บทคัดย่อ

รหัสโครงการ: MRG5380252

ชื่อโครงการ: การศึกษาสมบัติความเป็นอีลาสติกของพอลิเมอร์หลอมเหลวขณะ ใหลในหัวขึ้นรูปวงแหวน แบบหมุนในกระบวนการผลิตแบบอัดรีด

ชื่อนักวิจัย และสถาบัน: ผศ.คร. นเรศ อินต๊ะวงค์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา128 ถนนห้วย แก้ว ต. ช้างเผือก อ. เมือง จ. เชียงใหม่

อีเมล์: naret i@yahoo.com

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

งานวิจัยนี้เป็นการออกแบบและจัดสร้างหัวขึ้นรูปวงแหวนแบบหมุนเพื่อใช้ในการศึกษาสมบัติ การใหล การเปลี่ยนแปลงของค่าความคันตกคร่อม และพฤติกรรมการบวมตัวของ HDPE หลอมเหลวใน เครื่องอัครีคแบบเกลียวหนอนเคี่ยว ผลการทคลองพบว่าค่าความคันตกคร่อม ที่ตรวจวัคได้ในระบบหัว ์ขึ้นรูปวงแหวนแบบปกติ (0 rpm) มีค่าเพิ่มขึ้นตามการเพิ่มขึ้นของอัตราเฉือนและมีค่าลดลงตามการเพิ่ม อุณหภูมิทดสอบ ในขณะที่ค่าความดันตกคร่อมที่ตรวจวัดได้ในระบบหัวขึ้นรูปวงแหวนแบบหมุนมี แนวโน้มลดลงอย่างต่อเนื่องตามการเพิ่มความเร็วรอบในการหมุนหัวขึ้นรูป โดยตรวจพบได้อย่างชัดเจน ในสภาวะการทดสอบที่อุณหภูมิต่ำและที่อัตราเฉือนในช่วง 22 $\,{
m s}^{\!\scriptscriptstyle -1}\,$ ถึง 29 $\,{
m s}^{\!\scriptscriptstyle -1}\,$ ซึ่งพบว่าค่าเปอร์เซ็นต์การ ลดลงของความดันตกคร่อมเพิ่มขึ้นสูงสุดถึง 45 % การลดลงของค่าความดันตกคร่อมในระบบหัวขึ้น รูปแบบหมุนส่งผลกระทบโดยตรงกับสมบัติการใหลและสมบัติการบวมตัวการบวมตัวแบบเส้นผ่าน ศูนย์กลาง (Diameter Swell) และการบวมตัวแบบความหนา (Thickness Swell) อย่างมีนัยสำคัญ กล่าวคือ ค่าความเค้นเฉือนมีแนวโน้มลดลงตามการเพิ่มความเร็วในการหมุนหัวขึ้นวงแหวนสูงสุด ประมาณ 43%ที่ความเร็วการหมุนหัวขึ้นรูป 70 rpm นอกจากนี้ยังพบว่าการบวมตัวแบบ Diameter Swell มีค่าลดลงเมื่อถูกอัดรีดผ่านหัวขึ้นรูปแบบหมุนในขณะที่การบวมตัวแบบ Thickness Swell มีค่าเพิ่มขึ้น ตามการเพิ่มความเร็วการหมุนหัวขึ้นรูป ผลการวิจัยดังกล่าวนี้ทำให้เห็นแนวทางของการควบคุมขนาด ของชิ้นงานที่ผลิตจากหัวขึ้นรูปแบบวงแหวน เช่นกระบวนการผลิตแบบอัดรีคเป่า (Extrusion Moulding) หรือ การผลิตท่อ (Pipe Extrusion Process) โดยใช้เทคนิคการหมุนหัวขึ้นรูป ซึ่งสามารถปรับ ขนาดของแท่งพาริสันได้ทั้งในด้านความหนาและขนาดเส้นผ่านศูนย์กลางภายนอกได้โดยไม่จำเป็นต้อง ปรับพารามิเตอร์สภาวะการผลิตใด ๆ ในเครื่องอัครีคพอลิเมอร์

คำหลัก: ค่าความคันตกคร่อม พอถิเมอร์หลอมเหลว การบวมตัวแบบเส้นผ่านศูนย์กลาง การบวมตัวแบบ ความหนา หัวขึ้นรูปแบบวงแหวน การออกแบบหัวขึ้นรูป

-2-

Abstract

Project Code: MRG5380252

Project Title: Investigations into elastic behavior of flowing polymer melt in the annular rotating die

of extrusion processes.

Investigator: Asst. Prof. Dr. Naret Intawong Department of industrial engineering, faculty of

engineering, rajamangala university of technology lanna 128 Huay Kaew Road,

Chiang Mai, 50300, THAILAND.

E-mail Address: naret i@yahoo.com

Project Period: 2 Years

Abstract:

This research concerns with design and construction of annular rotating die used for studying

rheological property, pressure drop, and swell behavior of melt HDPE in single screw extruder. Results

of the experiment showed that pressure drop found in normal annular die (0 rpm) increased with the

increase of shear rate, but decreased with the increase of tested temperature. On the contrary, pressure

drop found in annular rotating die tended to decrease steadily with the increase of rotating speed.

Particularly at low tested temperature and shear rate of 22 s⁻¹ to 29 s⁻¹, the decreasing percentage of

pressure drop rose up to 45%. The decrease of pressure drop in annular rotating die had significant

direct effect on rheological property and both Diameter and Thickness swell behaviors. That is, shear

stress tended to decrease with the increase of rotating speed, up to 43% at 70 rpm. In addition, it was

also found that Diameter Swell decreased when pressed through rotating die, whereas the Thickness

Swell increased with the increase of rotating speed. These results could be utilized for the control of

work produced with annular die, for example, extrusion blow moulding or pipe extrusion process using

rotating die. The size of parison bar could be adjusted both in thickness and outer diameter, with no

need to change any production parameter of the polymer extrusion process.

Key words: Pressure Drop, Polymer Rheology, Diameter Swell, Thickness Swell, Single Screw

Extruder, Die Design.