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Abstract:

Riemann zeta function does not satisfy any algebraic differential difference
equations with complex coefficients , that is , Riemann zeta function is a differentially
transcendental function. There are some questions about this property , for example,
1. Are there other differentially transcendental functions?

2. How can we conclude about the quantitative behavier of an arithmetic function in an
algebraic differential difference equations? This quantitative behavier is called measure
of independence .

The two main proposes of this work are the answers of the above questions,
that is,

1. find the necessary and sufficients conditions for differentially transcendental functions,

2.find the measure of independence of differentially transcendental functions.
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arithmetic function , Riemann zeta function , independence, quantity measure,

differential transcendence
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1. Introduction

Denote by (A, +, ) the unique factorization domain of arithmetic functions equipped with addi-
tion and convolution (or Dirichlet product) defined by

(f+2m):=fm)+gm, (Frm=) fHgl) (f.geA neN),

ij=n
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and write f* = f x---x f, where the right-hand expression is a convolution of i € N terms. The con-
volution identity, I, is defined by I(1) =1 and I(n) =0 for all n > 1. It is well known [17, Chapter 4]
that (A, +, *) is isomorphic to (D, +, -), where

e¢]

D .= :D(s) = Z f}s?) }

n=1

is the ring of formal Dirichlet series equipped with addition and multiplication, through the isomor-
phism f <> D; the addition in both domains is the customary addition while the multiplication of
formal Dirichlet series corresponds to the convolution of the appropriate arithmetic functions appear-
ing as coefficients of the two formal Dirichlet series. For f € A, its valuation ([17, Chapter 4], [16]) is
defined as

where O(f) is the least integer n for which f(n) # 0. Correspondingly, for a formal Dirichlet series
D(s) := 2@1 f(m)/n®, its valuation is defined as

IDI=Ifl,

where the same valuation symbols are used for convenience sake. With such valuation, the isomor-
phism (A, +, x) < (D, +, ) is indeed an isometry. Because of this isometry, we often refer to each
domain interchangeably.

A set of arithmetic functions fi,..., fr is said to be algebraically dependent over C or C-
algebraically dependent if there exists

PIX1,....Xrli= Y aii X} - X e ClX1,.... X1\ {0}

such that
§ : 01 *ip __
ail ..... ir 1 Kook rrzov

and is said to be C-algebraically independent otherwise. If the polynomial P is homogeneous of
degree one in each variable, we say that f1,..., f; are C-linearly dependent and C-linearly indepen-
dent otherwise. The first investigation of dependence of arithmetic functions was due to Carlitz [3]
in 1952. Popken [9] in 1962 considered the problem of algebraic dependence in a more general set-
ting of functions defined over a unique factorization semigroup with values in a ring. His main results
give necessary and sufficient conditions for algebraic dependence by analyzing the Taylor expansion
of the polynomial defining the dependence. In subsequent papers [10-12], he made applications to
Dirichlet series and multiplicative functions. In the direction of Dirichlet series, Popken [13] gave a
measure of the so-called differential transcendence of certain Dirichlet series closely connected to the
Riemann zeta function, ¢ [8]. More recent works can be found in [18], where algebraic independence
of Dirichlet series and transcendence over C[¢] are considered. The works of Popken mentioned above
were simplified and sharpened in [6].

In the present work, our main objectives are first to derive some algebraic independence crite-
ria and then to prove general quantitative results about measure of such independence of arithmetic
functions which simultaneously implies corresponding results for formal Dirichlet series. We also ap-
ply our results to a number of interesting cases in particular to the formal Fibonacci and Lucas zeta
series.
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To do so, we require certain related concepts which we briefly recall now. A derivation d [16,17]
over A is a map : A — A satisfying

d(f x g =df x g+ f *xdg, d(c1f +c28) =c1df +c2dg,

where f,g € A and cq, cy € C. Derivations of higher orders are defined in the usual manner. Two
typical examples of derivation are

e the p-basic derivation, p prime, defined by

dpf)(n) = f(np)vp(np) (MeN),

where v, (m) denotes the exponent of the highest power of p dividing m,
e the log-derivation defined by

(drf)(n)= f(n)logn (neN).

Although, there are arithmetic sequences f(n) for which the corresponding Dirichlet series D(s) :=
>, f(n)/n® are divergent, through the isometry between A and D, it is legitimate to define the for-
mal derivation d of (formal) Dirichlet series via the derivation d of the associated arithmetic function
as

iD=y af )

ns

n=1

Thus, the formal differentiation of the formal Dirichlet series, D(s), with respect to the variable s, i.e.,

o0
—f()logn
!/ —
D)= ——
n=1
corresponds to the (negative) log-derivation —d; of the associated arithmetic function f, and the
p-basic derivation d, over A corresponds to the formal p-basic derivation d, over D defined by

o0

apD(s)zz(dp’f#.
n=1

For convenience, in the sequel we use the same derivation symbol d for both the domains A and D.
Our investigation concerning Dirichlet series will be formal throughout, noting that should the Dirich-
let series involved converge, the results so obtained are then valid (analytically) and coincide with
results proved for convergent Dirichlet series in the domain of convergence.

2. Some criteria

To state some preliminary results, we need another notion. For f € A, f(1) > 0, the Rearick loga-
rithmic operator of f (or logarithm of f [14,15,7]), denoted by Log f € A, is defined via

(Log f)(1) =log f (1),
_ —1(n _ =
(Logf)(n)—logn%;f(k)f <k)10gk_logn(de*f ) (> 1),
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where d; denotes the log-derivation. For h € A, the Rearick exponential Exp h is defined as the unique
element f € A, f(1) > 0 such that h =Log f.
We start with some simple results.

Proposition 2.1. Let f € A\ {0}.

1. Then f is x-algebraic over C if and only if f = cI for some constant c € C.

2. Assuming f (1) > 0, then f and Log f are C-algebraically dependent if and only if f = cI for some con-
stant c € C.

3. Assuming f(1) € R, then f and Exp f are C-algebraically dependent if and only if f = cl for some
constant ¢ € C.

Proof. We give only a proof for assertion 1 as those for the other two assertions are similar.
The sufficiency part is trivial. To prove the necessity part, assume that f satisfies an algebraic
equation of the form

arf* 4. +a1 f +al =0,

with least degree k > 1 and a;, # 0. Taking the log-derivation, we get

(kakf*k_l + - +a11) xdp f=0.
By the minimality of k, we must have d; f = 0 which is the result. O
Shapiro-Sparer’s criterion for C-algebraic dependence of arithmetic functions in [18] states that:

Theorem 2.2. Let f1,..., ft € Aand pq,..., pt be distinct primes with corresponding p-basic derivations
di (:=dp,),...,dt :=dp,). If the Jacobian relative to dy, ..., d;

difr - dih
J=J(f1,....fesdr, ..., do) =] - . | #0,
defi - defi
where the multiplication in the determinant expansion is interpreted as convolution %, then f1,..., f; are

C-algebraically independent.

Evaluating the Jacobian at n € N in Theorem 2.2, we get

J)=> e (i fiy x -+ xdi fi)(n),
@

where the sum is taken over all possible permutations (i) = (i1, ..., i) of (1,...,t) with

1 if (i) is an even permutation,

ey = .
@ {—1 otherwise.

Consequently, writing vy, ..., v for vy, ..., vp,, respectively, we have
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Jy=>"eqy > difi,(ki)--de fi, (ke)

() ki---kg=n

= > > ewfikipr)-- fi,(kepyvikipr) - ve(kepe)

kq---ke=n (i)
fitkip1) -+ fikepr)
= > wvikip)---velkepr) | SN
ky-ke=n fttkip1) -+ fe(kepe)

which yields

Corollary 2.3. Let f1, ..., ft be arithmetic functions and p1, ..., pt be distinct primes with corresponding p-
basic derivations dy (:=dp,), ..., d: (:=dp,) and corresponding p-exponent functions vi (:= Vp,), ..., vt (=
Vp, ). If there exists n € N such that

fitkip) -+ fi(kepe)
> vikipy)-vekepr) | L |#0,
ki-ke=n fetkip1) -+ fe(kepe)

then f1, ..., fr are C-algebraically independent.
Specializing the values of n, we deduce the following simple tests of algebraic independence.

Test I. The simplest test is obtained by taking n =1 in Corollary 2.3. If

fip) - fi(pe)
s - |#o
fttpr) - fe(pe)

then f1,..., f; are C-algebraically independent.
An immediate consequence of Test I is the following convenient test of algebraic independence.

Corollary 24. Let f1,..., fr € A. If there are t distinct primes p1,..., pr such that the set of vectors
{(f1(pD), ..., ft(pi)): i =1,...,t}is C-linearly independent, then f1,..., f; are C-algebraically indepen-
dent.

