(“*)for some u* € GVIg

A g D.
(c) There exists a positive constant M such that
M(B —«a
l1g(1te) — g(up)II* < %, (3.2)

when 0 <o <f < 1.

Proof. First, in view of the definition 2.2, we will always assume that A € (0, 3] Now,

related to mappings A, T, and g, we define functions F4, Fr : g71(K) x g7'(K) — R by
Fa(u,v) = (A(u), 8(v) — g(u)) and Fr(u,v) = (T 0 g)(u), g(v) — &(u)),

for all (u, v) € g'(K) x g'(K). Note that, F4, F; are equilibrium monotone bifunc-
tions, and g’l(K) is a closed convex subset of H.

Now, let o € (0, 1) be a given positive real number. We construct a function
Fy: g Y(K) x g7} (K) — R by

Fo(u,v) = [Fa + o"Fr](u, v) + a(g(u), g(v) — g(u)), (3.3)

for all (u, v) € g'(K) x g’l([().
(a) Observe that, the problem (3.1) is equivalent to the problem of finding u, € g’1
(K) such that

Fy(uy,v) >0, Yveg '(K). (3.4)

Moreover, one can easily check that F,(u, v) is a monotone hemicontinuous in the
variable u for each fixed v e g(K). Indeed, it is strongly monotone with constant o >
0, where g is an ¢-expansive. Thus, by Lemma 2.8(ii), the problem (3.4) has a unique
solution u,, € g’l(K) for each o > 0. This prove (a).

(b) Note that for each y € GVIi(A, g, T) we have [F4 + ”F7](y, uy) = 0. Conse-
quently, by (3.4), we have

0> —Fy(uq,y)
= — [Fa(tta, y) + @ Fr(uq, y) + e (g(ta)), 8(y) — 8(14a))]
> —[Fa(ta ) + & Fr(ta, y) + @(8(ta), §(¥) — 8(ua))] — [Fa(y, i) + " Fr(y, tie)]
= —[Fa(ua,y) + Fa(y, tia)] — " [Fr(ta, y) + Fr(y, va)] — o (8(ua), 8(y) — (1))
> a(g(ua), §(ua) — 8(¥))-

This means

(3(ua), 8(y) — 8(ua)) = 0, Vy € GVIk(A, g T).

Page 5 of 11
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Consequently,

18(ua)I 1IZOI = (8(ua), 8(1)) > (8(tta), 8(1a)) = 118(ua)II?, (3.5)

that is, ||g(ug)|| < ||g()]|| for all y € GVIi{(A, g, T). Thus, {g(u,)} is a bounded subset
of K. Consequently, the set of weak limit points as ¢ — 0 of the net (g(x,)) denoted
by ,,(g(uy)) is nonempty. Pick z € w,(g(u,)) and a null sequence {o} in the interval
(0, 1) such that {g(uy, )} weakly converges to z as k — eo. Since K is closed and convex,
we know that K is weakly closed, and it follows that z € K. Now, since K < g(H), we
let u* € H be such that z = g(u*) and claim that u* € GVIA, g T).

To prove such a claim, we will first show that g(u*) € S(7). To do so, let us pick a
fixed y € GVIKA, g T). By (3.3) and the monotonicity of F4, we have

o), Fr(te, y) + i (8 (e, ), §(¥) — 8(hey,)) = —Fa(they, ¥) = Fa(y, they,) = 0,

equivalently,

FT(uOtkl V) + a;7M <g(uak)/ g()’) - g(uak)) >0,

for each k € N. Using the above together with the assumption that T is an A-inverse

strongly monotone mapping, we have
MIT(8 () — TR < (T(8(ter)), 8(1her,) — 8())
= —Fr(uy,y)
< o " (8(uer), 8(7) — 81t ))
< o, 118t )11 118 = 181t} 117]
<o "Ig)I?

]

for each k € N. Letting k — +, we obtain

Jim [[T(g(ug,)) =TI = 1im [IT(g(uq))I = O.

On the other hand, we know that the mapping I - T is a strictly pseudocontractive,
thus by lemma 2.3, we have T demiclosed at zero. Consequently, since {g(uq, )} weakly
converges to g(u*), we obtain T(g(u#*)) = T(g(y)) = 0. This proves g(u*) € S(T), as
required.

Now, we will show that u* € GVI(A, g T). Notice that, from the monotonic prop-
erty of F, and (3.4), we have

Fa(v, ug,) + oz,‘:FT(v, Uy, ) + i (g(V), §(Uey,) — (V) = Fa(V, i,) < —Fo (U, V) <0,
for all v e g’l(K). That is,
Fa(v, ) + o, Fr(v, ug,) < ar(8(v), 8(v) — 8tk (3.6)

for all v e g’l(K). Since oy | 0 as kK — o, we see that (3.6) implies F4(v, u*) < 0 for
any v € H, g(v) € K. Consequently, in view of Lemma 2.8(1), we obtain our claim
immediately.

Page 6 of 11
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Next we observe that the sequence {g(uq,)} actually converges to g(u*) strongly. In

fact, by using a lower semi-continuous of norm and (3.5), we see that

lg(u™)II < lim inf]|g(ue, )| Sliglsumlg(uak)ll = lIg(")Il,

since u* € GVIg(A, g, T). That is, ||g(ue )|l — lIg(u*)|| as k — . Now, it is
straight-forward from Lemma 2.9, that the weak convergence to g(u*) of {g(u,)}
implies strong convergence to g(u*) of {g(us, )}. Further, in view of (3.5), we see that

lIg(u™)Il = inf{lIg(V)II :y € GVIk(A g T)}. 3.7)

Next, we let {g(uq;)} C (8(ue)), where {;} be any null sequence in the interval (0, 1).
By following the lines of proof as above, and passing to a subsequence if necessary, we
know that there is &t € GVIk(A, g T) such that g(ue;) — 8(i1) as j — . Moreover, in
view of (3.5) and (3.7), we have ||g(&1)]| = ||g(u*)|l. Consequently, since the function ||
g()|] is a lower semi-continuous function and GVIi(A, g T) is a closed convex set, we
see that (3.7) gives y* = fi. This has shown that g(u*) is the strong limit of the net (g
(uy)) as o | 0.

(c) Let 0 <ax <f < 1 and u,, ug are solutions of the problem (3.1). Thus, since F4 and

Fr are monotone mappings, by (3.4), we have
0 < (B" — o )Fr(up, ua) + B{g(up), 8(ua) — 8(up)) + {g(tia), 8(u1p) — 8(thar)),

that is,
T
(s = Zatun. gt) = stu) = (E ) Frtun ). 69
Notice that,

a—p

o

(500 = L) 00— st0) = st~ t09)1” + L g5 00000 — = lgun)

o —

P (a(us), 8(u))),

= 118(tta) — g(up)I1* +

o
since 0 <& <B. Using the above, by (3.8), we have

ﬁ—a92+,3“—a“
o

l18(ua) — g(up)Il* < Fr(ug, ty), (3.9)

where 0 = sup{||g(us)||: @ € (0, 1)}. Moreover, since Fr is a Lipschit continuous
mapping (with Lipschitz constant %), it follows that

B—a Bt —at
+
o

o

02 M,

l18(ua) — 8(up)l)* <

for some M; > 0. Further, by applying the Lagranges mean-value theorem to a con-
tinuous function 4(f) = t# on [1, +0), we know that

11g(ua) — glup)I* < M(ﬁi;a) (3.10)
o

for some M > 0. This completes the proof. O
Remark 3.2. If g =: ], the identity operator on H, then we see that Theorem 3.1

reduces to a result presented by Kim and Buong [9].
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4, Iterative Method

Now, we consider the regularization inertial proximal point algorithm:

(en[Azner) + (T 0 8)(2ns1) + 0tng(zns1)] + 8(2ns1) — 8(zn), 8(v) — &(2n41)) = 0 (4.1)
YveH, gv) €K, z1 € H, g(z1) e K. '

The well definedness of (4.1) is guaranteed by the following result.
Proposition 4.1. Assume that all hypothesis of the Theorem 3.1 are satisfied. Let z €
g (K) be a fixed element. Define a bifunction F, : g"(K) x g'(K) — R by

Fo(u,v) := (c[A(u) + (T 0 g)(u) + ag(u)] + g(u) — g(2), g(v) — g(u)),

where ¢, o are positive real numbers. Then, there exists the unique element u* € g*
(K) such that F(u*, v) 2 0 for all v € g'l(K).

Proof. Assume that g is an & expanding mapping. Then, for each u, v e g'(K), we
see that

Fe(u,v) + Fe(v,u) < (1 + ca)(g(u) — g(v), 8(v) — 8(u)
= —(1 +ca)l|g(u) — g)|I?
< —&(1 +ca)|lu —v||*.

This means F is &(1 + ca)-strongly monotone. Consequently, by Lemma 2.8, the
proof is completed. O

The result of the next theorem shows some sufficient conditions for the convergent
of regularization inertial proximal point algorithm (4.1).

Theorem 4.2. Assume that all the hypotheses of the Theorem 3.1 are satisfied. If the
parameters ¢, and o, are chosen as positive real numbers such that

(c1) lim &, =0,

n— 00

(C2) lim ®=mt = 0

n—oo  ¥ny1 ’

(c3) liminf ¢y, > 0,

n—oo

then the sequence {g(z,)} defined by (4.1) converges strongly to the element g(u*) as n
— +oo, where u* € GVIKA, g T).
Proof. From (4.1) we have

(cnlA(zni1) + afy (T 0 8)(zns1)] + (1 + cn@n)g(2ns1) — &(2n), §(v) — §(2n+1)) = 0O
that is

(cn[A(zne1)+ory (Tog) (zne1 ) 1+ (1+Cnan)g(2ne1), 8(v) —8(2ni1)) = (8(2n), 8(v)—8(2ns1)),
or equivalently,

Cn

(1+ cnan)< [Azr) + 02 (T 0 8) (@ )] + 8(ener), 8(v) — g(zn+1)> >

(8(=n), 8(v) — &(=n+1)),

(1 + cpan)
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$0
<(1+C#n)[’*(z"+l) (T 0 8)(ow ) + lenet) 80) — lent)) 2
m@(%),g(ﬂ — 8(zn1)).
Hence
(kn[A(zns1) + (T 0 8)(2ns1)] + 8(2n41), 8(V) — 8(2ns1)) = Bn(8(2n), §(v) — §(2ns1)),
where

Bn , and «y, = ¢, Bn. (4.2)

" ()
On the other hand, by Theorem 3.1, there is u, € g '(K) such that

(Aun) +a"(T 0 g)(un) + ag(un), g(v) — g(un)) = O, (4-3)
for all » € N. This implies

(cnlA(un) + o (T © 8) (un)] + (1 + cnatn)8(un) — 8(un), 8(v) — &(un)) = 0,

and so

<C—"[A(un) + (T 0 8)(un)] + 8(1tn), 5(1) fg(un)> > <%<g(un),g(v) fg(un)><

(1 + cpom) (1 +cnarn)

Thus,

(kcn[A(un) + o (T 0 8) (un)] + 8(un), 8(v) — g(un)) = Bn(g(un), 8(v) — g(un)). (4-4)
By setting v = u,, in (4.2) we have

(tcnlA(zne1) + o (T 0 8) (2ne1) ] +8(2ne1), 8(tn) — 8(2ne1)) = Bu(8(2n), 8(un) — 8(zns1)),
and v = z,,; in (4.4) we have

(kn[A(un) + o (T © ) (un)] + 8(un), 8(2ne1) — 8(un)) = B (8(un), &(zn+1) — 8(un)),
and adding one obtained result to the other, we get

kn{A(zns1) — Aun) + o (T 0 8)(zns1) — (T 0 8)(un))), 8(un) — &(2n+1)) + (8(2ns1) — &(un), 8(un) — 8(2ns1)) (4 5)
> Bn(8(2n) — g(un), g(1tn) — g(2ns1))- '

Notice that, since A is a g-monotone mapping, and T is a A-inverse strongly mono-

tone, we have
(A(zns1) — A(un), 8(un) — 8(zn:1)) <0,
and
((T 0 &)(zn+1)) — (T 0 &) (un)), 8(un) — &(2n+1)) < 0.
Thus, by (4.5), we obtain

(8(zns1) — 8(un), 8(tn) — 8(2n+1)) = Bn(8(zn) — g(un), §(1n) — g(2n+1)),
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that is,
(8(zne1) — 8(1n), 8(2ns1) — &(un)) < Bn(g(zn) — 8(un), &(2ne1) — g(un)).

Consequently,

118(zns1) — (un)I1> < Bullg(zn) — &(un)1l 118(2ns1) — g(un)ll,
which implies that

[18(2ns1) — (un)ll < Bullg(zn) — g(un)ll. (4.6)

Using the above Equation 4.6 and (3.2), we know that

[18(zn+1) — (une1)Il < 118(2ne1) — g(un) Il + 118(un) — g(tn1)ll

M(an - O‘n+1)

< Bnllg(zn) — g(un)ll + 3

n+l

< (1 = bn)lIg(zn) — g(un)ll +dn

where

Cnlln M(an - an+1)
by= —20 g, o [ Gnel)
(1 + cpan) o

Consequently, by the condition (C3), we have Y 72, b, = co. Meanwhile, the condi-

tions (C2) and (C3) imply that JLI{)IO i—: = 0. Thus, all the conditions of Lemma 2.10 are

satisfied, then it follows that ||g(z,.1) - g(#,.s1)|| = O as n — . Moreover, by (C1)
and Theorem 3.1, we know that there exists u* € GVIx(A, g, T) such that g(u,) con-
verges strongly to g(u*). Consequently, we obtain that g(z,) converges strongly to g(u*)
as n — +oo. This completes the proof. O

Remark 4.3. The sequences {c,,} and {c,} which are defined by

1\’ 1
ot,,:(—) ,0<p<1, and ¢, =—
n Qn

satisfy all the conditions in Theorem 4.2.

Remark 4.4. It is worth noting that, because of condition (C2) of Theorem 4.2, the
important natural choice {1/n} does not include in the class of parameters {c,}. This
leads to a question: Can we find another regularization inertial proximal point algo-
rithm for the problem (1.2) that includes a natural parameter choice {1/n1}?

Remark 4.5. If F is a nonexpansive mapping, then I - F is an inverse strongly mono-
tone mapping, and the fixed points set of mapping F and the solution set S(I - F) are
equal. This means that our results contain the study of finding a common element of
(general) variational inequalities problems and fixed points set of nonexpansive map-
ping, which were studied in [4-8] as special cases.
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1. Introduction and preliminaries

Let # be a real Hilbert space whose inner product and norm are denoted by (-, -) and | - ||, respectively. Let @, @, :
JH x H — FH be given two bi-functions satisfying ®;(x,x) = Oforallx € #,i = 1,2. LetT; : #¢ x J — JH bea
nonlinear mapping for each i = 1, 2. In this work, let CC(#¢) be the family of all nonempty closed convex subsets of # and
G : #t — CC(J¢) be a point-to-set mapping which associate a nonempty closed convex set C;(x) with any element x of #,
for eachi = 1, 2. We consider the problem of finding (x*, y*) € # x J¢ such that x* € C;(x*), y* € C,(y*) and

DX, 2) + (T1(x*, y"),z —x") >0, Vze(x),
O,(y*, 2) + (X", ¥,z —y") >0, Vze QY.
Since in many important problems the closed convex set C also depends upon the solutions explicitly or implicitly, it is
worth mentioning that the problem of type (1.1) is of interest to study; see [ 1] for more details. Consequently, problem (1.1)

is called the system of nonlinear quasi-mixed equilibrium problems.
For eachi = 1, 2 if the convex set C(u) is of the form

G =miw) + G, (1.2)

where (; is a fixed closed convex set and m; is a point-to-point mapping, then problem (1.1) is equivalent to finding
(x*,y*) € # x F such that x* — m{(x*) € C; and y* — my(x*) € C; and

(1.1)

{<1>1(x*, 2) + (T1(x*, y"),z —x*) > 0, Vze k"), (1.3)

¢2(V*’Z)+(T2(X*’y*)vz_y*> 207 VZGCz(y*).

= Supported by the Commission on Higher Education and the Thailand Research Fund (Project No. MRG5380247).
* Corresponding author.
E-mail addresses: scmti005@chiangmai.ac.th (S. Suantai), narinp@nu.ac.th (N. Petrot).
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A problem related to (1.3) was studied by Ding et al. [2]. Moreover, if we set m; = m;, = 0 then problem (1.3) is reduced to
finding x*, y* € C; x G, such that

¢1(X*’ Z) + (Tl(X*’ y*)’ 4 _X*> > 03 Vz € C]v
(p2(y*7z)+(T2(X*7y*)7z_y*> 207 VZGCZa

which is due to Cho and Petrot [3], when C; = C,.

If foreachi = 1,2,letS; : #¢ x J¢ — JH be the nonlinear mapping and ¢, ¢ are fixed positive real numbers. Let
Ti(x,y) = 510,%) +x—y, Th(x,y) = ¥S,(x,y) +y —xforallx,y € # and ®;(x,z) = ¥i(z) — ¢¥;(x) forallx,z € ¢,
where v; : ## — R is a real valued function, for each i = 1, 2. Then problem (1.4) reduces to finding x*, y* € J# such that

(€SI, %) +x* =y, 2 —x*) + Y1 (2) — Y1 (x*) >0, VzeC,
(S y) +y —x 2=y +v2@) — v (y") >0, VzeC,

which is called the system of nonlinear mixed variational inequalities problems. A special case of problem (1.5), has been
studied by many authors; see [4-10] for examples. Evidently, the examples described above shown that a number of
classes of variational inequalities and related optimization problems can be obtained as special cases of the system of mixed
equilibrium problems (1.1).

Motivated and inspired by these works, in this paper, we provide the existence theorem for problem (1.1) and the
uniqueness of solution. The stability of the iterative algorithm and some important remarks are also discussed. To do so,
we need the following basic concepts and lemmas.

(1.4)

(1.5)

Definition 1.1 (Blum and Oettli [11]). A real valued bi-function @ : # x # — R is said to be
(i) monotone if
PXx,¥)+P(y,x) <0, Vx,ye i,
(ii) strictly monotone if
DX, y)+Py,x) <0, Vx,ye Hwithx #y;
(iii) upper hemicontinuous if
lim sup @(tz+ (1 —t)x,y) < ®(x,y), VX,y,z € H.

t—0t

Definition 1.2. A function f : # — R U {400} is said to be lower semi-continuous at x if for all @ < f(xp), there exists a
constant 8 > 0 such that

a <f(x), VxeBxo,p),
where B(Xq, 8) denotes the ball with the center x; and the radius 8, i.e.,

B(xo, B) ={y : ly — xoll = B}.

f is said to be lower semi-continuous if it is lower semi-continuous at every point of E.

Lemma 1.3 (Combettes and Hirstoaga [12]). Let C be a nonempty closed convex subset of # and & be a bi-function of # x J
into R satisfying the following conditions:

(C1) @ is monotone and upper hemicontinuous;
(C2) @ (x, -) is convex and lower semi-continuous for each x € C.

Let p > 0 be fixed. Define a mappingjg’c : # — C as follows:
Jpc0)={weC:pP(w,2)+ (w—x,z—w) >0, Vz €C},
forallx € 7. Thenjgyc is a single valued mapping.

Definition 1.4. Let M C #¢ x J¢ be a set-valued mapping. Then M is called monotone if for any (x1, y1), (x2,¥2) € M,
(Y1 — Y2, %1, %) = 0.

Lemma 1.5 ([3]). Let C be a nonempty closed convex subset of #.If @ : # x # — R is a monotone function, then the operator
]f;yc is a non-expansive mapping, that is,

Wo.c0 =Jo I < lx=yl, Vx,ye .
In this paper, we are interested in the following classes of nonlinear mappings.

