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We prove a strong convergence theorem by using a hybrid algorithm in order to
find a common fixed point of Lipschitz pseudo-contraction and x -strict pseudo-
contraction in Hilbert spaces. Our results extend the recent ones announced by Yao et al.
[Y.H. Yao, Y.C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive mappings,
Nonlinear Anal. 71 (2009) 4997-5002.] and many others.

Moreover, we found the significant inequality related to quasi-strict pseudo-
contractions and the mappings defined from generalized mixed equilibrium problems on
Banach spaces. It was taken to create an iterative shrinking projection method for
finding a common solution of generalized mixed equilibrium problems and fixed point
problems of closed and quasi-strict pseudo-contractions. Its results hold in reflexive,
strictly convex and smooth Banach spaces with the property (K). The results of this
paper improve and extend the corresponding results of Zhou and Gao [H. Zhou,

E. Gao, An iterative method of fixed points for closed and quasi-strict pseudo-
contractions in Banach spaces, J. Appl. Math. Comput. 33 (2010) 227-237.] and many

others.
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Executive summary
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We prove a strong convergence theorem by using a hybrid algorithm in order to find a common

fixed point of Lipschitz pseudocontraction and «-strict pseudocontraction in Hilbert spaces. Our
results extend the recent ones announced by Yao et al. (2009) and many others.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let T :
C — C. Recall that T is said to be a pseudocontraction if

ITx = Ty||” < [l = y|* + |7 - T)x = (1 - T)y]|" (1.1)
is equivalent to
(x-y,I-T)x-(I-T)y) >0, (1.2)

forall x,y € C,and T is said to be a strict pseudocontraction if there exists a constant0 < x <1
such that

| Tx = Ty||> < ||x - y||* + || - T)x - (I - T)y|’, (1.3)

for all x,y € C. For the second case, we say that T is a x-strict pseudocontraction. We use
F(T) to denote the set of fixed points of T.
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The class of strict pseudocontractions extend the class of nonexpansive mapping. (A
mapping T is said to be nonexpansive if ||[Tx — Ty|| < |[x —y||, for all x,y € C) thatis, T is
nonexpansive if and only if T is a 0-strict pseudocontraction. The pseudocontractive mapping
includes the strict pseudocontractive mapping.

Iterative methods for finding fixed points of nonexpansive mappings are an important
topic in the theory of nonexpansive mappings and have wide applications in a number
of applied areas, such as the convex feasibility problem [1-4], the split feasibility problem
[5-7] and image recovery and signal processing [3, 8, 9], and so forth. However, the
Picard sequence {T"x},- often fails to converge even in the weak topology. Thus, averaged
iterations prevail. The Mann iteration [10] is one of the types and is defined by

Xpi1 = AuXy + (1 —a,)Tx,, n=>0, (1.4)

where xj € Cis chosen arbitrarily and {a,} C [0,1]. Reich [11] proved that if E is a uniformly
convex Banach space with a Fréchet differentiable norm and if {a,} is chosen such that
Sooan(l —a,) = oo, then the sequence {x,} defined by (1.4) converges weakly to a fixed
point of T. However, we note that Mann iterations have only weak convergence even in a
Hilbert space (see e.g., [12]). From a practical point of view, strict pseudocontractions have
more powerful applications than nonexpansive mappings do in solving inverse problems
(see [13]). Therefore, it is important to develop theory of iterative methods for strict
pseudocontractions. Indeed, Browder and Petryshyn [14] prove that if the sequence {x,}
is generated by the following;:

Xp=ax, +(1-a)Tx,, n=>0, (1.5)

for any starting point xy € C, a is a constant such that x < a < 1, {x,} converges weakly to
a fixed point of strict pseudocontraction. Marino and Xu [15] extended the result of Browder
and Petryshyn [14] to Mann iteration (1.4); they proved {x,} converges weakly to a fixed
point of T, provided the control sequence {a,} satisfies the conditions that x < &, < 1 for all
nand > (a, —k)(1 - ay,) = oco.

The well-known strong convergence theorem for pseudocontractive mapping was
proved by Ishikawa [16] in 1974. More precisely, he got the following theorem.

Theorem 1.1 (see [16]). Let C be a convex compact subset of a Hilbert space H and let T : C — C
be a Lipschitzian pseudocontractive mapping. For any x1 € C, suppose the sequence {x,} is defined

by

Xn+l = (1 — an)xn + anTyn,
(1.6)
Yn = (1 —ﬂn)xn +ﬁnTxn, n>= 1,

where {ay,}, { P} are two real sequences in [0, 1] satisfying
(i) an < Pn,n>1,
(ii) lim, o fn = 0,
(ifi) 352 @ = oo.
Then {x,} converges strongly to a fixed point of T.
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Remark 1.2. (i) Since 0 < a, < B, < 1, n > 1land >,;2; a,f, = oo, the iterative sequence (1.6)
could not be reduced to a Mann iterative sequence (1.4). Therefore, the iterative sequence
(1.6) has some particular cases.

(ii) The iterative sequence (1.6) is usually called the Ishikawa iterative sequence.

(iii) Chidume and Mutangadura [17] gave an example to show that the Mann iterative
sequence failed to be convergent to a fixed point of Lipschitzian pseudocontractive mapping.

In an infinite-dimensional Hilbert spaces, Mann and Ishikawa’s iteration algorithms
have only weak convergence, in general, even for nonexpansive mapping. In order to obtain
a strong convergence theorem for the Mann iteration method (1.4) to nonexpansive mapping,
Nakajo and Takahashi [18] modified (1.4) by employing two closed convex sets that are
created in order to form the sequence via metric projection so that strong convergence is
guaranteed. Later, it is often referred as the hybrid algorithm or the CQ algorithm. After
that the hybrid algorithm have been studied extensively by many authors (see e.g., [19-23]).
Particularly, Martinez-Yanes and Xu [24] and Plubtieng and Ungchittrakool [20] extended
the same results of Nakajo and Takahashi [18] to the Ishikawa iteration process. In 2007,
Marino and Xu [15] further generalized the hybrid algorithm from nonexpansive mappings
to strict pseudocontractive mappings. In 2008, Zhou [25] established the hybrid algorithm
for pseudocontractive mapping in the case of the Ishikawa iteration process.

Recently, Yao et al. [26] introduced the hybrid iterative algorithm which just involved
one closed convex set for pseudocontractive mapping in Hilbert spaces as follows.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — Cbe
a pseudocontraction. Let {a;,} be a sequencein (0,1). Let xo € H. For C; = C and x1 = Pc, (x),
define a sequence {x,} of C as follows.

