





# รายงานวิจัยฉบับสมบูรณ์

# โครงการผลของซิลเวอร์อนุภาคขนาดนาโนต่อกระบวนการในตริฟิเคชัน และการเพิ่มศักยภาพด้วยเทคนิคการดักติดเซลล์

โดย ผู้ช่วยศาสตราจารย์ ดร. สุมนา สิริพัฒนากุล และคณะ

# สัญญาเลขที่ MRG5380280

## รายงานวิจัยฉบับสมบูรณ์

# โครงการผลของซิลเวอร์อนุภาคขนาดนาโนต่อกระบวนการในตริฟิเคชัน และการเพิ่มศักยภาพด้วยเทคนิคการดักติดเซลล์

## ผู้วิจัย

- 1. ผู้ช่วยศาสตราจารย์ ดร. สุมนา สิริพัฒนากุล
- 2. Prof. Dr. Eakalak Khan
- 3. รองศาสตราจารย์ ดร. อลิสา วังใน

#### สังกัด

มหาวิทยาลัยอุบลราชธานี

**North Dakota State University** 

จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย และ มหาวิทยาลัยอุบลราชธานี

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

### บทคัดย่อ

รหัสโครงการ: MRG5380280

**ชื่อโครงการ:** โครงการผลของซิลเวอร์อนุภาคขนาดนาโนต่อกระบวนการในตริฟิเคชัน

และการเพิ่มศักยภาพด้วยเทคนิคการดักติดเซลล์

ชื่อนักวิจัย และสถาบัน: ผศ.ดร. สุมนา สิริพัฒนากุล มหาวิทยาลัยอุบลราชธานี

Prof. Dr. Eakalak Khan North Dakota State University

รศ.ดร. อลิสา วังใน จุฬาลงกรณ์มหาวิทยาลัย

อีเมล์: ensumasi@ubu.ac.th; jeans\_sumana@yahoo.com

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ: ซิลเวอร์อนุภาคขนาดนาโน (AgNP) ถูกผลิตและใช้เพิ่มมากขึ้นอย่างชัดเจนส่งผลให้ มีความเป็นไปได้ที่จะเกิดการปนเปื้อนของ AgNP ในสิ่งแวดล้อม ซึ่งหมายรวมถึงระบบบำบัด น้ำเสียด้วย การศึกษานี้มีเป้าหมายเพื่อศึกษาผลของ AgNP ต่อกระบวนการในตริฟิเคชันและ ปรับปรุงระบบด้วยเทคนิคการดักติดเซลล์ โดยการศึกษาครอบคลุมปัจจัยความเข้มข้นของ แอมโมเนียและ AgNP เริ่มต้น และวัสดุดักติด (ชนิดและขนาด) การทดลองศึกษากิจกรรม ในตริฟิเคชันใช้หลักเรสไพโรเมตริก นอกจากนี้การทดลองยังได้สังเกตลักษณะเซลล์จุลินทรีย์ และวัสดุดักติดด้วยกล้องจุลทรรศน์อิเล็กตรอนและส่องกราดและส่องผ่าน ผลการศึกษาพบว่า กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันเป็นไปตามโมเดลของ Michaelis-Menten โดยมีค่าอัตราการใช้ออกซิเจนสูงสุด ( $OUR_{max}$ ) เท่ากับ 0.2132 และ 0.2273 mg-O $_2$ /L/min และ ค่าคงที่  $K_s$  เท่ากับ 5.42 และ 15.87 mg-N/L ตามลำดับ AgNP ส่งผลให้  $OUR_{max}$  และ  $K_s$ โดยในกรณีดังกล่าวกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันเป็นไปตาม จลนพลศาสตร์เชิงยับยั้งแบบไม่มีการแข่งขัน (ค่าคงที่การยับยั้ง (*K*<sub>i</sub>) เท่ากับ 9.3 และ 5.5 mg/L ตามลำดับ) ความเข้มข้นของแอมโมเนียเริ่มต้นไม่มีผลต่อกิจกรรมในตริฟิเคชันในขณะที่ความ เข้มข้นของ AgNP (0.25-10.00 mg/L) ยับยั้งกิจกรรมในตริฟิเคชันร้อยละ 8-38 และกิจกรรม แอมโมเนียออกซิเดชันร้อยละ 14-28 นอกจากนี้ยังพบว่ากรณีที่มี AgNP กิจกรรมในตริฟิเคชัน ของเซลล์ดักติดด้วยแคลเซียมแอลจีเนต (CA) และพอลีไวนิลแอลกอฮอลล์ (PVA) สูงกว่าเซลล์ เซลล์ดักติดด้วย CA (ร้อยละ 64-100) คงกิจกรรมในตริฟิเคชันดีกว่าเซลล์ดักติดด้วย สำหรับการศึกษาขนาดของเซลล์ดักติดพบว่าเซลล์ในวัสดุดักติดขนาด PVA (ร้อยละ 4-87) ใหญ่มีประสิทธิภาพสูงกว่า จากผลการสังเกตโครงสร้างระดับจุลภาคพบว่า AgNP ส่งผลทำให้ ผิวของเซลล์และไซโตพลาสซึมถูกทำลายเป็นเหตุให้กิจกรรมในตริฟิเคชันลดลงเช่นกัน นอกจากนี้ยังพบว่าวัสดุดักติดสามารถลดผลลบของ AgNP ต่อกิจกรรมในตริฟิเคชันได้

**คำหลัก**: การดักติดเซลล์ ลักษณะทางกายภาพของเซลล์ ในตริฟิเคชัน เรสไพโรเมตรี ซิลเวอร์ อนุภาคขนาดนาโน

#### **Abstract**

Project Code: MRG5380280

Project Title: Effect of silver nanoparticle on nitrification process and performance

enhancement using cell entrapment technique

Investigator: Assist.Prof. Sumana Siripattanakul, Ph.D., Ubon Ratchathani University

Prof. Eakalak Khan, Ph.D., North Dakota State University

Assoc.Prof. Alisa Vangnai, Ph.D., Chulalongkorn University

**E-mail Address:** ensumasi@ubu.ac.th; jeans\_sumana@yahoo.com

Project Period: 2 years

Abstract: Silver nanoparticles (AgNPs) have substantially increased in production and utilization resulting in potential of AgNPs contamination in environment including wastewater treatment plants. This study aimed to investigate effects of AgNPs on nitrification process and enhance the system by cell entrapment technique. Initial ammonia and AgNP concentrations, and entrapment materials and matrix sizes were the variables. Nitrification activity was investigated using a respirometric assay. Scanning and transmission electron microscopic observations of the microbial cells and entrapment matrices were also performed. Results showed that nitrification and ammonia oxidation followed Michaelis-Menten model with maximum oxygen uptake rates  $(OUR_{max})$  0.2132 and 0.2273 mg-O<sub>2</sub>/L/min and half saturation coefficients  $(K_s)$  of 5.42 and 15.87 mg-N/L, respectively. Presence of AgNPs resulted in lower  $OUR_{max}$  and  $K_{s}$ . The nitrification and ammonia oxidation processes in the case followed uncompetitive inhibition kinetics with inhibition constants (Ki) of 9.3 and 5.5 mg/L, respectively. The initial ammonia concentration did not influence the nitrification activity while the AgNP concentrations (0.25-10.00 mg/L) inhibited the nitrification activity (8-38% compared to the control) and ammonia oxidation activity (14-28% compared to control). In the presence of AgNPs, both calcium alginate (CA) and polyvinyl alcohol (PVA)-entrapped cells had higher nitrification activity compared to free cells. Nitrification activity in the presence of AgNPs by the CA-entrapped cells was better than that of the PVA-entrapped cells (64-100% versus 4-87% compared to without AgNPs). Cells entrapped in a larger matrix size performed better. Based on micro-structural observation, AgNPs caused damages to cell surface and cytoplasm which very likely led to decreased nitrification activity. The entrapment matrices successfully reduced the adverse effects of AgNPs on nitrification activity.

**Keywords:** cell entrapment, cell physiology, nitrification, respirometry, silver nanoparticle

## บทสรุปผู้บริหาร

รหัสโครงการ: MRG5380280

**ชื่อโครงการ:** โครงการผลของซิลเวอร์อนุภาคขนาดนาโนต่อกระบวนการในตริฟิเคชัน

และการเพิ่มศักยภาพด้วยเทคนิคการดักติดเซลล์

Effect of silver nanoparticle on nitrification process and performance

enhancement using cell entrapment technique

ชื่อนักวิจัย และสถาบัน: ผศ.ดร. สุมนา สิริพัฒนากุล มหาวิทยาลัยอุบลราชธานี

Prof. Dr. Eakalak Khan North Dakota State University

รศ.ดร. อลิสา วังใน จุฬาลงกรณ์มหาวิทยาลัย

## ความเป็นมาและความสำคัญของปัญหา

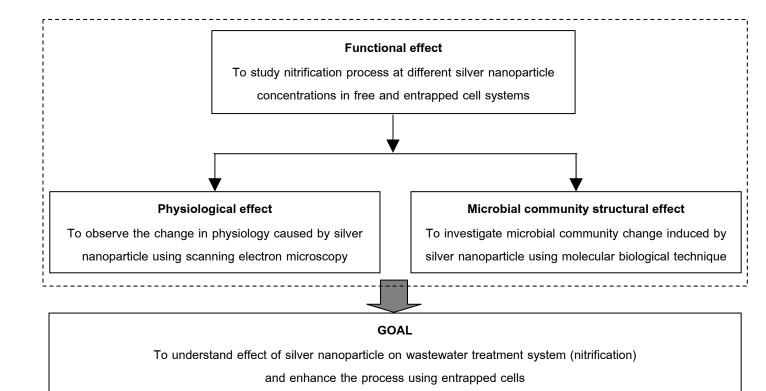
ปัจจุบันซิลเวอร์อนุภาคขนาดนาโน (silver nanoparticle; AgNP) เป็นส่วนประกอบของวัสดุ ที่ใช้ทั่วไปในบ้านเรือนและชีวิตประจำวันหลายชนิด แม้ปัจจุบันยังไม่มีผลการศึกษาการตกค้าง ของ AgNP ในสิ่งแวดล้อมอย่างชัดเจน แต่มีรายงานการใช้ AgNP ปริมาณมากขึ้นในช่วง 10 ปีที่ผ่านมา เช่น ในทวีปยุโรปมีรายงานการใช้ AgNP 30 ตันต่อปีในปี ค.ศ. 2004 ซึ่ง เพิ่มขึ้นเป็น 500 เท่าจากปี ค.ศ. 2000 ดังนั้นจึงมีความเป็นไปได้ว่าในอนาคตอันใกล้ AgNP จะ ตกค้างในสิ่งแวดล้อมปริมาณสูงเช่นกัน ซิลเวอร์เป็นโลหะหนักชนิดหนึ่งที่มีความเป็นพิษทั้ง ต่อมนุษย์และสิ่งแวดล้อม โดยเฉพาะอย่างยิ่งเมื่อซิลเวอร์มีอนุภาคขนาดนาโนจะมีผลต่อ สิ่งมีชีวิตสูงกว่าอนุภาคขนาดไมโครถึง 100 เท่า ดังนั้นหากมี AgNP ตกค้างในสิ่งแวดล้อมแม้ เพียงปริมาณน้อยก็สามารถส่งผลกระทบต่อระบบสิ่งแวดล้อมและระบบนิเวศน์วิทยาได้

ระบบบำบัดน้ำเสียเป็นหน่วยสิ่งแวดล้อมหนึ่งที่ AgNP อาจตกค้างได้ จากการศึกษาของ Blaser et al. (2008) พบว่า AgNP ส่วนใหญ่จะเข้าสู่หน่วยสิ่งแวดล้อมต่าง ๆ ผ่านระบบบำบัด น้ำเสีย โดยมีการคาดการณ์ว่าอาจมี AgNP ตกค้างได้สูงถึง 39 mg Ag/kg dry sewage sludge จากสถานการณ์นี้จะเห็นว่า AgNP มีแนวโน้มที่จะส่งผลกระทบถึงตะกอนจุลินทรีย์และระบบ บำบัดน้ำเสียอย่างรุนแรงได้ในอนาคต เป็นที่รู้กันทั่วไปว่ากระบวนการในตริฟิเคชันเป็น กระบวนการบำบัดน้ำเสียที่มีความอ่อนไหวต่อสิ่งแวดล้อมและสภาวะในการเดินระบบ ดังนั้นใน การศึกษานี้จึงมุ่งเน้นการศึกษาระบบบำบัดน้ำเสียในส่วนของกระบวนการในตริฟิเคชัน

การศึกษาในอดีตที่เกี่ยวข้องกับกระบวนการในตริฟิเคชันและ AgNP มุ่งเน้นในการศึกษา ลักษณะของ AgNP และผลของสารประกอบเกลือและลิแกนด์ต่อความเป็นพิษของ AgNP ใน กระบวนการในตริฟิเคชันเท่านั้น แต่องค์ความรู้ดังกล่าวยังไม่เพียงพอต่อการระบุความ เป็นไป (fate) ของ AgNP ทั้งต่อระบบบำบัดน้ำเสียและสิ่งแวดล้อม และนอกจากนี้ใน ปัจจุบันยังไม่มีงานวิจัยที่ศึกษาผลของ AgNP ต่อกลุ่มจุลินทรีย์ รวมทั้งแนวทางป้องกันปัญหา การปนเปื้อนของ AgNP ต่อระบบบำบัดน้ำเสีย

สำหรับแนวทางแก้ปัญหาความล้มเหลวของระบบบำบัดน้ำเสียวิธีหนึ่ง คือ เทคนิคการดักติด เซลล์ (cell entrapment) เทคนิคนี้เป็นการตรึงเซลล์จุลินทรีย์ไว้ภายในสารพอลีเมอร์ ระบบ ดังกล่าวมีข้อดีหลายประการ คือ สามารถควบคุมปริมาณเซลล์จุลินทรีย์ได้ และสารพอลีเมอร์ สามารถป้องกันจุลินทรีย์จากสภาพแวดล้อมต่าง ๆ ได้ นอกจากนี้จากลักษณะโครงสร้างของ เซลล์ดักติดซึ่งเป็นโครงตาข่ายมีแนวโน้มที่จะป้องกัน AgNP ไม่ให้เกาะติดเซลล์จุลินทรีย์ได้ จากสมบัติของเซลล์ดักติดดังกล่าวระบบเซลล์ดักติดเป็นระบบที่มีศักยภาพในการประยุกต์เพื่อ ป้องกันปัญหาที่กล่าวถึงข้างต้น โดยระบบเซลล์ดักติดนอกจากจะมีความเหมาะสมในด้าน สมบัติแล้ว วิธีการผลิตเซลล์ดักติดเป็นวิธีการที่ไม่ยุ่งยาก ค่าใช้จ่ายน้อย ไม่จำเป็นต้องใช้ อุปกรณ์หรือเทคโนโลยีขั้นสูง รวมทั้งเซลล์ดักติดสามารถนำไปใช้กับระบบบำบัดน้ำเสียที่มีอยู่ อย่างไรก็ตามในการประยุกต์ใช้เทคนิคการดักติดเซลล์ให้ประสบความสำเร็จ จำเป็น มิฉะนั้นเทคนิคดังกล่าว จะต้องศึกษาหาสภาวะ ชนิด และขนาดของเซลล์ดักติดที่เหมาะสม นอกจากจะไม่ได้ช่วยแก้ปัญหา แต่ยังอาจส่งผลให้เกิดปัญหาของการซึมผ่านของอาหารและ ออกซิเจน (substrate and oxygen diffusion)

จากเหตุผลข้างต้นงานวิจัยนี้มุ่งเน้นการศึกษาผลกระทบของ AgNP ต่อกระบวนการในตริ ฟิเคชันและการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคเซลล์ดักติด โดยปัจจัยที่ศึกษา คือ ความเข้มข้นของ AgNP ชนิดและขนาดของเซลล์ดักติดต่อกระบวนการในตริฟิเคชัน


## วัตถุประสงค์

โครงการวิจัยนี้มีเป้าหมายหลักของโครงการ คือ เพื่อให้ทราบถึงความเป็นไปของ AgNP ต่อ ระบบบำบัดน้ำเสีย ทั้งในแง่ศักยภาพในการทำงานและผลต่อจุลินทรีย์ รวมทั้งหาแนวทางใน การป้องกันปัญหาดังกล่าว เพื่อให้งานวิจัยบรรลุเป้าหมายนี้งานวิจัยมีรายละเอียดของ วัตถุประสงค์การวิจัย ดังนี้

- 1) เพื่อศึกษาผลของ AgNP ที่ความเข้มข้นต่าง ๆ ต่อกระบวนการในตริฟิเคชัน
- 2) เพื่อศึกษาผลของ AgNP ต่อลักษณะทางกายภาพของกลุ่มจุลินทรีย์
- 3) เพื่อศึกษาผลของ AgNP ต่อโครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์
- 4) เพื่อศึกษาการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์ด้วยสารดัก ติดต่างชนิดและต่างขนาด

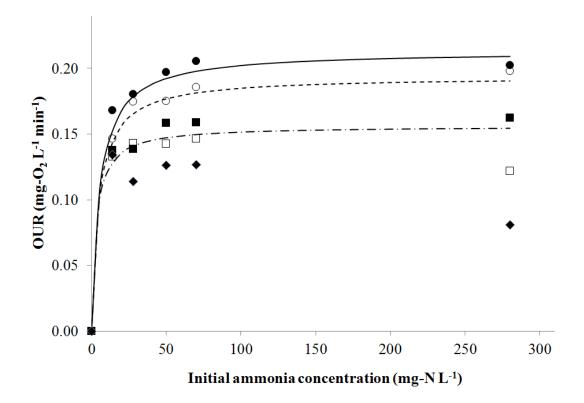
### วิธีดำเนินการวิจัย

แนวคิดของงานวิจัยนี้สามารถแสดงได้ดังรูปที่ 1 งานวิจัยนี้ซึ่งเป็นงานทดลองในระดับ ห้องปฏิบัติการสามารถแบ่งภาระงานออกได้เป็น 2 ส่วนหลัก 1) การศึกษาผลของ AgNP ที่ ความเข้มข้นต่าง ๆ ต่อกระบวนการในตริฟิเคชัน โดยศึกษาลักษณะการยับยั้งของ AgNP ใน กระบวนการดังกล่าว ผลของ AgNP ต่อลักษณะทางกายภาพของกลุ่มจุลินทรีย์ และผลของ AgNP ต่อโครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์ 2) การศึกษาการปรับปรุงศักยภาพของ กระบวนการด้วยเทคนิคการดักติดเซลล์ด้วยสารดักติดต่างชนิดและต่างขนาด

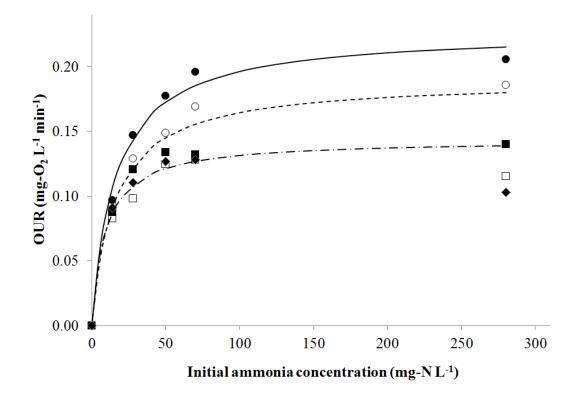


รูปที่ 1 แนวคิดงานวิจัย

วิธีการดำเนินการวิจัยสามารถจำแนกออกได้เป็น 7 ขั้นตอน ดังนี้


- 1) การรวบรวมและศึกษาข้อมูลที่เกี่ยวข้อง ขั้นตอนนี้เป็นการรวบรวมและศึกษาข้อมูลที่ใช้ ในการวิจัย โดยสามารถแบ่งออกได้เป็นข้อมูลของ AgNP ข้อมูลการเดินระบบบำบัดน้ำ เสียโดยเน้นที่กระบวนการในตริฟิเคชัน และข้อมูลเซลล์ดักติดและการใช้งาน
- 2) การเตรียมจุลินทรีย์ในตริฟายอิง ขั้นตอนนี้เป็นการเตรียมจุลินทรีย์ โดยเป็นการเลี้ยง เชื้อจากตะกอนจุลินทรีย์จากระบบบำบัดน้ำเสียแบบตะกอนเร่ง (activated sludge) การเพาะเลี้ยงและปรับสภาพจะใช้อาหารเลี้ยงเชื้อสังเคราะห์ที่มีแอมโมเนียเป็น องค์ประกอบ ขั้นตอนนี้ใช้ระยะเวลาประมาณ 6 เดือน เพื่อให้กลุ่มจุลินทรีย์มีความ เสถียร (stable mixed culture) และมีประสิทธิภาพในการย่อยสลายแอมโมเนียคงที่
- 3) การดักติดเซลล์จุลินทรีย์ ขั้นตอนนี้เป็นดักติดเซลล์จุลินทรีย์ด้วยสารดักติด 2 ชนิด คือ แคลเซียมแอลจีเนต (calcium alginate; CA) และ พอลีไวนิลแอลกอฮอลล์ (PVA) โดย ขั้นตอนนี้จะเตรียมเซลล์ดักติดด้วย CA ตาม Smidsrod and Skjak-Braek (1990) ส่วน การเตรียมเซลล์ดักติดด้วย PVA จะได้เตรียมตามวิธีการแบบปรับปรุง (modified method) ตาม Siripattanakul et al. (2008)

