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 We prove a strong convergence theorem by using a hybrid algorithm in order to 
find a common fixed point of Lipschitz pseudo-contraction and  -strict pseudo-
contraction in Hilbert spaces. Our results extend the recent ones announced by Yao et al. 
[Y.H. Yao, Y.C. Liou, G. Marino, A hybrid algorithm for pseudo-contractive mappings, 
Nonlinear Anal. 71 (2009) 4997-5002.] and many others. 
 Moreover, we found the significant inequality related to quasi-strict pseudo-
contractions and the mappings defined from generalized mixed equilibrium problems on 
Banach spaces. It was taken to create an iterative shrinking projection method for 
finding a common solution of generalized mixed equilibrium problems and fixed point 
problems of closed and quasi-strict pseudo-contractions. Its results hold in reflexive, 
strictly convex and smooth Banach spaces with the property (K). The results of this 
paper improve and extend the corresponding results of Zhou and Gao [H. Zhou, 
E. Gao, An iterative method of fixed points for closed and quasi-strict pseudo-
contractions in Banach spaces, J. Appl. Math. Comput. 33 (2010) 227-237.] and many 
others. 
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Executive summary 

 

ทฤษฎีบทจุดตรึง (Fixed point theorem)  นับเปนแขนงทีสํ่าคัญแขนงหนึ่งในสาขาของการ
วิเคราะหเชิงฟงกชัน ที่มีบทประยุกตและนําไปใชอยางกวางขวาง ซึ่งปญหาสําคัญประการหนึ่งคือวิธีการ
คนหาจุดตรึง ของการสงแบบไมขยาย (Nonexpansive mapping) และการสงอื่นๆ ที่เก่ียวของ พบวา
ระเบียบวิธีทําซ้ําแบบปคารด (Picard iteration) หรือ ลําดับปคารด (Picard sequence)  0 1

n

n
T x




 นัน้มี

ขอจํากัดและมักจะเกิดความลมเหลวในการใชคนหาจุดตรงึ ตัวอยางเชนการสงแบบไมขยาย 
(Nonexpansive mapping) :[0,1] [0,1]T   นิยามโดย  ( ) 1T x x   พบวาเซตจุดตรึง คือ 

   1
2( ) [0,1] :F T x Tx x     ถาเลือก 

0
1
3x   แลวลําดับปคารด คือ  1 2 1 2 1 2

3 3 3 3 3 3, , , , , ,  ซึ่งไมลู
เขาไปยังจุดตรึง  เปนตัวอยางงายๆ ตัวอยางหนึง่ ที่ไมสามารถใชลําดับปคารด เปนเครื่องมือในการคนหา
จุดตรึงได ดวยเหตุนี้ทําใหนักคณิตศาสตรพยายามพัฒนาวิธีการคนหาจุดตรึงของการสงแบบตางๆ ใน
ปริภูมิตางๆ ในป ค.ศ.1953 W.R. Mann ไดเสนอวิธีทําซ้ําแบบเฉลี่ยคา 

1 (1 ) , 0,1,2,n n n n nx x Tx n        โดยที่   [0,1]n    ซึ่งสามารถแกไขปญหาการไมลูเขาของ 
ตัวอยางขางตนได โดยที่สามารถเลือก 0x เปนสมาชิกตัวใดก็ไดที่อยูในโดเมนของการสง T อยางไรก็
ตามลําดับของ Mann ยังมีขอดอย กลาวคือ A. Genel และ J. Lindenstrass มีตัวอยางในปริภูมิฮิลเบริตที่
ยืนยันวาลําดับของ Mann ไมสามารถลูเขาแบบเขม (Converge strongly)  ไปยังจุดตรึงได  แตจะลูเขา
อยางออน (Convergence weakly) ไปยังจดุตรึงไดเพียงเทานั้น ตอมาในป ค.ศ. 2003 K. Nakajo and W. 
Takahashi ไดเสนอวิธีการเพื่อดัดแปลงลําดับของ Mann ซึ่งสามารถทําใหลําดับท่ีถูกสรางขึ้นลูเขาแบบ
เขมไปยังจุดตรึงได  ซึง่ปจจุบันเปนที่รูจักกนัดีในชื่อวาวิธีการลูกผสม (Hybrid method) จากนั้นมาไดมีนัก
คณิตศาสตรหลายทานไดนําแนวทางวิธีการแบบลูกผสม ไปใชในการคนหาจุดตรึงและจุดตรึงรวมของการ
สงที่ไมเปนเชิงเสนอยางกวางขวาง ทั้งในปรภูิมิฮิลเบิรต และปริภูมิบานาค ซึง่การสงแบบหดเทียม 
(Pseudo contractive mapping) ถือไดวาเปนการสงเปนการสงที่ไมเปนเชิงเสนชนิดหนึง่ที่ครอบคลุมการ
สงแบบไมขยาย  และมีความสัมพันธอยางใกลชิดกับการสงแบบทางเดียว (Monotone mapping) ในทาง
ปฏิบัติแลวการสงแบบหดเทียมจะมีศักยภาพในเชิงการประยุกตไดมากกวาการสงแบบไมขยายในการ
แกไขปญหาเชงิผกผัน (Inverse problems) และปญหาอื่นๆ 

ในงานวิจัยนี้ผูวิจัยมีความสนใจและไดพัฒนาระเบียบวิธีทําซ้ําโดยอาศัยวิธีการลูกผสม เพื่อใชใน
การคนหาจุดตรึงรวมของการสงลิพชิทซแบบหดเทียม และการสงแบบหดเทียมโดยแทในปริภูมิฮิลเบิรต
โดยสรางระเบยีบวิธีการทําซ้ําดังนี้ 
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ซึ่ง (1.1) จะครอบคลุมงานวิจยัของ Y.H. Yao และคณะ [Y.H. Yao, Y.C. Liou, G. Marino, A hybrid 
algorithm for pseudo-contractive mappings, Nonlinear Anal. 71 (2009) 4997-5002.] 
 ในอีกทางหนึง่ กําหนดให  E  เปนปริภูมิบานาค C  คือเซตยอยที่ไมเปนเซตวางของE และ 

:C C   �  เปนฟงกชันเชิงคู (bifunction) ปญหาดุลภาพ (Equilibrium problem) คือการหา 
x C  ที่ทําให  
 ( , ) 0x y   สําหรับทุกๆ y C       (1.2) 
และจะเขียน ( )EP  แทนเซตคําตอบของ (1.2) ซึ่งการคนหาคาํตอบรวมระหวางปญหาดุลภาพและ
ปญหาจุดตรึงไดมีนักคณิตศาสตรใหความสนใจอยูไมนอย ในป ค.ศ.2007 S. Takashshi  และ W. 
Takahashi ไดใชวิธีการประมาณแบบหนวง (Viscosity approximation method)  ในการคนหาจุดตรงึ 
ในปริภูมิฮิลเบริต จากนั้นป ค.ศ. 2008  W. Takahashi และ K. Zembayashi ไดใชระเบียบวิธีลูกผสม
ในการคนหาคําตอบรวมสําหรับปญหาจุดตรึงของการสงไมขยายแบบสัมพันธ (Relatively 
nonexpansive mapping) และปญหาดุลภาพ ในปริภูมิบานาค ตอมาป ค.ศ. 2009 S. Zhang ได
แนะนําปญหาดุลภาพทั่วไปแบบผสม (Generalized mixed equilibrium problem) คือการหา x C  
ที่ทําให  
 ( , ) , ( ) ( ) 0x y Ax y x y x        สําหรับทุกๆ y C   (1.3)
เม่ือ *:A C E เปนการสงแบบไมเชงิเสน และ :C  �  เปนฟงกชันคาจริง ซึ่งถา 0A  และ 

0   แลว (1.3) จะลดรูปกลายเปน (1.2) ในอกีดานหนึ่งสําหรับการสง :T C C จะถูกเรียกวา 
กึ่งการสงหดเทียมโดยแท (quasi-strict pseudo-contraction) ซึ่งนิยามโดย H. Zhou และ E. Gao ก็
ตอเม่ือ ม ี [0,1)k  ที่ทําให ( , ) ( , ) ( , )p Tx p x k x Tx     ทุกๆ x C เขาไดพิสูจนวาเซตของ
จุดตรึงของการสงชนิดนี้เปนเปนเซตนนูปด และไดสรางระเบียบวิธีทําซ้ําแบบหดตัวสําหรับการคนหา
จุดตรึง ดวยเหตุนี้ผูวิจัยจึงเกิดแนวความคิดและไดสรางระเบียบวิธีทําซ้ําแบบหดตัวสําหรับการคนหา
ผลเฉลยรวมของปญหาดุลภาพทั่วไปแบบผสมและปญหาจุดตรึงของกึ่งการหดเทียมโดยแทแบบปด 
ผลลัพธที่ไดเปนจริงในปริภูมบิานาคราบเรียบที่เปนแบบนนูอยางเขมและสะทอน ที่ซึ่งปริภูมิและปริภูมิ
ภาวะคูกัน มีสมบัติ (K) ดังนี้ 

(1.4) 
ซึ่ง (1.4) จะครอบคลุมและพฒันางานวิจัยของ H. Zhou และ E. Gao [H. Zhou, E. Gao, An iterative 
method of fixed points for closed and quasi-strict pseudocontractions in Banach spaces, J. 
Appl. Math. Comput. 33 (2010) 227-237.] 
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We prove a strong convergence theorem by using a hybrid algorithm in order to find a common
fixed point of Lipschitz pseudocontraction and κ-strict pseudocontraction in Hilbert spaces. Our
results extend the recent ones announced by Yao et al. (2009) and many others.