Yn = (1 - ‘xn)xn +a,Tz,,
Cuit = {0 € Co: flan(l = Tyyall® < 2 (s =0, (1 - T)y) }, (17)

Xn+l = Ple (xO)'

Theorem 1.3 (see [26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C — Cbea L-Lipschitz pseudocontraction such that F(T) # 0. Assume the sequence {a, } C [a,b]
for some a,b € (0,1/(L + 1)). Then the sequence {x,} generated by (1.7) converges strongly to
Pr(r) (x0)-

Very recently, Tang et al. [27] generalized the hybrid algorithm (1.7) in the case of the
Ishikawa iterative precess as follows:

Yn=(1—-an)x, +a,Tz,,
zn = (1= PBn)xn + PuTxy,
Cunt = {0 €Cut flan(l = Tyyall® < 2 (=0, (1 - T)y) (1.8)

+20, B L2y = Txu||||yn = X0 + (I = T)ya|| },

Xn+l = Pcn+1 (xO)'
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Under some appropriate conditions of {a,} and {f,}, they proved that (1.8) converges
strongly to Pr(r)(xo).

Motivated and inspired by the above works, in this paper, we generalize (1.7)
to the Ishikawa iterative process in the case of finding the common fixed point of
Lipschitz pseudocontraction and x-strict pseudocontraction. More precisely, we provide
some applications of the main theorem to find the common zero point of the Lipshitz
monotone mapping and y-inverse strongly monotone mapping in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let C be a closed
convex subset of H. For every point x € H, there exists a unique nearest point in C, denoted
by Pc(x), such that

lx - Pex|| < ||x-vy|, VyeC (2.1)

where Pc is called the metric projection of H onto C. We know that Pc is a nonexpansive
mapping. It is also known that H satisfies Opial’s condition, that is, for any sequence {x,}
with x,, — x, the inequality

lim inf 2, = x[| < lim inf ||, - ]| (2.2)

holds for every y € H with y #x.

For a given sequence {x,} C C, let wy(x,) = {x : 3x,; — x} denote the weak w-limit
set of {x,}.

Now we collect some Lemmas which will be used in the proof of the main result in the
next section. We note that Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. Let H be a real Hilbert space. There holds the following identities:
@) Ilx = yI* = IIxI* = lyl* - 2(x -y, y), for all x,y € H,
(i) [[Ax + (1 = V)y|* = Allx]>+ A=V [y|[>~A(1=V)[|lx = y||, for all x,y € Hand \ € [0,1].

Lemma 2.2. Let C be a closed convex subset of real Hilbert space H. Given x € H and z € C, then
z = Pex if and only if there holds the relation

(x-z,y-z)<0, VYyeC. (2.3)

Proposition 2.3 (see [15, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space
H;let T : C — C be a self-mapping of C. If T is a x-strict pseudocontraction, then T satisfies the
Lipschitz condition

1+x
1-x

ITx =Tyl < 7—lIx-vll, VxyeC (2.4)

Lemma 2.4 (see [28]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C — C be a continuous pseudocontractive mapping, then
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(i) F(T) is closed convex subset of C,

(ii) I = T is demiclosed at zero, that is, if {x,} is a sequence in C such that x, — z and

(I-T)x, — 0, then (I-T)z = 0.

Lemma 2.5 (see [24]). Let C be a closed convex subset of H. Let {x,} be a sequence in H, and let

u € H. Let q = Pcu. If {x,,} is such that w,,(x,) C C and satisfies the condition

o, —ul| < ||lu-q|, Vn,

then x, — q.

3. Main Result

(2.5)

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let T : C — C
be Lr-Lipschitz pseudocontraction, and let S : C — C be x-strict pseudocontraction with F =
F(S)NF(T)#0. Let xo € H. For C; = C and x1 = Pc, (x), define a sequence {x,} of C as follows:

Yn=(1—an)x, +a,Tz,,

zn = (1= Pn)Xn + PuSxn,

Cp = {U €Cy: II“n(I _T)yn||2 + (A== - 5)xn||2

< 2a,(xp =0, (I =T)yn) +2(xp — v, I = S)zy + (I - S)x)

+2anﬁnLT“xn — Sxy|| ”yn - Xp +a, (I - T)yn”

+ﬂn((12f5",<)2 - 1>||<I—s>xn||2},

xni1 = Pc,,; (%0).

(3.1)

Assume the sequence {ay}, {Pn} besuchthat0 <a < a, <b<1/(Lt+1) <land0< p, <1 for

all n € N with limy, _, o, B, = 0. Then {x,} converges strongly to Pg(xo).

Proof. By Lemma 2.4(i), we see that F(S) and F(T) are closed and convex, then F is as well.
Hence, Pz is well defined. Next, we will prove by induction that F ¢ C, for all n € N. Note
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that F c C = C;. Assume that Fc Cr holds fork > 1. Letp € I?, thus p € Ci, and we observe
that

llck = p = e (1 = Tyie||* = || = p|I” = f|aw(T = Ty ||
= 2a((I = T)yx, xx = p — ar(I = T)yx)
= ||lxe = p|I* = flax - Ty ||
-2 (I -T)yx — I -T)p,yx — p)
=201 ((I = Ty, xx — Y — ax(I = T)y)
2 2
< lxk = pl|I” = (e = Tyl
=21 (I = T)yx, xx — Yk — ax(I = T)yx)
(3.2)
= Ik = plI” = | ek = we) + (v — xc + (I = T ||
=2 {((I = T)yie, xic — yi — ax(I = T)yx)
2 2 2
= [Jxi =" =[] = yell” = lyi = xx + (I = Ty |
= 2(xk — Y, Yk — xx + ax(I = T)y)
=2 {((I = Ty, xic — yi — ax(I = T)y)
2 2 2
< ek =pII” = ok = yll™ = Ny = 2k + (T = T)ye|

+ 2|<xk - Yk — (Xk(I - T)]/k, Xk — Yk — (Xk(I - T)yk> |
Consider the last term of (3.2), we obtain

[ (xk — vk — ax (I = T)yx, yx — xx + (I - Ty )|
= o |[(xx = Tz = (I = T)yk, yx — xx + ax(I = T)yi) |
= ape|(oxx = Toxg + Toxg = Tzie — (I = Ty, yie — xk + ax(I = T)yi )|
= a[((I = T)xx = (I = T)yi, yi — xk + (I = T)yi) + (T = Tzi, y — i + ar(I = T)yy)|
< ar(Ly + 1) |2 = yie|| |lye = 2k + (T = T)yie||

+ zkaT||xk - Zk” ”yk — Xk + (Xk(I - T)yk”
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= ar (Lt + 1) || =y || lyx — 20k + et (I = T)yie|

+ arPrLrlxi — Sxiell ||y — xx + ax (I = T)yic|

Ly +1
< S (o s+ - Do)

+ arPiLr|lxk = Sxicll||yx — xi + (I = Ty |-

(3.3)
Substituting (3.3) into (3.2), we obtain
[l = p = a1 = T)yill” < [l = pII* = ek = well” = e = xx + (T = Ty
+ai(Lr + 1) (oo = yell® + Ny = 2+ (T = yyie|*)
(3.4)
+ 2ok i Lok — Sxll || yx — xi + a(T = Ty ||
<l - P”2 + 20 i Lr || xic = Sxiell || yx — xx + ax (I = T)yic]|-
Notice that
(3.5)

llxk = p = @i = T)yie||* = ||k = p||” = 2ac{x = p, (I = Tyic) + [l (I = Ty ||

Therefore, from (3.4) and (3.5), we get

llew (T = T)yi||” < 2k (xx = p, (I = Ty ) + 2as Ll — Soxl]| yx — xx + a (I = Ty |-
(3.6)