- 4) การศึกษาผลของ AgNP ต่อการทำงานของจุลินทรีย์ ขั้นตอนเป็นการศึกษา
  กระบวนการในตริฟิเคชันโดยการวัดการใช้ออกซิเจน (oxygen uptake rate; OUR)
  การทดลองใช้ชุดถังปฏิกรณ์เรสไพโรมิเตอร์ (respirometer) การทดลองเริ่มต้นจากการ
  นำเซลล์จุลินทรีย์อิสระลงในเรสไพโรมิเตอร์ที่มีน้ำเสียอยู่แล้วเพื่อศึกษาผลต่อ
  กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน จากนั้นวัดค่า OUR เป็นเวลา 240
  min หรือจนกระทั่งค่าออกซิเจนละลายที่วัดได้คงที่ การวิจัยศึกษาที่ความเข้มขันของ
  AgNP และแอมโมเนียต่าง ๆ กัน การทดลองจะทำในลักษณะเดียวกันอย่างน้อย 2 ครั้ง
  เพื่อหาค่าเฉลี่ยและค่าความเชื่อมั่นทางหลักทางสถิติ จากนั้นนำผลที่ได้หาค่า
  จลนพลศาสตร์ในตริฟิเคชันเชิงยับยั้งเปรียบเทียบระหว่างมีและไม่มีการปนเปื้อน AgNP
- 5) การศึกษาผลของ AgNP ต่อกายภาพและโครงสร้างทางชีวภาพเบื้องต้นของจุลินทรีย์ ขั้นตอนนี้เป็นการศึกษาลักษณะเซลล์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านก่อน และหลังได้รับ AgNP
- 6) การศึกษาการปรับปรุงกระบวนการในตริฟิเคชันด้วยเซลล์ดักติด ขั้นตอนเป็นการศึกษา กระบวนการในตริฟิเคชันโดยการวัด OUR การทดลองใช้ชุดถังปฏิกรณ์เรสไพโรมิเตอร์ (respirometer) การทดลองเริ่มต้นจากการนำเซลล์จุลินทรีย์ทั้งที่เป็นเซลล์อิสระและ เซลล์ดักติดตามที่เตรียมไว้ข้างต้นใส่ลงในเรสไพโรมิเตอร์ที่มีน้ำเสียอยู่แล้ว จากนั้น ทดลองลักษณะเดียวกับข้อที่ผ่านมา
- 7) การศึกษาผลของ AgNP ต่อกายภาพของจุลินทรีย์และวัสดุดักติด ขั้นตอนนี้เป็น การศึกษาลักษณะเซลล์อิสระและเซลล์ดักติดก่อนและหลังได้รับ AgNP ด้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องผ่าน และศึกษาลักษณะวัสดุดักติดด้วยกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด
- 8) การสรุปผลงานวิจัยและการเผยแพร่ผลงาน ขั้นตอนนี้เป็นการสรุปผลงานวิจัยทั้งหมด และจัดทำรูปเล่มเอกสารการวิจัย เพื่อเผยแพร่ต่อไป โดยเอกสารการวิจัยจะทำเมื่อ สิ้นสุดโครงการ แต่นอกจากนี้การเผยแพร่ผลงานวิจัยจะเผยแพร่ในรูปแบบบทความ วิจัยเพื่อตีพิมพ์ในวารสารวิชาการระดับนานาชาติภายหลัง


### ผลการวิจัย

### ผลของ AgNP ต่อกระบวนการในตริฟิเคชัน

การทดลองกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันศึกษาที่ความเข้มข้นของ แอมโมเนียเริ่มต้น 14 ถึง 280 mg-N/L ผลการศึกษาแสดงในรูป OUR ต่อความเข้มข้นของ แอมโมเนียเริ่มต้นดังรูปที่ 2 และ 3 ตามลำดับ ผลจากชุดทดลองที่ไม่ได้เติม AgNP เป็นไปตาม โมเดลของ Michaelis-Menten โดยเมื่อคำนวณหาค่า  $OUR_{max}$  และ  $K_s$  พบว่ากระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันมีค่า  $OUR_{max}$  เท่ากับ 0.2132 และ 0.2273 mg-O2/L/min และ  $K_s$  เท่ากับ 5.42 และ 15.87 mg-N/L ตามลำดับ (ตารางที่ 1) ผลดังกล่าวบ่งชี้ได้ว่า  $OUR_{max}$  ของ กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันมีค่าใกล้เคียงกันแต่  $K_s$  แตกต่างกันโดย สิ้นเชิง



ร**ูปที่ 2** ความสัมพันธ์ระหว่าง *OUR* ต่อความเข้มข้นของแอมโมเนียเริ่มต้นในการทดลอง กระบวนการในตริฟิเคชัน เมื่อมี AgNP ความเข้มข้น 0.00 (○) 0.25 (●) 0.50 (■) 5.00 (□) และ 10 (♦) mg/L

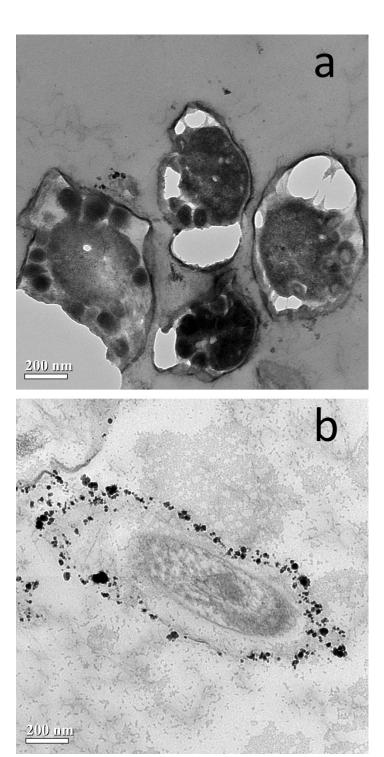


ร**ูปที่ 3** ความสัมพันธ์ระหว่าง *OUR* ต่อความเข้มข้นของแอมโมเนียเริ่มต้นในการทดลอง กระบวนการแอมโมเนียออกซิเดชัน เมื่อมี AgNP ความเข้มขัน 0.00 (○) 0.25 (●) 0.50 (■) 5.00 (□) และ 10 (♦) mg/L

**ตารางที่ 1** ค่า  $OUR_{max}$  และ  $K_s$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน ภายใต้สภาวะที่มี AgNP

|                 |                            | •                  |                    |                            |                |       |
|-----------------|----------------------------|--------------------|--------------------|----------------------------|----------------|-------|
| AgNDo           | Nitrification              |                    |                    | Ammonia oxidation          |                |       |
| AgNPs<br>(mg/L) | OUR <sub>max</sub>         | K <sub>s</sub>     | $R^2$              | OUR <sub>max</sub>         | K <sub>s</sub> | $R^2$ |
| (1119/2)        | (mg-O <sub>2</sub> /L/min) | (mg-N/L)           | K                  | (mg-O <sub>2</sub> /L/min) | (mg-N/L)       | A     |
| 0.00            | 0.2132                     | 5.42               | 0.997              | 0.2273                     | 15.87          | 0.989 |
| 0.25            | 0.1990                     | 4.92               | 0.997              | 0.1984                     | 16.15          | 0.988 |
| 0.50            | 0.1645                     | 3.19               | 0.994              | 0.1564                     | 9.99           | 0.994 |
| 5.00            | 0.1336                     | 0.50               | 0.998              | 0.1497                     | 8.82           | 0.998 |
| 10.00           | 0.1320                     | N/A <sup>(1)</sup> | N/A <sup>(1)</sup> | 0.1448                     | 8.33           | 0.999 |

data not available


จากตารางที่ 1 พบว่า ภายใต้สภาวะที่มี AgNP เมื่อความเข้มข้นของ AgNP เริ่มต้นสูงส่งผล ให้  $OUR_{max}$  และ  $K_s$  ลดลง ผลการทดลองดังรูปที่ 2 และ 3 บ่งชี้ว่าจลนพลศาสตร์การยับยั้งด้วย AgNP ในการศึกษานี้เป็นแบบไม่มีการแข่งขันทั้งในกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชัน โดยทั่วไปว่าโลหะต่าง ๆ มีอิทธิพลต่อเซลล์จุลินทรีย์โดยเฉพาะอย่างยิ่งการ เกิดปฏิกิริยากับโปรตีน ดังนั้นอาจกล่าวได้ว่าผลการทดลองนี้พบว่า AgNP อาจส่งผลต่อ กระบวนการทำงานของเอนไซม์ที่เกี่ยวข้องกับกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชัน โดยลักษณะของการยับยั้งเป็นแบบไม่มีการแข่งขัน เมื่อคำนวณหาค่าคงที่การ ยับยั้ง  $K_i$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน เท่ากับ 9.3 และ 5.5 mg/L ตามลำดับ

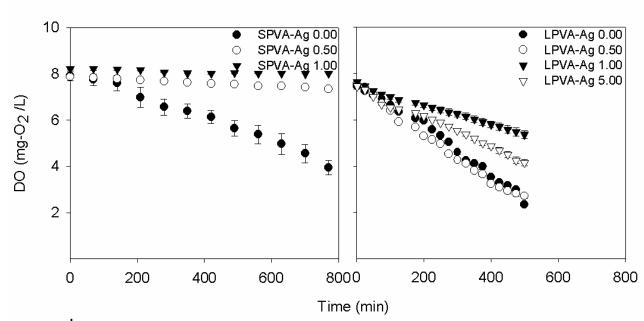
นอกจากนี้ยังพบว่าเมื่อ AgNP มีความเข้มขันเพิ่มมากขึ้นระดับของการยับยั้งของสูงขึ้น เช่นกัน AgNP ที่ความเข้มขัน 0.25 ถึง 10.00 mg/L ส่งผลให้เกิดการยับยั้งร้อยละ 8 ถึง 38 ใน กระบวนการในตริฟิเคชันและร้อยละ 14 ถึง 28 ในกระบวนการแอมโมเนียออกซิเดชัน ส่วน ความเข้มข้นของแอมโมเนียเริ่มต้นมิได้มีผลต่อร้อยละการยับยั้งอย่างชัดเจน

สำหรับการศึกษาผลต่อกายภาพและโครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์ พบว่าลักษณะ จุลินทรีย์ทั้งจากกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันเป็นไปในทิศทางเดียวกัน กล่าวคือ พบเซลล์จุลินทรีย์ถูกทำลายปะปนในเซลล์ตัวอย่างทุกชุดการทดลอง (รูปที่ 4) รูปที่ 4a แสดงให้เห็นเซลล์ถูกทำลายอย่างชัดเจน ดังนั้นสามารถกล่าวได้ว่าสารพิษรวมทั้ง AgNP ส่งผล ให้ผนังและเซลล์หุ้มเซลล์ฉีกขาด เป็นเหตุให้สารภายในเซลล์รั่วไหลและทำให้เซลล์ตายหรือ ยับยั้งการทำงานของเซลล์ในที่สุด

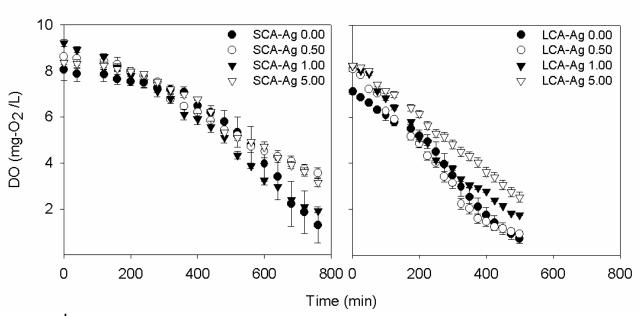
นอกจากนี้จากการศึกษาด้วย TEM ยังพบการเกาะกลุ่มของ AgNP รอบเซลล์ดังรูปที่ 4b โดยทั่วไปเมือกลักษณะนี้ คือ สารอีพีเอส (extracellular polymeric substance; EPS) ซึ่งถูก ผลิตขึ้นมาในสภาวะที่เซลล์มีความเครียดจากสิ่งแวดล้อม (environmental stress) ซึ่งหาก พิจารณาผล TEM นี้ประกอบกับร้อยละและจลนพลศาสตร์การยับยั้งปานกลางในหัวข้อก่อนหน้า นี้พบว่า แม้ในการทดลองที่มี AgNP ถึง 10 mg/L การยับยั้งทั้งในกระบวนการในตริฟิเคชันและ แอมโมเนียออกซิเดชันน้อยกว่าร้อยละ 50 ซึ่งอาจเกิดจากการปกป้องเซลล์ด้วยสารอีพีเอสนี้เอง กล่าวคือ เซลล์บางชนิดในกลุ่มจุลินทรีย์ผลิตเมือกอีพีเอสรอบตัวทำให้มีโอกาสสัมผัส AgNP น้อยลงส่งผลให้พบการยับยั้งกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันไม่สูงนัก

สำหรับผลต่อโครงสร้างทางชีวภาพพบว่าจากผลการทดลองจลนพลศาสตร์การยับยั้งสามารถ ระบุได้ว่า AgNP ส่งผลต่อจุลินทรีย์ในตริฟายอิงทั้งหมดและแอมโมเนียออกซิไดซิงต่างกันส่งผล ให้จลนพลศาสตร์การยับยั้งแตกต่างกัน นอกจากนี้จากรูป TEM ยังสนับสนุนว่าโครงสร้างทาง ชีวภาพของกลุ่มจุลินทรีย์อาจเปลี่ยนแปลงจากผลของ AgNP เนื่องจากมีจุลินทรีย์บางชนิดถูก ทำลาย




ร**ูปที่ 4** เซลล์จุลินทรีย์ภายหลังการทดลองที่มี AgNP 10 mg/L

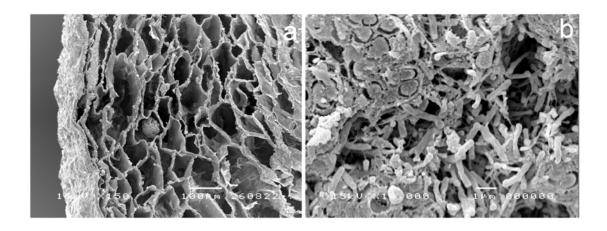
## ผลการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์


การทดลองขึ้นตอนนี้มุ่งเน้นการศึกษากระบวนการในตริฟิเคชันด้วยเซลล์ดักติดด้วย PVA และ CA ดังแสดงผลในรูปที่ 5 และ 6 แนวโน้มของค่า DO ในการทดลองทุกชุดเป็นไปใน ลักษณะเดียวกัน คือ DO มีค่าลดลงเรื่อย ๆ เมื่อเวลาผ่านไป โดยในการทดลองที่มี AgNP เริ่มตันความเข้มขันสูง DO ลดลงชำกว่าการทดลองที่มี AgNP น้อย

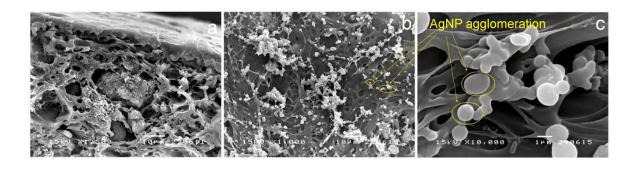
เมื่อคำนวณหา OUR ของการทดลองด้วยเซลล์ดักติด ชุดทดลองเซลล์ดักติดด้วย PVA ขนาด เล็กและใหญ่มี OUR เท่ากับ 0.000-0.006 และ 0.006-0.014 mg-O2/L/min, ตามลำดับ โดย เมื่อเปรียบเทียบกับชุดควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็น ร้อยละ 5-11 และ 44-88 ของชุดควบคุม ส่วนในชุดทดลองเซลล์ดักติดด้วย CA ขนาดเล็กและ ใหญ่พบว่ามีค่า OUR ระหว่าง 0.009-0.014 และ 0.019-0.024 mg-O2/L/min ตามลำดับ โดย เมื่อเปรียบเทียบกับชุดควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็น ร้อยละ 65-110 และ 81-94 ของชุดควบคุม เมื่อเปรียบเทียบกับชุดทดลองเซลล์ดักติดด้วย PVA พบว่าการยับยั้งในชุดทดลองเซลล์ดักติดด้วย CA มีน้อยกว่าโดยเฉพาะอย่างยิ่งในชุดทดลอง เซลล์ดักติดขนาดใหญ่

เมื่อเปรียบเทียบเซลล์ดักติดขนาดเล็กและใหญ่พบว่าเซลล์ในวัสดุดักติดขนาดใหญ่ได้รับผล จาก AgNP น้อยกว่าส่งผลให้คงกิจกรรมในตริฟิเคชันได้ดีกว่า ปรากฏการณ์นี้คาดว่าเกิดจาก วัสดุดักติดขนาดใหญ่มีความหนามากกว่าทำให้มีการเคลื่อนภายในวัสดุพรุนระยะทางยาวและ ยากลำบากกว่าส่งผลให้มีโอกาสที่ AgNP (และ Ag<sup>†</sup> ที่ปลดปล่อยออกจาก AgNP) สัมผัสเซลล์ น้อยกว่า




ร**ูปที่ 5** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในกระบวนการในตริฟิเคชัน ด้วยเซลล์ดักติดด้วย PVA (SPVA คือ เซลล์ดัดติดด้วย PVA ขนาดเล็ก และ LPVA คือ เซลล์ดัดติดด้วย PVA ขนาดใหญ่)




ร**ูปที่ 6** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในกระบวนการในตริฟิเคชัน ด้วยเซลล์ดักติดด้วย CA (SCA คือ เซลล์ดัดติดด้วย CA ขนาดเล็ก และ LCA คือ เซลล์ดัดติดด้วย CA ขนาดใหญ่)

ผลการศึกษาโครงสร้างเซลล์ดักติดในระดับจุลภาคด้วย SEM แสดงดังรูปที่ 7 และ 8 ในรูป ที่ 7a พบว่าวัสดุดักติดด้วย CA มีโครงสร้างตาข่ายละเอียดมากคล้ายกับแผ่นกระดาษ โดยในรู พรุนขนาดเล็กมีเซลล์จุลินทรีย์ดักติดอยู่ภายใน (รูปที่ 7b) รูปดังกล่าวนี้สนับสนุนการอภิปราย ผลก่อนหน้านี้เกี่ยวกับรูพรุนจำนวนมากในเซลล์ดักติดซึ่งส่งผลให้เกิดการเคลื่อนที่ยากลำบาก ภายในเซลล์ดักติด สำหรับรูปที่ 8a ซึ่งแสดงเซลล์ดักติดด้วย PVA พบว่ามีรูพุรนจำนวนมาก และผิวหยาบ โดยรูพรุนมีขนาดประมาณ 10 - 20 µm นอกจากนี้ในรูปที่ 8b และ c ซึ่งเป็นวัสดุ ดักติด PVA (ไม่มีเซลล์จุลินทรีย์) พบกลุ่มก้อนของ AgNP ลักษณะคล้ายลูกบอล ผลในรูป ดังกล่าวสามารถกล่าวได้ว่าวัสดุดักติด PVA นอกจากจะลดโอกาสสัมผัสของเซลล์และ AgNP แล้วยังปกป้องจุลินทรีย์จาก AgNP ทางกายภาพโดยรวมกลุ่มและยึด AgNP ด้วยวัสดุดักติด (รูปที่ 8c)

เมื่อเปรียบเทียบเซลล์ดักติดด้วย PVA และ CA พบว่าแม้วัสดุดักติดด้วย CA ไม่สามารถยึด AgNP ได้ดัง PVA แต่เซลล์ดักติดด้วย CA ยังมีประสิทธิภาพดีกว่าซึ่งคาดว่าเกิดจากโครงสร้าง ของ CA มีความละเอียดมากกว่า PVA จากผลนี้ยังสามารถชี้ได้อีกว่ากลไกการปกป้องเซลล์ จุลินทรีย์ในกรณีนี้คาดว่าเป็นกลไกทางกายภาพเป็นสำคัญ