1. Introduction

Let H be a real Hilbert space, and let C be a nonempty closed convex subset of H. Let T :
C → C. Recall that T is said to be a pseudocontraction if

∥
∥Tx − Ty

∥
∥
2 �

∥
∥x − y

∥
∥
2 +

∥
∥(I − T)x − (I − T)y

∥
∥
2 (1.1)

is equivalent to

〈

x − y, (I − T)x − (I − T)y
〉

� 0, (1.2)

for all x, y ∈ C, and T is said to be a strict pseudocontraction if there exists a constant 0 � κ < 1
such that

∥
∥Tx − Ty

∥
∥
2 �

∥
∥x − y

∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2
, (1.3)

for all x, y ∈ C. For the second case, we say that T is a κ-strict pseudocontraction. We use
F(T) to denote the set of fixed points of T .



2 Abstract and Applied Analysis

The class of strict pseudocontractions extend the class of nonexpansive mapping. (A
mapping T is said to be nonexpansive if ‖Tx − Ty‖ � ‖x − y‖, for all x, y ∈ C) that is, T is
nonexpansive if and only if T is a 0-strict pseudocontraction. The pseudocontractive mapping
includes the strict pseudocontractive mapping.

Iterative methods for finding fixed points of nonexpansive mappings are an important
topic in the theory of nonexpansive mappings and have wide applications in a number
of applied areas, such as the convex feasibility problem [1–4], the split feasibility problem
[5–7] and image recovery and signal processing [3, 8, 9], and so forth. However, the
Picard sequence {Tnx}∞n=0 often fails to converge even in the weak topology. Thus, averaged
iterations prevail. The Mann iteration [10] is one of the types and is defined by

xn+1 = αnxn + (1 − αn)Txn, n � 0, (1.4)

where x0 ∈ C is chosen arbitrarily and {αn} ⊂ [0, 1]. Reich [11] proved that if E is a uniformly
convex Banach space with a Fréchet differentiable norm and if {αn} is chosen such that
∑∞

n=0 αn(1 − αn) = ∞, then the sequence {xn} defined by (1.4) converges weakly to a fixed
point of T . However, we note that Mann iterations have only weak convergence even in a
Hilbert space (see e.g., [12]). From a practical point of view, strict pseudocontractions have
more powerful applications than nonexpansive mappings do in solving inverse problems
(see [13]). Therefore, it is important to develop theory of iterative methods for strict
pseudocontractions. Indeed, Browder and Petryshyn [14] prove that if the sequence {xn}
is generated by the following:

xn+1 = αxn + (1 − α)Txn, n � 0, (1.5)

for any starting point x0 ∈ C, α is a constant such that κ < α < 1, {xn} converges weakly to
a fixed point of strict pseudocontraction. Marino and Xu [15] extended the result of Browder
and Petryshyn [14] to Mann iteration (1.4); they proved {xn} converges weakly to a fixed
point of T , provided the control sequence {αn} satisfies the conditions that κ < αn < 1 for all
n and

∑∞
n=0(αn − k)(1 − αn) = ∞.

The well-known strong convergence theorem for pseudocontractive mapping was
proved by Ishikawa [16] in 1974. More precisely, he got the following theorem.

Theorem 1.1 (see [16]). Let C be a convex compact subset of a Hilbert space H and let T : C → C
be a Lipschitzian pseudocontractive mapping. For any x1 ∈ C, suppose the sequence {xn} is defined
by

xn+1 = (1 − αn)xn + αnTyn,

yn =
(

1 − βn
)

xn + βnTxn, n � 1,
(1.6)

where {αn}, {βn} are two real sequences in [0, 1] satisfying

(i) αn � βn, n � 1,

(ii) limn→∞ βn = 0,

(iii)
∑∞

n=1 αnβn = ∞.

Then {xn} converges strongly to a fixed point of T .
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Remark 1.2. (i) Since 0 � αn � βn � 1, n � 1 and
∑∞

n=1 αnβn = ∞, the iterative sequence (1.6)
could not be reduced to a Mann iterative sequence (1.4). Therefore, the iterative sequence
(1.6) has some particular cases.

(ii) The iterative sequence (1.6) is usually called the Ishikawa iterative sequence.
(iii) Chidume andMutangadura [17] gave an example to show that the Mann iterative

sequence failed to be convergent to a fixed point of Lipschitzian pseudocontractive mapping.

In an infinite-dimensional Hilbert spaces, Mann and Ishikawa’s iteration algorithms
have only weak convergence, in general, even for nonexpansive mapping. In order to obtain
a strong convergence theorem for theMann iteration method (1.4) to nonexpansive mapping,
Nakajo and Takahashi [18] modified (1.4) by employing two closed convex sets that are
created in order to form the sequence via metric projection so that strong convergence is
guaranteed. Later, it is often referred as the hybrid algorithm or the CQ algorithm. After
that the hybrid algorithm have been studied extensively by many authors (see e.g., [19–23]).
Particularly, Martinez-Yanes and Xu [24] and Plubtieng and Ungchittrakool [20] extended
the same results of Nakajo and Takahashi [18] to the Ishikawa iteration process. In 2007,
Marino and Xu [15] further generalized the hybrid algorithm from nonexpansive mappings
to strict pseudocontractive mappings. In 2008, Zhou [25] established the hybrid algorithm
for pseudocontractive mapping in the case of the Ishikawa iteration process.

Recently, Yao et al. [26] introduced the hybrid iterative algorithm which just involved
one closed convex set for pseudocontractive mapping in Hilbert spaces as follows.

Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let T : C → C be
a pseudocontraction. Let {αn} be a sequence in (0, 1). Let x0 ∈ H. ForC1 = C and x1 = PC1(x0),
define a sequence {xn} of C as follows.

yn = (1 − αn)xn + αnTzn,

Cn+1 =
{

v ∈ Cn :
∥
∥αn(I − T)yn

∥
∥
2 � 2αn

〈

xn − v, (I − T)yn

〉}

,

xn+1 = PCn+1(x0).

(1.7)

Theorem 1.3 (see [26]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T : C → C be a L-Lipschitz pseudocontraction such that F(T)/= ∅. Assume the sequence {αn} ⊂ [a, b]
for some a, b ∈ (0, 1/(L + 1)). Then the sequence {xn} generated by (1.7) converges strongly to
PF(T)(x0).

Very recently, Tang et al. [27] generalized the hybrid algorithm (1.7) in the case of the
Ishikawa iterative precess as follows:

yn = (1 − αn)xn + αnTzn,

zn =
(

1 − βn
)

xn + βnTxn,

Cn+1 =
{

v ∈ Cn :
∥
∥αn(I − T)yn

∥
∥
2 � 2αn

〈

xn − v, (I − T)yn

〉

+2αnβnL‖xn − Txn‖
∥
∥yn − xn + αn(I − T)yn

∥
∥

}

,

xn+1 = PCn+1(x0).

(1.8)
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Under some appropriate conditions of {αn} and {βn}, they proved that (1.8) converges
strongly to PF(T)(x0).

Motivated and inspired by the above works, in this paper, we generalize (1.7)
to the Ishikawa iterative process in the case of finding the common fixed point of
Lipschitz pseudocontraction and κ-strict pseudocontraction. More precisely, we provide
some applications of the main theorem to find the common zero point of the Lipshitz
monotone mapping and γ-inverse strongly monotone mapping in Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a closed
convex subset of H. For every point x ∈ H, there exists a unique nearest point in C, denoted
by PC(x), such that

‖x − PCx‖ �
∥
∥x − y

∥
∥, ∀y ∈ C, (2.1)

where PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping. It is also known that H satisfies Opial’s condition, that is, for any sequence {xn}
with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.2)

holds for every y ∈ H with y /=x.
For a given sequence {xn} ⊂ C, let ωw(xn) = {x : ∃xnj ⇀ x} denote the weak ω-limit

set of {xn}.
Nowwe collect some Lemmas which will be used in the proof of the main result in the

next section. We note that Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. LetH be a real Hilbert space. There holds the following identities:

(i) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉, for all x, y ∈ H,

(ii) ‖λx + (1 − λ)y‖2 = λ‖x‖2+(1−λ)‖y‖2−λ(1−λ)‖x − y‖2, for all x, y ∈ H and λ ∈ [0, 1].