On the other hand, we found that

Ik = p = B = S)zi||* = ||k = p|I* = BT = S)ze||* = 286((I = S)zk, xic = p = Pie(T = S) i)
= [l = plI* = 18T = S)zll” = 26:(I - Sz = (I - S)p, zx ~ p)

= 2Pi((I = S)zie, xic — zi — (I — S)zi)
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< |lxk - P”Z — || Bk (T - S)Zk||2 = 2(B(I = S)zie, xic — zk = Pic(I = S)z)
= [lx = pII* = 1A = S)z

+ (18T = S)zel* = llxic = 2l + ek = zic = el = )z )
= || ek = zi0) + (= = P)|I” = Nl = 2kl + || B (T = S)axie = pic(T = S)zc||®
= vk = 2l + 2k — 2k, zic = p) + |z I =l = 2l
+ 1T = S)xi = BT = )z |
= 2(xx =z, (zx = x1) + (X = p)) + || (1 = ) (xic = p) + Pre(Sxic = p) ||
+ 1 = S)xi = T - )z’
< 2(xk = p, I = S)xic) + (1= i) |k = pI* + Bell Sxe — p|*
= Pic(1 = Pie) Ik = Saxill” = 2611 = S)xiel”
+ﬁi<1 tZ + 1>2||xk - zi|?
< 2~ p,Bell - S)xe) + (1= po) i I + Bellxe - I

+ Bl (I = S)axkl* = P (1 = Br) 1T = S)xkl* = 2831 (I — S)xill”

2
(125 ) 1= Sl
= 2~ p, il - )21 + xi  plI* - (1 - 0T - S

2
- BRI - Syl + gt (125 ) 1 -9y

(3.7)
Notice that
k= p = B = S)z||” = |2k = p||* = 2Bk (xk = p, (I = )z ) + BT - S)z |- (3.8)

Combining (3.7) and (3.8) and then it implies that

2 2 2P ? 2
Bt =)l = Sxil < 2 (xi =, (1= D)z (= Sy + i (725 ) =1 )10 -mlP

(3.9)
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Since f, > 0 for all n, so we get

2
(1—x)|lxx — Sxl* < 2(xk —p, (I = S)zx + (I - S)xx ) + Px <<%> - 1> (T = S)xx||*
(3.10)

It follows from (3.6) and (3.10) that we obtain

[l (X = T)yie]|* + (1 = %) (I - S) il
< 2ai(xk —v, (I = T)yx) + 2{xk — v, (I = S)z + (I - S)x)

2 2
+ 2akPrLr||x = Sxicll[|yi — xic + e (I = Ty || + P <<1 ka> - 1> 1T = S)axlf.
(3.11)

Therefore, p € Ci41. By mathematical induction, we have FcC,foralln € N. Itis easy to
check that C,, is closed and convex, and then {an} is well defined. From x, = Pc,(xo), we
have (xy — x,, x, —y) > 0 for all y € C,.. Using F C C,,, we also have (x¢ — x,,, x, —u) > 0 for
allu € F. So, for u € F, we have

0 < (x0 = Xp, X —U) = (X0 — Xy, X — X0 + X0 — U)

= —lxo = xull* + (20 — X, X0 — 10) (3.12)

< =llx0 = 2all® + 10 = ulllx0 = ul-

Hence, ||xg — x| < ||x0 — ||, for all u € F. In particular,

llxo — x|l < ||x0 —q||, where g = Pg(xo). (3.13)

This implies that {x,} is bounded, and then {y,}, {Ty,}, {z+}, {Sz.}, and {Sx,} are as well.
From x,, = Pc,(xo) and x,.1 = Pc,,, (x0) € Cpy1 C C,, we have

(x0 = X, Xp — Xps1) = 0. (3.14)

Hence
0 < (X0 = Xn, X = Xp41) = (X0 = Xy, Xy — X0 + X0 = Xps1)
= —”Xo - xn“2 + <Xo - Xn, X0 — xn+1> (315)

< =10 = xall? + [Ix0 = xulll1X0 = Xnsa [,
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and; therefore,

[0 = xul < [|x0 = Xna1l, (3.16)
which implies that lim,, ., ., ||x, — x| exists. From Lemma 2.1 and (3.14), we obtain

21 = Xnll* = [|(ne1 = X0) = (30 = x0) ||
= || %1 = %0l = |20 = Xo|* = 2211 = Xn, X — X0) (3.17)

2 2
< lxne1 = xo0ll” = llxn = x0l|” — 0.

Since x,,.1 € Cp41 C C,,, we have

llan(I = T)yu)* + A = %)L - S)xal?
< 20, (%0 — X1, (I = T) Y ) + 2(xn = Xps1, (I = S)zy + (I = S)x)

+ 20, BuLr|| %0 — Sxul ||y = X + an(I = T) | (3.18)
26, \2
+ﬁ<<£) - 1>||<1—S>xn||2 0 asn— oo,
therefore, we obtain
lyn —Tya|| — O, |l — Sx,|| — 0. (3.19)
We note that
126w = Toull < |20 = Yl + |y = Tyul + [ Tyn = T |
< (Lr + D[xn = yull + [|yn = Tyall
< an(Lr + 1)||xn = Tzy|| + ”yn - Tyn” (3.20)

< an(LT + 1)I|xn - Txn“ +a, (Lt + 1)||Txn - Tzn” + "yn - Tyn”
< an(Lr + D)llxn = Txull + anfulr (L + 1)||xn = Sxn|| + ”]/n - Tyn”/

that is,

anﬂnLT(LT + ].)

EnPn 22T 7 ) T .
T—an(Lr +1) Yall =0, asn— oo

(3.21)

1
—Tx,| < - -
len =T T

[ln = Sxall +

By Lemma 2.4(ii), I - T and I — S are demiclosed at zero. Together with the fact that
{x,} is bounded, which guarantees that every weak limit point of {x,} is a fixed point of T
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and S, that is wy,(x,) € F(T) N F(S) = F, therefore, by inequality (3.13) and Lemma 2.5, we
know that {x,} converges strongly to g = Pz(x¢). This completes the proof. O

If S = I, then we obtain the following corollary.

Corollary 3.2 (Yao et al. [26, Theorem 3.1]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C — C be L-Lipschitz pseudocontraction such that F(T) #@. Assume the
sequence {ay} be such that 0 < a < a, < b < 1/(L+1) < 1 for all n. Then the sequence {x,}
generated by (1.7) converges strongly to Pr(ty(xo).

