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Abstract  
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 In this project, firstly, we present some results on fixed point theorems, 
variational inequalities problems, system of  variational inequalities problems, and their 
relationships. Then, by using those knowledge, we prove the results on random fuzzy 
variational inclusion problems, which are the main purposes of this project. It is worth to 
mention that, the results presented in this project are more general and are viewed as 
an extension, refinement, and improvement of the previously known results in the 
literature. 
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บทน า 
 

การศึกษาเกี่ยวกับทฤษฎีบทอสมการการแปรผันได้เข้ามามีบทบาทส าคัญอย่างมากมากว่า 
20 ปี  เนื่องจากองค์ความรู้ท่ีได้จากการศึกษาในเรื่องดังกล่าวเป็นเครื่องมือส าคัญซึ่งสามารถ
น าไปประยุกต์ใช้ในการตอบปัญหาของแบบจ าลองพื้นฐานต่างๆทีเ่กิดจากในศาสตร์หลายๆ
แขนงท้ังวิทยาศาสตร์บริสุทธิ์และวิทยาศาสตร์ประยุกต์ เช่น nonlinear programming,  
physics, economics,  transportation equilibrium, regional และ engineering sciences  เป็น
ต้น  

ในปัจจุบันการศึกษาเกี่ยวกับทฤษฎีบทอสมการการแปรผันได้มีการพัฒนาข้ึนเป็นอย่าง
มาก  โดยได้มีการขยายแนวคิดของปัญหาอสมการการแปรผันแบบท่ีศึกษาโดย  Hartman และ 
Stampacchia ในปี ค.ศ. 1964 ไปยังแนวคิดที่มีความเป็นนัยท่ัวไปมากยิ่งขึ้น ซึ่งมีจุดประสงค์
หลัก คือ การสร้างองค์ความรู้ใหม่ที่สามารถน าไปประยุกต์ใช้ได้อย่างแพร่หลายและกว้างขวาง
มากยิ่งขึ้น ในแนวทางดังกล่าว แนวคิดเกี่ยวกับอสมการการแปรผันผนวก (variational 
inclusion) ถือเป็นการวางนัยทั่วไปของปัญหาอสมการการแปรผันท่ีน่าสนใจซึ่งสามารถน ามา
ประยุกต์ใช้และมีประโยชน์อย่างมาก ซึ่งองค์ความรู้ท่ีได้จากการศึกษาปัญหาอสมการการแปร
ผันผนวกนั้นได้มีส่วนส าคัญในการน าไปประยุกต์ใช้เกี่ยวกับการตอบปัญหา optimization 
theory, mathematical finance, decision sciences และ structural analysis เป็นต้น  ดังนั้นสิ่ง
ตามมาที่น่าสนใจคือปัญหาเกี่ยวกับกระบวนการหาค าตอบของวิธีการเชิงตัวเลขเพื่อให้ได้มาซึ่ง
ค าตอบของปัญหาดังกล่าว 

ในขั้นตอนของการพัฒนาการแนวคิดเกี่ยวกับการการประยุกต์ใช้องค์ความรู้ที่ได้รับจาก
ศึกษาทฤษฎีบทอสมการการแปรผันน้ัน ในปี 1985 Pang ได้แสดงว่า แบบจ าลองของปัญหา
ดุลยภาพ (equilibrium model) เช่น the traffic equilibrium problem, the spatial equilibrium 
problem, the Nash equilibrium และ the general equilibrium programming problem 
สามารถน ามาศึกษาในรูปแบบที่เอกรูป(uniformly model) ได้  โดยใช้แนวคิดการศึกษาอสมการ
การแปรผันบนเซตผลคูณ (product set) ซึ่งในการศึกษาดังกล่าวนั้น Pang ได้ใช้วิธกีารโดยแยก
อสมการการแปรผันตั้งต้นส าหรับปัญหาบนเซตผลคูณดังกล่าวเป็นระบบของอสมการการแปร
ผัน (system of variational inequalities)  และท าการศึกษาเกี่ยวกับกระบวนการหาค าตอบของ
ระบบของอสมการการแปรผัน  และได้แสดงให้เห็นว่าการศึกษาปัญหาอสมการการแปรผันบน
เซตผลคูณและปัญหาระบบของอสมการการแปรผันเป็นการศึกษาที่สมมูลกัน  ดังนั้นการศึกษา
เกี่ยวกับกระบวนการหาค าตอบของระบบของอสมการการแปรผัน จึงนับว่าเป็นสิ่งที่น่าสนใจ
อย่างยิ่ง 

 
ในอีกทางหนึ่งเป็นที่ทราบดีว่าการศึกษาเกี่ยวกับทฤษฎีเซตวิภัชนัย (fuzzy set theory) 

ซึ่งเร่ิมมีขึ้นในปี ค. ศ. 1965 โดย Zadeh  รวมถึงการศึกษาเกี่ยวกับสมการสุ่ม (random 



equations) ที่เกี่ยวพันกับตัวด าเนินการสุ่ม (random operator) นับว่าเป็นการศึกษาที่มี
ประโยชน์อย่างมากอีกเช่นกัน เนื่องจากมีการน าไปประยุกต์ใช้ในศาสตร์หลายๆแขนง อย่างเช่น 
physical, mathematical and engineering science, probabilistic model เป็นต้น  ดังนั้น
แนวคิดที่จะท าการศึกษาโดยการผสมผสานองค์ความรู้เกี่ยวกับ อสมการการแปรผันและระบบ
ของอสมการการแปรผัน เซตวิภัชนัย และ สมการสุ่มที่เกี่ยวพันกับตัวด าเนินการสุ่ม เพื่อให้ได้
องค์ความรู้ข้ึนมาใหม่นั้นจึงนับว่าเป็นเร่ืองที่น่าสนใจเป็นอย่างมาก เนื่องจากองค์ความรู้ท่ีได้รับ
จะครอบคลุมและสามารถน าไปประยุกต์ใช้ได้โดยรวมจากศาสตร์ท้ัง 3 แขนงท่ีกล่าวมาข้างต้น 
รวมถึงศาสตร์แขนงอื่นๆ ที่มีความเกี่ยวข้องได้อีกด้วย  

 
จากที่กล่าวมาข้างต้นจะเห็นได้ว่าทั้งการศึกษาทฤษฎีบทเกี่ยวกับความสัมพันธ์ระหว่าง

ระบบของอสมการการแปรผันท่ีมีความเกี่ยวข้องกับแนวคิดทฤษฎีเซตวิภัชนัยและสมการสุ่มนั้น
ถือว่าเป็นประโยชน์อย่างยิ่ง เนื่องจากปัญหาแต่ละชนิดต่างก็มีความส าคัญเด่นชัดในการน าไป
ประยุกต์ใช้แก้ปัญหาที่เกี่ยวข้อง ตัวอย่างเช่น เป็นท่ีทราบดีว่าในการศึกษาหัวข้อเกี่ยวกับ 
mathematical programming จะพบว่า ปัญหาอสมการการแปรผันจะมีความเกี่ยวข้องกับปัญหา
การประมาณ (optimization problem) ท าให้ผลที่ตามมาคือ การศึกษาเกี่ยวกับปัญหาอสมการ
การแปรผันที่มีความสัมพันธ์กับแนวคิดทฤษฎีเซตวิภัชนัยจะมีความเกี่ยวข้องกับปัญหาการ
ประมาณเชิงวิภัชนัย (fuzzy optimization problem)  ซึ่งเม่ือน ามาประกอบกับการพิจารณาใน
แนวคิดของสมการสุ่มซึ่งมีบทบาทส าคัญในการศึกษาเกี่ยวกับแบบจ าลองในวิทยาศาสตร์
ประยุกต์ (applied sciene)  ร่วมด้วยจึงนับว่าเป็นที่น่าสนใจอย่างยิ่ง  

ดังนั้นในโครงการวิจัยน้ีผู้ด าเนินการวิจัยจึงมีความสนใจที่จะศึกษาและแก้ปัญหาเพื่อให้
ได้องค์ความรู้ใหม่ที่น่าสนใจ คือ ศึกษากระบวนการข้ันตอนวิธีในการหาค าตอบของระบบของ
อสมการการแปรผันผนวกรวมถึงสมการแปรผันผนวกวางนัยทั่วไปโดยมีความเกี่ยวข้องกับ
แนวคิดทฤษฎีเซตวิภัชนัยและสมการสุ่ม ซึ่งการศึกษาปัญหาดังกล่าวจะท าให้ทฤษฎีบทที่ค้นพบ
ครอบคลุมการศึกษาที่มีอยู่เดิม ซึ่งมีผลต่อเนื่องท าให้ได้องค์ความรู้ใหม่ที่ได้สามารถน าไปใช้ได้
อย่างกว้างขวางและมีศักยภาพมากยิ่งขึ้น  ซึ่งจะเป็นพื้นฐานที่ส าคัญในการพัฒนาวิชาการใน
สาขาวิชาที่เกี่ยวข้องอันจะเป็นพื้นฐานในการพัฒนาประเทศต่อไป 

 

จุดประสงค์ของการวิจัย 
วัตถุประสงค์ของโครงการวิจัยนี้ คือ คิดค้นทฤษฎีบทและองค์ความรู้ใหม่ๆ เกี่ยวกับ 

1. กระบวนการข้ันตอนวิธีในการหาค าตอบของระบบของอสมการแปรผันผนวกสัมพันธ์
กับแนวคิดทฤษฎีเซต วิภัชนัยและสมการสุ่มบนปริภูมิฮิลเบิร์ต 
2.  กระบวนการข้ันตอนวิธีในการหาค าตอบของระบบของอสมการแปรผันผนวกวางนัย
ทั่วไปสัมพันธ์กับ แนวคิดทฤษฎีเซตวิภัชนัยและสมการสุ่มปริภูมิฮิลเบิร์ต 
     
 



ผลการวิจัย

1. Fixed point problems
Let (X, d) be a metric space and 2X , CB(X), Cl(X) denote the collec-

tions of nonempty subsets of X , nonempty closed bounded subsets of X and
nonempty closed subsets of X , respectively. If T : X → 2X is a mapping,
then an element x ∈ X is called a fixed point of T if x ∈ T (x) and Fix(T )

denotes the set of fixed points of T , that is, Fix(T ) = {x ∈ X : x ∈ T (x)}.

Recall that the function H on CB(X) defined by

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
for all A, B ∈ CB(X) is called the Hausdorff metric, where d(x, B) =

inf
b∈B

{d(x, b)}.

1.1. Yeol Je Cho, Soawapak Hirunworakit, Narin Petrot, Set-Valued Fixed
Points Theorems for Generalized contractive mappings without the Hausdorff
metric, Applied Mathematics Letters 24 (2011) 1959–1967.

The concept of τ− distance on a metric space, which is a generalization
of w- distance, introduced by T. Suzuki [T. Suzuki, Generalized Distance and
Existence Theorems in Complete Metric Spaces, J. Math. Anal. Appl. 253
(2001), 440-458], as following. Let X be a metric space with metric d. Then
a function p from X×X into [0,∞) is called τ−distance on X if there exists
a function η from X × [0,∞) into [0,∞) and the followings are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;

(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞) and η is
concave and continuous in its second variable;

(τ3) limn→∞ xn = x and limn→∞ sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply
p(w, x) ≤ lim infn→∞ p(w, xn) for all w ∈ X;

(τ4) limn→∞ sup{p(xn, ym)) : m ≥ n} = 0 and limn→∞ η(xn, tn) = 0 imply
limn→∞ η(yn, tn) = 0;
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(τ5) limn→∞ η(zn, p(zn, xn)) = 0 and limn→∞ η(zn, p(zn, yn)) = 0 imply
limn→∞ d(xn, yn) = 0.

We define Dp(x, A) = inf{p(x, y)|y ∈ A}. Then, in this part, we have the
following results.

Theorem 1 Let (X, d) be a metric space and T : X → Cl(X) is set-valued
contractive mapping. If there exit a function ϕ : [0,∞) → [0, 1) and a non-
decreasing function θ : [0,∞) → [c, 1), c > 0, such that

ϕ(t) < θ(t)

for all t ∈ [0,∞) and

lim sup
t→r+

ϕ(t) < lim sup
t→r+

θ(t)

for all r ∈ [0,∞), and there exists a τ -distance p on X such that for any
x ∈ X there exists y ∈ T (x) satisfying

θ(p(x, y))p(x, y) ≤ Dp(x, T (x))

and
Dp(y, T (y)) ≤ ϕ(p(x, y))p(x, y).

Then we have the following:

(a) For each x0 ∈ X , there exists an orbit {xn} ∈ O(T, x0) such that
{Dp(xn, T (xn))} is decreasing to zero and the sequence {xn} is a Cauchy
sequence.

(b) If {xn} converges to z and the function f(x) := Dp(x, T (x)) is T -
orbitally lower semi-continuous at z with respect to x0 then z ∈ F (T ).
Moreover, if T (z) = z then p(z, z) = 0.

Theorem 2 Let (X, d) be a complete space. Suppose that T : X → Cl(X) be
a set-valued mapping of X into itself. If there exists a function ϕ : [0,∞) →
[0, 1) such that

lim sup
r→t+

ϕ(r) < 1
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for any t ∈ [0,∞) and there exists a τ -distance p on X such that, for any
x ∈ X , there exists y ∈ T (x) satisfying

p(x, y) ≤ (2− ϕ(p(x, y)))Dp(x, T (x))

and
Dp(y, T (y)) ≤ ϕ(p(x, y))p(x, y).

Then we have the following:

(a) For any x0 ∈ X , there exist an orbit {xn} ∈ O(T, x0) and z ∈ X such
that lim

n→∞
xn = z.

(b) If the function f(x) := Dp(x, T (x)) is T -orbitally lower semi-continuous
at z with respect to x0 then z ∈ F (T ). Moreover, if T (z) = z then
p(z, z) = 0.

Also, in the presented paper, some interesting remarks and examples are
also discussed.

1.2. Jittiporn Suwannawit and Narin Petrot, Common Fixed point the-
orems for hybrid generalized multivalued, Thai Journal of Mathematics, 9(2)
(2011), 417–427

Let X be a metric space. A subset C ⊂ X is said to be approximative if
the multivalued mapping

PC(x) = {c ∈ C : d(x, c) = D(x, C)}, ∀x ∈ X

has nonempty values. The multivalued mapping T : X → 2X is said to have
approximative values if T (x) is approximative for each x ∈ X .
Let ∝∈ (0,∞],R+

∝ = [0, ∝). Let ϕ : R+
∝ → [0,∞) satisfy

(i) ϕ(t) < t for each t ∈ (0, ∝);

(ii) ϕ is nondecreasing on R+
∝

(iii) ϕ is upper-semicontinuous.
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Define Φ[0, ∝) = {ϕ : ϕ satisfies (i)-(iii) above}.

From now on, for a metric space X , we let Γ = sup{d(x, y) : x, y ∈ X}
and set ∝= Γ if Γ = ∞, and ∝> Γ if Γ < ∞.
Let J denotes an interval on [0,∞) containing 0, that is an interval of

the form [0, r], [0, r) or [0,∞), and we use the abbreviation ϕn for the nth
iterate of a function ϕ. A nondecreasing function ϕ : J → J is said to be a
Bianchini-Grandolfi gauge function on J if Σ∞

n=0ϕ
n(t) < ∞ for all t ∈ J.

Suppose that S, T : E → 2E and ϕ ∈ Φ[0, ∝) satisfy

H(Sx, Ty) ≤ ϕ(ρ(x, y)),

for each x, y ∈ E, where

ρ(x, y) = max{d(x, y), D(Sx, x), D(Ty, y),
1

2
[D(y, Sx) + D(x, Ty)]}.

Then the pair S, T is called the hybrid generalized multivalued ϕ-weak con-
traction mapping.
Motivated and spirted by the research going on this field, in this work we

prove that there is a common fixed point of hybrid generalized multivalued
ϕ-weak contractions S, T on complete metric spaces X .

Theorem 1 Let (X, d) be a complete metric space. Let S, T be a pair of
hybrid generalized multivalued ϕ-weak contractions on X . Assume that S, T

have the approximative values and ϕ|J is a Bianchini-Grandolfi gauge function
on some interval J ⊂ R+

∝. If there is x ∈ E such that either D(x, Sx) ∈ J or
D(x, Tx) ∈ J then the mappings S and T have a common fixed point u ∈ X .

We also use the following concepts to present some further results.
Let ∝∈ (0,∞],R+

∝ = [0, ∝). Let f : [0,∞) → [0,∞) satisfy

(i) f(0) = 0 and f(t) > 0 for each t ∈ (0, ∝);

(ii) f is nondecreasing on R+
∝;

(iii) f is continuous on R+
∝;

(iv) f(a + b) ≤ f(a) + f(b) for all a, b ∈ [0,∞).
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Define F [0, ∝) = {f : f satisfies (i)-(iv) above}.

Theorem 2 Let (X, d) be a complete metric space and S, T : X → 2X be
a pair of multivalued mappings. Suppose that ϕ ∈ Φ[0, ∝) and f ∈ F [0, ∝)

satisfy
f(H(Sx, Ty)) ≤ ϕ(f(ρ(x, y)))

for each x, y ∈ X . Assume that S, T have the approximative values and ϕ|J
is a Bianchini-Grandolfi gauge function on some interval J ⊂ R+

∝. If there
is x ∈ X such that either f(D(x, Sx)) ∈ J or f(D(x, Tx)) ∈ J then the
mappings S and T have a common fixed point u ∈ X .

2. Variational inequalities problems on Hilbert spaces
In this part we will use the following notations. Let H be a real Hilbert

space whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖, respectively.
Let C be a nonempty closed convex subset of H .

2.1. Yeol Je Cho and Narin Petrot, Regularization and Iterative method
for general variational inequality problem in Hilbert spaces, Journal of In-
equalities and Applications 2011, 2011:21.

In 1988, Noor [M. A. Noor, General variational inequalities, Appl. Math.
Lett. 1 (1988) 119-121] introduced and studied a class of variational in-
equalities, which is known as general variational inequality, GV IC(A, g), as
following: Find u∗ ∈ H, g(u∗) ∈ C such that

〈A(u∗), g(v)− g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ C, (1)

where C is a nonempty closed convex subset of a real Hilbert space H with
inner product 〈·, ·〉, and T, g : H → H be mappings.
Motivated and inspired by the research going in this direction, in this paper,

we present a method for finding a solution of the problem (1) which is related
to the solution set of an inverse strongly monotone mapping as following: Find
u∗ ∈ H, g(u∗) ∈ S(T ) such that

〈A(u∗), g(v)− g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ C, (2)
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when A is a generalized monotone mapping, T : C → H is an inverse
strongly monotone mapping and S(T ) = {x ∈ C : T (x) = 0}. We will denote
by GV IC(A, g, T ) for a set of solution to the problem (2).

Let α ∈ (0, 1) be a fixed positive real number. We now construct a reg-
ularization solution uα for (2), by solving the following general variational
inequality problem: find uα ∈ H, g(uα) ∈ C such that

〈A(uα)+αµ(T◦g)(uα)+αg(uα), g(v)−g(uα)〉 ≥ 0 ∀v ∈ H, g(v) ∈ C, 0 < µ < 1.

(3)

Theorem 1 (Regularization) Let C be a closed convex subset of a Hilbert
space H and g : H → H be a mapping such that C ⊂ g(H). Let A : H → H

be a hemicontinuous on C and g-monotone mapping, T : C → H be λ-inverse
strongly monotone mapping. If g is an expanding affine continuous mapping
and GV IC(A, g, T ) 6= ∅, then the following conclusions are true:

(a) For each α ∈ (0, 1), the problem (3) has the unique solution uα.

(b) If α ↓ 0 then {g(uα)} converges. Moreover, lim
α→0+

g(uα) = g(u∗) for some
u∗ ∈ GV IC(A, g, T ).

(c) There exists a positive constant M such that

‖g(uα)− g(uβ)‖2 ≤ M(β − α)

α2
, (4)

when 0 < α < β < 1.

We also consider the regularization inertial proximal point algorithm

〈cn[A(zn+1)+αµ
n(T ◦g)(zn+1)+αng(zn+1)]+g(zn+1)−g(zn), g(v)−g(zn+1)〉 ≥ 0

∀ v ∈ H, g(v) ∈ K , z1 ∈ H, g(z1) ∈ K. (5)

Theorem 2 (Iterative Method) Assume that all hypothesis of the Theorem 1
are satisfied. If the parameters cn and αn are chosen positive real numbers
such that

(C1) lim
n→∞

αn = 0,
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(C2) lim
n→∞

αn−αn+1

α2
n+1

= 0,

(C3) lim inf
n→∞

cnαn > 0,

then the sequence {g(zn)} defined by (5) converges strongly to the element
g(u∗) as n → +∞, where u∗ ∈ GV IK(A, g, T ).

2.2. Suthep Suantai and Narin Petrot, Existence and stability of iterative
algorithms for the system of nonlinear quasi mixed equilibrium problem,
Applied Mathematics Letters 24 (2011) 308–313.

Let Φ1, Φ2 : H×H → H be given two bi-functions satisfying Φi(x, x) = 0

for all x ∈ H, i = 1, 2. Let Ti : H ×H → H be a nonlinear mapping for each
i = 1, 2. In this work, let CC(H) be denoted for the family of all nonempty
subsets of H and let Ci : H → CC(H) be a point-to-set mappings which
associate a convex set Ci(x) with any element x of H , for each i = 1, 2. We
consider the problem of finding (x∗, y∗) ∈ H ×H such that x∗ ∈ C1(x

∗), y∗ ∈
C2(y

∗) and Φ1(x
∗, z) + 〈T1(x

∗, y∗), z − x∗〉 ≥ 0, ∀z ∈ C1(x
∗),

Φ2(y
∗, z) + 〈T2(x

∗, y∗), z − y∗〉 ≥ 0, ∀z ∈ C2(y
∗).

(6)

We have considered the following class of mappings in this part.
A mapping T : H → H is said to be ν-strongly monotone if there exists a

constant ν > 0 such that

〈Tx− Ty, x− y〉 ≥ ν‖x− y‖2, ∀x, y ∈ H.

And it is said to be (τ, σ)-Lipschitz if there exist constants τ, σ > 0 such that

‖T (x1, y1)− T (x2, y2)‖ ≤ τ‖x1 − x2‖+ σ‖y1 − y2‖, ∀x1, x2, y1, y2 ∈ H.

Theorem 1 (Existence theorem) For each i = 1, 2, let Φi : H × H → R
be a monotone function and Ci : H → CC(H). Let T1 : H × H → H be a
ν1-strongly monotone with respect to the first argument and (τ1, σ1)-Lipschitz
mapping and T2 : H × H → H be a ν2-strongly monotone with respect to
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the second argument and (τ2, σ2)-Lipschitz mapping. Suppose that there are
positive real numbers ρ1, ρ2 which satisfy the following condition: (1− 2ρ1ν1 + ρ2

1τ
2
1 )

1
2 + ρ2τ2 < 1− η1,

(1− 2ρ2ν2 + ρ2
2τ

2
2 )

1
2 + ρ1σ1 < 1− η2.

Then the set of solution of the problem (6) is a singleton.

Theorem 1 not only gives the conditions for the existence solution of the
problems (6) but also provide the algorithm to find such solution for any
initial vector (x0, y0) ∈ H × H. In fact, by proceeding along the same lines
as in Theorem 1, one can also show that the sequences {(xn, yn)}, defined by
following Mann type perturbed iterative algorithm (MTA), xn+1 = (1− αn)xn + αnJ

ρ1

Φ1,C1(xn)[xn − ρ1T1(xn, yn)],

yn+1 = (1− αn)yn + αnJ
ρ2

Φ2,C2(yn)[yn − ρ2T2(xn, yn)],
(7)

converges strongly to the unique solution of the problem (6), when {αn}
is a sequence of real numbers such that αn ∈ (0, 1) and

∑∞
n=0 αn = ∞.

The stability analysis for (7) is also discussed. Firstly, we have observed the
following facts. Let (x, y) ∈ H ×H. Then (x, y) is a solution of the problem
(6) if and only if there exist positive real numbers ρ1, ρ2 such that (x, y) is a
fixed point of the map Gρ1,ρ2 : H×H → H×H defined by

Gρ1,ρ2(x, y) = (Aρ1(x, y), Bρ2(x, y)), ∀(x, y) ∈ H ×H, (8)

where Aρ1 , Bρ2 : H×H → H are defined by

Aρ1(x, y) = (1− λ)x + λJρ1

Φ1,C1(x)[x− ρ1T1(x, y)]

Bρ2(x, y) = (1− λ)y + λJρ2

Φ2,C2(y)[y − ρ2T2(x, y)],

where λ ∈ (0, 1) is a fixed constant.

Now we give a definition, for stability analysis. Let H be a Hilbert space
and let A, B : H×H → H be nonlinear mappings. Let G : H×H → H×H
be defined as G(x, y) = (A(x, y), B(x, y)) for any (x, y) ∈ H × H, and let
(x0, y0) ∈ H×H. Assume that (xn+1, yn+1) = f(G, xn, yn) defines an iteration
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procedure which yields a sequence of {(xn, yn)} in H × H. Suppose that
F (G) = {(x, y) ∈ H × H : G(x, y) = (x, y)} 6= ∅ and {(xn, yn)} converges
to some (x∗, y∗) ∈ F (G). Let {(un, vn)} be an arbitrary sequence in H × H
and εn = ‖(un, vn) − f(G, xn, yn)‖, for all n ≥ 0. If lim

n→∞
εn = 0 implies that

lim
n→∞

(un, vn) = (x∗, y∗), then the iterative procedure {(xn, yn)} is said to be
G-stable or stable with respect to G.

Theorem 2 (Stability analysis) Assume that all conditions of the Theorem
1 hold. Let {(un, vn)} be an arbitrary sequence in H×H and define {δn} ⊂
[0,∞) by

δn = ‖(un+1, vn+1)− (Cn, Dn)‖+, (9)

where  Cn = (1− αn)xn + αnJ
ρ1

Φ1,C1(xn)[xn − ρ1T1(xn, yn)],

Dn = (1− αn)yn + αnJ
ρ2

Φ2,C2(yn)[yn − ρ2T2(xn, yn)],
(10)

where (xn, yn) is defined in (7), for each n ∈ N. If Gρ1,ρ2 defined as in (8)
then the iterative procedure (7) is Gρ1,ρ2-stable.

2.3. Ioannis K. Argyros, Yeol Je Cho and Narin Petrot, Approxima-
tion methods for common solutions of generalized equilibrium, systems of
nonlinear variational inequalities and fixed point problems, Computers and
Mathematics with Applications 60 (2010) 2292–2301.

Let ϕ : C → R be a real-valued function, Q : C → H be a mapping and
Φ : H × C × C → R be an equilibrium-like function, that is, Φ(w, u, v) +

Φ(w, v, u) = 0 for all (w, u, v) ∈ H × C × C. We consider the following
generalized equilibrium problem:Find x∗ ∈ C such that

Φ(Qx∗, x∗, y) + ϕ(y)− ϕ(x∗) ≥ 0, ∀y ∈ C.
(1.1)

We denote the set of solutions of the generalized equilibrium problem (1.1)
by GEP (C, Q, Φ, ϕ).

On the other hand, for two nonlinear mappings A, B : C → H, we consider
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the following system of nonlinear variational inequalities problems:
Find (x∗, y∗) ∈ C × C such that

〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,

〈ρBx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C,

(1.3)

where λ and ρ are positive numbers.

Recall that a mapping S : C → C is said to be Lipschitz continuous if
there exists a positive constant L > 0 such that

‖Sx− Sy‖ ≤ L‖x− y‖, ∀x, y ∈ C.

In the case L = 1, the mapping S is known as a nonexpansive mapping.
If S : C → C is a mapping, we denote the set of fixed points of S by F (S),
that is, F (S) = {x ∈ C : Sx = x}.

Let ϕ : C → R be a real-valued function, Q : C → H be a mapping and
Φ : H × C × C → R be an equilibrium-like function. Let r be a positive
number. For any x ∈ C, we consider the following problem:Find y ∈ C such that

Φ(Qx, y, z) + ϕ(z)− ϕ(y) + 1
r
〈y − x, z − y〉 ≥ 0, ∀z ∈ C,

(1.5)

which is known as the auxiliary generalized equilibrium problem.

Let T (r) : C → C be the mapping such that, for each x ∈ C, T (r)(x) is the
solution set of the auxiliary problem (1.5), i.e.,

T (r)(x) = {y ∈ C : Φ(Qx, y, z)+ϕ(z)−ϕ(y)+
1

r
〈y−x, z−y〉 ≥ 0, ∀z ∈ C}, ∀x ∈ C.

In this part, we have assumed the following Condition (∆):

(a) T (r) is single-valued;

(b) T (r) is nonexpansive;

(c) F (T (r)) = GEP (C, Q, Φ, ϕ).
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Now, assuming that the Condition (∆) is satisfied, then we can introduce
the following algorithm:

Algorithm (I). Let ρ and λ be two positive numbers. Let A, B : C → H and
S : C → C be mappings. For any u, x1 ∈ C, there exist sequences {un}, {yn},
{zn} and {xn} in C such that

Φ(Qxn, un, v) + ϕ(v)− ϕ(un) + 1
r
〈un − xn, v − un〉 ≥ 0, ∀v ∈ C,

yn = PC(xn − ρBxn),

zn = PC(yn − λAyn),

xn+1 = anu + bnxn + cn [γ1Sxn + γ2un + γ3zn] , ∀n ≥ 1,

where {an}, {bn}, {cn} are real sequences in [0, 1] and γ1, γ2, γ3 ∈ (0, 1) such
that an + bn + cn = 1 for all n ≥ 1 and γ1 + γ2 + γ3 = 1.

Theorem 1 Let C be a nonempty closed convex subset of a Hilbert space
H. Let A, B : C → H be two nonlinear mappings and S : C → C be a
nonexpansive mapping. Assume that the Condition (∆) is satisfied and

Ω = GEP (C, Q, Φ, ϕ) ∩ F (S) ∩ F (D) 6= ∅,

where the mapping D is defined by

D(x) = PC [PC(x− ρBx)− λAPC(x− ρBx)], ∀x ∈ C.

Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences in C

generated by Algorithm (I). If the following conditions are satisfied:

(i) (I − λA) and (I − ρB) are nonexpansive mappings, where ρ and λ are
positive constants;

(ii) limn→∞ an = 0 and
∑∞

n=1 an = ∞;

(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the Algorithm (I) converges strongly to a
point x̃ = PΩu. Moreover, if ỹ = PC(x̃− ρBx̃), then (x̃, ỹ) is a solution to the
problem (1.3).
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Also, some applications of this main results are also presented (please
kindly see appendix).

2.4. Narin Petrot, Some existence theorems for nonconvex variational
inequalities problems,Abstract and Applied Analysis, Volume 2010, Article ID
472760, 9 pages.

In this part, by using nonsmooth analysis knowledge, we provide the con-
ditions for existence solutions of the variational inequalities problems in non-
convex setting. We also show that the strongly monotonic assumption of the
mapping may not need for existence of solutions. In fact, we have considered
the following problem: find x∗, y∗ ∈ C such that{

y∗ − x∗ − ρTy∗ ∈ NP
C (x∗),

x∗ − y∗ − ηTx∗ ∈ NP
C (y∗),

(11)

where ρ and η are fixed positive real numbers, C is a closed subset of H and
T : C → H is a mapping.
We are deal with the following concepts. For a given r ∈ (0, +∞], a subset

C of H is said to be uniformly prox-regular with respect to r if for all x ∈ C

and for all 0 6= z ∈ NP
C (x), one has〈
z

‖z‖
, x− x

〉
≤ 1

2r
‖x− x‖2, ∀x ∈ C.

We make the convention 1
r

= 0 for r = +∞.
It is well-known that a closed subset of a Hilbert space is convex if and

only if it is proximally smooth of radius r > 0. Thus, for the case of r = ∞,
the uniform r-prox-regularity K is equivalent to the convexity of K. Moreover,
it is clear that the class of uniformly prox-regular sets is sufficiently large to
include the class p-convex sets, C1,1submanifolds (possibly with boundary) of
H , the images under a C1,1 diffeomorphism of convex sets and many other
nonconvex sets.

Theorem 1 Let C be an uniformly r-prox-regular closed subset of a Hilbert
space H and T : C → H be a nonlinear mapping. Let T1, T2 : C → H be
such that T1 is a µ1-Lipschitz continuous and γ-strongly monotone mapping,

13



T2 is a µ2-Lipschitz continuous mapping. If T = T1 + T2 and the following
conditions are satisfied

(a) Mρ,ηδT (C) < ξ, where δT (C) = sup{‖u− v‖; u, v ∈ T (C)};

(b) there exists s ∈ (Mρ,ηδT (C), ξ) such that

γts − µ2

ts(µ2
1 − µ2

2)
− ζ < ρ, η < min

{
γts − µ2

ts(µ2
1 − µ2

2)
+ ζ,

1

tsµ2

}
, (12)

where Mρ,η = max{ρ, η}, ts = r
r−s
and ζ =

√
(tsγ−µ2)2−(µ2

1−µ2
2)(t2s−1)

ts(µ2
1−µ2

2)
.

Then the problem (11) has a solution.

Notice that, in the presented paper, an iterative method for finding the
solution of problem (11) is also showed and some special cases are also
discussed.

3. Variational inequalities problems on Banach spaces

Let E be a real Banach space with its topological dual E∗, and 〈·, ·〉 be the
generalized duality pairing between E and E∗. Let CB(E∗) be the family of
all nonempty bounded and closed subsets of E∗. The Hausdorff metric, H(·, ·),
on CB(E∗) is defined by

H(C, D) = max

{
sup
x∈C

d(x, D), sup
y∈D

d(C, y)

}
, ∀C, D ∈ CB(E∗).

3.1. Poom Kumama, Narin Petrot and Rabian Wangkeeree, Existence
and iterative approximation of solutions of generalized mixed quasi-variational-
like inequality problem in Banach spaces, Applied Mathematics and Compu-
tation 217 (2011) 7496–7503.