Lemma 2.2. Let C be a closed convex subset of real Hilbert space H. Given x ∈ H and z ∈ C, then
z = PCx if and only if there holds the relation

〈

x − z, y − z
〉

� 0, ∀y ∈ C. (2.3)

Proposition 2.3 (see [15, Proposition 2.1]). Assume C is a closed convex subset of a Hilbert space
H; let T : C → C be a self-mapping of C. If T is a κ-strict pseudocontraction, then T satisfies the
Lipschitz condition

∥
∥Tx − Ty

∥
∥ � 1 + κ

1 − κ

∥
∥x − y

∥
∥, ∀x, y ∈ C. (2.4)

Lemma 2.4 (see [28]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C → C be a continuous pseudocontractive mapping, then
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(i) F(T) is closed convex subset of C,

(ii) I − T is demiclosed at zero, that is, if {xn} is a sequence in C such that xn ⇀ z and
(I − T)xn → 0, then (I − T)z = 0.

Lemma 2.5 (see [24]). Let C be a closed convex subset of H. Let {xn} be a sequence in H, and let
u ∈ H. Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ �
∥
∥u − q

∥
∥, ∀n, (2.5)

then xn → q.

3. Main Result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, let T : C → C

be LT -Lipschitz pseudocontraction, and let S : C → C be κ-strict pseudocontraction with F̃ :=
F(S) ∩ F(T)/= ∅. Let x0 ∈ H. For C1 = C and x1 = PC1(x0), define a sequence {xn} of C as follows:

yn = (1 − αn)xn + αnTzn,

zn =
(

1 − βn
)

xn + βnSxn,

Cn+1 =

{

v ∈ Cn :
∥
∥αn(I − T)yn

∥
∥
2 + (1 − κ)‖(I − S)xn‖2

� 2αn

〈

xn − v, (I − T)yn

〉

+ 2〈xn − v, (I − S)zn + (I − S)xn〉

+2αnβnLT‖xn − Sxn‖
∥
∥yn − xn + αn(I − T)yn

∥
∥

+βn

((
2βn
1 − κ

)2

− 1

)

‖(I − S)xn‖2
}

,

xn+1 = PCn+1(x0).

(3.1)

Assume the sequence {αn}, {βn} be such that 0 < a � αn � b < 1/(LT + 1) < 1 and 0 < βn � 1 for
all n ∈ N with limn→∞ βn = 0. Then {xn} converges strongly to PF̃(x0).

Proof. By Lemma 2.4(i), we see that F(S) and F(T) are closed and convex, then F̃ is as well.
Hence, PF̃ is well defined. Next, we will prove by induction that F̃ ⊂ Cn for all n ∈ N. Note
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that F̃ ⊂ C = C1. Assume that F̃ ⊂ Ck holds for k � 1. Let p ∈ F̃, thus p ∈ Ck, and we observe
that

∥
∥xk − p − αk(I − T)yk

∥
∥
2 =

∥
∥xk − p

∥
∥
2 − ∥

∥αk(I − T)yk

∥
∥
2

− 2αk

〈

(I − T)yk, xk − p − αk(I − T)yk

〉

=
∥
∥xk − p

∥
∥
2 − ∥

∥αk(I − T)yk

∥
∥
2

− 2αk

〈

(I − T)yk − (I − T)p, yk − p
〉

− 2αk

〈

(I − T)yk, xk − yk − αk(I − T)yk

〉

�
∥
∥xk − p

∥
∥
2 − ∥

∥αk(I − T)yk

∥
∥
2

− 2αk

〈

(I − T)yk, xk − yk − αk(I − T)yk

〉

=
∥
∥xk − p

∥
∥
2 − ∥

∥
(

xk − yk

)

+
(

yk − xk + αk(I − T)yk

)∥
∥
2

− 2αk

〈

(I − T)yk, xk − yk − αk(I − T)yk

〉

=
∥
∥xk − p

∥
∥
2 − ∥

∥xk − yk

∥
∥
2 − ∥

∥yk − xk + αk(I − T)yk

∥
∥
2

− 2
〈

xk − yk, yk − xk + αk(I − T)yk

〉

− 2αk

〈

(I − T)yk, xk − yk − αk(I − T)yk

〉

�
∥
∥xk − p

∥
∥
2 − ∥

∥xk − yk

∥
∥
2 − ∥

∥yk − xk + αk(I − T)yk

∥
∥
2

+ 2
∣
∣
〈

xk − yk − αk(I − T)yk, xk − yk − αk(I − T)yk

〉∣
∣.

(3.2)

Consider the last term of (3.2), we obtain

∣
∣
〈

xk − yk − αk(I − T)yk, yk − xk + αk(I − T)yk

〉∣
∣

= αk

∣
∣
〈

xk − Tzk − (I − T)yk, yk − xk + αk(I − T)yk

〉∣
∣

= αk

∣
∣
〈

xk − Txk + Txk − Tzk − (I − T)yk, yk − xk + αk(I − T)yk

〉∣
∣

= αk

∣
∣
〈

(I − T)xk − (I − T)yk, yk − xk + αk(I − T)yk

〉

+
〈

Txk − Tzk, yk − xk + αk(I − T)yk

〉∣
∣

� αk(LT + 1)
∥
∥xk − yk

∥
∥
∥
∥yk − xk + αk(I − T)yk

∥
∥

+ αkLT‖xk − zk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥
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= αk(LT + 1)
∥
∥xk − yk

∥
∥
∥
∥yk − xk + αk(I − T)yk

∥
∥

+ αkβkLT‖xk − Sxk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥

� αk(LT + 1)
2

(∥
∥xk − yk

∥
∥
2 +

∥
∥yk − xk + αk(I − T)yk

∥
∥
2
)

+ αkβkLT‖xk − Sxk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥.

(3.3)

Substituting (3.3) into (3.2), we obtain

∥
∥xk − p − αk(I − T)yk

∥
∥
2 �

∥
∥xk − p

∥
∥
2 − ∥

∥xk − yk

∥
∥
2 − ∥

∥yk − xk + αk(I − T)yk

∥
∥
2

+ αk(LT + 1)
(∥
∥xk − yk

∥
∥
2 +

∥
∥yk − xk + αk(I − T)yk

∥
∥
2
)

+ 2αkβkLT‖xk − Sxk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥

�
∥
∥xk − p

∥
∥
2 + 2αkβkLT‖xk − Sxk‖

∥
∥yk − xk + αk(I − T)yk

∥
∥.

(3.4)

Notice that

∥
∥xk − p − αk(I − T)yk

∥
∥
2 =

∥
∥xk − p

∥
∥
2 − 2αk

〈

xk − p, (I − T)yk

〉

+
∥
∥αk(I − T)yk

∥
∥
2
. (3.5)

Therefore, from (3.4) and (3.5), we get

∥
∥αk(I − T)yk

∥
∥
2 � 2αk

〈

xk − p, (I − T)yk

〉

+ 2αkβkLT‖xk − Sxk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥.

(3.6)

On the other hand, we found that

∥
∥xk − p − βk(I − S)zk

∥
∥
2 =

∥
∥xk − p

∥
∥
2 − ∥

∥βk(I − S)zk
∥
∥
2 − 2βk

〈

(I − S)zk, xk − p − βk(I − S)zk
〉

=
∥
∥xk − p

∥
∥
2 − ∥

∥βk(I − S)zk
∥
∥
2 − 2βk

〈

(I − S)zk − (I − S)p, zk − p
〉

− 2βk
〈

(I − S)zk, xk − zk − βk(I − S)zk
〉
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�
∥
∥xk − p

∥
∥
2 − ∥

∥βk(I − S)zk
∥
∥
2 − 2

〈

βk(I − S)zk, xk − zk − βk(I − S)zk
〉

=
∥
∥xk − p

∥
∥
2 − ∥

∥βk(I − S)zk
∥
∥
2

+
(∥
∥βk(I − S)zk

∥
∥
2 − ‖xk − zk‖2 +

∥
∥xk − zk − βk(I − S)zk

∥
∥
2
)

=
∥
∥(xk − zk) +

(

zk − p
)∥
∥
2 − ‖xk − zk‖2 +

∥
∥βk(I − S)xk − βk(I − S)zk

∥
∥
2

= ‖xk − zk‖2 + 2
〈

xk − zk, zk − p
〉

+
∥
∥zk − p

∥
∥
2 − ‖xk − zk‖2

+
∥
∥βk(I − S)xk − βk(I − S)zk

∥
∥
2

= 2
〈

xk − zk, (zk − xk) +
(

xk − p
)〉

+
∥
∥(1 − βk)(xk − p) + βk(Sxk − p)

∥
∥
2

+
∥
∥βk(I − S)xk − βk(I − S)zk

∥
∥
2

� 2
〈

xk − p, βk(I − S)xk

〉

+
(

1 − βk
)∥
∥xk − p

∥
∥
2 + βk

∥
∥Sxk − p

∥
∥
2

− βk
(

1 − βk
)‖xk − Sxk‖2 − 2β2k‖(I − S)xk‖2

+ β2k

(
1 + κ

1 − κ
+ 1

)2

‖xk − zk‖2

� 2
〈

xk − p, βk(I − S)xk

〉

+
(

1 − βk
)∥
∥xk − p

∥
∥
2 + βk

∥
∥xk − p

∥
∥
2

+ βkκ‖(I − S)xk‖2 − βk
(

1 − βk
)‖(I − S)xk‖2 − 2β2k‖(I − S)xk‖2

+ β4k

(
2

1 − κ

)2

‖(I − S)xk‖2

= 2
〈

xk − p, βk(I − S)xk

〉

+
∥
∥xk − p

∥
∥
2 − βk(1 − κ)‖(I − S)xk‖2

− β2k‖(I − S)xk‖2 + β4k

(
2

1 − κ

)2

‖(I − S)xk‖2.