Definition 1.6. A mapping T : # — J# is said to be v-strongly monotone if there exists a constant v > 0 such that

(Tx — Ty, x—y) > vlx—yl>, Vx,ye .
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Definition 1.7. A mapping T : J# x J¢ — J is said to be (t, o)-Lipschitz if there exist constants 7, ¢ > 0 such that

IT(x1,¥1) — T2, ¥l < tllx1 — X2/l +ollyr — Y2, VX1, %, y1,¥2 € H.

2. The existence theorems

In this section we will provide the existence theorem for the solution of problem (1.1). We begin with an important
lemma,

Lemma 2.1. (x*,y*) € J¢ x J is a solution of problem (1.1) if and only if
X" =]£,c1(x*)[><* —p1Th (X*a y*)]’
y* ZJQK;VCZ(Y*)[.V* - PZTZ(X*a.V*)]~

Proof. The proof directly follows from the definitions of J, ¢ () andJj ¢, ry- O

From Lemma 2.1, we see that the system of nonlinear quasi-mixed implicit equilibrium problems (1.1) is equivalent to
the fixed point problems:

X = (1= X+ Mgt X = o Ti X", y9)]
Y'= =0y + Mg, 600" — 02T, y9)]

where A € (0, 1) is a parameter. The fixed point formulation (2.1) enables us to suggest the following iterative scheme.

(2.1)

Algorithm (I). Let pq, o, be fixed positive constants. For given (xg, yg) € # x J. Define {(x,, y,)} C # x J by

{XrH—l = (1= )% + M5! ¢, o [Xn = 21T1 (X, Y], 22)

Y1 = (A = Ay, + )\jgzz’czo,n)[yn — P2 Ta (X, yu)1,

where A € (0, 1) is a fixed parameter.
Of course, we will use Algorithm (I) as a tool for obtaining our main result, that is, the existence theorem solutions to
problem (1.1). To do this, from now on, we will assume the following condition:

Condition (A). For eachi = 1, 2 there exists 1; > 0 such that

||]£,ci(u)2 _]g,ci(u)Z” <nillu—vl|, Vu,v,zeH.

Remark 2.2. Let C be a closed convex subset of #. It is clear that Condition (A) is satisfied for the case C(u) = C for all
u € H, with n = 0. We also remark that Condition (A) is true for the case C(u) = m(u) + C, as defined by (1.2) when mis a
u-Lipschitz continuous and the function @ satisfies @ (x — y,z) = @ (x,z — y) forallx, y, z € C. Indeed, for eachu,z € ¥
we observe that

Jo.can? =15 mayscz = m@) +Jj [z — m@)]. (23)
It follows that
”JQC(U)Z —JQ,C(U)ZH = [[m(u) +J£,C[Z —m(u)] — m(v) _]g,c[z —m@)]|l

< [Im@) — m@)|l + Wg [z — m@)] —Jg [z — m@)]]|
< 2[m@) —m@)|| < 2pllu — v,

this shows that Condition (A) holds for n = 2u.

Theorem 2.3. Foreachi =1, 2, let ®; : # x # — R be a monotone functionand C; : # — CC(H).Let T : H X H — H
be a v{-strongly monotone with respect to the first argument and (t,, o1)-Lipschitz mapping and T, : # x # — J be a
v,-strongly monotone with respect to the second argument and (t,, 0)-Lipschitz mapping. Suppose that there are positive real
numbers p1, p; which satisfy the following condition:

1
(1—=2p1v1 + pitH2 + po1a < 1=y,

22,1 (2.4)
(1=20v2 + p375)2 + p1og < 1 —np.

Then the set of solution of problem (1.1) is a singleton.



S. Suantai, N. Petrot / Applied Mathematics Letters 24 (2011) 308-313 311

Proof. Since ]q@] o and ]q@i ¢, are non-expansive mappings, we have the following estimate:

X1 = Xall < (1= M)l1x0 — Xn—all + AU ¢, o [Xa = 01T1 s Y)] =I5 ¢y [Xn1 = 21T1 (a1, V)]
< (=% = X1l + AWE ¢y Xn = 2171 s YD1 = J5) . oy X1 = 21T1 Ko, Y]
FAE o Enm1 = P1T1 X1, Yn-)] = J3) ¢ oy a1 = 01T X1, Y11l
< (=21 =) lIxXn — Xn—1ll + AllXn — Xn—1 — p1[T1(Xn, Yn) — T1(Xn—1, Yn) 1l
+A01IT(Xn—1, Yn) — T (Xn—1, Yn-1) |l (2.5)

Since for each w € J¢ the mapping T;(-, w) : # — J is a v;- strongly monotone, and the mapping Ty (w, -) : # — H
is a 71-Lipschitz, we obtain

X0 = X1 = P1T1 X, Yu) = T a1, Y)II? = %0 = X0 l1> = 201 (%0 — X1, Tt Xn, Y1) — T1(Xn—1, Y))
+ 11T Xn Yn) = Ty Gn1, y) |1
< %0 — Xn—1l1* = 20101 11x0 — Xnall + P77 X0 — Xna |1
= (1=2p1 + pit)llxn — Xpall?, (2.6)
and
ITXn—1.Yn) — T(Xn—1, Yn-1) | < o1llyn — Yn-1l- (2.7)
Consequently, from (2.5)-(2.7), we have
a1 = Xall < (1= A(1 = ) %0 = Xaall + A1 = 20101 + p2T2) 2 % — X 1]l + 20101 [1Yn — Va1l
= (1 =21 =1+ 0)Dx0 — xn—1ll + 20101110 — Yn-1ll, (2.8)
where 0; = (1 —2pyv; + ,olzrlz)%.
Similarly, we have the following inequality
[Ynt1 = Ynll = (T =21 = (72 + 62D |¥n — Yn—1ll + 2p272 X0 — Xn—1ll, (2.9)

where 6, = (1 — 2p,v, + ,022022)%.
Consequently, from (2.8) and (2.9), we have

[Xn+1 = Xnll + [1¥ne1 — Yall < max{xr, &2} (X0 — Xn—1ll + lyn — Yn-1lD, (2.10)
where
k1 =1—=A[1— (1 + 61+ )], ko =1—A[1— (2 + 62 + pro1)]. (2.11)
Now, define the norm || - ||* on # x # by
I WIF = lIxl + 1yl Vx,y) € H x K.
Notice that (# x #, || - ||) is a Banach space and

11, Y1) = G, y) 1T < max{icr, w2}l X, Yn) — Kn1, Yu-) 17 (2.12)

By condition (2.4), we see that x := max{x1, k3} < 1. Write a,, := (x, y,). From (2.12) we have

lans1 — anll™ < «™llay —aoll ™, (2.13)

for all n > 1. Hence, for any m > n > 1, it follows that

m—1 m—1
lam — anll™ <D llais —all™ <Y kllar — aol (2.14)
i=n i=n
Since k < 1, it follows from (2.14) that ||a,, — a,||™ — 0asn — oo and hence {a,} is a Cauchy sequence in (¥ x #, || - || ).

Consequently, there exists (x*, y*) € # x J¢ such that (x,,y,) — (*,y*) asn — oc. Now we show that (x*, y*) is a
solution of problem (1.1). In fact, by Condition (A), we note that

W2 ¢ o Xn = 2171 Yi) 1 = Jg! ¢ ) [ — o1 Ti (X5, )]
< Wa' ¢y Xn = 21T YD1 = Ji! ¢, o (X = 01 T1 (¢, YOI
F WS ;o X = o1 Ti X Y = 5! o [X = o1 Ta (e, O
< 1xa — X" — p1(T1(xn, yn) — To (X", YD) + mallxn — X7l
<@+ piti + n)lIx0 — X[ + p101llyn = y*II] — 0 asn — oo. (2.15)
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And, similarly,

U5, g Wn = 02T2 G i) = J52 ¢, oo V" = 22,y —> 0 asn — oo. (2.16)
Using (2.15) and (2.16), from the definition of {x,} and {y,}, we have

X =15 o X = piTi(X*, y9)] € G (x),

V' =15 on VT — ;T y)] € GOY).

Thus, by Lemma 2.1, we conclude that (x*, y*) is a solution for problem (1.1).
Next, assume that there also exists (u*, v*) € J# x J such that u* € C;(u*), v* € G, (v*) and

u* =]£11,c1(u*)[ll* — 1T (", v,
v* =]£22_c2(v*)[v* — p2 (", v)].
Using the same lines as obtaining (2.12), we know that
I(x* —u*, y* — )" < kllx* —u*, y* — o))", (2.17)

Since, k < 1, we must have x* = u* and y* = v*. Hence, the set of solution of problem (1.1) is a singleton. This completes
the proof. 0O

Remark 2.4. Theorem 2.3 not only gives the conditions for the existence solution of problem (1.1) but also provide the
algorithm to find such a solution for any initial vector (xg, yg) € # x #. In fact, by proceeding along the same lines as in
Theorem 2.3, one can also show that the sequences {(x,, y»)}, defined by following Mann type perturbed iterative algorithm
(MTA),

{Xn—H = (1 — o)X + ! ¢ o [Xn — P1T1 (e, Y1, 2.18)

Va1 = (1 —ap)yn + an](gzz,cz(yn)[}/n — P2 Ta (X, yu)1,

converges strongly to the unique solution of problem (1.1), when {«,} is a sequence of real numbers such that o, € (0, 1)
and ) 02 oy = 00.

Let C be a fixed closed convex subset of a Hilbert space #. If C;(u) = C,(u) = C for all u € J¢, we have the following
result.

Theorem 2.5 ([3]). Foreachi = 1,2, let ®; : # x # — R be a monotone function and C; : # — CC(H). Let
T, : # x #H — I be a vi-strongly monotone with respect to the first argument and (tq, 01)-Lipschitz mapping and
T, : # x ¢ — FH be a v,-strongly monotone with respect to the second argument and (t,, 03)-Lipschitz mapping. Suppose that
there are positive real numbers p, p, which satisfy the following condition:

1
(1=2p1v1 + piTH2 + P12 < 1,

224 (2.19)
(1=2pv2 + p375)2 + prog < 1.
Then the set of solution of problem (1.1) is a singleton.

Proof. The result is followed immediately from Remark 2.2 and Theorem 2.3. O

3. Stability analysis

In this section, we will study stability of the Mann type perturbed iterative algorithm (2.18). Firstly, in view of fixed point
formulation (2.1), the following remark is clear.

Remark 3.1. Let (x,y) € J x J¢. Then (x, y) is a solution of problem (1.1) if and only if there exist positive real numbers
p1, p2 such that (x, y) is a fixed point of the map G,, ,, : # x # — H x H defined by

Gorp (% ¥) = (Ap; (%), By (X, ), V(X,y) € H X H, (3.1)
where A, , B,, : # x # — H are defined by

Ap1 (%, Y) =0-Mx+ )ngll,cl(x)[x —p1Th (%, Y)]

By, (x,y) = (1= M)y + Mg ¢, )V — T2 (%, Y],

where A € (0, 1) is a fixed constant.
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Using the idea as in Theorem 2.3, we have another version for the existence solution of problem (1.1).

Theorem 3.2. Assume that all assumptions of Theorem 2.3 hold. Then the mapping G,, ,,, which is defined as in (3.1), has a
unique fixed point.

Now we give a definition, which can be viewed as an extension of the concept of stability of iteration procedure given by
Harder and Hick [13].

Definition 3.3 ([14]). Let #¢ be a Hilbert space and let A, B : # x # — J¢ be nonlinear mappings. Let G : # X H —
J x Jt be defined as G(x,y) = (A(x,y),B(x,y)) for any (x,y) € H# x H, and let (xg,y9) € J x F. Assume that
(Xn+1, Yne1) = f(G, x5, yn) defines an iteration procedure which yields a sequence of {(x,, y,)} in # x F£. Suppose that
F(G) = {(x,y) € # x H : Gx,y) = (x,y)} # @ and {(x,,y,)} converges to some (x*,y*) € F(G). Let {(up, v,)}
be an arbitrary sequence in # x # and &, = ||(us, vy) — f(G, X, yn)|, for alln > 0. If lim,_, ., &, = 0 implies that
limy_ o0 (Un, vy) = (X*, ¥™), then the iterative procedure {(x,, y,)} is said to be G-stable or stable with respect to G.

Theorem 3.4. Assume that all conditions of Theorem 3.2 hold. Let {(uy, v,)} be an arbitrary sequence in # x J¢ and define
{8n} C [0, 00) by

811 = ”(unJrl» Uﬂ+1) - (Cn» Dﬂ)||+7 (32)

where

{Cn = (1 —apx; + Ofn.lg]],q(xn)[xn — p1T1(Xn, yn)1s

33
D = (1 — anyn + a2 ¢ W — 02T5 (s Y, (33)

where (X,, y,) is defined in (2.18), foreachn € N.If G,,, ,, is defined as in (3.1) then the iterative procedure (2.18) is G, ,,-stable.
Proof. Assume that lim,_,, 8, = 0. Let (x*, y*) be the unique fixed point of the mapping G,,, ,,, this means,

X" =J<§1],C](x*)[X* — T (X", y9)]

Y =l eV — paTax*, y)1.
Now from (3.2) and (3.3), we have

I @nt 1, Vg1) — & YT < 80+ [1Co — X" + 1Dn — y*. (3.4)

Notice that (C,, D) = {(Xn4+1, Yn+1)} for each n € N, which implies that lim,_, o, C; = x* and lim,_, D, = y*. Using
this one and the assumption lim,_, o, §; = 0, in view of (3.4), we have lim,_, o, (Un+1, Vn+1) = (x*, ¥*). This completes the
proof. O

Remark 3.5. It is worth noting that for a suitable and appropriate choice of the operators T1, T,, @1, @, and point-to-set
mappings Cy, C;, one can obtain a large number of various classes of variational inequalities. This means that problem (1.1)
is quite general and unifying.
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1. Introduction and preliminaries

Let # be a real Hilbert space whose inner product and norm are denoted by (-, -) and || - ||, respectively. Let C be
a nonempty closed convex subset of #. Let ¢ : C — R be a real-valued function, Q : C — J# be a mapping and
@ : J x C x C — R be an equilibrium-like function, that is, @ (w, u, v) + @ (w, v, u) = 0 for all (w, u,v) € # x C x C.
We consider the following generalized equilibrium problem:

Find x* € C such that (1.1)
(X", X", y) +o(y) —p(x*) =0, VyeC. '

We denote the set of solutions of the generalized equilibrium problem (1.1) by GEP(C, Q, @, ¢).
Special cases of the problem (1.1) are as follows:
(I)Let ®(w, u, v) = F(u, v),whereF : C xC — R.Then the problem (1.1) reduces to the following equilibrium problem:

Find x* € C such that F(x*, v) + ¢(v) — ¢(x*) >0, Vv eC.

This problem was studied by Flores-Bazan [1].

* Corresponding author. Tel.: +66 95 3252; fax: +66 95 3201.
E-mail addresses: yjcho@gsnu.ac.kr (Y.J. Cho), iargyros@cameron.edu (LK. Argyros), narinp@nu.ac.th (N. Petrot).

0898-1221/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.08.021
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()Ifo =0and & (w, u, v) = F(u, v), where F : C x C — R, then the problem (1.1) becomes the following equilibrium
problem:

Find x* € C such that F(x*,v) >0, Vv e C. (1.2)
(I If @(w, u, v) = (w, v —u) forall (w, u, v) € # x C x C, then the problem (1.1) reduces to the following problem:
Find x* € C such that (Qx*, v — x*) + ¢(v) — p(x*) >0, Vv e C.

This problem was studied by Dien [2] and Noor [3].
(IV)Ifo =0and @ (w, u, v) = (w, v —u) forall (w, u, v) € # x C x C, then the problem (1.1) reduces to the following
classical variational inequality: problem:

Find x* € C such that (Qx*, v —x*) >0, Vv eC.

In brief, for an appropriate choice of the mapping Q, the functions @, ¢ and the convex set C, one can obtain a number
of the various classes of equilibrium problems as special cases.

In particular, the equilibrium problems (1.2) which were introduced by Blum-Oettli [4] and Noor-Oettli [5] in 1994 have
had a great impact and influence on the development of several branches of pure and applied sciences. In [4,5], it has been
shown that equilibrium problems include variational inequalities, fixed point, Nash equilibrium and game theory as special
cases. This means that the equilibrium problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity and optimization.
Hence collectively, equilibrium problems cover a vast range of applications.

Related to the equilibrium problems, we also have the problems of finding the fixed points of the nonlinear mappings,
which is the subject of current interest in functional analysis. It is natural to construct a unified approach for these problems.
In this direction, several authors have introduced some iterative schemes for finding a common element of the set of
solutions of the equilibrium problems and the set of fixed points of nonlinear mappings (for examples, see [6-12] and the
references therein).

On the other hand, for two nonlinear mappings A, B : C — #, we consider the following system of nonlinear variational
inequalities problems:

Find (x*, y*) € C x C such that
(AMAY" +x* —y*, x—x*) >0, VxeC, (1.3)
(pBX* +y* —x*,x—y*) >0, VxeC,

where A and p are positive numbers.

In particular, ifA = B, then the problem (1.3) was studied by Verma [ 13-16]. Recently, Ceng-Wang-Yao [ 17] considered an
iterative method for the system of variational inequalities (1.3) and obtained a strong convergence theorem for the problem
(1.3) and a fixed point problem for a single nonexpansive mapping (see [17] for more details).

Motivated by the recent research work going on in this fascinating field, in this paper we introduce a general iterative
method for finding a common element of the set of solutions for the problem (1.1), the set of solutions for the problem (1.3)
and the set of fixed points of a nonexpansive mapping. Consequently, we apply our main result to the set of fixed points of
an infinite family of nonexpansive mappings and also the set of fixed points of an infinite family of strict pseudo-contraction
mappings. The results obtained in this paper can be viewed as an important extension of the previously known results.

We now recall some well-known concepts and results.

Definition 1.1. A mapping S : C — C is said to be Lipschitz continuous if there exists a positive constant L > 0 such that

ISx — Syl < Lllx—yl, Vx,yeC.

In the case L = 1, the mapping S is known as a nonexpansive mapping. If S : C — C is a mapping, we denote the set of
fixed points of S by F(S), thatis, F(S) = {x € C : Sx = x}.

Let C be a nonempty closed convex subset of #¢. It is well known that, for any z € #, there exists a unique nearest point
in C, denoted by Pz, such that

lz —Pczl| < llz—yl, VyeC.

Such a mapping P¢ is called the metric projection of # on to C. We know that P is nonexpansive. Furthermore, for any z € #
andu € C,

Uu=Pz<= (u—z,w—1u)>0, VYweC. (1.4)

Let ¢ : C — R be areal-valued function, Q : C — J¢ be a mapping and @ : # x C x C — R be an equilibrium-like
function. Let r be a positive number. For any x € C, we consider the following problem:

Find y € C such that
1
D(Qx,y,2) +¢(2) — W) + ;(y—x,Z—w >0, VzeC,

which is known as the auxiliary generalized equilibrium problem.

(1.5)
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Let T™ : C — C be the mapping such that, for each x € C, T™ (x) is the solution set of the auxiliary problem (1.5), i.e.,
1
TO(x) = {y €eC:P(Qx,y,2) +9@2@) —o) +—-(y—x,z—y) >0, Vze C} ,V¥x e C.
r

From now on, we will assume the following Condition (A):

(a) T™ is single-valued;
(b) T™ is nonexpansive;
(c) F(T™) = GEP(C,Q, @, ).