Test II. Taking n = p1, if

fipd fip2) -+ fi(po) fitpr) fi(pip2) -+ fi1(po)

02 + o

0D fp) - oo | L fpy f(ip) o fipo)

filpy) fip2) -+ fi(p1ipe)
o .

’

fpy fp2) - fipipo)

then f1,..., f; are C-algebraically independent.
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Test III. Taking n = g, prime distinct from p1, ..., pe, if

fiapv) fi(p2) -+ fi(p) fitp1) fi@p2) - fi1(pr)

0 + o

fl@n)  filw) - felo | | fp) fi@p) - flpo)
fitp) fi(p2) -+ f1(qpe)

+

’

fp) fip2) - felapo)

then fq,..., ft are C-algebraically independent.

Test IV. Taking n = p?, if

fipd fip) - fipo)| | fipy) fir3p2) - fi(pe)

03 + +oe

0D fi) - Fpol 1RG0 f@2p) - fipo)
fitpr) fip2) -+ f1(p?po)

+

fep1)  fep2) -+ fe(pipo)
fied) fipip) -+ fi(pe) fipd) fip) - fi(pipo)
+2 : : +..-42 : :
ft®®  fepip2) - fe(po) ft®®  fep2) - fe(p1po)

fitp1)  fi(pip2) fi(pip3) - fi1(pe)

fp) flmipn) fepips) - fe(po)
fitp1) fi(p2) -+ fi(pt=2) fi(p1pt=1) fi1(p1pt)

fpD fi2) - fipee2) Fipipeet)  fe(p1pe)

then fq,..., ft are C-algebraically independent.
Let us now look at some examples. Let {F;},>1 be the sequence of Fibonacci numbers defined by
Fi=F; =1, Fry2=Fpt1+Fp (neN).

The six formal Fibonacci zeta series are defined as

F5 ns FS ns
n=1 n=1 n=1 <M n=1
00 00 oy 00 . in-1 00
LT SERE o L RPN S 3P i
n=1 " 2n—-1 n=1 n=1 n n=1
® _1yn—1 o 00 4ipn—1 00
Fr(s) = Z ( ;2 _ Z fengn)’ Fr(s) = Z (FSU _ Z fongn)
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Let {Ln}n>1 be the sequence of Lucas numbers defined by
Ly=1, Ly =3, Lny2 =Lpy1+Ly (neN).

The six formal Lucas zeta series are defined as

(0,0 o0 (0.0] o0
1 £t (n) 1 ¢ (n)
L£r(s):= E I nea LE(s):= Z - = ens )
n=1 " n=1 n=1"2n  p=1
0 0 0 o0
1 ¢+ (n) ~ (=1 = (n)
ﬁj(s)_zLS - 0s ’ [’(S)::Z s _Z s
Lo o M _ Ly —; N
n=1 n=1 n=1 n=1
00 -1 o0, 0 n—1 0
_ (=" Lo (n) _ (1) ¢, (n)
Lo@=) —p—=) "5 LO=) ] s
n=1 2n n=1 n=1 2n—-1 n=1

These twelve (formal) Fibonacci and Lucas zeta series were considered in [5] in order to prove that
they are hypertranscendental. We now establish some of their dependence relations.

Proposition 2.5.

1. Three functions in each of the following sets of arithmetic functions are C-algebraically independent:

PARYARY P SRV ARY AR P SRV ARY R0 P N VAR AR P
AN A Pl IS A A ol SR Y Pl P
75 S P O I A A o OO S it ot 1 LD B OO F SR Py o &
U700 A P IR U P A Pl SR Al Pt
{F 0}
2. Wehave f* = fr+ ff, fT=2f—f~, f~=fr—ft, ft=f"+2f;, ie., three functions in each

of the following sets are C-linearly dependent

A P S TR A P A U8 A A il PR A Y A

Proof. The results of assertion 2 are clear, so we need only check those in assertion 1. We only
provide two of them using different tests (Tests I and III).
By Test III, we have

ff2=Fy) fr@Gx11) f*(5=Fs)
f&@=F3) fFBx11) [fF(5=Fs)
fe@=F) feBx11) f;(5=Fs)

ff2x11) f*G=Fs) [T(5=Fs)
fE@2x11) fF@=Fs) [ (5=Fs)
fe@x11) fe3=Fs) fe(5=Fs)

+

ftf@2=F3) ftT(B=Fs) fT(5x11=F) 1 1 1
+|fr@=F3) fFfG=Fs) f(Gx11=Fy)|=0+0+[0 1 1[=2+#0,
fr@=F3) f;B3=Fs f7(5x11=F) 0 -1 1

ie. f*, fi, f; are C-algebraically independent.
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By Test I, we have

ff2=F3) f*G=Fs) [T(5=Fs) 1 11
ff@=F3) fFfG=Fs) [fF(5=Fs5)|= 1 01=2#0,
fo @=F3) fyB=Fs) fy(5=Fs) -1 0 1

ie. f+, f;r, f; are C-algebraically independent. O
The situation for formal Lucas zeta series is much the same and we merely state the result.

Proposition 2.6.

1. Three functions in each of the following sets of arithmetic functions are C-algebraically independent:

{e+,e+,e—},{z+,£+,e—},{£+,£j,z;},{z+,zj,£;},
0

{er e e}, {ﬂ 2 RIAN NS
o I (A A A B TR N O B (2B A O N (R RN N
lef. e, e },{z+ e ) el e e )
fe e ).

2. We have €T = ¢f + ¢}, ¢t =2¢f — €7, ¢~ =¢f —¢f, T = ¢~ +2¢f, i.e, three functions in each of
the following sets are C-linearly dependent

s e » 0 s ~0 0 s %0 *» e

fetoed, ef Y et ef e b {em el efy et e et ).

3. Three functions with at least one from each of the two sets {f*, f;*, fo, f~, fo~, f;} and {€*, ¢}, ¢F,
=, 4, , £, } are C-algebraically independent.

3. Measure of algebraic independence
We start with an auxiliary result whose proof resembles that of [6, Theorem 2].

Lemma3.l.Let f1,..., fre Aand P(X1,..., X;) € C[Xq, ..., X;]1\{0}. Fort =1, ..., r, define the following
formal Dirichlet series

F JoP F
Dt<s>=th,ff)’ P<D1,...,Dr>=2$’ (DD =Y T,

s 0X ns
n>1 n=1 t n=1
Then for each n € N and for each prime p, we have

F(pn)vy(pn) = ZZf] pk)FJ< )vp<pk>, (3.1)

j=1 kin

F(n)logn_ZZfJ(k)FJ( >logk (3.2)

j=1 kin

where the Dirichlet series and their operations are considered formally.
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Proof. For each prime p, let d =d, be its p-basic derivation. Through the isometry A < D, the
correspondence of p-basic derivation in both domains and the fact that a product of formal Dirichlet
series is isomorphic to a convolution of arithmetic functions, we formally have

ZM=ZCIZE”) —dP(D1, ... r)_ZdD] KL R

n>1 n? n>1 9X;
dfj(n) Fj(n) df; (k)F (%)
—z(z )y )y 3 3 DO
n>1 n>1 j=1n>1 kin
:ZZZ fj(pk)an(s%)Vp(pk). (3.3)
n>1j=1 kin

Analytically, Eq. (3.3) is true only if the two Dirichlet series on the left-hand side converge absolutely,
and this might not be the case for certain sequences f;, Fj € A. However, the above proof is treated
formally in the sense that it holds true for formal Dirichlet series and formal operations.

The relation (3.1) follows from equating the terms with n > 2. The relation (3.2) follows in the
same manner by taking log-derivation and equating the terms withn>2. 0O

Our main result reads:

Theorem 3.2. Let P(X1,..., X;) € C[X1,..., Xr]\ {0} be of total degree degP = g. Fort =1, ...,r, define
the following formal Dirichlet series

F aP F
Dt(s):zf;(?), P(D1,...,Dr)=z (n)’ a—Xt(Dl’---’DT):Z t(n)‘

ns ns
n=1 n=1 n=1

Let {p1 < p2 < p3 < --- < pr} be a set of primes. If the set of vectors {(f1(pi),..., fr(pi)): i=1,...,r}is
linearly independent over C, then

|P(D1,....Dp)| = pr®
where the Dirichlet series, their derivatives and operations are considered formally.
Proof. If deg P =0, then clearly |P(Dq,...,D;)|=1.1If degP =1, then
P(Xla 7XT) :a01+a1X1 + - +aTXI"
where all the coefficients aj (j=1,...,r) do not vanish simultaneously. Equating coefficients, we get

F(pj) =a1 fi(pj) +---+arfr(pj).