(3.7)

Notice that

∥
∥xk − p − βk(I − S)zk

∥
∥
2 =

∥
∥xk − p

∥
∥
2 − 2βk

〈

xk − p, (I − S)zk
〉

+ β2k‖(I − S)zk‖2. (3.8)

Combining (3.7) and (3.8) and then it implies that

βk(1 − κ)‖xk − Sxk‖2 � 2βk
〈

xk − p, (I − S)zk + (I − S)xk

〉

+ β2k

((
2βk
1 − κ

)2

− 1

)

‖(I − S)xk‖2.

(3.9)
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Since βn > 0 for all n, so we get

(1 − κ)‖xk − Sxk‖2 � 2
〈

xk − p, (I − S)zk + (I − S)xk

〉

+ βk

((
2βk
1 − κ

)2

− 1

)

‖(I − S)xk‖2.

(3.10)

It follows from (3.6) and (3.10) that we obtain

∥
∥αk(I − T)yk

∥
∥
2 + (1 − κ)‖(I − S)xk‖2

� 2αk

〈

xk − v, (I − T)yk

〉

+ 2〈xk − v, (I − S)zk + (I − S)xk〉

+ 2αkβkLT‖xk − Sxk‖
∥
∥yk − xk + αk(I − T)yk

∥
∥ + βk

((
2βk
1 − κ

)2

− 1

)

‖(I − S)xk‖2.

(3.11)

Therefore, p ∈ Ck+1. By mathematical induction, we have F̃ ⊂ Cn for all n ∈ N. It is easy to
check that Cn is closed and convex, and then {xn} is well defined. From xn = PCn(x0), we
have 〈x0 − xn, xn − y〉 � 0 for all y ∈ Cn. Using F̃ ⊂ Cn, we also have 〈x0 − xn, xn − u〉 � 0 for
all u ∈ F̃. So, for u ∈ F̃, we have

0 � 〈x0 − xn, xn − u〉 = 〈x0 − xn, xn − x0 + x0 − u〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − u〉

� −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − u‖.

(3.12)

Hence, ‖x0 − xn‖ � ‖x0 − u‖, for all u ∈ F̃. In particular,

‖x0 − xn‖ �
∥
∥x0 − q

∥
∥, where q = PF̃(x0). (3.13)

This implies that {xn} is bounded, and then {yn}, {Tyn}, {zn}, {Szn}, and {Sxn} are as well.
From xn = PCn(x0) and xn+1 = PCn+1(x0) ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 � 0. (3.14)

Hence

0 � 〈x0 − xn, xn − xn+1〉 = 〈x0 − xn, xn − x0 + x0 − xn+1〉

= −‖x0 − xn‖2 + 〈x0 − xn, x0 − xn+1〉

� −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(3.15)
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and; therefore,

‖x0 − xn‖ � ‖x0 − xn+1‖, (3.16)

which implies that limn→∞‖xn − x0‖ exists. From Lemma 2.1 and (3.14), we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

� ‖xn+1 − x0‖2 − ‖xn − x0‖2 −→ 0.

(3.17)

Since xn+1 ∈ Cn+1 ⊂ Cn, we have

∥
∥αn(I − T)yn

∥
∥
2 + (1 − κ)‖(I − S)xn‖2

� 2αn

〈

xn − xn+1, (I − T)yn

〉

+ 2〈xn − xn+1, (I − S)zn + (I − S)xn〉
+ 2αnβnLT‖xn − Sxn‖

∥
∥yn − xn + αn(I − T)yn

∥
∥

+ βn

((
2βn
1 − κ

)2

− 1

)

‖(I − S)xn‖2 −→ 0 as n −→ ∞,

(3.18)

therefore, we obtain

∥
∥yn − Tyn

∥
∥ −→ 0, ‖xn − Sxn‖ −→ 0. (3.19)

We note that

‖xn − Txn‖ �
∥
∥xn − yn

∥
∥ +

∥
∥yn − Tyn

∥
∥ +

∥
∥Tyn − Txn

∥
∥

� (LT + 1)
∥
∥xn − yn

∥
∥ +

∥
∥yn − Tyn

∥
∥

� αn(LT + 1)‖xn − Tzn‖ +
∥
∥yn − Tyn

∥
∥

� αn(LT + 1)‖xn − Txn‖ + αn(LT + 1)‖Txn − Tzn‖ +
∥
∥yn − Tyn

∥
∥

� αn(LT + 1)‖xn − Txn‖ + αnβnLT (LT + 1)‖xn − Sxn‖ +
∥
∥yn − Tyn

∥
∥,

(3.20)

that is,

‖xn − Txn‖ � αnβnLT (LT + 1)
1 − αn(LT + 1)

‖xn − Sxn‖ + 1
1 − αn(LT + 1)

∥
∥yn − Tyn

∥
∥ −→ 0, as n −→ ∞.

(3.21)

By Lemma 2.4(ii), I − T and I − S are demiclosed at zero. Together with the fact that
{xn} is bounded, which guarantees that every weak limit point of {xn} is a fixed point of T
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and S, that is ωw(xn) ⊂ F(T) ∩ F(S) = F̃, therefore, by inequality (3.13) and Lemma 2.5, we
know that {xn} converges strongly to q = PF̃(x0). This completes the proof.

If S = I, then we obtain the following corollary.

Corollary 3.2 (Yao et al. [26, Theorem 3.1]). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T : C → C be L-Lipschitz pseudocontraction such that F(T)/= ∅. Assume the
sequence {αn} be such that 0 < a � αn � b < 1/(L + 1) < 1 for all n. Then the sequence {xn}
generated by (1.7) converges strongly to PF(T)(x0).

If T and S are nonexpansive, then we also have the following corollary.

Corollary 3.3. LetC be a nonempty closed convex subset of a real Hilbert spaceH, and let S, T : C →
C be nonexpansive mappings. Suppose that F̃ := F(S)∩F(T)/= ∅. Assume the sequence {αn} be such
that 0 < a � αn � b < 1/2 and 0 < βn � 1 for all n ∈ N with limn→∞ βn = 0. Let x0 ∈ H. For
C1 = C and x1 = PC1(x0), define a sequence {xn} of C as follows:

yn = (1 − αn)xn + αnTzn,

zn =
(

1 − βn
)

xn + βnSxn,

Cn+1 =
{

v ∈ Cn :
∥
∥αn(I − T)yn

∥
∥
2 + ‖(I − S)xn‖2

� 2αn

〈

xn − v, (I − T)yn

〉

+ 2〈xn − v, (I − S)zn + (I − S)xn〉
+2αnβn‖xn − Sxn‖

∥
∥yn − xn + αn(I − T)yn

∥
∥

+βn
(

4β2n − 1
)‖(I − S)xn‖2

}

,

xn+1 = PCn+1(x0).

(3.22)

Then {xn} converges strongly to PF̃(x0).

Recall that a mapping A is said to be monotone if 〈x − y,Ax − Ay〉 � 0 for all
x, y ∈ H and inverse strongly monotone if there exists a real number γ > 0 such that
〈x − y,Ax − Ay〉 � γ‖Ax −Ay‖2 for all x, y ∈ H. For the second case, A is said to be γ-
inverse strongly monotone. It follows immediately that if A is γ-inverse strongly monotone,
then A is monotone and Lipschitz continuous, that is, ‖Ax − Ay‖ � (1/γ)‖x − y‖. It is well
known (see e.g., [29]) that if A is monotone, then the solutions of the equation Ax = 0
correspond to the equilibrium points of some evolution systems. Therefore, it is important
to focus on finding the zero point of monotone mappings. The pseudocontractive mapping
and strictly pseudocontractive mapping are strongly related to the monotone mapping and
inverse strongly monotone mapping, respectively. It is well known that

(i) A is monotone ⇔ T := (I −A) is pseudocontractive,

(ii) A is inverse strongly monotone ⇔ T := (I −A) is strictly pseudocontractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert space:

∥
∥(I −A)x − (I −A)y

∥
∥
2 =

∥
∥x − y

∥
∥
2 +

∥
∥Ax −Ay

∥
∥
2 − 2

〈

x − y,Ax −Ay
〉

, ∀x, y ∈ H.