รูปที่ 7 เซลล์ดักติดด้วย CA a) ที่กำลังขยาย 150× และ b) ที่กำลังขยาย 10,000×



ร**ูปที่ 8** เซลล์ดักติดด้วย PVA a) ที่กำลังขยาย 1,500× b) การรวมกลุ่มของ AgNP ในวัสดุดัก ติด PVA (ไม่มี NAS) ที่กำลังขยาย 1,000× และ c) การรวมกลุ่มของ AgNP ในวัสดุดักติด PVA (ไม่มี NAS) ที่กำลังขยาย10,000×

## สรุปผลการวิจัยและข้อเสนอแนะ

## สรุปผลการวิจัย

- 1) กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันเป็นไปตามโมเดลของ Michaelis-Menten โดยมีค่า  $OUR_{max}$  และ  $K_{s}$  ของกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชัน  $OUR_{max}$  เท่ากับ 0.2132 และ 0.2273 mg-O $_{2}$ /L/min และ  $K_{s}$  เท่ากับ 5.42 และ 15.87 mg-N/L ตามลำดับ
- 2) ภายใต้สภาวะที่มี AgNP เมื่อความเข้มข้นของ AgNP เริ่มต้นสูงส่งผลให้  $OUR_{max}$  และ  $K_s$  ลดลง โดยจลนพลศาสตร์การยับยั้งด้วย AgNP ในการศึกษานี้เป็นแบบไม่มีการ แข่งขันทั้งในกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน ซึ่งมีค่าคงที่การยับยั้ง  $K_s$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน เท่ากับ 9.3 และ 5.5 mg/L ตามลำดับ

- 3) เมื่อ AgNP มีความเข้มข้นเพิ่มมากขึ้นระดับของการยับยั้งของสูงขึ้น AgNP ที่ความ เข้มข้น 0.25 ถึง 10.00 mg/L ส่งผลให้เกิดการยับยั้งร้อยละ 8 ถึง 38 ในกระบวนการ ในตริฟิเคชันและร้อยละ 14 ถึง 28 ในกระบวนการแอมโมเนียออกซิเดชัน ส่วนความ เข้มขันของแอมโมเนียเริ่มตันมิได้มีผลต่อร้อยละการยับยั้งอย่างชัดเจน
- 4) เซลล์จุลินทรีย์ถูกทำลายด้วย AgNP ในลักษณะที่ผนังและเยื่อหุ้มเซลล์ยุ่ยและฉีกขาด นอกจากนี้ยังพบว่ามีการรั่วไหลของสารภายในเซลล์
- 5) OUR ของการทดลองด้วยเซลล์ดักติดด้วย PVA ขนาดเล็กและใหญ่มี OUR เท่ากับ 0.000-0.006 และ 0.006-0.014 mg-O<sub>2</sub>/L/min ตามลำดับ โดยเมื่อเปรียบเทียบกับชุด ควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 5-11 และ 44-88 ของชุดควบคุม ส่วนในชุดทดลองเซลล์ดักติดด้วย CA ขนาดเล็กและใหญ่พบว่ามี ค่า OUR ระหว่าง 0.009-0.014 และ 0.019-0.024 mg-O<sub>2</sub>/L/min ตามลำดับ โดยเมื่อ เปรียบเทียบกับชุดควบคุมพบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 65-110 และ 81-94 ของชุดควบคุม
- 6) เซลล์ในวัสดุดักติดขนาดใหญ่ได้รับผลจาก AgNP น้อยกว่า (การเปลี่ยนถ่ายมวลสารพิษ น้อยกว่า) ส่งผลให้คงกิจกรรมในตริฟิเคชันได้ดีกว่า
- 7) เซลล์ดักติดด้วย CA ลดการยับยั้งดีกว่า PVA เนื่องจากมีโครงสร้างที่ละเอียดกว่า
- 8) จากการศึกษาลักษณะเซลล์ดักติดในระดับจุลภาคพบว่ากลไกการปกป้องเซลล์จุลินทรีย์ ในกรณีนี้คาดว่าเป็นกลไกทางกายภาพเป็นสำคัญ

### ข้อเสนอแนะ

- 1) ควรมีการทดลองสภาวะดำเนินระบบบำบัดด้วยเซลล์ดักติดที่เหมาะสม เช่น ปริมาณ ออกซิเจนที่เหมาะสม ระยะเวลากักน้ำ (hydraulic retention time) ระยะเวลากักเซลล์ (solid retention time) เป็นตัน เพื่อศึกษาความเหมาะสมก่อนการประยุกต์ใช้จริงต่อไป
- 2) ควรมีการศึกษาความคงทนของเซลล์ดักติด เพื่อให้ทราบความเหมาะสมในการใช้งาน จริงต่อไป รวมทั้งควรมีงานศึกษาครอบคลุมการพัฒนาวัสดุดักติดที่มีความคงทนสูง มากขึ้น
- 3) ควรมีงานศึกษาต่อเนื่องในประเด็นกลไกการเสริมของ AgNP ให้เกิดการยับยั้งด้วย ตัวเอง
- 4) ควรมีการศึกษากลไกการยับยั้งของ AgNP ในระดับชีวโมเลกุล

### กิตติกรรมประกาศ

งานวิจัยนี้ดำเนินการภายใต้ทุนพัฒนาศักยภาพในการทำงานวิจัยของอาจารย์รุ่นใหม่ ประจำปี 2553 ซึ่งสนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุน สนับสนุนการวิจัย และมหาวิทยาลัยอุบลราชธานี ผู้วิจัยขอขอบคุณ Prof. Dr. Eakalak Khan และ รศ.ดร. อลิสา วังใน ที่ปรึกษางานวิจัยนี้ที่ให้คำแนะนำแนวทางการดำเนินงานวิจัยและการ จัดเตรียมบทความเพื่อการตีพิมพ์เผยแพร่ ผู้วิจัยขอขอบคุณ ผศ.ดร.ตะวัน ลิมปิยากร ชุติมา พลอยจันทร์กุล และ Nguyen Thanh Giao ผู้ร่วมดำเนินงานวิจัยทำให้งานวิจัยนี้สำเร็จลุล่วงไป ได้ด้วยดี

ผศ.ดร. สุมนา สิริพัฒนากุล

# สารบัญ

|          |                                                              | หน้า  |
|----------|--------------------------------------------------------------|-------|
| บทคัด    | ย่อ                                                          | i     |
| Abstra   | act                                                          | iii   |
| บทสรุ    | ปผู้บริหาร                                                   | ٧     |
| •        | ะรรมประกาศ                                                   | xvii  |
| สารบั    | ញ្ញ <u></u>                                                  | xviii |
| บทที่ 1  | ี่<br>1 บทนำ                                                 | 1     |
| 1.1 ที่เ | มาและความสำคัญของปัญหา                                       | 1     |
|          | าถุประสงค์ของการวิจัย                                        | 3     |
|          | บบเขตการวิจัย                                                | 3     |
| บทที่ 2  | 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง                              | 4     |
| 2.1 ซิเ  | นเวอร์อนุภาคขนาดนาโน                                         | 4     |
| 2.2 กร   | ะบวนการในตริฟิเคชัน                                          | 14    |
| 2.3 เช   | ลล์ดักติด                                                    | 15    |
| บทที่ 3  | 3 ระเบียบวิธีวิจัย                                           | 21    |
| 3.1 กร   | รอบการวิจัย                                                  | 21    |
| 3.2 วิธี | ์<br>ดำเนินการวิจัย                                          | 21    |
| 3.2.1    | สมบัติของซิลเวอร์อนุภาคขนาดนาโน                              | 23    |
| 3.2.2    | อาหารเลี้ยงเชื้อและปรับสภาพเชื้อในตริฟายอิง                  | 23    |
| 3.2.3    | การทดลองการศึกษาผลของ AgNP ในการยับยั้งกระบวนการในตริฟิเคชัน | 24    |
| 3.2.4    | การทดลองการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติด    | 27    |
|          | เซลล์                                                        |       |

# สารบัญ (ต่อ)

|                                                                  | หน้า |  |  |  |
|------------------------------------------------------------------|------|--|--|--|
|                                                                  |      |  |  |  |
| บทที่ 4 ผลการวิจัยและการอภิปรายผล                                | 29   |  |  |  |
| 4.1 ผลของ AgNP ต่อกระบวนการในตริฟิเคชัน                          |      |  |  |  |
| 4.1.1 ลักษณะการยับยั้งของ AgNP ต่อกระบวนการในตริฟิเคชัน          | 29   |  |  |  |
| 4.1.2 ผลของ AgNP ต่อลักษณะทางกายภาพและโครงสร้างทางชีวภาพของกลุ่ม | 34   |  |  |  |
| จุลินทรีย์                                                       |      |  |  |  |
| 4.2 ผลการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์     | 36   |  |  |  |
| 4.2.1 กระบวนการในตริฟิเคชันด้วยเซลล์ดักติด                       | 36   |  |  |  |
| 4.2.2 ผลของ AgNP ต่อลักษณะทางกายภาพของเซลล์ดักติด                | 39   |  |  |  |
|                                                                  |      |  |  |  |
| บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ                              | 42   |  |  |  |
| 5.1 สรุปผลการวิจัย                                               |      |  |  |  |
| 5.2 ข้อเสนอแนะ                                                   |      |  |  |  |
|                                                                  |      |  |  |  |
| บรรณานุกรม                                                       | 44   |  |  |  |
|                                                                  |      |  |  |  |
| ภาคผนวก                                                          | 53   |  |  |  |
| ภาคผนวก ก วิธีการเตรียมตัวอย่างและเซลล์ดักติด                    | 53   |  |  |  |
| ภาคผนวก ข บทความวิชาการ                                          | 57   |  |  |  |

# บทที่ 1 บทนำ

## 1.1 ที่มาและความสำคัญของปัญหา

ปัจจุบันซิลเวอร์อนุภาคขนาดนาโน (silver nanoparticle; AgNP) เป็นส่วนประกอบของ วัสดุที่ใช้ทั่วไปในบ้านเรือนและชีวิตประจำวันหลายชนิด เช่น ผลิตภัณฑ์ทำความสะอาด ้เครื่องสำอาง ยา และสิ่งทอ ตลอดจนในระบบประปา โดย AgNP มีประโยชน์เพื่อเป็นสารฆ่าเชื้อ หรือป้องกันการเกิดจุลินทรีย์ (Li et al., 2008; Blaser et al., 2008) แม้ปัจจุบันยังไม่มีผล การศึกษาการตกค้างของ AgNP ในสิ่งแวดล้อมอย่างชัดเจน แต่มีรายงานการใช้ AgNP ปริมาณมากขึ้นในช่วง 10 ปีที่ผ่านมา เช่น ในทวีปยุโรปมีรายงานการใช้ AgNP 30 ตันต่อปีใน ปี ค.ศ. 2004 ซึ่งเพิ่มขึ้นเป็น 500 เท่าจากปี ค.ศ. 2000 (Li et al., 2008) เป็นไปได้ว่าในอนาคตอันใกล้ AgNP จะตกค้างในสิ่งแวดล้อมปริมาณสูงเช่นกัน ซิลเวอร์เป็น โลหะหนักชนิดหนึ่งที่มีความเป็นพิษทั้งต่อมนุษย์และสิ่งแวดล้อม โดยมีรายงานความเป็น พิษทั้งต่อเซลล์สัตว์ แบคทีเรีย และไวรัส (Xu et al., 2004; Elichiguerra et al., 2005; Limbach การศึกษาในอดีตพบว่าซิลเวอร์สามารถทำลายผนัง/ยึดเกาะ/ซึมผ่านเซลล์ et al., 2007) จุลินทรีย์ซึ่งระยะยาวอาจส่งผลต่อการมีชีวิต (Feng et al., 2000; Lok et al., 2006; Choi et al., โดยเฉพาะอย่างยิ่งเมื่อซิลเวอร์มีอนุภาคขนาดนาโนจะมีผลต่อสิ่งมีชีวิตสูงกว่าอนุภาค ขนาดไมโครถึง 100 เท่า (Lok et al., 2006) ดังนั้นหากมี AgNP ตกค้างในสิ่งแวดล้อมแม้ เพียงปริมาณน้อยก็สามารถส่งผลกระทบต่อระบบสิ่งแวดล้อมและระบบนิเวศน์วิทยาได้

ระบบบำบัดน้ำเสียเป็นหน่วยสิ่งแวดล้อมหนึ่งที่ AgNP อาจตกค้างได้ จากการศึกษาของ Blaser et al. (2008) พบว่า AgNP ส่วนใหญ่จะเข้าสู่หน่วยสิ่งแวดล้อมต่าง ๆ ผ่านระบบบำบัด น้ำเสีย ไม่ว่าจะเป็นระบบบำบัดน้ำเสียอุตสาหกรรมการผลิตที่ใช้ AgNP เป็นวัตถุดิบ หรือจากน้ำเสียชุมชนที่มีการใช้ผลิตภัณฑ์ที่มีส่วนประกอบเป็น AgNP เมื่อ AgNP เข้าสู่ระบบ บำบัดน้ำเสียแล้วอนุภาคบางส่วนจะละลายอยู่ในน้ำเสีย แต่อนุภาคส่วนใหญ่จะถูกดูดซับอยู่กับ ตะกอน (sludge) ในระบบบำบัดน้ำเสีย โดยมีการคาดการณ์ว่าอาจมี AgNP ตกค้างได้สูง ถึง 39 mg-Ag/kg dry sewage sludge จากสถานการณ์นี้จะเห็นว่า AgNP มีแนวโน้มที่จะ ส่งผลกระทบถึงตะกอนจุลินทรีย์และระบบบำบัดน้ำเสียอย่างรุนแรงได้ในอนาคต

สำหรับหน่วยบำบัดน้ำเสียทั่วไปมีกระบวนการบำบัดหลัก 2 กระบวนการ คือ การกำจัด คาร์บอน (carbonaceous removal) และการกำจัดในโตรเจน (nitrogenous removal) ด้วย กระบวนการในตริฟิเคชัน-ดีในตริฟิเคชัน (nitrification-denitrification processes) เป็นที่รู้กัน ทั่วไปว่ากระบวนการในตริฟิเคชันเป็นกระบวนการที่มีความอ่อนใหวต่อสิ่งแวดล้อมและสภาวะ ในการเดินระบบ เช่น ในสภาวะที่มีอุณหภูมิหรือความเข้มข้นของออกวิเจนละลายสูงหรือต่ำ เกินไป เป็นต้น ดังนั้นในการศึกษานี้จึงมุ่งเน้นการศึกษาระบบบำบัดน้ำเสียในส่วนของ กระบวนการในตริฟิเคชัน จากการศึกษาในอดีตพบว่ากระบวนการในตริฟิเคชันเมื่อมี

ปนเปื้อนของสารพิษประสิทธิภาพการทำงานจะลดลงมาก เช่น ในการศึกษาของ Park and Ely (2008) พบว่าเมื่อ Nitrosomonas europaea ได้รับสารประกอบคลอไรด์ของแคดเมียม ปรอท และทองแดง ที่ความเข้มขันระหว่าง 1-8 mg/L ทำให้ประสิทธิภาพการทำงานลดลงถึงร้อยละ 90 สำหรับการศึกษาการปนเปื้อนของ AgNP พบว่าที่ความเข้มขันตกค้างเพียง 1 mg/L กระบวนการในตริฟิเคชันถูกยับยั้งสูงถึงร้อยละ 86 (Choi et al., 2008) การศึกษาของ Choi et al. (2008) เป็น 1 ใน 4 การศึกษาที่เกี่ยวข้องกับผลของ AgNP ต่อระบบบำบัดน้ำเสียที่มีอยู่ ในปัจจุบัน (Choi et al., 2008; Choi and Hu., 2008; Choi et al., 2009; Choi and Hu, 2009) ซึ่งงานวิจัยเหล่านี้มุ่งเน้นในการศึกษาลักษณะของ AgNP และผลของสารประกอบเกลือและลิ แกนด์ต่อความเป็นพิษของ AgNP ในกระบวนการในตริฟิเคชันเท่านั้น แต่องค์ความรู้ ดังกล่าวยังไม่เพียงพอต่อการระบุความเป็นไป (Fate) ของ AgNP ทั้งต่อระบบบำบัดน้ำเสียและ สิ่งแวดล้อม และนอกจากนี้ในปัจจุบันยังไม่มีงานวิจัยที่ศึกษาผลของ AgNP ต่อกลุ่ม จุลินทรีย์ รวมทั้งแนวทางป้องกันปัญหาการปนเปื้อนของ AgNP ต่อระบบบำบัดน้ำเสีย

สำหรับแนวทางแก้ปัญหาความล้มเหลวของระบบบำบัดน้ำเสียวิธีหนึ่ง คือ เทคนิคการดักติด เซลล์ (cell entrapment) เทคนิคนี้เป็นการตรึงเซลล์จุลินทรีย์ไว้ภายในสารพอลีเมอร์ เช่น สาร แคลเซียมแอลจิเนต (calcium alginate; CA) สารพอลีไวนิลแอลกอฮอลล์ (polyvinyl alcohol; PVA) เป็นตัน (Siripattanakul et al., 2008a; Siripattanakul et al., 2008b) ภาพตัวอย่างของเซลล์ดักติดด้วย CA ระบบดังกล่าวมีข้อดีหลายประการ คือ สามารถ ควบคุมปริมาณเซลล์จุลินทรีย์ได้ และสารพอลีเมอร์สามารถป้องกันจุลินทรีย์จากสภาพแวดล้อม ต่าง ๆ ได้ เช่น สภาวะที่มีความเป็นกรด-ด่างสูงหรือต่ำเกินไป สภาวะที่มีอุณหภูมิสูงหรือต่ำ เกินไป สภาวะที่มีสารพิษ เป็นต้น (van Veen et al., 1997; Siripattanakul et al., 2008b; Siripattanakul and Khan, 2010) นอกจากนี้จากลักษณะโครงสร้างของเซลล์ดักติดซึ่งเป็น โครงตาข่าย (Siripattanakul et al., 2008b) มีแนวโน้มที่จะป้องกัน AgNP ไม่ให้เกาะติดเซลล์ จุลินทรีย์ใด้ จากสมบัติของเซลล์ดักติดดังกล่าวระบบเซลล์ดักติดเป็นระบบที่มีศักยภาพในการ ประยุกต์เพื่อป้องกันปัญหาที่กล่าวถึงข้างต้น โดยระบบเซลล์ดักติดนอกจากจะมีความเหมาะสม วิธีการผลิตเซลล์ดักติดเป็นวิธีการที่ไม่ยุ่งยาก ในด้านสมบัติแล้ว จำเป็นต้องใช้อุปกรณ์หรือเทคโนโลยีขั้นสูง รวมทั้งเซลล์ดักติดสามารถนำไปใช้กับระบบบำบัด น้ำเสียที่มีอยู่เดิมได้ อย่างไรก็ตามในการประยุกต์ใช้เทคนิคการดักติดเซลล์ให้ประสบ ความสำเร็จ จำเป็นจะต้องศึกษาหาสภาวะ ชนิด และขนาดของเซลล์ดักติดที่เหมาะสม มิฉะนั้น เทคนิคดังกล่าวนอกจากจะไม่ได้ช่วยแก้ปัญหา แต่ยังอาจส่งผลให้เกิดปัญหาของการซึมผ่าน ของอาหารและออกซิเจน (substrate and oxygen diffusion)

จากเหตุผลข้างต้นงานวิจัยนี้มุ่งเน้นการศึกษาผลของ AgNP ต่อกระบวนการในตริฟิเคชัน และการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคเซลล์ดักติด โดยปัจจัยที่ศึกษา คือ ความเข้มข้นของ AgNP ชนิดของเซลล์ดักติด (CA และ PVA) และขนาดของเซลล์ดักติดต่อ กระบวนการในตริฟิเคชัน รวมทั้งศึกษาลักษณะทางกายภาพ (physiology) และโครงสร้าง

ของกลุ่มจุลินทรีย์ (microbial community structure) ที่อยู่ในรูปเซลล์อิสระและเซลล์ดักติดเมื่อมี การปนเปื้อนของ AgNP