The following example shows the sufficient conditions for the existence of the Condition (A).
Example 1.2 ([7]). Let C be a nonempty bounded closed convex subset of a real Hilbert space # and ¢ : C — R be a lower

semi-continuous and convex functional. Let Q : C — J¢ be a mapping and @ : J¢ x C x C — R be an equilibrium-like
function that satisfies the following conditions:

(@1) forany fixedy € C, (w, x) — @(w, X, y) is an upper semi-continuous function from # x C to R, that is, whenever
w, — wand x, — xasn — oo, we have

lim sup @ (wp, Xn, y) < @ (w, x,Y);

n—oo

(@2) for any fixed (w,y) € # x C,x — @ (w, X,Y) is a concave function;
(@3) for any fixed (w, x) € # x C,y — ®(w, x,y) is a convex function.

Then (a) and (c) of the Condition (A) hold true. If, in addition, the mapping @ : # x C x C — R satisfies the following:
®(Qx1, T (x1), T (%)) + D (Qx2, T (%), T (1)) <0, ¥(x4,%) € C x C,
then the mapping T" is firmly nonexpansive, that is,

ITOu —TOv)? < (TPu—TPv,u—v), VYu,veC.

Remark 1.3. The boundedness of the convex set C in the Example 1.2 can be replaced by the following weaker condition:
For any x € C, there exist a bounded subset D, C C and z, € C such that

1
D(Qx,y,2) + 9(z0) —o(y) + ;(y—x,zx —y) <0, VyeC\D,

Now, assuming that the Condition (A) is satisfied, then we can introduce the following algorithm:

Algorithm (I). Let p and XA be two positive numbers. LetA,B: C — J# andS : C — C be mappings. For any u, x; € C, there
exist sequences {u,}, {yn}, {zn} and {x,} in C such that

1
D (Qxy, Up, V) + @(v) — @(Uuy) + ;(un — X, v —Uy) >0, Yvecd,

Yn = PC(Xn - /OBXn)y
Zn = Pc(yn — L Ayn),
Xni1 = QU + bpxy + ¢ [V1Sxn 4+ youn + y324], VYn > 1,

where {a,}, {b,}, {c,} are real sequences in [0, 1] and y4, y», 3 € (0, 1) such thata, + b, + ¢, = 1foralln > 1 and
Vityr+ty=1

Of course, we will use the Algorithm (I) to obtain our main results in this paper. To do this, we also need the following
lemmas:

Lemma 1.4 ([18]). Let C be a nonempty closed convex subset of a strictly convex Banach space E. If, foreachn > 1,T, : C — C
is a nonexpansive mapping, then there exists a nonexpansive mapping T : C — C such that

F(T) = (") F(Ty).
n=1

In particular, if ﬂﬁil F(T,) # @, then the mapping T = Zﬁil unT, satisfies the above requirement, where {11,} is a sequence
of positive real numbers such that Y oo | jup, = 1.

Lemma 1.5 ([17]). Let p and XA be positive numbers. For any x*, y* € C with y* = Pc(x* — pBx*), (x*, y*) is a solution of the
problem (1.3) if and only if x* is a fixed point of the mapping D : C — C defined by

D(x) = Pc [Pc(x — pBx) — AAP-(x — pBx)], Vx e C.
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Lemma 1.6 ([19]). Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S : C — C bea
nonexpansive mapping. Then I — S is demi-closed at zero, i.e., if {x,} converges weakly to a point x € C and {x,, — Sx,} converges
to zero, then x = Sx.

Lemma 1.7 ([20]). Let {x,} and {l,} be bounded sequences in a Banach space E and b, be a sequence in [0, 1] with

0 < liminf b, < limsup b, < 1.

n—00 n—00
Suppose that x,1 = (1 — bp)l, + bpx, foralln > 1 and

limsup ([llt1 — Iall = Xn41 — Xall) < 0.
n—oo

Then limy,_, o ||ln — x|l = 0.

Lemma 1.8 ([21]). Assume that {6,} is a sequence of nonnegative real numbers such that
Ony1 < (1 —ap)0p+ 6, VYn=>1,
where {a,} is a sequence in (0, 1) and {6, } is a sequence such that

(i) Yopeq @n = 00;

cen 1 s 00
(ii) llﬁsgp @ <00r) 7|8 < oo

Then lim,_, o 6, = 0.

2. Main results
Now, we are in a position to state and prove our main results.

Theorem 2.1. Let C be a nonempty closed convex subset of a Hilbert space #. Let A, B : C — J¢ be two nonlinear mappings
and S : C — C be a nonexpansive mapping. Assume that the Condition (A) is satisfied and

£2 =GEP(C,Q, @, 9) NE(S) NF(D) # ¥,

where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {u,}, {y.}, {zn}, {xn} be four sequences in C generated
by Algorithm (1). If the following conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where p and A are positive constants;
(i) limp— oo @y = 0and Y o2 ay = 00;
(iii) 0 < liminf,— o by < limsup,_, ., by < 1,

then the sequence {x,} defined by the Algorithm (I) converges strongly to a point X = Pou. Moreover, if y = Pc(X — pBX), then
(X,5) is a solution to the problem (1.3).

Proof. Note that the second part follows directly from the first part and Lemma 1.5. Now, the proof of the first part is divided
into the six steps as follows:

Step 1: P, is well defined.
In fact, firstly, since T is a nonexpansive mapping, £2 # ¥ and

F(T™) = GEP(C,Q, @, ¢),

we have GEP(C, Q, @, ¢) is a nonempty closed convex set.
Next, by the definition of the mapping D, we observe that

D = Pc [Pc(I = pB) — AAPc(I — pB)] = Pc(I — AA)Pc(I — pB).

Consequently, since I — A Aand I — pB are nonexpansive mappings, we know that D is a nonexpansive mapping and hence
F (D) is a closed convex set.

On the other hand, since the mapping S is nonexpansive, we have the set F(S) is a closed convex subset of #. Therefore,
it follows that £2 = GEP(C, Q, @, ¢) N F(D) N F(S) is a nonempty closed convex subset of #¢. Thus the mapping P, is well
defined.

Step 2: The sequence {x,} is bounded.

In fact, let x* € £2. Since x* = Dx*, we have

x* = Pc [Pc(x* — pBx*) — AAPc(x* — pBx")].
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Putting y* = Pc(x* — pBx*), we have
X" =Pc(y* — AAY").

Let e, = y1Sx, + y»2Uy + Y3z, for alln > 1 and consider the following computation:

len — X*[| = 115X + Yol + y3z0 — X*||
< yillSxq — X" || + 2 llun — X*|| + ysllza — X7l
< villxa — x| 4+ 72 IT7 %y — TOX*|| + y3]|Pc( — L A)yn — Pc(y* — L Ay")]|
< yillxn = X" | + v2llxa — X*[| + v3llyn — ¥* |l
= yilxa = X*| + v2llxn — X*|| + y3llPc(I — pB)xy — Pc(I — pB)X*||
< Yillxn = Xl + v2ll%0 — X*|| 4+ vsllxa, — x*||
= [Ix, —x*[|, Vn=>1,

and
X2 — x*[|2 = llaju + bix1 + creq — x*||?

aqllu — x*|| + by llxy — x*|| + c1lley — x*||
arllu — x*|| + billx1 — x*|| + cqllx; — x*||
aflu = x| + (1 —a)flx; —x*||

< max{fu —x*||, lx; — x"|1}. (2.1)

INIA TA

From (2.1) and induction, we know that the sequence {x,} is bounded and so are {u,}, {y,} and {z,}.

Step 3: limy oo [|Xn41 — Xnl = 0.
To do this, in view of condition (iii), without loss of generality we may assume that b, € (0, 1) foralln € N. Consequently,
this allows us to put

I, = anl—;zj?xn Vo> 1, (22)
which implies that
Xnt1 — Xp = (1 = bp)(ly — xz), Vn>1. (2.3)
Now, by (2.2), (2.3), Lemma 1.7 and condition (iii), we show that
11?_}&‘P(|”n+1 — Iall = X041 — xall) < 0. (2.4)

First, we compute [, 1 — I,,. Consider the following computation:

An1U + Cpp1€np1 anu + Cpén

l -1, = —
n+1 n 1_ bn+1 1_ bn
an41 1-— bn+1 — Up4+1 Qn 1— bn — ay
u-+ e - u-— e
1= by 1—buy ' 1-b, 1—b, "
an+1 n
= ——Uu—ep1) + (en —u) +enp1—en, Yn=>1, (2.5)
1- bn+1 1—by
lent1 —enll = 1V1SXnt1 + Valng1 + ¥3Zns1 — (ViSXa + Yaln + ¥3Z0) ||
< VillSxnp1 — Sxall + 2llung1 — unll + v3llzngr — zall
= V1lISxnt1 — Sxall + Y2 IT V%01 — TO%all + y3lznt1 — zal
< villXng1 — Xall + Y2lXn11 — Xall + v3llZog1 — zall, YR > 1, (2.6)
and
1zot1 — zall = IPcVnt1 — AAYat1) — Pc(yn — A Ayl
S A = AA)Yp — d — AA)Y,|
< lyn1 — yall

IPc (Xnt1 — pBXnt1) — Pe(xn — pBxy) ||
I = pB)xpr1 — (I — pB)xyl|
Xnt1 —Xull, Vn =1 (2.7)

IATA
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Substituting (2.7) into (2.6) yields that
lent1 —enll < [IXn+1 —Xall, Vn = 1. (2.8)

Using (2.5) and (2.8), we have

an41 a
st = Inll = %01 — Xall < ——Ilu — ensrll + ——llea —ull, Vn>1. (2.9)
1— bn—H 1-— bn
thus it follows from conditions (ii) and (iii) that
limsup ([ln+1 — Inll — lIXn1 — xall) <0,
n—oo

that is, (2.4) is satisfied.

Step 4: x, — e, — 0asn — oo.
From Algorithm (I), we have

Cn(€n — Xp) = Xnp1 — Xn + An(xn — 1),
which implies that
Cn”en - Xn” 5 ”XTH-] - Xn” + an“(xn - u)”

and so, from conditions (ii) and lim ||x,+1 — X,|| = O, it follows that
n—oo
lim |le, — x,]| = 0. (2.10)
n—oo

Step 5: lim sup(u — X, x, — X) < 0, where X = Pou.
n—oo

Since {x,} is a bounded sequence, there exist a subsequence {xnj} of {x,} and p € C such that {xnj} converges weakly to a
point p asj — oo and

limsup(u — X, x, —X) = limsup(u — X, x,, —X). (2.11)
n— 00 j—00

Now, we show thatp € 2 = GEP(C, Q, @, ¢) N F(D) N F(S). To show this, define a mapping G : C — C by
Gx = y1Sx + ¥, TVx + y3Dx, Vx e C.
From Lemma 1.4, it follows that G is a nonexpansive mapping such that
F(G) = F(S) NF(T) N F(D).
On the other hand, from (2.10), we obtain

lim [|Gxp; — Xn|| = 0.
]J—>00

Thus, by Lemma 1.6, we have p € F(G) = £2. Consequently, from (1.4) and (2.11), it follows that

limsup(u —X, x, —X) = limsup(u —X, X, —X)

n—o00 Jj—oo

<u_§7p_§>

<. (2.12)
Step 6: x, — Xasnh — oo.
Notice that
Xns1 — X|1? = |lantt 4+ bpXn + cren — X|1°

(an(u _3{) + bn(xn _3{) + Cn(en _’5‘3, Xn41 _§>
n (U — X, Xn 11 — X) + bullxn — X[ [1Xn41 — XI| + callen — X/ [1Xn41 — Xl
an(” - ;‘J’ Xn+1 — ’55) + bn”xn _35” ||Xn+1 _%” + Cn“xn _35” ||Xn+1 - ;H

IAIA

(U =X, X1 — %) + (1 — @) X0 — Xl l|xn1 — ]|

~ ~ 1—a,) ~ ~
an{u — X, Xni1 — X) + T” (%0 = %11 + l1xXns1 — XI1%) - (2.13)

IA
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This implies that

%01 — X2 < (1 = ap) %0 — X|| + 205 (U — X, X1 — X). (2.14)

Therefore, using (2.12) together with the conditions (ii) and (iii), (2.14) and Lemma 1.8, it follows that x, — Xasn — oo.
This completes the proof. O

Now, we give an example for the nonlinear mappings A, B : C — J# given in Theorem 2.1.
Recall that a nonlinear mapping A : C — # is said to be:
(1) a-cocoercive if there exists a constant & > 0 such that

(Ax — Ay, x —y) > a||Ax — Ay||®>, Vx,y €C;
(2) B-strongly monotone if there exists a constant 8 > 0 such that
(Ax — Ay, x —y) = Bllx—yl?, Vx,yeC;
(3) relaxed (¢, B)-cocoercive if there exist constants ¢, 8 > 0 such that

(AX — Ay, x —y) = (=0)|Ax — Ay|)> + Bllx — ylI>, Vx,y e C.

Example 2.2. Let A : C — # be a nonlinear mapping and A be a positive constant. Assume that
(A1) A is a-cocoercive mapping and A € (0, 2«];

(A2) A is B-strongly monotone and L-Lipschitz continuous mapping and A € (O, %]

(A3) Aisrelaxed (¢, B)-cocoercive and L-Lipschitz continuous mapping with 8 — L > 0and XA € (0, z(ﬂLﬁ]

If, either (A1), (A2) or (A3) is satisfied, then I — A A is a nonexpansive mapping. Indeed, if (A1) is satisfied, then we have
10— 2 A)x — (I = 2AYI? = llx =y — 1(Ax — A)||?
= [lx — y[I> = 2A(x — y, Ax — Ay) + 1*||Ax — Ay|]?
< [lx — ylI> — 20A[|Ax — Ay||* + A*||Ax — Ay||?
= lIx = yl? — 2Qa — 1)[|Ax — Ay||?
< llx—yl*>. ¥xyeC.

Similarly, by using (A2) or (A3), we can show that I — A A is a nonexpansive mapping.
Using the technique as in Theorem 2.1, one can prove the following results.

Corollary 2.3. Let C be a nonempty closed convex subset of a Hilbert space J. Let A, B : C — J be two nonlinear mappings.
Assume that the Condition (A) is satisfied and

2 = GEP(C,Q, ®, ) NF(D) # 4,
where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {u,.}, {yx}, {zn}, {Xn} be four sequences in C generated by

1
D(Qxy, Uy, V) + @ (V) — @(Uy) + ;(un —Xp,V—1Up) >0, YveC,

Yn = Pc(xn — prn), (215)
2y = Pc(Yn — A Ayn),
Xn41 :anu+bnxn+cn[yun+(1 _V)Zn]7 vn = 1,

where {a,}, {b,}, {c,} are real sequences in [0, 1] and y € (0, 1) such that a, + b, + ¢, = 1 foralln > 1. If the following
conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where p and A are positive constants;
(i) limy oo @y =0and Y o2 ay = 00;
(iii) 0 < liminf, o by, < limsup,_, ., by < 1,

then the sequence {x,} defined by the iterative algorithm (2.15) converges strongly to a point X = Pgou. Moreover, if
Y = Pc(X — pBX), then (X, V) is a solution to the problem (1.3).

Corollary 2.4. Let C be a nonempty closed convex subset of a Hilbert space #. Let A, B : C — J be two nonlinear mappings
and S : C — C be a nonexpansive mapping. Assume that

2 =FD)NF(S) # 9,
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where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {y,}, {z,}, {x,} be three sequences in C generated by

Yn = Pc (X — pBxy),
Zy = Pc(yn — A Ayn), (2.16)
Xny1 = apll + bnxn + Cn [stn + (1 - V)Zn] s vn = 1,
where {a,}, {b,}, {c,} are real sequences in [0, 1] and y € (0, 1) such that a, + b, + ¢, = 1 foralln > 1. If the following
conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where p and A are positive constants;
(i) limpoo @y = 0and Y o2 ay = 00;
(iii) 0 < liminf,—, o by < limsup,_, ., by < 1,
then the sequence {x,} defined by the iterative algorithm (2.16) converges strongly to a point X = Pgu. Moreover, if § =
Pc(X — pBX), then (X,y ) is a solution to the problem (1.3).

Corollary 2.5. Let C be a nonempty closed convex subset of a Hilbert space #¢. Let S : C — C be a nonexpansive mappings.
Assume that the Condition (A) is satisfied and

2 = GEP(C,Q, @, ) NF(S) £ 4.
Let u € C be fixed and {u,}, {x,} be two sequences in C generated by

1
D (Qn, Un, V) + @) = @Un) + (Ul = xn, v — ) 20, Vv €C, (2.17)
Xnt1 = Gpll + bpXn + Cp [y Sxn + (1 = p)un], Vn =1,
where {a,}, {b,}, {c,} are real sequences in [0, 1] and y € (0, 1) such that a, + b, + ¢, = 1 for alln > 1. If the following
conditions are satisfied:

(i) 0 < liminfy oo by < TM SUp,_ o0 by < 1,

then the sequence {x,} defined by the iterative algorithm (2.17) converges strongly to a point X = Po .

Corollary 2.6. Let C be a nonempty closed convex subset of a Hilbert space #¢. Let A, B : C — J¢ be two nonlinear mappings.
Assume that F(D) # (, where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {y,}, {z,}, {xn} be three sequences
in C generated by

Yn = PC(xn - prn)a
Zy = Pc(Yn — A AYn), (2.18)
Xpt1 = aplU + buxn + chzp, Yn>1,

where {a,}, {b,}, {cn} are real sequences in [0, 1] such that a,+ b, +c, = 1 foralln > 1. If the following conditions are satisfied:

(i) (I — AA) and (I — pB) are nonexpansive mappings, where p and A are positive constants;
(i) limp— oo @y = 0and Y o2 ay = 00;
(iii) 0 < liminf,— o by < limsup,_, o, by < 1,
then the sequence {x,} defined by the iterative algorithm (2.18) converges strongly to a point X = Pr(pyu. Moreover, if y =
Pc(X — pBX), then (X,y ) is a solution to the problem (1.3).

Corollary 2.7. Let C be a nonempty closed convex subset of a Hilbert space J¢. Assume that the Condition (A) is satisfied. Let
u € C be fixed and {u,}, {x,} be two sequences in C generated by

1
D (Qxp, Up, V) + @(v) — @(uy) + F<u" — X, v—1u,) >0, VYvecd, (2.19)
Xn+1 = Qpu + bux, + cpu,, Vn > 1,
where {a,}, {b,}, {c,} are real sequences in [0, 1] such that a,+ b, +c, = 1 foralln > 1. If the following conditions are satisfied:

(i) 0 < liminfy o0 by < M SUP,_ o0 by < 1,

then the sequence {x,} defined by the iterative algorithm (2.19) converges strongly to a point X = Pgep(c,Q,@,0)U-

Corollary 2.8. Let C be a nonempty closed convex subset of a Hilbert space #. Let S : C — C be a nonexpansive mappings with
F(S) # 0. Let u € C be fixed and {x,} be a sequence in C generated by

Xnp1 = ApU + bpXp + CiSX,, YV > 1, (2.20)

where {a,}, {bn}, {c,} arereal sequences in [0, 1] such that a, +b,+c, = 1foralln > 1. If the following conditions are satisfied:
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(i) limy, 0o @y =0and Y .2, a, = 00;
(ii) 0 < liminf,— o by, < limsup,_, ., by < 1,

then the sequence {x,} defined by the iterative algorithm (2.20) converges strongly to a point X = Pgs)u.

Remark 2.9. If f : C — C is a contractive mapping and we replace u by f (x,) in the Algorithm (I), then we can obtain the
so-called viscosity iteration method (see [22] for more details).