(3.23)
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Without loss of generality, we can assume that γ ∈ (0, 1/2], and then it yields

〈

x − y,Ax −Ay
〉

� γ
∥
∥Ax −Ay

∥
∥
2

⇐⇒ −2〈x − y,Ax −Ay
〉

� −2γ∥∥Ax −Ay
∥
∥
2

⇐⇒ ∥
∥(I −A)x − (I −A)y

∥
∥
2 �

∥
∥x − y

∥
∥
2 +

(

1 − 2γ
)∥
∥Ax −Ay

∥
∥
2

(via (3.23))

⇐⇒ ∥
∥Tx − Ty

∥
∥
2 �

∥
∥x − y

∥
∥
2 + κ

∥
∥(I − T)x − (I − T)y

∥
∥
2

(

where T := (I −A), κ := 1 − 2γ
)

.

(3.24)

Due to Theorem 3.1, we have the following corollary which generalize the corresponding
results of Yao et al. [26].

Corollary 3.4. Let A : H → H be LA-Lipschitz monotone mapping and let B : H → H be
an γ̂-inverse strongly monotone which A−1(0) ∩ B−1(0)/= ∅. Assume the sequence {αn} be such that
0 < a � αn � b < 1/(LA + 2), 0 < βn � 1 for all n ∈ N with limn→∞βn = 0 and γ ∈ (0, 1/2] such
that γ̂ � γ . Let x0 ∈ H. For C1 = H and x1 = PC1(x0) = x0, define a sequence {xn} as follows:

yn = xn − αn(xn − zn) − αnAzn,

zn = xn − βnBxn,

Cn+1 =

{

v ∈ Cn :
∥
∥αnAyn

∥
∥
2 + 2γ‖Bxn‖2

� 2αn

〈

xn − v,Ayn

〉

+ 2〈xn − v, Bzn + Bxn〉

+2αnβn(LA + 1)‖Bxn‖
∥
∥yn − xn + αnAyn

∥
∥

+βn

((
βn
γ

)2

− 1

)

‖Bxn‖2
}

,

xn+1 = PCn+1(x0).

(3.25)

Then {xn} converges strongly to PA−1(0)∩B−1(0)(x0).

Proof. Let T := (I −A) and let S := (I − B). Then T and S are pseudocontractive and (1 − 2γ)-
pseudocontractive, respectively. Moreover, T is also (LA+1)-Lipschitz, and if we set κ := 1−2γ ,
S is also ((1−γ)/γ)-Lipschitz, and then (2/(1−κ))2 = 1/γ2. Hence, it follows fromTheorem 3.1
that we have the desired result.

If B = 0 (zero mapping), then zn = xn and B−1(0) = H. So, we obtain the following
corollary.
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Corollary 3.5 (Yao et al. [26, Corollary 3.2]). Let A : H → H be a LA-Lipschitz monotone
mapping for which A−1(0)/= ∅. Assume that the sequence {αn} be as in Corollary 3.4. Then the
sequence {xn} generated by

yn = xn − αnAzn,

Cn+1 =
{

v ∈ Cn :
∥
∥αnAyn

∥
∥
2 � 2αn

〈

xn − v,Ayn

〉}

,

xn+1 = PCn+1(x0)

(3.26)

strongly converges to PA−1(0)(x0).
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1. Introduction

The equilibrium problem theory provides a novel and unified treatment of a wide class of problems
which arise in economics, finance, image reconstruction, ecology, transportation, network, elasticity and
optimization, and it has been extended and generalized in many directions; see [3, 18]. In particular,
equilibrium problems are related to the problem of finding fixed points problems of some non linear
mappings. Therefore it is natural to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a common element of the set of the
solutions of the equilibrium problems and the set of the fixed points, (see also [8, 10, 22, 26, 29–31] and
the references therein). In this paper, we suggest and analyze a hybrid algorithm for solving generalized
mixed equilibrium problems and fixed point problems of closed and quasi-strict pseudo-contractions in
the framework of reflexive, strictly convex and smooth Banach spaces with the property (K).

Let E be a real Banach space, and E∗ the dual space of E. Let C be a nonempty closed convex
subset of E. Let Θ : C×C → R be a bifunction, ϕ : C → R be a real-valued function, and A : C → E∗

be a nonlinear mapping. The generalized mixed equilibrium problem, is to find x ∈ C such that

Θ (x, y) + 〈Ax, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (1.1)

The solution set of (1.1) is denoted by GMEP (Θ, A, ϕ), i.e.,

GMEP (Θ, A, ϕ) = {x ∈ C : Θ (x, y) + 〈Ax, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C}
If A = 0, the problem (1.1) reduces to the mixed equilibrium problem for Θ, denoted by MEP (Θ, ϕ),
which is to find x ∈ C such that

Θ (x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

If Θ = 0, the problem (1.1) reduces to the mixed variational inequality of Browder type, denoted by
V I (C, A, ϕ), which is to find x ∈ C such that

〈Ax, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

If A = 0 and ϕ = 0, the problem (1.1) reduces to the equilibrium problem for Θ (for short, EP ),
denoted by EP (Θ), which is to find x ∈ C such that

Θ (x, y) ≥ 0, ∀y ∈ C. (1.2)

∗Corresponding author. Tel.:+66 55963250; fax:+66 55963201.
Email addresses: kasamsuku@nu.ac.th (Kasamsuk Ungchittrakool).
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Let Θ (x, y) = 〈Ax, y − x〉 for all x, y ∈ C. Then p ∈ EP (Θ) if and only if for all 〈Ap, y − p〉 ≥ 0
for all y ∈ C, i.e., p is a solution of the variational inequality; there are several other problems, for
example, the complementarity problem, fixed point problem and optimization problem, which can also
be written in the form of an EP . In other words, the EP is an unifying model for several problems
arising in physics, engineering, science, optimization, economics, etc.

It is well known that, in an infinite-dimensional Hilbert space, the normal Mann’s iterative algorithm
[13] has only weak convergence, in general, even for nonexpansive mappings. Consequently, in order to
obtain strong convergence, Nakajo and Takahashi [17] modified the normal Mann’s iteration algorithm,
later well known as hybrid projection iteration algorithm (HIPA). Since then, (HIPA) has received rapid
developments. For the details, the readers are referred to papers [12, 14, 16, 19] and the references
therein. In 2005, Matsushita and Takahashi [15] proposed the hybrid iteration method with generalized
projection for relatively nonexpansive mapping T in the framework of uniformly smooth and uniformly
convex Banach spaces E as follows:





x0 ∈ C chosen arbitrarily,

yn = J−1 (αnJxn + (1− αn)JTxn) ,

Cn = {z ∈ C : φ (z, yn) ≤ φ (z, xn)} ,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0} ,

xn+1 = ΠCn∩Qn (x0) .

(1.3)

where J is the duality mapping on E, and ΠC(·) is the generalized projection from E onto a nonempty
closed convex subset C. Based on the guidelines of Matsushita and Takahashi [15], Plubtieng and
Ungchittrakool [20, 21] studied and developed (1.3) to the case of two relatively nonexpansive mappings
and finite family of relatively nonexpansive mappings, respectively. In 2007, Tada and Takahashi
[24, 25] and Takahashi and Takahashi [26] proved weak and strong convergence theorems for finding
a common element of the set of solution of an equilibrium problem and the set of fixed points of a
nonexpansive mapping in a Hilbert space. Takahashi et al. [27] studied a strong convergence theorem
by the hybrid method for a family of nonexpansive mappings in Hilbert spaces as follows: x0 ∈ H,
C1 = C and x1 = PC1x0 and let





yn = αnxn + (1− αn)Tnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ∈ N,

where 0 6 αn 6 a < 1 for all n ∈ N and {Tn} a sequence of nonexpansive mappings of C into itself
such that

⋂∞
n=1 F (Tn) = ∅. They proved that if {Tn} satisfies some appropriate conditions, then {xn}

converges strongly to PT∞
n=1 F (Tn)x0.

Motivated by Takahashi et al. [27], Takahashi and Zembayashi [29] (see also [30]) introduced and
proved a hybrid projection algorithm for solving equilibrium problems and fixed point problems of a
relatively nonexpansive mapping S in the framework of uniformly smooth and uniformly convex Banach
space as follows:





x0 = x, C0 = C,

yn = J−1 (αnJxn + (1− αn)JSxn)

un ∈ C such that Θ(un, y) +
1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)} ,

xn+1 = ΠCn+1x

where ΠCn+1(·) is the generalized projection from E onto Cn+1. Under some appropriate assumptions
on Θ, {αn} and {rn}, they proved that the sequence {xn} converges strongly to ΠF (S)∩EP (Θ)(x0).