Since the set of vectors {(fi1(pj),..., fr(pj)): j=1,...,r} is linearly independent over C, then at
least one of the values F(p1), ..., F(p;) must be non-zero, which renders

[P(D1, ..., Dp)| = p; !

Now proceed by induction on deg P. Let P be of total degree g + 1 > 2, and assume that the asser-
tion has already been proved for polynomials of degree < g. Consider the polynomials dP/dX; (t =
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1,...,1), which are all of degree < g. Unless each dP/dX; vanishes identically, then by induction we
have

8P(D Dy)|>p ¢
aXt IEEEER) r /pr )

which implies that not all of the p# vectors
{(F1(D), ..., Fr(D), (F12), ..., Fr (), ..., (F1(pF), ..., Fr (P}))} (34)
can be a zero vector. Let (F{(m), ..., Fr(m)) be the first non-zero vector in the sequence (3.4) so that
(Fl(d),...,Fr(d)) =(,...,0) ford=1,2,...,m—1.
By the minimality of m and the result of Lemma 3.1, we get

F(pm)v(pm) = fi(p)F1(m) +--- + fr(p)Fr(m).

Since the set {(f1(pj),..., fr(pj)): j=1,...,r} is linearly independent over C, among the r values
of F(pym), ..., F(pym) at least one must be non-zero. This yields

|P(D1, cee Dr)| > (mpr)—l > (Prg+1)_1_ o

As a simple example, we make quantitative one of the algebraic independence results of Proposi-
tion 2.5. Taking the first three primes 2 = F3, 3 = F4, 5 = F5. As seen in the proof of Proposition 2.5,
part 1, the set

{(Ff@). 5@, £ @), (FF3). £ B). 5 3). (FF ). £55). f5 (5)}
is C-linearly independent. By Theorem 3.2, we have
|P(FH 7 7 )| 2578,
for any P(Xq, X2, X3) € C[X1, X2, X3]\ {0} of total degree g.

For a more complex example, let us note that the four Lucas zeta functions ¢, ¢, ¢, ¢, are
algebraically independent over C because by Test I, we have

(t3=1y) (+(7=1Ly) +(A1=Ls) (T(29=Ly) 1 1 1 1
CB=l) (T=Ly (1=l @=ly|_|-1 -1 1 1] g,
63=1Ly) ¢ (7=Ly) £;(11=Ls) €, (29=L7) 1 =10 0 :
63=1Ly) € (7=Ly) £;(11=Ls) € (29=Ly) 0 0 1 -1

By Theorem 3.2, we have
|P(Ct, L7, L;,L7)] >2975,
for any P(Xq, X2, X3, X4) € C[X1, X3, X3, X4] \ {0} of total degree g.

Theorem 3.2 enables us to derive a measure of the so-called differential transcendence of formal
Dirichlet series encompassing the special case of the Riemann zeta function.
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Corollary 3.3. Let D(s) = Z@l fmn= eDand P(Xo, ..., X;) € C[X1,..., X:]\ {0} be of total degree g.
Ifthereis aset of r + 1 primes {p1 < --- < pr+1} such that f(p;) #0(@{ =1,...,r+ 1), then

[P(D.D",....D7)| > (p5,,) "
where the Dirichlet series, their derivatives and operations are considered formally.

Proof. Formally differentiating the Dirichlet series with respect to s for j € N times, we get

D(j)(s) — Z f(n)(_—slogn)]

n
n=1

For each i € {1,...,r+ 1}, since f(p;)(—logp;)? # 0, the determinant

f(p1) f(p)(=logp1) -~ f(py)(—logp1)"
fre1)  f(pr+0)(=logpry1) -+ f(pr+1)(—logpry1)”
1 (=logp1) --- (—logpy)"
=f(p1) - fpry1) | : #0,
1 (=logprt1) --- (=logpry1)’

implying that the set of vectors

{(f(p])’ vy f(pr+1))s (_f(pl)logpl’ ERE _f(pr—l—l)lngr—l—l), ceey
(=f(pndogp1), ..., —f(pr+1)(og pr1)')}

is C-linearly independent. The assertion now follows from Theorem 3.2. O
Applying the result of Corollary 3.3 to the formal Riemann zeta series, we get a nice measure
IP(2(). ¢/ (5),....c 7)) = p, 5.
for any P(Xo, ..., Xr) € C[X1,..., Xr]\ {0} of total degree g.
The condition of linear independence at primes in Theorem 3.2 can be relaxed at the expense of

an extra condition, as we show next.

Theorem 3.4. Let P(X1,..., X;) € C[Xq,..., X;]\ {0} be of total degree g and let

F
D@:Zﬁw,rw%wm=253

N

n>1 n>1
oP F¢(n)
—(D1,...,Dy) = t=1,...,1).
ax; D1 n=> — ( )
n>1
Assume that there are a set of r primes {p1 < p < --- < py} and a set of r positive integers {nq, ..., n,} such

that

fe(pini) 20 but fi(pik) =0 for1<k<n;(t=1,...,r;i=1,...,71).
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If the vectors {(f1(pini), ..., fr(pin;)); i=1,...,r} are C-linearly independent, then

|P(Dy,...,Dp)| > M; %,

where M1 = max{pini, ..., psn;}, and the Dirichlet series, their derivatives together with operations are con-
sidered formally.

Proof. All the Dirichlet series, their derivatives and operations are formally treated here. If deg P =0,
then |P(D1,...,D;)|=1.1f degP =1, then

.
P(D1.....D)=ao+ ) a:D:
t=1

with not all g;’s vanishing simultaneously. Now

Z F:S”l) =aO+ZZatf;(5n)-

n=1 n>1t=1
Then
.
F) =) afem) (n>2).
t=1
Since the vectors {(f1(pini), ..., fr(pin;)); i=1,...,r} are C-linearly independent and not all a;’s are
zero, at least one of the values F(piny),..., F(p:n,) must be non-zero yielding

|P(D1,...,Dp)| =M.
Assume that deg P =g + 1 > 2 and for any polynomial Q of degree d < g, we have
|Q(D1,...,Dp)| =M.

For each t=1,...,r, if 9P/0X; =0, then |0P/3X:(D1,...,D;)| =0, while if 0P/3X; # 0, we have
|dP/3X¢(D1, ..., Dy)| > M ®. Consequently, not all of the M$ vectors

[(Fi(D),.... F (D), (F1Q), ..., Fr(2), ..., (F1(M5), ..., F;(M{))}

can be zero vector. Let (F;(m), ..., F-(m)) be the first non-zero such vector. Then for t=1,...,r,
1<m<M§, F(d)=0, for1<d<m.
By Lemma 3.1 and the minimality of m, for eachi=1,...,r, we have

F(pinim)vp, (pinim) = vp, (pin;) Z fe(piny) Fr(m)
t=1
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with at least one F;(m) # 0. Since the vectors {(fi(pini),..., fr(pini)); i=1,...,r} are C-linearly
independent, at least one of the values F(pinim), ..., F(p;n,m) must be non-zero. Thus,

1 1
‘P(Dl»---,Dr)| = W Z W

A counterpart of Corollary 3.3 is:
Corollary 3.5. Let D(s) = Zn>1 fmn=S eDand P(Xo, ..., X;) € C[X1,..., X:]\ {0} be of total degree g.

If there are a set of r + 1 primes {p1 < p2 < --- < pr+1} and a set of r 4+ 1 positive integers {nq, ..., ny11}
such that

f(pini) #0 and f(pik)=0 for1<k<n;(i=1,...,r+1),

then

|P(D,D',...,DV)| > M, %,
where My = max{pini, ..., pr+1nr+1}, and the Dirichlet series, its derivatives and operations are considered
formally.

Proof. Differentiating formally with respect to s, we have

DU (5 =y T e e,

n>1

and since

f(pin)(=logpini)! #0,  f(pik)(=logpik)) =0 (iefl,...,r+1}),

we see that the determinant

f(pin) f(pin1)(—=logpiny) f(piny)(=logpiny)”
f(prsnr+1)  f(preanrs)(—log proane+1) -+ f(DPre1nr41)(—log proyinry1)”
1 (=logpin) -+ (=logpim)’
= f(pin) -+ f(Preanr1) | : #0.
1 (=logpri1nry1) -+ (—logpreanryr)’

This implies that the vectors

(f(pin1), ..., f(pre1nr41)), (—F(pinp)log piny, ..., — f(Pry1nry1) 10g Proanegr), ...,
(—=f (i) dogpiny)’, ..., — f(Preanrp)(og prynrs1))

are C-linearly independent. By Theorem 3.4,

|P(D,D,.... D) >M%. O
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In connection with the Jacobian, the result of Shapiro-Sparer (Theorem 2.2 above) can be made
quantitative as follows:

Corollary 3.6. Let f1,..., fre A, P(X1,..., Xr) € C[X1, ..., X;1\ {0} and

Di(s)zzf;(") G=1.....1).