3. Applications

Let {S,} be a family of nonexpansive mappings from C into itself such that ()~ F(S,) # @ and {u,} be a sequence of
positive numbers with Z;; Un = 1. From Lemma 1.4, we know that the mapping S : C — C defined by

o0
Sx = Zunsnx, Vx € C,
n=1
is well defined, nonexpansive and F(S) = ﬂflil F(Sp).
Using this fact, as an application of Theorem 2.1, we have the following result.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space J¢. Let A, B : C — J be two nonlinear mappings
and {S,} be a family of nonexpansive mappings from C into itself. Assume that the Condition (A) is satisfied and

2 =) (GEP(C. Q. . ¢) NF(Sy) NF(D)) # &,

n=1
where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {u,}, {yn}, {za}, {xn} be four sequences generated

by Algorithm (1) with S = Z;‘;] UnSn, where {11,} is a sequence of positive numbers with Zﬁil un = 1. If the following
conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where A and p are positive constants;
(i) limp— oo @y =0and Y2, ay, = 00;
(iii) 0 < liminf,— oo by < limsup,_, o, by < 1,

then the sequence {x,} defined by the Algorithm (1) converges strongly to a point X = Pgu. Moreover, if y = P (X — pBX), then
(X,¥) is a solution to the problem (1.3).

Recall that a mapping W : C — C is called a t-strict pseudo-contraction with the coefficient t € [0, 1) if
Wx — Wyl < [Ix—ylI> + Tl = W)x — (I — W)y||I*>, Vx,yeC.

Itis obvious that every nonexpansive self-mapping is a O-strict pseudo-contraction and, furthermore, the following result
is well known:

Lemma 3.2 ([23]). Let C be a nonempty closed convex subset of a real Hilbert space ¢ and W : C — C a t-strict pseudo-
contraction. Define a mapping W : C — Cby W®x = ¢x + (1 — ¢)Wx forallx € C, where ¢ € [t, 1) is a fixed constant.
Then W©) is a nonexpansive mapping such that F(W®)) = F(W).

Now, let {W,,} be a family of 7,-strict pseudo-contractions for each n > 1. Observe that, from Lemma 3.2, it follows that

{W,§T") } is a family of nonexpansive mappings from C into itself, where W,ff") is defined as in Lemma 3.2 for eachn > 1.
Using this observation, as an application of the Theorem 2.1, we have the following result.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space # and A, B : C — J¢ be two nonlinear mappings. Let
{W,,} be a family of t,-strict pseudo-contractions from C into itself with coefficient t, for each n > 1. Assume that the Condition
(A) is satisfied and

o0
2 =) (GEP(C.Q. @, ¢) NF(Wy) NF(D)) # 9,
n=1
where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {u,}, {yn}, {za}, {xn} be four sequences generated
by Algorithm (I) with S = Y > punWA™  where {11} is a sequence of positive numbers with > Mn = land wi™ s
defined as in Lemma 3.2 for each n > 1. If the following conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where A and p are positive constants;
(i) liMp—oo @y = 0and Y o, ay = 00;
(iii) 0 < liminf,— o by < limsup,_, ., by < 1,
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then the sequence {x,} defined by the Algorithm (1) converges strongly to a point X = Pou. Moreover, if ¥ = Pc (X — pBX), then
(X,¥) is a solution to the problem (1.3).

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space #¢ and A, B : C — J¢ be two nonlinear mappings.
Let W : C — C be a t-strict pseudo-contraction. Assume that the Condition (A) is satisfied and

2 =GEP(C,Q, ®,9) NE(W)NF(D) # 0,

where the mapping D is defined by Lemma 1.5. Let u € C be fixed and {u,}, {ya}, {z.}, {xn} be four sequences generated
by Algorithm (1) with S = W ®. If the following conditions are satisfied:

(i) I — AA) and (I — pB) are nonexpansive mappings, where A and p are positive constants;
(i) limp—oo @y =0and Y -, ap = 00;
(iii) 0 < liminf,— o by < limsup,_, ., by < 1,

then the sequence {x,} defined by the Algorithm (1) converges strongly to a point X = Pgu. Moreover, if y = Pc (X — pBX), then
(X, V) is a solution to the problem (1.3).
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By using nonsmooth analysis knowledge, we provide the conditions for existence solutions of the
variational inequalities problems in nonconvex setting. We also show that the strongly monotonic
assumption of the mapping may not need for the existence of solutions. Consequently, the results
presented in this paper can be viewed as an improvement and refinement of some known results
from the literature.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], provides us with a
simple, natural, general, and unified framework to study a wide class of problems arising in
pure and applied sciences. The development of variational inequality theory can be viewed
as the simultaneous pursuit of two different lines of research. On the one hand, it reveals the
fundamental facts on the qualitative aspects of the solutions to important classes of problems.
On the other hand, it also enables us to develop highly efficient and powerful new numerical
methods for solving, for example, obstacle, unilateral, free, moving, and complex equilibrium
problems.

It should be pointed out that almost all the results regarding the existence and iterative
schemes for solving variational inequalities and related optimizations problems are being
considered in the convexity setting; see [2-5] for examples. Moreover, all the techniques are
based on the properties of the projection operator over convex sets, which may not hold
in general, when the sets are nonconvex. Notice that the convexity assumption, made by
researchers, has been used for guaranteeing the well definedness of the proposed iterative
algorithm which depends on the projection mapping. In fact, the convexity assumption may
not require for the well definedness of the projection mapping because it may be well defined,
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even in the nonconvex case (e.g., when the considered set is a closed subset of a finite
dimensional space or a compact subset of a Hilbert space, etc.).

The main aim of this paper is intending to consider the conditions for the existence
solutions of some variational inequalities problems in nonconvex setting. We will make use
of some recent nonsmooth analysis techniques to overcome the difficulties that arise from
the nonconvexity. Also, it is worth mentioning that we have considered when the mapping
may not satisfy the strongly monotonic assumption. In this sense, our result represents an
improvement and refinement of the known results.

2. Preliminaries

Let <# be a real Hilbert space whose inner product and norm are denoted by (:,:) and || - ||,
respectively. Let C be a nonempty closed subset of #. We denote by dc(-) the usual distance
function to the subset C; that is, dc (1) = infyec|lu—v||. Let us recall the following well-known
definitions and some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u € H be a point not lying in C. A point v € C is called a closest point or
a projection of u onto C if dc(u) = ||u — v||. The set of all such closest points is denoted by
proj-(u); that is,

proj-(u) = {v € C:dc(u) = |lu-1o|}. (2.1)
Definition 2.2. Let C be a subset of #. The proximal normal cone to C at x is given by

Nl(x) = {zeH#:3p>0;x € proj-(x + pz) }. (2.2)

The following characterization of N, g (x) can be found in [6].

Lemma 2.3. Let C be a closed subset of a Hilbert space K. Then,

zeNE(x) =30>0, (zy-x)<olly-x|>, vyeC (2.3)

Clarke et al. [7] and Poliquin et al. [8] have introduced and studied a new class
of nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
prox-regular sets has played an important part in many nonconvex applications such as
optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r € (0,+o0], a subset C of J is said to be uniformly prox-regular

with respect to r if, forall x € C and forall 0#z € N, IC) (x), one has

z _ 1 —2
JE— — < — — . .
<” ”,x x> r||x x||©, VxeC (2.4)

We make the convention 1/7 = 0 for r = +oo0.

It is well known that a closed subset of a Hilbert space is convex if and only if it is
proximally smooth of radius » > 0. Thus, in view of Definition 2.4, for the case of r = oo,
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the uniform r-prox-regularity C is equivalent to the convexity of C. Moreover, it is clear that
the class of uniformly prox-regular sets is sufficiently large to include the class p-convex sets,
C!! submanifolds (possibly with boundary) of <, the images under a C'"! diffeomorphism
of convex sets, and many other nonconvex sets; see [6, 8].

Now, let us state the following facts, which summarize some important consequences
of the uniform prox-regularity. The proof of this result can be found in [7, 8].

Lemma 2.5. Let C be a nonempty closed subset of H,r € (0,+o0] and set C, := {x € H;d(x,C) <
r}. If C is uniformly r-uniformly prox-regular, then the following hold:

(1) for all x € C,, proj-(x) #0,
(2) forall s € (0,r), proj is Lipschitz continuous with constant r / (r — s) on Cs,

(3) the proximal normal cone is closed as a set-valued mapping.
In this paper, we are interested in the following classes of nonlinear mappings.
Definition 2.6. A mapping T : C — K is said to be

(a) y-strongly monotone if there exists a constant y > 0 such that

2 Vx,y €C, (2.5)

(Tx-Ty,x-y) >y|x-y

(b) p-Lipschitz if there exist a constants y > 0 such that

ITx -Tyll < pllx-yll, Vx,yeC (2.6)

3. System of Nonconvex Variational Inequalities Involving
Nonmonotone Mapping

Let S be a real Hilbert space, and let C be a nonempty closed subset of . In this section, we
will consider the following problem: find x*, y* € C such that

Yy —x* - pTy* € NE(x*),
(3.1)
x -yt -nTx € NE(y"),

where p and 7 are fixed positive real numbers, C is a closed subset of #,and T : C — Hisa
mapping.

The iterative algorithm for finding a solution of the problem (3.1) was considered by
Moudafi [9], when C is r-uniformly prox-regular and T is a strongly monotone mapping. He
also remarked that two-step models (3.1) for nonlinear variational inequalities are relatively
more challenging than the usual variational inequalities since it can be applied to problems
arising, especially from complementarity problems, convex quadratic programming, and
other variational problems. In this section, we will generalize such result by considering the
conditions for existence solution of problem (3.1) when T is not necessary strongly monotone.
To do so, we will use the following algorithm as an important tool.



4 Abstract and Applied Analysis

Algorithm 3.1. Let C be an r-uniformly prox-regular subset of #. Assume thatT : C — Hisa
nonlinear mapping. Letting x be an arbitrary point in C, we consider the following two-step
projection method:

n = j n— T n)|,
Yn = projc[xn — 1(Txu)] 52

Xn+1 = PrOjc [Yn — p(Tyn)],

where p, 7 are positive reals number, which were appeared in problem (3.1).

Remark 3.2. The projection algorithm above has been introduced in the convex case, and its
convergence was proved see [10]. Observe that (3.2) is well defined provided the projection
on C is not empty. Our adaptation of the projection algorithm will be based on Lemma 2.5.

Now we will prove the existence theorems of problem (3.1), when C is a closed
uniformly r-prox-regular. Moreover, from now on, the number r will be understood as a
finite positive real number (if not specified otherwise). This is because, as we know, if r = oo,
then such a set C is nothing but the closed convex set.

We start with an important remark.

Remark 3.3. Let C be a uniformly r-prox-regular closed subset of H. Let T1,T, : C — H#
be such that T; is a p;-Lipschitz continuous, y-strongly monotone mapping and T is a po-

Lipschitz continuous mapping. If { = r[p} — yus — \/ (2 - Yi2) - 12(y = u2)1/ 2, then for
each s € (0,¢) we have

yto— 2 >\ (8 - 1) (B - 1), (3.3)

where ts =1/(r — s).

It is worth to point out that, in Remark 3.3, we have to assume that y; < p;. Thus, from
now on, without loss of generality we will always assume that p, < py.

Theorem 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C — H be a nonlinear mapping. Let Ty, T, : C — H be such that Ty is a py-Lipschitz continuous
and y-strongly monotone mapping, T, is a p-Lipschitz continuous mapping. If T = Ty + T, and the
following conditions are satisfied:

(a) MP167(cy < &, where 61y = sup{||lu—v|;u,v € T(C)};
(b) there exists s € (MP167(cy, &) such that

Yts — U2 . yts — U2 1
7—§<p,q<mm{7+§, , (3.4)
ts (7 - 3) (i —p5) 7 tsh

where MP = max{p,n}, ts =r/(r —s), and { = \/(tsY —2)? = (12 = 13) (2 = 1) /ts (13 = p13).
Then the problem (3.1) has a solution. Moreover, the sequence (xy, yn) which is generated by
(3.2) strongly converges to a solution (x*,y*) € C x C of the problem (3.1).
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Proof. Firstly, by condition (b), we can easily check that vy, — pTy, and x,, — §Tx, belong to

the set Cs, foralln =1,2,3,.... Thus, from Lemma 2.5 (1), we know that (3.2) is well defined.
Consequently, from (3.2) and Lemma 2.5 (2), we have

%01 = Xull = lIProjc (Yn — pTYn) — proje (Yn-1 — pTyn1) |l
< ts“yn - ]/n—l - P(T]/n - Tyn—l)H (3'5)
<t [”yn —Yn-1— P(len - Tl]/n—l) ” + P”TZ]/n - TZ]/n—l ||] .

Since the mapping T; is y-strongly monotone and y1-Lipschitz continuous, we obtain

1Y = Y1 = (Tt = Trya) |1

= |¥n = Yu1||> = 20(Yn = Y1, Titn = Tipur) + P2 || Tiyn = Taygn ||°

) L ) (3.6)
< Ny = yu-1ll” = 20710 = Yurll + P45 | 9 = yr |
2
= (1=2p7+p*2) [lyn - yur |
On the other hand, since T is pp-Lipschitz continuous, we have
||T2yn - TZ}/n—l“ < /leHyn - yn—lll- (37)

Thus, by (3.5), (3.6), and (3.7), we obtain

31 = xnll < ts [puz +4/1-2py + PZ#%] lyn = yn-all- (3.8)

Similarly, we have

1Y = Yn-1ll = lIprojc (xn = T xn) = proje (xn-1 = T xn-1) |
< ts”xn —Xp-1— ﬂ(Txn - Txn—l)”

< o[ = Xnt = (T1x = Tixns)|| + 7l Tax — Taxs ] (3.9)

<t [ﬂ#z +4/1-2ny + nzﬂi] 27 = 2xn-1ll-
Combining (3.8) and (3.9), we get

[|xp41 = 25| < f§9p9q||xn = Xn-1l, (3.10)
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where 0, := pu» +1/1-2py + p2p3 and 6y, := nu, + /1 - 21y + n2u3. Moreover, by (3.4), we
know that ts0, and t,0, are elements of the interval (0, 1). Thus, from (3.10), it follows that

ll2xns1 = xnll < €"[|21 = 0] (3.11)
forallnm=1,2,3,... where x := t?@,,@n. Hence, for any m > n > 1, it follows that

K.Tl

m-1 m-1
126m = xall € D llovin = xill € D flxr = x0] < llx1 = xol|- (3.12)
i=n i=n

1-x

Since x < 1, it follows that x” — 0 asn — oo, and this implies that {x,} C C is a Cauchy
sequence. Consequently, from (3.9), we also have that {y,} is a Cauchy sequence in C. Thus,
by Lemma 2.5 (3), the closedness property of C implies that there exists (x*, y*) € C x C such
that (x,, yn) — (x*,y*) asn — oo.

We claim that (x*,y*) € C x C is a solution of the problem (3.1). Indeed, by the
definition of the proximal normal cone, from (3.2), we have

(xn - ]/n) - U(Txn) € N(I:)(yn>/

(Yn = Xn41) = p(TYn) € NE(Xns1)-

(3.13)

By letting n — oo, using the closedness property of the proximal cone together with the
continuity of T, we have

x*—y*—n(Tx*) € N (y"),

(3.14)
y - x"-p(Ty") € NE(x").

This completes the proof. O
Immediately, by setting T, = 0, we have the following result.

Theorem 3.5. Let C be a uniformly r-prox-reqular closed subset of a Hilbert space H. Let T : C —
H be a p-Lipschitz continuous and y-strongly monotone mapping. If the following conditions are
satisfied:

(a) MP’VZ(ST(C) < ¢, where 6T(C) = sup{ |lu—o|;u,veT(C)};

(b) there exists s € (MP67(cy, &) such that

%—§<p,ﬂ<%+é, (3.15)

where { = \/(fsy)2 — (U2 =1)/ts(u3) and ts =1/ (r — 5).
Then the problem (3.1) has a solution. Moreover, the sequence (xy, yn) which is generated by
(3.2) strongly converges to a solution (x*,y*) € C x C of the problem (3.1).
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In view of proving Theorem 3.4, we can obtain the following result, which contains a
recent result presented by Moudafi [9] as a special case.

Theorem 3.6. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C — H be a mapping. Let T1, T, : C — H be such that Ty is a yi-Lipschitz continuous and y-
strongly monotone mapping, T, is a pp-Lipschitz continuous mapping. If T = Ty + T, and there exists
s € (0,¢) such that

yts — po . Yts — o 1 s
————— - {<p<min 7+§,—,7 ,
Li-g) oF LG -d) Tt T Tyl 16

yts — U2

D 1 s
—§<q<mzn{7
ts (43 — 13) ts (3

+ A AT
) s 1+ [Tl

foralln=1,2,3,..., wherets=1/(r—s),{ = \/(tsy —w2)* = (2 = P2 (2 = 1) /ts(u% — p2) and the
sequence (X, Yn) was generated by (3.2), then the sequence (x,, y») strongly converges to a solution
(x*,y*) € C x C of the problem (3.1).

Remark 3.7. (i) An inspection of Theorem 3.6 shows that the sequences {Tx,} and {Ty,} are
bounded.
(ii) By setting T> =: 0, we see that Theorem 3.6 reduces to a result presented by Moudafi

[9].

Remark 3.8. If C is a convex set, by the definition of the proximal normal cone, we can
reformulate (3.1) as follows: find x*, y* € C x C such that

(pT(y") +x" -y",x-x") >0, VxeC,
(3.17)
T(x") + —-X,X - > O/ x e (.

The problem (3.17) was introduced and studied by Verma [10], when T is a strong monotone
mapping. Hence, Theorem 3.4 extends and improves the results presented by Verma [10]. For
further recent results related to the problem (3.17), see also [2, 3, 5, 11-13].

4. Further Results

By using the techniques as in Theorem 3.4, we can also obtain an existence theorem of the
following problem: find x* € C such that

~Tx* € NE(x*). (4.1)

The problem of type (4.1) was studied by Noor [14] but in a finite dimension Hilbert space
setting. In this section, we intend to consider the problem (4.1) in an infinite dimension
Hilbert space. To do this, the following remark is useful.



8 Abstract and Applied Analysis

Remark 4.1. Let T : C — C be a y-strongly monotone and u-Lipschitz continuous mapping.
Then, the function f : (1, 4*/(1* — y*)) — (0, o0) which is defined by

2 2 _ 442 2
\/E(y #)w, Vte<1, 12 > (4.2)

f(6) = Hi2 e

is a continuous decreasing function on its domain.

We now close this section by proving an existence theorem to the problem (4.1) in a
nonconvex infinite dimensional setting.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C — H be a y-strongly monotone and p-Lipschitz continuous mapping. If 0 < &(cy < yr, then the
problem (4.1) has a solution.