Let K be a nonempty convex subset of E, in this paper, we devote our
study to a class of generalized mixed quasi-variational-like inequality problem,
which is stated as follows:
Let T,A : K → CB(E∗) be two set-valued mappings. N : E∗ × E∗ → E∗

and η : K × K → E be two single-valued mappings. Let ϕ : E × E →
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(−∞, +∞] be a real bi-function. For a given w∗ ∈ E∗, we shall study the
following problem :

GMQV LIP (T,A, N, η, ϕ)

 find u ∈ K, x, y ∈ E∗ such that x ∈ T (u), y ∈ A(u)

〈N(x, y)− w∗, η(v, u)〉+ ϕ(u, v)− ϕ(u, u) ≥ 0, ∀v ∈ K.

(13)
In case of (13), we will denote by (u, x, y) ∈ GMQV LIP (T,A, N, η, ϕ).

We have considered the following classes of mappings. Let T,A : K →
CB(E∗) be two set-valued mappings. Let N : E∗×E∗ → E∗, η : K×K → K

be mappings. Then

(i) T is said to be η-cocoercive with respect to the first argument of N(·, ·),
if there exists a constant τ > 0, such that

〈N(x, ·)−N(x′, ·), η(u, v)〉 ≥ τ‖N(x, ·)−N(x′, ·)‖2, ∀u, v ∈ K, x ∈ T (u), x′ ∈ T (v);

(ii) N(·, ·) is Lipschitz continuous in the second argument with respect to
the set-valued mapping A, if there exists a constant α > 0 such that

‖N(·, y)−N(·, y′)‖ ≤ α‖u− v‖, ∀u, v ∈ K, y ∈ A(u), y′ ∈ A(v);

(iii) N(·, ·) is η-strongly monotone in the first argument with respect to the
set-valued mapping T if there exists a constant ξ > 0 such that

〈N(x, ·)−N(x′, ·), η(u, v)〉 ≥ ξ‖u−v‖2, ∀u, v ∈ K, x ∈ T (u), x′ ∈ T (v).

Similarly, η-strongly monotone of N(·, ·) in the second argument with
respect to the set-valued mapping A can be defined;

(iv) T is said to be H-Lipschitz continuous if there exists a constant γ > 0

such that
H((T (u), T (v)) ≤ γ‖u− v‖, ∀u, v ∈ K;

(v) η is Lipschitz continuous, if there exists a constant δ > 0 such that

‖η(u, v)‖ ≤ δ‖u− v‖,

for any u, v ∈ K.
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In this work, we have assume that N : E∗ × E∗ → E∗, η : K × K → E be
two mappings satisfying the following conditions (A):

(a) η(u, v) = η(u, z) + η(z, v) for each u, v, z ∈ K;

(b) for each fixed (u, x, y) ∈ K × E∗ × E∗, v 7→ 〈N(x, y), η(u, v)〉 is a
concave function.

(c) for each fixed v ∈ K, the functional (u, x, y) 7→ 〈N(x, y), η(u, v)〉 is
weakly lower semi-continuous function from K × E∗ × E∗ to R, i. e.,

un ⇀ u, xn ⇀ x and yn ⇀ y imply 〈N(x, y), η(u, v)〉 ≤ lim inf
n→∞

〈N(xn, yn), η(un, v)〉.

Theorem 1(Existence theorem) Let E be a real reflexive Banach space with
the dual space E∗, and K be a nonempty convex subset of E. Let T, A :

K → CB(E∗) be two set-valued mappings. Let N : E∗ × E∗ → E∗, and
η : K×K → E. Let ϕ : E×E → (−∞, +∞] be skew-symmetric and weakly
continuous such that int{u ∈ K : ϕ(u, u) < ∞} 6= ∅ and ϕ(u, ·) is proper
convex, for each u ∈ E. Suppose that:

(i) T is η-cocoercive with respect to the first argument of N(·, ·) with
constant τ ;

(ii) η is Lipschitz continuous with constant δ > 0;

(iii) N(·, ·) is Lipschitz continuous and η-strongly monotone in the second
argument with respect to A with constant α > 0 and β > 0, respectively.

If condition (A) is satisfied, then GMQV LIP (T, A, N, η, ϕ) 6= ∅.

Also, in this paper, we have constructed an iterative method for finding the
solution of considered problem.

4. Random fuzzy variational inequalities problems on Banach spaces

Throughout this part, let (Ω,A, µ) be a complete σ-finite measure space
and X be a separable real Banach space endowed with dual space X∗, the
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norm ‖.‖ and the dual pair 〈., .〉 between X and X∗. We denote by B(X),
CB(X) and Ĥ(., .) the class of Borel σ-fileds in X , the family of all nonempty
closed bounded subsets of X and the Hausdorff metric

Ĥ(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}

on CB(X), respectively.

4.1. Narin Petrot and Javad Balooee, A New Class of General Nonlin-
ear Random Set-valued Variational Inclusion Problems Involving A-maximal
m-relaxed η-accretive Mappings and Random Fuzzy Mappings in Banach
Spaces, Journal of Inequalities and Applications 2012, 2012:98.

In what follows, we denote the collection of all fuzzy sets on X by
F(X) = {A|A : X → [0, 1]}. For any set K, a mapping S from K into
F(X) is called a fuzzy mapping. If S : K → F(X) is a fuzzy mapping, then
S(x), for any x ∈ K, is a fuzzy set on F(X) (in the sequel, we denote S(x)

by Sx) and Sx(y), for any y ∈ X , is the degree of membership of y in Sx.
For any A ∈ F(X) and α ∈ [0, 1], the set

(A)α = {x ∈ X : A(x) ≥ α}

is called a α-cut set of A.

We have considered the following classes of mappings. A fuzzy mapping
S : Ω → F(X) is called measurable if, for any α ∈ (0, 1], (S(.))α : Ω ( X

is a measurable set-valued mapping. A fuzzy mapping S : Ω×X → F(X) is
called a random fuzzy mapping if, for any x ∈ X , S(., x) : Ω → F(X) is a
measurable fuzzy mapping.

Now, let us introduce our main considered problem.
Suppose that S, T ,P ,Q,G : Ω ×X → F(X) are random fuzzy mappings,

A, p : Ω × X → X and η : Ω × X × X → X , N : Ω × X × X × X → X

are random single-valued mappings. Further, let a, b, c, d, e : X → [0, 1] be
any mappings and M : Ω × X × X ( X be a random set-valued mapping
such that, for each fixed t ∈ Ω and z(t) ∈ X , M(t, ., z(t)) : X ( X be an
A-maximal m-relaxed η-accretive mapping with Im(p)∩domM(t, ., z(t)) 6= ∅.
Now, we consider the following problem:
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For any element h : Ω → X and any measurable function λ : Ω → (0, +∞),
find measurable mappings x, ν, u, v, ϑ, w : Ω → X such that for each t ∈ Ω,
x(t) ∈ X , St,x(t)(ν(t)) ≥ a(x(t)), Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)),
Qt,x(t)(ϑ(t)) ≥ d(x(t)), Gt,x(t)(w(t)) ≥ e(x(t)) and

h(t) ∈ Nt(ν, u, v) + λ(t)Mt(pt(x)− ϑ, w), ∀t ∈ Ω. (14)

The problem (14) is called the general nonlinear random A-maximal m-
relaxed η-accretive equation with random relaxed cocoercive mappings and
random fuzzy mappings in Banach spaces.

The generalized duality mapping Jq : X ( X∗ is defined by

Jq(x) = {f ∗ ∈ X∗ : 〈x, f ∗〉 = ‖x‖q, ‖f ∗‖ = ‖x‖q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is usual normalized duality mapping.
It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0 and Jq is single-
valued if X∗ is strictly convex. In the sequel, we always assume that X is a
real Banach space such that Jq is single-valued. If X is a Hilbert space, then
J2 becomes the identity mapping on X .

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞)

defined by

ρX(t) = sup{1

2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

Further, a Banach space X is called q-uniformly smooth if there exists a
constant c > 0 such that

ρX(t) ≤ ctq, q > 1.

It is well-known that Hilbert spaces, Lp(or lp) spaces, 1 < p < ∞, and the
Sobolev spaces Wm,p, 1 < p < ∞, are all q-uniformly smooth.

Concerned with the characteristic inequalities in q-uniformly smooth Banach
spaces,we have the following result. Let X be a real uniformly smooth Banach
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space. Then X is q-uniformly smooth if and only if there exists a constant
cq > 0 such that for all x, y ∈ X ,

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Theorem 1 Let X be a q-uniformly smooth Banach space, A, p, η, M , N ,
S, T , P , Q, G, h, λ be the same as in the problem (14) and S, T, P, Q, G :

Ω ×X → CB(X) be five random set-valued mappings induced by S, T , P ,
Q, G, respectively. Further, suppose that
(a) p is (γ, $)-relaxed cocoercive and π-Lipschitz continuous;
(b) A is r-strongly η-accretive and σ-Lipschitz continuous;
(c) η is τ -Lipschitz continuous;
(d) S, T , P , Q and G are ξ-Ĥ-Lipschitz continuous, ζ-Ĥ-Lipschitz contin-

uous, ς-Ĥ-Lipschitz continuous, %-Ĥ-Lipschitz continuous and ι-Ĥ-Lipschitz
continuous, respectively;
(e) N is ε-Lipschitz continuous in the second argument, δ-Lipschitz contin-

uous in the third argument and κ-Lipschitz continuous in the fourth argument;
(f) There exist measurable functions µ : Ω → (0, +∞) and ρ : Ω →

(0, +∞) with ρ(t) ∈ (0, r(t)
λ(t)m(t)

), for all t ∈ Ω, such that

‖Jηt,Mt(.,x)
ρ(t)λ(t),At

(z(t))− J
ηt,Mt(.,y)
ρ(t)λ(t),At

(z(t))‖ ≤ µ(t)‖x(t)− y(t)‖, ∀t ∈ Ω, x(t), y(t), z(t) ∈ X (15)

and
ϕ(t) = %(t) + µ(t)ι(t) + q

√
1− q$(t) + (qγ(t) + cq)πq(t) < 1,

σ(t)(π(t) + %(t)) + ρ(t)(ε(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))

< τ 1−q(t)(1− ϕ(t))(r(t)− ρ(t)λ(t)m(t)).

(16)

Then there exists a set of measurable mappings x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X

which is a random solution of the problem (14).

Also, in this paper, we have constructed an iterative method for finding the
solution of considered problem.
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In this paper, the concept of a set-valued contractive mapping is considered by using the
idea of a generalized distance, such as the τ -distance, in metric spaces without using the
concept of the Hausdorff metric. Furthermore, under somemild conditions, we provide the
existence theorems for fixed-point problems of the consideredmapping. Hence, our results
can be viewed as a generalization and improvement of many recent results.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let (X, d) be a metric space and let 2X , CB(X), and Cl(X) denote the collections of nonempty subsets of X , nonempty
closed bounded subsets of X , and nonempty closed subsets of X , respectively. If T : X → 2X is a mapping, then an element
x ∈ X is called a fixed point of T if x ∈ T (x). We denote by F(T ) the set of fixed points of T ; that is, F(T ) = {x ∈ X : x ∈ T (x)}.

Recall that the function H on CB(X) defined by

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

for all A, B ∈ CB(X) is called the Hausdorff metric, where d(x, B) = infb∈B{d(x, b)}. By using the concept of the Hausdorff
metric, Nadler [1] established the following result for fixed-point problems for a multi-valued contractive mapping in a
complete metric space, which in turn is a generalization of the well-known Banach contraction principle [2].

Theorem 1.1 ([1]). Let (X, d) be a complete space and let T be amapping from X into CB(X). Assume that there exists κ ∈ (0, 1)
such that

H(T (x), T (y)) ≤ κd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ T (z).

Nadler’s fixed-point theorem formulti-valued contractivemappings has been generalized inmany directions and applied
in nonlinear analysis (see [3–13,1,14–18]).

∗ Corresponding author.
E-mail addresses: yjcho@gnu.ac.kr (Y.J. Cho), b_e_e_55@hotmail.com (S. Hirunworakit), narinp@nu.ac.th (N. Petrot).
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In 1996, the concept of aw-distance on a metric space was introduced by Kada et al. [7] as follows.

Definition 1.2 ([7]). Let (X, d) be a metric space. A functionω : X × X → [0,∞) is called aw-distance on X if the following
conditions are satisfied:

(w1) ω(x, z) ≤ ω(x, y)+ ω(y, z) for all x, y, z ∈ X;
(w2) a mapping ω(x, ·) : X → [0,∞) is lower semi-continuous for each fixed x ∈ X;
(w3) for any ε > 0, there exists δ > 0 such that ω(z, x) ≤ δ and ω(z, y) ≤ δ imply that d(x, y) ≤ ε for all x, y, z ∈ X .

They also gave some examples of the w-distance and, by using the concept of such a w-distance, they generalized
Caristi’s fixed-point theorem [3], Ekeland’s variational principle [5], and Takahashi’s nonconvexminimization theorem [17].
In particular, if (X, d) is ametric space, then themetric d is aw-distance on (X, d), whichmakes this class of great importance.

In 2009, Latif and Abdou [10] proved the following fixed-point theorem.

Theorem 1.3 ([10]). Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be a set-valued mapping
satisfying the following conditions:

(i) there exists a function ϕ : [0,∞) → [0, 1) and a function θ : [0,∞) → [c, 1), with c > 0 and θ nondecreasing, such that

ϕ(t) < θ(t), lim sup
r→t+

ϕ(r) < lim sup
r→t+

θ(r)

for all t ∈ [0,∞);
(ii) for any x ∈ X, there exists y ∈ T (x) such that

θ(ω(x, y))ω(x, y) ≤ W (x, T (x))

and

W (y, T (y)) ≤ ϕ(ω(x, y))ω(x, y);

(iii) the real-valued function f on X defined by f (x) = W (x, T (x)) is lower semi-continuous, where W (u, K) = infy∈K ω(u, y).

Then there exists z ∈ X such that f (z) = 0. Further, if ω(z, z) = 0, then z ∈ F(T ).

Note that, if we take ϕ =: h < κ, h ∈ (0, 1), then we obtain the result presented by Latif and Abdou [9]. Moreover,
if ω = d, then Theorem 1.3 reduces to a fixed-point theorem presented by Ćirić [4], Klim and Wardowski [8], Latif and
Albar [11], and Feng and Liu [6].

Evidently, Theorem 1.3 generalizes and improves a number of well-known fixed-point results given by many authors.
Thus, in this paper, we are interested in providing some fixed-point theorems related to Theorem 1.3.

To do so, let us recall the concept of a τ -distance on ametric space,which is a generalization of thew-distance, introduced
by Suzuki [14], as follows.

Definition 1.4 ([14]). Let X be ametric space withmetric d. Then a function p from X ×X into [0,∞) is called the τ -distance
on X if there exists a function η from X × [0,∞) into [0,∞) and the followings are satisfied:

(τ1) p(x, z) ≤ p(x, y)+ p(y, z) for all x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞), and η is concave and continuous in its second variable;
(τ3) limn→∞ xn = x and limn→∞ sup{η(zn, p(zn, xm)) : m ≥ n} = 0 imply that p(w, x) ≤ lim infn→∞ p(w, xn) for all

w ∈ X;
(τ4) limn→∞ sup{p(xn, ym) : m ≥ n} = 0 and limn→∞ η(xn, tn) = 0 imply that limn→∞ η(yn, tn) = 0;
(τ5) limn→∞ η(zn, p(zn, xn)) = 0 and limn→∞ η(zn, p(zn, yn)) = 0 imply that limn→∞ d(xn, yn) = 0.

In this paper, we will develop some fixed-point theorems by using the concept of the τ -distance. In order to obtain
fixed-point theorems by using the τ -distance, the following concepts and lemmas (see [15]) are crucial.

Definition 1.5. Let (X, d)be ametric space and let pbe a τ -distance onX . Then a sequence {xn} inX is called p-Cauchy if there
exists a functionη : X×[0,∞) → [0,∞) satisfying (τ2)−(τ5) and a sequence {zn} inX such that limn sup{η(zn, p(zn, xm)) :

m ≥ n} = 0.

Lemma 1.6. Let (X, d) be a metric space and let p be a τ -distance on X. If a sequence {xn} in X satisfies lim
n→∞

sup{p(xn, xm) :

m > n} = 0, then {xn} is a p-Cauchy sequence.

Lemma 1.7. Let (X, d) be a metric space and let p be a τ -distance on X. If {xn} is a p-Cauchy sequence, then {xn} is a Cauchy
sequence. Moreover, if {yn} is a sequence satisfying lim

n→∞
sup{p(xn, ym) : m > n} = 0, then {yn} is a p-Cauchy sequence and

limn d(xn, yn) = 0.
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Let (X, d) be a metric space. For any fixed x0 ∈ X , a sequence {xn} = {x0, x1, x2, . . .} ⊂ X such that xn+1 ∈ T (xn) is called
an orbit of x0 with respect to mapping T : X → 2X . We will denote by O(T , x0) the set of all orbital sequences of x0 with
respect to mapping T .

Definition 1.8. Let (X, d) be a metric space and let x0, z ∈ X . A mapping f : X → R is said to be T -orbitally lower semi-
continuous at z with respect to x0 if {xn} ∈ O(T , x0) and xn → z imply that f (z) ≤ lim infn→∞ f (xn).

2. Main results

Let (X, d) be a metric space and let A be a subset of X . If p is a τ -distance on X and x ∈ X , from now on, we define
Dp(x, A) = inf{p(x, y)|y ∈ A}.

In this section, inspired by Latif and Abdou [10], we now give some results which generalize Theorem 1.3.

Theorem 2.1. Let (X, d) be a metric space and let T : X → Cl(X) be a set-valued mapping. If there exists a function
ϕ : [0,∞) → [0, 1) and a nondecreasing function θ : [0,∞) → [c, 1), c > 0, such that

ϕ(t) < θ(t) (2.1)

for all t ∈ [0,∞) and

lim sup
t→r+

ϕ(t) < lim sup
t→r+

θ(t) (2.2)

for all r ∈ [0,∞), and there exists a τ -distance p on X such that, for any x ∈ X, there exists y ∈ T (x) satisfying

θ(p(x, y))p(x, y) ≤ Dp(x, T (x)) (2.3)

and

Dp(y, T (y)) ≤ ϕ(p(x, y))p(x, y), (2.4)

then we have the following.

(a) For each x0 ∈ X, there exists an orbit {xn} ∈ O(T , x0) such that {Dp(xn, T (xn))} is decreasing to zero and the sequence {xn}
is a Cauchy sequence.

(b) If {xn} converges to z and the function f (x) := Dp(x, T (x)) is T -orbitally lower semi-continuous at z with respect to x0, then
z ∈ F(T ). Moreover, if T (z) = z, then p(z, z) = 0.

Proof. To prove (a), let x0 ∈ X be given. First, we show that there exists a sequence {x0, x1, x2, . . .} in (X, d) such that
xn+1 ∈ T (xn) and {Dp(xn, T (xn))} is a decreasing sequence that converges to zero. Indeed, by (2.3) and (2.4), we can choose
x1 ∈ T (x0) such that

θ(p(x0, x1))p(x0, x1) ≤ Dp(x0, T (x0)) (2.5)

and

Dp(x1, T (x1)) ≤ ϕ(p(x0, x1))p(x0, x1). (2.6)

By using (2.5) and (2.6), we get

Dp(x1, T (x1)) ≤
ϕ(p(x0, x1))
θ(p(x0, x1))

Dp(x0, T (x0)). (2.7)

Now, define a function ψ : [0,∞) → [0,∞) by

ψ(t) =
ϕ(t)
θ(t)

for all t ∈ [0,∞). Notice that, from (2.1) and (2.2), it follows that

ψ(t) < 1 (2.8)

for all t ∈ [0,∞), and

lim sup
t→r+

ψ(t) < 1 (2.9)

for all r ∈ [0,∞). Moreover, by (2.7), we also have

Dp(x1, T (x1)) ≤ ψ(p(x0, x1))Dp(x0, T (x0)).
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Again, by using (2.3) and (2.4), we can choose x2 ∈ T (x1) such that

θ(p(x1, x2))p(x1, x2) ≤ Dp(x1, T (x1))

and

Dp(x2, T (x2)) ≤ ϕ(p(x1, x2))p(x1, x2).

Moreover, by the definition of ψ , we have

Dp(x2, T (x2)) ≤ ψ(p(x1, x2))Dp(x1, T (x1)).

Continuing this process and denoting pn = p(xn, xn+1) and Dn = Dp(xn, T (xn)), we can obtain an iterative sequence
{xn}∞n=0 such that xn+1 ∈ T (xn),

θ(pn)pn ≤ Dn, (2.10)

and

Dn+1 ≤ ϕ(pn)pn (2.11)

for all n ≥ 0, and so, from (2.10) and (2.11),

Dn+1 ≤ ψ(pn)Dn. (2.12)

Thus, it follows from (2.12) and (2.8) that

Dn+1 < Dn

for all n ≥ 0; that is, we have that {Dn} is a strictly monotone decreasing sequence. Moreover, since θ is a nondecreasing
function, we know that {pn} is also a strictly monotone decreasing sequence. Consequently, there exist δ ≥ 0 and β ≥ 0
such that

lim
n→∞

Dn = δ and lim
n→∞

pn = β.

Furthermore, it follows from (2.12) that

δ ≤ (lim sup
n→∞

ψ(pn))δ = (lim sup
pn→β

ψ(pn))δ.

Since lim suppn→β ψ(pn) < 1, we conclude that δ = 0.
Next, we show that {xn}∞n=0 is a Cauchy sequence. Let us consider a behavior of the sequence {pn}∞n=0. Since 0 < c ≤ θ(t)

for all t ∈ [0,∞), it follows from (2.10) that cpn ≤ θ(pn)pn ≤ Dn, and hence

pn ≤
1
c
Dn. (2.13)

Now, put α = lim suppn→0+ ψ(pn). Then, by (2.9), we can choose a real number q such that q ∈ (α, 1), and so there exists
a positive integer n1 such that ψ(pn) < q for all n ≥ n1. Thus, from (2.12), we have Dn ≤ qDn−1 for all n ≥ n1. This implies
that

Dm ≤ qm−nDn (2.14)

for allm > n ≥ n1 + 1. Moreover, from (2.13) and (2.14), we get

pm ≤
1
c
qm−nDn (2.15)

for allm > n > n1 + 1. This implies that
m−

k=n

pk ≤
1
c

m−
k=n

qk−nDn ≤
1
c


1

1 − q


Dn

for all m > n ≥ n1 + 1. Thus, using this together with limn→∞ Dn = 0 and Lemma 1.6, we know that {xn} is a p-Cauchy
sequence. Consequently, from Lemma 1.7, we see that (a) is followed.

To prove (b), assume that limn→∞ xn = z and that the function f (x) := Dp(x, T (x)) is T -orbitally lower semi-continuous
at z with respect to x0. Thus it follows that

0 ≤ Dp(z, T (z)) = f (z) ≤ lim inf
n→∞

f (xn) ≤ lim
n→∞

Dn = 0.

Thus f (z) = 0. Consequently, there exists a sequence {zn} ⊂ T (z) such that limn→∞ p(z, zn) = 0. Therefore,

0 ≤ lim
n

sup{p(xn, zm) : m > n} ≤ lim
n

sup{p(xn, z)+ p(z, zn) : m > n} = 0.
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This implies, by Lemma 1.7 and the closedness of T (z), that z ∈ T (z).
If T (z) = z then, by using (2.4), we see that 0 ≤ p(z, z) = Dp(z, Tz) ≤ ϕ(p(z, z))p(z, z). Since ϕ([0,∞)) ⊂ [0, 1), we

must have p(z, z) = 0. This completes the proof. �

Immediately, from Theorem 2.1, we can obtain the following result.

Corollary 2.2. Let (X, d) be a complete metric space. Suppose that T : X → Cl(X) satisfies all the conditions of Theorem 2.1. If
a real-valued function f (x) = Dp(x, T (x)) is lower semi-continuous on (X, d), then there exists z ∈ X such that z ∈ F(T ).

Remark 2.3. Since the class of τ -mappings is wider than the class of w-mappings, Corollary 2.2 can be viewed as a
generalization of Theorem 1.3. Moreover, we do not need the assumption τ(z, z) = 0, which has been proposed in
Theorem 1.3.

Next, we provide another generalization of Theorem 1.3.

Theorem 2.4. Let (X, d) be a complete metric space. Suppose that T : X → Cl(X) is a set-valued mapping of X into itself. If
there exists a function ϕ : [0,∞) → [0, 1) such that

lim sup
r→t+

ϕ(r) < 1 (2.16)

for any t ∈ [0,∞), and there exists a τ -distance p on X such that, for any x ∈ X, there exists y ∈ T (x) satisfying

p(x, y) ≤ (2 − ϕ(p(x, y)))Dp(x, T (x)) (2.17)

and

Dp(y, T (y)) ≤ ϕ(p(x, y))p(x, y), (2.18)

then we have the following.

(a) For any x0 ∈ X, there exist an orbit {xn} ∈ O(T , x0) and z ∈ X such that limn→∞ xn = z.
(b) If the function f (x) := Dp(x, T (x)) is T -orbitally lower semi-continuous at z with respect to x0, then z ∈ F(T ). Moreover, if

T (z) = z, then p(z, z) = 0.

Proof. (a) First, since ϕ(p(x, y)) < 1 for all x, y ∈ X , it follows that 2 − ϕ(p(x, y)) > 1 for all x, y ∈ X . Let x0 ∈ X be any
initial point. Then, by (2.17) and (2.18), there exists x1 ∈ T (x0) such that

p(x0, x1) ≤ (2 − ϕ(p(x0, x1)))Dp(x0, T (x0)) (2.19)

and

Dp(x1, T (x1)) ≤ ϕ(p(x0, x1))p(x0, x1). (2.20)

Thus, it follows from (2.19) and (2.20) that

Dp(x1, T (x1)) ≤ ϕ(p(x0, x1))(2 − ϕ(p(x0, x1)))Dp(x0, T (x0)). (2.21)

Now, define a function ψ : [0,∞) → [0,+∞) by

ψ(t) = ϕ(t)(2 − ϕ(t)) (2.22)

for any t ∈ [0,∞). Notice that ϕ(t) < 1 and lim supr→t+ ϕ(r) < 1 for any t ∈ [0,∞). This gives

ψ(t) = ϕ(t)(2 − ϕ(t)) = 1 − (1 − ϕ(t))2 < 1 (2.23)

and

lim sup
r→t+

ψ(r) < 1 (2.24)

for any t ∈ [0,∞). Moreover, by (2.21) and (2.22), we can write

Dp(x1, T (x1)) ≤ ψ(p(x0, x1))Dp(x0, T (x0)). (2.25)

Next, again by using (2.17), (2.18) and (2.22), we can find x2 ∈ T (x1) such that

p(x1, x2) ≤ (2 − ϕ(p(x1, x2)))Dp(x1, T (x1))

and

Dp(x2, T (x2)) ≤ ψ(p(x1, x2))Dp(x1, T (x1)).
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Continuing this process, we can choose an iterative sequence {xn}∞n=0 such that xn+1 ∈ T (xn),

p(xn, xn+1) ≤ (2 − ϕ(p(xn, xn+1)))Dp(xn, T (xn)), (2.26)

and

Dp(xn+1, T (xn+1)) ≤ ψ(p(xn, xn+1))Dp(xn, T (xn)) (2.27)

for all n ≥ 0.
From now on, put pn = p(xn, xn+1) and Dn = Dp(xn, T (xn)) for all n ≥ 0. Then, from (2.26) and (2.27), and ϕ(t) < 1, for

all t ≥ 0, we get

Dn+1 ≤ ψ(pn)Dn (2.28)

and

Dn ≤ pn ≤ 2Dn. (2.29)

Furthermore, by (2.23) and (2.28), we know that {Dn}
∞

n=0 is a strictly decreasing sequence of nonnegative real numbers.
Therefore, there exists δ ≥ 0 such that

lim
n→∞

Dn = δ. (2.30)

Thus, by (2.29), we see that the sequence {pn}∞n=0 is also bounded, and so there exists β ≥ δ such that

lim inf
n→∞

pn = β. (2.31)

Now, we claim that δ = 0. Consider the following possible two cases.
Case 1: If β > δ, then, from (2.30) and (2.31), we can find a positive integer n0 such that

δ ≤ Dn ≤ δ +
β − δ

4
(2.32)

and

β −
β − δ

4
< pn (2.33)

for all n ≥ n0. Thus, by using (2.32), (2.33) and (2.26), we have

δ + 3

β − δ

4


= β −

β − δ

4
< pn ≤ (2 − ϕ(pn))Dn ≤ (2 − ϕ(pn))


δ +

β − δ

4


for all n ≥ n0. This gives

1 +
2(β − δ)

3δ + β
< 1 + (1 − ϕ(pn))

for all n > n0, which implies that

−(1 − ϕ(pn))2 < −

[
2(β − δ)

3δ + β

]2

for all n > n0. Thus we have

ψ(pn) = 1 − (1 − ϕ(pn))2 < 1 −

[
2(β − δ)

3δ + β

]2

=: h

for all n ≥ n0. Thus, it follows from (2.28) that

Dn+1 ≤ hDn (2.34)

for all n ≥ n0. Consequently, from (2.32) and (2.34), we obtain

δ ≤ Dn0+k ≤ hDn0+k−1 ≤ h2Dn0+k−2 ≤ · · · ≤ hkDn0 ≤ hk

δ +

β − δ

4


(2.35)

for all k ≥ 1. Since h ∈ (0, 1), we have limk→∞ hk
= 0. Using this and (2.35), we have δ = 0.

Case 2: If β = δ, then, from (2.31), we can find a subsequence {pnk}
∞

k=0 of {pn} such that

lim
k→∞

pnk = δ.
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Thus, by (2.24), it follows that

lim sup
pnk→δ+

ψ(pnk) < 1. (2.36)

Also, from (2.28), we have

Dnk+1 ≤ ψ(pnk)Dnk .

Thus, it follows from (2.30) that

δ = lim
k→∞

Dnk+1 ≤ lim sup
k→+∞

(ψ(pnk)Dnk) = (lim sup
pnk→δ+

ψ(pnk))δ.

Since lim suppnk→δ+ ψ(pnk) < 1, this inequality implies that δ = 0. Therefore, from Cases 1 and 2, we conclude that

lim
n→∞

Dn = 0, (2.37)

and so our claim is proved.
Now, using (2.24), (2.28), (2.29) and (2.37), as in the proof of Theorem 2.1, we know that {xn}∞n=0 is a Cauchy sequence.
(b) The proof is similar to that of Theorem 2.1. �

Remark 2.5. Theorem 2.4 recovers a result presented by Latif and Abdou [10].

As a special case of Theorem 2.4, we can obtain the result presented by Ćirić [4] as follows.

Theorem 2.6 ([4]). Let (X, d) be a complete space. Suppose that T : X → Cl(X) is a set-valued mapping of X into itself. If there
exists a function ϕ : [0,∞) → [0, 1) such that

lim sup
r→t+

ϕ(r) < 1 (2.38)

for any t ∈ [0,∞) and, for any x ∈ X, there exists y ∈ T (x) satisfying

d(x, y) ≤ (2 − ϕ(d(x, y)))D(x, T (x)) (2.39)

and

D(y, T (y)) ≤ ϕ(d(x, y))d(x, y), (2.40)

then T has a fixed point in X provided that f (x) = D(x, T (x)) is lower semi-continuous.

In [10], the authors give an example showing that Theorem 1.3 is a genuine generalization of the result of Theorem 2.6.
Here, we provide another one.

Example 2.7. Let X = [0,∞) and let d : X × X → [0,∞) be a usual metric. Let T : X → Cl(X) be defined by

T (x) =




1
2
x2


, if x ∈

[
0,

15
32


∪


15
32
, 1

]
;

17
96
,
1
4


, if x =

15
32

;[
0,

1
4

]
∪


2x − 1

2


, if x ∈ (1,∞).

Now, we show that the given mapping T does not satisfy the assumptions of Theorem 2.6. To do this, let us consider a
point x =

3
2 . Then we have T (x) =


0, 1

4


∪ {1}, and it follows that D(x, T (x)) =

1
2 . Now, let ϕ : [0,∞) → [0, 1) be any

real-valued function. Notice that only the real number y = 1 ∈ T (x) satisfies (2.39) and, consequently,

D(y, Ty) = d

1,

1
2


= d


3
2
, 1


= d(x, y).

Therefore, since ϕ([0,∞)) ⊂ [0, 1), we see that (2.40) cannot be satisfied.
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On the other hand,we show that T satisfies all hypotheses of our Theorem2.4. Define now a functionϕ : [0,∞) → [0, 1)
by

ϕ(t) =



8
5
t, if x ∈

[
0,

7
24


∪


7
24
,
1
2


;

5
8
, if t =

7
24

;

4
5
, if t ∈

[
1
2
,∞


.

Then, obviously, such a function ϕ satisfies (2.16) of Theorem 2.4.
Further, let us define a function p : X × X → [0,∞) by

p(x, y) =


d(x, y), if {x, y} ⊂ [0, 1];
1, if {x, y} ⊄ [0, 1].

It follows that p is aw-distance on X , and hence, it is a τ -distance (see [16]).
We consider the following cases.
Case 1: For x ∈


0, 15

32


∪

 15
32 , 1


, we have T (x) = {

1
2x

2
}. Consequently, for y =

1
2x

2, we get

Dp(y, T (y)) = p

1
2
x2,

1
8
x4


=

1
2


x +

1
2
x2

 
x −

1
2
x2


=

1
2


x +

1
2
x2


p(x, y)

≤
8
5


x −

1
2
x2


p(x, y)

= ϕ(p(x, y))p(x, y).