If T and S are nonexpansive, then we also have the following corollary.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, and let S,T : C —
C be nonexpansive mappings. Suppose that F:=F (S)NF(T) #0. Assume the sequence {a,} be such
that 0 <a < a, < b<1/2and 0 < B, < 1forall n € N with lim,_, , = 0. Let xo € H. For
C1 = Cand x1 = Pc,(xo), define a sequence {x,} of C as follows:

Yn=(1—-an)x, +a,Tz,,
zn = (1= Pn)Xn + BnSxn,

Cun1 = {U €Cy: ”“n(l _T)yn||2 +I(T - S)xn||2
< 2a,(xp =0, (I =T)yn) +2(xp —0, (I = S)zy + (I - S)xy) (3.22)
+20 B xn = Sxull||yn — X0 + @ (I = T)yal|
(482 - DI - S)xll},

xn+1 = PCVH-l (xo)'

Then {x,} converges strongly to P (xo).

Recall that a mapping A is said to be monotone if (x — y, Ax — Ay) > 0 for all
x,y € H and inverse strongly monotone if there exists a real number y > 0 such that
(x —y,Ax — Ay) > y||Ax - Ay||2 for all x,y € H. For the second case, A is said to be -
inverse strongly monotone. It follows immediately that if A is y-inverse strongly monotone,
then A is monotone and Lipschitz continuous, that is, [Ax — Ay|| < (1/y)||x — y||. It is well
known (see e.g., [29]) that if A is monotone, then the solutions of the equation Ax = 0
correspond to the equilibrium points of some evolution systems. Therefore, it is important
to focus on finding the zero point of monotone mappings. The pseudocontractive mapping
and strictly pseudocontractive mapping are strongly related to the monotone mapping and
inverse strongly monotone mapping, respectively. It is well known that

(i) Ais monotone & T := (I — A) is pseudocontractive,

(ii) A is inverse strongly monotone & T := (I — A) is strictly pseudocontractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert space:

1= A)x = (1= AP = -yl + | Ax - Ay| ~2(x -y, Ax - Ay), ¥x,y € H.
(3.23)
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Without loss of generality, we can assume that y € (0,1/2], and then it yields

(x -y, Ax - Ay) > y|| Ax - Ay’
— 2(x -y, Ax - Ay) < -2y]|Ax - Ay’
= =A== AP < ol + G- 2llax- Al
(via (3.23))
= |Tx-Ty|* < [|x-y|* +x[|d - Dx - T -y’
(where T := (I - A), x:=1-2y).

Due to Theorem 3.1, we have the following corollary which generalize the corresponding
results of Yao et al. [26].

Corollary 3.4. Let A : H — H be La-Lipschitz monotone mapping and let B : H — H be
an y-inverse strongly monotone which A~1(0) N B~1(0) # 0. Assume the sequence {a,,} be such that
O<a<a,<b<1l/(La+2),0<p,<1foralln e Nuwithlim,_,.p, =0andy € (0,1/2] such
thaty > y. Let xo € H. For C1; = H and x1 = Pc, (x0) = xo, define a sequence {x,} as follows:

Yn =Xn— Ay (Xp — 2n) — 0y Azy,

Zp =Xp — ﬂannr

Cpi1 = {U €Cy: ”051114]/n”2 + ZY”an”z
< 2ay(xy — v, AYn) +2(xy — v, Bz, + Bxy) (3.25)
+20fn(La + D[ Bxall||yn = %n + 2 Ay,

+ﬁn<(%)2 —1>||an||2},

Xn+l = PCnH (xo)'

Then {x,} converges strongly to Pa-1(9)np-1(0) (X0)-

Proof. LetT := (I - A) and let S := (I = B). Then T and S are pseudocontractive and (1 - 2y)-
pseudocontractive, respectively. Moreover, T is also (Lo +1)-Lipschitz, and if we set x := 1-2y,
Sisalso ((1-y)/y)-Lipschitz, and then (2/ (1-x))* =1/ y2. Hence, it follows from Theorem 3.1
that we have the desired result. O

If B = 0 (zero mapping), then z, = x, and B™1(0) = H. So, we obtain the following
corollary.
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Corollary 3.5 (Yao et al. [26, Corollary 3.2]). Let A : H — H be a La-Lipschitz monotone
mapping for which A7 (0) #@. Assume that the sequence {a,} be as in Corollary 3.4. Then the
sequence {x,} generated by

Yn =Xn — anAzy,
Cpi1 = {z) €C,: ||0(,,Ayn||2 < 2a,(xy - v, Ayn>}, (3.26)

Xn+l = Pcn+1 (xo)

strongly converges to Pa- ) (Xo).
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1. INTRODUCTION

The equilibrium problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity and
optimization, and it has been extended and generalized in many directions; see [3) [18]. In particular,
equilibrium problems are related to the problem of finding fixed points problems of some non linear
mappings. Therefore it is natural to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a common element of the set of the
solutions of the equilibrium problems and the set of the fixed points, (see also [8], 10, 22} 26], 29-31] and
the references therein). In this paper, we suggest and analyze a hybrid algorithm for solving generalized
mixed equilibrium problems and fixed point problems of closed and quasi-strict pseudo-contractions in
the framework of reflexive, strictly convex and smooth Banach spaces with the property (K).

Let E be a real Banach space, and E* the dual space of E. Let C' be a nonempty closed convex
subset of E. Let © : C'x C' — R be a bifunction, ¢ : C' — R be a real-valued function, and A : C — E*
be a nonlinear mapping. The generalized mixed equilibrium problem, is to find x € C' such that

O (z,y) + (Az,y — ) + o(y) —p(2) 20, VyeC. (1.1)
The solution set of (1.1)) is denoted by GMEP (0, A, ¢), i.e.,
GMEP (0,A,¢0) ={z € C: 0 (z,y) + (Av,y — ) + ¢(y) —p(x) 20, Vy e C}

If A =0, the problem (1.1) reduces to the mixed equilibrium problem for ©, denoted by MEP (O, ¢),
which is to find x € C such that

O (z,y) +¢(y) —p(x) >0, VyeC.

If © = 0, the problem (1.1) reduces to the mixed variational inequality of Browder type, denoted by
VI(C, A, p), which is to find « € C such that

(Az,y — ) +(y) — p(x) 20, Vy e C.

If A =0 and ¢ = 0, the problem (I.1) reduces to the equilibrium problem for © (for short, EP),
denoted by EP (©), which is to find x € C such that

O(z,y) >0, Vyel. (1.2)
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Let © (z,y) = (Az,y — z) for all z,y € C. Then p € EP (0) if and ounly if for all (Ap,y —p) >0
for all y € C, i.e., p is a solution of the variational inequality; there are several other problems, for
example, the complementarity problem, fixed point problem and optimization problem, which can also
be written in the form of an EP. In other words, the EP is an unifying model for several problems
arising in physics, engineering, science, optimization, economics, etc.