## 1.2 วัตถุประสงค์ของการวิจัย

โครงการวิจัยนี้มีเป้าหมายหลักของโครงการ คือ เพื่อให้ทราบถึงความเป็นไปของ AgNP ต่อระบบบำบัดน้ำเสีย ทั้งในแง่ศักยภาพในการทำงานและผลต่อจุลินทรีย์ รวมทั้งหาแนวทางใน การป้องกันปัญหาดังกล่าว เพื่อให้งานวิจัยบรรลุเป้าหมายนี้งานวิจัยมีรายละเอียดของ วัตถุประสงค์การวิจัย ดังนี้

- 1) เพื่อศึกษาผลของ AgNP ที่ความเข้มข้นต่าง ๆ ต่อกระบวนการในตริฟิเคชัน
- 2) เพื่อศึกษาผลของ AgNP ต่อลักษณะทางกายภาพของกลุ่มจุลินทรีย์
- 3) เพื่อศึกษาผลของ AgNP ต่อโครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์
- 4) เพื่อศึกษาการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์ด้วยสาร ดักติดต่างชนิดและต่างขนาด

#### 1.3 ขอบเขตการวิจัย

- 1) AgNP สังเคราะห์ด้วยกระบวนการโบโรไฮไดรด์รีดักชัน (borohydride reduction process)
- 2) จุลินทรีย์ในตริฟายอิงเพาะเลี้ยงมาจากตะกอนจุลินทรีย์จากระบบตะกอนเร่ง โดยเลี้ยง ในอาหารเลี้ยงเชื้อสังเคราะห์ภายในห้องปฏิบัติการเป็นเวลา 6 เดือน ก่อนใช้งาน
- 3) การทดลองเป็นแบบกะ (batch) ในระดับห้องปฏิบัติการ
- 4) การทดลองกระบวนการในตริฟิเคชันเป็นไปตามวิธีทางเรสไพโรเมตริก (respirometric method)
- 5) วิธีการดักติดเซลล์ในงานวิจัยนี้ คือ การดักติดด้วย CA และ PVA
- 6) การทดลองนี้ศึกษาขนาดของเซลล์ดักติดต่อกระบวนการในตริฟิเคชัน โดยขนาดที่ ศึกษา คือ 3 และ 7 mm เป็นตัวแทนเม็ดเซลล์ตรึงขนาดเล็กและใหญ่ตามลำดับ

# บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

## 2.1 ซิลเวอร์อนุภาคขนาดนาโน

## 2.1.1 การสังเคราะห์และการใช้ประโยชน์ซิลเวอร์อนุภาคขนาดนาโน

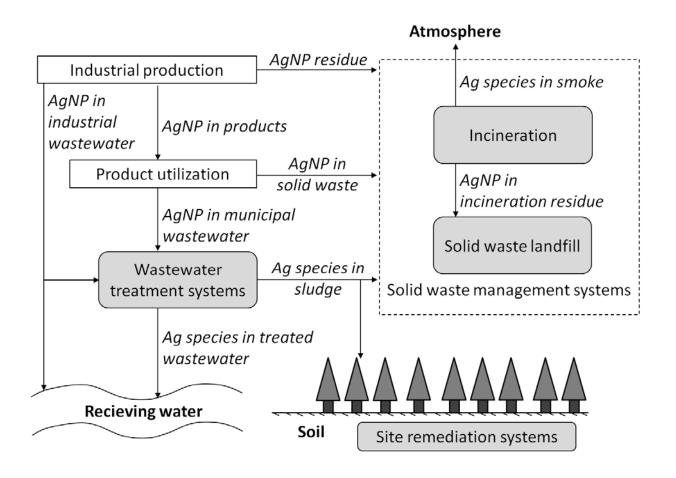
วิธีการสังเคราะห์ AgNP มีหลายวิธีการเพื่อให้ได้สารที่มีสมบัติ (ขนาด รูปร่าง และ พื้นผิว) ตามที่ต้องการ (Xu et al., 2006; Choi and Hu, 2008; Durán et al., 2010; Marambio-Jones and Hoek, 2010) โดยทั่วไปวิธีการสังเคราะห์สารดังกล่าวสามารถจำแนก ออกได้เป็น 3 ประเภท ซึ่งประกอบด้วย วิธีการทางกายภาพ วิธีการทางเคมี และวิธีการทาง ชีววิทยา รายละเอียดของวิธีการแสดงดังตารางที่ 2.1

วิธีการทางกายภาพเป็นวิธีการที่ไม่ใช้สารเคมีหรือใช้เพียงเล็กน้อยแต่โดยทั่วไปใช้ พลังงานและเวลานาน (Abou El-Nour et al., 2010) ส่วนวิธีการทางเคมีเป็นวิธีการที่เป็นที่นิยม มากที่สุด (Marambio-Jones and Hoek, 2010) เนื่องจากวิธีการดังกล่าวดำเนินการง่ายและใช้ เพียงเครื่องมือพื้นฐานทั่วไป นอกจากนี้วิธีการนี้ยังสามารถปรับปรุงเพื่อให้ได้วัสดุที่มีคุณสมบัติ ตรงตามที่ต้องการได้ แต่อย่างไรก็ตามวิธีการนี้ส่วนมากใช้สารเคมีอันตรายในการสังเคราะห์ หลายชนิด (Marambio-Jones and Hoek, 2010) ดังนั้นวิธีการทางชีววิทยาจึงได้ถูกพัฒนาขึ้น โดยวิธีการนี้ใช้สารจากธรรมชาติในการสังเคราะห์ เช่น สารสกัดจากพืช สารสกัดจากจุลินทรีย์ เป็นตัน (Darroudi et al., 2010)

AgNP ได้ถูกพัฒนาเพื่อใช้ในงานหลากหลายประเภท เช่น การใช้งานทาง การแพทย์ การใช้งานในบ้านเรือน และ การใช้งานในอุตสาหกรรม เป็นต้น (Abou El-Nour et al., 2010; Arvizo et al., 2012) สำหรับการใช้งานทางการแพทย์ AgNP ใช้สำหรับการฆ่าเชื้อ และการรักษาโรค เช่น การลดการติดเชื้อและอักเสบในบาดแผล การฆ่าเชื้อโรคในเครื่องมือ ทางการแพทย์ การบำบัดเนื้องอก และการปลูกถ่ายหลอดเลือด (Atiyeh et al., 2007; Tian et al., 2007; Chen and Schluesener, 2008; Rai et al., 2009; Chaloupka et al., 2010; Arvizo et al., 2012) ส่วนการใช้งานในบ้านเรือน AgNP เป็นส่วนประกอบในผลิตภัณฑ์หลายชนิด เพื่อใช้ป้องกันเชื้อโรค เช่น เสื้อผ้า เครื่องสำอาง และผลิตภัณฑ์พลาสติก เป็นต้น (Benn and Westerhoff, 2008; Blaser et al., 2008; Chaudhry et al, 2008; Kokura et al., 2010) ในงาน ทางอุตสาหกรรม AgNP ถูกใช้ในการผลิตเซ็นเซอร์ (McFarland and Van Duyne, 2003; Ren et al., 2005; Zheng et al, 2008) นอกจากนี้ในปัจจุบันยังพบอีกว่า AgNP ได้ถูกนำมาใช้ใน กระบวนการปรับปรุงคุณภาพน้ำและน้ำเสีย เช่น การกำจัดแบคทีเรียในน้ำดื่ม เป็นตัน (Lv et al., 2009; Wu et al., 2010; Dankovich and Gray, 2011; Manimegalai et al., 2011)

**ตารางที่ 2.1** วิธีการสังเคราะห์ซิลเวอร์อนุภาคขนาดนาโน

| Method              | Method description                                                                  | Examples                 |
|---------------------|-------------------------------------------------------------------------------------|--------------------------|
| Physical approach   |                                                                                     |                          |
| Evaporation/condens | Silver ion solution is vaporized into a carrier gas and then cooled for             | Lehtinen et al. (2004)   |
| ation               | nucleation and nanoparticle formation.                                              | Baker et al. (2005)      |
|                     |                                                                                     | Raffi et al. (2007)      |
| Irradiation         | Silver nanoparticles are produced by irradiating (laser, microwave, or              | Becker et al. (1998)     |
|                     | ionization) silver solution. The particle size could be controlled by variation of  | Mafuné et al. (2000)     |
|                     | irradiation time and laser power.                                                   | Pyatenko et al. (2004)   |
|                     |                                                                                     | Amendola et al. (2007)   |
| Chemical approach   |                                                                                     |                          |
| Chemical reduction  | Silver ion in a solution is reduced by a reducing agent (such as borohydride,       | Bokshits et al. (2004)   |
|                     | citrate, poly (vinylpyrolidone), and poly (ethylene glycol)) and formed silver      | He et al. (2004)         |
|                     | atom (Ag <sup>0</sup> ). The silver atoms agglomerate and become particles. Also, a | Wang et al. (2005)       |
|                     | capping agent (such as surfactant) might be used to stabilize AgNPs.                | Hsu and Wu (2007)        |
| Electrochemical     | A silver anode is electrochemically dissolved in a solvent. The silver              | Rodríguez-Sánchez et al. |
| reduction           | nanoparticles are then separated from the solvent.                                  | (2000)                   |
|                     |                                                                                     | Yin et al. (2003)        |
|                     |                                                                                     | Murray et al. (2005)     |


| Method              | Method description                                                             | Examples                |
|---------------------|--------------------------------------------------------------------------------|-------------------------|
| Photochemical       | Silver ion in a solution is reduced by a reducing agent and then irradiated to | Pietrobon and Kitaev    |
| eduction            | form silver nanoparticles.                                                     | (2008)                  |
|                     |                                                                                | Maretti et al. (2009)   |
| Biological approach | The method is biochemical reduction. It is similar to chemical reduction       | Sharma et al. (2009)    |
|                     | method but use extracts from organisms (microorganisms and plants) as          | Darroudi et al.(2010)   |
|                     | reducing agents and/or capping agents. The well-known biological extracts      | Marambio-Jones and Hoek |
|                     | used for AgNP synthesis are proteins, amino acids, and polysaccharides.        | (2010)                  |

## 2.1.2 ความเป็นไปและการปนเปื้อนของซิลเวอร์อนุภาคขนาดนาโน

ในการประยุกต์ใช้จริง AgNP จัดเป็นวัสดุชนิดใหม่ ดังนั้นความเป็นไปและการ ปนเปื้อนของซิลเวอร์อนุภาคขนาดนาโนจึงยังไม่ชัดเจนนัก ปัจจุบันยังไม่มีข้อมูลสมดุลมวลของ AgNP ในสิ่งแวดล้อม มีเพียงข้อมูลจากการคาดการณ์จากแบบจำลองคณิตศาสตร์หรือการตรวจ ติดตามในระดับห้องปฏิบัติการหรือระดับนำร่องเป็นส่วนใหญ่ (Blaser et al., 2008; Benn and Westerhoff, 2008; Kaegi et al., 2010; Kim et al., 2010)

Blaser et al. (2008) ได้รวบรวมข้อมูลและรายงานถึงความเป็นไปของ AgNP ใน อุตสาหกรรมสิ่งทอและพลาสติก การศึกษาดังกล่าวรายงานว่าในหลายประเทศ เช่น ประเทศใน ทวีปเอเชีย อเมริกาเหนือ และยุโรป พบว่า AgNP เหลือทิ้งส่วนมากปนเปื้อนเข้าสู่ระบบการ จัดการมูลฝอยซึ่งสุดท้ายสะสมในหลุมฝังกลบมูลฝอย ส่วน AgNP บางส่วน (ประมาณ 190-410 ton/yr) ผ่านเข้าสู่ระบบบำบัดน้ำเสีย และที่สุดจึงกระจายลงแหล่งน้ำธรรมชาติและดิน นอกจากนี้ยังพบว่า AgNP ปริมาณน้อยกระจายสู่บรรยากาศจากควันของกระบวนการเผาไหม้ มูลฝอย ข้อมูลดังกล่าวนี้สามารถแจกแจงความเป็นไปของ AgNP ในอุตสาหกรรมสิ่งทอและ พลาสติกได้ดังรูปที่ 2.1

จากรูปที่ 2.1 ยังสามารถสังเกตเพิ่มเติมได้อีกว่าภายหลัง AgNP เคลื่อนที่ผ่าน กระบวนการต่าง ๆ AgNP อาจเปลี่ยนฟอร์มได้ (Nowack, 2010) ในปี ค.ศ. 2010 Kim et al. พบซิลเวอร์ซัลไฟด์อนุภาคขนาดนาโน (Ag₂SP) ในตะกอนจากระบบบำบัดน้ำเสียแห่งหนึ่ง ในประเทศสหรัฐอเมริกา ปรากฏการณ์ดังกล่าวนี้คาดว่าจะเกิดจาก AgNP เปลี่ยนฟอร์มเป็น Ag¹ และ Ag₂SP ในที่สุด ในเวลาต่อมา Kaegi et al. (2011) รายงานยืนยันว่า AgNP เปลี่ยน ฟอร์มเป็น Ag₂SP ในระบบบำบัดน้ำเสียที่ไม่มีการเดิมอากาศ ส่งผลให้มี Ag₂SP เป็นตะกอน ของแข็งแขวนลอยในน้ำผ่านการบำบัดหรือดูดซับที่ผิวของตะกอนจุลินทรีย์ในระบบบำบัดน้ำเสีย ตารางที่ 2.2 ได้สรุปรวบรวมการปนเปื้อนของ AgNP จากงานในอดีต โดยพบว่ามีรายงานการ ปนเปื้อนหลากหลายทั้งมากและน้อยแตกต่างกันไปตามเทคโนโลยีการผลิต ระบบรวบรวมและ บำบัดน้ำเสีย และลักษณะน้ำเสียจากกิจกรรมต่าง ๆ (Benn and Westerhoff, 2008; Kim et al., 2010; Nowack, 2010; Hoque et al., 2012)



Engineered environmental treatment system

ร**ูปที่ 2.1** ความเป็นไปของ AgNP ในสิ่งแวดล้อม

**ตารางที่ 2.2** การปนเปื้อนของ AgNP ในสิ่งแวดล้อมจากงานในอดีต

| Study description               | Silver detected form | Contaminated concentration                                                | Location    | Reference     |
|---------------------------------|----------------------|---------------------------------------------------------------------------|-------------|---------------|
| Silver released from            | Total Ag (model)     | Predicted silver concentrations in WWTS and                               | Switzerland | Blaser et al. |
| nanoparticles incorporated into |                      | sludge were 2-18 $\mu$ g/L and 7-39 mg/kg,                                |             | (2008)        |
| textiles and plastics and risk  |                      | respectively. The silver concentrations in Rhine                          |             |               |
| freshwater ecosystems were      |                      | river were estimated at up to148 ng/L.                                    |             |               |
| determined.                     |                      |                                                                           |             |               |
| Quantities of AgNPs released    | AgNP (model)         | Predicted AgNP concentrations in air, water, and                          | Switzerland | Muller and    |
| into environment and their risk |                      | soil ranged 0.002-0.004 $\mu \text{g/m}^3$ , 0.03-0.08 $\mu \text{g/L}$ , |             | Nowack (2008) |
| were modelled.                  |                      | 0.02-0.1 $\mu$ g/kg, respectively.                                        |             |               |

| Probabilistic material flow       | AgNP (model) | Predicted AgNP concentrations in soil, sludge                    | Europe, USA, | Gottschalk et a |
|-----------------------------------|--------------|------------------------------------------------------------------|--------------|-----------------|
| analysis was used to model        |              | treated soil, surface water, WWTS effluent, WWTS                 | and          | (2009)          |
| AgNP concentrations in            |              | sludge, sediment, and air in Europe were 22.7                    | Switzerland  |                 |
| environment.                      |              | ng/kg/yr, 1,581 ng/kg/yr, 0.8 ng/L, 42.5 ng/L, 1.7               |              |                 |
|                                   |              | mg/kg, 952 ng/kg/yr, and 0.008 ng/m <sup>3</sup> , respectively. |              |                 |
|                                   |              | Predicted AgNP concentrations in soil, sludge                    |              |                 |
|                                   |              | treated soil, surface water, WWTS effluent, WWTS                 |              |                 |
|                                   |              | sludge, sediment, and air in USA were 8.3 ng/kg/yr,              |              |                 |
|                                   |              | 662 ng/kg/yr, 0.1 ng/L, 21 ng/L, 1.6 mg/kg, 195                  |              |                 |
|                                   |              | ng/kg/yr, and 0.002 ng/m <sup>3</sup> , respectively.            |              |                 |
|                                   |              | Predicted AgNP concentrations in soil, surface                   |              |                 |
|                                   |              | water, WWTS effluent, WWTS sludge, sediment,                     |              |                 |
|                                   |              | and air in Switzerland were 11.2 ng/kg/yr, 0.7 ng/L,             |              |                 |
|                                   |              | 38.7 ng/L, 1.9 mg/kg, 1,203 ng/kg/yr, and 0.021                  |              |                 |
|                                   |              | ng/m <sup>3</sup> , respectively.                                |              |                 |
| Release of AgNPs from paints      | Total Ag     | Silver nanoparticles could leach at the                          | Switzerland  | Kaegi et al.    |
| used for outdoor applications     |              | concentration of up to 145 μg-Ag/L during the initial            |              | (2010)          |
| <i>via</i> rain was investigated. |              | runoff event.                                                    |              |                 |

| Predicted AgNP concentrations   | AgNP (model)           | Silver nanoparticles released into wastewater were | Johannesburg, | Musee et al.   |
|---------------------------------|------------------------|----------------------------------------------------|---------------|----------------|
| releasing from cosmetic-based   |                        | 7.8-306.6 kg/annum while AgNPs in WWTSs were       | South Africa  | (2010)         |
| nano-products to environment    |                        | 6.2-184.2 kg/annum. Silver nanoparticles of 2.8-   |               |                |
| were predicted and used for     |                        | 183.2 kg/annum were released into aquatic          |               |                |
| risk assessment.                |                        | systems. The predicted AgNP concentration in       |               |                |
|                                 |                        | aquatic ecosystem were 0.003 to 0.619 $\mu g/L$ .  |               |                |
|                                 |                        |                                                    |               |                |
| Silver nanoparticle analysis by | Dissolved silver (dAg) | In influent, dAg of 520 ng/L and AgNPs of 200 ng/L | Boulder, CO,  | Mitrano et al. |
| an inductively coupled plasma-  | and AgNP               | were detected while dAg of 60 ng/L and AgNPs of    | USA           | (2011)         |
| mass spectrometry, operated in  |                        | 100 ng/L were measured in the final effluent.      |               |                |
| a single-particle counting mode |                        |                                                    |               |                |
| technique was developed.        |                        |                                                    |               |                |
| Influent and effluent samples   |                        |                                                    |               |                |
| from a wastewater treatment in  |                        |                                                    |               |                |
| Boulder, CO, USA were           |                        |                                                    |               |                |
| detected for AgNP               |                        |                                                    |               |                |
| concentrations.                 |                        |                                                    |               |                |
|                                 |                        |                                                    |               |                |

| Novel detection method for   | AgNP | The concentration and size of AgNPs in the influent | Ontario, | Hoque et al. |
|------------------------------|------|-----------------------------------------------------|----------|--------------|
| AgNPs was developed. The     |      | from a wastewater treatment in Peterborough,        | Canada   | (2012)       |
| AgNPconcentratons in surface |      | Ontario, Canada were 1.90 ng/mL and 9.3 nm,         |          |              |
| water and influent of a      |      | reespectively. Surface water samples collected from |          |              |
| wastewater treatment plant   |      | Plastic Lake, Chemong Lake, and Otonabee River      |          |              |
| were detected.               |      | in central Ontario, Canada did not detect AgNPs at  |          |              |
|                              |      | detection limit of 0.8 ng/mL.                       |          |              |
|                              |      |                                                     |          |              |

## 2.1.3 ความเป็นพิษของซิลเวอร์อนุภาคขนาดนาโน

งานวิจัยในอดีตได้ระบุถึงความเป็นพิษของ AgNP ทั้งต่อ จุลินทรีย์ พืช สัตว์ และ มนุษย์ (Lok et al., 2006; Choi et al.; 2008; Damm et al., 2008; Marambio-Jones and Hoek, 2010; Guzman, 2012; Lapresta-Fernández et al., 2012) AgNP สามารถทำลาย เซลล์ได้ทั้งจาก 1) AgNP เอง 2) Ag<sup>+</sup> และ 3) รีแอกทีฟออกซิเจนสปีชีส์ (reactive oxygen species; ROS) ซึ่งเกิดจาก AgNP (Choi et al, 2008; Asharani et al., 2009; Marambio-Jones and Hoek, 2010) กลไกความเป็นพิษอาจเกิดได้จาก AgNP ทำลายผนังเซลล์ เยื่อหุ้ม เซลล์ และส่วนประกอบอื่น ๆ ของเซลล์ AgNP ยับยั้งกระบวนการเมตาโบลิซึมของเซลล์ และ AgNP ทำลาย DNA ของเซลล์ ซึ่งมีรายละเอียด ดังนี้