Proof. Firstly, by using an elementary calculation, we know that the function h : [1, u?/ (u* -
1?)) — (0, 00) which is defined by

_ T(t - 1) /42
h(t) = 1610 +f(t), Vte [1/ W)l (4.3)

is a continuous increasing function on [1, \/ (U2r? - 6%((:))/ r2(u? — y?)]. Moreover, we see that
the net {ts},c(,) which is defined by t; =: r/(r — s) converges to 1 as s | 0. Using these
observations, together with the fact that h(t) | y/u? ast | 1, we can find s* € (0,r(r?y? -
6%((:)) /(WPr? - 6%((:))) such that p?h(ts) > y. It is worth to notice that, from the choice of s*,
we have y/u? - f(ts) < s*/61(0)-

Now, we choose a fixed positive real number p such that

Y . Y *
- S(ts) <p<mm{; +f<ts*>,%(c)}. (44)

Next, let us start with an element xy € C and use an induction process to obtain a sequence
{x,} C C satisfying

Xni1 = proje(x, — pTx,), Yn=0,1,2,.... (4.5)

Note that, because of the choice of p, we can easily check that x, — pTx, € C, forall n =
1,2,3,.... Following the proof of Theorem 3.4, we know that {x,} is a Cauchy sequence in
C.Ifx, — x*asn — oo, the closedness property of the proximal cone together with the
continuity of T, from (4.5), we see that x* is a solution of the problem (4.1). This completes
the proof. O

Remark 4.3. Theorems 3.4, 3.5, and 4.2 not only give the conditions for the existence solution
of the problems (3.1) and (4.1), respectively, but also provide the algorithm to find such
solutions for any initial vector xp € C.
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ARTICLE INFO ABSTRACT

Keywords: In this paper, some existence theorems for the mixed quasi-variational-like inequalities
Mixed quasi-variational-like inequality problem in a reflexive Banach space are established. The auxiliary principle technique is
PTOI?I?m o ) used to suggest a novel and innovative iterative algorithm for computing the approximate
Auxiliary principle technique solution for the mixed quasi-variational-like inequalities problem. Consequently, not only

Cocoercive mapping

. the existence of theorems of the mixed quasi-variational-like inequalities is shown, but
Strongly monotone mapping

also the convergence of iterative sequences generated by the algorithm is also proven.
The results proved in this paper represent an improvement of previously known results.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The concept of variational inequality was introduced by Hartman and Stampacchia [9] in early 1960s. These have been
extended and generalized to study a wide class of problems arising in mechanics, physics, optimization and control, econom-
ics and transportation equilibrium, etc. The generalized mixed variational-like inequalities, which are generalized forms of
variational inequalities, have potential and significant applications in optimization theory, structural analysis, and econom-
ics (see [4,18,16]).

It is well-known that due to the presence of the nonlinear bi-function, projection method and its variant forms including the
Wiener-Hopf equations, descent methods cannot be extended to suggest iterative methods for solving the general mixed quasi
variational inequalities, since it is not possible to find the projection of the solution. Thus, the development of an efficient and
implementable technique for solving variational-like inequalities is one of the most interesting and important problems in
variational inequality theory. To overcome this drawback, in recent years, a tremendous amount of work was applying the aux-
iliary problem principle, which does not depend on the projection, in finite- as well as in infinite-dimensional space settings, on
the approximation-solvability of various classes of variational inequalities and complementarity problems.

Recently, the auxiliary principle technique was extended by Huang and Deng [11] to study the existence and iterative
approximation of solutions of the set-valued strongly nonlinear mixed variational-like inequality, under the assumptions
that the operators are bounded closed values. On the other hand, by applying the auxiliary principle technique, Verma
[19] introduced a new class of predictor—corrector iterative algorithms for solving general variational inequalities and gen-
eralized mixed variational inequalities. Furthermore, Ding [7] suggested some new predictor—corrector iterative algorithms
for solving generalized mixed variational-like inequality problems and proved the convergence of the iterative sequence
generated by the predictor-corrector iterative algorithm.
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Motivated and inspired by the recent research work going on in this fascinating and interesting field, in this paper, some
existence theorems for the mixed quasi-variational-like inequality problem in a reflexive Banach space are provided. Also,
the existence theorem for auxiliary problem of the mixed quasi-variational-like inequality problem is studied. Consequently,
we construct and analyze an iterative algorithm for finding the solution of the mixed quasi-variational-like inequality prob-
lem. Finally, we discuss the convergence analysis of iterative sequence generated by the iterative algorithm.

2. Preliminaries

Let E be a real Banach space with its topological dual E*, and (-,-) be the generalized duality pairing between E and E*. Let
CB(E*) be the family of all nonempty bounded and closed subsets of E*. The Hausdorff metric, H(-,-), on CB(E*) is defined by

xeC yeD

H(C,D) = max {supd(x,D),supd(C,y)}, VC,D € CB(E").

Let K be a nonempty convex subset of E, in this paper, we devote our study to a class of generalized mixed quasi-variational-
like inequality problem, which is stated as follows:

Let T, A: K — CB(E") be two set-valued mappings. N : E* x E* — E" and 71 : K x K — E be two single-valued mappings. Let
@ : E x E — (—o0,+00] be a real bi-function. For a given w* € E*, we shall study the following problem:
find u e K, x,y € E" such that x € T(u), y € A(u),
<N(X7y) -w ’1(”7 u)> + (p(uv Z)) - q)(u7 u) = 07 Vv eK.
In case of (2.1), we will denote by (u,x,y) € GMQVLIP(T,A,N,#, ).

Now, let us consider some special cases of problem (2.1).

GMQVLIP(T,A,N, 1, (p){ 2.1)

(a) If T,A are single valued, then the problem (2.1) collapses to finding u € K such that
(N(Tu,Au) —w*,n(v,u)) + (u,v) — @(u,u) =0, Vevek. (2.2)
The problem (2.2) was considered and studied in Ding [6].

(b) if E = H is a Hilbert space, and w* = 0, then the problem (2.1) is equivalent to finding u € K, x € T(u), y € A(u) such that
(N(x,y),n(v,u)) + o(u,v) — @u,u) >0, VYvek. (2.3)

This kind of problem is called the set-valued strongly nonlinear mixed variational-like inequality and was considered
by Huang and Deng [11], when K = H.

(c) If N(Tu,Av) =Tu — Av for all u, v K, the problem (2.2) reduces to the general nonlinear variational-like inequality
problem: for a given w* € E*, find u € K such that

(Tu—Au—w",n(v,u)) + @, v) — eu,u) >0, vvek. (2.4)
Problem (2.4) with w* =0 is introduced and studied by Ding [5].

(d) If o(u,v) =f(v), Yu, v € E, where f : E — R, then the problem (2.2) is equivalent to that of finding u € K such that
(Tu — Au —w*,n(v,u)) > f(u) - f(v), Vvek. (2.5)

Problem (2.5) with w* =0 is introduced and studied by Chen and Liu [3] in a reflexive Banach space.
(e) If E=H is a Hilbert space, A =0, w* =0 then the problem (2.5) is equivalent to that of finding u € K such that

(Tu,n(v,u)) = f(u) - f(v), Vvek. (2.6)

Problem (2.6) was considered by Verma [20].
(f) If E=H is a Hilbert space, A= 0, n(s,u)= v —u, and f= 0, then the problem (2.4) is equivalent to that of finding u € K
such that

(Tu,v —u) = (W', v) — (W, u), Vovek. (2.7)
Problem (2.7) was introduced and studied by Zeng [21].

In brief, for appropriate and suitable choice of the mappings T, A, N, #, the bi-function ¢, and the linear continuous func-

tional w*, one can obtain a wide class of variational inequalities and complementarity problems. Furthermore, problem (2.1)

has an important applications in various branches of pure and applied sciences (see [2-16,18-23]).
The following basic concepts will be used in the sequel.

Definition 2.1. Let K be a nonempty subset of a Banach space E. Let T, A: K — CB(E") be two set-valued mappings. Let
N:E®' x E* - E*, n: K x K — K be mappings. Then

(i) T is said to be n-cocoercive with respect to the first argument of N(-,-), if there exists a constant 7 > 0, such that
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(N(x,-) = N(X',-),n(u,v)) = 7||N(x,-) — N(x/, -)HZ, Yu, veK, xeT(u), x eT(v);

(ii) N(-,-) is Lipschitz continuous in the second argument with respect to the set-valued mapping A, if there exists a con-
stant « > 0 such that

INC,y) =NCY <ollu—2l, Vuvek, yeAQ), y eA)

(iii) N(-,-)is n-strongly monotone in the first argument with respect to the set-valued mapping T if there exists a constant
&> 0 such that

<N(X7') *N(X’,-),}’](U, Z/)) = é”u, Z)”27 vu,l/el(, XGT(U), X GT(I})'

Similarly, #-strongly monotone of N(.,-) in the second argument with respect to the set-valued mapping A can be
defined;

(iv) T is said to be H-Lipschitz continuous if there exists a constant y > 0 such that
H(T(w),T(v)) <yllu-1v|, Yu,vek;

(v) n is Lipschitz continuous, if there exists a constant ¢ > 0 such that
[n(u, v)|| < olju— v,

for any u, ve K.

Definition 2.2. The bifunction ¢ : E x E — (—o0, +0o0] is said to be skew-symmetric, if
Pu,u) — o, v) — p(v,u) + @(v,v) = 0,

for all u, v€E.

Remark 2.3. The skew-symmetric bifunctions have properties which can be considered an analogs of monotonicity of gra-

dient and nonnegativity of a second derivative for a convex function. As for the investigations of the skew-symmetric bifunc-
tion, we refer the reader to [1].

Definition 2.4 ([2,10]). Let K be a nonempty convex subset of a Banach space E. Let i : K — (—o0, +c0) be a Fréchet differ-
entiable function and # : K x K — E. Then V is said to be:

(i) n-convex, if

V() —y(u) = W' (), n(v,u),

forall u, veK;
(ii) n-strongly convex, if there exists a constant > 0 such that

Y(v) —y(u) - (' (W), n(v,u) = gl\u - v,
forall u, ve k.

Note that, if n(u,v)=u — v for all u, v € K, then  is said to be strongly convex.

Throughout this paper, we shall use the notations “—" and “ — ” for weak convergence and strong convergence,
respectively.

Remark 2.5

(i) Assume that for each fixed v € K the mapping #(v,-) : K — E is continuous from the weak topology to the weak topol-
ogy. Let g : K — (—o0, +00) be a functional defined by

g(u) = (fﬂ?(”a U)),

where v € K and f € E* are fixed. Then g is a weakly continuous functional on K.

(ii) Let ¢ :K — (—o0o,+00) be a Fréchet differentiable function and #5:K xK — K be a mapping such that
n(u,v) + n(v,u) =0,V u, ve K. If Y is a Fréchet differentiable #-strongly convex functional with constant x> 0 on a con-
vex subset K of E then i is 5-strongly monotone with constant > 0 (see [23, Proposition 2.1]).

The following lemma due to Zeng et al. [23] will be needed in proving our results.

Lemma 2.6 [23, Lemma 2]. Let K be a nonempty convex subset of a topological vector space X and let & : K x K — [—oco, +00] be
such that
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(i) for each ve K, u— ®(v,u) is lower semicontinuous on each nonempty compact subset of K;
(i) for each finite set {v;,...,vin} C K and for each u =", 4ivi (% = 0,5 A4 = 1), mingiem®(v;,u) < 0;
(iii) there exists a nonempty compact convex subset K, of K such that for some vy € Ky, there holds:

&(vo,u) >0, Yuek\Kp.

Then there exists U € K, such that ®(v,1) <O, for all ve K
We also need the following lemma.

Lemma 2.7 [17]. Let (X,d) be a complete metric space and let B;, B, € CB(X) and r > 1 be any real number. Then, for every b; € B;
there exists b, ¢ B, such that d(b;, by) < rH(B;,By).
In the sequel, we assume that N and # satisfy the following assumption.

Assumption 2.8. Let N: E* x E* — E*, : K x K — E be two mappings satisfying the following conditions:

(a) n(u,v)=n(u,z) + n(z,v) for each u, v, z € K;

(b) for each fixed (u,x,y) € K x E* x E*, v+~ (N(x,¥),n(u, v)) is a concave function.

(c) for each fixed v € K, the functional (u,x,y) — (N(x,¥), n(u, v)) is weakly lower semi-continuous function from K x E* x E*
to R, i. e,

Up—u, X —x and y,—y imply (N y)n(,v)) <lUminf(N(xy,y,),n(un, v)).

Remark 2.9. It follows from Assumption 2.8(a) that #(u,u) =0 and n(u, v) =—n(v,u), Vu, ve K.

3. The existence theorems

Theorem 3.1. Let E be a real reflexive Banach space with the dual space E*, and K be a nonempty convex subset of E. Let T,
A:K — CB(E") be two set-valued mappings. Let N:E* xE* — E*, and n: K xK —E. Let ¢ : E x E — (—o0,+0c0] be skew-
symmetric and weakly continuous such that int{u € K : ¢(u,u) < oo} # 0 and ¢(u,-) is proper convex, for each u € E. Suppose
that:

(i) T is n-cocoercive with respect to the first argument of N(-,-) with constant t;
(ii) n is Lipschitz continuous with constant 6 > 0;
(iii) N(-,-) is Lipschitz continuous and n-strongly monotone in the second argument with respect to A with constant o > 0 and
B > 0, respectively.

If Assumption 2.8 is satisfied, then GMQVLIP(T,A,N,n, ¢) # 0.

Proof. For any u, v € K, we define a function @ : K x K — R by
QD(Z/? U) = <N(X7y) - W*v 7](”, Z})> + (/)(u7u) - (/)(u7 U) Vu7 ve I<7

where x € T(u), y € A(u).

Note, by ¢(-,-) is weakly continuous functional and since each fixed v <€ K the functional (u,x,y)+— (N(x,y),n(u,v)) is
weakly lower semi-continuous, we have the functional u+— ®(z,u) is weakly lower semicontinuous for each v € K. This
shows that condition (i) in Lemma 2.6 holds. Now we claim that &(7,u) satisfied condition (ii) in Lemma 2.6. If it is not true,
then there exist a finite set {z;,2,,...,un} C Kand u = 31" &v;(& = 0, Y"1 & = 1), such that &(y,u) >0 foralli=1,2,...,m,
that is,

(Nx,y) —w  nu,v)) + pu,u) —eu,v;) >0 Vi=1,2,...,m.
It follows that

8i<N(X7y) - W*a 77(11, yi)> + (/)(uﬂ,l) - Zgi(P(LU yi) > 0.

i=1

m
i=1

Noting that for each u € E, ¢(u,-) is a convex functional, that is 31", & (u, v;) > @(u,> &) = @(u,u). Hence,

&(N(x.y) —w', n(u, vi)) > 0.

m
i=1
From Assumption 2.8 (a) and (b), we obtain

m

0< ZS,‘<N(X,_V) - W*an(ua Z/i)> < <N(Xay) - W*71’]<U,Zl‘:ilii>> = <N(Xay) - W*,”](U,U» = Oa

i=1
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a contradiction. Thus condition (ii) in Lemma 2.6 holds. Since for each u € E, v+ ¢(u,v) is a proper convex weakly lower
semicontinuous functional and int{u € K: ¢(u,u) < oo} # (), we take u* € int{u € K : ¢(u,u) < co}. By Proposition 1.2.6 of
Pascali and Sburlan [[15, p. 27]], ¢(u*,-) is subdifferentiable at u*. Hence we have

o, v)—eu,u’) = (rrv—u*), Vreopu',:), veE.
Since ¢ is skew-symmetric, it follows that
(10(7}7 U)—q)(v,u*) = (p(u*,U)—(,D(U*,U*) = <r77)_U*>7 vrea(p(U*a')a veE
Let x* € T(u*), y* € A(u*), w € T(u), z € A(u) and r € d¢(u*,-) be fixed, by using conditions (i)-(iii), and equality n(u, v) = —n(v,u),
we get that
P, u) = (N(w,2) —w', n(u,u’)) + @(u, u) — e(u,u") = (N(x",y") = N(w,z), n(u", u)) — (N(x",y"), n(u", u))
— Wi u)) + (ru—u') = (NX',y*) = N(w,y*),n(u’,u)) + (N(w,y*) = N(w, z), n(u", u))
— (N, ), (', u)) = (W, n(u,w)) + (r,u—u) > TINKX',y") = Nw,y)|* + Blu” — ul?
= SING,y ) —ull = (Il + Sllw ) l|u = w|| = Blu—w (| = (] + s(w* || + NG, y) ) Ju — v
= [Ju =l [llu —w || = (]l + S(lhw [ + IN(X*, y) D))

Let 0 :%[Hr” + o(|lw*|| + IN(x*,y*)|]] and Ko = {u € K : ||[u — u*|| < 0}. Then Ky is a weakly compact convex subset of K. Putting
7o = u*, we have that @(vp,u) > 0 for all u € K\Kp. Thus, condition (iii) of Lemma 2.6 is satisfied. By Lemma 2.6, there exists
U € K such that &(v, u) < 0 for all ve K, that is,

(Nx,y) —w',n(v, 1)) + @&, v) — @, ) > 0 Vv ek,
where X € T(1), y € A(tt). Hence, (i1, %,y) € GMQVLIP(T,A,N,n, ¢) This completes the proof. O

Remark 3.2. If the conditions of Theorem 3.1 are hold, and N(,-) is #-strongly monotone in the first argument with respect
to T with constant ¢ > 0, then the solution of the problem (2.1) is unique up to the element u € K. Indeed, supposing (i, X, y)
and (u,x,y) are elements in GMQVLIP(T,A,N,#, ¢), we have

(Nx,y) —w',n(v,0)) > @, u) — @(,v), Vvek, 3.1)
<N()~(7y)*W 7’7(1/7”» = @(ﬂ,ﬁ)*(ﬂ(ﬂ,ﬂ), Vv eK. (32)
Taking » =u in (3.1) and v = 1 in (3.2) and adding two inequalities, since ¢ is skew-symmetric, we obtain
<N(5<75,) - W*7 ’7(&’ ﬂ)) + <N(}~<75/) - W*7 ’7(117 a)> = 0.
Moreover, by Remark 2.9, we have
(N(x,y) = N(x,y),n(u,u)) > 0.
Since N(-,-) is #-strongly monotone in the first argument with respect to T with the constant &, and #-strongly monotone in
the second argument with respect to A with constant 3, we get
(B+ O —a]® < (NR.y) = N&,$),n(it, i) + (N(%,9)) = N(x,3), (@, ) < 0.
Since g, ¢ >0, we must have @ = @i

4. Convergence analysis
4.1. Constructive Approximation

In this section, we extend the auxiliary principle technique to study the mixed quasi-variational-like inequality problem
(2.1) in a reflexive Banach space E. We first establish an existence theorem for the auxiliary problem for the mixed quasi-
variational-like inequality problem (2.1). By using this existence theorem, we construct the iterative algorithm for solving
the problem of type (2.1).

Let n : K x K — E be a mapping, y : K — (—oo, +c0] be a given Fréchet differentiable #-convex functional and p >0 be a
given positive number. Given u € K, x € T(u), y € A(u), we consider the following problem P(u,x,y): find w € K such that

(PN(x,y) = pw" + /(W) — ¢/ (), n(v,w)) + po(w, v) — pp(w,w) > 0, VveK. (4.1)
The problem P(u,x,y) is called the auxiliary problem for fuzzy mixed variational-like inequality problem (2.1).
Theorem 4.1. If the conditions of Theorem 3.1 are hold, and for each fixed v € K, w — n(v,w) is continuous from the weak topology

to the weak topology. If the function Vs is n-strongly convex with constant p and the functional w— ({/'(w), n(v,w)) is weakly
upper semicontinuous on K for each v € K, then the auxiliary problem P(u,x,y) has a unique solution.
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Proof. Let p>0and u €K, u €K, x € T(u), y € A(u) be fixed. Define a functional Q : K x K — [—o0, +0o0] by
Q(v,w) = ('(u) — ' (W) — pN(x,y) + pw",n(v,W)) + p@(W, W) — pp(w,v) Vv, weK.