In 2010, Zhou and Gao [32] introduced the definition of a quasi-strict pseudo contraction related to
the function φ and proved a hybrid projection algorithm for finding a fixed point of a closed and quasi-
strict pseudo contraction in more general framework than uniformly smooth and uniformly convex
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Banach spaces as follows:




x0 ∈ E, chosen arbitrarily,

C1 = C,

x1 = ΠC1(x0),
un ∈ C such that

Cn+1 =
{

z ∈ Cn : φ(xn, Txn) ≤ 2
1−k 〈xn − z, Jxn − JTxn〉

}
,

xn+1 = ΠCn+1(x0),

(1.4)

where ΠCn+1 is the generalized projection from E onto Cn+1. They proved that the sequence {xn}
converges strongly to ΠF (T )(x0).

Motivated and inspired by the above research work, in this paper, by employing the inequality that
appeared in Lemma 2.10 together with (1.4) and some facts of Zhou and Gao [32], we create an iterative
shrinking projection method for finding a common solution of generalized mixed equilibrium problems
and fixed point problems of closed and quasi-strict pseudo-contractions in the framework of reflexive,
strictly convex and smooth Banach spaces with the property (K). The results of this research improve
and extend the corresponding results of Zhou and Gao [32] and many others.

2. Preliminaries

In this paper, we denote by E and E∗ a Banach space and the dual space of E, respectively. Let C
be a nonempty closed convex subset of E. We denote by J the normalized duality mapping from E to
2E∗ defined by

J(x) =
{

f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2
}

,

where 〈·, ·〉 denote the duality pairing between E and E∗. It is well know that if E∗ is reflexive and
smooth, then J : E → 2E∗ is single-valued and demi-continuous.

It is also very well know that if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In
this connection, Alber [1] recently introduced a generalized projection operator ΠC in a Banach spaces
E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a real smooth Banach space. Let us consider the functional defined as
[15] by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉+ ‖y‖2 for all x, y ∈ E. (2.1)

Observe that, in a Hilbert spaces H, (2.1) reduces to φ(x, y) = ‖x− y‖2 , for all , x, y ∈ H.
The generalized projection ΠC : E → C is a map that assigns to an arbitrary point x ∈ E the

minimum point of the functional φ(x, y), that is, ΠCx = x̄, where x̄ is the solution to the minimization
problem

φ(x̄, x) = min
y∈C

φ(y, x), (2.2)

existence and uniqueness of the operator ΠC follow from the properties of the functional φ(x, y) and
strict monotonicity of the mapping J (see, for example, [1, 2, 7, 11, 28]). In Hilbert spaces, ΠC = PC .
It is obvious from the definition of function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 for all x, y ∈ E, (2.3)

and

φ(x, y) = φ(x, z) + φ(z, y) + 2 〈x− z, Jz − Jy〉 for all x, y, z ∈ E. (2.4)

Remark 2.1. If E is a reflexive strictly convex and smooth Banach space, then for x, y ∈ E, φ(x, y) = 0
if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From (2.3), we have
‖x‖ = ‖y‖. This implies 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the definitions of J , we have Jx = Jy. That
is, x = y; one may consult [7, 28] for the details.



4 K. UNGCHITTRAKOOL

Let C be a closed convex subset of E, and let T be a mapping from C into itself. We denote by
F (T ) the set of fixed points of T . A point p in C is said to be an asymptotic fixed point of T [23] if C
contains a sequence {xn} which converges weakly to p such that the strong limn→∞(xn − Txn) = 0.
The set of asymptotic fixed points of T will be denoted by F̂ (T ). A mapping T from C into itself is
called nonexpansive if ‖Tx − Ty‖ 6 ‖x − y‖ for all x, y ∈ C and relatively nonexpansive [4–6, 15] if
F̂ (T ) = F (T ) and φ(p, Tx) 6 φ(p, x) for all x ∈ C and p ∈ F (T ). The asymptotic behavior of relatively
nonexpansive mapping was studied in [4–6, 15].

T is said to be a quasi-strict pseudo-contraction [32, p. 230] if there exists a constant k ∈ [0, 1) and
F (T ) 6= ∅ such that φ(p, Tx) ≤ φ(p, x) + kφ(x, Tx) for all x ∈ C and p ∈ F (T ). In particular, T is said
to be quasi-nonexpansive if k = 0 and T is said to be quasi-pseudo-contractive if k = 1.

Remark 2.2. A relatively nonexpansive mapping is a quasi-strict pseudo-contraction, but the converse
may be not true.

Example 2.3. Let E = R and define T : E → E by Tx = −3x. Then, T is a quasi-strict pseudo-
contraction but not a relatively nonexpansive mapping.

Example 2.4. Let E be a reflexive, strictly convex and smooth Banach space. Let A ⊂ E × E∗ be a
maximal monotone mapping such that A−1(0) is nonempty. Then, Jr = (J + rA)−1

J is a closed and
quasi-strict pseudo-contraction mapping from E onto D(A) and F (Jr) = A−1(0).

Example 2.5. Let ΠC be the generalized projection from a smooth, strictly convex, and reflexive
Banach space E onto a nonempty closed convex subset C of E. Then, ΠC is a closed and quasi-strict
pseudo-contraction from E onto C with F (ΠC) = C.

Recall that a Banach space E has the property (K) if for any sequence and {xn} ⊂ E, if xn → x
weakly and ‖xn‖ → ‖x‖, then ‖xn−x‖ → 0. For more information concerning property (K) the reader
is referred to [9] and references cited there.

For solving the equilibrium problem for a bifunction Θ : C × C → R, let us assume that Θ satisfies
the following condition:
(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

limt↓0Θ(tz + (1− t)x, y) ≤ Θ(x, y);
(A4) for each x ∈ C, y 7−→ Θ(x, y) is convex and lower semi-continuous.

Lemma 2.6 (Blum and Oettli [3]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let Θ be a bifunction of C × C into R satisfying (A1) - (A4).
Let r > 0 and x ∈ E. Then, there exists z ∈ C such that

Θ(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ for all y ∈ C.

Lemma 2.7 (Takahashi and Zembayashi [30]). Let C be a closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E and let Θ be a bifunction from C×C to R satisfying (A1)
- (A4). For r > 0and x ∈ E, define a mapping Tr : E → C as follows:

Trx =
{

z ∈ C : Θ(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, for all y ∈ C

}

for all x ∈ C. Then, the following hold:
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive-type mapping, i.e., for any x, y ∈ H,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(iii) F (Tr) = EP (Θ);
(iv) EP (Θ) is closed and convex.

Lemma 2.8 (Takahashi and Zembayashi [30]). Let C be a closed convex subset of a smooth, strictly
convex and reflexive Banach space E, let Θ be a bifunction from C × C to R satisfying (A1) − (A4)
and let r > 0. Then, for x ∈ E and q ∈ F (Tr);

φ(p, Trx) + φ(Trx, x) ≤ φ(p, x).
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Lemma 2.9 (Zhang [33]). Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Let A : C → E∗ be a continuous and monotone mapping, ϕ : C → R be a lower
semi-continuous and convex function, and Θ be a bifunction from C ×C to R satisfying (A1)− (A4) .
For r > 0 and x ∈ E, then there exists u ∈ C such that

Θ (u, y) + 〈Au, y − u〉+ ϕ(y)− ϕ(u) +
1
r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr : C → C as follows:

Kr(x) =
{

u ∈ C : Θ (u, y) + 〈Au, y − u〉+ ϕ(y)− ϕ(u) +
1
r
〈y − u, Ju− Jx〉 ≥ 0, ∀y ∈ C

}

for all x ∈ C. Then, the following conclusions hold:
(1) Kr is single-valued;
(2) Kr is firmly nonexpansive type, i.e., for all x, y ∈ E,

〈Krx−Kry, JKrx− JKry〉 ≤ 〈Krx−Kry, Jx− Jy〉 ;
(3) F (Kr) = GMEP (Θ, A, ϕ)
(4) GMEP (Θ, A, ϕ) is closed and convex,
(5) φ(p,Krx) + φ(Krx, x) ≤ φ(p, x) ∀p ∈ F (Kr), x ∈ E.

Lemma 2.10. Let E be a reflexive, strictly convex and smooth Banach space. Assume that C is
a nonempty closed convex subset of E. Let T : C → C be a quasi-strict pseudo-contraction and
Kr : C → C be as in Lemma 2.9 such that Ω := F (T ) ∩GMEP (Θ, A, ϕ) 6= ∅. Then

φ(x,KrTx) + φ(KrTx, Tx) ≤ 2
1− k

〈x− p, Jx− JTx〉+ 2 〈x− p, JTx− JKrTx〉
for all x ∈ C and p ∈ Ω.