- 1) AgNP ทำลายผนังเซลล์ เยื่อหุ้มเซลล์ และส่วนประกอบอื่น ๆ ของเซลล์ กลไกนี้ เกิดจาก AgNP ยึดเกาะที่ผนังเซลล์ จากนั้นซึมผ่านเยื่อหุ้มเซลล์แล้วเข้าทำลาย ส่วนประกอบของเซลล์ จากงานวิจัยที่ผ่านมาพบว่าระดับของความเป็นพิษของ AgNP แตกต่างไปตามลักษณะเซลล์ ตัวอย่างเช่นสำหรับแบคทีเรียโดยทั่วไป พบว่าแบคทีเรียแกรมบวกคงทนต่อ AgNP สูงกว่าแกรมลบ เนื่องจากแบคทีเรีย แกรมบวกมีชั้นเพปติโดไกลแคน (peptidoglycan layer) ที่หนาซึ่งสามารถ ปกป้อง AgNP ได้ดีกว่า (Jung et al., 2008; Guzman, 2012) นอกจากนี้ยังมี งานวิจัยรายงานว่าซิลเวอร์ (AgNP และ Ag<sup>†</sup>) ส่วนใหญ่เกาะติดที่ผิวของเซลล์ที่ มีซัลเฟอร์เป็นองค์ประกอบ (Morones et al. 2005; Hwang et al., 2008)
- 2) AgNP ยับยั้งกระบวนการเมตาโบลิซึมของเซลล์และทำลาย DNA กลไกการ ยับยั้งนี้เกิดจาก Ag<sup>+</sup> ทำปฏิกิริยากับเอนไซม์ที่เกี่ยวข้องกับกระบวนการเรสไพ เรซันของเซลล์ (Marambio-Jones and Hoek, 2010; Lapresta-Fernández et al., 2012) โดยพบว่าซิลเวอร์ทำปฏิกิริยากับกลุ่มไทออล (thiol group; -SH) ที่ อยู่ที่เยื่อหุ้มเซลล์ (Durán et al., 2010; Marambio-Jones and Hoek, 2010) นอกจากนี้ Ag<sup>+</sup> ยังยับยั้งการสังเคราะห์ ATP และการรับฟอสเฟต รวมทั้งยัง เพิ่มการกลายของ DNA (DNA mutation) ส่วน ROS สามารถผลิตสารอนุมูล อิสระ (free radical) ซึ่งส่งผลทำลายไขมันของเยื่อหุ้มเซลล์เป็นเหตุให้เยื่อหุ้ม เซลล์ถูกทำลาย โปรตีนทำงานผิดปกติ และทำลาย DNA ในที่สุด (Mendiset al., 2005; Nel et al., 2006; Choi et al, 2008; Marambio-Jones and Hoek, 2010)

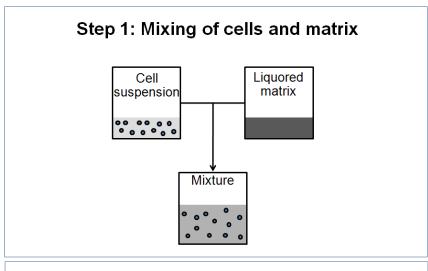
### 2.2 กระบวนการในตริฟิเคชัน

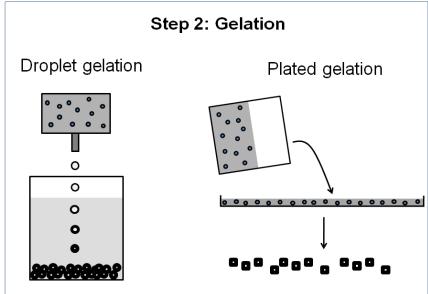
ในระบบบำบัดน้ำเสียทั่วไป สารประกอบในโตรเจนส่วนมากอยู่ในรูปสารประกอบอินทรีย์ ในโตรเจนหรือยูเรีย สารดังกล่าวจะถูกย่อยสลาย (Degradation) หรือไฮโดรไลซีส (Hydrolysis) ขั้นตอนนี้สารประกอบจะเปลี่ยนไปเป็นแอมโมเนียม ( $\mathrm{NH_4}^+$ ) แล้วจากนั้นจะ เข้าสู่กระบวนการในตริฟิเคชัน โดยกระบวนการนี้เป็นกระบวนการเปลี่ยนแอมโมเนียมให้เป็น ในเตรท ภายใต้สภาวะใช้ออกซิเจนดังแสดงในสมการที่ 2.1 กระบวนการนี้สามารถแบ่งออกได้ เป็น 2 ขั้นตอน กล่าวคือ แอมโมเนียมจะถูกเปลี่ยนเป็นในไตรท์ ( $\mathrm{NO_2}^-$ ) และในไตรท์จะถูก เปลี่ยนเป็นในเตรท ( $\mathrm{NO_3}^-$ ) ในที่สุด ปัจจัยควบคุมในกระบวนการในตริฟิเคชัน คือ อุณหภูมิ สารอาหาร ความเข้มข้นของแอมโมเนียมเริ่มต้น สารพิษ ค่าความเป็นกรด-ด่าง และปริมาณ ออกซิเจน (Gerardi, 2002)

$$NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$$
 สมการที่ 2.1

จุลินทรีย์ภายในกระบวนการในตริฟิเคชันแบ่งออกได้เป็น 2 กลุ่ม ตามขั้นตอนของ กระบวนการ โดยกลุ่มจุลินทรีย์ในขั้นตอนแรก คือ จุลินทรีย์ที่สามารถออกซิไดซ์แอมโมเนีย (Ammonia-oxidizing microorganism) จุลินทรีย์ในกลุ่มนี้มีทั้งที่เป็นแบคทีเรียและอาเคีย (Achea) (Leininger et al., 2006) ในอดีตจุลินทรีย์หลักในกลุ่มนี้ คือ แบคทีเรียสายพันธุ์ในสกุล Nitrosococcus Nitrosocystis Nitrosolobus Nitrosomonas และ Nitrosospira (Gerardi, 2002) โดยแบคทีเรียชนิดหลัก คือ Nitrosomonas จนกระทั่งในช่วง 5 ปีหลังนี้จึงได้มีการ ค้นพบอาเคียที่สามารถออกซิไดซ์แอมโมเนียได้ (Konneke et al., 2005) ส่วนจุลินทรีย์กลุ่ม ที่สอง คือ จุลินทรีย์ที่สามารถออกซิไดซ์ในไตรท์ (Nitrite-oxidizing microorganism) จุลินทรีย์หลักในกลุ่มนี้ คือ แบคทีเรียสายพันธุ์ในสกุล Nitrobacter Nitrococcus และ Nitrospira โดยแบคทีเรียชนิดหลัก คือ Nitrobacter

กระบวนการในตริฟิเคชันเป็นกระบวนการที่มีข้อจำกัดของอัตราการเกิดปฏิกิริยา (Rate-limiting process) โดยขั้นตอนที่เป็นปัจจัยหลัก คือ ขั้นตอนแรก เนื่องจากแบคทีเรียในกลุ่มนี้มี ความอ่อนไหวต่อสภาวะภายนอกมาก เช่น แม้แบคทีเรียในตริฟายอิงเป็นแบคที่เรียแบบใช้ อากาศ แต่ที่สภาวะที่มีออกซิเจนละลายสูงกว่า 1 mg/L O<sub>2</sub> จะส่งผลถึงจำนวนประชากรของ จุลินทรีย์ที่สามารถออกซิไดซ์แอมโมเนียและประสิทธิภาพการทำงานของแบคทีเรียกลุ่ม ดังกล่าว (Park and Noguera, 2004) นอกจากนี้ยังมีการศึกษาอื่นรายงานผลกระทบ เนื่องจากการปนเปื้อนของสารพิษ Park and Ely (2008) พบว่าเมื่อ Nitrosomonas europaea ได้รับสารประกอบคลอไรด์ของโลหะหนักที่ความเข้มข้นระหว่าง 1-8 mg/L ทำให้ ประสิทธิภาพการทำงานลดลงถึงร้อยละ 90


งานวิจัยที่เกี่ยวข้องกับกระบวนการในตริฟิเคชันมีมายาวนานกว่า 20 ปี ดังนั้นงานวิจัย ทางด้านปัจจัยการเดินระบบ หรือสิ่งแวดล้อมที่มีผลต่อประสิทธิภาพการบำบัดน้ำเสียทั่วไปได้มี งานศึกษามากมาย ปัจจุบันทิศทางงานวิจัยมีความเฉพาะมากขึ้น โดยอาจแบ่งได้เป็น 2 กลุ่ม ซึ่งได้แก่ 1) งานวิจัยการพัฒนาระบบบำบัดน้ำเสียใหม่ เช่น กระบวนการ SHARON (Hellinga et al., 1998) การปรับปรุงประสิทธิภาพการทำงานด้วยเทคนิคการดักติดเซลล์ (Hill and Khan, 2008) เป็นตัน 2) การศึกษากลไกในเชิงลึก เช่น จีน (gene) หรือเอนไซม์ที่ควบคุม กระบวนการในตริฟิเคชัน ตลอดจนงานวิจัยคันหาจุลินทรีย์ชนิดใหม่หรือพิสูจน์ชนิดจุลินทรีย์ใน ตริฟายอิง (Gerardi, 2002; Park and Noguera, 2004; Park and Ely, 2008)


#### 2.3 เซลล์ดักติด

### 2.3.1 ความหมายและหลักการของเซลล์ดักติด

การดักติดเซลล์ (cell entrapment) คือ การดักติดจุลินทรีย์ด้วยวัสดุตรึงรูป ประเภทสารพอลิเมอร์หรือแผ่นเมมเบรน เป็นการตรึงเซลล์ที่เกิดจากการที่จุลินทรีย์ถูกดักติดอยู่ ภายในโดยที่ไม่ได้ทำปฏิกิริยาโดยตรงกับวัสดุตรึงผิว วิธีการนี้จึงสามารถประยุกต์ใช้ได้ในงาน หลายประเภท วัสดุที่นิยมใช้งาน ได้แก่ สารประกอบแอลจิเนต (alginate) คาราจีแนน (carageenan) พอลีไวนิลแอลกอฮอล์ (polyvinyl alcohol) เป็นตัน (Jen et al., 1996; Kok and Hasirci, 2000; Park, 2000)

การดักติดเซลล์โดยทั่วไปแบ่งออกเป็น 2 ขั้นตอน ได้แก่ 1) การผสมเซลล์จุลินทรีย์ และวัสดุดักติด และ 2) การก่อให้เกิดเจล (gelation) (Dulieu et al., 1999) ซึ่งมีลักษณะดังรูปที่ 2.2 การผสมเซลล์จุลินทรีย์มีวัตถุประสงค์เพื่อกระจายเซลล์ให้ทั่ววัสดุดักติด ซึ่งวิธีการผสมเซลล์ สามารถกระทำได้โดยการกวนด้วยใบพัดหรือเครื่องกวนแม่เหล็ก (magnetic stirrer) ส่วน วิธีการก่อให้เกิดเจลสามารถจำแนกได้เป็น 2 วิธี คือ การหยดเป็นเจล (droplet gelation) และ การเทเป็นเจล (plated gelation) การหยดเป็นเจลเป็นการหยดส่วนผสมระหว่างวัสดุดักติด และเซลล์ลงในสารละลายทำแข็งเจล (gel formation solution) โดยใช้เข็มฉีดยาหรือปั๊ม เซลล์ ดักติดด้วยวิธีการนี้มีลักษณะเป็นทรงกลม ส่วนการเทเป็นเจลเป็นการเทส่วนผสมลงใน สารละลายทำแข็งเจล จากนั้นตัดจึงตัดเจลเป็นชิ้น เซลล์ดักติดด้วยวิธีการนี้มีลักษณะเป็นทรง สี่เหลี่ยม





รูปที่ 2.2 ขั้นตอนการดักติดเซลล์ (Siripattanakul and Khan, 2010)

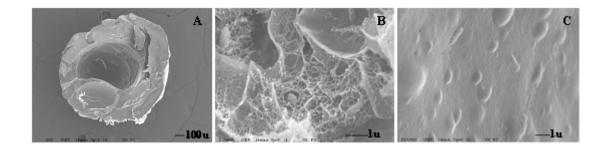
การก่อให้เกิดเจลอาจเกิดได้จากหลายกระบวนการ (Bickerstaff G.F., 1997) ซึ่ง

ได้แก่

- 1) การเกิดเจลด้วยประจุ (ionictropic gelation) เป็นการเกิดปฏิกิริยาเชื่อมไขว้ (cross-linking) ระหว่างวัสดุดักติดและสารละลายประจุบวก (cation) ตัวอย่าง การดักติดประเภทนี้ คือ การดักติดด้วยแคลเซียมแอลจิเนต
- 2) การเกิดเจลด้วยการเหนี่ยวนำทางอุณหภูมิ (temperature-induced gelation) เป็นการแยกเฟสด้วยอุณหภูมิ กล่าวคือ เมื่ออุณหภูมิลดลงสารละลายวัสดุดัก ติดเปลี่ยนเป็นเจล ตัวอย่างการดักติดประเภทนี้ คือ การดักติดด้วยอากาโรส (agarose) และเจลเลติน (gelatin)

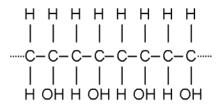
- 3) กระบวนการพอลิเมอไรเซชันอินทรีย์ (organic polymerization) เป็นปฏิกิริยา ระหว่างมอนอเมอร์อินทรีย์ ตัวอย่างการดักติดประเภทนี้ คือ การดักติดด้วยพอ ลีอาครีลาไมด์ (polyacrylamide) และพอลีไวนิลแอลกอฮอล์ (polyvinyl alcohol) เป็นต้น กระบวนการเกิดเจลของวัสดุดักติดประเภทนี้อาจมีการเติมสารเชื่อม ไขวั (cross-linking agent) เพื่อส่งเสริมให้การเกิดเจลดีขึ้น
- 4) การแยกเฟส (phase separation) เป็นการสกัดเซลล์จุลินทรีย์ด้วยตัวทำละลาย ที่สามารถก่อเจลได้ วิธีการนี้ไม่ค่อยนิยมใช้เนื่องจากตัวทำละลายอาจมี ผลกระทบต่อจุลินทรีย์ได้

### 2.3.2 วัสดุดักติดที่นิยมใช้


วัสดุดักติดที่นิยมใช้ในงานทางด้านสิ่งแวดล้อมสามารถจำแนกออกได้เป็น 2 กลุ่ม คือ วัสดุธรรมชาติและวัสดุสังเคราะห์ วัสดุดักติดธรรมชาติเป็นสารพอลีแซคคาไรด์ (polysaccharide) ที่ได้จากสาหร่าย (algae) หรือสาหร่ายทะเล (seaweed) ตัวอย่างเช่น แคลเซียมแอลจิเนต คาราจีแนน อากาโรส และ เจลเลติน เป็นต้น ส่วนวัสดุดักติด สังเคราะห์เป็นสารพอลีเมอร์ เช่น พอลีอาครีลาไมด์ และพอลีไวนิลแอลกอฮอล์ เป็นต้น แนวทางในการเลือกวัสดุดักติดแสดงไว้ในตารางที่ 2.3

**ตารางที่ 2.3** แนวทางในการเลือกวัสดุดักติด

| สมบัติ                        | แนวทาง                          | อ้างอิง                 |  |
|-------------------------------|---------------------------------|-------------------------|--|
| พื้นที่ผิว (surface area)     | วัสดุดักติดที่มีพื้นที่ผิวมาก   | Kourkotus et al. (2004) |  |
| วิธีดำเนินการ (handling) และ  | วิธีการดักติดและการฟื้นสภาพ     | Kourkotus et al. (2004) |  |
| การฟื้นสภาพ (regeneration)    | วัสดุดักติดกระทำได้ง่าย         |                         |  |
| การกักเซลล์ (cell retention)  | วัสดุดักติดกักเซลล์ได้มาก       | Kourkotus et al. (2004) |  |
| การมีชีวิตของจุลินทรีย์ (cell | วัสดุดักติดกักเซลล์แล้วส่งผลต่อ | Kourkotus et al. (2004) |  |
| viability)                    | การมีชีวิตของจุลินทรีย์น้อย     |                         |  |
| กิจกรรมทางชีวภาพ              | วัสดุดักติดกักเซลล์แล้วส่งเสริม | Jen et al. (1996)       |  |
| (biological activity)         | กิจกรรมทางชีวภาพ                | Kourkotus et al. (2004) |  |
| ความพรุน (porosity) และ       | วัสดุดักติดมีความพรุนและ        | Jen et al. (1996)       |  |
| ความสามารถในการแพร่           | ความสามารถในการแพร่สูง          | Leenen et al. (1996)    |  |
| (diffusivity)                 | (จุลินทรีย์สามารถดักติดได้ดีและ | Kourkotus et al. (2004) |  |
|                               | สารอาหารแพร่เข้าสู่ภายในได้ดี)  |                         |  |
| เสถียรภาพทางกลและทาง          | วัสดุดักติดมีเสถียรภาพทางกล     | Leenen et al. (1996)    |  |
| เคมี่ (mechanical and         | และทางเคมีสูง                   | Kourkotus et al. (2004) |  |
| chemical stability)           |                                 |                         |  |
| ขั้นตอนการเตรียมเซลล์ดักติด   | ขั้นตอนการเตรียมเซลล์ดักติด     | Leenen et al. (1996)    |  |
| (preparation procedure)       | กระทำได้ง่าย                    | Kourkotus et al. (2004) |  |
| ความสามารถในการละลาย          | วัสดุดักติดมีความสามารถในการ    | Leenen et al. (1996)    |  |
| (solubility)                  | ละลายต่ำ (วัสดุมีเสถียรภาพสูง)  |                         |  |
| ความสามารถในการย่อย           | วัสดุดักติดความสามารถในการ      | Leenen et al. (1996)    |  |
| สลายทางชีวภาพ                 | ย่อยสลายทางชีวภาพต่ำ (วัสดุมี   |                         |  |
| (biodegradability)            | เสถียรภาพสูง)                   |                         |  |
| การเจริญเติบโตของเซลล์        | เซลล์สามารถเจริญเติบโตได้ดี     | Leenen et al. (1996)    |  |
| (cell growth)                 |                                 |                         |  |
| ค่าใช้จ่าย (cost)             | ค่าใช้จ่ายต่ำ                   | Leenen et al. (1996)    |  |
|                               |                                 |                         |  |


งานวิจัยนี้มุ่งเน้นการดักติดเซลล์จุลินทรีย์ด้วยสารแคลเซียมแอลจีเนต (Calcium Alginate; CA) และ การดักติดด้วยเทคนิคฟอสฟอรีเลเท็ดพอลิไวนิลแอลกอฮอลล์ (Phosphorylated polyvinyl alcohol; PPVA) สำหรับกระบวนการตรึงรูปด้วย CA สารละลาย โซเดียมแอลจีเนต (ที่ผสมกับเซลล์จุลินทรีย์) จะทำปฏิกิริยาเชื่อมแบบไขวั (Cross-linking) กับ สารละลายแคลเซียมคลอไรด์ดังสมการที่ 2.2 (Smidsrod and Skjak-Braek, 1990) ภายหลัง จากกระบวนการตรึงเซลล์เสร็จสิ้น CA ซึ่งมีสถานะเป็นเจลจะมีลักษณะดังภาพที่ 1 โดย โครงสร้างระดับจุลภาคของเม็ดเซลล์ดักติดเป็นตาข่าย (รูปที่ 2.3) และมีเซลล์จุลินทรีย์ถูกดัก ติดในเม็ด CA ดังรูปที่ 2.3b

Na-alginate (I) + Ca<sup>2+</sup>(I) → Ca-Alginate (s) + Na<sup>+</sup>(I) สมการที่ 2.2



รูปที่ 2.3 เซลล์จุลินทรีย์ภายในเม็ดแคลเซียมแอลจีเนต (Siripattanakul et al., 2008a)

สำหรับกระบวนการดักติดด้วย PPVA สาร PVA เป็นพอลีเมอร์สังเคราะห์ที่ ไม่มีความเป็นพิษต่อสิ่งมีชีวิตและสิ่งแวดล้อม สาร PVA มีโครงสร้างเคมีดังรูปที่ 2.4 สำหรับ เทคนิคการดักติดแบบ PPVA เป็นการดักติด 2 ขั้นตอน วิธีการนี้พัฒนาโดย Chen and Lin (1994) ในขั้นตอนที่ 1 สาร PVA ทำปฏิกิริยากับกรดบอริคดังสมการที่ 2.3 จากนั้นจึงเกิด กระบวนการฟอสฟอรีเลชัน (Phosphorylation) ระหว่างสาร PVA กับฟอสฟอรัสเกิดเป็นโดย ผลิตภัณฑ์ของปฏิกิริยามีโครงสร้างดังรูปที่ 2.5