Moreover, we have

p(x, y) = Dp(x, Tx) ≤ (2 − ϕ(p(x, y)))Dp(x, Tx).

Case 2: Let x =
15
32 . For y =

17
96 ∈ T (x), we have

p(x, y) =
7
24
<


2 −

5
8


7
32

= (2 − ϕ(p(x, y)))Dp(x, Tx)

and

Dp(y, T (y)) = p

17
96
,
1
2

·
(17)2

(96)2


<

17
96
<

5
8

·
7
24

= ϕ(p(x, y))p(x, y).

Case 3: Let x ∈ (1,∞). Notice that Dp(x, Tx) = 1. If we now choose y =
1
4 ∈ T (x), then

p(x, y) = 1 <

2 −

4
5


(1) = (2 − ϕ(1))(1) = (2 − ϕ(p(x, y)))Dp(x, Tx)

and

Dp(y, T (y)) = p

1
4
,
1
2

·
1
16


= p


1
4
,

1
32


=

7
32
<


4
5


(1) = ϕ(p(x, y))p(x, y).

Therefore, from above three cases, we see that (2.17) and (2.18) of Theorem 2.4 are satisfied.
Moreover, we have

f (x) = Dp(x, T (x)) =


x −

1
2
x2, x ∈

[
0,

15
32


∪


15
32
, 1

]
;

7
32
, if x =

15
32

;

1, if x ∈ (1,∞),

which is a lower semi-continuous function. Therefore, all assumptions of Theorem 2.4 are satisfied. In fact, we can check
that F(T ) = {0}.
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Remark 2.8. We do not use the concept of the Hausdorff metric in the proofs of Theorems 2.1 and 2.4.

3. Conclusion

We note that the results presented by Latif and Abdou [10] are interesting and important. Therefore, in this paper, we
have considered and improved their result, Theorem 1.3. In particular, we have been interested in considering and proving
the main results by using concepts of the generalized distance, namely the τ -distance. Hence, the results presented in this
paper are general and, consequently, they can be applied in various ways.
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1 Introduction and Preliminaries

Let E be a complete metric space with distance d(·, ·). Let 2E denote the family
consisting of all nonempty subsets of E. We define the Hausdorff pseudometric,
H : 2E × 2E → [0,∞] by

H(A,B) = max{D(a,B), D(A, b)},

where D(a,B) = inf
b∈B

d(a, b), D(A, b) = inf
a∈A

d(a, b).
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Definition 1.1. Let E be a metric space. A subset C ⊂ E is said to be approxi-
mative if the multivalued mapping

PC(x) = {c ∈ C : d(x, c) = D(x,C)}, ∀x ∈ E

has nonempty values. The multivalued mapping T : E → 2E is said to have
approximative values if T (x) is approximative for each x ∈ E.

Let ∝∈ (0,∞],R+
∝

= [0,∝). Let ϕ : R+
∝
→ [0,∞) satisfy

(i) ϕ(t) < t for each t ∈ (0,∝);

(ii) ϕ is nondecreasing on R+
∝

;

(iii) ϕ is upper-semicontinuous.

Define Φ[0,∝) = {ϕ : ϕ satisfies (i)-(iii) above}.

From now on, for a metric space E, we let Γ = sup{d(x, y) : x, y ∈ E} and set
∝= Γ if Γ = ∞, and ∝> Γ if Γ <∞.

Definition 1.2. Let E be a matric space. Suppose that S, T : E → 2E and
ϕ ∈ Φ[0,∝) satisfy

H(Sx, T y) ≤ ϕ(ρ(x, y)),

for each x, y ∈ E, where

ρ(x, y) = max

{

d(x, y), D(Sx, x), D(Ty, y),
1

2
[D(y, Sx) +D(x, T y)]

}

.

Then the pair S, T is called the hybrid generalized multivalued ϕ-weak contraction
mapping.

Remark 1.3. Let E be a Banach algebra with the norm ‖ · ‖ and the metric d(·, ·)
generated by it. In Definition 1.2, let ρ(x, y) = d(x, y); so

H(Tx, T y) ≤ ϕ(d(x, y))

for all x, y ∈ E. Then the multivalued mapping T is called a nonlinear D-
contraction with a contraction function ϕ (see [1, 2]). In addition, let ϕ(t) = kt

with k > 0 and ρ(x, y) = d(x, y); then

H(Tx, T y) ≤ ϕ(d(x, y))

for all x, y ∈ E. In this case the mapping T is nothing but the multivalued Lipschitz
operator defined by [3]. Moreover, if 0 < k < 1 then the mapping T is called a
multivalued contraction on E which was first studied by Markin [4] and Nadler [5].



Common Fixed Point Theorem for Hybrid Generalized Multivalued 419

During the last few decades, since the pioneering works of Markin [4] and
Nadler [5], an extensive literature has been developed, consisting in many theorems
which deal with fixed points for multi-valued mappings (see [6, 7, 8, 9, 10]), or
may be related to various classes of ϕ-contractions, which are obtained for different
collection of properties of the function ϕ (see for example, [11, 12, 13]), especially
the monograph of Rus [14, 15], for the good survey and several still open problems.
Equally important is the concept of hybrid contractive mapping of the metric fixed-
point theory which have been obtained by mathematical researcher, for example
[16, 17, 18, 19, 20].

Motivated and spirted by the research going on this field, in this work we prove
that there is a common fixed point of hybrid generalized multivalued ϕ-weak con-
tractions S, T on complete metric spaces E. Since the concept of hybrid generalized
multivalued ϕ-weak contraction includes almost concepts of the generalization of
Banach contraction principle as special cases (both singlevalued and multivalued
settings), results obtained in this paper continue to hold for those problems. Our
results can be viewed as a refinement and improvement of the previously known
results for metric fixed-point theory. To reach the goal, we also need the following
concepts:

Let J denotes an interval on [0,∞) containing 0, that is an interval of the
form [0, r], [0, r) or [0,∞), and we use the abbreviation ϕn for the nth iterate of a
function ϕ.

Definition 1.4. A nondecreasing function ϕ : J → J is said to be a Bianchini-
Grandolfi gauge function [21] on J if Σ∞

n=0ϕ
n(t) <∞ for all t ∈ J.

As for the investigations of the Bianchini-Grandolfi gauge function we also
refer to [22]. The following lemma is quite important one.

Lemma 1.5 ([23]). Let E be a metric space and B be a nonempty subset of E.
Then D(x,B) ≤ d(x, y) +D(y,B), for any x, y ∈ E.

2 Common Fixed Point Theorems

Theorem 2.1. Let (E, d) be a complete metric space. Let S, T be a pair of hybrid
generalized multivalued ϕ-weak contractions on E. Assume that S, T have the
approximative values and ϕ|J is a Bianchini-Grandolfi gauge function on some

interval J ⊂ R+
∝
. If there is x ∈ E such that either D(x, Sx) ∈ J or D(x, Tx) ∈ J

then the mappings S and T have a common fixed point u ∈ E.

Proof. Without loss of generality, we will assume that there is u0 ∈ E such that
D(u0, Su0) ∈ J . Take u0 ∈ E, since Su0 is approximative it follows that there ex-
ists u1 ∈ Su0 such that d(u0, u1) = D(u0, Su0). Next, since Tu1 is approximative,
there exists u2 ∈ Tu1 such that d(u1, u2) = D(u1, Tu1). Moreover,

d(u1, u2) = D(u1, Tu1) ≤ sup
x∈Su0

D(x, Tu1) ≤ H(Su0, Tu1).
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It follows that

d(u1, u2) ≤ H(Su0, Tu1) ≤ ϕ(ρ(u0, u1))

= ϕ

(

max

{

d(u0, u1), D(u1, Tu1), D(u0, Su0),
1

2
[D(u0, Tu1) +D(u1, Su0)]

})

≤ ϕ

(

max

{

d(u0, u1), d(u1, u2), d(u0, u1),
1

2
[d(u0, u1) + d(u1, u2)]

})

≤ ϕ (max{d(u0, u1), d(u1, u2)}) . (2.1)

Write ω = max{d(u0, u1), d(u1, u2)}. Observe that, if ω = 0 then u0 = u1 = u2

and it follows that u0 = u1 ∈ Su0 and u0 = u2 ∈ Tu1 = Tu0, i.e., u0 is a common
fixed point of mappings S and T , and then our proof is completed. On the other
hand, if 0 < ω = d(u1, u2) then using ϕ(t) < t for t ∈ (0,∝), from (2.1) we have

d(u1, u2) ≤ ϕ(d(u1, u2)) < d(u1, u2)

which is a contradiction. Therefore, ω = d(u0, u1) and from (2.1) we obtain

d(u1, u2) ≤ ϕ(ρ(u0, u1)) ≤ ϕ(d(u0, u1)) < d(u0, u1). (2.2)

We continue the procedure of constructing un inductively, we can choose a
sequence {un} in E such that for all n ≥ 1, u2n ∈ Tu2n−1, u2n+1 ∈ Su2n and

d(u2n, u2n+1) = D(u2n, Su2n), d(u2n+1, u2n+2) = D(u2n+1, Tu2n+1).

Moreover,

D(u2n, Su2n) ≤ sup
x∈Tu2n−1

D(x, Su2n) ≤ H(Tu2n−1, Su2n),

and
D(u2n+1, Tu2n+1) ≤ sup

x∈Tu2n+1

D(x, Su2n) ≤ H(Su2n, Tu2n+1)

for all n ≥ 1. Therefore, by using an argument similar to the above we get,

d(u2n, u2n+1) ≤ ϕ(ρ(u2n−1, u2n)) < d(u2n−1, u2n) (2.3)

and
d(u2n+1, u2n+2) ≤ ϕ(ρ(u2n, u2n+1)) < d(u2n, u2n+1) (2.4)

for all n ≥ 1. Thus, from (2.3) and (2.4), we get

d(un, un+1) ≤ ϕ(ρ(un−1, un)) < d(un−1, un) (2.5)

for all n ≥ 1. Using (2.2) and (2.5), we repeat the procedure to obtain

d(un, un+1) ≤ ϕ(ρ(un−1, un)) ≤ ϕ2(d(un−2, un−1)) ≤ · · · ≤ ϕn(d(u0, u1))
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for all n ≥ 1. Therefore, for positive integers m, k, we get

d(uk, uk+m) ≤ d(uk, uk+1) + d(uk+1, uk+2) + · · · + d(uk+m−1, uk+m)

≤
k+m−1

∑

i=k

ϕi(d(u0, u1)) =
k+m−1

∑

i=k

ϕi(D(u0, Su0)).

Since D(u0, S(u0)) ∈ J and ϕ|J is a Bainchini-Grandolfi gauging function on J ,
the above inequality implies that {un} is a Cauchy sequence in E. By virtue of
the completeness of E, there exists u ∈ E such that un → u for n→ ∞. Now, we
prove that u ∈ Tu and u ∈ Su, i.e., u is a common fixed point of S and T . To do
this, we note that

D(u2n, Su) ≤ H(Tu2n−1, Su) ≤ ϕ(ρ(u2n−1, u))

= ϕ
(

max
{

d(u2n−1, u), D(u2n−1, Tu2n−1), D(u, Su),

1

2
[D(u2n−1, Su) +D(u, Tu2n−1)]

})

≤ ϕ
(

max
{

d(u2n−1, u), d(u2n−1, u2n), D(u, Su),

1

2
[d(u2n−1, u) +D(u, Su) + d(u, u2n)]

})

.

Denote by

α(un, u) =: max
{

d(u2n−1, u), d(u2n−1, u2n), D(u, Su),

1

2
[D(u2n−1, u) +D(u, Su) + d(u, u2n)]

}

the right hand side of the above inequality. Then, α(un, u) → D(u, Su) as n→ ∞.
Therefore, in view of Lemma 1.5 and the upper semi-continuity of ϕ, we get

D(u, Su) = lim
n→∞

D(u2n, Su) ≤ lim sup
n→∞

ϕ(α(un, u)) ≤ ϕ(D(u, Su)).

This implies D(u, Su) = 0. Since Su is approximative, there exists y ∈ Su such
that d(u, y) = 0, i.e., u = y. Hence u ∈ Su. As

D(u, Tu) ≤ H(Su, Tu)

≤ ϕ

(

max

{

d(u, u), D(u, Tu), D(u, Su),
1

2
[D(u, Tu) +D(u, Su)]

})

= ϕ(D(u, Tu)),

which gives D(u, Tu) = 0, and this reduces to u ∈ Tu. This completes the
proof.

Remark 2.2. Under the hypothesis of Theorem 2.1, S and T have a unique com-
mon fixed point if the following condition is satisfied:

d(x, y) ≤ H(Sx, T y), ∀x, y ∈ E. (C)
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Proof. Let u and v be common fixed points of S and T . Then, by the condition
(C), we have

d(u, v) ≤ H(Su, T v) ≤ ϕ(ρ(u, v))

= ϕ

(

max

{

d(u, v), D(v, T v), D(u, Tu),
1

2
[D(u, T v) +D(v, Su)]

})

≤ ϕ

(

max

{

d(u, v),
1

2
[d(u, v) +D(v, T v) + d(v, u) +D(u, Su)]

})

= ϕ(d(u, v)).

Hence u = v. The proof is completed.

By Theorem 2.1, we get the following results immediately.

Corollary 2.3. Let (E, d) be a complete metric space. Let T be a hybrid general-
ized multivalued ϕ-weak contractions on E. Assume that T has the approximative
values and ϕ|J is a Bianchini-Grandolfi gauge function on some interval J ⊂ R+

∝
.

If there is x ∈ E such that D(x, Tx) ∈ J then the mapping T has a fixed point
u ∈ E.

Corollary 2.4. Let (E, d) be a complete metric space. Let S, T be a pair of hybrid
generalized multivalued ϕ-weak contractions on E. If S, T have the approximative
values and

∑∞
i=1 ϕ

i(t) < ∞ for all t ∈ (0,∝), then the pair S, T has a common
fixed point u ∈ E.

3 Further Results

Let ∝∈ (0,∞],R+
∝

= [0,∝). Let f : [0,∞) → [0,∞) satisfy

(i) f(0) = 0 and f(t) > 0 for each t ∈ (0,∝);

(ii) f is nondecreasing on R+
∝

;

(iii) f is continuous on R+
∝

;

(iv) f(a+ b) ≤ f(a) + f(b) for all a, b ∈ [0,∞).

Define F [0,∝) = {f : f satisfies (i)-(iv) above}.

Example 3.1. The following examples were partially given in [24]:

(i) Let φ is nonnegative, nondecreasing, Lebesgue integrable on [0,∝) and sat-
isfies

∫ t

0

φ(s)ds > 0, t ∈ (0,∝).

Define f(t) =
∫ t

0
φ(s)ds then f ∈ F [0,∝).
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(ii) Let ψ be a nonnegative, Lebesgue integrable on [0,∝) and satisfies

∫ t

0

ψ(s)ds > 0, t ∈ (0,∝)

and θ be a nonnegative, Lebesgue integrable on [0,
∫

∝

0
ψ(s)ds) and satisfies

∫ t

0

θ(s)ds > 0, t ∈ [0,

∫

∝

0

ψ(s)ds).

If ψ and θ are nondecreasing and we define f(t) =
∫

R
t

0
ψ(s)ds

0 θ(τ)dτ , then
f ∈ F [0,∝).

Using above concepts, Theorem 2.1 could be further extended to more general
results. In fact, the proof of next Theorem is similar to that of Theorem 2.1,
however, for the sake of completeness we will present it.

Theorem 3.2. Let (E, d) be a complete metric space and S, T : E → 2E be a pair
of multivalued mappings. Suppose that ϕ ∈ Φ[0,∝) and f ∈ F [0,∝) satisfy

f(H(Sx, T y)) ≤ ϕ(f(ρ(x, y))) (3.1)

for each x, y ∈ E. Assume that S, T have the approximative values and ϕ|J is a

Bianchini-Grandolfi gauge function on some interval J ⊂ R+
∝
. If there is x ∈ E

such that either f(D(x, Sx)) ∈ J or f(D(x, Tx)) ∈ J then the mappings S and T
have a common fixed point u ∈ E.

Proof. Without loss of generality, we will assume that there is u0 ∈ E such that
f(D(u0, Su0)) ∈ J . Take u0 ∈ E, since Su0 is approximative it follows that there
exists u1 ∈ Su0 such that d(u0, u1) = D(u0, Su0). Next, since Tu1 is approxima-
tive, there exists u2 ∈ Tu1 such that d(u1, u2) = D(u1, Tu1). Moreover,

d(u1, u2) = D(u1, Tu1) ≤ sup
x∈Su0

D(x, Tu1) ≤ H(Su0, Tu1).

It follows that

f(d(u1, u2)) ≤ f(H(Su0, Tu1)) ≤ ϕ(f(ρ(u0, u1)))

= ϕ

(

f

(

max

{

d(u0, u1), D(u1, Tu1), D(u0, Su0),
1

2
[D(u0, Tu1) +D(u1, Su0)]

}))

≤ ϕ

(

f

(

max

{

d(u0, u1), d(u1, u2), d(u0, u1),
1

2
[d(u0, u1) + d(u1, u2)]

}))

≤ ϕ(f (max{d(u0, u1), d(u1, u2)})). (3.2)

Write ω = max{d(u0, u1), d(u1, u2)}. Observe that, if ω = 0 then u0 = u1 = u2

and it follows that u0 = u1 ∈ Su0 and u0 = u2 ∈ Tu1 = Tu0, i.e., u0 is a common
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fixed point of mappings S and T , and then our proof is completed. On the other
hand, if 0 < ω = d(u1, u2) then using ϕ(t) < t for t ∈ (0,∝), from (3.2) we have

f(d(u1, u2)) ≤ ϕ(f(d(u1, u2))) < f(d(u1, u2))

which is a contradiction. Therefore, ω = d(u0, u1) and from (3.2) we obtain

f(d(u1, u2)) ≤ ϕ(f(ρ(u0, u1))) ≤ ϕ(f(d(u0, u1))). (3.3)

We continue the procedure of constructing un inductively, we can choose a
sequence {un} in E such that for all n ≥ 1, u2n ∈ Tu2n−1, u2n+1 ∈ Su2n and

d(u2n, u2n+1) = D(u2n, Su2n), d(u2n+1, u2n+2) = D(u2n+1, Tu2n+1).

Moreover,

D(u2n, Su2n) ≤ sup
x∈Tu2n−1

D(x, Su2n) ≤ H(Tu2n−1, Su2n),

and
D(u2n+1, Tu2n+1) ≤ sup

x∈Tu2n+1

D(x, Su2n) ≤ H(Su2n, Tu2n+1)

for all n ≥ 1. Therefore, by using an argument similar to the above we get,

f(d(u2n, u2n+1)) ≤ ϕ(f(ρ(u2n−1, u2n))) < f(d(u2n−1, u2n)), (3.4)

and
f(d(u2n+1, u2n+2)) ≤ ϕ(f(ρ(u2n, u2n+1))) < f(d(u2n, u2n+1)) (3.5)

for all n ≥ 1. Thus, from (3.4) and (3.5), we get

f(d(un, un+1)) ≤ ϕ(f(ρ(un−1, un))) < f(d(un−1, un)) (3.6)

for all n ≥ 1. Using (3.3) and (3.6), we repeat the procedure to obtain

f(d(un, un+1)) ≤ ϕ(f(ρ(un−1, un))) ≤ ϕ2(f(d(un−2, un−1))) ≤ · · · ≤ ϕn(f(d(u0, u1)))

for all n ≥ 1. Therefore, for positive integers m, k, we get

f(d(uk, uk+m)) ≤ f(d(uk, uk+1) + d(uk+1, uk+2) + · · · + d(uk+m−1, uk+m))

≤ f(d(uk, uk+1)) + f(d(uk+1, uk+2)) + · · · + f(d(uk+m−1, uk+m))

≤

k+m−1
∑

i=k

ϕi(f(d(u0, u1))) =

k+m−1
∑

i=k

ϕi(f(D(u0, Su0))).

Since f(D(u0, S(u0))) ∈ J and ϕ|J is a Bainchini-Grandolfi gauging function on
J , in light of the continuity of the function f , the above inequality implies that
{un} is a Cauchy sequence in E. By virtue of the completeness of E, there exists
u ∈ E such that un → u for n→ ∞. Now, we prove that u ∈ Tu and u ∈ Su, i.e.,
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u is a common fixed point of S and T . Now, since f is a nondecreasing function,
we have

f(D(u2n, Su)) ≤ f(H(Tu2n−1, Su)) ≤ ϕ(f(ρ(u2n−1, u)))

= ϕ
(

f
(

max
{

d(u2n−1, u), D(u2n−1, Tu2n−1), D(u, Su),

1

2
[D(u2n−1, Su) +D(u, Tu2n−1)]

}))

≤ ϕ
(

f
(

max
{

d(u2n−1, u), d(u2n−1, u2n), D(u, Su),

1

2
[d(u2n−1, u) +D(u, Su) + d(u, u2n)]

}))

.

Denote by

α(un, u) =: max
{

d(u2n−1, u), d(u2n−1, u2n), D(u, Su),

1

2
[D(u2n−1, u) +D(u, Su) + d(u, u2n)]

}

the right hand side of the above inequality. Then α(un, u) → D(u, Su) as n→ ∞,
and consequently, f(α(un, u)) → f(D(u, Su)) as n → ∞. Therefore, in view of
Lemma 1.5 and the upper semi-continuity of ϕ, we get

f(D(u, Su)) = f
(

lim
n→∞

D(u2n, Su)
)

= lim
n→∞

f (D(u2n, Su))

≤ lim sup
n→∞

ϕ(f(α(un, u))) ≤ ϕ(f(D(u, Su))).

Thus f(D(u, Su)) = 0, which implies that D(u, Su) = 0. Since Su is approxi-
mative, there exists y ∈ Su such that d(u, y) = 0, i.e., u = y. Hence u ∈ Su.
As

f(D(u, Tu)) ≤ f(H(Su, Tu))

≤ ϕ

(

f

(

max

{

d(u, u), D(u, Tu), D(u, Su),
1

2
[D(u, Tu) +D(u, Su)]

}))

= ϕ(f(D(u, Tu))),

which gives f(D(u, Tu)) = 0, and this reduces to u ∈ Tu. This completes the
proof.

Remark 3.3. Theorem 3.2 is a genuine generalization of Lemma 3.1 of a paper
by Hong et al. [25], which is the important result for such paper. However, it has
been observed that a proof of such lemma contains an error. The proof of such
lemma at line 14, p. 5, presented as:

f(d(um+1, un+1)) ≤ f(H(Tum, Tun)) ≤ (f(ρ(um, un, δ))), (3.7)



426 Thai J. Math. 9 (2011)/ J. Suwannawit and N. Petrot

where δ ∈ (0, 1]. It is related to the procedure of constructing the sequence {un},
that we only have

d(un−1, un) ≤ H(Tun−2, Tun−1)), for n = 2, 3, ....

Hence, the first inequality is not assuredly hold and this is a point which may break
down the conclusion of such lemma. Because, if the first inequality is not true,
then the conclusion that {un} is a Cauchy sequence would be failed, but this result
is an important step in the proof of the lemma.

Acknowledgements : The author would like to thank the referees for his com-
ments and suggestions on the manuscript.
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Abstract

Without the strong monotonicity assumption of the mapping, we provide a
regularization method for general variational inequality problem, when its solution
set is related to a solution set of an inverse strongly monotone mapping.
Consequently, an iterative algorithm for finding such a solution is constructed, and
convergent theorem of the such algorithm is proved. It is worth pointing out that,
since we do not assume strong monotonicity of general variational inequality
problem, our results improve and extend some well-known results in the literature.

Keywords: general variational inequality problem, regularization, inertial proximal
point algorithm, monotone mapping, inverse strongly monotone mapping

1. Introduction
It is well known that the ideas and techniques of the variational inequalities are being

applied in a variety of diverse fields of pure and applied sciences and proven to be pro-

ductive and innovative. It has been shown that this theory provides the most natural,

direct, simple, unified, and efficient framework for a general treatment of a wide class

of linear and nonlinear problems. The development of variational inequality theory can

be viewed as the simultaneous pursuit of two different lines of research. On the one

hand, it reveals the fundamental facts on the qualitative aspects of the solutions to

important classes of problems. On the other hand, it also enables us to develop highly

efficient and powerful new numerical methods for solving, for example, obstacle, uni-

lateral, free, moving, and complex equilibrium problems.

In 1988, Noor [1] introduced and studied a class of variational inequalities, which is

known as general variational inequality, GVIK(A, g), is as follows: Find u* Î H, g(u*) Î
K such that

〈A(u∗), g(v) − g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1:1)

where K is a nonempty closed convex subset of a real Hilbert space H with inner

product 〈·, ·〉, and T, g: H ® H be mappings. It is known that a class of nonsymmetric

and odd-order obstacle, unilateral, and moving boundary value problems arising in

pure and applied can be studied in the unified framework of general variational

inequalities (e.g., [2] and the references therein). Observe that to guarantee the exis-

tence and uniqueness of a solution of the problem (1.1), one has to impose conditions

on the operator A and g, see [3] for example in a more general case. By the way, it is
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worth noting that, if A fails to be Lipschitz continuous or strongly monotone, then the

solution set of the problem (1.1) may be an empty one.

Related to the variational inequalities, we have the problem of finding the fixed

points of the nonlinear mappings, which is the subject of current interest in functional

analysis. It is natural to consider a unified approach to these two different problems (e.

g., [3-8]). Motivated and inspired by the research going in this direction, in this article,

we present a method for finding a solution of the problem (1.1), which is related to

the solution set of an inverse strongly monotone mapping and is as follows: Find u* Î
H, g(u*) Î S(T) such that

〈A(u∗), g(v) − g(u∗)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (1:2)

when A is a generalized monotone mapping, T: K ® H is an inverse strongly mono-

tone mapping, and S(T) = {x Î K: T(x) = 0}. We will denote by GVIK(A, g, T) for a set

of solution to the problem (1.2). Observe that, if T =: 0, the zero operator, then the

problem (1.2) reduces to (1.1). Moreover, we would also like to notice that although

many authors have proven results for finding the solution of the variational inequality

problem and the solution set of inverse strongly monotone mapping (e.g., [4,8,9]), it is

clear that it cannot be directly applied to the problem GV IK(A, g, T) due to the pre-

sence of g.

2. Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and

|| · ||, respectively. Let K be a nonempty closed convex subset of H. In this section, we

will recall some well-known results and definitions.

Definition2.1. Let A: H ® H be a mapping and K ⊂ H. Then, A is said to be semi-

continuous at a point x in K if

lim
t→0

〈A(x + th), y〉 = 〈A(x), y〉, x + th ∈ K, y ∈ H.

Definition2.2. A mapping T: K ® H is said to be l-inverse strongly monotone, if

there exists a l > 0 such that

〈T(x) − T(y), x − y〉 ≥ λ||T(x) − T(y)||2, ∀ x, y ∈ K.

Recall that a mapping B: K ® H is said to be k-strictly pseudocontractive if there

exists a constant k Î [0, 1) such that

||Bx − By||2 ≤ ||x − y||2 + k||(I − B)(x) − (I − B)(y)||2, ∀ x, y ∈ K.

Let I be the identity operator on K. It is well known that if B: K ® H is a k-strictly

pseudocontrative mapping, then the mapping T := I - B is a
(

1−k
2

)
-inverse strongly

monotone, see [4]. Conversely, if T: K ® H is a l-inverse strongly monotone with

λ ∈ (0, 1
2 ], then B := I - T is (1 - 2l)-strictly pseudocontrative mapping. Actually, for

all x, y Î K, we have

〈T(x) − T(y), x − y〉 ≥ λ||T(x) − T(y)||2
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On the other hand, since H is a real Hilbert space, we have

||(I − T)(x) − (I − T)(y)||2 = ||x − y||2 + ||T(x) − T(y)||2 − 2〈T(x) − T(y), x − y〉.

Hence,

||(I − T)(x) − (I − T)(y)||2 = ||x − y||2 + (1 − 2λ)||T(x) − T(y)||2.

Moreover, we have the following result:

Lemma 2.3. [10]Let K be a nonempty closed convex subset of a Hilbert space H and

B: K ® H a k-strictly pseudocontractive mapping. Then, I - B is demiclosed at zero,

that is, whenever {xn} is a sequence in K such that {xn} converges weakly to x Î K and

{(I - B)(xn)} converges strongly to 0, we must have (I - B)(x) = 0.

Definition2.4. Let A, g: H ® H. Then A is said to be g-monotone if

〈A(x) − A(y), g(x) − g(y)〉 ≥ 0, ∀ x, y ∈ H

For g = I, the identity operator, Definition 2.4 reduces to the well-known definition

of monotonicity. However, the converse is not true.

Now we show an example in proof of our main problem (1.2).

Example 2.5. Let a, b be strictly positive real numbers. Put H = {(x1, x2)| -a ≤ x1 ≤ a,

-b ≤ x2 ≤ b} with the usual inner product and norm. Let K = {(x1, x2) Î H: 0 ≤ x1 ≤ x2}

be a closed convex subset of H. Let T: K ® H be a mapping defined by T(x) = (I - PΔ)

(x), where Δ = {x := (x1, x2) Î H: x1 = x2} is a closed convex subset of H, and PΔ is a

projection mapping from K onto Δ. Clearly, T is 1
2-inverse strongly monotone, and S

(T) = Δ ∩ K. Now, if A =
[−1 2

0 −1

]
is a considered matrix operator and g = -I, where I

is the 2 × 2 identity matrix. Then, we can verify that A is a g-monotone operator.

Indeed, for each x := (x1, x2), y := (y1, y2) Î H, we have

〈A(x) − A(y), g(x) − g(y)〉 =
(

[x1 − y1 x2 − y2] ×
[−1 2

0 −1

])
×

[−(x1 − y1)
−(x2 − y2)

]
= (x1 − y1)2 − 2(x1 − y1)(x2 − y2) + (x2 − y2)2

= ((x1 − y1) − (x2 − y2))2 ≥ 0.

Moreover, if u∗ := (u∗
1, u∗

2) ∈ GVIK(A, g), then we must have 〈A(u*), g(y) - g(u*)〉 ≥ 0,

for all y = (y1, y2) Î H, g(y) Î K. This equivalence becomes

2u∗
1 − u∗

2

u∗
1

≥ u∗
1 − y1

u∗
2 − y2

, (2:1)

for all y = (y1, y2) Î H, g(y) Î K. Notice that g-1(K) = {(y1, y2) Î H|y1 ≥ y2}. Thus, in

view of (2.1), it follows that {x = (x1, x2) Î H|x1 = x2} ⊂ GVIK(A, g). Hence, GVIK(A, g,

T) ≠ ∅.

Remark 2.6. In Example 2.5, the operator A is not a monotone mapping on H.

We need the following concepts to prove our results.

Let R stand for the set of real numbers. Let F : K × K → R be an equilibrium

bifunction, that is, F(u, u) = 0 for every u Î K.

Definition2.7. The equilibrium bifunction F : K × K → R is said to be
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(i) monotone, if for all u, v Î K, then we have

F(u, v) + F(v, u) ≤ 0, (2:2)

(ii) strongly monotone with constant τ; if for all u, v Î K, then we have

F(u, v) + F(v, u) ≤ −τ ||u − v||2, (2:3)

(iii) hemicontinuous in the first variable u; if for each fixed v, then we have

lim
t→+0

F(u + t(z − u), v) = F(u, v), ∀(u, z) ∈ K × K. (2:4)

Recall that the equilibrium problem for F : K × K → R is to find u* Î K such that

F(u∗, v) ≥ 0, ∀v ∈ K. (2:5)

Concerning to the problem (2.5), the following facts are very useful.

Lemma 2.8. [11]Let F : K × K → Rbe such that F(u, v) is convex and lower semicon-

tinuous in the variable v for each fixed u Î K. Then,

(1) if F(u, v) is hemicontinuous in the first variable and has the monotonic property,

then U* = V*, where U* is the solution set of (2.5), and V* is the solution set of F(u,

v*) ≤ 0 for all u Î K. Moreover, in this case, they are closed and convex;

(2) if F(u, v) is hemicontinuous in the first variable for each v Î K and F is strongly

monotone, then U* is a nonempty singleton. In addition, if F is a strongly monotone

mapping, then U* = V* is a singleton set.

The following basic results are also needed.

Lemma 2.9. Let {xn} be a sequence in H. If xn ® x wealky and ||xn|| ® ||x||, then xn
® x strongly.

Lemma 2.10. [12]. Let an, bn, cn be the sequences of positive real numbers satisfying

the following conditions.

(i) an+1 ≤ (1 - bn)an + cn, bn < 1,

(ii)
∑∞

n=0 bn = +∞, limn→+∞( cn
bn

) = 0.

Then, limn®+∞ an = 0.

3. Regularization
Let a Î (0, 1) be a fixed positive real number. We now construct a regularization solu-

tion ua for (1.2), by solving the following general variational inequality problem: find

ua Î H, g(ua) Î K such that

〈A(uα) + αμ(T ◦ g)(uα) + αg(uα), g(v) − g(uα)〉 ≥ 0 ∀v ∈ H, g(v) ∈ K, 0 < μ < 1. (3:1)

Theorem 3.1. Let K be a closed convex subset of a Hilbert space H and g: H ® H be

a mapping such that K ⊂ g(H). Let A: H ® H be a hemicontinuous on K and g-
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monotone mapping, T: K ® H be l-inverse strongly monotone mapping. If g is an

expanding affine continuous mapping and GVIK(A, g, T) ≠ ∅, then the following conclu-

sions are true.

(a) For each a Î (0, 1), the problem (3.1) has the unique solution ua:

(b) If a ↓ 0, then {g(ua)} converges. Moreover, lim
α→0+

g(uα) = g(u∗)for some u* Î GVIK

(A, g, T).

(c) There exists a positive constant M such that

||g(uα) − g(uβ)||2 ≤ M(β − α)
α2

, (3:2)

when 0 <a <b < 1.