S
n>1

Assume that there are a set of r primes {p1 < p2 < --- < pr} and a set of positive integers {n, ..., n;} such
that

fe(pini) #0 but fi(pik)=0 for1<k<n;(t=1,...,r;i=1,...,71).
If the value of the Jacobian

dp1f1 dplfr
](fls---vfr;pl,---’pr)(nl"'nr)3: (nl"'nl’)
dprfl dprfr

(where the product in the expansion of the determinant is taken as the convolution) is non-zero, then

|P(D1,...,Dp)| > M; %,

where M1 = max{p1iny, ..., psn;}, and the Dirichlet series, their derivatives together with operations are con-
sidered formally.
Proof. By the minimality of nq, ..., n;, we get

dp,f1 -+ dp fr
0# J(f1,.-os frip1, oo P -onp) = R NGSRER (9
dprfl dprfr
r r fipict) -+ fr(pic1)
= Z 1_[ Vp; (PiCi) 1_[ Vp; (pizci) - vp, (Prer) : :
Crer=meiri=l i=2 filprcr) -+ fr(prer)
fi(pin) -+ fr(pan)

k]

zl_[”pi(Pi”i)l_[Vpi (p,-zni)---vpr (prny) ; ;
i=1 i=2 fipine) -+ fr(prny)

and so det(f;(pini))} ,_, # 0, implying that the vectors

(fl(pln]), cees fr(plnl)), cees (fl(prnr)y cees fr(prnr))

are C-linearly independent. The desired result follows at once from Theorem 3.4. O

Regarding linear dependence, using the notion of Wronskian, we have:
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Corollary 3.7. Let f1,..., fr € A, Di(s) = 2@1 fioin™ (i=1,...,r) and P(X1,...,X;) = co +
i ciXi € C[Xy, ..., X;]\ {0}. Assume that there is a prime p and a set of positive integers {n1, ..., n;}
such that

fe(p'ni) #0 but fi(p'k)=0 for1<k<n;(t=1,...,r; ieN).

If the value of the Wronskian

dpfi - dp;
@2fy - df,

Wddpf1,....dpfr)(ny---np)i=| o |(myeeeny)
dyfy - dbf;

(where the product in the expansion of the determinant is taken as the convolution) is non-zero, then

|P(D1,...,Dp)| = M3,

where M3 = max{pni, pna, ..., p'n;}, and the Dirichlet series, their derivatives together with operations are
considered formally.
Proof. By the minimality of nq, ..., n,, we get

dpfi - dply

@2fy -

07'5W(dpflv---adpfr)(nl‘“nr)= . | (my--eny)
dofi o dyf
filper) -+ fr(pcr)

r r fi(p?ca) - fr(p*ca)
= Z HVP(pC")HVP(PZCi)"'Vp(prcf) : :
Cp--Cr=ny1 Ny j=1 i=2

A@ - ()

filpny) -+ fr(pny)
fi(p?nz) -+ fr(p®ny)

= 1_[ Vp(PCi) 1_[ vp(p?ci) -+~ vp(p'cr)
i=1 i=2

fip'ny) - fr(p'myp)

=] Tvpweo [ [vp(p®ci) -+ vp(p'cr) det(fe(p'ni))
i=1 i=2

showing that det(f;(p'n;)) # 0. Putting

> :=P(Dl,...,Do=co+§ciui=co+zzciﬁf”),

n=1 n>1i=1

we get

Fm =) cifin) (n>2).

i=1
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Since det(f;(p'n;)) # 0, the vectors (f1(pn1), ..., f1(p'ny), ..., (fr(pm), ..., fr(p'ny)) are C-linearly
independent and since the c;’s do not all vanish simultaneously, at least one of the values
F(pni),..., F(p'n;) must be non-zero and the result follows. O

4. Other cases

It is to be observed that one of the main hypotheses in Theorems 3.2 and 3.4 is the linear inde-
pendence of the set of vectors of functional values at different primes. This restricts their applicability
to many interesting cases, such as the independence of the formal Riemann zeta series and the for-
mal log zeta series. However, using direct approach, in this particular case, we have the following
independence measure:

Theorem 4.1.Let Dy =}~ L Tg’), Dy=3 1> % be formal Dirichlet series. Assume that

f)y=fp1---pr)=cpeC\{0} (=>1), (4.1)
g(p)=cgeC\{0}, g(1)=g(p1--ps)=0 (s=2), (4.2)
where p and the p;’s are distinct primes. Let P(X,Y) = Zi’j ainin € C[X, Y]\ {0} with total degree g and

formally put P(Dq, D3) := Zn>1 F(n)/n®* € D. Then there is a positive, absolute and computable constant ¢
such that

g(g+1) -1
|P(D1, Dy)| > {cg<g+” [ jlogj} ,
j=2
where the Dirichlet series and their operations are considered formally.

Proof. Formally setting the product of formal Dirichlet series

D1(s)'Da(s)! =) @

n>1

and noting that this corresponds to the convolution of associated arithmetic functions, we have

fim= > f@)- f@agb)---gby.

[¢5] -~~aib1 -~~b]-=n

Taking k > i+ j,n=pip2--- pk, where p1 < py < --- < py are primes and using the assumptions (4.1)
and (4.2) we get

ki i oK\
fij(p1p2---pi) =i* JC’fJ!(J.)c’g.

Thus,

g g
ik
F(pip2-po) =Y _ Y _aji® ’J!(j)-

i=0 j=0
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The right-hand side is an exponential polynomial in k with the maximum degree in the polynomial
part and the number of frequencies both being at most g. By a well-known result about the number
of zeros of exponential polynomials (see e.g. the lemma in [4, Chapter 12]) the number of zeros of
this exponential polynomial is at most (g +1)g — 1 and so

|P(D1,D2)| > {p1P2- - Pre+ng) "

The result now follows from Chebychev’s inequality (see e.g. [1, Theorem 4.7, p. 84]) that p, <
cirlogr (r > 2) for some computable constant c;. O

Applying Theorem 4.1 to the case of zeta and log zeta series, we have:

Corollary 4.2. Let P(X,Y) =Y, ;a;jX'Y] € C[X, Y]\ {0} with total degree g and put P(¢,log¢) :=
> n>1 F(n)/n®. Then there is a positive, absolute and computable constant ¢ such that

2(g+1) -1

|P(.log)| > {1 c8EtD T jlogjt .
j=2

where the zeta, log zeta series and their operations are considered formally.

Proof. The result follows immediately from Theorem 4.1 through the observation that [2,14]

1 Log A
(=Y logrey =y 220

n=1 n>1

where A is the von Mangoldt function defined by

A(n) = { logp ifn=pJisa prime positive power,
0 otherwise.

References

[1] T.M. Apostol, Introduction to Analytic Number Theory, Springer, New York, 1976.
[2] T.C. Brown, L.C. Hsu, ]J. Wang, PJ.-S. Shiue, On a certain kind of generalized number-theoretical Mobius function, Math.
Sci. 25 (2000) 72-77.
[3] L. Carlitz, Independence of arithmetic functions, Duke Math. J. 19 (1952) 65-70.
[4] A.O. Gelfond, Yu.V. Linnik, Elementary Methods in Analytic Number Theory, Rand McNally, Chicago, 1965.
[5] T. Komatsu, On continued fraction expansions of Fibonacci and Lucas Dirichlet series, Fibonacci Quart. 46/47 (3)
(2008/2009) 268-278.
[6] V. Laohakosol, Dependence of arithmetic functions and Dirichlet series, Proc. Amer. Math. Soc. 115 (3) (1992) 637-645.
[7] V. Laohakosol, N. Pabhapote, N. Wechwiriyakul, Logarithmic operators and characterizations of completely multiplicative
functions, Southeast Asian Bull. Math. 25 (2001) 273-281.
[8] A. Ostrowski, Uber Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920) 241-298.
[9] J. Popken, Algebraic dependence of arithmetic functions, Proc. Kon. Ned. Akad. Wetensch. 65 (1962) 155-168.
[10] J. Popken, On multiplicative arithmetic functions, in: Studies in Math. Analysis and Related Topics: Essays in Honour of
G. Pdlya, Stanford Univ. Press, 1962, pp. 285-293.
[11] J. Popken, Note on a generalization of a problem of Hilbert, Proc. Kon. Ned. Akad. Wetensch. 69 (1966) 178-181.
[12] J. Popken, Algebraic independence of certain zeta functions, Proc. Kon. Ned. Akad. Wetensch. 69 (1966) 1-5.
[13] J. Popken, A measure of the differential-transcendence of the zeta-function of Riemann, in: Number Theory and Analysis,
Papers in Honour of Edmund Landau, Plenum Press, New York, 1969, pp. 245-255.
[14] D. Rearick, Operators on algebras of arithmetic functions, Duke Math. ]. 35 (1968) 761-766.
[15] D. Rearick, The trigonometry of numbers, Duke Math. J. 35 (1968) 767-776.
[16] H.N. Shapiro, On the convolution ring of arithmetic functions, Comm. Pure Appl. Math. 25 (1972) 287-336.
[17] H.N. Shapiro, Introduction to the Theory of Numbers, John Wiley and Sons, New York, 1983.
[18] H.N. Shapiro, G.H. Sparer, On algebraic independence of Dirichlet series, Comm. Pure Appl. Math. 39 (1986) 695-745.