Note that for each fixed v € K, the functional w— (y/(w), (v, w)) is weakly upper semi-continuous on K, and w — #n(z,w) is
continuous from the weak topology to the weak topology, and ¢(-,-) is weakly continuous, thus, it is easy to see that, for each
fixed v € K the function w — Q(v,w) is weakly lower semi-continuous continuous on each weakly compact subset of K and so
condition (i) in Lemma 2.6 is satisfied. We claim that condition (ii) in Lemma 2.6 holds. If this is false, then there exist a finite
set {v1,15,...,0n} CKand aw=>"1" &v; with & > 0 and > ", & = 1, such that

Qvi,w) = (J'(u) —¢'(w) — pN(x,y) + pw", (v, W)) + p(W, W) — po(w, ;) >0 Vi=1,2,....m.
By Assumption 2.8, in light of Remark 2.9, together with the convexity of ¢(w,-), we have

0 < &l(y/ () — /(W) — p(NX,Y) + pw*, 1(vi, W) + pP(W, W) — pp(W, ;)]

< W) =y (wW) = p(NX.Y)) + pw’. (W, W) + pp(w,w) = p > _&ip(w, v7) <0,

which is a contradiction. Thus, condition (ii) in Lemma 2.6 is satisfied. Note that the 5-strong convexity of iy implies that /' is
n-strongly monotone with constant g > 0, see Remark 2.5(ii). By using the similar argument as in the proof of Theorem 3.1,
we can readily prove that condition (iii) of Lemma 2.6 is also satisfied. By Lemma 2.6 there exists a point w € K, such that
Q(v,w) <0 for all v< K. This implies that w is a solution to the problem P(u,x,y).

Now we prove that the solution of problem P(u,x,y) is unique. Let w; and w, be two solutions of problem (4.1). Then,

(PN(x,y) — pw* + /' (wq) — /' (u), n(v,w1)) = pe(w,wy) — pp(wy,v), VveK, (4.2)
and
(PN(x,y) — pw" + /' (Wy) — /' (U), n(v,W2)) = pO(Wa, Wy) — pp(W,, v), Vv eK. (4.3)

Taking v=w;, in (4.2) and v =w in (4.3), and adding these two inequalities, since 7(w,, w1) + n(wy,w,) =0 and ¢(-,-) is skew-
symmetric, we obtain

(' (w2) — ¢/ (w1), (w1, w2)) = 0.
Thus, by /' is #-strongly monotone, we have
pl[wy = wal* < (W (wy) = ¢/ (W), 1(wr, W) <O,

This implies that w; = w,, and the proof is completed. O

By virtue of Theorem 4.1, we now construct an iterative algorithm for solving the problem (2.1) in a reflexive Banach
space E.
Let p > 0 be fixed. For given ug € K, xo € T(uo), Yo € A(Up), from Theorem 4.1, there is u; € K such that

(PN(X0,Yo) = pw" + ¥/ (ur) — /(o) (¥, th)) + pp(ur, v) — p@(th, 1) > 0, Vv eK.
Since xq € T(ug) € CB(E™), yo € A(up) € CB(E*), by Lemma 2.7, there exist x; € T(u;) and y; € A(u;) such that
X0 — X1l < (T + 1H((T(uo), T(u1)),
1Yo =¥l < (1 +T)H(A(uo), A(u1)).
Again by Theorem 4.1, there is u, € K such that
(PN(X1,y1) = pw* + 9/ (Uz) — /' (1), (2, U2)) + pp(Uz, ¥) — pP(U,U2) > 0, Vv eK.
Since x; € T(uq) € CB(E*), y1 € A(uy) € CB(E*), by Lemma 2.7, there exist x, € T(u,) and y, € A(u;) such that

s =l < (14 5 ) H(T@). ),

1
s =3l < (13 ) HiAG). A
Continuing in this way, we can obtain the iterative algorithm for solving problem (2.1) as follows:

Algorithm 1. Let p > 0 be fixed. For given ug € K, xo € T(ug), Yo € A(Up) there exist the sequence {u,} c K and {x,}, {y,} C E*
such that

(ON(Xn, Y1) — pW* + /' (Uns1) — ' (Un), N(V, Uns1)) + PO (Uni1, V) — pP(Ung1,Un1) =0, Ve K

and
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¥ €T, I~ toerl < (14 57 ) HT@). Tnn)), Ve,
1
Su € A), Iy =Yool < (14 55 JHAGR) Al.). Ve .

4.2. Convergence theorems

Now, we shall prove that the sequences {u,} ¢ K and {x,}, {y.} C E* generated by Algorithm 1 converge strongly to a solu-
tion of problem (2.1).

Theorem 4.2. Suppose that conditions of Theorem 4.1 are hold, and the mapping T, A are Lipschitzian continuous mappings with

Lipschitzian constant y and ¢, respectively. If p € (0, p (2;‘2{ ﬂ)) then the iterative sequence {u,}, {x,}, {y.} obtained from Algorithm 1

converge strongly to a solution of problem (2.1).

~ o~ A~

Proof. Let (u,x,y) € FMVLIP(T,A,N, 1, ¢). Define a function A : K — (—oc, +00] by
A(u) = () — y(u) — (' (u), (i, u)).
By the #-strong convexity of v/, we have
Aut) = (i) — () — (' (W), (i w) > 5 5 llu = . (4.4)

Note that n(u, v) = —y(v,u) for all u, v € K and ¢(-,-) is skew-symmetric. Since u,.; € Kand (i,%,y) € FMVLIP(T,A,N, n, ), from
the n-strong convexity of s, and Algorithm 1 with » = i1 it follows that

A(un) — Atng1) = Y(Unir) = Y(tn) = ' (Un), 1 (Ungr, Un)) + (W (Uni1) — ' (Un), (L Uny1))

= gﬂun — Un+1H2 + p(N(Xp, y,,) —W* n(unﬂ» u)) + p[(/)(uml,unﬂ) — (P(un+17a)]

> Bt — a2+ NG, Y2) = NRI) 11, 00) + LN, ) = W a1, ) + 9(aL 1)
= @i, 0)] = 5w = tna |+ pINGRn,Yi) = N 9), Mttns1, 0)) =5 tn =t | +Q, (45)

where Q = p(N(Xn,y,) — N(X, ), (tns1,1)).
Consider,
Q = p(N(xn,¥y) — N(X,¥),1(Uns1,1)) = p{N(Xn, ¥y) = N(X,3),0(Uns1,Un)) + p(N(Xn, ¥,) — N(X, Y), 11(Un, 1))
= P(NXn,¥n) = N(X,¥p), (Un, 1)) + p(N(X,¥,) — N(X, ), 11(Un, 1)) + p(NXn, ¥5) = N, ¥,), (U1, Un)) + p(N(X, ¥)
= N&,3),1(Uns1,Un)) = PTINXn, Yy
— Ull[[uns1 — unl| = pf

) = NEYI* + pBllun — 4l* = pSINGn, ¥n) = N, ¥o)lll[tin1 — Un]| = posjutn
TN, V) = NEY)I = SINGn, ) = N Vo) l[tnir — tnll] = potsfttn — i |[ttnsr — tn]

. 5 ~ A
+ pﬁHun - u”2 = P |:_ E:| ”unﬂ - un||2 - paé“”n - uHH”nﬂ - un” + pﬁ”un - UHZ- (4~6)

Therefore, we have

1 & ) A
Altl) = Alttnsr) > 5 (“ —p2—1> It = ]2 = 23ty — ] tgs1 — | + Pt — 1

25252 A
> pp— Py — (47)
2(p—po°/27)

. 2tup
Since p € (O%
negative by (4.4). Hence it converges to some number. Thus, the difference of two consecutive terms of the sequence {A(u,)}
goes to zero, and so the sequence {u,} converges strongly to . Further, from Algorithm 1, we have

1
n+1

1
19 = Foeal < (1 5 ) HOACUR) A1) < s = ]

), the inequality (4.7) implies that the sequence {A(u,)} is strictly decreasing (unless u, = 1) and is non-

I — X[ < (1 T )H(T(unﬂ(um)) < Yl = tnen],
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These imply that {x,} and {y,} are Cauchy sequence in E*, since {u,} is a convergence sequence. Thus, we can assume that
X, —» x and y, - ¥y (as n — o). Note x,, € T(u,,) and y,, € A(u,,), so we have

d(x, T(@1)) < ||x — Xal| + d(xn, T(tn)) + H(T(uy), T(@1)) < ||X = Xp|| + 0+ p|ltn — U] = 0 (1 — o0).

Hence we must have x € T(i1). Similarly, we can obtain y € A(i). Now we shall show that (i1, x,y) eGMQVLIP(T,A,N,#, ). In
view of Assumption 2.8(c), for each fixed v € K we have the functional (u,x,y) — (N(x,y), n(»,u)) is an upper semi-continuous
functional. Using this one, together with the weak continuity of the function ¢(.,-), we obtain

0<HTwm@mewme+WwH0fWW@HWMmm+ﬁ¢wHuwaWMHmHM

< PUNX,Y) —w',n(v,0)) + @(il, v) — (U, u)].
This implies that (@1, x,y) eGMQVLIP(T,A,N,n, @), and the proof is completed. [

Remark 4.3. Since for appropriate and suitable choice of the mappings T, A, N, #, the bi-function ¢, and the linear continuous
functional w*, we can obtain a number of known class of variational inequalities and variational-like inequalities as spacial
cases from the problem (2.1), hence, our results can be view as a refinement and improvement of the previously known
results for variational inequalities.
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Abstract

At the present article, we consider a new lass of general nonlinear random A-
maximal m-relaxed n-accretive equations with random relaxed cocoercive map-

pings and random fuzzy mappings in g-uniformly smooth Banach spaces. By



using the resolvent mapping technique for A-maximal m-relaxed n-accretive map-
pings due to Lan et al. and Chang’s lemma, we construct a new iterative algo-
rithm with mixed errors for finding the approximate solutions of this class of
nonlinear random equations. We also verify that the approximate solutions ob-
tained by the our proposed algorithm converge to the exact solution of the general
nonlinear random A-maximal m-relaxed n-accretive equations with random re-
laxed cocoercive mappings and random fuzzy mappings in g-uniformly smooth
Banach spaces.
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1 Introduction

The theory of variational inequalities was extended and generalized in many different
directions because of its applications in mechanics, physics, optimization, economics and en-
gineering sciences. For the applications, physical formulation, numerical methods and other
aspects of variational inequalities (see [1-63] and the references therein). Quasi-variational
inequalities are generalized forms of variational inequalities in which the constraint set de-
pend on the solution. These were introduced and studied by Bensoussan et al. [11]. In
1991, Chang and Huang [16, 17] introduced and studied some new classes of complemen-

tarity problems and variational inequalities for set-valued mappings with compact values



in Hilbert spaces. An useful and important generalization of the variational inequalities is
called the variational inclusions, due to Hassouni and Moudafi [34], which have wide appli-
cations in the fields of optimization and control, economics and transportation equilibrium,
engineering science.

Meanwhile, it is known that accretivity of the underlying operator plays indispensable
roles in the theory of variational inequality and its generalizations. In 2001, Huang and
Fang [41] were the first to introduce generalized m-accretive mapping and gave the def-
inition of the resolvent operator for generalized m-accretive mappings in Banach spaces.
Subsequently, Verma [59,60] introduced and studied new notions of A-monotone and (A, n)-
monotone operators and studied some properties of them in Hilbert spaces. In [52], Lan
et al. first introduced the concept of (A, n)-accretive mappings, which generalizes the ex-
isting n-subdifferential operators, maximal 7-monotone operators, H-monotone operators,
A-monotone operators, (H,n)-monotone operators, (A,n)-monotone operators in Hilbert
spaces, H-accretive mapping, generalized m-accretive mappings and (H,n)-accretive map-

pings in Banach spaces.

On the other hand, the fuzzy set theory which was introduced by Professor Lotfi Zadeh
[62] at the university of California in 1965 has emerged as an interesting and fascinating
branch of pure and applied sciences. The applications of the fuzzy set theory can be found
in many branches of regional, physical, mathematical and engineering sciences (see, for
example [10,32,63]). In 1989, by using the concept of fuzzy set, Chang and Zu [20] first
introduced and studied a class of variational inequalities for fuzzy mappings. Since then

several classes of variational inequalities with fuzzy mappings were considered by Chang and

Haung [15], Ding [30], Ding and Park [31], Haung [36], Kumam and Petrot [48], Noor [55]



and Park and Jeong [56,57] in Hilbert spaces. Recently, Huang and Lan [43], considered
nonlinear equations with fuzzy mapping in fuzzy normed spaces and subsequently Lan and
Verma [54] considered fuzzy variational inclusion problems in Banach spaces. It is worth to
mention that variational inequalities with fuzzy mapping have been useful in the study of

equilibrium and optimal control problem (see, for example [14]).

The random variational inequality and random quasi-variational inequality problems,
random variational inclusion problems and random quasi-complementarity problems have
been introduced and studied by Chang [13], Chang and Huang [18,19], Chang and Zhu [21],
Cho et al. [22], Ganguly and Wadhawa [33], Huang and Cho [40], Khan et al. [47] and
Lan [51], etc. Recently, Lan et al. [53] introduced and studied a class of general nonlinear
random set-valued operator equations involving generalized m-accretive mappings in Banach
spaces. They also established the existence theorems of the solution and convergence theo-
rems of the generalized random iterative procedures with errors for these nonlinear random
set-valued operator equations in g-uniformly smooth Banach spaces. Cho and Lan [23] con-
sidered and studied a class of generalized nonlinear random (A, n)-accretive equations with
random relaxed cocoercive mappings in Banach spaces and by introducing some random it-
erative algorithms, they proved the convergence of iterative sequences generated by proposed
algorithms. Further, by considering the concepts of random mappings and fuzzy mappings,
Haung [39] was first introduced the concept of random fuzzy mapping. Subsequently, the
random variational inclusion problem for random fuzzy mappings is studied by Ahmad and
Bazan [4]. Very recently, Onjai-Uea and Kumam [58] introduced and studied a class of
general nonlinear random (H,n)-accretive equations with random fuzzy mappings in Ba-

nach spaces and by using the resolvent mapping technique for the (H,n)-accretive mappings



proved the existence and convergence theorems of the generalized random iterative algo-
rithms for these nonlinear random equations with random fuzzy mappings in g-uniformly

smooth Banach spaces.

At the present article, inspired and motivated by recent researches in this field, we shall in-
troduce and study a new class of general nonlinear random A-maximal m-relaxed n-accretive
(so called (A,n)-accretive [52]) equations with random relaxed cocoercive mappings and
random fuzzy mappings in Banach spaces. By using the resolvent mapping technique for
A-maximal m-relaxed n-accretive mappings due to Lan et al. and Chang’s lemma [12], we
construct a new iterative algorithm with mixed errors for finding the approximate solutions
of this class of nonlinear random equations. We also prove the existence of random solutions
and the convergence of random iterative sequences generated by the our proposed algorithm
in g-uniformly smooth Banach spaces. The results presented in this article improve and
extend the corresponding results of [13,18,22-24,33,34,37-40,42,44,46,49,53,58] and many

other recent works.

2 Preliminaries

Throughout this article, let (€2, .4, 1) be a complete o-finite measure space and X be a
separable real Banach space endowed with dual space X*, the norm ||.|| and the dual pair
(,.) between X and X*. We denote by B(X), CB(X) and H(.,.) the class of Borel o-fileds

in X, the family of all nonempty closed bounded subsets of X and the Hausdorff metric

H(A, B) = max {sup inf d(x,y),sup inf d(z, y)}

rcAYEB yEB €A

on C'B(X), respectively.



The generalized duality mapping J, : X — X™ is defined by
Jo(@) ={f* € X"z, f*) = 2% | /]| = l=]*7"}, Vo€ X,

where ¢ > 1 is a constant. In particular, J; is usual normalized duality mapping. It is
known that, in general, J,(x) = ||z||972J2(z) for all x # 0 and J, is single-valued if X* is
strictly convex. In the sequel, we always assume that X is a real Banach space such that J,

is single-valued. If X is a Hilbert space, then J; becomes the identity mapping on X.

The modulus of smoothness of X is the function py : [0,00) — [0, 00) defined by

1
px(t) = sup{ 3L+l + e =) = 1 el < Lyl < ).
A Banach space X is called uniformly smooth if

i 2XE) _
t—0 t

Further, a Banach space X is called q-uniformly smooth if there exists a constant ¢ > 0 such
that

px(t) < ct?, ¢>1.

It is well-known that Hilbert spaces, L,(or l,) spaces, 1 < p < oo, and the Sobolev spaces

WmP 1 < p < oo, are all g-uniformly smooth.

Concerned with the characteristic inequalities in g-uniformly smooth Banach spaces,

Xu [61] proved the following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is g-uniformly smooth

if and only if there exists a constant ¢, > 0 such that for all v,y € X,

[+ yl1* < lz[| + gy, Jo(2)) + cqllyl*.



Definition 2.2. A mapping = : Q@ — X is said to be measurable if, for any B € B(X),

{teQ:x(t) e B} € A

Definition 2.3. A mapping 7' : Q2 x X — X is called a random mapping if, for any = € X,
T(.,x): Q — X is measurable. A random mapping 7 is said to be continuous if, for any

t € Q, the mapping T'(¢,.) : X — X is continuous.

Similarly, we can define a random mapping a : 2 x X x X — X. We shall write

Ti(z) =T(t,z(t)) and ai(x,y) = a(t, z(t),y(t)) for all t € Q and z(t),y(t) € X.
It is well-known that a measurable mapping is necessarily a random mapping.

Definition 2.4. A set-valued mapping V : 2 — X is said to be measurable if, for any

BeB(X), V(B ={teQ:V(t)NB #0} € A.

Definition 2.5. A mapping u : Q — X is called a measurable selection of a set-valued

measurable mapping V : 2 — X if, u is measurable and for any ¢t € Q, u(t) € V (¢).

Definition 2.6. A set-valued mapping V : Q2 x X —o X is called a random set-valued
mapping if, for any = € X, V(.,z) is measurable. A random set-valued mapping V :
QO x X — X is said to be H-continuous if, for any ¢t € Q, V(t,.) is continuous in the

Hausdorff metric on CB(X).

Definition 2.7. Let X be a g-uniformly smooth Banach space, T, A : 2 x X — X and

n: Q2 x X x X — X be random single-valued mappings. Then

(a) T is said to be accretive if

(Ti(z) = Ti(y), Jo(x(t) = y(¥))) 2 0, Va(t),y(t) € X, e
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(b) T is called strictly accretive if T is accretive and

(Ti(x) = Tily), Jo(z(t) = y(t))) =0,
if and only if x(t) = y(t) for all t €

(c) T is said to be r-strongly accretive if there exists a measurable function r : Q — (0, c0)

such that

(Ti(x) = Ti(y), J(x(t) — y(®)) = r(®)llx(t) —y@OI  Va(t),y(t) € X, e

(d) T is said to be (0, k)-relaxed cocoercive if there exist measurable functions 0, k : Q —

(0, 00) such that
(Ti(z)=T(y), Jo(z(t)=y(t))) = =0T (x)=Te() 1"+ [l(@) -y @O, Vz@),y(t) € X, t e

(e) T is called o-Lipschitz continuous if there exists a measurable function g : Q — (0, c0)

such that

[Ti(z) = Te()ll < o@®)llx(t) —y(@)ll, Va(t),y(t) € X, te;

(f) n is said to be 7-Lipschitz continuous if there exists a measurable function 7 : Q —

(0, 00) such that
()| < 7(O)l2(@) —y@, Ve(t),y(t) € X, t e

(g) n is said to be p-Lipschitz continuous in the second argument if there exists a mea-

surable function u :  — (0,00) such that

() = me(y, w) || < (@)l e() = y@ll, Va(t),y(t), ult) € X, ¢ €.

In a similar way to part (g), we can define the Lipschitz continuity of the mapping 7 in

the third argument.