Proof. First, in view of the definition 2.2, we will always assume that λ ∈ (0, 1
2 ]. Now,

related to mappings A, T, and g, we define functions FA, FT : g−1(K) × g−1(K) → R by

FA(u, v) = 〈A(u), g(v) − g(u)〉 and FT(u, v) = 〈(T ◦ g)(u), g(v) − g(u)〉,

for all (u, v) Î g-1(K) × g-1(K). Note that, FA, FT are equilibrium monotone bifunc-

tions, and g-1(K) is a closed convex subset of H.

Now, let a Î (0, 1) be a given positive real number. We construct a function

Fα : g−1(K) × g−1(K) → R by

Fα(u, v) = [FA + αμFT](u, v) + α〈g(u), g(v) − g(u)〉, (3:3)

for all (u, v) Î g-1(K) × g-1(K).

(a) Observe that, the problem (3.1) is equivalent to the problem of finding ua Î g-1

(K) such that

Fα(uα , v) ≥ 0, ∀v ∈ g−1(K). (3:4)

Moreover, one can easily check that Fa(u, v) is a monotone hemicontinuous in the

variable u for each fixed v Î g-1(K). Indeed, it is strongly monotone with constant aξ >

0, where g is an ξ-expansive. Thus, by Lemma 2.8(ii), the problem (3.4) has a unique

solution ua Î g-1(K) for each a > 0. This prove (a).

(b) Note that for each y Î GVIK(A, g, T) we have [FA + aμFT](y, ua) ≥ 0. Conse-

quently, by (3.4), we have

0 ≥ −Fα(uα , y)

= − [
FA(uα, y) + αμFT(uα , y) + α〈g(uα), g(y) − g(uα)〉]

≥ − [
FA(uα, y) + αμFT(uα, y) + α〈g(uα), g(y) − g(uα)〉] − [FA(y, uα) + αμFT(y, uα)]

= −[FA(uα, y) + FA(y, uα)] − αμ[FT(uα , y) + FT(y, uα)] − α〈g(uα), g(y) − g(uα)〉
≥ α〈g(uα), g(uα) − g(y)〉.

This means

〈g(uα), g(y) − g(uα)〉 ≥ 0, ∀y ∈ GVIK(A, g, T).
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Consequently,

||g(uα)|| ||g(y)|| ≥ 〈g(uα), g(y)〉 ≥ 〈g(uα), g(uα)〉 = ||g(uα)||2, (3:5)

that is, ||g(ua)|| ≤ ||g(y)|| for all y Î GVIK(A, g, T). Thus, {g(ua)} is a bounded subset

of K. Consequently, the set of weak limit points as a ® 0 of the net (g(ua)) denoted

by ωw(g(ua)) is nonempty. Pick z Î ωw(g(ua)) and a null sequence {ak} in the interval

(0, 1) such that {g(uαk )} weakly converges to z as k ® ∞. Since K is closed and convex,

we know that K is weakly closed, and it follows that z Î K. Now, since K ⊂ g(H), we

let u* Î H be such that z = g(u*) and claim that u* Î GVIK(A, g, T).

To prove such a claim, we will first show that g(u*) Î S(T). To do so, let us pick a

fixed y Î GVIK(A, g, T). By (3.3) and the monotonicity of FA, we have

α
μ

k FT(uαk , y) + αk〈g(uαk), g(y) − g(uαk )〉 ≥ −FA(uαk , y) ≥ FA(y, uαk ) ≥ 0,

equivalently,

FT(uαk , y) + α
1−μ

k 〈g(uαk ), g(y) − g(uαk )〉 ≥ 0,

for each k Î N. Using the above together with the assumption that T is an l-inverse
strongly monotone mapping, we have

λ||T(g(uαk )) − T(g(y))||2 ≤ 〈T(g(uαk )), g(uαk ) − g(y)〉
= −FT(uαk , y)

≤ α
1−μ

k 〈g(uαk ), g(y) − g(uαk )〉
≤ α

1−μ

k

[||g(uαk )|| ||g(y)|| − ||g(uαk )||2
]

≤ α
1−μ

k ||g(y)||2

]

for each k Î N. Letting k ® +∞, we obtain

lim
k→+∞

||T(g(uαk )) − T(g(y))|| = lim
k→+∞

||T(g(uαk ))|| = 0.

On the other hand, we know that the mapping I - T is a strictly pseudocontractive,

thus by lemma 2.3, we have T demiclosed at zero. Consequently, since {g(uαk )} weakly
converges to g(u*), we obtain T(g(u*)) = T(g(y)) = 0. This proves g(u*) Î S(T), as

required.

Now, we will show that u* Î GVIK(A, g, T). Notice that, from the monotonic prop-

erty of Fa and (3.4), we have

FA(v, uαk ) + α
μ

k FT(v, uαk ) + αk〈g(v), g(uαk ) − g(v)〉 = Fα(v, uαk ) ≤ −Fα(uαk , v) ≤ 0,

for all v Î g-1(K). That is,

FA(v, uαk ) + α
μ

k FT(v, uαk ) ≤ αk〈g(v), g(v) − g(uαk )〉, (3:6)

for all v Î g-1(K). Since ak ↓ 0 as k ® ∞, we see that (3.6) implies FA(v, u*) ≤ 0 for

any v Î H, g(v) Î K. Consequently, in view of Lemma 2.8(1), we obtain our claim

immediately.
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Next we observe that the sequence {g(uαk )} actually converges to g(u*) strongly. In

fact, by using a lower semi-continuous of norm and (3.5), we see that

||g(u∗)|| ≤ lim inf
k→∞

||g(uαk )|| ≤ lim sup
k→∞

||g(uαk )|| ≤ ||g(u∗)||,

since u* Î GVIK(A, g, T). That is, ||g(uαk )|| → ||g(u∗)|| as k ® ∞. Now, it is

straight-forward from Lemma 2.9, that the weak convergence to g(u*) of {g(uαk )}
implies strong convergence to g(u*) of {g(uαk )}. Further, in view of (3.5), we see that

||g(u∗)|| = inf{||g(y)|| : y ∈ GVIK(A, g, T)}. (3:7)

Next, we let {g(uαj )} ⊂ (g(uα)), where {aj} be any null sequence in the interval (0, 1).

By following the lines of proof as above, and passing to a subsequence if necessary, we

know that there is ũ ∈ GVIK(A, g, T) such that g(uαj ) → g(ũ) as j ® ∞. Moreover, in

view of (3.5) and (3.7), we have ||g(ũ)|| = ||g(u∗)||. Consequently, since the function ||

g(·)|| is a lower semi-continuous function and GVIK(A, g, T) is a closed convex set, we

see that (3.7) gives u∗ = ũ. This has shown that g(u*) is the strong limit of the net (g

(ua)) as a ↓ 0.

(c) Let 0 <a <b < 1 and ua, ub are solutions of the problem (3.1). Thus, since FA and

FT are monotone mappings, by (3.4), we have

0 ≤ (βμ − αμ)FT(uβ , uα) + β〈g(uβ), g(uα) − g(uβ)〉 + α〈g(uα), g(uβ) − g(uα)〉,

that is,〈
g(uα) − β

α
g(uβ), g(uα) − g(uβ)

〉
≤

(
βμ − αμ

α

)
FT(uβ , uα). (3:8)

Notice that,
〈
g(uα) − β

α
g(uβ), g(uα) − g(uβ)

〉
= ||g(uα) − g(uβ)||2 +

α − β

α
〈g(uβ), g(uα))〉 − α − β

α
||g(uβ)||2

≥ ||g(uα) − g(uβ)||2 +
α − β

α
〈g(uβ), g(uα))〉,

since 0 <a <b. Using the above, by (3.8), we have

||g(uα) − g(uβ)||2 ≤ β − α

α
θ2 +

βμ − αμ

α
FT(uβ , uα), (3:9)

where θ = sup{||g(ua)||: a Î (0, 1)}. Moreover, since FT is a Lipschit continuous

mapping (with Lipschitz constant 1
λ
), it follows that

||g(uα) − g(uβ)||2 ≤ β − α

α
θ2 +

βμ − αμ

α
M1

for some M1 > 0. Further, by applying the Lagranges mean-value theorem to a con-

tinuous function h(t) = t-μ on [1, +∞), we know that

||g(uα) − g(uβ)||2 ≤ M(β − α)
α2

, (3:10)

for some M > 0. This completes the proof. □
Remark 3.2. If g =: I, the identity operator on H, then we see that Theorem 3.1

reduces to a result presented by Kim and Buong [9].
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4. Iterative Method
Now, we consider the regularization inertial proximal point algorithm:

〈cn[A(zn+1) + αμ
n (T ◦ g)(zn+1) + αng(zn+1)] + g(zn+1) − g(zn), g(v) − g(zn+1)〉 ≥ 0

∀ v ∈ H, g(v) ∈ K, z1 ∈ H, g(z1) ∈ K.
(4:1)

The well definedness of (4.1) is guaranteed by the following result.

Proposition 4.1. Assume that all hypothesis of the Theorem 3.1 are satisfied. Let z Î
g-1(K) be a fixed element. Define a bifunction Fz : g

-1(K) × g-1(K) ® ℝ by

Fz(u, v) := 〈c[A(u) + αμ(T ◦ g)(u) + αg(u)] + g(u) − g(z), g(v) − g(u)〉,

where c, a are positive real numbers. Then, there exists the unique element u* Î g-1

(K) such that Fz(u*, v) ≥ 0 for all v Î g-1(K).

Proof. Assume that g is an ξ- expanding mapping. Then, for each u, v Î g-1(K), we

see that

Fz(u, v) + Fz(v, u) ≤ (1 + cα)〈g(u) − g(v), g(v) − g(u)〉
= −(1 + cα)||g(u) − g(v)||2
≤ −ξ(1 + cα)||u − v||2.

This means F is ξ(1 + ca)-strongly monotone. Consequently, by Lemma 2.8, the

proof is completed. □
The result of the next theorem shows some sufficient conditions for the convergent

of regularization inertial proximal point algorithm (4.1).

Theorem 4.2. Assume that all the hypotheses of the Theorem 3.1 are satisfied. If the

parameters cn and an are chosen as positive real numbers such that

(C1) lim
n→∞ αn = 0,

(C2) lim
n→∞

αn−αn+1

α2
n+1

= 0,

(C3) lim inf
n→∞ cnαn > 0,

then the sequence {g(zn)} defined by (4.1) converges strongly to the element g(u*) as n

® +∞, where u* Î GVIK(A, g, T).

Proof. From (4.1) we have

〈cn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + (1 + cnαn)g(zn+1) − g(zn), g(v) − g(zn+1)〉 ≥ 0

that is

〈cn[A(zn+1)+αμ
n (T◦g)(zn+1)]+(1+cnαn)g(zn+1), g(v)−g(zn+1)〉 ≥ 〈g(zn), g(v)−g(zn+1)〉,

or equivalently,

(1 + cnαn)
〈

cn

(1 + cnαn)
[A(zn+1) + αμ

n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)
〉

≥

〈g(zn), g(v) − g(zn+1)〉,
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so 〈
cn

(1 + cnαn)
[A(zn+1) + αμ

n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)
〉

≥
1

(1 + cnαn)
〈g(zn), g(v) − g(zn+1)〉.

Hence

〈κn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + g(zn+1), g(v) − g(zn+1)〉 ≥ βn〈g(zn), g(v) − g(zn+1)〉,

where

βn =
1

(1 + cnαn)
, and κn = cnβn. (4:2)

On the other hand, by Theorem 3.1, there is un Î g-1(K) such that

〈A(un) + αμ(T ◦ g)(un) + αg(un), g(v) − g(un)〉 ≥ 0, (4:3)

for all n Î N. This implies

〈cn[A(un) + αμ
n (T ◦ g)(un)] + (1 + cnαn)g(un) − g(un), g(v) − g(un)〉 ≥ 0,

and so
〈

cn

(1 + cnαn)
[A(un) + αμ

n (T ◦ g)(un)] + g(un), g(v) − g(un)
〉

≥
〈

1
(1 + cnαn)

〈g(un), g(v) − g(un)
〉

.

Thus,

〈κn[A(un) + αμ
n (T ◦ g)(un)] + g(un), g(v) − g(un)〉 ≥ βn〈g(un), g(v) − g(un)〉. (4:4)

By setting v = un in (4.2) we have

〈κn[A(zn+1) + αμ
n (T ◦ g)(zn+1)] + g(zn+1), g(un) − g(zn+1)〉 ≥ βn〈g(zn), g(un) − g(zn+1)〉,

and v = zn+1 in (4.4) we have

〈κn[A(un) + αμ
n (T ◦ g)(un)] + g(un), g(zn+1) − g(un)〉 ≥ βn〈g(un), g(zn+1) − g(un)〉,

and adding one obtained result to the other, we get

κn〈A(zn+1) − A(un) + αμ
n (T ◦ g)(zn+1) − (T ◦ g)(un))), g(un) − g(zn+1)〉 + 〈g(zn+1) − g(un), g(un) − g(zn+1)〉

≥ βn〈g(zn) − g(un), g(un) − g(zn+1)〉. (4:5)

Notice that, since A is a g-monotone mapping, and T is a l-inverse strongly mono-

tone, we have

〈A(zn+1) − A(un), g(un) − g(zn+1)〉 ≤ 0,

and

〈(T ◦ g)(zn+1)) − (T ◦ g)(un)), g(un) − g(zn+1)〉 ≤ 0.

Thus, by (4.5), we obtain

〈g(zn+1) − g(un), g(un) − g(zn+1)〉 ≥ βn〈g(zn) − g(un), g(un) − g(zn+1)〉,
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that is,

〈g(zn+1) − g(un), g(zn+1) − g(un)〉 ≤ βn〈g(zn) − g(un), g(zn+1) − g(un)〉.

Consequently,

||g(zn+1) − g(un)||2 ≤ βn||g(zn) − g(un)|| ||g(zn+1) − g(un)||,

which implies that

||g(zn+1) − g(un)|| ≤ βn||g(zn) − g(un)||. (4:6)

Using the above Equation 4.6 and (3.2), we know that

||g(zn+1) − g(un+1)|| ≤ ||g(zn+1) − g(un)|| + ||g(un) − g(un+1)||

≤ βn||g(zn) − g(un)|| +

√
M(αn − αn+1)

α2
n+1

≤ (1 − bn)||g(zn) − g(un)|| + dn

where

bn =
cnαn

(1 + cnαn)
, dn =

√
M(αn − αn+1)

α2
n+1

.

Consequently, by the condition (C3), we have
∑∞

n=1 bn = ∞. Meanwhile, the condi-

tions (C2) and (C3) imply that lim
n→∞

dn
bn

= 0. Thus, all the conditions of Lemma 2.10 are

satisfied, then it follows that ||g(zn+1) - g(un+1)|| ® 0 as n ® ∞. Moreover, by (C1)

and Theorem 3.1, we know that there exists u* Î GVIK(A, g, T) such that g(un) con-

verges strongly to g(u*). Consequently, we obtain that g(zn) converges strongly to g(u*)

as n ® +∞. This completes the proof. □
Remark 4.3. The sequences {an} and {cn} which are defined by

αn =
(

1
n

)p

, 0 < p < 1, and cn =
1
αn

satisfy all the conditions in Theorem 4.2.

Remark 4.4. It is worth noting that, because of condition (C2) of Theorem 4.2, the

important natural choice {1/n} does not include in the class of parameters {an}. This

leads to a question: Can we find another regularization inertial proximal point algo-

rithm for the problem (1.2) that includes a natural parameter choice {1/n}?

Remark 4.5. If F is a nonexpansive mapping, then I - F is an inverse strongly mono-

tone mapping, and the fixed points set of mapping F and the solution set S(I - F) are

equal. This means that our results contain the study of finding a common element of

(general) variational inequalities problems and fixed points set of nonexpansive map-

ping, which were studied in [4-8] as special cases.

Acknowledgements
YJC was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-
C00050). NP was supported by Faculty of Science, Naresuan University (Project No. R2553C222), and the Commission
on Higher Education and the Thailand Research Fund (Project No. MRG5380247).

Cho and Petrot Journal of Inequalities and Applications 2011, 2011:21
http://www.journalofinequalitiesandapplications.com/content/2011/1/21

Page 10 of 11



Author details
1Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Korea
2Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

Authors’ contributions
Both authors contributed equally in this paper. They read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 14 February 2011 Accepted: 20 July 2011 Published: 20 July 2011

References
1. Noor, MA: General variational inequalities. Appl Math Lett. 1, 119–121 (1988). doi:10.1016/0893-9659(88)90054-7
2. Noor, MA: Some developments in general variational inequalities. Appl Math Comput. 152, 199–277 (2004). doi:10.1016/

S0096-3003(03)00558-7
3. Petrot, N: Existence and algorithm of solutions for general set-valued Noor variational inequalities with relaxed (μ, ν)-

cocoercive operators in Hilbert spaces. J Appl Math Comput. 32, 393–404 (2010). doi:10.1007/s12190-009-0258-1
4. Iiduka, H, Takahashi, W: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone

mappings. Nonlinear Anal. 61, 341–350 (2005). doi:10.1016/j.na.2003.07.023
5. Noor, MA: General variational inequalities and nonexpansive mappings. J Math Anal Appl. 331, 810–822 (2007).

doi:10.1016/j.jmaa.2006.09.039
6. Noor, MA, Huang, Z: Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings. Appl

Math Comput. 191, 504–510 (2007). doi:10.1016/j.amc.2007.02.117
7. Qin, X, Noor, MA: General WienerHopf equation technique for nonexpansive mappings and general variational

inequalities in Hilbert spaces. Appl Math Comput. 201, 716–722 (2008). doi:10.1016/j.amc.2008.01.007
8. Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings. J Optim

Theory Appl. 118(2), 417–428 (2003). doi:10.1023/A:1025407607560
9. Kim, JK, Buong, N: Regularization inertial proximal point algorithm for monotone hemicontinuous mapping and inverse

strongly monotone mappings in Hilbert spaces. J Inequal Appl 10 (2010). Article ID 451916
10. Osilike, MO, Udomene, A: Demiclosedness principle and convergence theorems for strictly pseudo-contractive

mappings of Browder-Petryshyn type. J Math Anal Appl. 256(2), 431–445 (2001). doi:10.1006/jmaa.2000.7257
11. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math Stud. 63, 123–145

(1994)
12. Xu, HK: Iterative algorithms for nonlinear operators. J Lond Math Soc. 66(1), 240–256 (2002). doi:10.1112/

S0024610702003332

doi:10.1186/1029-242X-2011-21
Cite this article as: Cho and Petrot: Regularization and iterative method for general variational inequality
problem in hilbert spaces. Journal of Inequalities and Applications 2011 2011:21.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Cho and Petrot Journal of Inequalities and Applications 2011, 2011:21
http://www.journalofinequalitiesandapplications.com/content/2011/1/21

Page 11 of 11

http://www.springeropen.com/
http://www.springeropen.com/


 

 

ภาคผนวก 4  
 

Existence and stability of  iterative algorithms 
for the system of nonlinear quasi mixed 

equilibrium problem 
 
 
 

Suthep Suantai and Narin Petrot 
 

 
 
 
 
 

Applied Mathematics Letters 24 (2011) 308–313 



This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Applied Mathematics Letters 24 (2011) 308–313

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Existence and stability of iterative algorithms for the system of
nonlinear quasi-mixed equilibrium problems✩

Suthep Suantai a, Narin Petrot b,∗
a Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
b Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand

a r t i c l e i n f o

Article history:
Received 8 June 2010
Accepted 3 October 2010

Keywords:
System of nonlinear quasi-mixed
equilibrium problems

ν-strongly monotone
(τ , σ )-Lipschitz mapping
Stability analysis

a b s t r a c t

In this paper, we consider the system of nonlinear quasi-mixed equilibrium problems. The
existence theorems of solutions of such problems are provided by considering the limit
point of an iterative algorithm. Thismeans,wenot only give the conditions for the existence
theorems of the presented problems but also provide the algorithm to find such solutions.
Moreover, the stability of such an algorithm is also discussed. The results presented in this
paper are more general, andmay be viewed as an extension, refinement and improvement
of the previously known results in the literature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by ⟨·, ·⟩ and ‖ · ‖, respectively. Let Φ1,Φ2 :

H × H → H be given two bi-functions satisfying Φi(x, x) = 0 for all x ∈ H, i = 1, 2. Let Ti : H × H → H be a
nonlinear mapping for each i = 1, 2. In this work, let CC(H) be the family of all nonempty closed convex subsets of H and
Ci : H → CC(H) be a point-to-set mapping which associate a nonempty closed convex set Ci(x)with any element x of H ,
for each i = 1, 2. We consider the problem of finding (x∗, y∗) ∈ H × H such that x∗

∈ C1(x∗), y∗
∈ C2(y∗) and

Φ1(x∗, z)+ ⟨T1(x∗, y∗), z − x∗
⟩ ≥ 0, ∀z ∈ C1(x∗),

Φ2(y∗, z)+ ⟨T2(x∗, y∗), z − y∗
⟩ ≥ 0, ∀z ∈ C2(y∗).

(1.1)

Since in many important problems the closed convex set C also depends upon the solutions explicitly or implicitly, it is
worthmentioning that the problem of type (1.1) is of interest to study; see [1] for more details. Consequently, problem (1.1)
is called the system of nonlinear quasi-mixed equilibrium problems.

For each i = 1, 2 if the convex set C(u) is of the form

Ci(u) = mi(u)+ Ci, (1.2)

where Ci is a fixed closed convex set and mi is a point-to-point mapping, then problem (1.1) is equivalent to finding
(x∗, y∗) ∈ H × H such that x∗

− m1(x∗) ∈ C1 and y∗
− m2(x∗) ∈ C2 and

Φ1(x∗, z)+ ⟨T1(x∗, y∗), z − x∗
⟩ ≥ 0, ∀z ∈ C1(x∗),

Φ2(y∗, z)+ ⟨T2(x∗, y∗), z − y∗
⟩ ≥ 0, ∀z ∈ C2(y∗).

(1.3)

✩ Supported by the Commission on Higher Education and the Thailand Research Fund (Project No. MRG5380247).
∗ Corresponding author.
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A problem related to (1.3) was studied by Ding et al. [2]. Moreover, if we setm1 = m2 ≡ 0 then problem (1.3) is reduced to
finding x∗, y∗

∈ C1 × C2 such that
Φ1(x∗, z)+ ⟨T1(x∗, y∗), z − x∗

⟩ ≥ 0, ∀z ∈ C1,
Φ2(y∗, z)+ ⟨T2(x∗, y∗), z − y∗

⟩ ≥ 0, ∀z ∈ C2,
(1.4)

which is due to Cho and Petrot [3], when C1 = C2.
If for each i = 1, 2, let Si : H × H → H be the nonlinear mapping and ζ , ϑ are fixed positive real numbers. Let

T1(x, y) = ζ S1(y, x) + x − y, T2(x, y) = ϑS2(x, y) + y − x for all x, y ∈ H and Φi(x, z) = ψi(z) − ψi(x) for all x, z ∈ H ,
where ψi : H → R is a real valued function, for each i = 1, 2. Then problem (1.4) reduces to finding x∗, y∗

∈ H such that
⟨ζ S1(y∗, x∗)+ x∗

− y∗, z − x∗
⟩ + ψ1(z)− ψ1(x∗) ≥ 0, ∀z ∈ C,

⟨ϑS2(x∗, y∗)+ y∗
− x∗, z − y∗

⟩ + ψ2(z)− ψ2(y∗) ≥ 0, ∀z ∈ C, (1.5)

which is called the system of nonlinear mixed variational inequalities problems. A special case of problem (1.5), has been
studied by many authors; see [4–10] for examples. Evidently, the examples described above shown that a number of
classes of variational inequalities and related optimization problems can be obtained as special cases of the system of mixed
equilibrium problems (1.1).

Motivated and inspired by these works, in this paper, we provide the existence theorem for problem (1.1) and the
uniqueness of solution. The stability of the iterative algorithm and some important remarks are also discussed. To do so,
we need the following basic concepts and lemmas.

Definition 1.1 (Blum and Oettli [11]). A real valued bi-functionΦ : H × H → R is said to be
(i) monotone if

Φ(x, y)+ Φ(y, x) ≤ 0, ∀x, y ∈ H;

(ii) strictly monotone if

Φ(x, y)+ Φ(y, x) < 0, ∀x, y ∈ H with x ≠ y;
(iii) upper hemicontinuous if

lim sup
t→0+

Φ(tz + (1 − t)x, y) ≤ Φ(x, y), ∀x, y, z ∈ H .

Definition 1.2. A function f : H → R ∪ {+∞} is said to be lower semi-continuous at x0 if for all α < f (x0), there exists a
constant β > 0 such that

α ≤ f (x), ∀x ∈ B(x0, β),

where B(x0, β) denotes the ball with the center x0 and the radius β , i.e.,

B(x0, β) = {y : ‖y − x0‖ ≤ β}.

f is said to be lower semi-continuous if it is lower semi-continuous at every point of E.

Lemma 1.3 (Combettes and Hirstoaga [12]). Let C be a nonempty closed convex subset of H andΦ be a bi-function of H × H
into R satisfying the following conditions:
(C1) Φ is monotone and upper hemicontinuous;
(C2) Φ(x, ·) is convex and lower semi-continuous for each x ∈ C.
Let ρ > 0 be fixed. Define a mapping JρΦ,C : H → C as follows:

JρΦ,C (x) = {w ∈ C : ρΦ(w, z)+ ⟨w − x, z − w⟩ ≥ 0, ∀z ∈ C},

for all x ∈ H . Then JρΦ,C is a single valued mapping.

Definition 1.4. LetM ⊂ H × H be a set-valued mapping. ThenM is called monotone if for any (x1, y1), (x2, y2) ∈ M ,

⟨y1 − y2, x1, x2⟩ ≥ 0.

Lemma 1.5 ([3]). Let C be a nonempty closed convex subset of H . If Φ : H ×H → R is a monotone function, then the operator
JρΦ,C is a non-expansive mapping, that is,

‖JρΦ,C (x)− JρΦ,C (y)‖ ≤ ‖x − y‖, ∀x, y ∈ H .

In this paper, we are interested in the following classes of nonlinear mappings.

Definition 1.6. A mapping T : H → H is said to be ν-strongly monotone if there exists a constant ν > 0 such that

⟨Tx − Ty, x − y⟩ ≥ ν‖x − y‖2, ∀x, y ∈ H .
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Definition 1.7. A mapping T : H × H → H is said to be (τ , σ )-Lipschitz if there exist constants τ , σ > 0 such that

‖T (x1, y1)− T (x2, y2)‖ ≤ τ‖x1 − x2‖ + σ‖y1 − y2‖, ∀x1, x2, y1, y2 ∈ H .

2. The existence theorems

In this section we will provide the existence theorem for the solution of problem (1.1). We begin with an important
lemma,

Lemma 2.1. (x∗, y∗) ∈ H × H is a solution of problem (1.1) if and only if

x∗
= JρΦ,C1(x∗)[x

∗
− ρ1T1(x∗, y∗)],

y∗
= JρΦ,C2(y∗)[y

∗
− ρ2T2(x∗, y∗)].

Proof. The proof directly follows from the definitions of JρΦ,C1(x∗) and JρΦ,C2(y∗). �

From Lemma 2.1, we see that the system of nonlinear quasi-mixed implicit equilibrium problems (1.1) is equivalent to
the fixed point problems:

x∗
= (1 − λ)x∗

+ λJρ1Φ1,C1(x∗)
[x∗

− ρ1T1(x∗, y∗)]

y∗
= (1 − λ)y∗

+ λJρ2Φ2,C2(y∗)
[y∗

− ρ2T2(x∗, y∗)]
(2.1)

where λ ∈ (0, 1) is a parameter. The fixed point formulation (2.1) enables us to suggest the following iterative scheme.

Algorithm (I). Let ρ1, ρ2 be fixed positive constants. For given (x0, y0) ∈ H × H . Define {(xn, yn)} ⊂ H × H by
xn+1 = (1 − λ)xn + λJρ1Φ1,C1(xn)

[xn − ρ1T1(xn, yn)],
yn+1 = (1 − λ)yn + λJρ2Φ2,C2(yn)

[yn − ρ2T2(xn, yn)],
(2.2)

where λ ∈ (0, 1) is a fixed parameter.
Of course, we will use Algorithm (I) as a tool for obtaining our main result, that is, the existence theorem solutions to

problem (1.1). To do this, from now on, we will assume the following condition:

Condition (∆). For each i = 1, 2 there exists ηi > 0 such that

‖JρΦ,Ci(u)z − JρΦ,Ci(v)z‖ ≤ ηi‖u − v‖, ∀u, v, z ∈ H .

Remark 2.2. Let C be a closed convex subset of H . It is clear that Condition (∆) is satisfied for the case C(u) = C for all
u ∈ H , with η = 0. We also remark that Condition (∆) is true for the case C(u) = m(u)+ C , as defined by (1.2) whenm is a
µ-Lipschitz continuous and the functionΦ satisfiesΦ(x − y, z) = Φ(x, z − y) for all x, y, z ∈ C . Indeed, for each u, z ∈ H
we observe that

JρΦ,C(u)z = JρΦ,m(u)+Cz = m(u)+ JρΦ,C [z − m(u)]. (2.3)

It follows that

‖JρΦ,C(u)z − JρΦ,C(v)z‖ = ‖m(u)+ JρΦ,C [z − m(u)] − m(v)− JρΦ,C [z − m(v)]‖

≤ ‖m(u)− m(v)‖ + ‖JρΦ,C [z − m(u)] − JρΦ,C [z − m(v)]‖
≤ 2‖m(u)− m(v)‖ ≤ 2µ‖u − v‖,

this shows that Condition (∆) holds for η = 2µ.

Theorem 2.3. For each i = 1, 2, let Φi : H × H → R be a monotone function and Ci : H → CC(H). Let T1 : H × H → H
be a ν1-strongly monotone with respect to the first argument and (τ1, σ1)-Lipschitz mapping and T2 : H × H → H be a
ν2-strongly monotone with respect to the second argument and (τ2, σ2)-Lipschitz mapping. Suppose that there are positive real
numbers ρ1, ρ2 which satisfy the following condition:

(1 − 2ρ1ν1 + ρ2
1τ

2
1 )

1
2 + ρ2τ2 < 1 − η1,

(1 − 2ρ2ν2 + ρ2
2τ

2
2 )

1
2 + ρ1σ1 < 1 − η2.

(2.4)

Then the set of solution of problem (1.1) is a singleton.
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Proof. Since Jρ1Φ1,C1
and Jρ2Φ2,C2

are non-expansive mappings, we have the following estimate:

‖xn+1 − xn‖ ≤ (1 − λ)‖xn − xn−1‖ + λ‖Jρ1Φ1,C1(xn)
[xn − ρ1T1(xn, yn)] − Jρ1Φ1,C1(xn−1)

[xn−1 − ρ1T1(xn−1, yn−1)]‖

≤ (1 − λ)‖xn − xn−1‖ + λ‖Jρ1Φ1,C1(xn)
[xn − ρ1T1(xn, yn)] − Jρ1Φ1,C1(xn)

[xn−1 − ρ1T1(xn−1, yn−1)]‖

+ λ‖Jρ1Φ1,C1(xn)
[xn−1 − ρ1T1(xn−1, yn−1)] − Jρ1Φ1,C1(xn−1)

[xn−1 − ρ1T1(xn−1, yn−1)]‖

≤ (1 − λ(1 − η1))‖xn − xn−1‖ + λ‖xn − xn−1 − ρ1[T1(xn, yn)− T1(xn−1, yn)]‖

+ λρ1‖T (xn−1, yn)− T (xn−1, yn−1)‖. (2.5)

Since for each w ∈ H the mapping T1(·, w) : H → H is a ν1- strongly monotone, and the mapping T1(w, ·) : H → H
is a τ1-Lipschitz, we obtain

‖xn − xn−1 − ρ1[T1(xn, yn)− T1(xn−1, yn)]‖2
= ‖xn − xn−1‖

2
− 2ρ1⟨xn − xn−1, T1(xn, yn)− T1(xn−1, yn)⟩

+ ρ2
1‖T1(xn, yn)− T1(xn−1, yn)‖2

≤ ‖xn − xn−1‖
2
− 2ρ1ν1‖xn − xn−1‖ + ρ2

1τ
2
1 ‖xn − xn−1‖

2

= (1 − 2ρ1ν1 + ρ2
1τ

2
1 )‖xn − xn−1‖

2, (2.6)

and

‖T (xn−1, yn)− T (xn−1, yn−1)‖ ≤ σ1‖yn − yn−1‖. (2.7)

Consequently, from (2.5)–(2.7), we have

‖xn+1 − xn‖ ≤ (1 − λ(1 − η1))‖xn − xn−1‖ + λ(1 − 2ρ1ν1 + ρ2
1τ

2
1 )

1
2 ‖xn − xn−1‖ + λρ1σ1‖yn − yn−1‖

= (1 − λ(1 − (η1 + θ1)))‖xn − xn−1‖ + λρ1σ1‖yn − yn−1‖, (2.8)

where θ1 = (1 − 2ρ1ν1 + ρ2
1τ

2
1 )

1
2 .

Similarly, we have the following inequality

‖yn+1 − yn‖ ≤ (1 − λ(1 − (η2 + θ2)))‖yn − yn−1‖ + λρ2τ2‖xn − xn−1‖, (2.9)

where θ2 = (1 − 2ρ2ν2 + ρ2
2σ

2
2 )

1
2 .

Consequently, from (2.8) and (2.9), we have

‖xn+1 − xn‖ + ‖yn+1 − yn‖ ≤ max{κ1, κ2}(‖xn − xn−1‖ + ‖yn − yn−1‖), (2.10)

where

κ1 = 1 − λ[1 − (η1 + θ1 + ρ2τ2)], κ2 = 1 − λ[1 − (η2 + θ2 + ρ1σ1)]. (2.11)

Now, define the norm ‖ · ‖
+ on H × H by

‖(x, y)‖+
= ‖x‖ + ‖y‖, ∀(x, y) ∈ H × H .