Proof. Let x ∈ C and p ∈ Ω. By the quasi-strict pseudo-contractility of T and equation (2.4) we
have

φ (p, Tx) ≤ φ (p, x) + kφ(x, Tx)

⇔ φ (p, x) + φ (x, Tx) + 2 〈p− x, Jx− JTx〉 ≤ φ (p, x) + kφ(x, Tx) (2.5)

⇔ φ (x, Tx) ≤ 2
1− k

〈x− p, Jx− JTx〉 .

It follows from (2.4), Lemma 2.9 (5) and (2.5) we obtain

φ(p, x) + φ(x,KrTx) + 2 〈p− x, Jx− JKrTx〉
= φ(p,KrTx)

≤ φ(p, Tx)− φ(KrTx, Tx)

≤ φ(p, x) + kφ(x, Tx)− φ(KrTx, Tx)

≤ φ(p, x) + 2
k

1− k
〈x− p, Jx− JTx〉 − φ(KrTx, Tx),

and then

φ(x,KrTx) + φ(KrTx, Tx)

≤ 2
k

1− k
〈x− p, Jx− JTx〉+ 2 〈x− p, Jx− JKrTx〉

= 2
k

1− k
〈x− p, Jx− JTx〉+ 2 〈x− p, Jx− JTx〉+ 2 〈x− p, JTx− JKrTx〉

=
(

2
k

1− k
+ 2

)
〈x− p, Jx− JTx〉+ 2 〈x− p, JTx− JKrTx〉

=
2

1− k
〈x− p, Jx− JTx〉+ 2 〈x− p, JTx− JKrTx〉

¥
The following Lemmas are crucial for the proofs of the main results in this paper.
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Lemma 2.11 (Alber [1]). Let C be a nonempty closed convex subset of a smooth Banach space E,
x0 ∈ C and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx− Jx0〉 ≥ 0 for all y ∈ C.

Lemma 2.12 (Alber [2]). Let E be a reflexive, strictly convex and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x) for all y ∈ C.

3. Main result

Theorem 3.1. Let E be a reflexive, strictly convex and smooth Banach space such that E and E∗

have the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C be
a closed quasi-strict pseudo-contraction, Θ be a bifunction from C × C to R satisfying (A1) − (A4),
ϕ : C → R be a lower semi-continuous and convex function, and A : C → E∗ be a continuous and
monotone mapping such that Ω := F (T ) ∩GMEP (Θ, A, ϕ) 6= ∅. Define a sequence {xn} in C by the
following algorithm:





x0 ∈ E, chosen arbitrarily,
C1 = C,

x1 = ΠC1(x0),
un ∈ C such that

Θ(un, y) + 〈Aun, y − un〉+ ϕ (y)− ϕ (un) + 1
rn
〈y − un, Jun − JTxn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(xn, un) + φ(un, Txn)
≤ 2

1−k 〈xn − z, Jxn − JTxn〉+ 2 〈xn − z, JTxn − Jun〉},
xn+1 = ΠCn+1(x0),

(3.1)

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly to
ΠΩ(x0).

Proof. The proof is divided into seven steps.
Step 1. Show that Ω is closed and convex.
From step 1. of Zhou and Gao [32], F (T ) is closed and convex and by Lemma 2.9 (4) GMEP (Θ, A, ϕ)

is closed and convex. So, Ω := F (T ) ∩GMEP (Θ, A, ϕ) is closed and convex.

Step 2. Show that Cn is closed and convex for all n ≥ 1.
For n = 1, C1 = C is closed and convex. Assume that Ck is closed and convex for some k ∈ N. For

z ∈ Ck+1, one obtains that

φ(xk, uk) + φ(uk, Txk) ≤ 2
1− k

〈xk − z, Jxk − JTxk〉+ 2 〈xk − z, JTxk − Juk〉

It is not hard to see that the continuity and linearity of 〈 · , Jxk − JTxk〉 and 〈 · , JTxk − Juk〉 allow
Ck+1 to be closed and convex. Then, for all n ≥ 1, Cn is closed and convex.

Step 3. Show that Ω ⊂ Cn for all n ≥ 1.
It is obvious that Ω := F (T ) ∩GMEP (Θ, A, ϕ) ⊂ C = C1. Suppose that Ω ⊂ Ck for some k ∈ N.

For any p ∈ Ω, we have p ∈ Ck. Notice that xk = ΠCk
(x0) and then by Lemma 2.9 we obtain

uk = Krk
Txk. So, it follows from Lemma 2.10 that

φ(xk, uk) + φ(uk, Txk) ≤ 2
1− k

〈xk − p, Jxk − JTxk〉+ 2 〈xk − p, JTxk − Juk〉 .

This means that p ∈ Ck+1. By mathematical induction, Ω ⊂ Cn for all n ≥ 1. Therefore Ω ⊂⋂∞
n=1 Cn =: D 6= ∅

Step 4. Show that lim
n→∞

φ (xn, x0) exists.
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By xn = ΠCnx0 and Lemma 2.12, we have

φ (xn, x0) = φ (ΠCnx0, x0) ≤ φ (w, x0)− φ (w, xn) ≤ φ (w, x0) ,

for each w ∈ Ω ⊂ Cn and for all n ≥ 1. Therefore the sequence {φ (xn, x0)} is bounded.
On the other hand, noticing that xn = ΠCnx0 and xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn, so φ(xn, x0) =

min
z∈Cn

φ(z, x0) ≤ φ(xn+1, x0) for all n ≥ 1. Therefore, φ(xn, x0) is nondecreasing. It follows that the

limit of φ(xn, x0) exists.

Step 5. Show that xn → q as n →∞, where q = ΠDx0.
Since xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn for any positive integer n and by Lemma 2.12, we have

φ (xn+1, xn) = φ (xn+1, ΠCnx0) ≤ φ (xn+1, x0)− φ (ΠCnx0, x0) = φ (xn+1, x0)− φ (xn, x0) .

(3.2)

Letting n →∞ in 3.2, one has φ(xn+1, xn) → 0 as n →∞. Without loss of generality, we can assume
that xn → q weakly as n →∞ (passing to a subsequence if necessary). It is easy to show that q ∈ Cn

for all n ≥ 1. Hence q ∈
∞⋂

n=1
Cn = D. Noticing that φ(xn, x0) ≤ φ(xn+1, x0) ≤ φ(q, x0), we have

(q, x0) ≤ lim inf
n→∞

φ(xn, x0) ≤ lim sup
n→∞

φ(xn, x0) ≤ φ(q, x0)

which implies that φ(xn, x0) → φ(q, x0) as n →∞. Hence ‖xn‖ → ‖q‖. By the property (K) of E, we
have xn → q. From Lemma 2.11, we have

〈xn − y, Jx0 − Jxn〉 ≥ 0 for all y ∈ D.

Hence

〈q − y, Jx0 − Jq〉 ≥ 0 for all y ∈ D.

which implies that q = ΠDx0.

Step 6. Show that q ∈ Ω.
We prove first that {Txn} and {un} = {KrnTxn} are bounded. Indeed, take p ∈ Ω = F (T ) ∩

GMEP (Θ, A, ϕ) ⊂ Cn+1, we have

‖p‖2 − 2 ‖p‖ ‖Txn‖+ ‖Txn‖2

= (‖p‖ − ‖Txn‖)2 ≤ φ(p, Txn)

≤ φ(p, xn) + kφ(xn, Txn)

≤ φ(p, xn) +
2k

1− k
〈xn − p, Jxn − JTxn〉

≤ φ(p, xn) +
2k

1− k
‖xn − p‖ ‖xn‖+

2k

1− k
‖xn − p‖ ‖Txn‖ .

Then

‖Txn‖2 ≤
(

φ(p, xn)− ‖p‖2 +
2k

1− k
‖xn − p‖ ‖xn‖

)
+

(
2k

1− k
‖xn − p‖+ 2 ‖p‖

)
‖Txn‖

≤ M + K ‖Txn‖ = M +
1
2

(2K ‖Txn‖)

≤ M +
1
2

(
K2 + ‖Txn‖2

)
= M +

1
2
K2 +

1
2
‖Txn‖2.

Where M := sup
{

φ(p, xn)− ‖p‖2 + 2k
1−k ‖xn − p‖ ‖xn‖ : n ∈ N

}
and

K := sup
{

2k
1−k ‖xn − p‖+ 2 ‖p‖ : n ∈ N

}
. Thus

‖Txn‖2 ≤ 2M + K2
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for all n ∈ N. Therefore {Txn} is bounded. Note that φ(p,KrnTxn) ≤ φ(p, Txn) for all n ∈ N.
Therefore {un} = {KrnTxn} is also bounded. From xn+1 ∈ Cn+1, one has

φ(xn, un) + φ(un, Txn) ≤ 2
1− k

〈xn − xn+1, Jxn − JTxn〉+ 2 〈xn − xn+1, JTxn − Jun〉 (3.3)

By step 5, we obtain that xn+1 − xn → 0. Taking limit on the both sides of (3.3), we obtain
that φ(xn, un) + φ(un, Txn) → 0 as n → ∞. Noting that 0 ≤ (‖xn‖ − ‖un‖)2 ≤ φ(xn, un), 0 ≤
(‖un‖ − ‖Txn‖)2 ≤ φ(un, Txn) and ‖xn‖ → ‖q‖, it implies that

‖q‖ = lim
n→∞

‖xn‖ = lim
n→∞

‖un‖ = lim
n→∞

‖Txn‖ ,

and consequently

‖Jq‖ = lim
n→∞

‖Jxn‖ = lim
n→∞

‖Jun‖ = lim
n→∞

‖JTxn‖ .