Definition 2.8. Let X be a ¢g-uniformly smooth Banach space, n : 2 x X x X — X and
H A:Qx X — X be three random single-valued mappings. Then set-valued mapping

M:Q x X —o X is said to be:

(a) accretive if

(ut) = o(t), Jy(x(t) —y(1))) 2 0, Va(t),y(t) € X, u(t) € My(z), w(t) € Mi(y), te;

(b) n-accretive if

(u(t) —o(t), Jy(m(z,y))) = 0, Va(t),y(t) € X, ult) € My(z), ov(t) € Mi(y), te

(¢) strictly n-accretive if M is n-accretive and the equality holds if and only if z(t) = y(¢),
vt € Q;

(d) r-strongly n-accretive if there exists a measurable function r : 2 — (0, 00) such that

(u(t)=o(t), Jy(m(z,y))) = r@®)lz@) =y, Va@),y(t) € X, ut) € Mi(z), o(t) € Miy), te;

(e) a-relazed n-accretive if there exists a measurable function a : © — (0, 00) such that

(u(t)=v(t), Jo(m(z,9))) = —a@®llz(O)=y@)|*,  Va),y(t) € X, u(t) € Mi(z), o(t) € Mi(y), te;

(f) m-accretive if M is accretive and (I + p(t)M;)(X) = X for all ¢ €  and for any
measurable function p : Q — (0,00), where I denotes the identity mapping on X, [;(z) =
x(t), for all x(t) € X, t €

(g) generalized m-accretive if M is n-accretive and (I; + p(t)M;)(X) = X for all t € Q
and any measurable function p : Q — (0, 00);

(h) H-accretive if M is accretive and (Hy + p(t)M;)(X) = X for all t € Q and any
measurable function p :  — (0, 00), where H,(.) = H(t,.) for all t € Q;

9



(i) (H,n)-accretive if M is n-accretive and (H; + p(t)M;)(X) = X for all t € Q and any
measurable function p : Q — (0, 00);

(j) A-mazimal m-relaxed n-accretive if M is m-relaxed n-accretive and (Aq+p(t) M) (X) =
X for all t € Q and any measurable function p : Q — (0,00), where A;(.) = A(¢,.) for all
t e

(k) 8 -H-Lipschitz continuous if there exists a measurable function 3 : Q — (0, +00) such
that

H(M,(w), Mi(y)) < B(t)l|l=(t) —y(@)ll, Va(t),y(t) € X, teQ.

Remark 2.9. (1) If X = # is a Hilbert space, then parts (a)—(i) of Definition 2.8 reduce
to the definitions of monotone operators, n-monotone operators, strictly n-monotone op-
erators, strongly n-monotone operators, relaxed n-monotone operators, maximal monotone
operators, maximal n-monotone operators, H-monotone operators and (H, n)-monotone op-
erators, respectively.

(2) For appropriate and suitable choices of m, A, n and X, it is easy to see that part
(j) of Definition 2.8 includes a number of definitions of monotone operators and accretive

mappings (see [52]).

Proposition 2.10. [52] Let A : Q x X — X be an r-strongly n-accretive mapping and
M : Qx X — X be an A-maximal m-relazed n-accretive mapping. Then the operator

(Ay + p(t)My) ™t is single-valued for any measurable function p : Q — (0, +00) and t € .

Definition 2.11. Let A: Q) x X — X be a strictly n-accretive mapping and M : Q x X —o

X be an A-maximal m-relaxed n-accretive mapping. Then, for any measurable function

10



p:Q — (0,400), the resolvent operator Jg(tg)]\ﬁt : X — X is defined by:

T (u(t)) = (A + p(H)M) M (u(t), VEEQ, ult) € X.

Proposition 2.12. [52]| Let X be a q-uniformly smooth Banach space andn: Q2 x X x X —
X be T-Lipschitz continuous, A : Q0 x X — X be an r-strongly n-accretive mapping and
M : Qx X — X be an A-mazimal m-relazed n-accretive mapping. Then the resolvent

Nt , M )
operator J t)A X = X s OO0 -Lipschitz continuous, i.e.,

where p(t) € <0, r(t)) is a real-valued random variable for all t € .

Tt (o) = T o) < TS le 0 -0l e € X, e,

m(t)

3 A new random variational inclusion problem and random iter-
ative algorithm

In what follows, we denote the collection of all fuzzy sets on X by F(X) = {A|A :
X — [0,1]}. For any set K, a mapping S from K into §(X) is called a fuzzy mapping. If
S : K — §(X) is a fuzzy mapping, then S(z), for any « € K, is a fuzzy set on F(X) (in the
sequel, we denote S(x) by S,) and S,(y), for any y € X, is the degree of membership of y

in S,. For any A € §(X) and « € [0, 1], the set

(A)g ={z € X : A(x) > a}

is called a a-cut set of A.

Definition 3.1. A fuzzy mapping S : Q@ — §(X) is called measurable if, for any « € (0, 1],
(8(.))a : © —o X is a measurable set-valued mapping.

11



Definition 3.2. A fuzzy mapping S : Q x X — F(X) is called a random fuzzy mapping if,

for any z € X, S(.,z) : 2 — F(X) is a measurable fuzzy mapping.

Now, let us introduce our main considered problem.

Suppose that S, 7, P, Q,G : Q@ x X — F(X) are random fuzzy mappings, A,p: Qx X —
Xandn: Qx X xX —- X, N:Qx X xX xX — X are random single-valued mappings.
Further, let a,b,¢,d,e : X — [0, 1] be any mappings and M : 2 x X x X — X be a random
set-valued mapping such that, for each fixed t € Q and z(t) € X, M(t,.,2(t)) : X — X be
an A-maximal m-relaxed n-accretive mapping with Im(p) N dom M (¢, ., z(t)) # (). Now, we
consider the following problem:

For any element h : Q@ — X and any measurable function A : Q — (0, +00), find mea-
surable mappings z,v,u,v,9,w : € — X such that for each t € Q, z(t) € X, S; ) (v(t)) >
(), Trat (u(®) = H(a()), Praty(0(1) > e(@(t)), Quon(@(1)) > d((t)), Groto (w(t)) >

e(z(t)) and

h(t) € Ny(v,u,v) + At)My(py(z) — 0, w), VteQ. (3.1)

The problem (3.1) is called the general nonlinear random A-mazimal m-relazed n-accretive
equation with random relaxed cocoercive mappings and random fuzzy mappings in Banach

Spaces.

Remark 3.3. Obviously, the random fuzzy mapping includes set-valued mapping, random
set-valued mapping and fuzzy mapping as the special cases. These mean that for appro-
priate and suitable choices of X, A, n, \, p, M, N, S, T, P, Q, G and h, one can obtain
many known classes of random variational inequalities, random quasi-variational inequali-
ties, random complementarity and random quasi-complementarity problems as special cases

12



of the problem (3.1), (see, for example [1-3,22,23,34,37,45,49,50, 53, 58] and the references

therein).

In the sequel, we will develop and analyze a new class of iterative methods and construct
a new random iterative algorithm with mixed errors for solving the problem (3.1). For this

end, we need the following lemmas.

Lemma 3.4. [12] Let M : Qx X — CB(X) be a H-continuous random set-valued mapping.

Then, for any measurable mapping x :  — X, the set-valued mapping M(.,z(.)) : Q@ —

CB(X) is measurable.

Lemma 3.5. [12] Let M,V : Q — CB(X) be two measurable set-valued mappings, € > 0 be
a constant and x : 0 — X be a measurable selection of M. Then there exists a measurable

selection y : Q0 — X of V' such that, for anyt € €,

l2(t) =yl < (1+ ) H(M(1), V(1)

The following lemma offers a good approach for solving the problem (3.1).

Lemma 3.6. The set of measurable mappings x,v,u,v,9,w : Q — X is a random solution
of the problem (3.1) if and only if, for each t € Q, v(t) € Si(z), u(t) € Ti(x), v(t) € Pi(x),
U(t) € Qu(x), w(t) € Gi(x) and

pe(x) = () + TN [Api(w) = 9) = p(t) (N(v,u,0) — h(t))],

where J ), Mtt) a = (A + pNE) My (., w))~" and p: Q@ — (0,00) is a measurable function.

Proof. The fact follows directly from the definition of J "(tt)]\fz() ),

13



In order to prove our main result, the following concepts are also needed. Let S, 7,P, Q,G :
QO x X — F(X) be five random fuzzy mappings satisfying the following condition (x): There
exist five mappings a, b, c,d,e : X — [0, 1] such that
(Sta(t))aatry € CBX), (Teav)baty € CBX), (Pra(n))e(ery € CB(X),
(Qta)) @) € CB(X), (Graw))e@wr) € CB(X), Y(t,z(t) € O x X.
By using the random fuzzy mapping S satisfying (%) with the corresponding function a :

X — [0, 1], we can define a random set-valued mapping S as follows:
S:Ox X = CB(X), (t,x(t))— (St,x(t))a(x(t))u V(t,x(t)) € 2 x X,

where S; ;) = S(t,x(t)). From now on, the random fuzzy mappings S, 7, P, Q and G, are
assumed to satisfying the condition (x) and we will let S, T, P, @ and G are the random

set-valued mappings induced by those five random fuzzy mappings, respectively.

Now, by using Chang’s lemma [12] and based on Lemma 3.6, we can construct the new

following iterative algorithm for solving the problem (3.1).

Algorithm 3.7. Let A, p,n, M, N, S, T, P, Q, G, h, X be the same as in the problem (3.1)
and let S, T, P, Q, G be H-continuous random set-valued mappings induced by S, T, P,
Q and G, respectively. Assume that o : Q — (0, 1] is a measurable step size function. For any
measurable mapping xo : Q — X, the set-valued mappings S(., zo(.)), T(.,z0(.)), P(., z0(.)), Q(., zo(.)),
G(.,2o(.) : Q@ = CB(X) are measurable by Lemma 3.4. Hence there exist measurable se-
lections vy : 2 — X of S(.,20(.)), uo : @ = X of T'(.,x0(.)), vo : @ = X of P(.,z0(.)),

Yo : Q= X of Q(.,2(.)) and wy : @ — X of G(.,z(.)) by Himmelberg [35]. For each ¢ € 2,

14



set
21(t) = (1 — a(t)zo(t) + a(t){zo(t) — pi(wo) + Vo(t) + T3 Mt wO)[At(pt(xO) o)

— p(t)(Ne(vo, w0, vo) — h(t))]} + a(t)eo(t) + ro(t),
where p(t) is the same as in Lemma 3.6 and e, 7o : 2 — X are measurable functions. It
is easy to know that z; : Q@ — X is measurable. Since vy(t) € Si(xg) € CB(X), uo(t) €
Ti(xg) € CB(X), vo(t) € Pi(xg) € CB(X), 99(t) € Qi(xo) € CB(X) and wy(t) € Gy(zg) €
CB(X), by Lemma 3.5, there exist measurable selections vy, uy, vy, wy,¥; : © — X of the
set-valued measurable mappings S(.,z1(.)), T(.,z1(.)), P(.,z1(.)), Q(.,z1(.)) and G(.,z1(.)),

respectively, such that, for all £ € 2,

Letting

23(t) = (1= a(t))a1(8) + a(){z1(£) = pulr) +91(6) + T s [Aupu(a) — 01)
— p(t)(Ne(v1,ug,v1) — h(E)]} + a(t)er(t) +mi(t), VieQ,

then x5 : Q — X is measurable. By induction, we can define the sequences {xz,(t)}, {v,(t)},
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{un, ()}, {vn(t)}, {U.(t)} and {w,(t)} for solving the problem (3.1) inductively satisfying

Fa(t) = (1= a(t)) () + a(t) {a(t) = puln) +90(6) + T 5 [Aupulen) — 0,)

= PNt tn v) = BN + alt)en(t) +ralt), VEEQ,
va(t) € Su(@a), [va(t) = vapa ()] < (1+ 1) H(Su(n), Sil(wns1)),
un(t) € i), an(6) — e (O] < (L4 115) AT (). Do), (32)
Un(t) € Po(n), [lon(t) = van (DIl < (14 ) H(Pi(an), Pi(wni1)),
In(t) € Qu(wn), 1[9n(t) = s (D)l < (14 15) H(Qu(wn), Qu(wnsa)),

wy(t) € Gi(zn), |lwa(t) —wnpa(t)]| < (1 + lJr_n) H H(Gi(2n), Ge(Tny1)),

\

where for all n > 0 and t € Q, e,(t),r,(t) € X are real-valued random errors to take into
account a possible inexact computation of the random resolvent operator point satisfying

the following conditions:

7

lim [le,(¢)[| = lim [lra(¢)[| =0, V€€
n— o0 n—oo

i_o;o len(t) = en_1(8)]| < 00, Vit € Q; (3.3)

> () = raa (@)l < 00, ¥Vt e Q.

( n=0
Remark 3.8. For a suitable and appropriate choice of the mappings A, p, n, M, N, S, T,
P, Q, G S, T, P,Q, G, a, h, A\, the sequences {e,}, {r,} and the space X, Algorithm
3.7 includes many known algorithms which due to classes of variational inequalities and

variational inclusions (see, for example [13,18,22-24,33,34,37-40,42,44,46, 53, 58]).

4 Main result

In this section, we prove the existence of solutions for the problem (3.1) and the conver-

gence of iterative sequences generated by Algorithm 3.7 in Banach spaces.
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Theorem 4.1. Let X be a q-uniformly smooth Banach space, A, p, n, M, N, S, T, P, Q,
G, h, X\ be the same as in the problem (3.1) and S,T,P,Q,G : Q@ x X — CB(X) be five

random set-valued mappings induced by S, T, P, Q, G, respectively. Further, suppose that

(a) pis (7, w)-relaxed cocoercive and 7-Lipschitz continuous;

(b) A is r-strongly n-accretive and o-Lipschitz continuous;

(c) m is T-Lipschitz continuous;

(d) S, T, P, Q and G are {—I:I-Lipschitz continuous, C-]:I—Lipschitz continuous, ¢-H-
Lipschitz continuous, g—f[ -Lipschitz continuous and -H -Lipschitz continuous, respectively;

(e) N is e-Lipschitz continuous in the second argument, J-Lipschitz continuous in the
third argument and k-Lipschitz continuous in the fourth argument;

(f) There exist the measurable functions p : Q@ — (0,4+00) and p : Q — (0, +00) with

p(t) € (0, )\(; (@) ) for all ¢ € 0, such that

| ) = TSR EO)| < n@llat) = y@ll, V€ Q). y(),2(0) € X
(4.1)

and
(

p(t) = o(t) + pu(t)u(t) + /1 — qw(t) + (qv(t) + cg)mi(t) < 1,
o(t)(m(t) + o(t)) + p(t)(e(t)E(t) + (1) () + K(t)s(t)) (4.2)

| <TI0 = @®)(r(t) = p(OAH)m(D)),

where ¢, is the same as in Lemma 2.1. Then there exists a set of measurable mappings

vt vt 0t w0 — X which is a random solution of the problem (3.1) and for
each t € Q, x,(t) — x*(t), vu(t) = v*(t), un(t) = u*(t), va(t) — v*(t), Un(t) — V*(t),
wa(t) = w(t) as n — 00, where {z,(1)}, {va(®)}, {un()}, {oa(t)}, {0(5)} and {w, (1)} are

the iterative sequences generated by Algorithm 3.7.
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Proof. Firstly, for each n > 0, by considering (3.2) and (4.1), in view of Proposition
2.12, we see that
s () = a(t)]
< (1 = a())za(t) + at) {anlt) = pilea) +0a() + T A peln) = 0n)
(1) (Ne(n,ttn, 0) = RO | + @B)en(t) +7a(t) = (1= a®))zn 1 (1)
= at) {1(t) = pi(eas) + na(0) + TGN 0 AP0 1) = o)
() (N1, 1, 001) = ()]} = atens(t) = raa ()]
< (1= a@®)za(t) = 21Ol + at) (Ilea®) = 2u-1(0) = (pi(ea) = pilwa))]
119 (8) = D O + 120 (A (1) = 00) = p(E) (N, 1, 00) — (1))
e AP ) = Bnr) = PNt 1, 001) = )]
+ at)lenlt) = en s (Dl + [Iral) = raa (8] "
< (1= a(®)za(t) = 21Ol + a(t) (Ilea(t) = 2u1(5) = (piea) = pilwa))]
- [9a(8) = Duca () + [T (A (1) = D) = p(E)(Ne (v, tn, v0) = h(1))]
— TS AP0 1) = Dn1) = P(E) (N1, Un 1, 00 1) — B
T LA e 1) = Fnr) = PN (V1 1, 0n1) = A(D))]
e AP ) = Bnr) = PNt -1, 001) = (]I
+at)enlt) = en s (B + [Iral) = raa (8]
< (1= a@®)za(t) = w1 (O]l + at) (llea®) = 2a1(®) = (1) = pelzn))| + [90(8) = Ia (1)

T971(¢)

r(t) = p()A()m(1)

+ )| Ne(vn, tn, vn) = Ne(Vnoy; tn -, vn—1)|l)) +a)llen(t) = ena (O + lrn(t) = raa(@)]-

A (pe(n) = On) = As(pr(Tn1) = Ina)|

+ u(O)][wn(t) = waa (D] +

18



Meanwhile, by Lemma 2.1, there exists a constant ¢, > 0 such that

|2n() = 201 (8) = (pr(wn) = Pi(n—1))]?
< Jlaa(t) = 2o a7 = @lpi(@n) = pel@n 1), Jy(@a(t) = Ta a()) + cqllpe(n) = prlwaa)||”
Consequently, since p is (7, @)-relaxed cocoercive and m-Lipschitz continuous, we obtain
|0 (8) = 201 (8) = (Pr(wn) = Pr(wn1))]°
< () = 2aa (D7 + (07(1) + c)lIpe(@n) = pewn-1)[1? = qo(@)l|2a(t) = 02 (8)]|{44)
= (1= qw(t) + (q7(t) + c)7 (&) [ (t) = T 1 (D],

Furthermore, by o-H-Lipschitz continuity of () and i~ H-Lipschitz continuity of GG, from

(3.2) we deduce that

194(6) = duao)] < (14 7 ) AQta) Qi)
1 (4.5)
<o) (142 honl®) = 20100
and
Jin(®) = a0 < (143 ) F(Gulo), G
(4.6)

1
<ot (14 2) lenlt) = 0]
By using (4.5) together with o-Lipschitz continuity of A, m-Lipschitz continuity of p, we

obtain
A4 22) ~ 52) — Api(as) ~ Do)
< o(0)(ltza) ~ as) |+ 190(8) s D) (47
< ot0) (w(0) + o) (14 %) ) lutt) = 2ua O]

Moreover, since N is e-Lipschitz continuous in the second argument, d-Lipschitz contin-

uous in the third argument, x-Lipschitz continuous in the fourth argument and S, T, P are
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f—f] -Lipschitz continuous, ¢-Lipschitz continuous and «-H -Lipschitz continuous, respectively,
by (3.2), we get

[N (v, i v) = Ne(Vn-1, tn-1, Un—1) |

< Nt (Vs Uy V) — Ne(Vp—15 Uy U) || + ([ Ve (Vi1 Uny ) — Ne(Vn1, U1, 0)||

+ || Ne(Vn—1, Up—1,n) — Ne(Vn—1, Un—1, Vn_1)|| (4.8)
< ()l (t) = vaa (O + 6(E) un(t) — un—1 ()| + £ () lon(t) — vnr(t)]]
< (06(0) + 80600 + w)s(0) (14 ) laa(®) = 2110
Now, substitute (4.4)—(4.8) into (4.3), we get that

[Zn41(8) — zn(O)]] < (1= a(t) + a(t)(t, n)|2n(t) — zn1(t)]]
(4.9)

+a)llen(t) = ena (Ol + l[rn(t) = raa (@],

where

W(t,n) = (o(t) + p(t)(t)) (1 + %) + /1= gw(t) + (av(t) + cp)ma(t) + r(t)Tq_lp(Z)FA(é)g(t)’
1