Notice that (H × H, ‖ · ‖
+) is a Banach space and

‖(xn+1, yn+1)− (xn, yn)‖+
≤ max{κ1, κ2}‖(xn, yn)− (xn−1, yn−1)‖

+. (2.12)

By condition (2.4), we see that κ := max{κ1, κ2} < 1. Write an := (xn, yn). From (2.12) we have

‖an+1 − an‖+
≤ κn

‖a1 − a0‖+ , (2.13)

for all n ≥ 1. Hence, for anym ≥ n > 1, it follows that

‖am − an‖+
≤

m−1−
i=n

‖ai+1 − ai‖+
≤

m−1−
i=n

κ i
‖a1 − a0‖+. (2.14)

Since κ < 1, it follows from (2.14) that ‖am −an‖+
→ 0 as n → ∞ and hence {an} is a Cauchy sequence in (H ×H, ‖ · ‖

+).
Consequently, there exists (x∗, y∗) ∈ H × H such that (xn, yn) → (x∗, y∗) as n → ∞. Now we show that (x∗, y∗) is a
solution of problem (1.1). In fact, by Condition (∆), we note that

‖Jρ1Φ1,C1(xn)
[xn − ρ1T1(xn, yn)] − Jρ1Φ1,C1(x∗)

[x∗
− ρ1T1(x∗, y∗)]‖

≤ ‖Jρ1Φ1,C1(xn)
[xn − ρ1T1(xn, yn)] − Jρ1Φ1,C1(xn)

[x∗
− ρ1T1(x∗, y∗)]‖

+ ‖Jρ1Φ1,C1(xn)
[x∗

− ρ1T1(x∗, y∗)] − Jρ1Φ1,C1(x∗)
[x∗

− ρ1T1(x∗, y∗)]‖

≤ ‖xn − x∗
− ρ1(T1(xn, yn)− T1(x∗, y∗))‖ + η1‖xn − x∗

‖

≤ [(2 + ρ1τ1 + η1)‖xn − x∗
‖ + ρ1σ1‖yn − y∗

‖] −→ 0 as n → ∞. (2.15)



Author's personal copy

312 S. Suantai, N. Petrot / Applied Mathematics Letters 24 (2011) 308–313

And, similarly,

‖Jρ1Φ2,C2(yn)
[yn − ρ2T2(xn, yn)] − Jρ2Φ2,C2(y∗)

[y∗
− ρ2T2(x∗, y∗)]‖ −→ 0 as n → ∞. (2.16)

Using (2.15) and (2.16), from the definition of {xn} and {yn}, we have

x∗
= Jρ1Φ1,C1(x∗)

[x∗
− ρ1T1(x∗, y∗)] ∈ C1(x∗),

y∗
= Jρ2Φ2,C2(y∗)

[y∗
− ρ2T2(x∗, y∗)] ∈ C2(y∗).

Thus, by Lemma 2.1, we conclude that (x∗, y∗) is a solution for problem (1.1).
Next, assume that there also exists (u∗, v∗) ∈ H × H such that u∗

∈ C1(u∗), v∗
∈ C2(v

∗) and

u∗
= Jρ1Φ1,C1(u∗)[u

∗
− ρ1T1(u∗, v∗)],

v∗
= Jρ2Φ2,C2(v∗)

[v∗
− ρ2T2(u∗, v∗)].

Using the same lines as obtaining (2.12), we know that

‖(x∗
− u∗, y∗

− v∗)‖+
≤ κ‖(x∗

− u∗, y∗
− v∗)‖+. (2.17)

Since, κ < 1, we must have x∗
= u∗ and y∗

= v∗. Hence, the set of solution of problem (1.1) is a singleton. This completes
the proof. �

Remark 2.4. Theorem 2.3 not only gives the conditions for the existence solution of problem (1.1) but also provide the
algorithm to find such a solution for any initial vector (x0, y0) ∈ H × H . In fact, by proceeding along the same lines as in
Theorem 2.3, one can also show that the sequences {(xn, yn)}, defined by followingMann type perturbed iterative algorithm
(MTA),

xn+1 = (1 − αn)xn + αnJ
ρ1
Φ1,C1(xn)

[xn − ρ1T1(xn, yn)],
yn+1 = (1 − αn)yn + αnJ

ρ2
Φ2,C2(yn)

[yn − ρ2T2(xn, yn)],
(2.18)

converges strongly to the unique solution of problem (1.1), when {αn} is a sequence of real numbers such that αn ∈ (0, 1)
and

∑
∞

n=0 αn = ∞.

Let C be a fixed closed convex subset of a Hilbert space H . If C1(u) = C2(u) = C for all u ∈ H , we have the following
result.

Theorem 2.5 ([3]). For each i = 1, 2, let Φi : H × H → R be a monotone function and Ci : H → CC(H). Let
T1 : H × H → H be a ν1-strongly monotone with respect to the first argument and (τ1, σ1)-Lipschitz mapping and
T2 : H ×H → H be a ν2-strongly monotone with respect to the second argument and (τ2, σ2)-Lipschitz mapping. Suppose that
there are positive real numbers ρ1, ρ2 which satisfy the following condition:

(1 − 2ρ1ν1 + ρ2
1τ

2
1 )

1
2 + ρ2τ2 < 1,

(1 − 2ρ2ν2 + ρ2
2τ

2
2 )

1
2 + ρ1σ1 < 1.

(2.19)

Then the set of solution of problem (1.1) is a singleton.

Proof. The result is followed immediately from Remark 2.2 and Theorem 2.3. �

3. Stability analysis

In this section, wewill study stability of theMann type perturbed iterative algorithm (2.18). Firstly, in view of fixed point
formulation (2.1), the following remark is clear.

Remark 3.1. Let (x, y) ∈ H × H . Then (x, y) is a solution of problem (1.1) if and only if there exist positive real numbers
ρ1, ρ2 such that (x, y) is a fixed point of the map Gρ1,ρ2 : H × H → H × H defined by

Gρ1,ρ2(x, y) = (Aρ1(x, y), Bρ2(x, y)), ∀(x, y) ∈ H × H, (3.1)

where Aρ1 , Bρ2 : H × H → H are defined by

Aρ1(x, y) = (1 − λ)x + λJρ1Φ1,C1(x)
[x − ρ1T1(x, y)]

Bρ2(x, y) = (1 − λ)y + λJρ2Φ2,C2(y)
[y − ρ2T2(x, y)],

where λ ∈ (0, 1) is a fixed constant.
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Using the idea as in Theorem 2.3, we have another version for the existence solution of problem (1.1).

Theorem 3.2. Assume that all assumptions of Theorem 2.3 hold. Then the mapping Gρ1,ρ2 , which is defined as in (3.1), has a
unique fixed point.

Nowwe give a definition, which can be viewed as an extension of the concept of stability of iteration procedure given by
Harder and Hick [13].

Definition 3.3 ([14]). Let H be a Hilbert space and let A, B : H × H → H be nonlinear mappings. Let G : H × H →

H × H be defined as G(x, y) = (A(x, y), B(x, y)) for any (x, y) ∈ H × H , and let (x0, y0) ∈ H × H . Assume that
(xn+1, yn+1) = f (G, xn, yn) defines an iteration procedure which yields a sequence of {(xn, yn)} in H × H . Suppose that
F(G) = {(x, y) ∈ H × H : G(x, y) = (x, y)} ≠ ∅ and {(xn, yn)} converges to some (x∗, y∗) ∈ F(G). Let {(un, vn)}
be an arbitrary sequence in H × H and εn = ‖(un, vn) − f (G, xn, yn)‖, for all n ≥ 0. If limn→∞ εn = 0 implies that
limn→∞(un, vn) = (x∗, y∗), then the iterative procedure {(xn, yn)} is said to be G-stable or stable with respect to G.

Theorem 3.4. Assume that all conditions of Theorem 3.2 hold. Let {(un, vn)} be an arbitrary sequence in H × H and define
{δn} ⊂ [0,∞) by

δn = ‖(un+1, vn+1)− (Cn,Dn)‖
+, (3.2)

where 
Cn = (1 − αn)xn + αnJ

ρ1
Φ1,C1(xn)

[xn − ρ1T1(xn, yn)],
Dn = (1 − αn)yn + αnJ

ρ2
Φ2,C2(yn)

[yn − ρ2T2(xn, yn)],
(3.3)

where (xn, yn) is defined in (2.18), for each n ∈ N. If Gρ1,ρ2 is defined as in (3.1) then the iterative procedure (2.18) is Gρ1,ρ2-stable.

Proof. Assume that limn→∞ δn = 0. Let (x∗, y∗) be the unique fixed point of the mapping Gρ1,ρ2 , this means,

x∗
= Jρ1Φ1,C1(x∗)

[x∗
− ρ1T1(x∗, y∗)]

y∗
= Jρ1Φ2,C2(y∗)

[y∗
− ρ2T2(x∗, y∗)].

Now from (3.2) and (3.3), we have

‖(un+1, vn+1)− (x∗, y∗)‖+
≤ δn + ‖Cn − x∗

‖ + ‖Dn − y∗
‖. (3.4)

Notice that (Cn,Dn) = {(xn+1, yn+1)} for each n ∈ N, which implies that limn→∞ Cn = x∗ and limn→∞ Dn = y∗. Using
this one and the assumption limn→∞ δn = 0, in view of (3.4), we have limn→∞(un+1, vn+1) = (x∗, y∗). This completes the
proof. �

Remark 3.5. It is worth noting that for a suitable and appropriate choice of the operators T1, T2,Φ1,Φ2 and point-to-set
mappings C1, C2, one can obtain a large number of various classes of variational inequalities. This means that problem (1.1)
is quite general and unifying.
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a b s t r a c t

In this paper, we introduce an iterative method for finding a common element of the set
of solutions of the generalized equilibrium problems, the set of solutions for the systems
of nonlinear variational inequalities problems and the set of fixed points of nonexpansive
mappings inHilbert spaces. Furthermore,we apply ourmain result to the set of fixed points
of an infinite family of strict pseudo-contraction mappings. The results obtained in this
paper are viewed as a refinement and improvement of the previously known results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by ⟨·, ·⟩ and ‖ · ‖, respectively. Let C be
a nonempty closed convex subset of H . Let ϕ : C → R be a real-valued function, Q : C → H be a mapping and
Φ : H × C × C → R be an equilibrium-like function, that is, Φ(w, u, v) + Φ(w, v, u) = 0 for all (w, u, v) ∈ H × C × C .
We consider the following generalized equilibrium problem:

Find x∗
∈ C such that

Φ(Qx∗, x∗, y) + ϕ(y) − ϕ(x∗) ≥ 0, ∀y ∈ C .
(1.1)

We denote the set of solutions of the generalized equilibrium problem (1.1) by GEP(C,Q , Φ, ϕ).
Special cases of the problem (1.1) are as follows:
(I) LetΦ(w, u, v) = F(u, v), where F : C×C → R. Then the problem (1.1) reduces to the following equilibriumproblem:

Find x∗
∈ C such that F(x∗, v) + ϕ(v) − ϕ(x∗) ≥ 0, ∀v ∈ C .

This problem was studied by Flores-Bazan [1].

∗ Corresponding author. Tel.: +66 95 3252; fax: +66 95 3201.
E-mail addresses: yjcho@gsnu.ac.kr (Y.J. Cho), iargyros@cameron.edu (I.K. Argyros), narinp@nu.ac.th (N. Petrot).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
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(II) If ϕ = 0 and Φ(w, u, v) = F(u, v), where F : C × C → R, then the problem (1.1) becomes the following equilibrium
problem:

Find x∗
∈ C such that F(x∗, v) ≥ 0, ∀v ∈ C . (1.2)

(III) If Φ(w, u, v) = ⟨w, v − u⟩ for all (w, u, v) ∈ H × C × C , then the problem (1.1) reduces to the following problem:

Find x∗
∈ C such that ⟨Qx∗, v − x∗

⟩ + ϕ(v) − ϕ(x∗) ≥ 0, ∀v ∈ C .

This problem was studied by Dien [2] and Noor [3].
(IV) If ϕ = 0 and Φ(w, u, v) = ⟨w, v − u⟩ for all (w, u, v) ∈ H × C × C , then the problem (1.1) reduces to the following

classical variational inequality: problem:

Find x∗
∈ C such that ⟨Qx∗, v − x∗

⟩ ≥ 0, ∀v ∈ C .

In brief, for an appropriate choice of the mapping Q , the functions Φ , ϕ and the convex set C , one can obtain a number
of the various classes of equilibrium problems as special cases.

In particular, the equilibrium problems (1.2) which were introduced by Blum-Oettli [4] and Noor-Oettli [5] in 1994 have
had a great impact and influence on the development of several branches of pure and applied sciences. In [4,5], it has been
shown that equilibrium problems include variational inequalities, fixed point, Nash equilibrium and game theory as special
cases. This means that the equilibrium problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity and optimization.
Hence collectively, equilibrium problems cover a vast range of applications.

Related to the equilibrium problems, we also have the problems of finding the fixed points of the nonlinear mappings,
which is the subject of current interest in functional analysis. It is natural to construct a unified approach for these problems.
In this direction, several authors have introduced some iterative schemes for finding a common element of the set of
solutions of the equilibrium problems and the set of fixed points of nonlinear mappings (for examples, see [6–12] and the
references therein).

On the other hand, for two nonlinear mappings A, B : C → H , we consider the following system of nonlinear variational
inequalities problems:Find (x∗, y∗) ∈ C × C such that

⟨λ Ay∗
+ x∗

− y∗, x − x∗
⟩ ≥ 0, ∀x ∈ C,

⟨ρBx∗
+ y∗

− x∗, x − y∗
⟩ ≥ 0, ∀x ∈ C,

(1.3)

where λ and ρ are positive numbers.
In particular, ifA = B, then theproblem (1.3)was studied byVerma [13–16]. Recently, Ceng-Wang-Yao [17] considered an

iterative method for the system of variational inequalities (1.3) and obtained a strong convergence theorem for the problem
(1.3) and a fixed point problem for a single nonexpansive mapping (see [17] for more details).

Motivated by the recent research work going on in this fascinating field, in this paper we introduce a general iterative
method for finding a common element of the set of solutions for the problem (1.1), the set of solutions for the problem (1.3)
and the set of fixed points of a nonexpansive mapping. Consequently, we apply our main result to the set of fixed points of
an infinite family of nonexpansivemappings and also the set of fixed points of an infinite family of strict pseudo-contraction
mappings. The results obtained in this paper can be viewed as an important extension of the previously known results.

We now recall some well-known concepts and results.

Definition 1.1. A mapping S : C → C is said to be Lipschitz continuous if there exists a positive constant L > 0 such that

‖Sx − Sy‖ ≤ L‖x − y‖, ∀x, y ∈ C .

In the case L = 1, the mapping S is known as a nonexpansive mapping. If S : C → C is a mapping, we denote the set of
fixed points of S by F(S), that is, F(S) = {x ∈ C : Sx = x}.

Let C be a nonempty closed convex subset of H . It is well known that, for any z ∈ H , there exists a unique nearest point
in C , denoted by PCz, such that

‖z − PCz‖ ≤ ‖z − y‖, ∀y ∈ C .

Such amapping PC is called themetric projection ofH on to C . We know that PC is nonexpansive. Furthermore, for any z ∈ H
and u ∈ C ,

u = PCz ⇐⇒ ⟨u − z, w − u⟩ ≥ 0, ∀w ∈ C . (1.4)

Let ϕ : C → R be a real-valued function, Q : C → H be a mapping and Φ : H × C × C → R be an equilibrium-like
function. Let r be a positive number. For any x ∈ C , we consider the following problem:

Find y ∈ C such that

Φ(Qx, y, z) + ϕ(z) − ϕ(y) +
1
r
⟨ y − x, z − y⟩ ≥ 0, ∀z ∈ C,

(1.5)

which is known as the auxiliary generalized equilibrium problem.
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Let T (r)
: C → C be the mapping such that, for each x ∈ C, T (r)(x) is the solution set of the auxiliary problem (1.5), i.e.,

T (r)(x) =


y ∈ C : Φ(Qx, y, z) + ϕ(z) − ϕ(y) +

1
r
⟨ y − x, z − y⟩ ≥ 0, ∀z ∈ C


, ∀x ∈ C .

From now on, we will assume the following Condition (∆):

(a) T (r) is single-valued;
(b) T (r) is nonexpansive;
(c) F(T (r)) = GEP(C,Q , Φ, ϕ).

The following example shows the sufficient conditions for the existence of the Condition (∆).

Example 1.2 ([7]). Let C be a nonempty bounded closed convex subset of a real Hilbert space H and ϕ : C → R be a lower
semi-continuous and convex functional. Let Q : C → H be a mapping and Φ : H × C × C → R be an equilibrium-like
function that satisfies the following conditions:

(Φ1) for any fixed y ∈ C, (w, x) → Φ(w, x, y) is an upper semi-continuous function from H × C to R, that is, whenever
wn → w and xn → x as n → ∞, we have

lim sup
n→∞

Φ(wn, xn, y) ≤ Φ(w, x, y);

(Φ2) for any fixed (w, y) ∈ H × C, x → Φ(w, x, y) is a concave function;
(Φ3) for any fixed (w, x) ∈ H × C, y → Φ(w, x, y) is a convex function.

Then (a) and (c) of the Condition (∆) hold true. If, in addition, the mapping Φ : H × C × C → R satisfies the following:

Φ(Qx1, T (r)(x1), T (r)(x2)) + Φ(Qx2, T (r)(x2), T (r)(x1)) ≤ 0, ∀(x1, x2) ∈ C × C,

then the mapping T (r) is firmly nonexpansive, that is,

‖T (r)u − T (r)v‖
2

≤ ⟨T (r)u − T (r)v, u − v⟩, ∀u, v ∈ C .

Remark 1.3. The boundedness of the convex set C in the Example 1.2 can be replaced by the following weaker condition:
For any x ∈ C , there exist a bounded subset Dx ⊂ C and zx ∈ C such that

Φ(Qx, y, zx) + ϕ(zx) − ϕ(y) +
1
r
⟨ y − x, zx − y⟩ < 0, ∀y ∈ C \ Dx.

Now, assuming that the Condition (∆) is satisfied, then we can introduce the following algorithm:

Algorithm (I). Let ρ and λ be two positive numbers. Let A, B : C → H and S : C → C bemappings. For any u, x1 ∈ C , there
exist sequences {un}, {yn}, {zn} and {xn} in C such that

Φ(Qxn, un, v) + ϕ(v) − ϕ(un) +
1
r
⟨un − xn, v − un⟩ ≥ 0, ∀v ∈ C,

yn = PC (xn − ρBxn),
zn = PC (yn − λ Ayn),
xn+1 = anu + bnxn + cn [γ1Sxn + γ2un + γ3zn] , ∀n ≥ 1,

where {an}, {bn}, {cn} are real sequences in [0, 1] and γ1, γ2, γ3 ∈ (0, 1) such that an + bn + cn = 1 for all n ≥ 1 and
γ1 + γ2 + γ3 = 1.

Of course, we will use the Algorithm (I) to obtain our main results in this paper. To do this, we also need the following
lemmas:

Lemma 1.4 ([18]). Let C be a nonempty closed convex subset of a strictly convex Banach space E. If, for each n ≥ 1, Tn : C → C
is a nonexpansive mapping, then there exists a nonexpansive mapping T : C → C such that

F(T ) =

∞
n=1

F(Tn).

In particular, if


∞

n=1 F(Tn) ≠ ∅, then the mapping T =
∑

∞

n=1 µnTn satisfies the above requirement, where {µn} is a sequence
of positive real numbers such that

∑
∞

n=1 µn = 1.

Lemma 1.5 ([17]). Let ρ and λ be positive numbers. For any x∗, y∗
∈ C with y∗

= PC (x∗
− ρBx∗), (x∗, y∗) is a solution of the

problem (1.3) if and only if x∗ is a fixed point of the mapping D : C → C defined by

D(x) = PC [PC (x − ρBx) − λ APC (x − ρBx)] , ∀x ∈ C .
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Lemma 1.6 ([19]). Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of E and S : C → C be a
nonexpansive mapping. Then I − S is demi-closed at zero, i.e., if {xn} converges weakly to a point x ∈ C and {xn − Sxn} converges
to zero, then x = Sx.

Lemma 1.7 ([20]). Let {xn} and {ln} be bounded sequences in a Banach space E and bn be a sequence in [0, 1] with

0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1.

Suppose that xn+1 = (1 − bn)ln + bnxn for all n ≥ 1 and

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖ln − xn‖ = 0.

Lemma 1.8 ([21]). Assume that {θn} is a sequence of nonnegative real numbers such that

θn+1 ≤ (1 − an)θn + δn, ∀n ≥ 1,

where {an} is a sequence in (0, 1) and {δn} is a sequence such that

(i)
∑

∞

n=1 an = ∞;
(ii) lim sup

n→∞

δn
an

≤ 0 or
∑

∞

n=1 |δn| < ∞.

Then limn→∞ θn = 0.

2. Main results

Now, we are in a position to state and prove our main results.

Theorem 2.1. Let C be a nonempty closed convex subset of a Hilbert space H . Let A, B : C → H be two nonlinear mappings
and S : C → C be a nonexpansive mapping. Assume that the Condition (∆) is satisfied and

Ω = GEP(C,Q , Φ, ϕ) ∩ F(S) ∩ F(D) ≠ ∅,

where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences in C generated
by Algorithm (I). If the following conditions are satisfied:

(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where ρ and λ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the Algorithm (I) converges strongly to a pointx = PΩu. Moreover, if y = PC (x − ρBx ), then
(x,y ) is a solution to the problem (1.3).

Proof. Note that the second part follows directly from the first part and Lemma 1.5. Now, the proof of the first part is divided
into the six steps as follows:

Step 1: PΩ is well defined.
In fact, firstly, since T (r) is a nonexpansive mapping, Ω ≠ ∅ and

F(T (r)) = GEP(C,Q , Φ, ϕ),

we have GEP(C,Q , Φ, ϕ) is a nonempty closed convex set.
Next, by the definition of the mapping D, we observe that

D = PC [PC (I − ρB) − λ APC (I − ρB)] = PC (I − λ A)PC (I − ρB).

Consequently, since I − λ A and I − ρB are nonexpansive mappings, we know that D is a nonexpansive mapping and hence
F(D) is a closed convex set.

On the other hand, since the mapping S is nonexpansive, we have the set F(S) is a closed convex subset of H . Therefore,
it follows that Ω = GEP(C,Q , Φ, ϕ) ∩ F(D) ∩ F(S) is a nonempty closed convex subset of H . Thus the mapping PΩ is well
defined.

Step 2: The sequence {xn} is bounded.
In fact, let x∗

∈ Ω . Since x∗
= Dx∗, we have

x∗
= PC


PC (x∗

− ρBx∗) − λ APC (x∗
− ρBx∗)


.
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Putting y∗
= PC (x∗

− ρBx∗), we have

x∗
= PC (y∗

− λ Ay∗).

Let en = γ1Sxn + γ2un + γ3zn for all n ≥ 1 and consider the following computation:

‖en − x∗
‖ = ‖γ1Sxn + γ2un + γ3zn − x∗

‖

≤ γ1‖Sxn − x∗
‖ + γ2‖un − x∗

‖ + γ3‖zn − x∗
‖

≤ γ1‖xn − x∗
‖ + γ2‖T (r)xn − T (r)x∗

‖ + γ3‖PC (I − λ A)yn − PC (y∗
− λ Ay∗)‖

≤ γ1‖xn − x∗
‖ + γ2‖xn − x∗

‖ + γ3‖yn − y∗
‖

= γ1‖xn − x∗
‖ + γ2‖xn − x∗

‖ + γ3‖PC (I − ρB)xn − PC (I − ρB)x∗
‖

≤ γ1‖xn − x∗
‖ + γ2‖xn − x∗

‖ + γ3‖xn − x∗
‖

= ‖xn − x∗
‖, ∀n ≥ 1,

and

‖x2 − x∗
‖
2

= ‖a1u + b1x1 + c1e1 − x∗
‖
2

≤ a1‖u − x∗
‖ + b1‖x1 − x∗

‖ + c1‖e1 − x∗
‖

≤ a1‖u − x∗
‖ + b1‖x1 − x∗

‖ + c1‖x1 − x∗
‖

≤ a1‖u − x∗
‖ + (1 − a1)‖x1 − x∗

‖

≤ max{‖u − x∗
‖, ‖x1 − x∗

‖}. (2.1)

From (2.1) and induction, we know that the sequence {xn} is bounded and so are {un}, {yn} and {zn}.

Step 3: limn→∞ ‖xn+1 − xn‖ = 0.
To do this, in view of condition (iii), without loss of generalitywemay assume that bn ∈ (0, 1) for all n ∈ N. Consequently,

this allows us to put

ln =
xn+1 − bnxn

1 − bn
, ∀n ≥ 1, (2.2)

which implies that

xn+1 − xn = (1 − bn)(ln − xn), ∀n ≥ 1. (2.3)

Now, by (2.2), (2.3), Lemma 1.7 and condition (iii), we show that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0. (2.4)

First, we compute ln+1 − ln. Consider the following computation:

ln+1 − ln =
an+1u + cn+1en+1

1 − bn+1
−

anu + cnen
1 − bn

=
an+1

1 − bn+1
u +

1 − bn+1 − an+1

1 − bn+1
en+1 −

an
1 − bn

u −
1 − bn − an

1 − bn
en

=
an+1

1 − bn+1
(u − en+1) +

an
1 − bn

(en − u) + en+1 − en, ∀n ≥ 1, (2.5)

‖en+1 − en‖ = ‖γ1Sxn+1 + γ2un+1 + γ3zn+1 − (γ1Sxn + γ2un + γ3zn)‖
≤ γ1‖Sxn+1 − Sxn‖ + γ2‖un+1 − un‖ + γ3‖zn+1 − zn‖
= γ1‖Sxn+1 − Sxn‖ + γ2‖T (r)xn+1 − T (r)xn‖ + γ3‖zn+1 − zn‖
≤ γ1‖xn+1 − xn‖ + γ2‖xn+1 − xn‖ + γ3‖zn+1 − zn‖, ∀n ≥ 1, (2.6)

and

‖zn+1 − zn‖ = ‖PC (yn+1 − λ Ayn+1) − PC (yn − λ Ayn)‖
≤ ‖(I − λ A)yn+1 − (I − λ A)yn‖
≤ ‖yn+1 − yn‖
= ‖PC (xn+1 − ρBxn+1) − PC (xn − ρBxn)‖
≤ ‖(I − ρB)xn+1 − (I − ρB)xn‖
≤ ‖xn+1 − xn‖, ∀n ≥ 1. (2.7)
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Substituting (2.7) into (2.6) yields that

‖en+1 − en‖ ≤ ‖xn+1 − xn‖, ∀n ≥ 1. (2.8)

Using (2.5) and (2.8), we have

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤
an+1

1 − bn+1
‖u − en+1‖ +

an
1 − bn

‖en − u‖, ∀n ≥ 1. (2.9)

thus it follows from conditions (ii) and (iii) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0,

that is, (2.4) is satisfied.

Step 4: xn − en → 0 as n → ∞.
From Algorithm (I), we have

cn(en − xn) = xn+1 − xn + an(xn − u),

which implies that

cn‖en − xn‖ ≤ ‖xn+1 − xn‖ + an‖(xn − u)‖

and so, from conditions (ii) and lim
n→∞

‖xn+1 − xn‖ = 0, it follows that

lim
n→∞

‖en − xn‖ = 0. (2.10)

Step 5: lim sup
n→∞

⟨u −x, xn −x ⟩ ≤ 0, wherex = PΩu.

Since {xn} is a bounded sequence, there exist a subsequence {xnj} of {xn} and p ∈ C such that {xnj} converges weakly to a
point p as j → ∞ and

lim sup
n→∞

⟨u −x, xn −x⟩ = lim sup
j→∞

⟨u −x, xnj −x⟩. (2.11)

Now, we show that p ∈ Ω = GEP(C,Q , Φ, ϕ) ∩ F(D) ∩ F(S). To show this, define a mapping G : C → C by

Gx = γ1Sx + γ2T (r)x + γ3Dx, ∀x ∈ C .

From Lemma 1.4, it follows that G is a nonexpansive mapping such that

F(G) = F(S) ∩ F(T (r)) ∩ F(D).

On the other hand, from (2.10), we obtain

lim
j→∞

‖Gxnj − xnj‖ = 0.

Thus, by Lemma 1.6, we have p ∈ F(G) = Ω . Consequently, from (1.4) and (2.11), it follows that

lim sup
n→∞

⟨u −x, xn −x⟩ = lim sup
j→∞

⟨u −x, xnj −x⟩
= ⟨u −x, p −x⟩
≤ 0. (2.12)

Step 6: xn →x as n → ∞.
Notice that

‖xn+1 −x‖2
= ‖anu + bnxn + cnen −x‖2

= ⟨an(u −x) + bn(xn −x) + cn(en −x), xn+1 −x⟩
≤ an⟨u −x, xn+1 −x⟩ + bn‖xn −x‖‖xn+1 −x‖ + cn‖en −x‖‖xn+1 −x‖
≤ an⟨u −x, xn+1 −x⟩ + bn‖xn −x‖‖xn+1 −x‖ + cn‖xn −x‖‖xn+1 −x‖
= an⟨u −x, xn+1 −x⟩ + (1 − an)‖xn −x‖‖xn+1 −x‖
≤ an⟨u −x, xn+1 −x⟩ +

(1 − an)
2


‖xn −x‖2

+ ‖xn+1 −x‖2 . (2.13)
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This implies that

‖xn+1 −x‖2
≤ (1 − an)‖xn −x‖ + 2an⟨u −x, xn+1 −x⟩. (2.14)

Therefore, using (2.12) together with the conditions (ii) and (iii), (2.14) and Lemma 1.8, it follows that xn → x as n → ∞.
This completes the proof. �

Now, we give an example for the nonlinear mappings A, B : C → H given in Theorem 2.1.
Recall that a nonlinear mapping A : C → H is said to be:
(1) α-cocoercive if there exists a constant α > 0 such that

⟨Ax − Ay, x − y⟩ ≥ α‖Ax − Ay‖2, ∀x, y ∈ C;

(2) β-strongly monotone if there exists a constant β > 0 such that

⟨Ax − Ay, x − y⟩ ≥ β‖x − y‖2, ∀x, y ∈ C;

(3) relaxed (ζ , β)-cocoercive if there exist constants ζ , β > 0 such that

⟨Ax − Ay, x − y⟩ ≥ (−ζ )‖Ax − Ay‖2
+ β‖x − y‖2, ∀x, y ∈ C .

Example 2.2. Let A : C → H be a nonlinear mapping and λ be a positive constant. Assume that
(A1) A is α-cocoercive mapping and λ ∈ (0, 2α];
(A2) A is β-strongly monotone and L-Lipschitz continuous mapping and λ ∈


0, 2β

L


;

(A3) A is relaxed (ζ , β)-cocoercive and L-Lipschitz continuous mapping with β − Lζ > 0 and λ ∈


0, 2(β−Lζ )

L


.

If, either (A1), (A2) or (A3) is satisfied, then I − λ A is a nonexpansive mapping. Indeed, if (A1) is satisfied, then we have

‖(I − λ A)x − (I − λ A)y‖2
= ‖x − y − λ(Ax − Ay)‖2

= ‖x − y‖2
− 2λ⟨x − y, Ax − Ay⟩ + λ2

‖Ax − Ay‖2

≤ ‖x − y‖2
− 2αλ‖Ax − Ay‖2

+ λ2
‖Ax − Ay‖2

= ‖x − y‖2
− λ(2α − λ)‖Ax − Ay‖2

≤ ‖x − y‖2, ∀x, y ∈ C .

Similarly, by using (A2) or (A3), we can show that I − λ A is a nonexpansive mapping.
Using the technique as in Theorem 2.1, one can prove the following results.

Corollary 2.3. Let C be a nonempty closed convex subset of a Hilbert space H . Let A, B : C → H be two nonlinear mappings.
Assume that the Condition (∆) is satisfied and

Ω = GEP(C,Q , Φ, ϕ) ∩ F(D) ≠ ∅,

where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences in C generated by
Φ(Qxn, un, v) + ϕ(v) − ϕ(un) +

1
r
⟨un − xn, v − un⟩ ≥ 0, ∀v ∈ C,

yn = PC (xn − ρBxn),
zn = PC (yn − λ Ayn),
xn+1 = anu + bnxn + cn [γ un + (1 − γ )zn] , ∀n ≥ 1,

(2.15)

where {an}, {bn}, {cn} are real sequences in [0, 1] and γ ∈ (0, 1) such that an + bn + cn = 1 for all n ≥ 1. If the following
conditions are satisfied:

(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where ρ and λ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the iterative algorithm (2.15) converges strongly to a point x = PΩu. Moreover, ify = PC (x − ρBx ), then (x,y ) is a solution to the problem (1.3).

Corollary 2.4. Let C be a nonempty closed convex subset of a Hilbert space H . Let A, B : C → H be two nonlinear mappings
and S : C → C be a nonexpansive mapping. Assume that

Ω = F(D) ∩ F(S) ≠ ∅,
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where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {yn}, {zn}, {xn} be three sequences in C generated byyn = PC (xn − ρBxn),
zn = PC (yn − λ Ayn),
xn+1 = anu + bnxn + cn [γ Sxn + (1 − γ )zn] , ∀n ≥ 1,

(2.16)

where {an}, {bn}, {cn} are real sequences in [0, 1] and γ ∈ (0, 1) such that an + bn + cn = 1 for all n ≥ 1. If the following
conditions are satisfied:
(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where ρ and λ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,
then the sequence {xn} defined by the iterative algorithm (2.16) converges strongly to a point x = PΩu. Moreover, if y =

PC (x − ρBx ), then (x,y ) is a solution to the problem (1.3).