It is well known that, in an infinite-dimensional Hilbert space, the normal Mann’s iterative algorithm
[13] has only weak convergence, in general, even for nonexpansive mappings. Consequently, in order to
obtain strong convergence, Nakajo and Takahashi [17] modified the normal Mann’s iteration algorithm,
later well known as hybrid projection iteration algorithm (HIPA). Since then, (HIPA) has received rapid
developments. For the details, the readers are referred to papers [12, [14, [16], 19] and the references
therein. In 2005, Matsushita and Takahashi [15] proposed the hybrid iteration method with generalized
projection for relatively nonexpansive mapping 7" in the framework of uniformly smooth and uniformly
convex Banach spaces E as follows:

o € C' chosen arbitrarily,

Yn = J HanJz, + (1 — ) JTz,),

Crn={2€C:¢(2,yn) <d(z,2n)}, (1.3)
Qn=1{2€C:{x,— 2z Jxg— Jx,) >0},

xn"l‘l = chnQn (SU()) .

where J is the duality mapping on E, and II¢(+) is the generalized projection from F onto a nonempty
closed convex subset C. Based on the guidelines of Matsushita and Takahashi [15], Plubtieng and
Ungchittrakool [20} 21] studied and developed (1.3) to the case of two relatively nonexpansive mappings
and finite family of relatively nonexpansive mappings, respectively. In 2007, Tada and Takahashi
[24, 25] and Takahashi and Takahashi [26] proved weak and strong convergence theorems for finding
a common element of the set of solution of an equilibrium problem and the set of fixed points of a
nonexpansive mapping in a Hilbert space. Takahashi et al. [27] studied a strong convergence theorem
by the hybrid method for a family of nonexpansive mappings in Hilbert spaces as follows: zg € H,
C1 =C and z; = Po,xo and let

Yn = QpTnp + (1 - an)Tnxnz
Cny1 ={2 € Cpt lyn — 2| < lzn — 2|},
Tny1 = Po, 0, n€EN,

where 0 < a,, < a < 1foralln €N and {T,} a sequence of nonexpansive mappings of C into itself
such that (7, F(T,,) = @. They proved that if {T’,} satisfies some appropriate conditions, then {z,}
converges strongly to PTfff;l F(Tn)T0-

Motivated by Takahashi et al. [27], Takahashi and Zembayashi [29] (see also [30]) introduced and
proved a hybrid projection algorithm for solving equilibrium problems and fixed point problems of a
relatively nonexpansive mapping .S in the framework of uniformly smooth and uniformly convex Banach
space as follows:

o=z, Co=0C,
Yn = J HanJz, + (1 — ) JSz,)

1
u, € C such that O(u,,y) + — (y — up, Ju, — Jyn) >0, Vy € C,

Tn
Cn—i—l = {Z S Cn : ¢(Zyun) < ¢(Z7xn)}a

Tpt+1 = ch+1 z

where Il¢, ., (+) is the generalized projection from E onto C,41. Under some appropriate assumptions
on O, {a,} and {r,}, they proved that the sequence {x,} converges strongly to Il g)ngpr(e)(o)-

In 2010, Zhou and Gao [32] introduced the definition of a quasi-strict pseudo contraction related to
the function ¢ and proved a hybrid projection algorithm for finding a fixed point of a closed and quasi-
strict pseudo contraction in more general framework than uniformly smooth and uniformly convex
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Banach spaces as follows:

xo € E, chosen arbitrarily,
C,=C,

Tl = HCI (xO)a

u, € C' such that

Cn—i—l = {Z eCy: ¢($n,T1'n) < ﬁ <zn —z,JTy — JTxn>} y

Tn41 = ch+1 (‘TO)7

(1.4)

where II¢, ., is the generalized projection from E onto Cy41. They proved that the sequence {z,}
converges strongly to Ilz(7y(xo).

Motivated and inspired by the above research work, in this paper, by employing the inequality that
appeared in Lemma 2.10/ together with (1.4) and some facts of Zhou and Gao [32], we create an iterative
shrinking projection method for finding a common solution of generalized mixed equilibrium problems
and fixed point problems of closed and quasi-strict pseudo-contractions in the framework of reflexive,
strictly convex and smooth Banach spaces with the property (K). The results of this research improve
and extend the corresponding results of Zhou and Gao [32] and many others.

2. PRELIMINARIES

In this paper, we denote by E and E* a Banach space and the dual space of E, respectively. Let C
be a nonempty closed convex subset of E. We denote by J the normalized duality mapping from E to
2" defined by

J@)={f e B (a.f) = lo|* = IfI*},

where (-,-) denote the duality pairing between F and E*. It is well know that if E* is reflexive and
smooth, then J : E — 28" is single-valued and demi-continuous.

It is also very well know that if C' is a nonempty closed convex subset of a Hilbert space H and
Po : H — C is the metric projection of H onto C, then Py is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In
this connection, Alber [I] recently introduced a generalized projection operator Il in a Banach spaces
FE which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a real smooth Banach space. Let us consider the functional defined as
[15] by

$(x,y) = |lal|* = 2 (z, Jy) + |ly|* for all 2,y € E. (2.1)

Observe that, in a Hilbert spaces H, (2.1) reduces to ¢(z,y) = ||z — y||*, for all ,z,y € H.

The generalized projection Il : E — C is a map that assigns to an arbitrary point z € FE the
minimum point of the functional ¢(x,y), that is, [Icz = Z, where Z is the solution to the minimization
problem

o(z,x) = ryrgg #(y, ), (2.2)

existence and uniqueness of the operator Il follow from the properties of the functional ¢(x,y) and
strict monotonicity of the mapping J (see, for example, [T}, 2, 7, [T1), 28]). In Hilbert spaces, Il = Pc.
It is obvious from the definition of function ¢ that

Iyl = ll2I)? < ¢y, @) < (lyll + l|=]))? for all z,y € E, (2.3)

and
oz, y) = o(x,2) + d(z,y) + 2{(x — z,Jz — Jy) for all z,y,z € E. (2.4)

Remark 2.1. If F is a reflexive strictly convex and smooth Banach space, then for z,y € E, ¢(z,y) =0
if and only if z = y. It is sufficient to show that if ¢(z,y) = 0 then = = y. From (2.3)), we have
|z|| = |lyll. This implies (z, Jy) = ||z||* = ||Jy||*. From the definitions of J, we have Jz = Jy. That
is, = y; one may consult 7, 28] for the details.



4 K. UNGCHITTRAKOOL

Let C be a closed convex subset of FE, and let T' be a mapping from C' into itself. We denote by
F(T) the set of fixed points of T. A point p in C is said to be an asymptotic fixed point of T' [23] if C
contains a sequence {z,} which converges weakly to p such that the strong lim, . (z, — T2,) = 0.
The set of asymptotic fixed points of T" will be denoted by F (T). A mapping T from C into itself is
called nonexpansive if ||Tx — Ty|| < ||l — y|| for all z,y € C and relatively nonexpansive [4-6} [15] if
F(T) = F(T) and ¢(p, Tz) < ¢(p,z) for all z € C and p € F(T). The asymptotic behavior of relatively
nonexpansive mapping was studied in [4-6} [15].