ACTA ARITHMETICA
153.2 (2012)

Independence measures of arithmetic functions II
by

TAKAO KOMATSU (Hirosaki), VICHIAN LAOHAKOSOL (Bangkok) and
PATTIRA RUENGSINSUB (Bangkok)

1. Introduction. In our earlier work, the notion of independence mea-
sure of arithmetic functions was introduced and two main results ([3, Theo-
rems 3.2 and 3.4]) about such measure were proved. These results are proved
under the hypothesis that there is a set of distinct primes for which the set
of vectors of function values at points depending on these primes is linearly
independent over C, and the proofs make use of the first assertion of (3,
Lemma 3.3] where the p-basic derivation is the main tool. Our first objec-
tive here is to improve upon these results by replacing the set of primes
by any set of distinct natural numbers enjoying similar properties. This is
accomplished by making use of the second assertion of {3, Lemma 3.3] where
the log-derivation is employed instead.

To systematize our presentation, we first recall all relevant terminology.
Denote by (A, +, *) the unique factorization domain of arithmetic functions
equipped with addition and convolution {or Dirichlet product) defined by

(f + 9)(n) := f(n) + g(n), (fxg)(n)=>_ fli)g(j) (f,9€ A, n€eN),
ij=n
and write f “ = f *---* f (i terms). The convolution identity, I, is defined
by I(1) =1 and I(n) = 0 for all n > 1. An arithmetic function f is called a

unit (in A) if its convolution inverse f~! exists, and this is the case if and
only if f(1) # 0. It is well-known, [8, Chapter 4], that (A, +, *) is isomorphic

to (D, +,-), where .
D:= {D(s) = ; -fg‘-)-}

is the ring of formal Dirichlet series equipped with addition and multipli-
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cation, through the isomorphism f < D; addition in both domains is the
customary addition while the multiplication of formal Dirichlet series corre-
sponds to the convolution of the appropriate arithmetic functions appearing
as coefficients of formal Dirichlet series. For f € A, its valuation, (8, Chap-
ter 4), is defined as

1
|l = o)’

where O(f) is the least integer n for which f(n) # 0. Correspondingly, for
a formal Dirichlet series D(s) := }_, ; f(n)/n?, its valuation is defined as

[D| = fl,
where the same symbols are used for convenience. With this valuation, the
isomorphism (A, +, *) « (D, +, ) is indeed an isometry. Therefore, we often
refer to these domains interchangeably.

A set of arithmetic functions fi,..., f- is said to be algebraically depen-
dent over C or C-algebraically dependent if there exists

P(Xy,.... %)= Y @i, Xi - X € CiXy,..., X,]\ {0}
110yt

such that
*71 L -
E @iy, i f1 ke x [ =0,

il y---yir

and C-algebraically independent otherwise. If P is homogeneous of degree
one in each variable, we say that fi,..., f, are C-linearly dependent, and
C-linearly independent otherwise.

A derivation, {8, over A is a map d : A — A satisfying

d(fxg)=df xg+ f*dg, d(c1f +c29)=crdf + cady,
where f,g € A and c;,co € C. Derivations of higher orders are defined in
the usual manner. Two typical examples of derivation are

e the p-basic derivation, p prime, defined by

(dpf)(n) = f(np)vp(np) (n€N),
where vp(m) denotes the exponent of the highest power of p divid-
ing m,
e the log-derivation defined by
(def)(n) = f(n)logn (n€N).

Although there are arithmetic sequences f(n) for which the corresponding
Dirichlet series D(s) := 3, f(n)/n® are divergent, through the isometry
between .4 and D, it is legitimate to define the formal derivation d of (formal)
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Dirichlet series via the derivation d of the associated arithmetic function as

oo
dD(s) = Z gél(—?—)
n=1
Thus, the formal differentiation of the formal Dirichlet series, D(s), with
respect to the variable s, i.e.,
oo [o o]
D(s)=Y" —f(T:l)slogn -3 —'(dz.ﬁ)(n)’
n=1 n=1
corresponds to the (negative) log-derivation —d, of the associated arithmetic
function f, and the p-basic derivation d, over A corresponds to the formal
p-basic derivation ij over D defined by
oo
o)~ 3~ B0
n

=1
For convenience, we use the same derivation symbol d for both the do-
mains A and D. Our investigations concerning Dirichlet series will be for-
mal throughout.

2. Algebraic independence. The following lemma, which plays a vital
role in our investigation of algebraic independence, is Lemma 3.1 in [3].

LEMMA 2.1. Let f1,...,fr€A and P(Xy,..., X,)€C[Xy,..., X;]\ {0}.
Fort=1,...,r, define the following formal Dirichlet series

Dt(s) = Z ft’,f:l)1

n>1

P(Dl,...,Dr)=Z'FLn(‘?l, g;—;;(Dl,...,Dr)=Z

n>1 n>1

Then for each n € N and for each prime p, we have
T

1) F(on)yp(on) = 3 f(0k)F5(3)vp(k),
i=1 kn

(2.2) F(n)logn=Y_3" fj(k)F}(%) logk,
J=1 kin

where the Dirichlet series and their operations are considered formally.
Our improvement of {3, Theorem 32] is

THEOREM 2.2. In the notation of Lemma 2.1, suppose that P(X3,...,X,)
is of total degree deg P = g. If there is a set of r positive integers {(1 <) ny <
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--- < n,} such that the set of vectors

{(fl(m)a’fr(nl)) ti= 1,...,1"}
is linearly independent over C, then
|P(D11 s 1D1‘)‘ ->— n:g'
Proof. If deg P = 0, then clearly |P(Dy,...,D,)| = 1. If deg P = 1, then
P(Xl"'-yXJ') =aOI+a1X1 + "'+a'rXr1
where the coefficients a; ( = 1,...,7) do not vanish simultaneously. Equat-
ing coefficients, we get
F(nj) = a1fi(nj) + - - - + ar fr(ny).
Since the set {(fi(n;),...,fr(n;)) : 5 = 1,...,r} is linearly independent
over C, at least one of the values F(ny),..., F(n,) must be nonzero, which
renders ‘
’ |P(Dy,...,Dp)| > n; 1.

Now proceed by induction on deg P. Let P be of total degree g +1 > 2,
and assume that the assertion has been proved for polynomials of degree
< g. Consider the polynomials 0P/0X; (t = 1,...,r), of degree < g. Unless
OP/0X; vanishes identically, by induction we have

1oP , -
‘6—'X—t(D1,...,Dr) _>_n,.9,

which implies that the nf vectors ’

(2.3) (F1(1), ..., Fr(1), (F1(2), ..., F:(2)), ..., (F1(nd), ..., Fr(n?))

cannot all be zero. Let. (Fi(m), ..., Fyr(m)) be the first nonzero vector in

(2.3) so that

‘ (Fi(d),...,Fo(d) =(0,...,0) ford=1,...,m—1.

By the minimality of m and Lemma 2.1, for allz =1,...,r we get
F(n;m)log(nim) = fi(n:)Fi(m) + - - + fr(m) Fr(m).

Since the set {(fi(nj),...,fr(n;)) : j = 1,...,r} is linearly independent

over C, at least one of F(nym),..., F(n,m) must be nonzero. This yields

|P(Dy,...,Dp)| > (mny) ™ > (n8+1) 71 a

Recall that a formal Dirichlet series D(s) is said to be differentially
algebraic of order r € Ny if D together with all its derivatives (up to or-
derr) D',..., D™ (DO := D) satisfy a non-trivial algebraic equation with
complex coefficients. When r = 0, differentially algebraic series of order 0
are simply algebraic series. The notion of differentially algebraic arithmetic
functions is defined correspondingly. An immediate consequence of Theorem
2.2 is the following measure of differentially algebraic independence.
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COROLLARY 2.3. Let D(s) = -5, f(n)n™° € D and P(Xo,...,X;) €
C[X1,...,X:] \ {0} be of total degree g. For r € Ny, if there is a set of
T+ 1 natural numbers {(1 <) my < ng < --- < np41} such that f(n;) # 0
(i=1,...,7+1), then

|P(D,D,...,DM)| > (ng, )7,
where the Dirichlet series, their derivatives and operations are considered
formally.