Corollary 2.5. Let C be a nonempty closed convex subset of a Hilbert space H . Let S : C → C be a nonexpansive mappings.
Assume that the Condition (∆) is satisfied and

Ω = GEP(C,Q , Φ, ϕ) ∩ F(S) ≠ ∅.

Let u ∈ C be fixed and {un}, {xn} be two sequences in C generated by
Φ(Qxn, un, v) + ϕ(v) − ϕ(un) +

1
r
⟨un − xn, v − un⟩ ≥ 0, ∀v ∈ C,

xn+1 = anu + bnxn + cn [γ Sxn + (1 − γ )un] , ∀n ≥ 1,
(2.17)

where {an}, {bn}, {cn} are real sequences in [0, 1] and γ ∈ (0, 1) such that an + bn + cn = 1 for all n ≥ 1. If the following
conditions are satisfied:
(i) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(ii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,
then the sequence {xn} defined by the iterative algorithm (2.17) converges strongly to a pointx = PΩu.

Corollary 2.6. Let C be a nonempty closed convex subset of a Hilbert space H . Let A, B : C → H be two nonlinear mappings.
Assume that F(D) ≠ ∅, where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {yn}, {zn}, {xn} be three sequences
in C generated byyn = PC (xn − ρBxn),

zn = PC (yn − λ Ayn),
xn+1 = anu + bnxn + cnzn, ∀n ≥ 1,

(2.18)

where {an}, {bn}, {cn} are real sequences in [0, 1] such that an+bn+cn = 1 for all n ≥ 1. If the following conditions are satisfied:
(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where ρ and λ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,
then the sequence {xn} defined by the iterative algorithm (2.18) converges strongly to a point x = PF(D)u. Moreover, if y =

PC (x − ρBx ), then (x,y ) is a solution to the problem (1.3).

Corollary 2.7. Let C be a nonempty closed convex subset of a Hilbert space H . Assume that the Condition (∆) is satisfied. Let
u ∈ C be fixed and {un}, {xn} be two sequences in C generated by

Φ(Qxn, un, v) + ϕ(v) − ϕ(un) +
1
r
⟨un − xn, v − un⟩ ≥ 0, ∀v ∈ C,

xn+1 = anu + bnxn + cnun, ∀n ≥ 1,
(2.19)

where {an}, {bn}, {cn} are real sequences in [0, 1] such that an+bn+cn = 1 for all n ≥ 1. If the following conditions are satisfied:
(i) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(ii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,
then the sequence {xn} defined by the iterative algorithm (2.19) converges strongly to a pointx = PGEP(C,Q ,Φ,ϕ)u.

Corollary 2.8. Let C be a nonempty closed convex subset of a Hilbert space H . Let S : C → C be a nonexpansive mappings with
F(S) ≠ ∅. Let u ∈ C be fixed and {xn} be a sequence in C generated by

xn+1 = anu + bnxn + cnSxn, ∀n ≥ 1, (2.20)

where {an}, {bn}, {cn} are real sequences in [0, 1] such that an+bn+cn = 1 for all n ≥ 1. If the following conditions are satisfied:
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(i) limn→∞ an = 0 and
∑

∞

n=1 an = ∞;
(ii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the iterative algorithm (2.20) converges strongly to a pointx = PF(S)u.

Remark 2.9. If f : C → C is a contractive mapping and we replace u by f (xn) in the Algorithm (I), then we can obtain the
so-called viscosity iteration method (see [22] for more details).

3. Applications

Let {Sn} be a family of nonexpansive mappings from C into itself such that


∞

n=1 F(Sn) ≠ ∅ and {µn} be a sequence of
positive numbers with

∑
∞

n=1 µn = 1. From Lemma 1.4, we know that the mapping S : C → C defined by

Sx =

∞−
n=1

µnSnx, ∀x ∈ C,

is well defined, nonexpansive and F(S) =


∞

n=1 F(Sn).
Using this fact, as an application of Theorem 2.1, we have the following result.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H . Let A, B : C → H be two nonlinear mappings
and {Sn} be a family of nonexpansive mappings from C into itself. Assume that the Condition (∆) is satisfied and

Ω =

∞
n=1

(GEP(C,Q , Φ, ϕ) ∩ F(Sn) ∩ F(D)) ≠ ∅,

where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences generated
by Algorithm (I) with S =

∑
∞

n=1 µnSn, where {µn} is a sequence of positive numbers with
∑

∞

n=1 µn = 1. If the following
conditions are satisfied:

(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where λ and ρ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the Algorithm (I) converges strongly to a pointx = PΩu. Moreover, if y = PC (x − ρBx ), then
(x,y ) is a solution to the problem (1.3).

Recall that a mappingW : C → C is called a τ -strict pseudo-contractionwith the coefficient τ ∈ [0, 1) if

‖Wx − Wy‖2
≤ ‖x − y‖2

+ τ‖(I − W )x − (I − W )y‖2, ∀x, y ∈ C .

It is obvious that every nonexpansive self-mapping is a 0-strict pseudo-contraction and, furthermore, the following result
is well known:

Lemma 3.2 ([23]). Let C be a nonempty closed convex subset of a real Hilbert space H and W : C → C a τ -strict pseudo-
contraction. Define a mapping W (ζ )

: C → C by W (ζ )x = ζ x + (1 − ζ )Wx for all x ∈ C, where ζ ∈ [τ , 1) is a fixed constant.
Then W (ζ ) is a nonexpansive mapping such that F(W (ζ )) = F(W ).

Now, let {Wn} be a family of τn-strict pseudo-contractions for each n ≥ 1. Observe that, from Lemma 3.2, it follows that
{W (τn)

n } is a family of nonexpansive mappings from C into itself, whereW (τn)
n is defined as in Lemma 3.2 for each n ≥ 1.

Using this observation, as an application of the Theorem 2.1, we have the following result.

Theorem 3.3. Let C be a nonempty closed convex subset of a Hilbert space H and A, B : C → H be two nonlinear mappings. Let
{Wn} be a family of τn-strict pseudo-contractions from C into itself with coefficient τn for each n ≥ 1. Assume that the Condition
(∆) is satisfied and

Ω =

∞
n=1

(GEP(C,Q , Φ, ϕ) ∩ F(Wn) ∩ F(D)) ≠ ∅,

where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences generated
by Algorithm (I) with S =

∑
∞

n=1 µnW
(τn)
n , where {µn} is a sequence of positive numbers with

∑
∞

n=1 µn = 1 and W (τn)
n is

defined as in Lemma 3.2 for each n ≥ 1. If the following conditions are satisfied:

(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where λ and ρ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,
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then the sequence {xn} defined by the Algorithm (I) converges strongly to a pointx = PΩu. Moreover, if y = PC (x − ρBx ), then
(x,y ) is a solution to the problem (1.3).

Corollary 3.4. Let C be a nonempty closed convex subset of a Hilbert space H and A, B : C → H be two nonlinear mappings.
Let W : C → C be a τ -strict pseudo-contraction. Assume that the Condition (∆) is satisfied and

Ω = GEP(C,Q , Φ, ϕ) ∩ F(W ) ∩ F(D) ≠ ∅,

where the mapping D is defined by Lemma 1.5. Let u ∈ C be fixed and {un}, {yn}, {zn}, {xn} be four sequences generated
by Algorithm (I) with S = W (τ ). If the following conditions are satisfied:

(i) (I − λ A) and (I − ρB) are nonexpansive mappings, where λ and ρ are positive constants;
(ii) limn→∞ an = 0 and

∑
∞

n=1 an = ∞;
(iii) 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1,

then the sequence {xn} defined by the Algorithm (I) converges strongly to a pointx = PΩu. Moreover, if y = PC (x − ρBx ), then
(x,y ) is a solution to the problem (1.3).
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By using nonsmooth analysis knowledge, we provide the conditions for existence solutions of the
variational inequalities problems in nonconvex setting. We also show that the strongly monotonic
assumption of the mapping may not need for the existence of solutions. Consequently, the results
presented in this paper can be viewed as an improvement and refinement of some known results
from the literature.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [1], provides us with a
simple, natural, general, and unified framework to study a wide class of problems arising in
pure and applied sciences. The development of variational inequality theory can be viewed
as the simultaneous pursuit of two different lines of research. On the one hand, it reveals the
fundamental facts on the qualitative aspects of the solutions to important classes of problems.
On the other hand, it also enables us to develop highly efficient and powerful new numerical
methods for solving, for example, obstacle, unilateral, free,moving, and complex equilibrium
problems.

It should be pointed out that almost all the results regarding the existence and iterative
schemes for solving variational inequalities and related optimizations problems are being
considered in the convexity setting; see [2–5] for examples. Moreover, all the techniques are
based on the properties of the projection operator over convex sets, which may not hold
in general, when the sets are nonconvex. Notice that the convexity assumption, made by
researchers, has been used for guaranteeing the well definedness of the proposed iterative
algorithm which depends on the projection mapping. In fact, the convexity assumption may
not require for the well definedness of the projectionmapping because it may bewell defined,
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even in the nonconvex case (e.g., when the considered set is a closed subset of a finite
dimensional space or a compact subset of a Hilbert space, etc.).

The main aim of this paper is intending to consider the conditions for the existence
solutions of some variational inequalities problems in nonconvex setting. We will make use
of some recent nonsmooth analysis techniques to overcome the difficulties that arise from
the nonconvexity. Also, it is worth mentioning that we have considered when the mapping
may not satisfy the strongly monotonic assumption. In this sense, our result represents an
improvement and refinement of the known results.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed subset of H. We denote by dC(·) the usual distance
function to the subset C; that is, dC(u) = infv∈C‖u−v‖. Let us recall the following well-known
definitions and some auxiliary results of nonlinear convex analysis and nonsmooth analysis.

Definition 2.1. Let u ∈ H be a point not lying in C. A point v ∈ C is called a closest point or
a projection of u onto C if dC(u) = ‖u − v‖. The set of all such closest points is denoted by
projC(u); that is,

projC(u) = {v ∈ C : dC(u) = ‖u − v‖}. (2.1)

Definition 2.2. Let C be a subset of H. The proximal normal cone to C at x is given by

NP
C(x) =

{
z ∈ H : ∃ρ > 0;x ∈ projC

(
x + ρz

)}
. (2.2)

The following characterization of NP
C(x) can be found in [6].

Lemma 2.3. Let C be a closed subset of a Hilbert spaceH. Then,

z ∈ NP
C(x) ⇐⇒ ∃σ > 0, 〈z, y − x〉 ≤ σ

∥
∥y − x

∥
∥2
, ∀y ∈ C. (2.3)

Clarke et al. [7] and Poliquin et al. [8] have introduced and studied a new class
of nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
prox-regular sets has played an important part in many nonconvex applications such as
optimization, dynamic systems, and differential inclusions.

Definition 2.4. For a given r ∈ (0,+∞], a subset C of H is said to be uniformly prox-regular
with respect to r if, for all x ∈ C and for all 0/= z ∈ NP

C(x), one has

〈
z

‖z‖ , x − x

〉
≤ 1
2r

‖x − x‖2, ∀x ∈ C. (2.4)

We make the convention 1/r = 0 for r = +∞.

It is well known that a closed subset of a Hilbert space is convex if and only if it is
proximally smooth of radius r > 0. Thus, in view of Definition 2.4, for the case of r = ∞,
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the uniform r-prox-regularity C is equivalent to the convexity of C. Moreover, it is clear that
the class of uniformly prox-regular sets is sufficiently large to include the class p-convex sets,
C1,1 submanifolds (possibly with boundary) of H, the images under a C1,1 diffeomorphism
of convex sets, and many other nonconvex sets; see [6, 8].

Now, let us state the following facts, which summarize some important consequences
of the uniform prox-regularity. The proof of this result can be found in [7, 8].

Lemma 2.5. Let C be a nonempty closed subset of H, r ∈ (0,+∞] and set Cr := {x ∈ H;d(x, C) <
r}. If C is uniformly r-uniformly prox-regular, then the following hold:

(1) for all x ∈ Cr , projC(x)/= ∅,
(2) for all s ∈ (0, r), projC is Lipschitz continuous with constant r/(r − s) on Cs,

(3) the proximal normal cone is closed as a set-valued mapping.

In this paper, we are interested in the following classes of nonlinear mappings.

Definition 2.6. Amapping T : C → H is said to be

(a) γ -strongly monotone if there exists a constant γ > 0 such that

〈
Tx − Ty, x − y

〉 ≥ γ
∥
∥x − y

∥
∥2

, ∀x, y ∈ C, (2.5)

(b) μ-Lipschitz if there exist a constants μ > 0 such that

‖Tx − Ty‖ ≤ μ‖x − y‖, ∀x, y ∈ C. (2.6)

3. System of Nonconvex Variational Inequalities Involving
Nonmonotone Mapping

LetH be a real Hilbert space, and let C be a nonempty closed subset ofH. In this section, we
will consider the following problem: find x∗, y∗ ∈ C such that

y∗ − x∗ − ρTy∗ ∈ NP
C(x

∗),

x∗ − y∗ − ηTx∗ ∈ NP
C

(
y∗),

(3.1)

where ρ and η are fixed positive real numbers, C is a closed subset of H, and T : C → H is a
mapping.

The iterative algorithm for finding a solution of the problem (3.1) was considered by
Moudafi [9], when C is r-uniformly prox-regular and T is a strongly monotone mapping. He
also remarked that two-step models (3.1) for nonlinear variational inequalities are relatively
more challenging than the usual variational inequalities since it can be applied to problems
arising, especially from complementarity problems, convex quadratic programming, and
other variational problems. In this section, we will generalize such result by considering the
conditions for existence solution of problem (3.1)when T is not necessary stronglymonotone.
To do so, we will use the following algorithm as an important tool.
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Algorithm 3.1. LetC be an r-uniformly prox-regular subset ofH. Assume that T : C → H is a
nonlinear mapping. Letting x0 be an arbitrary point in C, we consider the following two-step
projection method:

yn = projC
[
xn − η(Txn)

]
,

xn+1 = projC
[
yn − ρ

(
Tyn

)]
,

(3.2)

where ρ, η are positive reals number, which were appeared in problem (3.1).

Remark 3.2. The projection algorithm above has been introduced in the convex case, and its
convergence was proved see [10]. Observe that (3.2) is well defined provided the projection
on C is not empty. Our adaptation of the projection algorithm will be based on Lemma 2.5.

Now we will prove the existence theorems of problem (3.1), when C is a closed
uniformly r-prox-regular. Moreover, from now on, the number r will be understood as a
finite positive real number (if not specified otherwise). This is because, as we know, if r = ∞,
then such a set C is nothing but the closed convex set.

We start with an important remark.

Remark 3.3. Let C be a uniformly r-prox-regular closed subset of H. Let T1, T2 : C → H
be such that T1 is a μ1-Lipschitz continuous, γ -strongly monotone mapping and T2 is a μ2-

Lipschitz continuous mapping. If ξ = r[μ2
1 − γμ2 −

√
(μ2

1 − γμ2)
2 − μ2

1(γ − μ2)2]/μ2
1, then for

each s ∈ (0, ξ) we have

γts − μ2 >
√(

μ2
1 − μ2

2

)(
t2s − 1

)
, (3.3)

where ts = r/(r − s).

It is worth to point out that, in Remark 3.3, we have to assume that μ2 < μ1. Thus, from
now on, without loss of generality we will always assume that μ2 < μ1.

Theorem 3.4. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a nonlinear mapping. Let T1, T2 : C → H be such that T1 is a μ1-Lipschitz continuous
and γ -strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping. If T = T1 + T2 and the
following conditions are satisfied:

(a) Mρ,ηδT(C) < ξ, where δT(C) = sup{‖u − v‖;u, v ∈ T(C)};
(b) there exists s ∈ (Mρ,ηδT(C), ξ) such that

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < ρ, η < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2

}

, (3.4)

whereMρ,η = max{ρ, η}, ts = r/(r − s), and ζ =
√
(tsγ − μ2)2 − (μ2

1 − μ2
2)(t

2
s − 1)/ts(μ2

1 − μ2
2).

Then the problem (3.1) has a solution. Moreover, the sequence (xn, yn) which is generated by
(3.2) strongly converges to a solution (x∗, y∗) ∈ C × C of the problem (3.1).
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Proof. Firstly, by condition (b), we can easily check that yn − ρTyn and xn − ηTxn belong to
the set Cs, for all n = 1, 2, 3, . . .. Thus, from Lemma 2.5 (1), we know that (3.2) is well defined.
Consequently, from (3.2) and Lemma 2.5 (2), we have

‖xn+1 − xn‖ = ‖projC
(
yn − ρTyn

) − projC
(
yn−1 − ρTyn−1

)‖
≤ ts‖yn − yn−1 − ρ

(
Tyn − Tyn−1

)‖
≤ ts

[‖yn − yn−1 − ρ
(
T1yn − T1yn−1

)‖ + ρ‖T2yn − T2yn−1‖
]
.

(3.5)

Since the mapping T1 is γ -strongly monotone and μ1-Lipschitz continuous, we obtain

∥
∥yn − yn−1 − ρ

(
T1yn − T1yn−1

)∥∥2

=
∥
∥yn − yn−1

∥
∥2 − 2ρ〈yn − yn−1, T1yn − T1yn−1〉 + ρ2

∥
∥T1yn − T1yn−1

∥
∥2

≤ ∥∥yn − yn−1
∥∥2 − 2ργ‖yn − yn−1‖ + ρ2μ2

1

∥∥yn − yn−1
∥∥2

=
(
1 − 2ργ + ρ2μ2

1

)∥
∥yn − yn−1

∥
∥2
.

(3.6)

On the other hand, since T2 is μ2-Lipschitz continuous, we have

‖T2yn − T2yn−1‖ ≤ μ2‖yn − yn−1‖. (3.7)

Thus, by (3.5), (3.6), and (3.7), we obtain

‖xn+1 − xn‖ ≤ ts

[
ρμ2 +

√
1 − 2ργ + ρ2μ2

1

]
‖yn − yn−1‖. (3.8)

Similarly, we have

‖yn − yn−1‖ = ‖projC
(
xn − ηTxn

) − projC
(
xn−1 − ηTxn−1

)‖
≤ ts‖xn − xn−1 − η(Txn − Txn−1)‖
≤ ts

[‖xn − xn−1 − η(T1xn − T1xn−1)‖ + η‖T2xn − T2xn−1‖
]

≤ ts

[
ημ2 +

√
1 − 2ηγ + η2μ2

1

]
‖xn − xn−1‖.

(3.9)

Combining (3.8) and (3.9), we get

‖xn+1 − xn‖ ≤ t2sθρθη‖xn − xn−1‖, (3.10)
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where θρ := ρμ2 +
√
1 − 2ργ + ρ2μ2

1 and θη := ημ2 +
√
1 − 2ηγ + η2μ2

1. Moreover, by (3.4), we
know that tsθρ and tsθη are elements of the interval (0, 1). Thus, from (3.10), it follows that

‖xn+1 − xn‖ ≤ κn‖x1 − x0‖ (3.11)

for all n = 1, 2, 3, . . ., where κ := t2sθρθη. Hence, for any m ≥ n > 1, it follows that

‖xm − xn‖ ≤
m−1∑

i=n

‖xi+1 − xi‖ ≤
m−1∑

i=n

κi‖x1 − x0‖ ≤ κn

1 − κ
‖x1 − x0‖. (3.12)

Since κ < 1, it follows that κn → 0 as n → ∞, and this implies that {xn} ⊂ C is a Cauchy
sequence. Consequently, from (3.9), we also have that {yn} is a Cauchy sequence in C. Thus,
by Lemma 2.5 (3), the closedness property of C implies that there exists (x∗, y∗) ∈ C ×C such
that (xn, yn) → (x∗, y∗) as n → ∞.

We claim that (x∗, y∗) ∈ C × C is a solution of the problem (3.1). Indeed, by the
definition of the proximal normal cone, from (3.2), we have

(
xn − yn

) − η(Txn) ∈ NP
C

(
yn

)
,

(
yn − xn+1

) − ρ
(
Tyn

) ∈ NP
C(xn+1).

(3.13)

By letting n → ∞, using the closedness property of the proximal cone together with the
continuity of T , we have

x∗ − y∗ − η(Tx∗) ∈ NP
C

(
y∗),

y∗ − x∗ − ρ
(
Ty∗) ∈ NP

C(x
∗).

(3.14)

This completes the proof.

Immediately, by setting T2 = 0, we have the following result.

Theorem 3.5. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H. Let T : C →
H be a μ-Lipschitz continuous and γ -strongly monotone mapping. If the following conditions are
satisfied:

(a) Mρ,ηδT(C) < ξ, where δT(C) = sup{‖u − v‖;u, v ∈ T(C)};
(b) there exists s ∈ (Mρ,ηδT(C), ξ) such that

γ

μ2 − ζ < ρ, η <
γ

μ2 + ζ, (3.15)

where ζ =
√
(tsγ)2 − (μ2

1)(t
2
s − 1)/ts(μ2

1) and ts = r/(r − s).
Then the problem (3.1) has a solution. Moreover, the sequence (xn, yn) which is generated by

(3.2) strongly converges to a solution (x∗, y∗) ∈ C × C of the problem (3.1).
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In view of proving Theorem 3.4, we can obtain the following result, which contains a
recent result presented by Moudafi [9] as a special case.

Theorem 3.6. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a mapping. Let T1, T2 : C → H be such that T1 is a μ1-Lipschitz continuous and γ -
strongly monotone mapping, T2 is a μ2-Lipschitz continuous mapping. If T = T1 + T2 and there exists
s ∈ (0, ξ) such that

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < ρ < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2
,

s

1 + ‖Tyn‖

}

,

γts − μ2

ts
(
μ2
1 − μ2

2

) − ζ < η < min

{
γts − μ2

ts
(
μ2
1 − μ2

2

) + ζ,
1

tsμ2
,

s

1 + ‖Txn‖

} (3.16)

for all n = 1, 2, 3, . . ., where ts = r/(r − s), ζ =
√
(tsγ − μ2)

2 − (μ2
1 − μ2

2)(t
2
s − 1)/ts(μ2

1 −μ2
2) and the

sequence (xn, yn) was generated by (3.2), then the sequence (xn, yn) strongly converges to a solution
(x∗, y∗) ∈ C ×C of the problem (3.1).

Remark 3.7. (i) An inspection of Theorem 3.6 shows that the sequences {Txn} and {Tyn} are
bounded.

(ii) By setting T2 =: 0, we see that Theorem 3.6 reduces to a result presented byMoudafi
[9].

Remark 3.8. If C is a convex set, by the definition of the proximal normal cone, we can
reformulate (3.1) as follows: find x∗, y∗ ∈ C × C such that

〈
ρT

(
y∗) + x∗ − y∗, x − x∗〉 ≥ 0, ∀x ∈ C,

〈
ηT(x∗) + y∗ − x∗, x − y∗〉 ≥ 0, ∀x ∈ C.

(3.17)

The problem (3.17)was introduced and studied by Verma [10], when T is a strong monotone
mapping. Hence, Theorem 3.4 extends and improves the results presented by Verma [10]. For
further recent results related to the problem (3.17), see also [2, 3, 5, 11–13].

4. Further Results

By using the techniques as in Theorem 3.4, we can also obtain an existence theorem of the
following problem: find x∗ ∈ C such that

−Tx∗ ∈ NP
C(x

∗). (4.1)

The problem of type (4.1) was studied by Noor [14] but in a finite dimension Hilbert space
setting. In this section, we intend to consider the problem (4.1) in an infinite dimension
Hilbert space. To do this, the following remark is useful.
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Remark 4.1. Let T : C → C be a γ -strongly monotone and μ-Lipschitz continuous mapping.
Then, the function f : (1, μ2/(μ2 − γ2)) → (0,∞) which is defined by

f(t) =

√
t2
(
γ2 − μ2

)
+ μ2

tμ2
, ∀t ∈

(

1,
μ2

μ2 − γ2

)

, (4.2)

is a continuous decreasing function on its domain.

We now close this section by proving an existence theorem to the problem (4.1) in a
nonconvex infinite dimensional setting.

Theorem 4.2. Let C be a uniformly r-prox-regular closed subset of a Hilbert space H, and let T :
C → H be a γ -strongly monotone and μ-Lipschitz continuous mapping. If 0 < δT(C) ≤ γr, then the
problem (4.1) has a solution.

Proof. Firstly, by using an elementary calculation, we know that the function h : [1, μ2/(μ2 −
γ2)) → (0,∞)which is defined by

h(t) =
r(t − 1)
tδT(C)

+ f(t), ∀t ∈
[

1,
μ2

μ2 − γ2

)

, (4.3)

is a continuous increasing function on [1,
√
(μ2r2 − δ2

T(C))/r
2(μ2 − γ2)]. Moreover, we see that

the net {ts}s∈(0,r) which is defined by ts =: r/(r − s) converges to 1 as s ↓ 0. Using these
observations, together with the fact that h(t) ↓ γ/μ2 as t ↓ 1, we can find s∗ ∈ (0, r(r2γ2 −
δ2
T(C))/(μ

2r2 − δ2
T(C))) such that μ2h(ts∗) > γ . It is worth to notice that, from the choice of s∗,

we have γ/μ2 − f(ts∗) < s∗/δT(C).
Now, we choose a fixed positive real number ρ such that

γ

μ2 − f(ts∗) < ρ < min

{
γ

μ2 + f(ts∗),
s∗

δT(C)

}
. (4.4)

Next, let us start with an element x0 ∈ C and use an induction process to obtain a sequence
{xn} ⊂ C satisfying

xn+1 = projC
(
xn − ρTxn

)
, ∀n = 0, 1, 2, . . . . (4.5)

Note that, because of the choice of ρ, we can easily check that xn − ρTxn ∈ Cs∗ for all n =
1, 2, 3, . . .. Following the proof of Theorem 3.4, we know that {xn} is a Cauchy sequence in
C. If xn → x∗ as n → ∞, the closedness property of the proximal cone together with the
continuity of T , from (4.5), we see that x∗ is a solution of the problem (4.1). This completes
the proof.

Remark 4.3. Theorems 3.4, 3.5, and 4.2 not only give the conditions for the existence solution
of the problems (3.1) and (4.1), respectively, but also provide the algorithm to find such
solutions for any initial vector x0 ∈ C.
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a b s t r a c t

In this paper, some existence theorems for the mixed quasi-variational-like inequalities
problem in a reflexive Banach space are established. The auxiliary principle technique is
used to suggest a novel and innovative iterative algorithm for computing the approximate
solution for the mixed quasi-variational-like inequalities problem. Consequently, not only
the existence of theorems of the mixed quasi-variational-like inequalities is shown, but
also the convergence of iterative sequences generated by the algorithm is also proven.
The results proved in this paper represent an improvement of previously known results.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The concept of variational inequality was introduced by Hartman and Stampacchia [9] in early 1960s. These have been
extended and generalized to study a wide class of problems arising in mechanics, physics, optimization and control, econom-
ics and transportation equilibrium, etc. The generalized mixed variational-like inequalities, which are generalized forms of
variational inequalities, have potential and significant applications in optimization theory, structural analysis, and econom-
ics (see [4,18,16]).

It is well-known that due to the presence of the nonlinear bi-function, projection method and its variant forms including the
Wiener–Hopf equations, descent methods cannot be extended to suggest iterative methods for solving the general mixed quasi
variational inequalities, since it is not possible to find the projection of the solution. Thus, the development of an efficient and
implementable technique for solving variational-like inequalities is one of the most interesting and important problems in
variational inequality theory. To overcome this drawback, in recent years, a tremendous amount of work was applying the aux-
iliary problem principle, which does not depend on the projection, in finite- as well as in infinite-dimensional space settings, on
the approximation-solvability of various classes of variational inequalities and complementarity problems.

Recently, the auxiliary principle technique was extended by Huang and Deng [11] to study the existence and iterative
approximation of solutions of the set-valued strongly nonlinear mixed variational-like inequality, under the assumptions
that the operators are bounded closed values. On the other hand, by applying the auxiliary principle technique, Verma
[19] introduced a new class of predictor–corrector iterative algorithms for solving general variational inequalities and gen-
eralized mixed variational inequalities. Furthermore, Ding [7] suggested some new predictor–corrector iterative algorithms
for solving generalized mixed variational-like inequality problems and proved the convergence of the iterative sequence
generated by the predictor–corrector iterative algorithm.

0096-3003/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2011.02.054
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Motivated and inspired by the recent research work going on in this fascinating and interesting field, in this paper, some
existence theorems for the mixed quasi-variational-like inequality problem in a reflexive Banach space are provided. Also,
the existence theorem for auxiliary problem of the mixed quasi-variational-like inequality problem is studied. Consequently,
we construct and analyze an iterative algorithm for finding the solution of the mixed quasi-variational-like inequality prob-
lem. Finally, we discuss the convergence analysis of iterative sequence generated by the iterative algorithm.

2. Preliminaries

Let E be a real Banach space with its topological dual E⁄, and h�, �i be the generalized duality pairing between E and E⁄. Let
CB(E⁄) be the family of all nonempty bounded and closed subsets of E⁄. The Hausdorff metric, H(�, �), on CB(E⁄) is defined by

HðC;DÞ ¼max sup
x2C

dðx;DÞ; sup
y2D

dðC; yÞ
( )

; 8C;D 2 CBðE�Þ:

Let K be a nonempty convex subset of E, in this paper, we devote our study to a class of generalized mixed quasi-variational-
like inequality problem, which is stated as follows:

Let T, A : K ! CBðE�Þ be two set-valued mappings. N : E� � E� ! E� and g : K � K ! E be two single-valued mappings. Let
u : E� E! ð�1;þ1� be a real bi-function. For a given w� 2 E�, we shall study the following problem:

GMQVLIPðT;A;N;g;uÞ
find u 2 K; x; y 2 E� such that x 2 TðuÞ; y 2 AðuÞ;
hNðx; yÞ �w�; gðv ;uÞi þuðu;vÞ �uðu;uÞP 0; 8v 2 K:

�
ð2:1Þ

In case of (2.1), we will denote by (u,x,y) 2 GMQVLIP(T,A,N,g,u).
Now, let us consider some special cases of problem (2.1).

(a) If T,A are single valued, then the problem (2.1) collapses to finding u 2 K such that

hNðTu;AuÞ �w�;gðv ;uÞi þuðu;vÞ �uðu; uÞP 0; 8v 2 K: ð2:2Þ

The problem (2.2) was considered and studied in Ding [6].
(b) if E ¼ H is a Hilbert space, and w⁄ = 0, then the problem (2.1) is equivalent to finding u 2 K, x 2 T(u), y 2 A(u) such that

hNðx; yÞ;gðv;uÞi þuðu; vÞ �uðu;uÞP 0; 8v 2 K: ð2:3Þ

This kind of problem is called the set-valued strongly nonlinear mixed variational-like inequality and was considered
by Huang and Deng [11], when K ¼ H.

(c) If N(Tu,Av) = Tu � Av for all u, v 2 K, the problem (2.2) reduces to the general nonlinear variational-like inequality
problem: for a given w⁄ 2 E⁄, find u 2 K such that

hTu� Au�w�;gðv ;uÞi þuðu;vÞ �uðu; uÞP 0; 8v 2 K: ð2:4Þ

Problem (2.4) with w⁄ = 0 is introduced and studied by Ding [5].
(d) If u(u,v) = f(v), "u, v 2 E, where f : E! R, then the problem (2.2) is equivalent to that of finding u 2 K such that

hTu� Au�w�;gðv ;uÞiP f ðuÞ � f ðvÞ; 8v 2 K: ð2:5Þ

Problem (2.5) with w⁄ = 0 is introduced and studied by Chen and Liu [3] in a reflexive Banach space.
(e) If E ¼ H is a Hilbert space, A = 0, w⁄ = 0 then the problem (2.5) is equivalent to that of finding u 2 K such that

hTu;gðv ;uÞiP f ðuÞ � f ðvÞ; 8v 2 K: ð2:6Þ

Problem (2.6) was considered by Verma [20].
(f) If E ¼ H is a Hilbert space, A = 0, g(v,u) = v � u, and f = 0, then the problem (2.4) is equivalent to that of finding u 2 K

such that

hTu;v � uiP hw�; vi � hw�;ui; 8v 2 K: ð2:7Þ

Problem (2.7) was introduced and studied by Zeng [21].

In brief, for appropriate and suitable choice of the mappings T, A, N, g, the bi-function u, and the linear continuous func-
tional w⁄, one can obtain a wide class of variational inequalities and complementarity problems. Furthermore, problem (2.1)
has an important applications in various branches of pure and applied sciences (see [2–16,18–23]).

The following basic concepts will be used in the sequel.

Definition 2.1. Let K be a nonempty subset of a Banach space E. Let T, A : K ! CBðE�Þ be two set-valued mappings. Let
N : East � E� ! E�; g : K � K ! K be mappings. Then

(i) T is said to be g-cocoercive with respect to the first argument of N(�, �), if there exists a constant s > 0, such that
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hNðx; �Þ � Nðx0; �Þ;gðu;vÞiP skNðx; �Þ � Nðx0; �Þk2
; 8u; v 2 K; x 2 TðuÞ; x0 2 TðvÞ;

(ii) N(�, �) is Lipschitz continuous in the second argument with respect to the set-valued mapping A, if there exists a con-
stant a > 0 such that

kNð�; yÞ � Nð�; y0Þk 6 aku� vk; 8u;v 2 K; y 2 AðuÞ; y0 2 AðvÞ;

(iii) N(�, �) is g-strongly monotone in the first argument with respect to the set-valued mapping T if there exists a constant
n > 0 such that

hNðx; �Þ � Nðx0; �Þ;gðu;vÞiP nku� vk2
; 8u;v 2 K; x 2 TðuÞ; x0 2 TðvÞ:

Similarly, g-strongly monotone of N(�, �) in the second argument with respect to the set-valued mapping A can be
defined;

(iv) T is said to be H-Lipschitz continuous if there exists a constant c > 0 such that

HððTðuÞ; TðvÞÞ 6 cku� vk; 8u;v 2 K;

(v) g is Lipschitz continuous, if there exists a constant d > 0 such that

kgðu;vÞk 6 dku� vk;

for any u, v 2 K.