T is said to be a quasi-strict pseudo-contraction [32, p. 230] if there exists a constant k € [0,1) and
F(T) # 0 such that ¢(p, Tx) < ¢(p,x) + ké(z,Tz) for all x € C and p € F(T). In particular, T is said
to be quasi-nonexpansive if k = 0 and 7' is said to be quasi-pseudo-contractive if k = 1.

Remark 2.2. A relatively nonexpansive mapping is a quasi-strict pseudo-contraction, but the converse
may be not true.

Example 2.3. Let £ = R and define T : E — E by Tz = —3z. Then, T is a quasi-strict pseudo-
contraction but not a relatively nonexpansive mapping.

Example 2.4. Let E be a reflexive, strictly convex and smooth Banach space. Let A C F x E* be a
maximal monotone mapping such that A=1(0) is nonempty. Then, J, = (J 4+ rA)~'J is a closed and
quasi-strict pseudo-contraction mapping from E onto D(A) and F(J,.) = A71(0).

Example 2.5. Let Il be the generalized projection from a smooth, strictly convex, and reflexive
Banach space E onto a nonempty closed convex subset C' of E. Then, II¢ is a closed and quasi-strict
pseudo-contraction from E onto C' with F(Il¢) = C.

Recall that a Banach space E has the property (K) if for any sequence and {z,} C E, if z,, —
weakly and ||z,| — ||z||, then ||z, —z| — 0. For more information concerning property (K) the reader
is referred to [9] and references cited there.

For solving the equilibrium problem for a bifunction © : C' x C' — R, let us assume that © satisfies
the following condition:

(A1) ©(z,z) =0 for all z € C;
(A2) © is monotone, i.e., O(z,y) + O(y,z) <0 for all z,y € C;
(A3) for each z,y,z € C,
lim | 0O(tz + (1 — t)z,y) < O(z,y);
(A4) for each z € C, y — O(x,y) is convex and lower semi-continuous.

Lemma 2.6 (Blum and Oettli [3]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let © be a bifunction of C x Cinto R satisfying (Al) - (A4).
Letr > 0 and x € E. Then, there exists z € C' such that

1
O(z,y) + ;(y— z,Jz—Jx) > forally e C.

Lemma 2.7 (Takahashi and Zembayashi [30]). Let C be a closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E and let © be a bifunction from C x C to R satisfying (A1)
- (A4). Forr > 0and z € E, define a mapping T,. : E — C' as follows:

1
Trx = {zeC’:@(z,y)—i—(y—z,Jz—Jx) >0, for allyEC}
T

for all x € C. Then, the following hold:
(i) T, is single-valued;
(ii) T, is firmly nonezpansive-type mapping, i.e., for any z,y € H,
<Trx - Ty, JTx — JTTy> < <Trx - Ty, Jx — Jy>)
(iii) F(T,) = EP(©);
(iv) EP(©) is closed and conver.

Lemma 2.8 (Takahashi and Zembayashi [30]). Let C be a closed convex subset of a smooth, strictly
convez and reflexive Banach space E, let © be a bifunction from C x C to R satisfying (A1) — (A4)
and let r > 0. Then, for x € E and q € F(T,);

¢(p7 Trx) + ¢(T7"x7x) < qj)(p,x)'
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Lemma 2.9 (Zhang [33]). Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let A : C — E* be a continuous and monotone mapping, ¢ : C — R be a lower
semi-continuous and convex function, and © be a bifunction from C x C to R satisfying (A1) — (A44) .
Forr >0 and x € E, then there exists u € C' such that

1

Define a mapping K, : C — C as follows:
1
Ky (z) = {u6Cr@(u,y)+<Au,y—u>+¢(y)—<ﬂ(u)+T<y—u,Ju—Jx> >0, VyGC}

for all x € C. Then, the following conclusions hold:
(1) K, is single-valued;
(2) K, is firmly nonexpansive type, i.e., for all z,y € E,
<KT5E TyaJKxijry> <K£C* ry,Jx—Jy);
(4) GMEP (0, A, ) is closed and convex,
(5) ¢(p, Krx) + ¢(Krw,x) < ¢(p,x) Vp € F(K;), x € E.

Lemma 2.10. Let E be a reflexive, strictly convex and smooth Banach space. Assume that C is
a nonempty closed convex subset of E. Let T : C — C be a quasi-strict pseudo-contraction and
K, :C — C be as in Lemma(2.9 such that Q := F(T)NGMEP (0, A, ¢) # &. Then

oz, K, Tx) + ¢(K, Tz, Tx) < (x —p,Jr — JTx) + 2{(x —p, JTx — JK, Tx)

1—k
forallz € C and p € Q.

Proof. Letz € C and p € Q. By the quasi-strict pseudo-contractility of 7' and equation (2.4) we
have

¢(p,Tz) < ¢ (p,z) + ko(z, Tx)
< o(px)+ ¢ (x,Tx)+2(p—z,Jr— JTz) < ¢ (p,x) + ko(x, Tx) (2.5)

2
_k<x—p,foJT:E>.

& ¢(z,Tx) <

It follows from (2.4), Lemma 2.9 (5) and (2.5) we obtain
o, x) + ¢z, K, Tx) +2(p—x, Jo — JK, Tx)

= ¢(p, K, Tx)

< ¢(p, Tx) — ¢(K, Tz, Tx)

< ¢(p,x) + ko(x,Tx) — §(K, Tz, Tx)

< ¢(p,x) + (x —p,Jo — JTz) — ¢(K,Tx,Tx),

1 —k
and then

oz, K, Tx) + ¢(K, Tz, Tx)

§21_k<J:—p,Jx—JTx)+2<x—p,Jx—JK,.Tx>
:21 k(x—p,Jx—JT:E)+2<x—p,J:c—JTx>+2<x—p,JTa:—JKTTx>
(2139—1—2) (x —p,Je — JTx)+2(x —p,JTx — JK,Tx)

2
= l_k<a:—p,JJ:—JTx>+2<x—p,JTx—JKTTx)

The following Lemmas are crucial for the proofs of the main results in this paper.



6 K. UNGCHITTRAKOOL

Lemma 2.11 (Alber [1]). Let C' be a nonempty closed convex subset of a smooth Banach space E,
29 € C and x € E. Then, xg = llox if and only if

(xog —y,Jo — Jxg) > 0 for ally € C.

Lemma 2.12 (Alber [2]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x € E. Then

oy, Mex) + ¢(llex, z) < d(y,x) for ally € C.