This implies that {J(un)} and {J(Txn)} are bounded. Since E is reflexive, E∗ is also reflexive. So we
can assume that

J(un) → f ∈ E∗

weakly. On the other hand, in view of the reflexivity of E, one has J(E) = E∗, which means that for
f ∈ E∗, there exists xf ∈ E, such that Jxf = f . It follows that

φ(xn, un) = ‖xn‖2 − 2 〈xn, J(un)〉+ ‖un‖2 = ‖xn‖2 − 2 〈xn, J(un)〉+ ‖J(un)‖2

taking lim infn→∞ on the both sides of equality above, we have

0 ≥ ‖q‖2 − 2 〈q, f〉+ ‖f‖2

= ‖q‖2 − 2 〈u0, Jxf 〉+ ‖Jxf‖2
= φ(q, xf ).

Therefore φ(q, xf ) = 0 and consequently q = xf , which implies that f = Jq. Hence

J(un) → Jq ∈ E∗

weakly. Since ‖J(un)‖ → ‖Jq‖ and E∗ has the property (K), we have

‖J(un)− Jq‖ → 0.

Noting that J−1 : E∗ → E is demi-continuous, we have

un → q ∈ E,

weakly. Since ‖un‖ → ‖q‖ and E has the property (K), we obtain that un → q as n →∞. Similarly,
it is not difficult to show that Txn → q as n →∞. From xn → q and the closeness property of T , we
have Tq = q.

Next, we want to show that q ∈ GMEP (Θ, A, ϕ). Define G : C × C → R by G(x, y) = Θ(x, y) +
〈Ax, y−x〉+ϕ(y)−ϕ(x) for all x, y ∈ C. It is not hard to verify that G satisfies conditions (A1)−(A4).
It follows from un = KrnTxn and (A2) that

1
rn
〈y − un, Jun − Jxn〉 ≥ G(y, un) for all y ∈ C.

By using (A4) and lim infn→∞ rn > 0, we obtain 0 ≥ G(y, q) for all y ∈ C. For t ∈ (0, 1] and y ∈ C,
let yt = ty + (1− t)q. So, from (A1) and (A4) we have

0 = G(yt, yt) = G(yt, ty + (1− t)q) ≤ tG(yt, y) + (1− t)G(yt, q) ≤ tG(yt, y).

Dividing by t, we have

G(yt, y) ≥ 0 for all y ∈ C.

From (A3) we have 0 ≤ limt→0 G(yt, y) = limt→0 G(ty + (1− t)q, y) ≤ G(q, y) for all y ∈ C, and hence
q ∈ GMEP (Θ, A, ϕ). So, q ∈ F (T ) ∩GMEP (Θ, A, ϕ) = Ω.

Step 7. Show that q = ΠΩx0.
It follows from steps 5 and steps 6 that

φ(q, x0) ≤ φ(ΠΩx0, x0) ≤ φ(q, x0),
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which implies that φ(ΠΩx0, x0) = φ(q, x0). Hence, q = ΠΩx0. Then {xn} converges strongly to
q = ΠΩx0. This completes the proof. ¥

If T is closed quasi-nonexpansive, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.2. Let E be a reflexive, strictly convex and smooth Banach space such that E and E∗

have the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C
be a closed quasi-nonexpansive mapping, Θ be a bifunction from C × C to R satisfying (A1) − (A4),
ϕ : C → R be a lower semi-continuous and convex function, and A : C → E∗ be a continuous and
monotone mapping such that Ω := F (T ) ∩GMEP (Θ, A, ϕ) 6= ∅. Define a sequence {xn} in C by the
following algorithm:





x0 ∈ E, chosen arbitrarily,
C1 = C,

x1 = ΠC1(x0),
un ∈ C such that

Θ(un, y) + 〈Aun, y − un〉+ ϕ (y)− ϕ (un) + 1
rn
〈y − un, Jun − JTxn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(xn, un) + φ(un, Txn) ≤ 2 〈xn − z, Jxn − Jun〉},
xn+1 = ΠCn+1(x0),

where rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly to ΠΩ(x0).

If E = H is a Hilbert space, then Theorem 3.1 is reduced to the following corollary.

Corollary 3.3. Let H be a Hilbert space. Assume that C is a nonempty closed convex subset of H. Let
T : C → C be a closed quasi-strict pseudo-contraction, Θ be a bifunction from C × C to R satisfying
(A1) − (A4), ϕ : C → R be a lower semi-continuous and convex function, and A : C → H be a
continuous and monotone mapping such that Ω := F (T ) ∩ GMEP (Θ, A, ϕ) 6= ∅. Define a sequence
{xn} in C by the following algorithm:




x0 ∈ H, chosen arbitrarily,
C1 = C,

x1 = ΠC1(x0),
un ∈ C such that

Θ(un, y) + 〈Aun, y − un〉+ ϕ (y)− ϕ (un) + 1
rn
〈y − un, un − Txn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : ‖xn − un‖2 + ‖un − Txn‖2
≤ 2

1−k 〈xn − z, xn − Txn〉+ 2 〈xn − z, Txn − un〉},
xn+1 = ΠCn+1(x0),

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly to
ΠΩ(x0).

If A = 0 and ϕ = 0, then we have the following corollary.

Corollary 3.4. Let E be a reflexive, strictly convex and smooth Banach space such that E and E∗

have the property (K). Assume that C is a nonempty closed convex subset of E. Let T : C → C be a
closed quasi-strict pseudo-contraction, Θ be a bifunction from C ×C to R satisfying (A1)− (A4) such
that Λ := F (T ) ∩ EP (Θ) 6= ∅. Define a sequence {xn} in C by the following algorithm:





x0 ∈ E, chosen arbitrarily,
C1 = C,

x1 = ΠC1(x0),
un ∈ C such that Θ(un, y) + 1

rn
〈y − un, Jun − JTxn〉 ≥ 0 ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(xn, un) + φ(un, Txn)
≤ 2

1−k 〈xn − z, Jxn − JTxn〉+ 2 〈xn − z, JTxn − Jun〉},
xn+1 = ΠCn+1(x0),

where k ∈ [0, 1) and rn > 0 for all n ∈ N with lim infn→∞ rn > 0. Then {xn} converges strongly to
ΠΩ(x0).
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Corollary 3.5 (Zhou and Gao [32, Theorem 3.1]). Let E be a reflexive, strictly convex and smooth
Banach space such that E and E∗ have the property (K). Assume that C is a nonempty closed convex
subset of E. Let T : C → C be a closed quasi-strict pseudo-contraction. Define a sequence {xn} in C
by the following algorithm:





x0 ∈ E, chosen arbitrarily,
C1 = C,

x1 = ΠC1(x0),
un ∈ C such that

Cn+1 =
{

z ∈ Cn : φ(xn, Txn) ≤ 2
1−k 〈xn − z, Jxn − JTxn〉

}
,

xn+1 = ΠCn+1(x0),

(3.4)

where k ∈ [0, 1). Then {xn} converges strongly to ΠΩ(x0).

Proof. Put Θ = 0, A = 0, ϕ = 0 and rn = 1 for all n ≥ 1 in Theorem 3.1. Then, Krn = ΠC for all
n > 1. So, un = ΠCTxn for all n > 1(Note that x1 = ΠCx0). Since xn = ΠCnx0 ∈ Cn ⊂ C and then
Txn ∈ C for all n > 1, so we have un = Txn for all n > 1. Thus φ(xn, un) + φ(un, Txn) = φ(xn, Txn)
and JTxn − Jun = 0 for all n ≥ 1. For this reason, (1.4) is a special case of (3.1). Applying Theorem
3.1, we have the desired result. ¥

Remark 3.6. It is well known that every uniformly convex and uniformly smooth Banach space
satisfies all assumptions of Banach space in Theorem 3.1. On the other hand, in general, Musielak-
Orlicz space [9] need not to be uniformly convex or uniformly smooth, however, for any strictly convex,
reflexive and smooth of this space satisfies all assumptions of Banach space in Theorem 3.1. It can be
written as the following diagram:

reflexive, strictly convex, smooth Banach spaces with the property (K)
⇑ 6⇓

uniformly convex and uniformly smooth Banach spaces .

For this reason, Theorem 3.1 can be viewed as a more general one and can be applied widely in both
the fixed point problems and the equilibrium problems.
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