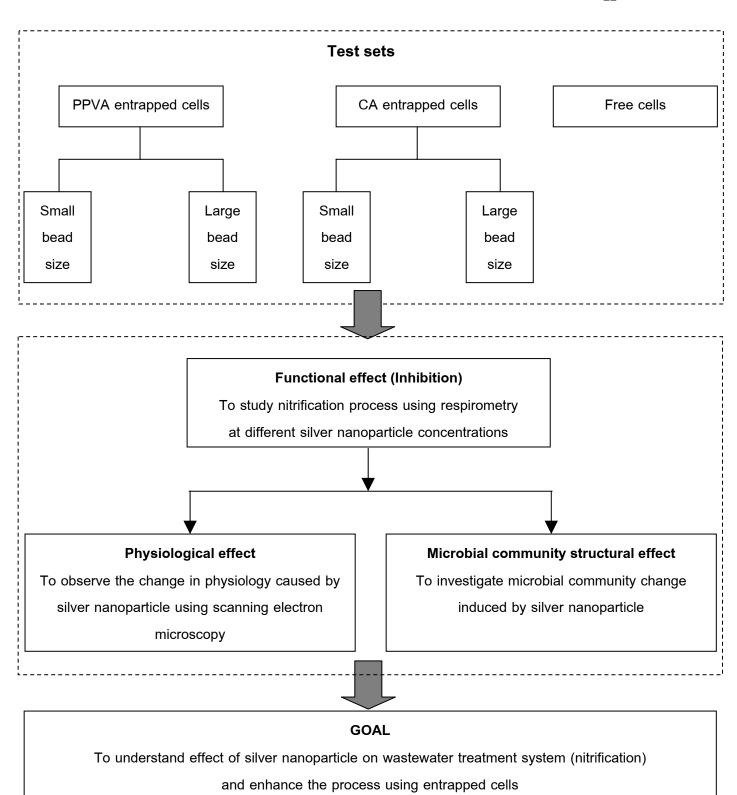


รูปที่ **2.4** สาร PVA

ฐปที่ **2.5** PPVA

การประยุกต์ใช้เทคนิคการดักติดเซลล์มีมานานกว่า 20 ปี โดยในอดีตเทคนิคนี้ ถูกใช้มากในงานวิจัยและอุตสาหกรรมอาหาร สำหรับการประยุกต์ใช้ในงานสิ่งแวดล้อมเริ่ม เป็นที่นิยมมากขึ้นในช่วง 10 ปีที่ผ่านมา โดยการประยุกต์ใช้มีทั้งในระบบบำบัดน้ำเสียและการ ฟื้นฟูพื้นที่ปนเปื้อน (Siripattanakul and Khan, 2010) ซึ่งมีทั้งการใช้ประโยชน์เพื่อเพิ่ม ประสิทธิภาพของระบบหรือเพื่อกำจัดสารพิษ เช่น 2,4-dichlorophenoxyacetic acid 3-chlorobenzoate 3-chloroaniline diesel และ atrazine เป็นต้น (Pramanik and Khan, 2008; Siripattanakul et al., 2008b; Siripattanakul and Khan, 2010) สำหรับการประยุกต์ใช้ เทคนิคการดักติดเซลล์เพื่อการกำจัดในโตรเจนมีการศึกษาทั้งที่ใช้ CA และ PPVA (Chen and Lin, 1994; Yang et al., 1997; Chen et al., 1998; Hill and Khan, 2008) แต่ในงานที่ผ่าน มามุ่งเน้นการเพิ่มประสิทธิภาพการทำงานของระบบการกำจัดในโตรเจน

# บทที่ 3 ระเบียบวิธีวิจัย

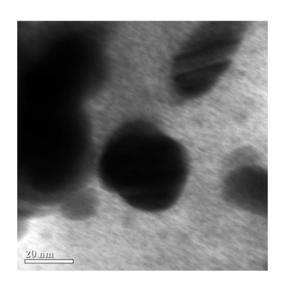

#### 3.1 กรอบการวิจัย

กรอบแนวคิดของงานวิจัยนี้สามารถแสดงได้ดังรูปที่ 3.1 โดยหลังจากศึกษาทฤษฎีและ งานวิจัยที่เกี่ยวข้องแล้ว งานวิจัยนี้ซึ่งเป็นงานทดลองในระดับห้องปฏิบัติการสามารถแบ่งภาระ งานออกได้เป็น 2 ส่วนหลัก 1) การศึกษาผลของ AgNP ที่ความเข้มขันต่าง ๆ ต่อกระบวนการ ในตริฟิเคชัน โดยศึกษาลักษณะการยับยั้งของ AgNP ในกระบวนการดังกล่าว ผลของ AgNP ต่อลักษณะทางกายภาพของกลุ่มจุลินทรีย์ และผลของ AgNP ต่อโครงสร้างทางชีวภาพของกลุ่ม จุลินทรีย์ 2) การศึกษาการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์ด้วย สารดักติดต่างชนิดและต่างขนาด

#### 3.2 วิธีการดำเนินการวิจัย

งานวิจัยนี้เป็นการศึกษาในระดับห้องปฏิบัติการโดยศึกษาทดลองที่ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยอุบลราชธานี การดำเนินงานวิจัยแบ่งออกเป็น 5 ช่วง คือ

- 1) <u>การศึกษาและรวบรวมข้อมูลที่เกี่ยวข้อง</u> โดยขั้นตอนนี้เป็นการรวบรวมข้อมูลสมบัติ ของ AgNP หลักการและวิธีการดักติดเซลล์ สมบัติของสารดักติด หลักการและวิธีการ วิเคราะห์คุณภาพน้ำเสีย การงานวิจัยที่เกี่ยวข้องในอดีต
- 2) <u>การออกแบบการทดลอง</u> ขั้นตอนนี้เป็นการวางแผนและออกแบบการทดลอง โดย มุ่งเน้นให้ออกแบบให้ครอบคลุมวัตถุประสงค์ของการศึกษาทั้งหมด และมีชุด เปรียบเทียบเพื่อสามารถบ่งชี้ความเชื่อมั่นของผลการศึกษาได้
- 3) <u>การทดลองและการอภิปรายผล</u> ขั้นตอนนี้เป็นการทดลองตามแผนการที่วางไว้ตาม กรอบการวิจัยในรูปที่ 3.1 และวิเคราะห์ผลการศึกษา คำนวณหาค่าจลนพลศาสตร์ การบำบัดน้ำเสียที่เปลี่ยนไป
- 4) <u>สรุปผลการศึกษา</u> ขั้นตอนนี้เป็นการสรุปผลการศึกษาทั้งหมด และเสนอแนะแนวทาง ในการศึกษาต่อในอนาคต
- 5) การเผยแพร่ผลงานและการประยุกต์ใช้ในอนาคต ผลการศึกษานี้ได้นำเสนอให้ โรงพยาบาลตัวอย่างเพื่อนำไปประยุกต์ใช้ นอกจากนี้ผลการศึกษายังจะได้รับการ เผยแพร่ในวงการวิชาการผ่านทางการประชุมวิชาการ หรือบทความวิจัยใน วารสารวิชาการได้ต่อไป




รูปที่ 3.1 กรอบแนวคิดงานวิจัย

สำหรับรายละเอียดของการทดลองมีรายละเอียดดังต่อไปนี้

#### 3.2.1 สมบัติของซิลเวอร์อนุภาคขนาดนาโน

ซิลเวอร์อนุภาคขนาดนาโนที่ใช้ในการศึกษานี้สังเคราะห์ด้วยกระบวนการโบโรไฮ ไดรด์รีดักชันตามงานวิจัยในอดีต (Hyning and Zukoski, 1998; Ngeontae et al., 2009). อนุภาคเป็นทรงกลมมีขนาดเฉลี่ย 14 nm (รูปที่ 3.2) มีค่า plasmon extinction เท่ากับ 403 nm อนุภาคลักษณะนี้เป็นที่นิยมใช้ในงานอุตสาหกรรมทั่วไป



รูปที่ 3.2 ซิลเวอร์อนุภาคขนาดนาโน

## 3.2.2 อาหารเลี้ยงเชื้อและการปรับสภาพเชื้อไนตริฟายอิง

ตะกอนแอกติเวเต็ดสลัดจ์ที่ใช้ในการศึกษานี้มาจากระบบบำบัดน้ำเสียชุมชนแห่ง หนึ่งในกรุงเทพ ฯ ระบบดังกล่าวเป็นระบบแอกติเวเต็ดสลัดจ์ที่มีอัตราการไหล 30,000 m³/d และมีค่าการกักตะกอน (solids retention time) เท่ากับ 28 วัน

ตะกอนแอกติเวเต็ดสลัดจ์ปรับสภาพให้เป็นตะกอนแอกติเวเต็ดสลัดจ์ในตริฟายอิง (nitrifying activated sludge; NAS) ด้วยถึงปฏิกรณ์เดินระบบแบบเอสบีอาร์ ขนาด 12 L ภายใต้สภาวะที่มีการเติมอากาศเป็นเวลา 2 เดือน ก่อนเริ่มการทดลอง ถังปฏิกรณ์แบบเอสบี อาร์เดินระบบโดยควบคุมเวลากักน้ำ (hydraulic retention time) 2 วัน และเวลากักตะกอน (solids retention time) 24 วัน น้ำเสียที่ใช้ในการปรับสภาพเป็นน้ำเสียสังเคราะห์ที่มี ส่วนประกอบดังตารางที่ 3.1

ตารางที่ 3.1 ส่วนประกอบน้ำเสียสังเคราะห์

|                                                     | ปริมาณ (g/L)                                 |  |
|-----------------------------------------------------|----------------------------------------------|--|
| $(NH_4)_2SO_4$                                      | 0.33                                         |  |
| NaHCO <sub>3</sub>                                  | 0.75                                         |  |
| K <sub>2</sub> HPO <sub>4</sub>                     | 2.1 g                                        |  |
| Na <sub>2</sub> HPO <sub>4</sub> •2H <sub>2</sub> O | 5.07                                         |  |
| inorganic salt solution                             | 1mL ซึ่งประกอบด้วย                           |  |
|                                                     | $MgSO_4$ •7 $H_2O$ 40 g                      |  |
|                                                     | CaCl <sub>2</sub> •2H <sub>2</sub> O 40 g    |  |
|                                                     | $KH_2PO_4$ 20 g                              |  |
|                                                     | FeSO <sub>4</sub> •7H <sub>2</sub> O 1 g     |  |
|                                                     | $Na_2MoO_4$ 0.1 g                            |  |
|                                                     | $MnCl_2•4H_2O$ 0.2 g                         |  |
|                                                     | CuSO <sub>4</sub> •5H <sub>2</sub> O 0.02 g  |  |
|                                                     | $ZnSO_4$ •7 $H_2O$ 0.1 g                     |  |
|                                                     | CoCl <sub>2</sub> •6H <sub>2</sub> O 0.002 g |  |

## 3.2.3 การทดลองการศึกษาผลของ AgNP ในการยับยั้งกระบวนการไนตริฟิเคชัน

### 1) ถังปฏิกรณ์เรสไพราทอรีและการเดินระบบเรสไพราทอรี

NAS ที่ปรับสภาพแล้วถูกปั่นเหวี่ยงและล้าง 5 ครั้งด้วยเกลืออนินทรีย์ (ตารางที่ 3.1) ก่อนบรรจุลงในถังปฏิกรณ์เรสไพราทอรี ถังปฏิกรณ์เรสไพราทอรีเป็นขวดแก้ว (250 mL) ปิดได้แน่นสนิทโดยมีการติดตั้งโพรบดีโอ (DO probe, WTW GmbH, Weiheim, Germany) กับ ขวดดังกล่าวและมีการกวนภายในขวดด้วยเครื่องกวนด้วยแม่เหล็ก นอกจากนี้โพรบดีโอต่อเข้า กับมิเตอร์ดีโอที่บันทึกข้อมูลโดยตรงในคอมพิวเตอร์ (รูปที่ 3.3)

การเตรียมถึงปฏิกรณ์ NAS ที่ล้างแล้วถูกบรรจุลงในถึงปฏิกรณ์เรสไพราทอรี โดยมีความเข้มข้นของตะกอนในถึง เท่ากับ 113±14 mg-MLVSS/L จากนั้นจึงเติมน้ำเสีย สังเคราะห์ (ส่วนประกอบหลักในน้ำเสียสังเคราะห์เป็นดังตารางที่ 3.1) จนเต็มแล้วติดตั้งอุปกรณ์ (โพรบดีโอและมิเตอร์) ดังรูปที่ 3.3



รูปที่ 3.3 ถังปฏิกรณ์เรสไพราทอรี

การทดลองนี้จำแนกออกได้เป็นการศึกษาผลของ AgNP ต่อจุลินทรีย์ 2 กลุ่ม ซึ่งได้แก่ จุลินทรีย์ในตริฟายอิง (nitrifying microorganism) และจุลินทรีย์แอมโมเนียออกซิไดซิง (ammonia-oxidizing microorganism; AOM) การทดลองทั้ง 2 ชุด ดำเนินการในลักษณะ เดียวกัน ยกเว้นการทดลองชุดศึกษาจุลินทรีย์แอมโมเนียออกซิไดซิงมีการเติมโซเดียมเอไซด์ (sodium azide; NaN<sub>3</sub>) ในน้ำเสีย (ความเข้มขันในถังปฏิกรณ์ เท่ากับ 24 µM) เพื่อยับยั้งการ ทำงานของจุลินทรีย์ในไตรท์ออกซิไดซิง (nitrite-oxidizing microorganism; NOM)

การทดลองขั้นตอนนี้มุ่งเน้นการศึกษาผลของ AgNP ต่อจุลินทรีย์ในตริฟายอิง และลักษณะการยับยั้ง การทดลองดำเนินการภายในถังปฏิกรณ์ที่กล่าวไว้ในข้างตันโดยมีการ ติดตามค่าดีโอซึ่งใช้เวลาทั้งสิ้น 90 นาทีต่อชุดทดลอง การทดลองดำเนินการในลักษณะนี้โดย ปรับเปลี่ยนความเข้มขันของแอมโมเนียและ AgNP เริ่มตันอยู่ระหว่าง 14-280 และ 0.00-10.00 mg/L ตามลำดับ การทดลองแต่ละค่าความเข้มขันทำซ้ำทั้งหมด 4 รอบ

จากนั้นจึงนำผลการติดตามค่าดีโอไปคำนวณหาร้อยละการยับยั้งและลักษณะ การยับยั้ง (ซึ่งรายละเอียดจะกล่าวถึงในหัวข้อต่อไป) ข้อสังเกตเพิ่มเติมการติดตามค่าดีโอเป็น การบ่งชี้การในตริฟิเคชัน กล่าวคือ หากระบบมีออกซิเจนลดลงมากบ่งชี้เกิดในตริฟิเคชันมาก เช่นกัน

2) การคาดการณ์ลักษณะการยับยั้งและการคำนวณหาค่าคงที่การยับยั้ง การคาดการณ์ลักษณะการยับยั้งพิจารณาจากอัตราการใช้ออกซิเจน (oxygen uptake rate; OUR) โดย OUR คำนวณจากการเปลี่ยนแปลงของ DO ต่อเวลา จากนั้นสามารถ คำนวณหาอัตราการใช้ออกซิเจนสูงสุด  $OUR_{max}$  และค่า  $K_s$  ตามสมการของ Michaelis-Menten ดังสมการที่ 3.1

$$OUR = OUR_{max} \frac{S}{Ks+S}$$
 สมการที่ 3.1

โดย OUR = oxygen uptake rate (mg-O<sub>2</sub>/L/min)  $OUR_{max} = maximum oxygen uptake rate (mg-O<sub>2</sub>/L/min)$  S = ammonia concentration (mg-N/L)  $K_s$  = half saturation coefficient for ammonia (mg-N/L)

จากนั้นในสภาวะที่มีตัวยับยั้ง (AgNP) คำนวณหาลักษณะการยับยั้ง 3 แบบ คือ การยับยั้งแบบมีการแข่งขัน (competitive inhibition) การยับยั้งแบบไม่มีการแข่งขัน (uncompetitive inhibition) แบบการยับยั้งแบบไม่แข่งขัน (non-competitive inhibition)

ข้อสังเกตสำหรับการศึกษานี้ลักษณะการยับยั้งเป็นแบบไม่แข่งขัน (รายละเอียด ของผลแสดงในบทถัดไป) ซึ่งสมการที่ 3.1 ปรับปรุงเป็นสมการที่ 3.2

$$OUR = OUR_{max} \frac{S}{K_S + S(1 + \frac{I}{K_i})}$$
 สมการที่ 3.2

โดย OUR = oxygen uptake rate (mg-O<sub>2</sub>/L/min)

OUR<sub>max</sub> = maximum oxygen uptake rate (mg-O<sub>2</sub>/L/min)

S = ammonia concentration (mg-N/L)  $K_s$  = half saturation coefficient for ammonia (mg-N/L) I = concentration of AgNPs (mg/L)  $K_i$  = inhibition constant (mg/L)

สมการดังกล่าวสามารถจัดรูปสมการได้ใหม่ตาม Lineweaver-Burk model ดัง สมการที่ 3.3  $K_i$  สามารถคำนวณจากกราฟระหว่าง  $K_s/OUR_{max}$  และ I โดยจุดตัดแกน x ได้แก่  $-K_i$ 

$$\frac{1}{OUR} = \frac{K_s}{OUR_{\text{max}}} \frac{1}{S} + \frac{1}{OUR_{\text{max}}} \left( 1 + \frac{I}{K_i} \right)$$
 สมการที่ 3.3

สำหรับการคำนวณร้อยละการยับยั้งจาก AgNP คำนวณจาก OUR เปรียบเทียบกันระหว่างชุดทดลองที่มี AgNP ต่าง ๆ และชุดควบคุม (ไม่มี AgNP) การคำนวณ เป็นดังสมการที่ 3.4

$$Inhibition(\%) = \frac{(OUR_{control} - OUR_{AgNPs}) \times 100}{OUR_{control}}$$
 สมการที่ 3.4

### 3) การวิเคราะห์ลักษณะทางกายภาพด้วยเครื่อง TEM

ตัวอย่าง NAS จากการทดลองในถังปฏิกรณ์เรสไพราทอรี (ก่อนและหลังการ ทดลอง) ได้ศึกษาลักษณะทางกายภาพด้วยเครื่อง TEM สำหรับวิธีการเตรียมตัวอย่างและการ วิเคราะห์แสดงไว้ในภาคผนวก ก1

### 3.2.4 การทดลองการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติด เซลล์

#### 1) การเตรียมเซลล์ดักติด

NAS ถูกปั่นด้วยเครื่องปั่นเหวี่ยงที่ความเร็วรอบ 4,000 rpm เป็นเวลา 5 นาที่ จากนั้นแยกน้ำใสออกแล้วเจือจางกลับในสารละลายเกลืออนินทรีย์ (ตามสูตรในตารางที่ 3.1) ปริมาณ 10 mL จะได้เซลล์ NAS เข้มขัน แล้วจากนั้นเขย่าเซลล์ด้วยเครื่องเขย่าแนวดิ่ง (vertical shaker) เป็นเวลา 5 นาที เพื่อล้างเซลล์ จากนั้นปั่นเหวี่ยงเพื่อแยกน้ำล้างออก การล้างเซลล์ กระทำลักษณะเดียวกันทั้งสิ้น 4 รอบ ซึ่งสุดท้ายภายหลังเจือจางเซลล์ในสารละลาย เกลืออนินทรีย์ NAS มีความเข้มขันประมาณ 5,000 mg-SS/L สำหรับวิธีการเตรียมเซลล์ดักติด ด้วย CA และ PVA มีวิธีการเตรียมแสดงไว้ในภาคนวก ก2