3. MAIN RESULT

Theorem 3.1. Let E be a reflexive, strictly convex and smooth Banach space such that E and E*
have the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C — C be
a closed quasi-strict pseudo-contraction, © be a bifunction from C' x C to R satisfying (Al) — (A4),
w : C — R be a lower semi-continuous and convez function, and A : C — E* be a continuous and
monotone mapping such that Q := F(T)NGMEP (0, A, ) # &. Define a sequence {x,,} in C by the
following algorithm:

xg € E, chosen arbitrarily,
C1=C,
z1 = ¢, (x0),
u, € C' such that
© (tn,y) + (Atn,y — un) + 0 (y) — ¢ (un) + 7= (Y = up, Jun, — JT2,) >0 Vy € C,
Cry1 ={2 € Cy : p(zpn,un) + d(un, Txy)
< ﬁ (X — 2, Jxp — JTx) + 2 (X — 2, JTxy, — Jup) },

Tn+1 = ch+1 ($0)7

(3.1)

where k € [0,1) and r,, > 0 for all n € N with liminf,, .7, > 0. Then {x,} converges strongly to
HQ(.’L‘())

Proof. The proof is divided into seven steps.

Step 1. Show that 2 is closed and convex.

From step 1. of Zhou and Gao [32], F'(T) is closed and convex and by Lemma2.9/(4) GMEP (0, A, ¢)
is closed and convex. So, Q:= F(T)NGMEP (0, A, ¢) is closed and convex.

Step 2. Show that C,, is closed and convex for all n > 1.
For n =1, C7; = C is closed and convex. Assume that C} is closed and convex for some k € N. For
z € Cj41, one obtains that

2
d(xg, ug) + d(uk, Tag) < T % (g — 2z, Jop — JTag) + 2 (xp — 2, JTxp, — Juyg)

It is not hard to see that the continuity and linearity of (-, Jzy — JTxg) and (-, JTxp — Jug) allow
Cr+1 to be closed and convex. Then, for all n > 1, C), is closed and convex.

Step 3. Show that Q C C,, for all n > 1.

It is obvious that Q := F(T)NGMEP (0, A,¢) C C = C;. Suppose that Q C Cj, for some k € N.
For any p € Q, we have p € Cj. Notice that z = Ilg, (z9) and then by Lemma 2.9/ we obtain
up = K, Txyp. So, it follows from Lemma 2.10/ that

2
Ok, uk) + ¢(uk, Toy) < T— % () —p, Jop — JTap) + 2wk — p, JTxr — Jug) .

This means that p € Ciyi. By mathematical induction, Q C C, for all n > 1. Therefore Q C
N ,Ch,=D+#x

Step 4. Show that lim ¢ (z,,xo) exists.

n— o0
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By z, =1l¢, zo and Lemma 2.12, we have

¢($n,$0) = ¢(HCH$O,$O) S Qb(w,l'()) - ¢(w7$n) S ¢(w7$0),

for each w € Q@ C C,, and for all n > 1. Therefore the sequence {¢ (z,,x0)} is bounded.

On the other hand, noticing that x,, = Il¢g, x¢ and x,41 = ¢, 20 € Cphy1 C Cp, 50 ¢(Tn,20) =
micn d(z,20) < ¢(xpr1,x0) for all n > 1. Therefore, ¢(x,,x0) is nondecreasing. It follows that the
zelp

limit of ¢(x,,, zo) exists.

Step 5. Show that x,, — ¢ as n — oo, where ¢ = IIpxg.

Since 2,41 = g, ;70 € Cpq1 C Cy for any positive integer n and by Lemma 2.12, we have

O (Tpg1,2n) = ¢ (Tnt1, e, 20) < ¢ (Tnt1,20) — ¢ (I, 20, 20) = ¢ (Tpt1,20) — ¢ (Tn, o) -
(3.2)

Letting n — oo in[3.2, one has ¢(x,41,2,) — 0 as n — co. Without loss of generality, we can assume
that z, — ¢ weakly as n — oo (passing to a subsequence if necessary). It is easy to show that ¢ € C),

for all n > 1. Hence g € (] C, = D. Noticing that ¢(z,,z0) < d(znt1,z0) < d(g,x0), we have

n=1

(¢,20) < liminfé(z,, zo) < limsup(z,,z0) < ¢(g, o)
n—oo

n— o0

which implies that ¢(zy,z0) — ¢(g, zo) as n — co. Hence ||z,|| — ||¢||. By the property (K) of E, we
have x,, — ¢. From Lemma 2.11, we have

(xn —y, Jxg — Ja,) > 0 for all y € D.
Hence
(q—y,Jaxg—Jg) >0 forall y € D.
which implies that ¢ = IIpxg.
Step 6. Show that g € €.

We prove first that {T'z,} and {u,} = {K,, Tx,} are bounded. Indeed, take p € Q = F(T) N
GMEP (©,A,p) C Chy1, we have

2 2
IpII" = 2Pl | Tz || + 1T, |

= (llpll = I T2nl)* < ¢(p, Ts)
< ¢(p7 xn) + k(b(mnaTxn)

(X, — p, Jxy — JTxy)

< o 2n) + T

2k 2k
< = |z, — — zn — .
< Opan) + 7 llon = pllllnll + 37— llen = plHIT2n]|
Then

2k
Jow = pllenll) + (125 o ol + 211 ) 17

Il < (8(0,0) ~ Il + 122
<M+ K|Tay| =M+ % (2K || Twy]])
< M+ 3 (K24 |[Toal?) = M+ 5K + 2T
Where M := sup {6(p. 2,) = o] + 25 2 = pl o]} : n € N} and
K = sup { 25 Jlan = pll +2pl : n € N}, Thus

|Tzn | < 2M + K?
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for all n € N. Therefore {Tx,} is bounded. Note that ¢(p, K, Tx,) < ¢(p,Tzy) for all n € N.
Therefore {u,} = {K,, Tx,} is also bounded. From 2,11 € C),11, one has

2
— (X — py1, Jon — JTxp) + 2(xp — Tpy1, JT2p — Juy) (3.3)

By step 5, we obtain that z,41; — x, — 0. Taking limit on the both sides of (3.3), we obtain
that ¢(zn, un) + ¢(un, Tx,) — 0 as n — oo. Noting that 0 < (||z,| — ||unH)2 < ¢z, un), 0 <
(lwnll = I T2nl)* < ¢(un, Tan) and [[n]| — [lgf|, it implies that

lgll = Tim [z, || = lim fus|| = lim |[T2,],
n—oo n—oo n—0oo

and consequently

[Jgll = lim || Jz,| = lUm ||Ju,| = lUm ||JTz,] .
This implies that {J(u,)} and {J(Tz,)} are bounded. Since E is reflexive, E* is also reflexive. So we
can assume that

J(un) — f € E

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E*, which means that for
f € E*, there exists x5 € E, such that Jxy = f. It follows that

(T, un) = ”3%”2 = 2(wp, J(un)) + ||Un||2 = ||33n||2 =2 (2, S (un)) + ||J(un)||2

taking liminf,, .., on the both sides of equality above, we have

0> flg|* = 2(g, f) +II£II”
= llall* = 2 {uo, Jxg) + | Tas|*
= (¢, z ).
Therefore ¢(q, zy) = 0 and consequently ¢ = x ¢, which implies that f = Jg. Hence
J(up) — Jg € E*
weakly. Since ||J(uy)|| — ||J¢|| and E* has the property (K), we have
I/ (un) = Jql| — 0.
Noting that J~! : B* — E is demi-continuous, we have
U, — q€F,

weakly. Since ||u,|| — [|¢|| and E has the property (K), we obtain that u, — ¢ as n — oco. Similarly,
it is not difficult to show that Tz, — ¢ as n — oco. From z,, — ¢ and the closeness property of T', we
have T'q = q.