Proof. Formally differentiating j times the Dirichlet series with respect
to s, we get

. - i
DU)(s) = Z f(n)( njogn) '
n>1

For each i € {1,...,7 + 1}, since f(n;)(—logn;)’ # 0, the determinant

f(m) f(m)(=logni) -+ fln)(—logm)"
f(rs1) f(rrs1)(=logner) o+ f(rrp1)(—lognegr)”
1 (=logni) --- (=logni)"
= f(n1)--- f(np41) | : ,
1 (—lognet1) -+ (—lognrsr)”

being Vandermonde, is nonzero, and so the set of vectors

{(f(n1), f(na)(=logn1),..., f(n1)(—logmi)"), ...,
(f(nr41), f(nr41) log nryys. . ., f(rrg1)(—log nry1)")}
is C-linearly independent. The assertion now follows from Theorem 2.2. »

Corollary 2.3 reveals an interesting feature of differentially algebraic
arithmetic functions:

COROLLARY 24. Let r € Ny. If f € A is differentially algebraic of
order r, then excluding the point 1 it can be nonzero at r distinct points at
most.

Observe that the result of Corollary 2.4 when r = 0 is identical with that
of (3, Proposition 2.1 part 1]. An even more amazing consequence of Corol-
lary 2.4 is the next result which substantially generalizes an old theorem
of Hilbert [1] stating that the Riemann zeta function does not satisfy any
algebraic differential equation over C; Ostrowski [6] showed more generally
that the Riemann zeta function does not satisfy any algebraic differential-
difference equation over C.
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COROLLARY 2.5. An arithmetic function which is nonzero at infinitely
many points is not differentially algebraic, i.e., it is hyper-transcendental,
or equivalently, every formal Dirichlet series which is not a Dirichlet poly-
nomzial 18 hyper-transcendental.

The next corollary yields a measure of algebraic independence for ap-
propriate lacunary arithmetic functions.

COROLLARY 2.6. In the notation of Lemma 2.1, suppose that
P(X;,...,X;) is of total degree g. If there is a finite sequence of positive
integers {my < --+ < my,} such that fort € {1,...,r} we have

filmy) #0 but fi(k) =0 for ke {1,...,m.}\ {m},

then
\P(Dy,...,Dp)| 2n.9.

Proof. The result follows from Theorem 2.2 by noting that the set
{(fl(mt)’- .- $fr(mt)) t=1,... ,T}
is C-linearly independent. m |

Corollary 2.6 leads at once to the next result which says that lacunary
arithmetic functions are roughly C-algebraically independent.

COROLLARY 2.7. Let fi,..., fr € A. If there are r sequences of positive
inlegers

{ngt)<n§t)<"'} (t=1a""ar)
such that fort € {1,...,7} we have
fen) #0,  but

[ o)
£k =0 forke{l,...,nd) —1yuJ{n{ +1,...,a, ~ 1},
j=1

then fi,..., fr are C-algebmically independent.

We end this section by comparing two measures of independence from [3]
with those obtained via Theorem 2.2. Let {F;,},>1 be the sequence of Fi-
bonacci numbers defined by
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The six formal Fibonacci zeta series are defined as (see [2])

£ =3 LA TP DT, Seci Ll

n=1 e R
> X (_1yn—-1 00
RO=2 Z’ ALV
n=1 n—1 n—1 n r]
~(s) = S~ 1)" 'S (n) ) DT ()
Fe (s) = nz_; i Z , Fo(s): '; o ; s

Let {Ln}n>1 be the sequence of Lucas numbers defined by
Li=1, Ly =3, Lytyo=Lpy1+L, (n € N)

The six formal Lucas zeta series are defined as

co=Sg -5t -y -5,

n=1 n=1
> 1 =t (n - = (=1)*1 R (n
GEe=Y p—=Y20, =Yy =y 20,
n=1"2n—1 n=1 n=1 n n=1 n
1 X (n - 21t & (n
z:(s)—z( STy EW =y E oy 60
=1 2" n=1 n=1 2r—1 n=1 n
In {3, p. 10], it was shown that
(2.4) |P(F+ Ff Py 2579,
for any P(X;, X3, X3) € C[X1, X2, X3] \ {0} of total degree g, and
(2.5) QL L™, L;,L7)]| = 2979,

for any Q(X,, X2, X3, X4) € C[X1, X2, X3, X4] \ {0} of total degree g. Since
ffQ=F) ft@=F) ff@=FK)] 2 1 1
ffl=PR) ff@=F) ff@=F)=]1 0 1=2#0,
(=FR) f,2=F) f,@=F) [1 -1 0

the set of three vectors

{(FT(), £52), £563)), (£ (1), £5(2), £ 3N, (£ (1), £5(2), 5 (3}
is C-linearly independent and Theorem 2.2 yields
(2:6) |P(F5FEFO 2379,

which is much better than (2.4). A simple example of linear polynomials
such as

P(n) (= P(f*, £, £5)m) = f*(n) = 2£ (n) + f5 (n)
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shows that P(1) = P(2) =0, P(3) = —1 # 0, i.e., the bound in (2.6) is best

possible.
Since
Q=1L £+3=1Ly) td=1L3) ¢r(7=Ly)| |1t 1 1 1
(=L ¢(B=Ly) £~(4=L3) ¢ (T=Ly)] |1 -1 1 -1
A=L) 3=Ly) (4=1Ls) &(7=Ly)| [0 1 0 -1
GGA=L1) £3=Ly) GA=Ls) 6(T=Ly)| |1 0 -1 0
=840,

the set of four vectors

{(€+(1),€7(3), €7 (4), (7)), (¢~ (1),£7(3),£7(4),£7(7)),
(€ (1),€2(3), £ (9), €2 (7)), (65 (1), €5, 3), £, (9),4, (7)) }

is C-linearly independent and Theorem 2.2 yields
@7) QUE*, £, £5,£5)| = 779,
much better than (2.5). Again a simple example of linear polynomials such
as

Q(n) (= Q(€F,£7,6;,4,)(n)) = £ (n) — €7 (n) — 2(; () + 0 - £5 (n)
shows that Q(1) = --- = @Q(6) = 0 and Q(7) = 4 # 0, i.e., the bound in
(2.7) is best possible. '

3. Linear dependence and Wronskian. Motivated by the case of
real functions, in this section, we investigate the connection between linear
dependence and the notion of Wronskian in our arithmetic setting. We start
with a simple proposition, whose converse, which is much more difficult, will

be examined later.
PRrOPOSITION 3.1. Let f1,..., fr € A and let d be a derivation on A. If

fiy- .., fr are C-linearly dependent, then their Wronskian relative to d,

f f2 .. fr

df dfa ... dfy
’ .f 1‘) = . ) . ?

dr_lfl dr‘—lfz el dr_l_f.,.

vanishes; here and throughout, the multiplication involved in the determinant
expansion is the Dirichlet product.

Proof. Taking the derivations d* for i = 1,...,r—1 in the linear relation
among fi,..., fr, with coefficients c,,...,c, not all zero, we get a system

Wd(fl, .es
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of linear equations in the ¢;’s whose determinant is the Wronskian consid-
ered and the existence of nontrivial solutions forces the vanishing of this
determinant. =

The next result gives a sufficient condition for linear dependence.

THEOREM 3.2. Let fi,..., fr € A. If the set of positive integers {n; <
-+- < ny} is such that :

fe(ne) #0 but fi(k) =0 for k=1,...,m—1 (t= 1,...,7),
then the Wronskian (with respect to the log-derivation)

fl fr

d ceodrf,
Waltironfr) = | LS

dz—lfl ttt d;,-lfr

(where the product in the expansion of the determinant is convolution) does
not vanish, and so fi,..., fr are C-linearly independent.

Proof. By the minimality of ny,...,n., we get

fl e fr
d e difs
Wi(f1,.--  fr)(n1---np) = L:fl L:f (ny---nr)
d;,.lfl d;,—lfr
filer) s frlcr)

_ Z f(a) .108(01) o frler) fog(cr)

1 Cr=n1-nr

file)log™ e) -+ frler) log™ H(er)

f1(n1) .- fr(ny)
_ fifm)log(n1) ---  fr(n)log(n,)
filn1)log™ (1) -+ fe(nr)log" " (ny)
‘ 1 . 1

}log(‘m) log(‘nr) 40,

= fi(m1) f2(n2) - - - fr(nr)

log""l(nl) cer log™! (nr)
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Recall that the norm N(f) of f € A is defined as
N(f) = min{n € N: f(n) # 0}.
Theorem 3.2 simply says that arithmetic functions whose norms are distinct
are necessarily C-linearly independent. This is worth comparing with Theo-
rem 7 of [7] which asserts that the set of nonunit arithmetic functions whose
norms are pairwise relatively prime is C-algebraically independent.
For future use, we pause to establish an identity involving the Wronsklan '
value evaluated at a general point.