Definition 2.2. The bifunction u : E� E! ð�1;þ1� is said to be skew-symmetric, if

uðu;uÞ �uðu; vÞ �uðv; uÞ þuðv; vÞP 0;

for all u, v 2 E.

Remark 2.3. The skew-symmetric bifunctions have properties which can be considered an analogs of monotonicity of gra-
dient and nonnegativity of a second derivative for a convex function. As for the investigations of the skew-symmetric bifunc-
tion, we refer the reader to [1].

Definition 2.4 ([2,10]). Let K be a nonempty convex subset of a Banach space E. Let w : K ! ð�1;þ1Þ be a Fréchet differ-
entiable function and g : K � K ! E. Then w is said to be:

(i) g-convex, if

wðvÞ � wðuÞP hw0ðuÞ;gðv ;uÞi;

for all u, v 2 K;
(ii) g-strongly convex, if there exists a constant l > 0 such that

wðvÞ � wðuÞ � hw0ðuÞ;gðv ;uÞiP
l
2
ku� vk2

;

for all u, v 2 K.

Note that, if g(u,v) = u � v for all u, v 2 K, then w is said to be strongly convex.
Throughout this paper, we shall use the notations ‘‘ N ’’ and ‘‘ ? ’’ for weak convergence and strong convergence,

respectively.

Remark 2.5

(i) Assume that for each fixed v 2 K the mapping gðv ; �Þ : K ! E is continuous from the weak topology to the weak topol-
ogy. Let g : K ! ð�1;þ1Þ be a functional defined by

gðuÞ ¼ hf ;gðv;uÞi;

where v 2 K and f 2 E⁄ are fixed. Then g is a weakly continuous functional on K.
(ii) Let w : K ! ð�1;þ1Þ be a Fréchet differentiable function and g : K � K ! K be a mapping such that

g(u,v) + g(v,u) = 0, " u, v 2 K. If w is a Fréchet differentiable g-strongly convex functional with constant l > 0 on a con-
vex subset K of E then w0 is g-strongly monotone with constant l > 0 (see [23, Proposition 2.1]).

The following lemma due to Zeng et al. [23] will be needed in proving our results.

Lemma 2.6 [23, Lemma 2]. Let K be a nonempty convex subset of a topological vector space X and let U : K � K ! ½�1;þ1� be
such that
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(i) for each v 2 K, u ´ U(v,u) is lower semicontinuous on each nonempty compact subset of K;
(ii) for each finite set {v1, . . . , vm} � K and for each u ¼

Pm
i¼1kiv i ki P 0;

Pm
i¼1ki ¼ 1

� �
; min16i6mUðv i;uÞ 6 0;

(iii) there exists a nonempty compact convex subset K0 of K such that for some v0 2 K0, there holds:

Uðv0;uÞ > 0; 8u 2 K n K0:

Then there exists û 2 K, such that Uðv ; ûÞ 6 0, for all v 2 K.
We also need the following lemma.

Lemma 2.7 [17]. Let (X,d) be a complete metric space and let B1, B2 2 CB(X) and r > 1 be any real number. Then, for every b1 2 B1

there exists b2 2 B2 such that d(b1,b2) 6 rH(B1,B2).
In the sequel, we assume that N and g satisfy the following assumption.

Assumption 2.8. Let N : E� � E� ! E�; g : K � K ! E be two mappings satisfying the following conditions:

(a) g(u,v) = g(u,z) + g(z,v) for each u, v, z 2 K;
(b) for each fixed (u,x,y) 2 K � E⁄ � E⁄, v ´ hN(x,y),g(u,v)i is a concave function.
(c) for each fixed v 2 K, the functional (u,x,y) ´ hN(x,y),g(u,v)i is weakly lower semi-continuous function from K � E⁄ � E⁄

to R, i. e.,

un * u; xn * x and yn * y imply hNðx; yÞ;gðu; vÞi 6 lim inf
n!1

hNðxn; ynÞ;gðun;vÞi:

Remark 2.9. It follows from Assumption 2.8(a) that g(u,u) = 0 and g(u,v) =�g(v,u), "u, v 2 K.

3. The existence theorems

Theorem 3.1. Let E be a real reflexive Banach space with the dual space E⁄, and K be a nonempty convex subset of E. Let T,
A : K ! CBðE�Þ be two set-valued mappings. Let N : E� � E� ! E�, and g : K � K ! E . Let u : E� E! ð�1;þ1� be skew-
symmetric and weakly continuous such that intfu 2 K : uðu;uÞ <1g– ; and u(u, �) is proper convex, for each u 2 E. Suppose
that:

(i) T is g-cocoercive with respect to the first argument of N(�, �) with constant s;
(ii) g is Lipschitz continuous with constant d > 0;

(iii) N(�, �) is Lipschitz continuous and g-strongly monotone in the second argument with respect to A with constant a > 0 and
b > 0, respectively.

If Assumption 2.8 is satisfied, then GMQVLIP(T,A,N,g,u) – ;.

Proof. For any u, v 2 K, we define a function U : K � K ! R by

Uðv ;uÞ ¼ hNðx; yÞ �w�;gðu;vÞi þuðu;uÞ �uðu; vÞ 8u; v 2 K;

where x 2 T(u), y 2 A(u).
Note, by u(�, �) is weakly continuous functional and since each fixed v 2 K the functional (u,x,y) ´ hN(x,y),g(u,v)i is

weakly lower semi-continuous, we have the functional u ´ U(v,u) is weakly lower semicontinuous for each v 2 K. This
shows that condition (i) in Lemma 2.6 holds. Now we claim that U(v,u) satisfied condition (ii) in Lemma 2.6. If it is not true,
then there exist a finite set {v1,v2, . . . ,vm} � K and u ¼

Pm
i¼1eiv iðei P 0;

Pm
i¼1ei ¼ 1Þ, such that U(vi,u) > 0 for all i = 1,2, . . . ,m,

that is,

hNðx; yÞ �w�;gðu;v iÞi þuðu;uÞ �uðu; v iÞ > 0 8i ¼ 1;2; . . . ;m:

It follows thatXm

i¼1

eihNðx; yÞ �w�;gðu;v iÞi þuðu;uÞ �
Xm

i¼1

eiuðu; v iÞ > 0:

Noting that for each u 2 E, u(u, �) is a convex functional, that is
Pm

i¼1eiuðu;v iÞP uðu;
Pm

i¼1eiv iÞ ¼ uðu;uÞ: Hence,Xm

i¼1

eihNðx; yÞ �w�;gðu;v iÞi > 0:

From Assumption 2.8 (a) and (b), we obtain

0 <
Xm

i¼1

eihNðx; yÞ �w�;gðu;v iÞi 6 Nðx; yÞ �w�;g u;
Xm

i¼1

eiv i

 !* +
¼ Nðx; yÞ �w�;g u;uð Þh i ¼ 0;
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a contradiction. Thus condition (ii) in Lemma 2.6 holds. Since for each u 2 E, v ´ u(u,v) is a proper convex weakly lower
semicontinuous functional and intfu 2 K : uðu;uÞ <1g– ;, we take u� 2 intfu 2 K : uðu;uÞ <1g. By Proposition I.2.6 of
Pascali and Sburlan [[15, p. 27]], u(u⁄, �) is subdifferentiable at u⁄. Hence we have

uðu�;vÞ �uðu�;u�ÞP hr;v � u�i; 8r 2 @uðu�; �Þ; v 2 E:

Since u is skew-symmetric, it follows that

uðv; vÞ �uðv ;u�ÞP uðu�;vÞ �uðu�; u�ÞP hr; v � u�i; 8r 2 @uðu�; �Þ; v 2 E:

Let x⁄ 2 T(u⁄), y⁄ 2 A(u⁄), w 2 T(u), z 2 A(u) and r 2 @u(u⁄, �) be fixed, by using conditions (i)–(iii), and equality g(u,v) = �g(v,u),
we get that

Uðu�;uÞ ¼ hNðw; zÞ �w�;gðu;u�Þi þuðu; uÞ �uðu;u�ÞP hNðx�; y�Þ � Nðw; zÞ;gðu�;uÞi � hNðx�; y�Þ;gðu�;uÞi
� hw�;gðu; u�Þi þ hr;u� u�i ¼ hNðx�; y�Þ � Nðw; y�Þ;gðu�;uÞi þ hNðw; y�Þ � Nðw; zÞ;gðu�;uÞi
� hNðx�; y�Þ;gðu�;uÞi � hw�;gðu;u�Þi þ hr;u� u�iP skNðx�; y�Þ � Nðw; y�Þk2 þ bku� � uk2

� dkNðx�; y�Þkku� � uk � ðkrk þ dkw�kÞku� u�kP bku� u�k2 � krk þ dðkw�k þ kNðx�; y�ÞkÞð Þku� u�k
¼ ku� u�k bku� u�k � krk þ dðkw�k þ kNðx�; y�ÞkÞð Þ½ �:

Let h ¼ 1
b ½krk þ dðkw�k þ kNðx�; y�Þk� and K0 ¼ fu 2 K : ku� u�k 6 hg. Then K0 is a weakly compact convex subset of K. Putting

v0 = u⁄, we have that U(v0,u) > 0 for all u 2 KnK0. Thus, condition (iii) of Lemma 2.6 is satisfied. By Lemma 2.6, there existsbu 2 K such that Uðv ; buÞ 6 0 for all v 2 K, that is,

hNðx̂; ŷÞ �w�;gðv; ûÞi þuðû; vÞ �uðû; ûÞP 0 8v 2 K;

where x̂ 2 TðûÞ; ŷ 2 AðûÞ. Hence, ðû; x̂; ŷÞ 2 GMQVLIPðT;A;N;g;uÞ This completes the proof. h

Remark 3.2. If the conditions of Theorem 3.1 are hold, and N(�, �) is g-strongly monotone in the first argument with respect
to T with constant n > 0, then the solution of the problem (2.1) is unique up to the element u 2 K. Indeed, supposing ðû; x̂; ŷÞ
and ð~u; ~x; ~yÞ are elements in GMQVLIP(T,A,N,g,u), we have

hNðx̂; ŷÞ �w�;gðv; ûÞiP uðû; ûÞ �uðû;vÞ; 8v 2 K; ð3:1Þ
hNð~x; ~yÞ �w�;gðv; ~uÞiP uð~u; ~uÞ �uð~u;vÞ; 8v 2 K: ð3:2Þ

Taking v ¼ ~u in (3.1) and v ¼ û in (3.2) and adding two inequalities, since u is skew-symmetric, we obtain

hNðx̂; ŷÞ �w�;gð~u; ûÞi þ hNð~x; ~yÞ �w�;gðû; ~uÞiP 0:

Moreover, by Remark 2.9, we have

hNð~x; ~yÞ � Nðx̂; ŷÞ;gðû; ~uÞiP 0:

Since N(�, �) is g-strongly monotone in the first argument with respect to T with the constant n, and g-strongly monotone in
the second argument with respect to A with constant b, we get

ðbþ nÞkû� ~uk2
6 hNð~x; ~yÞ � Nðx̂; ~yÞ;gð~u; ûÞi þ hNðx̂; ~yÞi � Nðx̂; ŷÞ;gð~u; ûÞi 6 0:

Since b, n > 0, we must have û ¼ ~u.

4. Convergence analysis

4.1. Constructive Approximation

In this section, we extend the auxiliary principle technique to study the mixed quasi-variational-like inequality problem
(2.1) in a reflexive Banach space E. We first establish an existence theorem for the auxiliary problem for the mixed quasi-
variational-like inequality problem (2.1). By using this existence theorem, we construct the iterative algorithm for solving
the problem of type (2.1).

Let g : K � K ! E be a mapping, w : K ! ð�1;þ1� be a given Fréchet differentiable g-convex functional and q > 0 be a
given positive number. Given u 2 K, x 2 T(u), y 2 A(u), we consider the following problem P(u,x,y): find w 2 K such that

hqNðx; yÞ � qw� þ w0ðwÞ � w0ðuÞ;gðv;wÞi þ quðw;vÞ � quðw;wÞP 0; 8v 2 K: ð4:1Þ

The problem P(u,x,y) is called the auxiliary problem for fuzzy mixed variational-like inequality problem (2.1).

Theorem 4.1. If the conditions of Theorem 3.1 are hold, and for each fixed v 2 K, w ´g(v,w) is continuous from the weak topology
to the weak topology. If the function w is g-strongly convex with constant l and the functional w ´ hw0(w),g(v,w)i is weakly
upper semicontinuous on K for each v 2 K, then the auxiliary problem P(u,x,y) has a unique solution.
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Proof. Let q > 0 and u 2 K, u 2 K, x 2 T(u), y 2 A(u) be fixed. Define a functional X : K � K ! ½�1;þ1� by

Xðv ;wÞ ¼ hw0ðuÞ � w0ðwÞ � qNðx; yÞ þ qw�;gðv ;wÞi þ quðw;wÞ � quðw;vÞ 8v ;w 2 K:

Note that for each fixed v 2 K, the functional w#hw0ðwÞ;gðv ;wÞi is weakly upper semi-continuous on K, and w ´ g(v,w) is
continuous from the weak topology to the weak topology, and u(�, �) is weakly continuous, thus, it is easy to see that, for each
fixed v 2 K the function w ´ X(v,w) is weakly lower semi-continuous continuous on each weakly compact subset of K and so
condition (i) in Lemma 2.6 is satisfied. We claim that condition (ii) in Lemma 2.6 holds. If this is false, then there exist a finite
set {v1,v2, . . . ,vm} � K and a w ¼

Pm
i¼1eiv i with ei P 0 and

Pm
i¼1ei ¼ 1, such that

Xðv i;wÞ ¼ hw0ðuÞ � w0ðwÞ � qNðx; yÞ þ qw�;gðv i;wÞi þ quðw;wÞ � quðw;v iÞ > 0 8i ¼ 1;2; . . . ;m:

By Assumption 2.8, in light of Remark 2.9, together with the convexity of u(w, �), we have

0 <
Xm

i¼1

ei½hw0ðuÞ � w0ðwÞ � qðNðx; yÞÞ þ qw�;gðv i;wÞi þ quðw;wÞ � quðw;v iÞ�

6 hw0ðuÞ � w0ðwÞ � qðNðx; yÞÞ þ qw�;gðw;wÞi þ quðw;wÞ � q
Xm

i¼1

eiuðw;v iÞ 6 0;

which is a contradiction. Thus, condition (ii) in Lemma 2.6 is satisfied. Note that the g-strong convexity of w implies that w0 is
g-strongly monotone with constant l > 0, see Remark 2.5(ii). By using the similar argument as in the proof of Theorem 3.1,
we can readily prove that condition (iii) of Lemma 2.6 is also satisfied. By Lemma 2.6 there exists a point w 2 K, such that
X(v,w) 6 0 for all v 2 K. This implies that w is a solution to the problem P(u,x,y).

Now we prove that the solution of problem P(u,x,y) is unique. Let w1 and w2 be two solutions of problem (4.1). Then,

hqNðx; yÞ � qw� þ w0ðw1Þ � w0ðuÞ;gðv ;w1ÞiP quðw1;w1Þ � quðw1;vÞ; 8v 2 K; ð4:2Þ

and

hqNðx; yÞ � qw� þ w0ðw2Þ � w0ðuÞ;gðv ;w2ÞiP quðw2;w2Þ � quðw2;vÞ; 8v 2 K: ð4:3Þ

Taking v = w2 in (4.2) and v = w1 in (4.3), and adding these two inequalities, since g(w2, w1) + g(w1,w2) = 0 and u(�, �) is skew-
symmetric, we obtain

hw0ðw2Þ � w0ðw1Þ;gðw1;w2ÞiP 0:

Thus, by w
0

is g-strongly monotone, we have

lkw1 �w2k2
6 hw0ðw1Þ � w0ðw2Þ; gðw1;w2Þ 6 0;

This implies that w1 = w2, and the proof is completed. h

By virtue of Theorem 4.1, we now construct an iterative algorithm for solving the problem (2.1) in a reflexive Banach
space E.

Let q > 0 be fixed. For given u0 2 K, x0 2 T(u0), y0 2 A(u0), from Theorem 4.1, there is u1 2 K such that

hqNðx0; y0Þ � qw� þ w0ðu1Þ � w0ðu0Þ;gðv ;u1Þi þ quðu1; vÞ � quðu1;u1ÞP 0; 8v 2 K:

Since x0 2 T(u0) 2 CB(E⁄), y0 2 A(u0) 2 CB(E⁄), by Lemma 2.7, there exist x1 2 T(u1) and y1 2 A(u1) such that

kx0 � x1k 6 ð1þ 1ÞHððTðu0Þ; Tðu1ÞÞ;
ky0 � y1k 6 ð1þ 1ÞHðAðu0Þ;Aðu1ÞÞ:

Again by Theorem 4.1, there is u2 2 K such that

hqNðx1; y1Þ � qw� þ w0ðu2Þ � w0ðu1Þ;gðv ;u2Þi þ quðu2; vÞ � quðu2;u2ÞP 0; 8v 2 K:

Since x1 2 T(u1) 2 CB(E⁄), y1 2 A(u1) 2 CB(E⁄), by Lemma 2.7, there exist x2 2 T(u2) and y2 2 A(u2) such that

kx1 � x2k 6 1þ 1
2

� �
HðTðu1Þ; Tðu2ÞÞ;

ky1 � y2k 6 1þ 1
2

� �
HðAðu1Þ;Aðu2ÞÞ:

Continuing in this way, we can obtain the iterative algorithm for solving problem (2.1) as follows:

Algorithm 1. Let q > 0 be fixed. For given u0 2 K, x0 2 T(u0), y0 2 A(u0) there exist the sequence {un} � K and {xn}, {yn} � E⁄

such that

hqNðxn; ynÞ � qw� þ w0ðunþ1Þ � w0ðunÞ;gðv;unþ1Þi þ quðunþ1; vÞ � quðunþ1;unþ1ÞP 0; 8v 2 K

and
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xn 2 TðunÞ; kxn � xnþ1k 6 1þ 1
nþ 1

� �
HðTðunÞ; Tðunþ1ÞÞ; 8n 2 N;

yn 2 AðunÞ; kyn � ynþ1k 6 1þ 1
nþ 1

� �
HðAðunÞ;Aðunþ1ÞÞ; 8n 2 N:

4.2. Convergence theorems

Now, we shall prove that the sequences {un} � K and {xn}, {yn} � E⁄ generated by Algorithm 1 converge strongly to a solu-
tion of problem (2.1).

Theorem 4.2. Suppose that conditions of Theorem 4.1 are hold, and the mapping T, A are Lipschitzian continuous mappings with

Lipschitzian constant c and f, respectively. If q 2 0; 2slb
d2ðsa2þbÞ

� �
then the iterative sequence {un}, {xn}, {yn} obtained from Algorithm 1

converge strongly to a solution of problem (2.1).

Proof. Let ðbu; bx; byÞ 2 FMVLIPðT;A;N;g;uÞ. Define a function D : K ! ð�1;þ1� by

DðuÞ ¼ wðûÞ � wðuÞ � hw0ðuÞ;gðû;uÞi:

By the g-strong convexity of w, we have

DðuÞ ¼ wðûÞ � wðuÞ � hw0ðuÞ;gðû;uÞiP l
2
ku� ûk2

: ð4:4Þ

Note that g(u,v) = �g(v,u) for all u, v 2 K and u(�, �) is skew-symmetric. Since un+1 2 K and ðû; x̂; ŷÞ 2 FMVLIPðT;A;N;g;uÞ, from
the g-strong convexity of w, and Algorithm 1 with v ¼ û it follows that

DðunÞ � Dðunþ1Þ ¼ wðunþ1Þ � wðunÞ � hw0ðunÞ;gðunþ1;unÞi þ hw0ðunþ1Þ � w0ðunÞ;gðû; unþ1Þi

P
l
2
kun � unþ1k2 þ qhNðxn; ynÞ �w�;gðunþ1; ûÞi þ q½uðunþ1;unþ1Þ �uðunþ1; ûÞ�

P
l
2
kun � unþ1k2 þ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðunþ1; ûÞi þ q½hNðx̂; ŷÞ �w�;gðunþ1; ûÞi þuðû;unþ1Þ

�uðû; ûÞ�P l
2
kun � unþ1k2 þ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðunþ1; ûÞi ¼

l
2
kun � unþ1k2 þ Q ; ð4:5Þ

where Q ¼ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðunþ1; ûÞi.
Consider,

Q ¼ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðunþ1; ûÞi ¼ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðunþ1;unÞi þ qhNðxn; ynÞ � Nðx̂; ŷÞ;gðun; ûÞi
¼ qhNðxn; ynÞ � Nðx̂; ynÞ;gðun; ûÞi þ qhNðx̂; ynÞ � Nðx̂; ŷÞ;gðun; ûÞi þ qhNðxn; ynÞ � Nðx̂; ynÞ;gðunþ1;unÞi þ qhNðx̂; ynÞ
� Nðx̂; ŷÞ;gðunþ1;unÞiP qskNðxn; ynÞ � Nðx̂; ynÞk

2 þ qbkun � ûk2 � qdkNðxn; ynÞ � Nðx̂; ynÞkkunþ1 � unk � qadkun

� ûkkunþ1 � unk ¼ q½skNðxn; ynÞ � Nðx̂; ynÞk
2 � dkNðxn; ynÞ � Nðx̂; ynÞkkunþ1 � unk� � qadkun � ûkkunþ1 � unk

þ qbkun � ûk2 P q � d2

4s

" #
kunþ1 � unk2 � qadkun � bukkunþ1 � unk þ qbkun � buk2

: ð4:6Þ

Therefore, we have

DðunÞ � Dðunþ1ÞP
1
2

l� qd2

2s

 !
kunþ1 � unk2 � qadkun � ûkkunþ1 � unk þ qbkun � ûk2

P qb� q2a2d2

2ðl� qd2=2sÞ

" #
kun � ûk2

: ð4:7Þ

Since q 2 0; 2slb

d2ðsa2þbÞ

� �
, the inequality (4.7) implies that the sequence {D(un)} is strictly decreasing (unless un ¼ ûÞ and is non-

negative by (4.4). Hence it converges to some number. Thus, the difference of two consecutive terms of the sequence {D(un)}
goes to zero, and so the sequence {un} converges strongly to bu. Further, from Algorithm 1, we have

kxn � xnþ1k 6 1þ 1
nþ 1

� �
HðTðunÞ; Tðunþ1ÞÞ 6 ckun � unþ1k;

kyn � ynþ1k 6 1þ 1
nþ 1

� �
HðAðunÞ;Aðunþ1ÞÞ 6 fkun � unþ1k:
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These imply that {xn} and {yn} are Cauchy sequence in E⁄, since {un} is a convergence sequence. Thus, we can assume that
xn ? x and yn ? y (as n ?1). Note xn 2 T(un) and yn 2 A(un), so we have

dðx; TðûÞÞ 6 kx� xnk þ d xn; TðunÞð Þ þ H TðunÞ; TðûÞð Þ 6 kx� xnk þ 0þ ckun � ûk ! 0 ðn!1Þ:

Hence we must have x 2 TðûÞ. Similarly, we can obtain y 2 AðbuÞ. Now we shall show that ðû; x; yÞ 2GMQVLIP(T,A,N,g,u). In
view of Assumption 2.8(c), for each fixed v 2 K we have the functional (u,x,y) ´ hN(x,y), g(v,u)i is an upper semi-continuous
functional. Using this one, together with the weak continuity of the function u(�, �), we obtain

0 6 lim sup
n!1

hqNðxn; ynÞ � qw� þ w0ðunþ1Þ � w0ðunÞ;gðv ;unþ1Þi þ quðunþ1;vÞ � quðunþ1;unþ1Þ½ �

6 q hNðx; yÞ �w�;gðv ; ûÞi þuðû; vÞ �uðû; ûÞ½ �:

This implies that ðû; x; yÞ 2GMQVLIP(T,A,N,g,u), and the proof is completed. h

Remark 4.3. Since for appropriate and suitable choice of the mappings T, A, N, g, the bi-function u, and the linear continuous
functional w⁄, we can obtain a number of known class of variational inequalities and variational-like inequalities as spacial
cases from the problem (2.1), hence, our results can be view as a refinement and improvement of the previously known
results for variational inequalities.
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Abstract

At the present article, we consider a new lass of general nonlinear random A-

maximal m-relaxed η-accretive equations with random relaxed cocoercive map-

pings and random fuzzy mappings in q-uniformly smooth Banach spaces. By

1



using the resolvent mapping technique for A-maximalm-relaxed η-accretive map-

pings due to Lan et al. and Chang’s lemma, we construct a new iterative algo-

rithm with mixed errors for finding the approximate solutions of this class of

nonlinear random equations. We also verify that the approximate solutions ob-

tained by the our proposed algorithm converge to the exact solution of the general

nonlinear random A-maximal m-relaxed η-accretive equations with random re-

laxed cocoercive mappings and random fuzzy mappings in q-uniformly smooth

Banach spaces.

Keywords: variational inclusions; A-maximal m-relaxed η-accretive mapping;

random relaxed cocoercive mapping; resolvent operator technique; random iter-

ative algorithm; random fuzzy mapping; q-uniformly smooth Banach space.
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1 Introduction

The theory of variational inequalities was extended and generalized in many different

directions because of its applications in mechanics, physics, optimization, economics and en-

gineering sciences. For the applications, physical formulation, numerical methods and other

aspects of variational inequalities (see [1–63] and the references therein). Quasi-variational

inequalities are generalized forms of variational inequalities in which the constraint set de-

pend on the solution. These were introduced and studied by Bensoussan et al. [11]. In

1991, Chang and Huang [16, 17] introduced and studied some new classes of complemen-

tarity problems and variational inequalities for set-valued mappings with compact values

2



in Hilbert spaces. An useful and important generalization of the variational inequalities is

called the variational inclusions, due to Hassouni and Moudafi [34], which have wide appli-

cations in the fields of optimization and control, economics and transportation equilibrium,

engineering science.

Meanwhile, it is known that accretivity of the underlying operator plays indispensable

roles in the theory of variational inequality and its generalizations. In 2001, Huang and

Fang [41] were the first to introduce generalized m-accretive mapping and gave the def-

inition of the resolvent operator for generalized m-accretive mappings in Banach spaces.

Subsequently, Verma [59,60] introduced and studied new notions of A-monotone and (A, η)-

monotone operators and studied some properties of them in Hilbert spaces. In [52], Lan

et al. first introduced the concept of (A, η)-accretive mappings, which generalizes the ex-

isting η-subdifferential operators, maximal η-monotone operators, H-monotone operators,

A-monotone operators, (H, η)-monotone operators, (A, η)-monotone operators in Hilbert

spaces, H-accretive mapping, generalized m-accretive mappings and (H, η)-accretive map-

pings in Banach spaces.

On the other hand, the fuzzy set theory which was introduced by Professor Lotfi Zadeh

[62] at the university of California in 1965 has emerged as an interesting and fascinating

branch of pure and applied sciences. The applications of the fuzzy set theory can be found

in many branches of regional, physical, mathematical and engineering sciences (see, for

example [10, 32, 63]). In 1989, by using the concept of fuzzy set, Chang and Zu [20] first

introduced and studied a class of variational inequalities for fuzzy mappings. Since then

several classes of variational inequalities with fuzzy mappings were considered by Chang and

Haung [15], Ding [30], Ding and Park [31], Haung [36], Kumam and Petrot [48], Noor [55]
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and Park and Jeong [56, 57] in Hilbert spaces. Recently, Huang and Lan [43], considered

nonlinear equations with fuzzy mapping in fuzzy normed spaces and subsequently Lan and

Verma [54] considered fuzzy variational inclusion problems in Banach spaces. It is worth to

mention that variational inequalities with fuzzy mapping have been useful in the study of

equilibrium and optimal control problem (see, for example [14]).

The random variational inequality and random quasi-variational inequality problems,

random variational inclusion problems and random quasi-complementarity problems have

been introduced and studied by Chang [13], Chang and Huang [18,19], Chang and Zhu [21],

Cho et al. [22], Ganguly and Wadhawa [33], Huang and Cho [40], Khan et al. [47] and

Lan [51], etc. Recently, Lan et al. [53] introduced and studied a class of general nonlinear

random set-valued operator equations involving generalizedm-accretive mappings in Banach

spaces. They also established the existence theorems of the solution and convergence theo-

rems of the generalized random iterative procedures with errors for these nonlinear random

set-valued operator equations in q-uniformly smooth Banach spaces. Cho and Lan [23] con-

sidered and studied a class of generalized nonlinear random (A, η)-accretive equations with

random relaxed cocoercive mappings in Banach spaces and by introducing some random it-

erative algorithms, they proved the convergence of iterative sequences generated by proposed

algorithms. Further, by considering the concepts of random mappings and fuzzy mappings,

Haung [39] was first introduced the concept of random fuzzy mapping. Subsequently, the

random variational inclusion problem for random fuzzy mappings is studied by Ahmad and

Bazan [4]. Very recently, Onjai-Uea and Kumam [58] introduced and studied a class of

general nonlinear random (H, η)-accretive equations with random fuzzy mappings in Ba-

nach spaces and by using the resolvent mapping technique for the (H, η)-accretive mappings

4



proved the existence and convergence theorems of the generalized random iterative algo-

rithms for these nonlinear random equations with random fuzzy mappings in q-uniformly

smooth Banach spaces.

At the present article, inspired and motivated by recent researches in this field, we shall in-

troduce and study a new class of general nonlinear random A-maximal m-relaxed η-accretive

(so called (A, η)-accretive [52]) equations with random relaxed cocoercive mappings and

random fuzzy mappings in Banach spaces. By using the resolvent mapping technique for

A-maximal m-relaxed η-accretive mappings due to Lan et al. and Chang’s lemma [12], we

construct a new iterative algorithm with mixed errors for finding the approximate solutions

of this class of nonlinear random equations. We also prove the existence of random solutions

and the convergence of random iterative sequences generated by the our proposed algorithm

in q-uniformly smooth Banach spaces. The results presented in this article improve and

extend the corresponding results of [13,18,22–24,33,34,37–40,42,44,46,49,53,58] and many

other recent works.

2 Preliminaries

Throughout this article, let (Ω,A, µ) be a complete σ-finite measure space and X be a

separable real Banach space endowed with dual space X∗, the norm ∥.∥ and the dual pair

⟨., .⟩ between X and X∗. We denote by B(X), CB(X) and Ĥ(., .) the class of Borel σ-fileds

in X, the family of all nonempty closed bounded subsets of X and the Hausdorff metric

Ĥ(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
on CB(X), respectively.
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The generalized duality mapping Jq : X ( X∗ is defined by

Jq(x) = {f ∗ ∈ X∗ : ⟨x, f ∗⟩ = ∥x∥q, ∥f∗∥ = ∥x∥q−1}, ∀x ∈ X,

where q > 1 is a constant. In particular, J2 is usual normalized duality mapping. It is

known that, in general, Jq(x) = ∥x∥q−2J2(x) for all x ̸= 0 and Jq is single-valued if X∗ is

strictly convex. In the sequel, we always assume that X is a real Banach space such that Jq

is single-valued. If X is a Hilbert space, then J2 becomes the identity mapping on X.

The modulus of smoothness of X is the function ρX : [0,∞) → [0,∞) defined by

ρX(t) = sup

{
1

2
(∥x+ y∥+ ∥x− y∥)− 1 : ∥x∥ ≤ 1, ∥y∥ ≤ t

}
.

A Banach space X is called uniformly smooth if

lim
t→0

ρX(t)

t
= 0.

Further, a Banach space X is called q-uniformly smooth if there exists a constant c > 0 such

that

ρX(t) ≤ ctq, q > 1.

It is well-known that Hilbert spaces, Lp(or lp) spaces, 1 < p < ∞, and the Sobolev spaces

Wm,p, 1 < p <∞, are all q-uniformly smooth.

Concerned with the characteristic inequalities in q-uniformly smooth Banach spaces,

Xu [61] proved the following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth

if and only if there exists a constant cq > 0 such that for all x, y ∈ X,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ cq∥y∥q.
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Definition 2.2. A mapping x : Ω → X is said to be measurable if, for any B ∈ B(X),

{t ∈ Ω : x(t) ∈ B} ∈ A.

Definition 2.3. A mapping T : Ω×X → X is called a random mapping if, for any x ∈ X,

T (., x) : Ω → X is measurable. A random mapping T is said to be continuous if, for any

t ∈ Ω, the mapping T (t, .) : X → X is continuous.

Similarly, we can define a random mapping a : Ω × X × X → X. We shall write

Tt(x) = T (t, x(t)) and at(x, y) = a(t, x(t), y(t)) for all t ∈ Ω and x(t), y(t) ∈ X.

It is well-known that a measurable mapping is necessarily a random mapping.

Definition 2.4. A set-valued mapping V : Ω ( X is said to be measurable if, for any

B ∈ B(X), V −1(B) = {t ∈ Ω : V (t) ∩B ̸= ∅} ∈ A.

Definition 2.5. A mapping u : Ω → X is called a measurable selection of a set-valued

measurable mapping V : Ω ( X if, u is measurable and for any t ∈ Ω, u(t) ∈ V (t).

Definition 2.6. A set-valued mapping V : Ω × X ( X is called a random set-valued

mapping if, for any x ∈ X, V (., x) is measurable. A random set-valued mapping V :

Ω × X ( X is said to be Ĥ-continuous if, for any t ∈ Ω, V (t, .) is continuous in the

Hausdorff metric on CB(X).