Etm) = ot0) () + 200 (145 ) ) + o600+ 9(0(0) + n(0lo) (14 7).

n

Let us put
O(t,n) =1—a(t)+ a(t)y(t,n), foreach n >0, tel.
Then, for each t € €, we know that
O(t,n) = 0(t) =1 —at) + a(t)y(t), as n — oo,

where




It follows that, in view of the condition (4.2), we have ¢(t) € (0,1) for all t € Q. This

implies 0 < 6(t) < 1 for all ¢ € Q. Hence there exist ny € N and a measurable function

0:Q — (0,00) (Take A(t) = 295 ¢ (9(t),1) for each t € Q) such that 6(t,n) < 6(t) for all

2

n > ng and ¢t € Q. Accordingly, for all n > ng, by (4.9), deduce that, for all ¢t € Q,

< O(t)l|za(t) = 2amr (D] + alt)llen(t) = en s (@)l + llra(t) = raa(t)]]
< OO l|2n-1(8) = 22 (t)]] + a()llen-1(t) = ena(@)l] + Ira-1(t) = ru-a(t)]]
+a(t)|len(t) = ena (O] + l[rn(t) = raa @]

= 0%(t)l|tn-1(t) = 2a2 (D) + (BB len-1() — en—a(t)]

. (4.10)
+llen(t) = s D]+ 0®)ras () — racsf®)] + Ira(®) = ruca O]
<
. n—no
SO |21 () — 20 (0| + Z 6” 1 Hen (i— 1)(t) — en—i(t)||
n—no
+ Z@’ HO -1 (t) = rasi (O]
By using the 1nequahty (4. 10) it follows that, for any m > n > ng,
m—1
[ (t) — 2a(t)]| < Z 501 (8) = 2 (O < D 70 (0| 2ng 41 () — 2y (1)
j=n
m—1j—ng
+ D af T (#)llen—-n(t) — eni(®)] (4.11)
j=n i=1
m—1j—ng N
+ )Y 0T Ol (8) = (D)
j=n =1

Since (t) < 1 for all t € Q, it follows from (3.3) and (4.11) that ||z, (t) — z,(t)]| — 0 as
n — oo. This means {z,(t)} is a Cauchy sequence in X. In view of completeness of X,
there exists 2*(t) € X such that z,(t) — z*(¢) for all ¢t € Q.
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Consequently, by using (3.2), ¢-H-Lipschitz continuity of S, ¢-H-Lipschitz continuity of
T, ¢-H-Lipschitz continuity of P, ‘Q—]:[ -Lipschitz continuity of ) and -H -Lipschitz conti-
nuity of G, we know that {v,(¢)}, {u.(t)}, {va(t)}, {Vn(t)} and {w,(t)} are also Cauchy
sequences in X. Thus there are v*(t), u*(t),v*(t), ¥*(t),w*(t) in X such that, for all t € Q,
Un(t) — v5(1), u,(t) = u*(t), v,(t) = v*(t), 9,(t) — 9*(t) and w,(t) — w*(t) as n — oc.
Since {z,(t)}, {vn(t)}, {un(t)}, {va(t)}, {Un(t)} and {w,(t)} are sequences of measurable
mappings, we know that z,v,u,v,J,w : 0 — X are also measurable. Further, for each

t € ), we have

d(v*(t), Si(z")) = nf{{lv*(t) — 2| : = € Si(2")}
< |[lv*(#) = v (D)1 + d(wn(t), Se2))
< v (8) = va()ll + H(Si(xn), Si(a))
< () = v (O + &) [lzn(t) — 2" @)]-
Notice that, the right side of the above inequality tends to zero as n — oo, this implies that
v*(t) € Si(z*).
Similarly, we can verify that for each t € Q, u*(t) € Ti(x*), v*(t) € P(z*), 9*(t) € Qi(x¥)
and w*(t) € Gy(z*). Moreover, the condition (4.1) and w,(t) — w*(t), for all t € ), as

n — oo, imply that for each t € €, Jm ME() TZ?) Jm ME() A, ) uniformly on X, as n — oo.

Now, since for each t € €2, the mappings Jg(tt’)M t() w"), pi, Ny and A; are continuous, it

follows from (3.2) and (3.3) that for each ¢ € (2,
Pl = 07() + T [Aupe(?) = 9%) = p(O) (N(v*, ", 07) = b(2)].

Finally, Lemma 3.6 implies that measurable mappings z*, v*, u*, v*, 9%, w* : Q@ — X are a

random solution of the problem (3.1). This completes the proof.
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Remark 4.2. If X is a 2-uniformly smooth Banach space and there exists a measurable

function p : Q@ — (0, 00) with p(t) € (0, %), for all ¢ € €, such that

p(t) = ot) + p(t)e(t) + V1 = 2 (t) + (29(1) + e2) () < 1,

2w (t) — (2v(t) + co)m(t) < 1,

r)(1 = (1)) = 7(H)a(t)(w(t) + ot))
T(B)[(e(t)E(t) +6(E)C(1) + m(t)s(B)] + (1 = () A()m(t)’

p(t) <

then (4.2) holds. As we know, Hilbert spaces and L,(or [,) spaces, 2 < p < oo, are 2-

uniformly smooth.

Remark 4.3. Theorem 4.1 generalizes and improves Theorems 3.1 and 3.2 in [23], Theorems
3.1, 3.3 and 3.4 in [53] and Theorems 4.1, 4.3 and 4.4 in [58]. In brief, for an appropriate
choice of the mappings A, p,n, M, N, S, T, P, Q,G, S, T, P, Q, G, h, \, the measurable
step size function «, the sequences {e,}, {r,} and the space X, Theorem 4.1 includes many
known results of generalized variational inclusions as special cases (see [13,18,22-24,33,34,

37-40,42,44,46,49,53, 58] and the references therein).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally in this paper. They read and approved the final manuscript.

23



Acknowledgments

The first author was supported by the Commission on Higher Education and the Thailand

Research Fund (Project No. MRG5380247).

References

1]

Agarwal, RP, Cho, YJ, Huang, NJ: Generalized nonlinear variational inclusions involving
maximal n-monotone mappings. Nonlinear Anal. Appl. (to Lakshmikantham V on His 80th

Birthday. Kluwer Academic Publishers, Dordrecht, The Netherlands) 1, 2, 59-73 (2003) 3.3

Agarwal, RP, Khan, MF, O’'Regan, D, Salahuddin: On generalized multivalued nonlinear
variational-like inclusions with fuzzy mappings. Adv. Nonlinear Var. Inequal. 8, 41-55 (2005)

3.3

Ahmad, R, Ansari QH, Irfan, SS: Generalized variational inclusions and generalized resolvent

equations in Banach spaces. Comput. Math. Appl. 49, 1825-1835 (2005) 3.3

Ahmad, R, Bazan, FF: An iterative algorithm for random generalized nonlinear mixed vari-
ational inclusions for random fuzzy mappings. Appl. Math. Comput. 167, 1400-1411 (2005)

1

Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: A new system of nonlinear fuzzy varia-
tional inclusions involving (A, n)-accretive mappings in uniformly smooth Banach spaces. J.

Inequal. Appl. 2009, 33 (Article ID 806727) (2009). doi:10.1155/2010/806727

Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: Generalized nonlinear random equations
with random fuzzy and relaxed cocoercive mappings in Banach spaces. Adv. Nonlinear Var.

Inequal. 13, 37-58 (2010)

24



[7]

[13]

[14]

[15]

Alimohammady, M, Balooee, J, Cho, YJ, Roohi, M: New perturbed finite step iterative al-
gorithms for a system of extended generalized nonlinear mixed-quasi variational inclusions.

Comput. Math. Appl. 60, 2953-2970 (2010)

Balooee, J, Cho, YJ, Kang, MK: The Wiener-Hopf equation technique for solving general
nonlinear regularized nonconvex variational inequalities. Fixed Point Theory Appl. 2011, 86

(2011). doi:10.1186,/1687-1812-2011-86

Balooee, J, Cho, YJ, Kang, MK: Projection methods and a new system of extended general
regularized nonconvex set-valued variational inequalities. J. Appl. Math. 2012, 18 (Article ID

690648) (2012). doi:10.1155/2012/690648

Aubin, JP: Mathematical Methods of Game and Economics Theory. North-Holland, Amster-

dam (1979) 1

Bensoussan, A, Goursat, M, Lions, JL: Control impulsinnel et inequations quasivariationalles

stationaries. C. R. Acad. Sci. 276, 1279-1248 (1973) 1

Chang, SS: Fixed Point Theory with Applications. Chongqing Publishing House, Chongqing

(1984) 1, 3.4, 3.5, 3

Chang, SS: Variational Inequality and Complementarity Problem Theory with Applications.

Shanghai Scientific and Tech. Literature Publishing House, Shanghai (1991) 1, 3.8, 4.3

Chang, MS, Chen, HY: A fuzzy user-optimal route choice problem using a link-based fuzzy

variational inequality formulation. Fuzzy Sets Syst. 114, 339-345 (2000) 1

Chang, SS, Huang, NJ: Generalized complementarity problems for fuzzy mappings. Fuzzy Sets

Syst. 55, 227-234 (1993) 1

25



[16]

[17]

[18]

21]

[22]

23]

[24]

[25]

Chang, SS, Huang, NJ: Generalized strongly nonlinear quasi-complementarity problems in

Hilbert spaces. J. Math. Anal. Appl. 158, 194-202 (1991) 1

Chang, SS, Huang, NJ: Generalized multivalued implicit complementarity problems in Hilbert

spaces. Math. Japon. 36, 1093-1100 (1991) 1

Chang, SS, Huang, NJ: Generalized random multivalued quasi-complementarity problems.

Indian J. Math. 35, 305-320 (1993) 1, 3.8, 4.3

Chang, SS, Huang, NJ: Random generalized set-valued quasi-complementarity problems. Acta

Math. Appl. Sinica 16, 396-405 (1993) 1

Chang, SS, Zhu, YG: On variational inequalities for fuzzy mappings. Fuzzy Sets Syst. 32,

359-367 (1989) 1

Chang, SS, Zhu, YG: On the problems for a class of random variational inequalities and

quasi-variational inequalities. J. Math. Res. Exposition 9, 385-393 (1989) 1

Cho, YJ, Huang, NJ, Kang, SM: Random generalized set-valued strongly nonlinear implicit

quasi-varitional inequalities. J. Inequal. Appl. 5, 515-531 (2000) 1, 3.3, 3.8, 4.3

Cho YJ, Lan, HY: Generalized nonlinear random (A, n)-accretive equations with random
relaxed cocoercive mappings in Banach spaces. Comput. Math. Appl. 55, 2173-2182 (2008)

1,3.3,3.8, 4.3

Cho YJ, Petrot, N: On the system of nonlinear mixed implicit equilibrium problems in Hilbert

spaces. J. Inequal. Appl. 2010, 12 (Article ID 437976) (2010) 1, 3.8, 4.3

Ceng, LLC, Ansari, QH, Ho, JL: Hybrid viscosity-like approximation methods for general mono-

tone variational inequalities. Taiwanese J. Math. 15, 1871-1896 (2011)

26



[26]

[27]

[29]

[30]

[33]

[35]

Ceng, LC, Ansari, QH, Yao, JC: Hybrid proximal-type and hybrid shrinking projection algo-
rithms for equilibrium problems, maximal monotone operators, and relatively nonexpansive

mappings. Numer. Funct. Anal. Optim. 31, 763-797 (2010)

Ceng, LC, Ansari, QH, Yao, JC: Hybrid pseudoviscosity approximation schemes for equilib-
rium problems and fixed point problems of infinitely many nonexpansive mappings. Nonlinear

Anal. Hybrid Syst. 4, 743-754 (2010)

Ceng, LC, Ansari, QH, Yao, JC: On relaxed viscosity iterative methods for variational in-

equalities in Banach spaces. J. Comput. Appl. Math. 230, 813-822 (2009)

Ceng, LC, Ansari, QH, Yao, JC: Relaxed extragradient iterative methods for variational in-

equalities. Appl. Math. Comput. 218, 1112-1123 (2011)

Ding, XP: Algorithm of solutions for mixed implicit quasi-variational inequalities with fuzzy

mappings. Comput. Math. Appl. 38(5-6), 231-249 (1999) 1

Ding, XP, Park, JY: A new class of generalized nonlinear implicit quasivariational inclusions

with fuzzy mapping. J. Comput. Appl. Math. 138, 243-257 (2002) 1

Dubois, D, Prade, H: Fuzzy Sets Systems, Theory and Applications. Academic Press, London

(1980) 1

Ganguly, A, Wadhawa, K: On random variational inequalities. J. Math. Anal. Appl. 206,

315-321 (1997) 1, 3.8, 4.3

Hassouni, A, Moudafi, A: A perturbed algorithm for variational inclusions. J. Math. Anal.

Appl. 185, 706-712 (1994) 1, 3.3, 3.8, 4.3

Himmelberg, CJ: Measurable relations. Fund. Math. 87, 53-72 (1975) 3.7

27



[36]

[37]

[38]

[41]

[42]

[43]

[44]

[45]

Huang, NJ: A new method for a class of nonlinear variational inequalities with fuzzy mappings.

Appl. Math. Lett. 9(3), 129-133 (1997) 1

Huang, NJ: Generalized nonlinear variational inclusions with noncompact valued mappings.

Appl. Math. Lett. 9, 25-29 (1996) 1, 3.3, 3.8, 4.3

Huang, NJ: Nonlinear implicit quasi-variational inclusions involving generalized m-accretive

mappings. Inequal. Appl. 2, 413-425 (2004) 1, 3.8, 4.3

Huang, NJ: Random generalized nonlinear variational inclusions for random fuzzy mappings.

Fuzzy Sets Syst. 105, 437-444 (1999) 1, 3.8, 4.3

Huang, NJ, Cho, YJ: Random completely generalized set-valued implicit quasi-variational

inequalities. Positivity 3, 201-213 (1999) 1, 3.8, 4.3

Huang, NJ, Fang, YP: Generalized m-accretive mappings in Banach spaces. J. Sichuan Univ.

38, 591-592 (2001) 1

Huang, NJ, Fang, YP: A new class of general variational inclusions involving maximal 7-

monotone mappings. Pub. Math. Debrecen 62, 83-98 (2003) 1, 3.8, 4.3

Huang, NJ, Lan, HY: A couple of nonlinear equations with fuzzy mappings in fuzzy normed

spaces. Fuzzy Sets Syst. 152, 209-222 (2005) 1

Huang, NJ, Long, X, Cho, YJ: Random completely generalized nonlinear variational inclusions
with non-compact valued random mappings. Bull. Korean Math. Soc. 34, 603-615 (1997) 1,

3.8, 4.3

Jeong, JU: Generalized set-valued variational inclusions and resolvent equations in Banach

spaces. Comput. Math. Appl. 47, 1241-1247 (2004) 3.3

28



[46]

[47]

[48]

[53]

[54]

Jin MM, Liu, QK: Nonlinear quasi-variational inclusions involving generalized m-accretive

mappings. Non. Func. Anal. Appl. 9, 413-425 (2004) 1, 3.8, 4.3

Khan, MF, Salahuddin, Verma, RU: Generalized random variational-like inequalities with

randomly pseudo-monotone multivalued mappings. PanAmer. Math. J. 16, 33-46 (2006) 1

Kumam, P, Petrot, N: Mixed variational-like inequality for fuzzy mappings in reflexive Banach

spaces. J. Inequal. Appl. 2009, 15 (Article ID 209485) (2009) 1

Lan, HY: Approximation solvability of nonlinear random (A, n)-resolvent operator equations
with random relaxed cocoercive operators. Comput. Math. Appl. 57, 624-632 (2009) 1, 3.3,

4.3

Lan, HY: On multi-valued nonlinear variational inclusion problems with (A, n)-accretive map-

pings in Banach spaces. J. Inequal. Appl. 2006, 12 (Article ID 59836) (2006) 3.3

Lan, HY: Projection iterative approximations for a new class of general random implicit quasi-

variational inequalities. J. Inequal. Appl. 2006, 17 (Article ID 81261) (2006) 1

Lan, HY, Cho, YJ, Verma, RU: Nonlinear relaxed cocoercive variational inclusions involving
(A, n)-accretive mappings in Banach spaces. Comput. Math. Appl. 51, 1529-1538 (2006) 1,

2.9, 2.10, 2.12

Lan, HY, Cho, YJ, Xie, W: General nonlinear random equations with random multival-
ued operator in Banach spaces. J. Inequal. Appl. 2009, 17 (Article ID 865093) (2009).

doi:10.1155/2009/865093 1, 3.3, 3.8, 4.3

Lan, HY, Verma, RU: Iterative algorithms for nonlinear fuzzy variational inclusion systems
with (A, n)-accretive mappings in Banach spaces. Adv. Nonlinear Var. Inequal. 11(1), 15-30

(2008) 1

29



[55]

[56]

[57]

[59]

[60]

[61]

[62]

[63]

Noor, MA: Variational inequalities with fuzzy mappings (I). Fuzzy Sets Syst. 55, 309-314

(1989) 1

Park JY, Jeong, JU: A perturbed algorithm of variational inclusions for fuzzy mappings. Fuzzy

Sets Syst. 115, 419-424 (2000) 1

Park JY, Jeong, JU: Iterative algorithm for finding approximate solutions to completely gener-
alized strongly quasivariational inequalities for fuzzy mappings. Fuzzy Sets Syst. 115, 413-418

(2000) 1

Onjai-Uea, N, Kumam, P: A generalized nonlinear random equations with random fuzzy
mappings in uniformly smooth Banach spaces. J. Inequal. Appl. 2010, 15 (Article ID 728452)

(2010). doi:10.1155/2010/728452 1, 3.3, 3.8, 4.3

Verma, RU: A-monotonicity and applications to nonlinear inclusion problems. J. Appl. Math.

Stoch. Anal. 17, 193-195 (2004) 1

Verma, RU: The over-relaxed A-proximal point algorithm and applications to nonlinear vari-

ational inclusions in Banach spaces. Fixed Point Theory 10, 185-195 (2009) 1

Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16, 1127-1138

(1991) 2

Zadeh, LA: Fuzzy sets. Inf. Control 8, 338-358 (1965) 1

Zimmermann, HI: Fuzzy Set Theory and its Applications. Kluwer Academic Publishing Group,

Boston, MA (1988) 1

30



	ปกนอก
	ปกใน
	กิตติกรรมประกาศ
	finalreport-MRG5380247
	result
	Out Put จากโครงการที่ได้รับจาก สกว
	ภาคผนวก
	ภาคผนวก 1
	2011-MRG53-AML-Set-Valued Fixed-Points Theorems for  Generalized contractive mappings without the Hausdorff metric
	ภาคผนวก 2
	2011-MRG53-TJM-Common Fixed Point Theorem for Hybrid Generalized Multivalued
	ภาคผนวก3
	2011-MRG53-JIA-Regularization and Iterative method for general variational inequality problem in Hilbert spaces
	Abstract
	1. Introduction
	2. Preliminaries
	3. Regularization
	4. Iterative Method
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

	ภาคผนวก4
	2011-MRG53-AML-Existence and stability of iterative algorithms for the system of nonlinear quasi-mixed equilibrium problems
	ภาคผนวก5
	2010-MRG53-CAMWA-Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems
	ภาคผนวก6
	2011-MRG53-AAA-Some Existence Theorems for Nonconvex. Variational Inequalities Problems
	ภาคผนวก7
	2011-MRG53-AMC-EXISTENCE AND ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED MIXED QUASI-VARIATIONAL-LIKE INEQUALITY PROBLEM IN BANACH SPACES
	ภาคผนวก8
	1029-242X-2012-98
	Start of article



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