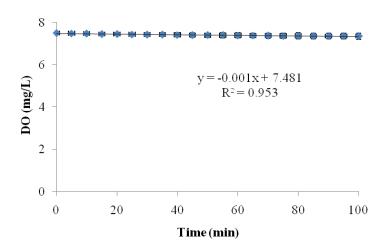
#### 2) การเดินระบบ

การทดลองนี้จำแนกออกได้เป็นการศึกษาผลของ AgNP ต่อจุลินทรีย์ 3 กลุ่ม คือ จุลินทรีย์อิสระ จุลินทรีย์ดักติดด้วย CA (ขนาดเล็กและใหญ่ ซึ่งเตรียมที่ขนาดเส้นผ่าน ศูนย์กลาง 3 และ 6 mm) และ จุลินทรีย์ดักติดด้วย PVA (ขนาดเล็กและใหญ่ ซึ่งเตรียมที่ขนาด เส้นผ่านศูนย์กลาง 3 และ 6 mm) การทดลองดำเนินการภายในถังปฏิกรณ์ที่กล่าวไว้ในข้างต้น โดยมีการติดตามค่าดีโอจนกระทั่ง DO เป็นศูนย์หรือคงที่ การทดลองทุกชุดกระทำซ้ำ 2 ครั้ง เพื่อหาค่าเฉลี่ย

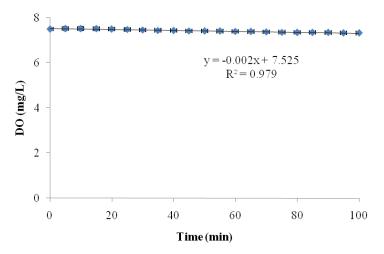
จากนั้นจึงนำผลการติดตามค่าดีโอไปคำนวณหา *OUR* และ ร้อยละการยับยั้ง นอกจากนี้ตัวอย่างเซลล์จากการทดลองบางชุดได้ศึกษาลักษณะทางกายภาพด้วยเครื่อง TEM และ SEM 3) การวิเคราะห์ลักษณะทางกายภาพด้วยเครื่อง TEM และ SEM ตัวอย่าง NAS อิสระและดักติดจากการทดลองในถังปฏิกรณ์เรสไพราทอรี (ก่อน และหลังการทดลอง) ได้ศึกษาลักษณะทางกายภาพด้วยเครื่อง TEM และ SEM สำหรับวิธีการ เตรียมตัวอย่างและการวิเคราะห์แสดงไว้ในภาคผนวก ก1

## บทที่ 4 ผลการวิจัยและการอภิปรายผล

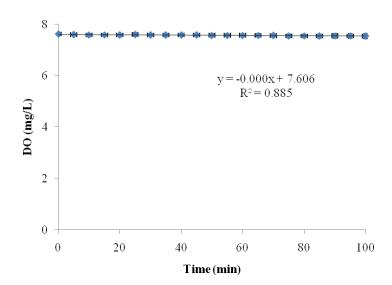
#### 4.1 ผลของ AgNP ต่อกระบวนการในตริฟิเคชัน


### 4.1.1 ลักษณะการยับยั้งของ AgNP ต่อกระบวนการไนตริฟิเคชัน

1) การใช้ออกซิเจนโดยเฮเทอโรโทรปและปัจจัยภายนอก


นอกจาก NAS แล้วโดยทั่วไปในธรรมชาติอาจมีการใช้ออกซิเจนโดยจุลินทรีย์ กลุ่มเฮเทอโรโทรปหรือจากปัจจัยภายนอก ซึ่งอาจส่งผลต่อการศึกษากระบวนการในตริฟิเคชัน โดยวิธีเรสไพราทอรี (เนื่องจากเป็นการพิจารณาจากการใช้ออกซิเจนเช่นกัน) ดังนั้นก่อนการ ทดลองจึงได้มีการศึกษาผลของปัจจัยดังกล่าวเพื่อยืนยันความถูกต้องของการทดลอง

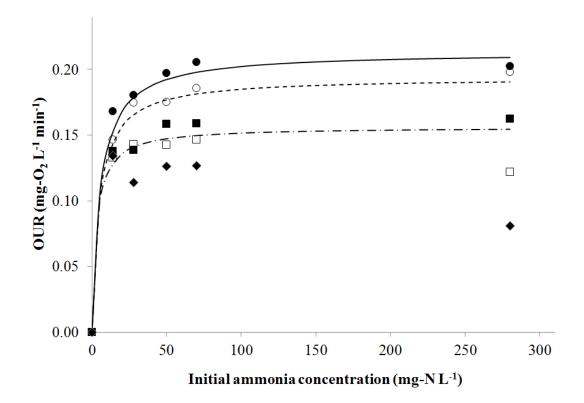
การทดลองชุดควบคุม 2 ชุด ซึ่ง ได้แก่ (1) ชุดศึกษาผลของจุลินทรีย์กลุ่มเฮเทอ โรโทรป ซึ่งศึกษาในถังปฏิกรณ์เรสไพราทอรีที่เติม NAS และ AgNP แต่มิได้เติมแอมโมเนีย และ (2) ชุดศึกษาผลของปัจจัยภายนอก ซึ่งศึกษาในถังปฏิกรณ์เรสไพราทอรีที่เติมแอมโมเนีย และ AgNP แต่มิได้เติม NAS


จากผลการทดลองพบว่าในการทดลองทั้งสองชุดมีค่า DO คงที่ (รูปที่ 4.1 ถึง 4.3) เมื่อคำนวณหา OUR พบว่าผลของปัจจัยภายนอกมีค่า OUR เท่ากับ 0.002 mg-O<sub>2</sub>/L/min ส่วนชุดศึกษาผลของจุลินทรีย์กลุ่มเฮเทอโรโทรป ในกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชันมีค่าเท่ากับ 0.000 และ 0.002 mg-O<sub>2</sub>/L/min ตามลำดับ จากผลดังกล่าวสามารถชื้ ชัดได้ว่าจุลินทรีย์กลุ่มเฮเทอโรโทรปและปัจจัยภายนอกไม่รบกวนกระบวนการในตริฟิเคชันและ แอมโมเนียออกซิเดชัน

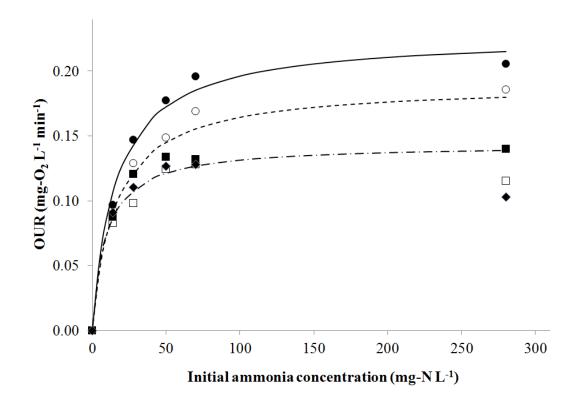


ร**ูปที่ 4.1** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในการทดลอง ศึกษาผลของปัจจัยภายนอก




ร**ูปที่ 4.2** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในการทดลองศึกษาผลของจุลินทรีย์ กลุ่มเฮเทอโรโทรปต่อกระบวนการในตริฟิเคชัน




ร**ูปที่ 4.3** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในการทดลองศึกษาผลของจุลินทรีย์ กลุ่มเฮเทอโรโทรปต่อกระบวนการแอมโมเนียออกซิเดชัน

## 2) จลนพลศาสตร์เชิงยับยั้งของกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชันด้วย AgNP

การทดลองกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันศึกษาที่ความ เข้มข้นของแอมโมเนียเริ่มต้น 14 ถึง 280 mg-N/L ผลการศึกษาแสดงในรูป OUR ต่อความ เข้มข้นของแอมโมเนียเริ่มต้นดังรูปที่ 4.3 และ 4.4 ตามลำดับ ผลจากชุดทดลองที่ไม่ได้เดิม AgNP เป็นไปตามโมเดลของ Michaelis-Menten โดยเมื่อคำนวณหาค่า  $OUR_{max}$  และ  $K_{\varsigma}$  พบว่า กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันมีค่า  $OUR_{max}$  เท่ากับ 0.2132 และ 0.2273 mg-O2/L/min และ  $K_{\varsigma}$  เท่ากับ 5.42 และ 15.87 mg-N/L ตามลำดับ (ตารางที่ 4.1) ผลดังกล่าว บ่งชี้ได้ว่า  $OUR_{max}$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันมีค่าใกล้เคียงกันแต่  $K_{\varsigma}$  แตกต่างกันโดยสิ้นเชิง ผลลักษณะนี้เกิดขึ้นในงานวิจัยที่ผ่านมาเช่นกัน (Carrera et al., 2004) โดยงานวิจัยดังกล่าวระบุว่าในการศึกษาเปรียบเทียบการทำงานของเซลล์ในรูปแบบเซลล์ อิสระและเซลล์ตรึงรูป กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันมีค่า  $K_{\varsigma}$  เท่ากับ 1.6 และ 11 mg-N/L ตามลำดับ



ร**ูปที่ 4.3** ความสัมพันธ์ระหว่าง *OUR* ต่อความเข้มขันของแอมโมเนียเริ่มต้นในการทดลอง กระบวนการในตริฟิเคชัน เมื่อมี AgNP ความเข้มขัน 0.00 (○) 0.25 (●) 0.50 (■) 5.00 (□) และ 10 (♦) mg/L



ร**ูปที่ 4.4** ความสัมพันธ์ระหว่าง *OUR* ต่อความเข้มขันของแอมโมเนียเริ่มต้นในการทดลอง กระบวนการแอมโมเนียออกซิเดชัน เมื่อมี AgNP ความเข้มขัน 0.00 (○) 0.25 (●) 0.50 (■) 5.00 (□) และ 10 (♦) mg/L

**ตารางที่ 4.1** ค่า  $OUR_{max}$  และ  $K_{s}$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน ภายใต้สภาวะที่มี AgNP

| AgNPs     | Nitrification              |                    | Ammonia oxidation  |                            |                |       |
|-----------|----------------------------|--------------------|--------------------|----------------------------|----------------|-------|
| (mg/L)    | OUR <sub>max</sub>         | K <sub>s</sub>     | $R^2$              | OUR <sub>max</sub>         | K <sub>s</sub> | $R^2$ |
| (1119/12) | (mg-O <sub>2</sub> /L/min) | (mg-N/L)           | K                  | (mg-O <sub>2</sub> /L/min) | (mg-N/L)       | N     |
| 0.00      | 0.2132                     | 5.42               | 0.997              | 0.2273                     | 15.87          | 0.989 |
| 0.25      | 0.1990                     | 4.92               | 0.997              | 0.1984                     | 16.15          | 0.988 |
| 0.50      | 0.1645                     | 3.19               | 0.994              | 0.1564                     | 9.99           | 0.994 |
| 5.00      | 0.1336                     | 0.50               | 0.998              | 0.1497                     | 8.82           | 0.998 |
| 10.00     | 0.1320                     | N/A <sup>(1)</sup> | N/A <sup>(1)</sup> | 0.1448                     | 8.33           | 0.999 |

data not available

จากตารางที่ 4.1 พบว่า ภายใต้สภาวะที่มี AgNP เมื่อความเข้มข้นของ AgNP เริ่มต้นสูงส่งผลให้  $OUR_{max}$  และ  $K_s$  ลดลง จลนพลศาสตร์การยับยั้งขึ้นอยู่กับการทำปฏิกิริยา ของเอนไซม์ซึ่งสามารถจำแนกออกได้เป็น 3 ลักษณะ คือ (1) แบบมีการแข่งขัน (competitive) (2) แบบไม่มีการแข่งขัน (uncompetitive) และ (3) แบบไม่แข่งขัน (non-competitive) ซึ่งผล การทดลองดังรูปที่ 4.3 และ 4.4 บ่งชี้ว่าจลนพลศาสตร์การยับยั้งด้วย AgNP ในการศึกษานี้เป็น แบบไม่มีการแข่งขันทั้งในกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน

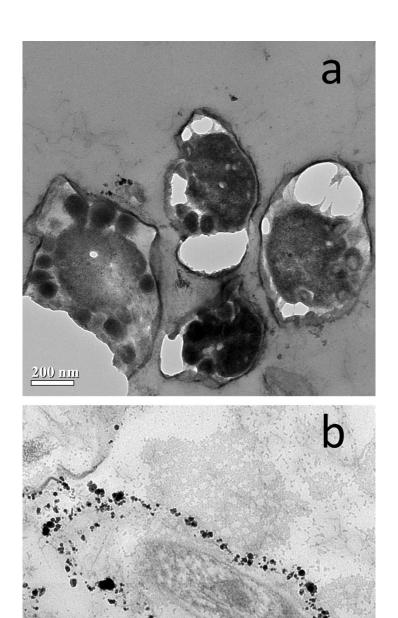
โดยทั่วไปว่าโลหะต่าง ๆ มีอิทธิพลต่อเซลล์จุลินทรีย์โดยเฉพาะอย่างยิ่งการ เกิดปฏิกิริยากับโปรตีน (Ren and Frymier, 2003) โปรตีนหมายรวมถึงอวัยวะของจุลินทรีย์ เอนไซม์ และสารอื่น ๆ ในเซลล์ เช่น DNA ดังนั้นอาจกล่าวได้ว่าผลการทดลองนี้พบว่า AgNP อาจส่งผลต่อกระบวนการทำงานของเอนไซม์ที่เกี่ยวข้องกับกระบวนการในตริฟิเคชันและ แอมโมเนียออกซิเดชัน โดยลักษณะของการยับยั้งเป็นแบบไม่มีการแข่งขัน เมื่อคำนวณหา ค่าคงที่การยับยั้ง  $K_i$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน เท่ากับ 9.3 และ 5.5 mg/L ตามลำดับ

นอกจากนี้เมื่อพิจารณารูปที่ 4.3 และ 4.4 ระหว่างข้อมูลจากการทดลอง (เป็น จุด) และการคาดการณ์จากโมเดล (เป็นเส้น) พบว่าการทดลอง ณ ความเข้มข้นของ AgNP 0.00 และ 0.50 mg/L มีค่าใกล้เคียงกันมาก แต่ในการทดลอง ณ ความเข้มข้นของ AgNP สูง (5.00 และ 10.00 mg/L) พบว่าแนวโน้มของ OUR ลดลงเมื่อความเข้มข้นของแอมโมเนียเพิ่ม สูงขึ้น ซึ่งลักษณะแนวโน้มแบบนี้เป็นลักษณะการยับยั้งด้วยตัวเอง (self inhibition) ซึ่งพบใน กรณีที่สารอาหาร (substrate) ที่มีความเป็นพิษหรือยับยั้งการทำงานของเอนไซม์กรณีที่มีความ เข้มขันเพิ่มสูงขึ้น (Park and Bae, 2009) ดังนั้นอาจกล่าวได้ว่าปรากฏการณ์นี้เป็นการเสริม (synergistic effect) ของ AgNP ให้แอมโมเนียมีผลยับยั้งการทำงานของเอนไซม์ด้วย

## 3) ร้อยละการยับยั้งของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันด้วย AgNP

ร้อยละการยับยั้งของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันด้วย AgNP แสดงไว้ในตารางที่ 4.2 จากตารางดังกล่าวแสดงให้เห็นอย่างชัดเจนว่าเมื่อ AgNP มี ความเข้มข้นเพิ่มมากขึ้นระดับของการยับยั้งของสูงขึ้นเช่นกัน AgNP ที่ความเข้มข้น 0.25 ถึง 10.00 mg/L ส่งผลให้เกิดการยับยั้งร้อยละ 8 ถึง 38 ในกระบวนการในตริฟิเคชันและร้อยละ 14 ถึง 28 ในกระบวนการแอมโมเนียออกซิเดชัน ส่วนความเข้มข้นของแอมโมเนียเริ่มต้นมิได้มีผล ต่อร้อยละการยับยั้งอย่างชัดเจน (สามารถสังเกตผลได้อย่างชัดเจนในชุดทดลองที่ไม่มี AgNP ในรูปที่ 4.3 และ 4.4)

นอกจากนี้แม้ว่าผลการทดลองอาจบ่งชี้ได้ว่าความเข้มข้นของ AgNP สูงอาจ ส่งผลเสริมให้ความเข้มข้นของแอมโมเนียเริ่มต้นมีผลทั้งต่อกระบวนการในตริฟิเคชันและ แอมโมเนียออกซิเดชันซึ่งลักษณะคล้ายกันนี้ก็ได้ระบุในการศึกษาในอดีตเช่นกัน (Wang et al., 2004) แต่อย่างไรก็ตามผลการทดลองนี้ยังไม่สามารถชี้ได้อย่างชัดเจนถึงกลไกของการเสริม ดังนั้นจึงควรมีการศึกษาต่อเนื่องในประเด็นดังกล่าวในอนาคต


**ตารางที่ 4.2** ร้อยละการยับยั้งกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันด้วย AgNP

| Factor  | 0                    | Inhibition (%± standard deviation) |                   |  |
|---------|----------------------|------------------------------------|-------------------|--|
|         | Concentration (mg/L) | Nitrification                      | Ammonia Oxidation |  |
| AgNP    | 0.25                 | 8 ± 4.8                            | 14 ± 4.4          |  |
|         | 0.5                  | 21 ± 2.2                           | 26 ± 7.2          |  |
|         | 5                    | 36 ± 14.4                          | 28 ± 9.4          |  |
|         | 10                   | 38 ± 14.2                          | 28 ± 6.2          |  |
| Ammonia | 14                   | 18 ± 4.1                           | 8 ± 4.8           |  |
|         | 28                   | $30 \pm 6.8$                       | 22 ± 9.1          |  |
|         | 50                   | 25 ± 11.5                          | 25 ± 2.5          |  |
|         | 70                   | 26 ± 13                            | 29 ± 10           |  |
|         | 280                  | 47 ± 23.3                          | 34 ± 17.8         |  |

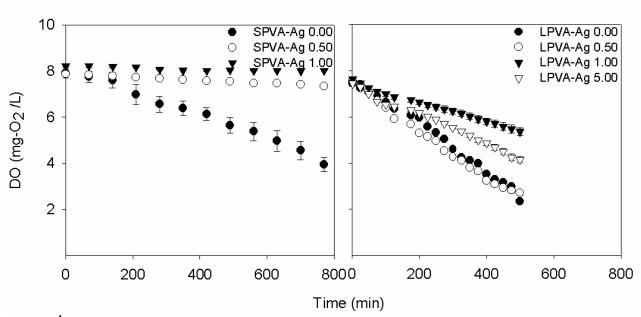
งานวิจัยในอดีตระบุร้อยละการยับยั้งในการทำงานของจุลินทรีย์ในตริฟายอิง แตกต่างกัน เช่น Hu et al. (2010) ระบุผลกระทบเพียงร้อยละ 41 ในขณะที่ Choi et al. (2008X รายงานผลกระทบถึงร้อยละ 86 ในการทดลองที่ความเข้มขัน AgNP เริ่มต้นเท่ากัน (1 mg/L) สำหรับการศึกษานี้ร้อยละการยับยั้งกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชันเฉลี่ยเท่ากับ 21 และ 26 ตามลำดับ ในการทดลองที่ความเข้มขันของ AgNP เท่ากับ 0.50 mg/L ซึ่งใกล้เคียงกับการศึกษาของ Hu et al. (2010) ความแตกต่างของผลกระทบใน งานวิจัยต่าง ๆ นี้เกิดได้จากหลายสาเหตุ เช่น ปริมาณและชนิดของจุลินทรีย์ที่ศึกษา ลักษณะ และปริมาณของ AgNP การรวมกลุ่มของ AgNP ตลอดจนระยะเวลาสัมผัส AgNP

# 4.1.2 ผลของ AgNP ต่อลักษณะทางกายภาพและโครงสร้างทางชีวภาพของกลุ่ม จุลินทรีย์

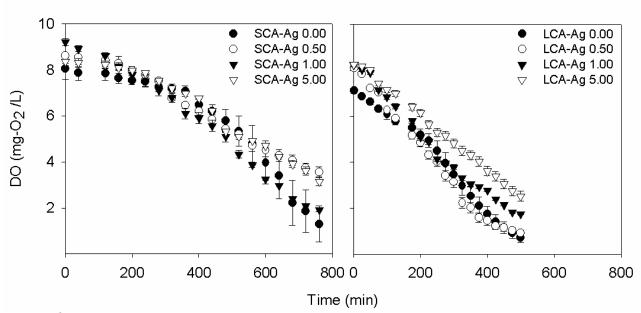
การทดลองในขั้นตอนนี้ได้คัดเลือกเซลล์จุลินทรีย์ตัวอย่างจากการทดลองบางชุด เพื่อพิจารณาผลต่อกายภาพและโครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์ พบการศึกษาพบว่า ลักษณะทางภายภาพของจุลินทรีย์ทุกชุดการทดลอง (ทั้งจากกระบวนการในตริฟิเคชันและ แอมโมเนียออกซิเดชัน) เป็นไปในทิศทางเดียวกัน กล่าวคือ พบเซลล์จุลินทรีย์ถูกทำลายปะปน ในเซลล์ตัวอย่างทุกชุดการทดลอง ดังตัวอย่างในรูปที่ 4.5 ซึ่งแสดงเซลล์จุลินทรีย์ NAS ภายหลังการทดลองที่มี AgNP 10.00 mg/L