Definition 2.7. Let X be a q-uniformly smooth Banach space, T,A : Ω × X → X and

η : Ω×X ×X → X be random single-valued mappings. Then

(a) T is said to be accretive if

⟨Tt(x)− Tt(y), Jq(x(t)− y(t))⟩ ≥ 0, ∀x(t), y(t) ∈ X, t ∈ Ω;
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(b) T is called strictly accretive if T is accretive and

⟨Tt(x)− Tt(y), Jq(x(t)− y(t))⟩ = 0,

if and only if x(t) = y(t) for all t ∈ Ω;

(c) T is said to be r-strongly accretive if there exists a measurable function r : Ω → (0,∞)

such that

⟨Tt(x)− Tt(y), Jq(x(t)− y(t))⟩ ≥ r(t)∥x(t)− y(t)∥q, ∀x(t), y(t) ∈ X, t ∈ Ω;

(d) T is said to be (θ, κ)-relaxed cocoercive if there exist measurable functions θ, κ : Ω →

(0,∞) such that

⟨Tt(x)−Tt(y), Jq(x(t)−y(t))⟩ ≥ −θ(t)∥Tt(x)−Tt(y)∥q+κ(t)∥x(t)−y(t)∥q, ∀x(t), y(t) ∈ X, t ∈ Ω;

(e) T is called ϱ-Lipschitz continuous if there exists a measurable function ϱ : Ω → (0,∞)

such that

∥Tt(x)− Tt(y)∥ ≤ ϱ(t)∥x(t)− y(t)∥, ∀x(t), y(t) ∈ X, t ∈ Ω;

(f) η is said to be τ -Lipschitz continuous if there exists a measurable function τ : Ω →

(0,∞) such that

∥ηt(x, y)∥ ≤ τ(t)∥x(t)− y(t)∥, ∀x(t), y(t) ∈ X, t ∈ Ω;

(g) η is said to be µ-Lipschitz continuous in the second argument if there exists a mea-

surable function µ : Ω → (0,∞) such that

∥ηt(x, u)− ηt(y, u)∥ ≤ µ(t)∥x(t)− y(t)∥, ∀x(t), y(t), u(t) ∈ X, t ∈ Ω.

In a similar way to part (g), we can define the Lipschitz continuity of the mapping η in

the third argument.
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Definition 2.8. Let X be a q-uniformly smooth Banach space, η : Ω × X × X → X and

H,A : Ω × X → X be three random single-valued mappings. Then set-valued mapping

M : Ω×X ( X is said to be:

(a) accretive if

⟨u(t)− v(t), Jq(x(t)− y(t))⟩ ≥ 0, ∀x(t), y(t) ∈ X, u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(b) η-accretive if

⟨u(t)− v(t), Jq(ηt(x, y))⟩ ≥ 0, ∀x(t), y(t) ∈ X, u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(c) strictly η-accretive ifM is η-accretive and the equality holds if and only if x(t) = y(t),

∀t ∈ Ω;

(d) r-strongly η-accretive if there exists a measurable function r : Ω → (0,∞) such that

⟨u(t)−v(t), Jq(ηt(x, y))⟩ ≥ r(t)∥x(t)−y(t)∥q, ∀x(t), y(t) ∈ X, u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(e) α-relaxed η-accretive if there exists a measurable function α : Ω → (0,∞) such that

⟨u(t)−v(t), Jq(ηt(x, y))⟩ ≥ −α(t)∥x(t)−y(t)∥q, ∀x(t), y(t) ∈ X, u(t) ∈Mt(x), v(t) ∈Mt(y), t ∈ Ω;

(f) m-accretive if M is accretive and (It + ρ(t)Mt)(X) = X for all t ∈ Ω and for any

measurable function ρ : Ω → (0,∞), where I denotes the identity mapping on X, It(x) =

x(t), for all x(t) ∈ X, t ∈ Ω;

(g) generalized m-accretive if M is η-accretive and (It + ρ(t)Mt)(X) = X for all t ∈ Ω

and any measurable function ρ : Ω → (0,∞);

(h) H-accretive if M is accretive and (Ht + ρ(t)Mt)(X) = X for all t ∈ Ω and any

measurable function ρ : Ω → (0,∞), where Ht(.) = H(t, .) for all t ∈ Ω;
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(i) (H, η)-accretive if M is η-accretive and (Ht + ρ(t)Mt)(X) = X for all t ∈ Ω and any

measurable function ρ : Ω → (0,∞);

(j) A-maximal m-relaxed η-accretive ifM ism-relaxed η-accretive and (At+ρ(t)Mt)(X) =

X for all t ∈ Ω and any measurable function ρ : Ω → (0,∞), where At(.) = A(t, .) for all

t ∈ Ω;

(k) β-Ĥ-Lipschitz continuous if there exists a measurable function β : Ω → (0,+∞) such

that

Ĥ(Mt(x),Mt(y)) ≤ β(t)∥x(t)− y(t)∥, ∀x(t), y(t) ∈ X, t ∈ Ω.

Remark 2.9. (1) If X = H is a Hilbert space, then parts (a)–(i) of Definition 2.8 reduce

to the definitions of monotone operators, η-monotone operators, strictly η-monotone op-

erators, strongly η-monotone operators, relaxed η-monotone operators, maximal monotone

operators, maximal η-monotone operators, H-monotone operators and (H, η)-monotone op-

erators, respectively.

(2) For appropriate and suitable choices of m, A, η and X, it is easy to see that part

(j) of Definition 2.8 includes a number of definitions of monotone operators and accretive

mappings (see [52]).

Proposition 2.10. [52] Let A : Ω × X → X be an r-strongly η-accretive mapping and

M : Ω × X ( X be an A-maximal m-relaxed η-accretive mapping. Then the operator

(At + ρ(t)Mt)
−1 is single-valued for any measurable function ρ : Ω → (0,+∞) and t ∈ Ω.

Definition 2.11. Let A : Ω×X → X be a strictly η-accretive mapping and M : Ω×X (

X be an A-maximal m-relaxed η-accretive mapping. Then, for any measurable function
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ρ : Ω → (0,+∞), the resolvent operator Jηt,Mt

ρ(t),At
: X → X is defined by:

Jηt,Mt

ρ(t),At
(u(t)) = (At + ρ(t)Mt)

−1(u(t)), ∀t ∈ Ω, u(t) ∈ X.

Proposition 2.12. [52] Let X be a q-uniformly smooth Banach space and η : Ω×X×X →

X be τ -Lipschitz continuous, A : Ω × X → X be an r-strongly η-accretive mapping and

M : Ω × X ( X be an A-maximal m-relaxed η-accretive mapping. Then the resolvent

operator Jηt,Mt

ρ(t),At
: X → X is τq−1(t)

r(t)−ρ(t)m(t)
-Lipschitz continuous, i.e.,

∥∥∥Jηt,Mt

ρ(t),At
(x(t))− Jηt,Mt

ρ(t),At
(y(t))

∥∥∥ ≤ τ q−1(t)

r(t)− ρ(t)m(t)
∥x(t)− y(t)∥, ∀x(t), y(t) ∈ X, t ∈ Ω,

where ρ(t) ∈
(
0, r(t)

m(t)

)
is a real-valued random variable for all t ∈ Ω.

3 A new random variational inclusion problem and random iter-

ative algorithm

In what follows, we denote the collection of all fuzzy sets on X by F(X) = {A|A :

X → [0, 1]}. For any set K, a mapping S from K into F(X) is called a fuzzy mapping. If

S : K → F(X) is a fuzzy mapping, then S(x), for any x ∈ K, is a fuzzy set on F(X) (in the

sequel, we denote S(x) by Sx) and Sx(y), for any y ∈ X, is the degree of membership of y

in Sx. For any A ∈ F(X) and α ∈ [0, 1], the set

(A)α = {x ∈ X : A(x) ≥ α}

is called a α-cut set of A.

Definition 3.1. A fuzzy mapping S : Ω → F(X) is called measurable if, for any α ∈ (0, 1],

(S(.))α : Ω ( X is a measurable set-valued mapping.
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Definition 3.2. A fuzzy mapping S : Ω×X → F(X) is called a random fuzzy mapping if,

for any x ∈ X, S(., x) : Ω → F(X) is a measurable fuzzy mapping.

Now, let us introduce our main considered problem.

Suppose that S, T ,P ,Q,G : Ω×X → F(X) are random fuzzy mappings, A, p : Ω×X →

X and η : Ω×X ×X → X, N : Ω×X ×X ×X → X are random single-valued mappings.

Further, let a, b, c, d, e : X → [0, 1] be any mappings and M : Ω×X ×X ( X be a random

set-valued mapping such that, for each fixed t ∈ Ω and z(t) ∈ X, M(t, ., z(t)) : X ( X be

an A-maximal m-relaxed η-accretive mapping with Im(p) ∩ domM(t, ., z(t)) ̸= ∅. Now, we

consider the following problem:

For any element h : Ω → X and any measurable function λ : Ω → (0,+∞), find mea-

surable mappings x, ν, u, v, ϑ, w : Ω → X such that for each t ∈ Ω, x(t) ∈ X, St,x(t)(ν(t)) ≥

a(x(t)), Tt,x(t)(u(t)) ≥ b(x(t)), Pt,x(t)(v(t)) ≥ c(x(t)), Qt,x(t)(ϑ(t)) ≥ d(x(t)), Gt,x(t)(w(t)) ≥

e(x(t)) and

h(t) ∈ Nt(ν, u, v) + λ(t)Mt(pt(x)− ϑ,w), ∀t ∈ Ω. (3.1)

The problem (3.1) is called the general nonlinear random A-maximal m-relaxed η-accretive

equation with random relaxed cocoercive mappings and random fuzzy mappings in Banach

spaces.

Remark 3.3. Obviously, the random fuzzy mapping includes set-valued mapping, random

set-valued mapping and fuzzy mapping as the special cases. These mean that for appro-

priate and suitable choices of X, A, η, λ, p, M , N , S, T , P , Q, G and h, one can obtain

many known classes of random variational inequalities, random quasi-variational inequali-

ties, random complementarity and random quasi-complementarity problems as special cases
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of the problem (3.1), (see, for example [1–3,22,23,34,37,45,49,50,53,58] and the references

therein).

In the sequel, we will develop and analyze a new class of iterative methods and construct

a new random iterative algorithm with mixed errors for solving the problem (3.1). For this

end, we need the following lemmas.

Lemma 3.4. [12] Let M : Ω×X → CB(X) be a Ĥ-continuous random set-valued mapping.

Then, for any measurable mapping x : Ω → X, the set-valued mapping M(., x(.)) : Ω →

CB(X) is measurable.

Lemma 3.5. [12] Let M,V : Ω → CB(X) be two measurable set-valued mappings, ϵ > 0 be

a constant and x : Ω → X be a measurable selection of M . Then there exists a measurable

selection y : Ω → X of V such that, for any t ∈ Ω,

∥x(t)− y(t)∥ ≤ (1 + ϵ)Ĥ(M(t), V (t)).

The following lemma offers a good approach for solving the problem (3.1).

Lemma 3.6. The set of measurable mappings x, ν, u, v, ϑ, w : Ω → X is a random solution

of the problem (3.1) if and only if, for each t ∈ Ω, ν(t) ∈ St(x), u(t) ∈ Tt(x), v(t) ∈ Pt(x),

ϑ(t) ∈ Qt(x), w(t) ∈ Gt(x) and

pt(x) = ϑ(t) + J
ηt,Mt(.,w)
ρ(t)λ(t),At

[At(pt(x)− ϑ)− ρ(t)(Nt(ν, u, v)− h(t))],

where J
ηt,Mt(.,w)
ρ(t)λ(t),At

= (At + ρ(t)λ(t)Mt(., w))
−1 and ρ : Ω → (0,∞) is a measurable function.

Proof. The fact follows directly from the definition of J
ηt,Mt(.,w)
ρ(t)λ(t),At

.
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In order to prove our main result, the following concepts are also needed. Let S, T ,P ,Q,G :

Ω×X → F(X) be five random fuzzy mappings satisfying the following condition (∗): There

exist five mappings a, b, c, d, e : X → [0, 1] such that

(St,x(t))a(x(t)) ∈ CB(X), (Tt,x(t))b(x(t)) ∈ CB(X), (Pt,x(t))c(x(t)) ∈ CB(X),

(Qt,x(t))d(x(t)) ∈ CB(X), (Gt,x(t))e(x(t)) ∈ CB(X), ∀(t, x(t)) ∈ Ω×X.

By using the random fuzzy mapping S satisfying (∗) with the corresponding function a :

X → [0, 1], we can define a random set-valued mapping S as follows:

S : Ω×X → CB(X), (t, x(t)) 7→ (St,x(t))a(x(t)), ∀(t, x(t)) ∈ Ω×X,

where St,x(t) = S(t, x(t)). From now on, the random fuzzy mappings S, T , P , Q and G, are

assumed to satisfying the condition (∗) and we will let S, T , P , Q and G are the random

set-valued mappings induced by those five random fuzzy mappings, respectively.

Now, by using Chang’s lemma [12] and based on Lemma 3.6, we can construct the new

following iterative algorithm for solving the problem (3.1).

Algorithm 3.7. Let A, p, η, M , N , S, T , P, Q, G, h, λ be the same as in the problem (3.1)

and let S, T , P , Q, G be Ĥ-continuous random set-valued mappings induced by S, T , P,

Q and G, respectively. Assume that α : Ω → (0, 1] is a measurable step size function. For any

measurable mapping x0 : Ω → X, the set-valued mappings S(., x0(.)), T (., x0(.)), P (., x0(.)), Q(., x0(.)),

G(., x0(.)) : Ω → CB(X) are measurable by Lemma 3.4. Hence there exist measurable se-

lections ν0 : Ω → X of S(., x0(.)), u0 : Ω → X of T (., x0(.)), v0 : Ω → X of P (., x0(.)),

ϑ0 : Ω → X of Q(., x0(.)) and w0 : Ω → X of G(., x0(.)) by Himmelberg [35]. For each t ∈ Ω,
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set

x1(t) = (1− α(t))x0(t) + α(t){x0(t)− pt(x0) + ϑ0(t) + J
ηt,Mt(.,w0)
ρ(t)λ(t),At

[At(pt(x0)− ϑ0)

− ρ(t)(Nt(ν0, u0, v0)− h(t))]}+ α(t)e0(t) + r0(t),

where ρ(t) is the same as in Lemma 3.6 and e0, r0 : Ω → X are measurable functions. It

is easy to know that x1 : Ω → X is measurable. Since ν0(t) ∈ St(x0) ∈ CB(X), u0(t) ∈

Tt(x0) ∈ CB(X), v0(t) ∈ Pt(x0) ∈ CB(X), ϑ0(t) ∈ Qt(x0) ∈ CB(X) and w0(t) ∈ Gt(x0) ∈

CB(X), by Lemma 3.5, there exist measurable selections ν1, u1, v1, w1, ϑ1 : Ω → X of the

set-valued measurable mappings S(., x1(.)), T (., x1(.)), P (., x1(.)), Q(., x1(.)) and G(., x1(.)),

respectively, such that, for all t ∈ Ω,

∥ν0(t)− ν1(t)∥ ≤
(
1 +

1

1

)
Ĥ(St(x0), St(x1)),

∥u0(t)− u1(t)∥ ≤
(
1 +

1

1

)
Ĥ(Tt(x0), Tt(x1)),

∥v0(t)− v1(t)∥ ≤
(
1 +

1

1

)
Ĥ(Pt(x0), Pt(x1)),

∥ϑ0(t)− ϑ1(t)∥ ≤
(
1 +

1

1

)
Ĥ(Qt(x0), Qt(x1)),

∥w0(t)− w1(t)∥ ≤
(
1 +

1

1

)
Ĥ(Gt(x0), Gt(x1)).

Letting

x2(t) = (1− α(t))x1(t) + α(t){x1(t)− pt(x1) + ϑ1(t) + J
ηt,Mt(.,w1)
ρ(t)λ(t),At

[At(pt(x1)− ϑ1)

− ρ(t)(Nt(ν1, u1, v1)− h(t))]}+ α(t)e1(t) + r1(t), ∀t ∈ Ω,

then x2 : Ω → X is measurable. By induction, we can define the sequences {xn(t)}, {νn(t)},
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{un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} for solving the problem (3.1) inductively satisfying

xn+1(t) = (1− α(t))xn(t) + α(t)
{
xn(t)− pt(xn) + ϑn(t) + J

ηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)

− ρ(t)(Nt(νn, un, vn)− h(t))]
}
+ α(t)en(t) + rn(t), ∀t ∈ Ω,

νn(t) ∈ St(xn), ∥νn(t)− νn+1(t)∥ ≤ (
1 + 1

1+n

)
Ĥ(St(xn), St(xn+1)),

un(t) ∈ Tt(xn), ∥un(t)− un+1(t)∥ ≤ (
1 + 1

1+n

)
Ĥ(Tt(xn), Tt(xn+1)),

vn(t) ∈ Pt(xn), ∥vn(t)− vn+1(t)∥ ≤ (
1 + 1

1+n

)
Ĥ(Pt(xn), Pt(xn+1)),

ϑn(t) ∈ Qt(xn), ∥ϑn(t)− ϑn+1(t)∥ ≤ (
1 + 1

1+n

)
Ĥ(Qt(xn), Qt(xn+1)),

wn(t) ∈ Gt(xn), ∥wn(t)− wn+1(t)∥ ≤ (
1 + 1

1+n

)
Ĥ(Gt(xn), Gt(xn+1)),

(3.2)

where for all n ≥ 0 and t ∈ Ω, en(t), rn(t) ∈ X are real-valued random errors to take into

account a possible inexact computation of the random resolvent operator point satisfying

the following conditions:

lim
n→∞

∥en(t)∥ = lim
n→∞

∥rn(t)∥ = 0, ∀t ∈ Ω;

∞∑
n=0

∥en(t)− en−1(t)∥ <∞, ∀t ∈ Ω;

∞∑
n=0

∥rn(t)− rn−1(t)∥ <∞, ∀t ∈ Ω.

(3.3)

Remark 3.8. For a suitable and appropriate choice of the mappings A, p, η, M , N , S, T ,

P , Q, G, S, T , P , Q, G, α, h, λ, the sequences {en}, {rn} and the space X, Algorithm

3.7 includes many known algorithms which due to classes of variational inequalities and

variational inclusions (see, for example [13,18,22–24,33,34,37–40,42,44,46,53,58]).

4 Main result

In this section, we prove the existence of solutions for the problem (3.1) and the conver-

gence of iterative sequences generated by Algorithm 3.7 in Banach spaces.
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Theorem 4.1. Let X be a q-uniformly smooth Banach space, A, p, η, M , N , S, T , P, Q,

G, h, λ be the same as in the problem (3.1) and S, T, P,Q,G : Ω × X → CB(X) be five

random set-valued mappings induced by S, T , P , Q, G, respectively. Further, suppose that

(a) p is (γ,ϖ)-relaxed cocoercive and π-Lipschitz continuous;

(b) A is r-strongly η-accretive and σ-Lipschitz continuous;

(c) η is τ -Lipschitz continuous;

(d) S, T , P , Q and G are ξ-Ĥ-Lipschitz continuous, ζ-Ĥ-Lipschitz continuous, ς-Ĥ-

Lipschitz continuous, ϱ-Ĥ-Lipschitz continuous and ι-Ĥ-Lipschitz continuous, respectively;

(e) N is ϵ-Lipschitz continuous in the second argument, δ-Lipschitz continuous in the

third argument and κ-Lipschitz continuous in the fourth argument;

(f) There exist the measurable functions µ : Ω → (0,+∞) and ρ : Ω → (0,+∞) with

ρ(t) ∈
(
0, r(t)

λ(t)m(t)

)
, for all t ∈ Ω, such that∥∥∥Jηt,Mt(.,x)

ρ(t)λ(t),At
(z(t))− J

ηt,Mt(.,y)
ρ(t)λ(t),At

(z(t))
∥∥∥ ≤ µ(t)∥x(t)− y(t)∥, ∀t ∈ Ω, x(t), y(t), z(t) ∈ X

(4.1)

and 
φ(t) = ϱ(t) + µ(t)ι(t) + q

√
1− qϖ(t) + (qγ(t) + cq)πq(t) < 1,

σ(t)(π(t) + ϱ(t)) + ρ(t)(ϵ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))

< τ 1−q(t)(1− φ(t))(r(t)− ρ(t)λ(t)m(t)),

(4.2)

where cq is the same as in Lemma 2.1. Then there exists a set of measurable mappings

x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X which is a random solution of the problem (3.1) and for

each t ∈ Ω, xn(t) → x∗(t), νn(t) → ν∗(t), un(t) → u∗(t), vn(t) → v∗(t), ϑn(t) → ϑ∗(t),

wn(t) → w∗(t) as n→ ∞, where {xn(t)}, {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are

the iterative sequences generated by Algorithm 3.7.
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Proof. Firstly, for each n ≥ 0, by considering (3.2) and (4.1), in view of Proposition

2.12, we see that

∥xn+1(t)− xn(t)∥

≤ ∥(1− α(t))xn(t) + α(t)
{
xn(t)− pt(xn) + ϑn(t) + J

ηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)

−ρ(t)(Nt(νn, un, vn)− h(t))]
}
+ α(t)en(t) + rn(t)− (1− α(t))xn−1(t)

− α(t)
{
xn−1(t)− pt(xn−1) + ϑn−1(t) + J

ηt,Mt(.,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)

−ρ(t)(Nt(νn−1, un−1, vn−1)− h(t))]
}
− α(t)en−1(t)− rn−1(t)∥

≤ (1− α(t))∥xn(t)− xn−1(t)∥+ α(t)
(
∥xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))∥

+ ∥ϑn(t)− ϑn−1(t)∥+ ∥Jηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)− ρ(t)(Nt(νn, un, vn)− h(t))]

− J
ηt,Mt(.,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(Nt(νn−1, un−1, vn−1)− h(t))]∥
)

+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥

≤ (1− α(t))∥xn(t)− xn−1(t)∥+ α(t)
(
∥xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))∥

+ ∥ϑn(t)− ϑn−1(t)∥+ ∥Jηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn)− ϑn)− ρ(t)(Nt(νn, un, vn)− h(t))]

− J
ηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(Nt(νn−1, un−1, vn−1)− h(t))]∥

+ ∥Jηt,Mt(.,wn)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(Nt(νn−1, un−1, vn−1)− h(t))]

− J
ηt,Mt(.,wn−1)
ρ(t)λ(t),At

[At(pt(xn−1)− ϑn−1)− ρ(t)(Nt(νn−1, un−1, vn−1)− h(t))]∥
)

+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥

≤ (1− α(t))∥xn(t)− xn−1(t)∥+ α(t)
(
∥xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))∥+ ∥ϑn(t)− ϑn−1(t)∥

+ µ(t)∥wn(t)− wn−1(t)∥+ τ q−1(t)

r(t)− ρ(t)λ(t)m(t)
(∥At(pt(xn)− ϑn)− At(pt(xn−1)− ϑn−1)∥

+ ρ(t)∥Nt(νn, un, vn)−Nt(νn−1, un−1, vn−1)∥)
)
+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥.

(4.3)
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Meanwhile, by Lemma 2.1, there exists a constant cq > 0 such that

∥xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))∥q

≤ ∥xn(t)− xn−1(t)∥q − q⟨pt(xn)− pt(xn−1), Jq(xn(t)− xn−1(t))⟩+ cq∥pt(xn)− pt(xn−1)∥q.

Consequently, since p is (γ,ϖ)-relaxed cocoercive and π-Lipschitz continuous, we obtain

∥xn(t)− xn−1(t)− (pt(xn)− pt(xn−1))∥q

≤ ∥xn(t)− xn−1(t)∥q + (qγ(t) + cq)∥pt(xn)− pt(xn−1)∥q − qϖ(t)∥xn(t)− xn−1(t)∥q

= (1− qϖ(t) + (qγ(t) + cq)π
q(t))∥xn(t)− xn−1(t)∥q.

(4.4)

Furthermore, by ϱ-Ĥ-Lipschitz continuity of Q and ι-Ĥ-Lipschitz continuity of G, from

(3.2) we deduce that

∥ϑn(t)− ϑn−1(t)∥ ≤
(
1 +

1

n

)
Ĥ(Qt(xn), Qt(xn−1))

≤ ϱ(t)

(
1 +

1

n

)
∥xn(t)− xn−1(t)∥

(4.5)

and

∥wn(t)− wn−1(t)∥ ≤
(
1 +

1

n

)
Ĥ(Gt(xn), Gt(xn−1))

≤ ι(t)

(
1 +

1

n

)
∥xn(t)− xn−1(t)∥.

(4.6)

By using (4.5) together with σ-Lipschitz continuity of A, π-Lipschitz continuity of p, we

obtain

∥At(pt(xn)− ϑn)− At(pt(xn−1)− ϑn−1)∥

≤ σ(t)(∥pt(xn)− pt(xn−1)∥+ ∥ϑn(t)− ϑn−1(t)∥)

≤ σ(t)

(
π(t) + ϱ(t)

(
1 +

1

n

))
∥xn(t)− xn−1(t)∥.

(4.7)

Moreover, since N is ϵ-Lipschitz continuous in the second argument, δ-Lipschitz contin-

uous in the third argument, κ-Lipschitz continuous in the fourth argument and S, T , P are
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ξ-Ĥ-Lipschitz continuous, ζ-Lipschitz continuous and ς-Ĥ-Lipschitz continuous, respectively,

by (3.2), we get

∥Nt(νn, un, vn)−Nt(νn−1, un−1, vn−1)∥

≤ ∥Nt(νn, un, vn)−Nt(νn−1, un, vn)∥+ ∥Nt(νn−1, un, vn)−Nt(νn−1, un−1, vn)∥

+ ∥Nt(νn−1, un−1, vn)−Nt(νn−1, un−1, vn−1)∥

≤ ϵ(t)∥νn(t)− νn−1(t)∥+ δ(t)∥un(t)− un−1(t)∥+ κ(t)∥vn(t)− vn−1(t)∥

≤ (ϵ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))

(
1 +

1

n

)
∥xn(t)− xn−1(t)∥.

(4.8)

Now, substitute (4.4)–(4.8) into (4.3), we get that

∥xn+1(t)− xn(t)∥ ≤ (1− α(t) + α(t)ψ(t, n))∥xn(t)− xn−1(t)∥

+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥,
(4.9)

where

ψ(t, n) = (ϱ(t) + µ(t)ι(t))

(
1 +

1

n

)
+ q

√
1− qϖ(t) + (qγ(t) + cq)πq(t) +

τ q−1(t)Γ(t, n)

r(t)− ρ(t)λ(t)m(t)
,

Γ(t, n) = σ(t)

(
π(t) + ϱ(t)

(
1 +

1

n

))
+ ρ(t)(ϵ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t))

(
1 +

1

n

)
.

Let us put

θ(t, n) = 1− α(t) + α(t)ψ(t, n), for each n ≥ 0, t ∈ Ω.

Then, for each t ∈ Ω, we know that

θ(t, n) → θ(t) = 1− α(t) + α(t)ψ(t), as n→ ∞,

where

ψ(t) = ϱ(t) + µ(t)ι(t) + q

√
1− qϖ(t) + (qγ(t) + cq)πq(t) +

τ q−1(t)Γ(t)

r(t)− ρ(t)λ(t)m(t)
,

Γ(t) = σ(t)(π(t) + ϱ(t)) + ρ(t)(ϵ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t)).
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It follows that, in view of the condition (4.2), we have ψ(t) ∈ (0, 1) for all t ∈ Ω. This

implies 0 < θ(t) < 1 for all t ∈ Ω. Hence there exist n0 ∈ N and a measurable function

θ̂ : Ω → (0,∞) (Take θ̂(t) = θ(t)+1
2

∈ (θ(t), 1) for each t ∈ Ω) such that θ(t, n) ≤ θ̂(t) for all

n ≥ n0 and t ∈ Ω. Accordingly, for all n > n0, by (4.9), deduce that, for all t ∈ Ω,

∥xn+1(t)− xn(t)∥

≤ θ̂(t)∥xn(t)− xn−1(t)∥+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥

≤ θ̂(t)[θ̂(t)∥xn−1(t)− xn−2(t)∥+ α(t)∥en−1(t)− en−2(t)∥+ ∥rn−1(t)− rn−2(t)∥]

+ α(t)∥en(t)− en−1(t)∥+ ∥rn(t)− rn−1(t)∥

= θ̂2(t)∥xn−1(t)− xn−2(t)∥+ α(t)[θ̂(t)∥en−1(t)− en−2(t)∥

+ ∥en(t)− en−1(t)∥] + θ̂(t)∥rn−1(t)− rn−2(t)∥+ ∥rn(t)− rn−1(t)∥

≤
...

≤ θ̂n−n0(t)∥xn0+1(t)− xn0(t)∥+
n−n0∑
i=1

α(t)θ̂i−1(t)∥en−(i−1)(t)− en−i(t)∥

+

n−n0∑
i=1

θ̂i−1(t)∥rn−(i−1)(t)− rn−i(t)∥.

(4.10)

By using the inequality (4.10), it follows that, for any m ≥ n > n0,

∥xm(t)− xn(t)∥ ≤
m−1∑
j=n

∥xj+1(t)− xj(t)∥ ≤
m−1∑
j=n

θ̂j−n0(t)∥xn0+1(t)− xn0(t)∥

+
m−1∑
j=n

j−n0∑
i=1

α(t)θ̂i−1(t)∥en−(i−1)(t)− en−i(t)∥

+
m−1∑
j=n

j−n0∑
i=1

θ̂i−1(t)∥rn−(i−1)(t)− rn−i(t)∥.

(4.11)

Since θ̂(t) < 1 for all t ∈ Ω, it follows from (3.3) and (4.11) that ∥xm(t) − xn(t)∥ → 0 as

n → ∞. This means {xn(t)} is a Cauchy sequence in X. In view of completeness of X,

there exists x∗(t) ∈ X such that xn(t) → x∗(t) for all t ∈ Ω.
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Consequently, by using (3.2), ξ-Ĥ-Lipschitz continuity of S, ζ-Ĥ-Lipschitz continuity of

T , ς-Ĥ-Lipschitz continuity of P , ϱ-Ĥ-Lipschitz continuity of Q and ι-Ĥ-Lipschitz conti-

nuity of G, we know that {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are also Cauchy

sequences in X. Thus there are ν∗(t), u∗(t), v∗(t), ϑ∗(t), w∗(t) in X such that, for all t ∈ Ω,

νn(t) → ν∗(t), un(t) → u∗(t), vn(t) → v∗(t), ϑn(t) → ϑ∗(t) and wn(t) → w∗(t) as n → ∞.

Since {xn(t)}, {νn(t)}, {un(t)}, {vn(t)}, {ϑn(t)} and {wn(t)} are sequences of measurable

mappings, we know that x, ν, u, v, ϑ, w : Ω → X are also measurable. Further, for each

t ∈ Ω, we have

d(ν∗(t), St(x
∗)) = inf{∥ν∗(t)− z∥ : z ∈ St(x

∗)}

≤ ∥ν∗(t)− νn(t)∥+ d(νn(t), St(x
∗))

≤ ∥ν∗(t)− νn(t)∥+ Ĥ(St(xn), St(x
∗))

≤ ∥ν∗(t)− νn(t)∥+ ξ(t)∥xn(t)− x∗(t)∥.

Notice that, the right side of the above inequality tends to zero as n→ ∞, this implies that

ν∗(t) ∈ St(x
∗).

Similarly, we can verify that for each t ∈ Ω, u∗(t) ∈ Tt(x
∗), v∗(t) ∈ Pt(x

∗), ϑ∗(t) ∈ Qt(x
∗)

and w∗(t) ∈ Gt(x
∗). Moreover, the condition (4.1) and wn(t) → w∗(t), for all t ∈ Ω, as

n→ ∞, imply that for each t ∈ Ω, J
ηt,Mt(.,wn)
ρ(t)λ(t),At

→ J
ηt,Mt(.,w∗)
ρ(t)λ(t),At

uniformly on X, as n→ ∞.

Now, since for each t ∈ Ω, the mappings J
ηt,Mt(.,wn)
ρ(t)λ(t),At

, pt, Nt and At are continuous, it

follows from (3.2) and (3.3) that for each t ∈ Ω,

pt(x
∗) = ϑ∗(t) + J

ηt,Mt(.,w∗)
ρ(t)λ(t),At

[At(pt(x
∗)− ϑ∗)− ρ(t)(Nt(ν

∗, u∗, v∗)− h(t))].

Finally, Lemma 3.6 implies that measurable mappings x∗, ν∗, u∗, v∗, ϑ∗, w∗ : Ω → X are a

random solution of the problem (3.1). This completes the proof.
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Remark 4.2. If X is a 2-uniformly smooth Banach space and there exists a measurable

function ρ : Ω → (0,∞) with ρ(t) ∈ (0, r(t)
λ(t)m(t)

), for all t ∈ Ω, such that

φ(t) = ϱ(t) + µ(t)ι(t) +
√
1− 2ϖ(t) + (2γ(t) + c2)π2(t) < 1,

2ϖ(t)− (2γ(t) + c2)π
2(t) < 1,

ρ(t) <
r(t)(1− φ(t))− τ(t)σ(t)(π(t) + ϱ(t))

τ(t)[(ϵ(t)ξ(t) + δ(t)ζ(t) + κ(t)ς(t)] + (1− φ(t))λ(t)m(t)
,

then (4.2) holds. As we know, Hilbert spaces and Lp(or lp) spaces, 2 ≤ p < ∞, are 2-

uniformly smooth.

Remark 4.3. Theorem 4.1 generalizes and improves Theorems 3.1 and 3.2 in [23], Theorems

3.1, 3.3 and 3.4 in [53] and Theorems 4.1, 4.3 and 4.4 in [58]. In brief, for an appropriate

choice of the mappings A, p, η, M , N , S, T , P, Q, G, S, T , P , Q, G, h, λ, the measurable

step size function α, the sequences {en}, {rn} and the space X, Theorem 4.1 includes many

known results of generalized variational inclusions as special cases (see [13, 18, 22–24, 33, 34,

37–40,42,44,46,49,53,58] and the references therein).
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