Next, we want to show that ¢ € GMEP (0, A, ). Define G: C x C — R by G(z,y) = O(z,y) +
(Az,y—xz)+p(y) —¢(z) for all z,y € C. It is not hard to verify that G satisfies conditions (A1) — (A4).
It follows from w,, = K, Tz, and (A2) that

1
—(y — Up, Jup, — Jxn) > G(y,uy) for all y € C.
r

n
By using (A4) and liminf, . r, > 0, we obtain 0 > G(y,q) for all y € C. For t € (0,1] and y € C,
let y: =ty + (1 — t)q. So, from (A1) and (A4) we have
0=Gye,y) = Gyp, ty + (1 = 1)q) <tG(ye,y) + (1 — )Gy, q) < 1G(ye,y)-
Dividing by ¢, we have
G(yt,y) > 0 for all y € C.

From (A3) we have 0 < limy—0 G(y, y) = lim;—o G(ty + (1 — t)q,y) < G(q,y) for all y € C, and hence
g€ GMEP (0,A,¢). So,q e F(T)NGMEP (0,A,p) =Q.

Step 7. Show that g = IIgxg.
It follows from steps 5 and steps 6 that

¢(Qa xO) < ¢(H9x07x0) < ¢(Q7x0)7
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which implies that ¢(Ilgzo,z0) = ¢(q,2z0). Hence, ¢ = Ilgxg. Then {x,} converges strongly to
q = IIgzo. This completes the proof. |

If T is closed quasi-nonexpansive, then Theorem [3.1/is reduced to the following corollary.

Corollary 3.2. Let E be a reflexive, strictly convex and smooth Banach space such that E and E*
have the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C — C
be a closed quasi-nonexpansive mapping, © be a bifunction from C x C to R satisfying (Al) — (A4),
¢ : C — R be a lower semi-continuous and conver function, and A : C — E* be a continuous and
monotone mapping such that Q := F(T)NGMEP (0, A, ) # &. Define a sequence {x,} in C by the
following algorithm:
xg € E, chosen arbitrarily,
C,=0C,
Ty = HC1 (mo)v
u, € C' such that

© (tn,y) + (Atn,y — un) + @ (y) = ¢ (un) + 7= (Y — up, Jun, — JTz,) >0 Vy € C,
Cni1={2€ Cp: d(xn,un) + dltn, Tx,) < 2(xy — 2, Jay — Juy)},
Tnt1 = e, (o),

where r,, > 0 for all n € N with liminf, . 7, > 0. Then {x,} converges strongly to g (zo).
If E = H is a Hilbert space, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.3. Let H be a Hilbert space. Assume that C' is a nonempty closed convex subset of H. Let
T :C — C be a closed quasi-strict pseudo-contraction, © be a bifunction from C x C to R satisfying
(Al) — (A4), ¢ : C — R be a lower semi-continuous and convex function, and A : C — H be a
continuous and monotone mapping such that Q := F(T)NGMEP (0, A, p) # &. Define a sequence
{zn} in C by the following algorithm:
xo € H, chosen arbitrarily,
C,=0C,
zy =l (270),
u, € C' such that

© (un, y) + (Aun,y — un) + ¢ (y) — ¢ (un) + ;- (y = up,upy — Tap) >0 Vy € C,
Chpr ={2€Cp: |2 — unl® + lun — Tan |

< ﬁ (X — 2,20 — Txp) + 2{(xy — 2, T2y — up) }y

Tn+1 = HCn+1(m0)a
where k € [0,1) and r,, > 0 for all n € N with liminf, . r, > 0. Then {x,} converges strongly to
HQ(SL’()).

If A=0 and ¢ =0, then we have the following corollary.

Corollary 3.4. Let E be a reflexive, strictly convex and smooth Banach space such that E and E*
have the property (K). Assume that C is a nonempty closed conver subset of E. Let T : C — C be a
closed quasi-strict pseudo-contraction, © be a bifunction from C x C to R satisfying (A1) — (A4) such
that A := F(T)N EP (©) # &. Define a sequence {x,} in C by the following algorithm:
xo € E, chosen arbitrarily,
C,=0C,
T = HC1 (1’0),
un € C such that © (up,y) + % (Y — up, Jun, — JT2,) >0 Vy € C,
Cn—i—l = {Z eCy: d)(xn,un) + ¢(Un,T£L'n)
< 22 (wn — 2, Jon — JTxy) + 2@y — 2, J Tz, — Juy)},
x’ﬂ+1 = HC-,L+1 (:L‘O)?

where k € [0,1) and r,, > 0 for all n € N with liminf, . r, > 0. Then {x,} converges strongly to
HQ($0)
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Corollary 3.5 (Zhou and Gao [32, Theorem 3.1)). Let E be a reflexive, strictly convex and smooth
Banach space such that E and E* have the property (K). Assume that C is a nonempty closed convex
subset of E. Let T : C — C be a closed quasi-strict pseudo-contraction. Define a sequence {x,} in C
by the following algorithm:

xo € E, chosen arbitrarily,
Cy =C,

Ty = Hcl (xo)v
u, € C such that

Cpny1 = {z € Ch: ¢(wn, Tay) < 27 (Tn — 2, J2y — JT$n>} ,

Tn+1 = HCn+1 (1‘0),

(3.4)

where k € [0,1). Then {z,} converges strongly to Ilg(xo).

Proof. Put©=0,A=0,p=0andr,=1forall n > 1in Theorem 3.1l Then, K, = Il¢ for all
n > 1. So, u, = Tz, for all n > 1(Note that z; = Ilgxp). Since z,, = g, o € C,, C C and then
Tz, € C for all n > 1, so we have u,, = Tz, for all n > 1. Thus ¢(zn, un) + ¢(tn, Txn) = ¢(an, Txy)
and JT'z,, — Ju, =0 for all n > 1. For this reason, (L.4)) is a special case of (3.1). Applying Theorem
3.1, we have the desired result. n

Remark 3.6. It is well known that every uniformly convex and uniformly smooth Banach space
satisfies all assumptions of Banach space in Theorem [3.1. On the other hand, in general, Musielak-
Orlicz space [9] need not to be uniformly convex or uniformly smooth, however, for any strictly convex,
reflexive and smooth of this space satisfies all assumptions of Banach space in Theorem [3.1. It can be
written as the following diagram:

’ reflexive, strictly convex, smooth Banach spaces with the property (K) ‘

ft ¥

’ uniformly convex and uniformly smooth Banach spaces ‘ .

For this reason, Theorem 3.1/ can be viewed as a more general one and can be applied widely in both
the fixed point problems and the equilibrium problems.
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