THEOREM 3.3. Let f1,...,fr € A and let n € N. Then

fl fr

d e dife |
WL(f1, -« fr)(m) = L:f‘ ﬁf @)

d'I;_lfl d}:—lfr

. fi(r1) filny)
= E ( H (logn; — logn,)) fz( 1) fz(;nr).

ny--ne=n;n)<---<ny 1<l<]<1' :
|ntw) - o)

Proof. We have

[
d ceedrf, :
Welfiy. o fo)(my = | 7 =
G A
fila) - fr(er)

-y fl(cl)?og(cl) fr(cr)?og(cr)

fila)log™ Yer) -+ frler)log™(cr)
1 - 1

= Y filer)- filer) togtea) o ogle)

C)Cr=n

log™(e1) - log"(cr)
= > fila)fle) ] (osci—logcy)

c1Cr=n 1<i<j<r
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= Z ( H (lognj—logni))

ny--nr=n; N1 <-<nr 1<i<j<r.
X Z €(riys - - i) fi(nig) - - fr(mi,)
Thyeensly
where the inner sum on the right hand side is taken over all permutations
of (ni,...,n,) with e(n;,,...,n;.) =1 for an even permutation and —1 for
an odd one. Thus,

WL(fl, ceey f,-)(’nl s nr)

fifm) - filne)
fo(m) - falnr)
fr(m) - fr(ne)

In the real case it is well-known (see e.g. {4]) that the converse of Proposi-
tion 3.1 is not generally true. This is also the case in the arithmetic function
setting. For example, consider the two arithmetic functions

1 ifn=1, 1 ifn=g#p,
I(n) = - 9(n) = :
0 otherwise, 0 otherwise,
where g # p are primes. If ;I + cag = 0 (c1, 2 € C), then
0=c1I(1) +c29g(1) =c1, 0=c1I(q)+ cag(q) = c2,
showing that I and g are C-linearly independent. However, their Wronskian
relative to the p-basic derivation d, does vanish:

= > ((II Gogns—logny) .

nyne=n; Ny < <ny 1<I<KG<r

g
W(l, =
Lom=|, @
= D _{I()glip)wp(ip) ~ #)I(ip)m(ip)} =0 (n€N).
tj=n '

The converse of Theorem 3.1 does indeed hold if we stick to the log-deriva-
tion. - o

THEOREM 3.4. Let fi,..., f, € A\{0}. If their Wronskian W = W (f1,
..., fr) relative to the log-derivation vanishes identically, then fi,..., f, are
C-linearly dependent. '

_ Proof. For brevity write d for dz. First we consider the case r = 2. We
consider two cases. ‘ ,
CaSE 1: fi(1) #0. Then f;!, the convolution inverse of f;, exists and

S0 S

0= WL(fl; RY=Wilhixfix L axfixfil) = f12"* Wi, fa* f71),
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yielding
0=Wir(I, fox f ) =d(fax f{).
Thus, f2 * fi'! = cl for some ¢ € C, i.e., fo = cf1, showing that f; and f>
are C-linearly dependent.
CasE 2: fi(1) = f2(1) = 0. Since fi; Z0, let N > 1 be the least positive
integer for which f;(IN) # 0. For n € N, we have
0=Wi(f1, f2)(m) = Y (fi(@)f2(b) — f1(b) f2(a)) logd.
ab=n

Putting n = 2N, we get

0 = Wi(f1, f2)(2N) = fi(N)f2(2)(log 2 — log N),
i.e., f2(2) = 0. By induction, for k =1,..., N — 1, we have

0 = WL(f1, f2)(kN) = f1(N)f2(k)(log k —log N),
i.e., fo(k) = 0. Putting n = N2 and using the previously found values, we
get

0 = WL(f1, 2)(N?) = (fu(N) f2(N) = f1(N)f2(N))log N,
yielding fo(N) arbitrary. Putting n = N(N + 1) and using the previously
found values, we get
0 = WL(f1, f2)(N(N +1))

= (A(N)f2(N +1) — fi(N +1)f2(N))log(N + 1),

ie, fo(N+1) = fi(N + 1)fo(N)/f1(N). In general, for m > 1, using

previously found values, we have

0=Wi(fr, XIN(N+m)) = Y (fila)fa(b) — f1(b) f2(a)) logb

ab=N(N+m)
= Y (1@f0) - fi(b)f2(a)) logh
b= (It m) .

+ {fi(N) fo(N + m) — f2(N) f1(N + m)} og(N + m)
+ > (fu(e)f2(b) — f1(b)f2(a)) logd

ab=N(N+m)
N<a<N+m

= {i(V) f(N +m) — fo(N) f1(N +m)}log(N + m),
ie, fo(N+m) = fi(N +m)f2(N)/fi(N). Hence, f = cfy, where ¢ :=

fa(N)/ fr(N).
Supposing that the assertion of the theorem holds for up to r — 1 (> 2)
functions, we proceed to verify it for r functions. We again have two cases.
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CASE 1: there is an @ € {1,...,r} for which fi{(1) # 0. We may assume
that f1(1) # 0. Then f;! exists and so

0= WL(fl,---afr) = fi * WL(I,f2 *fl—l,'“’fr *fl_l)
= fT* W d(f2* f7 ). -nd(fe % F71)).
By the induction hypothesis, d(f2 * fi'), . ..,d(f * f{'!) are C-linearly de-
pendent, which implies that so are fi,..., fr.
CASE 2: f1(1) =--- = f{1) = 0. For brevity, write
A@@) = (A6, -, (D)
Thus, A(1) = (0,...,0). Since fi,...,fr € A\ {0}, let N; be the least
positive integer such that :
A(V) # (0,...,0).
There are two subcases.

SuBCASE 1: All the vectors A(n) with n > N; are C-multiples of A(N7),
so there exist ¢(n) € C such that A(n) = c(n)A(N1), ie.,

fi(n) = c(n) fi(N1), ..., fr(n) = c(n)fr(N1).
Observe that the (single) linear equation in r (> 4) unknowns zy,...,Z,,
0=1=z1f1(N1) +--- + 2 fr(N1),
has a nontrivial solution (z1,...,z,) # (0,...,0). This shows that -
zi1filn)+---+z,.fr(n)=0 forallneN,
i.e., f1,-.., fr are C-linearly dependent.

SUBCASE 2: There exists a least positive integer N2 (> N;) such that
A(Ny), A(N,) are C-linearly independent. Again we treat two possibilities.
If all the vectors A(n) with n > N are C-linear combinations of A(N)
and A(N3), so there exist c1(n), co(n) € C such that A(n) = c;(n)A(N1) +
CZ(n)A(NZ), ie.,
fi(n) = ai(n) fi(N1) +c2(n) fi(N2), - .-, fr(n) = c1(n) fr(N1) +c2(n) £ (N2),
then the system of two equations in r (> 4) unknowns z;,...,z,,
0= xlfl(Nl) +-- 4 xrfr(Nl),
0 =z1fi(N2) +--- + zr fr(N2),
has a nontrivial solution (z1,...,z;) # (0,...,0). Then
z1filn)+---+z.fr(n) =0 forallneN,
showing that fy,..., f, are C-linearly dependent.

Otherwise, there exists a least positive integer N3 (> Ny > N;) such
that A(N1), A(N3), A(N3) are C-linearly independent and we continue as
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above. In general, assume that there is a set of 1 < j (< r — 1) (lexico-
graphically least) positive integers N; < --- < Nj such that the vectors
A(My),...,A(Nj) are C-linearly independent. If all the vectors A(n) with
n>N; (> Nj-1 > --- > N1) are C-linear combinations of A(N,), ..., A(N;),
so there exist c1(n),...,cj(n) € C such that A(n) = ¢;(n)A(N1) +--- +
cj(n)A(N;j), ie.,

filn) = c1i(n) fi(N1) + -+ - + ¢;(n) (N;), .-,

fr(n) = a(n)fr(N1) + - -+ ¢j(n) fr(N;),
then the system of j (< r — 1) equations in r unknowns z;,...,z,,

0==z1fi(N1) + -+ + - fr(N1),

0=z fi(N;) + - - + T fo (),
has a nontrivial solution (zi,...,z,) # (0,...,0). Then
z1fitn)+---+z,fr(n) =0 forallneN,

showing that fi,..., f, are C-linearly dependent.

There remains the case where there are (lexicographically) least positive
integers N1 < --- < N, such that A(Ny),..., A(N;) are C-linearly indepen-
dent and so '

HD) - fi(Ny)

3.1) fz(.Nl) fZ({Vr) L0,

fr(N1) oo fr(Nr)

Using Theorem 3.3 together with the (lexicographically) minimal property
of N1 < --- < N,, the hypothesis that the Wronskian vanishes shows that
so does the determinant on the left hand side of (3.1). This contradiction
finishes the proof. =

Proposition 3.1 together with Theorem 3.4 provides us with a satisfac-
tory necessary and sufficient condition for C-linear dependence of arithmetic
functions through the use of Wronskian. This should be compared with the
use of Jacobian for testing C-algebraic independence in {9}, which only works
in one direction. Though Proposition 3.1 and Theorem 3.4 are not so easy
to use, they do yield several independence tests; we next give an example.

THEOREM 3.5. Let o, €N and . »
S={31,...,sa}(_:C, K={0.<_k1.<_"'§kﬁ}(_:N0,
 T={fsr:5€8, ke K}CA,
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with fsx(1) # 0 (s € S,k € K). Assume that for all sufficiently large
primes p,
(1) fsx(0) #0 (s € 5, k € K);
f s,ki (P) .
2 l =0forl<i<u<f;
(2) lim 0] f B
(3) l f s_.,,k., (P)
—00 fsu,kb (p)
Then the elements of T are C-linearly independent.
Proof. Suppose that the elements of T are C-linearly dependent and so
their Wronskian vanishes by Proposition 3.1. Write W for
WL(fsl,kla ey fsl,kga ey fsa,kla ey fsa,kp)~
Let A(%) = (for k. (1) =+ forka{8) ~ -+ foaa(8) - fsake(9)), and

det(A(%0), A(i1), -+ , A(ir-1))

fsik(B0)  -oo Sfaks(io)  -or feaki(i0) - Sfoaks(i0)
for e (31) oo Sfakg(B)  oh fsak(B1) oo fsaks(in)

= y

=0forl<j<v<aandabe{l,...,5}.

fsl,kl (ir—l) cee fsl,kg(ir—l) v fsa,kl (":r—l) e fsa,kg(ir——l)
where r = a3. Then, for v € N,
W(v) =

> (logi1)(logiz)®... (logir_1)" " det(A(io), A(i1), - - , A(ir_1)).

t0%1 tp—1=V
Taking v = p; - - - pr—1, where p; < --- < p,_; are distinct primes, we get
W(py---pr-1) = C(p1,...,pr—1)det(A(1), A(p1), - - - , A(pr-1)),
where C(py,...,pr—1) # 0 is the Vandermonde determinant defined by

log i log iz cee logir—1
_ ‘ (logiy)?  (logiz)®? ... (logir—1)?
(3.2)  Cliy,... 1) = _ "
(logi)™™' (logiz)™™* ... (logér—1)"!

=) sgn(0)(I0g i5(1)) (108 i) ) (108 is(3))? - - - (108 iy (r—1)) %,

where the summation is over all permutations ¢ of {1,...,r — 1} with
sgn(o) = £1 depending on whether ¢ is even or odd. Since C(i1,...,%r-1)
is a Vandermonde determinant, we have C(i1,...,%-—1) # 0 if and only if
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11,...,%r_1 are distinct and not equal to 1. We wish to derive a contradiction
by showing that there are primes py,...,pr—1 such that

D := det(A(1), A(p1), .. ., A(pr—1)) # 0.

For primes p1, . . ., pr—1 sufficiently large, since the function values are non-
zero by condition (1), we can write

D= fsa,kg (pr-—l)fsa,kg(pr—2) e fsa,kﬁ(pl)fsa,kg(l)D‘a

where
Sag k(1) So1.,k5(1) Joa,kp (1) . frakg_, (1)
faa,kﬁil) T faa,kﬂ 1 o faa,kﬁ(ﬂ T faa,kgtlj 1

fsy .k {p1) f*’lyk (p1) foa k (p1) faa,kﬁ_l(l’l)
faa kg ) faa,kﬁ(Pli T fsa,k,,-(pli T faa,kﬂiplj

D* : |

Say & (pr—2) f01'k (Pr-—2) oo K (Pr—2)’ fsa‘,kﬁ_l (Pr—2)

a4 Bt N Sl LA e a:7] e

fao kg (Pr—2) foakp(Pr—2) faa.kg(Pr—2) faa kgPr—2) 1
sy kg (Pr—1) fal,kﬁ(Pr—l) fsa.h (pr—1) faa,kg_l (pr-1)

I
faa.kﬁz;r—l) T faa,kﬂipr—l) T fsa,kB(Pr—l) T fsa,kﬂ(Pr—l)

It thus suffices to show that D* # 0. Expanding D* along the last row,
keeping pi1,...,pr—2 fixed for the moment and letting p,_i — oo, by the
asymptotic assumptions (2) and (3), we see that

D* = Dy + o(pr-1),

where .
Fsp.6(1) f“’l:k (1) Joo by (1) fGaykg_l(l)
Z81:F3 2 . —_Ez_j ____JT_O“ el - i
faa,kﬁ(l) fsa,kﬁ 1 toT fsa,kﬂ 1) e faa,kﬁ(l)
fo e (1) fo1.k5(P1) Foa .k (P1) Jfoa,kg_1 (P1)
Dy = fsa,kﬁ(Plj faa,kl,(m) Tt fsa,kﬁ(Pls T fsa,k,,(m;
foy .k, (Pr—2) faq kg (Pr—2) Faoky (Pr—2) foakg_y (Pr-2)
fsa,kﬁ(Pr—2i T fsa,kﬁzir—2) e fsa,kﬁ(Pr—2; o fsa,kﬂ(Pr—2)

Observe that D, is independent of p,—; and dim D; = dim D — 1. It is thus
enough to show that D; # 0. Now we repeat the above steps by writing
. fsa,kﬁ_l(pr—2) . fsa,kﬁ-l @1) fsa,kg_l(l) *

Dr= oD s @) foig@ 0

where

fa k (1) . f"l’kﬂ(l) ... faa,k (1) o fsa,k _2(1)
f'avkﬁ_lil) faa,kﬁ_l(l) fsa,kﬁ_ltl) faa,kﬁ_lilj 1
fapkﬁ(pl) f, k (pl) faa,kﬂ_z(Pl) )

___L_le""(pl) o ek @)
D* faqkg_y (P1) Fsakp_y (P1) foa kg, (P1) Foakg_ (1)

._.
i

fsl,kl (pr—2) . . fﬂl:ﬁg(p"—2) . faa,kl (pr—2) . f’oukp_z(p"—Q) 1
foakg_y (Pr—2) frakg_q(Pr-2) foakg_y(Pr—2) feaskg_y (Pr-2)
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It thus suffices to show that D} # 0. Expanding Dj along the last row,
keeping p;,...,pr—3 fixed for the time being and letting p,_2 — oo, by the
asymptotic assumptions (2) and (3), we get

D{ =Dy + O(pr_g),

where
Fo ) Takg@  f ) feakgoa(D)
faa,kg_lzlj foa,kﬂ_l(l) fsa,kﬁ_l(l) faa.kﬂ_lzlj

faa 1kﬂ-—2 (pl)

foy,k,(P1) Soy.k5(P1) Jsa by (P1)
D2 — faa,kﬁ_li.ﬁ;) o sakg_1 (pl o fsa,kB_I(PI; T —jsa,kﬂ_l(pl)

Is . (Pr-a) .. fﬂlvkﬂ (Pr—-s) . faa,kl (Pr—S) L. f-’a:kji_z(p"—a)
faa,kﬂ_lzar—Iij faa,kﬂ_l(l’r—Ii) fsa,kﬂ_:l@f—a) f’a‘kﬂ—l (pr—a)
Observe again that D; is independent of p,._3 and dim Dy =dim D; — 1. It
is again enough to show that Dy # 0. Repeating the same reduction steps,
we finally reach a nonzero determinant of dimension 1 as desired. =

Theorem 3.5 yields another proof of the following, slightly modified,
Lemma 3 of Lucht—Schmalmack [5].

COROLLARY 3.6. Let € N, S = {s1,...,84} C C with R(s;) < ---
< R(sa), and let K = {0,1,...,8} € Ng := NU{0}. For a fized a € N\ {1},
let T = {a” : v € N} be a geometric progression such that n® # n® for all
n€ T and distinct s,s' € S. Then the set

{PlogFir:s€ S, ke K}

of arithmetic functions (I* logF)(n) := n*(logn)*, whose domain is restricted
to the set T, 1s C-linearly independent.

Proof. This follows immediately from Theorem 3.5 applied to the arith-
metic functions

Fsk(v) = (I° log*)(a”) = a**(loga”)* (v €N). u

In contrast to the C-linear independence over the domain 7', it is known
(see e.g. [9] or [7]) that the functions I°logF are indeed C-algebraically in-
dependent over the whole N.
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