รูปท**ี่ 4.5** เซลล์จุลินทรีย์ภายหลังการทดลองที่มี AgNP 10 mg/L


รูปที่ 4.5a แสดงให้เห็นเซลล์ถูกทำลายอย่างชัดเจน ผลลักษณะคล้ายกันนี้ได้ แสดงไว้ในการทดลองที่มีสารพิษชนิดอื่นเช่นกัน เช่น titanium dioxide เป็นต้น (Wu et al., 2010) ดังนั้นสามารถกล่าวได้ว่าสารพิษรวมทั้ง AgNP ส่งผลให้ผนังและเซลล์หุ้มเซลล์ฉีกขาด เป็นเหตุให้สารภายในเซลล์รั่วไหลและทำให้เซลล์ตายหรือยับยั้งการทำงานของเซลล์ในที่สุด นอกจากนี้จากการศึกษาด้วย TEM ยังพบการเกาะกลุ่มของ AgNP รอบเซลล์ดัง รูปที่ 4.5b โดยทั่วไปเมือกลักษณะนี้ คือ สารอีพีเอส (extracellular polymeric substance; EPS) ซึ่งถูกผลิตขึ้นมาในสภาวะที่เซลล์มีความเครียดจากสิ่งแวดล้อม (environmental stress) ซึ่งหากพิจารณาผล TEM นี้ประกอบกับร้อยละและจลนพลศาสตร์การยับยั้งปานกลางในหัวข้อ ก่อนหน้านี้พบว่า แม้ในการทดลองที่มี AgNP ถึง 10 mg/L การยับยั้งทั้งในกระบวนการในตริ ฟิเคชันและแอมโมเนียออกซิเดชันน้อยกว่าร้อยละ 50 ซึ่งอาจเกิดจากการปกป้องเซลล์ด้วยสารอี พีเอสนี้เอง กล่าวคือ เซลล์บางชนิดในกลุ่มจุลินทรีย์ผลิตเมือกอีพีเอสรอบตัวทำให้มีโอกาสสัมผัส AGNP น้อยลงส่งผลให้พบการยับยั้งกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันไม่สูง นัก

สำหรับผลต่อโครงสร้างทางชีวภาพพบว่าจากผลการทดลองจลนพลศาสตร์การ ยับยั้งสามารถระบุได้ว่า AgNP ส่งผลต่อจุลินทรีย์ในตริฟายอิงทั้งหมดและแอมโมเนียออกซิได ซึ่งต่างกันส่งผลให้จลนพลศาสตร์การยับยั้งแตกต่างกัน นอกจากนี้จากรูป TEM ยังสนับสนุนว่า โครงสร้างทางชีวภาพของกลุ่มจุลินทรีย์อาจเปลี่ยนแปลงจากผลของ AgNP เนื่องจากมีจุลินทรีย์ บางชนิดถูกทำลาย แต่อย่างไรก็ตามจากผลทั้งหมดเป็นเห็นการบ่งชี้ในเบื้องต้นเท่านั้นควรมี งานวิจัยต่อเนื่องในประเด็นดังกล่าว


### 4.2 ผลการปรับปรุงศักยภาพของกระบวนการด้วยเทคนิคการดักติดเซลล์

#### 4.2.1 กระบวนการไนตริฟิเคชันด้วยเซลล์ดักติด

การทดลองขั้นตอนนี้มุ่งเน้นการศึกษากระบวนการในตริฟิเคชันด้วยเซลล์ดักติด ด้วย PVA และ CA ดังแสดงผลในรูปที่ 4.6 และ 4.7 แนวโน้มของค่า DO ในการทดลองทุกชุด เป็นไปในลักษณะเดียวกัน คือ DO มีค่าลดลงเรื่อย ๆ เมื่อเวลาผ่านไป โดยในการทดลองที่มี AgNP เริ่มต้นความเข้มขันสูง DO ลดลงช้ากว่าการทดลองที่มี AgNP น้อย



รูปที่ 4.6 ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในกระบวนการในตริฟิเคชัน ด้วยเซลล์ดักติดด้วย PVA (SPVA คือ เซลล์ดัดติดด้วย PVA ขนาดเล็ก และ LPVA คือ เซลล์ดัดติดด้วย PVA ขนาดใหญ่)

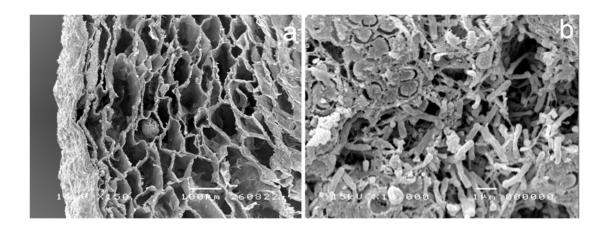


ร**ูปที่ 4.7** ความสัมพันธ์ระหว่างปริมาณออกซิเจนต่อเวลาในกระบวนการในตริฟิเคชัน ด้วยเซลล์ดักติดด้วย CA (SCA คือ เซลล์ดัดติดด้วย CA ขนาดเล็ก และ LCA คือ เซลล์ดัดติดด้วย CA ขนาดใหญ่)

เมื่อคำนวณหา OUR ของการทดลองด้วยเซลล์ดักติดเป็นดังตารางที่ 4.3 ชุด ทดลองเซลล์ดักติดด้วย PVA ขนาดเล็กและใหญ่มี OUR เท่ากับ 0.000-0.006 และ 0.006-0.014 mg-O<sub>2</sub>/L/min, ตามลำดับ โดยเมื่อเปรียบเทียบกับชุดควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 5-11 และ 44-88 ของชุดควบคุม (ตารางที่ 4.3) ส่วน ในชุดทดลองเซลล์ดักติดด้วย CA ขนาดเล็กและใหญ่พบว่ามีค่า OUR ระหว่าง 0.009-0.014 และ 0.019-0.024 mg-O<sub>2</sub>/L/min ตามลำดับ (ตารางที่ 4.3) โดยเมื่อเปรียบเทียบกับชุดควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 65-110 และ 81-94 ของชุด ควบคุม เมื่อเปรียบเทียบกับชุดทดลองเซลล์ดักติดด้วย PVA พบว่าการยับยั้งในชุดทดลองเซลล์ ดักติดด้วย CA มีน้อยกว่าโดยเฉพาะอย่างยิ่งในชุดทดลองเซลล์ดักติดขนาดใหญ่

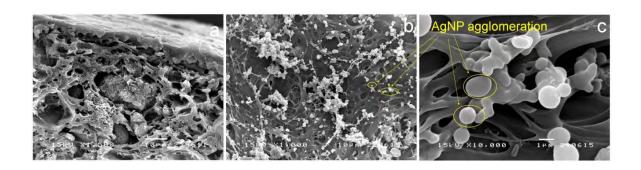
ตารางที่ 4.3 OUR ของกระบวนการในตริฟิเคชันด้วยเซลล์ดักติด

| Type of    |                                | Initial AgNP  | OUR                        | % Activity     |
|------------|--------------------------------|---------------|----------------------------|----------------|
| entrapment | Bead size                      | concentration |                            | (% compared to |
| material   |                                | (mg/L)        | (mg-O <sub>2</sub> /L/min) | control)       |
| CA -       | Cmall                          | 0.00          | 0.014                      | 100            |
|            | Small<br>(3 mm in<br>diameter) | 0.50          | 0.013                      | 90             |
|            |                                | 1.00          | 0.015                      | 110            |
|            |                                | 5.00          | 0.009                      | 65             |
|            | Large<br>(6 mm in<br>diameter) | 0.00          | 0.024                      | 100            |
|            |                                | 0.50          | 0.023                      | 94             |
|            |                                | 1.00          | 0.020                      | 84             |
|            |                                | 5.00          | 0.019                      | 81             |
| PVA        | Small                          | 0.00          | 0.006                      | 100            |
|            | (3 mm in                       | 0.50          | 0.001                      | 11             |
|            | diameter)                      | 1.00          | 0.000                      | 5              |
|            | Large<br>(6 mm in              | 0.00          | 0.014                      | 100            |
|            |                                | 0.50          | 0.013                      | 88             |
|            |                                | 1.00          | 0.012                      | 82             |
|            | diameter)                      | 5.00          | 0.006                      | 44             |


เมื่อเปรียบเทียบเซลล์ดักติดขนาดเล็กและใหญ่พบว่าจากงานวิจัยในอดีตระบุว่า เซลล์ขนาดเล็กมีการเปลี่ยนถ่ายมวล (รวมทั้งสารพิษ) และแก็สดีกว่าเซลล์ดักติดขนาดใหญ่ (Aksu and Bulbul, 1999; Dursun and Tepe, 2005) จากผลการทดลองนี้เป็นไปตามงานวิจัย ในอดีต กล่าวคือ เซลล์ในวัสดุดักติดขนาดใหญ่ได้รับผลจาก AgNP น้อยกว่า (การปลี่ยนถ่าย มวลสารพิษน้อยกว่า) ส่งผลให้คงกิจกรรมในตริฟิเคชันได้ดีกว่า ปรากฏการณ์นี้คาดว่าเกิดจาก วัสดุดักติดขนาดใหญ่มีความหนามากกว่าทำให้มีการเคลื่อนภายในวัสดุพรุนระยะทางยาวและ ยากลำบากกว่าส่งผลให้มีโอกาสที่ AgNP (และ Ag<sup>†</sup> ที่ปลดปล่อยออกจาก AgNP) สัมผัสเซลล์ น้อยกว่า นอกจากนี้งานวิจัยในอดีตยังได้ระบุถึงโอกาสสารพิษอาจถูกดูดซับด้วยวัสดุดักติด (Cassidy et al., 1996; Siripattanakul et al., 2008b) ดังนั้น AgNP อาจถูกดูดซับที่วัสดุดักติด ระหว่างการเคลื่อนผ่านรูพรุนเข้าสู่เซลล์ทำให้มีปริมาณ AgNP เข้าสู่เซลล์น้อยลงเช่นกัน

สำหรับเมื่อเปรียบเทียบเซลล์ดักติดด้วย CA และ PVA พบว่าเซลล์ดักติดด้วย CA ทำงานดีกว่าเซลล์ดักติดด้วย PVA มาก ดังตัวอย่างเช่น ในชุดทดลองที่มี AgNP 5.00 mg/L เซลล์ดักติดด้วย CA ขนาดใหญ่มีประสิทธิภาพดีกว่า PVA ถึง 2 เท่า จากผลดังกล่าวนี้สามารถ สรุปได้ว่าในการศึกษานี้วัสดุดักติดปกป้องเซลล์จุลินทรีย์ได้ดีกว่าส่งผลให้ศักยภาพกระบวนการ ในตริฟิเคชันสูงกว่า

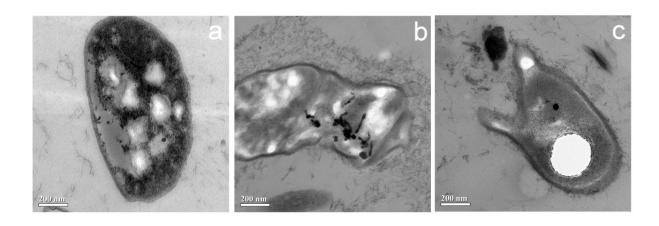
#### 4.2.2 ผลของ AgNP ต่อลักษณะทางกายภาพของเซลล์ดักติด


ผลการศึกษาโครงสร้างเซลล์ดักติดในระดับจุลภาคด้วย SEM แสดงดังรูปที่ 4.8 และ 4.9 ในรูปที่ 4.8a พบว่าวัสดุดักติดด้วย CA มีโครงสร้างตาข่ายละเอียดมากคล้ายกับ แผ่นกระดาษ โดยในรูพรุนขนาดเล็กมีเซลล์จุลินทรีย์ดักติดอยู่ภายใน (รูปที่ 4.8b) โครงสร้างตา ข่ายละเอียดนี้เกิดจากกระบวนการเชื่อมแบบไขว้ของแคลเซียมและแอลจีเนต (Smidsrod and Skjak-Braek, 1990) นอกจากนี้ยังพบว่ามีไมโครโคโลนี (micro-colony) ของจุลินทรีย์เจริญอยู่ ภายในช่องว่างขนาดใหญ่อีกด้วย (รูปที่ 4.8a) จากรูปที่ 4.8 นี้สนับสนุนการอภิปรายผลก่อน หน้านี้เกี่ยวกับรูพรุนจำนวนมากในเซลล์ดักติดซึ่งส่งผลให้เกิดการเคลื่อนที่ยากลำบากภายใน เซลล์ดักติด

สำหรับรูปที่ 4.9a ซึ่งแสดงเซลล์ดักติดด้วย PVA พบว่ามีรูพุรนจำนวนมากและผิว หยาบ โดยรูพรุนมีขนาดประมาณ 10 - 20 µm นอกจากนี้ยังพบเซลล์ที่เจริญในลักษณะไมโคร โคโลนีเช่นเดียวกับเซลล์ดักติดด้วย CA



ร**ูปที่ 4.8** เซลล์ดักติดด้วย CA a) ที่กำลังขยาย 150× และ b) ที่กำลังขยาย 10,000×


นอกจากนี้ในรูปที่ 4.9b และ c ซึ่งเป็นวัสดุดักติด PVA (ไม่มีเซลล์จุลินทรีย์) พบ กลุ่มก้อนของ AgNP ลักษณะคล้ายลูกบอล ซึ่งลักษณะเช่นนี้ในอดีต Kim et al. (2006) ซึ่ง สังเคราะห์ AgNP โดยมี PVA เป็นส่วนประกอบก็พบการรวมกลุ่มของ PVA ในลักษณะ เดียวกัน ผลในรูปดังกล่าวสามารถกล่าวได้ว่าวัสดุดักติด PVA นอกจากจะลดโอกาสสัมผัสของ เซลล์และ AgNP แล้วยังปกป้องจุลินทรีย์จาก AgNP ทางกายภาพโดยรวมกลุ่มและยึด AgNP ด้วยวัสดุดักติด (รูปที่ 4.9c)



ร**ูปที่ 4.9** เซลล์ดักติดด้วย PVA a) ที่กำลังขยาย 1,500× b) การรวมกลุ่มของ AgNP ในวัสดุดัก ติด PVA (ไม่มี NAS) ที่กำลังขยาย 1,000× และ c) การรวมกลุ่มของ AgNP ในวัสดุดักติด PVA (ไม่มี NAS) ที่กำลังขยาย10,000×

เมื่อเปรียบเทียบเซลล์ดักติดด้วย PVA และ CA พบว่าแม้วัสดุดักติดด้วย CA ไม่ สามารถยึด AgNP ได้ดัง PVA แต่เซลล์ดักติดด้วย CA ยังมีประสิทธิภาพดีกว่าซึ่งคาดว่าเกิด จากโครงสร้างของ CA มีความละเอียดมากกว่า PVA จากผลนี้ยังสามารถชี้ได้อีกว่ากลไกการ ปกป้องเซลล์จุลินทรีย์ในกรณีนี้คาดว่าเป็นกลไกทางกายภาพเป็นสำคัญ

สำหรับผลการศึกษาด้วย TEM พบว่าเซลล์อิสระและเซลล์ดักติดทั้งสองชนิดมี ลักษณะคล้ายกันดังรูปที่ 4.10 โดยพบเซลล์ถูกทำลายลักษณะคล้ายกันแต่พบว่าเซลล์อิสระมี จำนวนเซลล์ถูกทำลายมากกว่า รูปที่ 4.10a เป็นรูปเซลล์อิสระที่ไม่ถูกทำลาย (จากชุดทดลอง ควบคุม) เมื่อเปรียบเทียบกับรูปที่ 4.10b ซึ่งเป็นเซลล์ที่มาจากการทดลองชุดที่มี AgNP พบว่ามี จุดดำภายในเซลล์จำนวนมาก จุดดังกล่าวคาดว่าเป็น AgNP ที่เคลื่อนที่ผ่านเยื่อหุ้มเซลล์หรือ รอยฉีกขาดของเซลล์ (ซึ่งมีลักษณะขอบยุ่ย) นอกจากนี้ยังพบว่ามีการรั่วไหลของสารภายใน เซลล์ดังรูปที่ 4.10c ซึ่งผลลักษณะนี้เป็นไปตามงานวิจัยที่ผ่านมา (Choi and Hu, 2008; Marambio-Jones and Hoek, 2010)



ร**ูปที่ 4.10** รูปเซลล์์ a) จากชุดควบคุม b) จากชุดที่มี AgNP และ c) เซลล์ที่ถูกทำลาย

#### บทที่ 5

### สรุปผลการวิจัยและข้อเสนอแนะ

#### 5.1 สรุปผลการวิจัย

- 1) กระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชันเป็นไปตามโมเดลของ Michaelis-Menten โดยมีค่า  $OUR_{max}$  และ  $K_s$  ของกระบวนการในตริฟิเคชันและแอมโมเนีย ออกซิเดชัน  $OUR_{max}$  เท่ากับ 0.2132 และ 0.2273 mg-O $_2$ /L/min และ  $K_s$  เท่ากับ 5.42 และ 15.87 mg-N/L ตามลำดับ
- 2) ภายใต้สภาวะที่มี AgNP เมื่อความเข้มข้นของ AgNP เริ่มต้นสูงส่งผลให้  $OUR_{max}$  และ  $K_s$  ลดลง โดยจลนพลศาสตร์การยับยั้งด้วย AgNP ในการศึกษานี้เป็นแบบไม่มีการ แข่งขันทั้งในกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน ซึ่งมีค่าคงที่การ ยับยั้ง  $K_i$  ของกระบวนการในตริฟิเคชันและแอมโมเนียออกซิเดชัน เท่ากับ 9.3 และ 5.5 mg/L ตามลำดับ
- 3) เมื่อ AgNP มีความเข้มขันเพิ่มมากขึ้นระดับของการยับยั้งของสูงขึ้น AgNP ที่ความ เข้มขัน 0.25 ถึง 10.00 mg/L ส่งผลให้เกิดการยับยั้งร้อยละ 8 ถึง 38 ในกระบวนการ ในตริฟิเคชันและร้อยละ 14 ถึง 28 ในกระบวนการแอมโมเนียออกซิเดชัน ส่วนความ เข้มขันของแอมโมเนียเริ่มตันมิได้มีผลต่อร้อยละการยับยั้งอย่างชัดเจน
- 4) เซลล์จุลินทรีย์ถูกทำลายด้วย AgNP ในลักษณะที่ผนังและเยื่อหุ้มเซลล์ยุ่ยและฉีกขาด นอกจากนี้ยังพบว่ามีการรั่วไหลของสารภายในเซลล์
- 5) OUR ของการทดลองด้วยเซลล์ดักติดด้วย PVA ขนาดเล็กและใหญ่มี OUR เท่ากับ 0.000-0.006 และ 0.006-0.014 mg-O<sub>2</sub>/L/min ตามลำดับ โดยเมื่อเปรียบเทียบกับชุด ควบคุม (ชุดทดลองที่ไม่มี AgNP) พบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 5-11 และ 44-88 ของชุดควบคุม ส่วนในชุดทดลองเซลล์ดักติดด้วย CA ขนาดเล็กและใหญ่พบว่ามี ค่า OUR ระหว่าง 0.009-0.014 และ 0.019-0.024 mg-O<sub>2</sub>/L/min ตามลำดับ โดยเมื่อ เปรียบเทียบกับชุดควบคุมพบว่ากิจกรรมในตริฟิเคชันคิดเป็นร้อยละ 65-110 และ 81-94 ของชุดควบคุม
- 6) เซลล์ในวัสดุดักติดขนาดใหญ่ได้รับผลจาก AgNP น้อยกว่า (การเปลี่ยนถ่ายมวล สารพิษน้อยกว่า) ส่งผลให้คงกิจกรรมในตริฟิเคชันได้ดีกว่า
- 7) เซลล์ดักติดด้วย CA ลดการยับยั้งดีกว่า PVA เนื่องจากมีโครงสร้างที่ละเอียดกว่า
- 8) จากการศึกษาลักษณะเซลล์ดักติดในระดับจุลภาคพบว่ากลไกการปกป้องเซลล์จุลินทรีย์ ในกรณีนี้คาดว่าเป็นกลไกทางกายภาพเป็นสำคัญ

#### 5.2 ข้อเสนอแนะ

- 1) ควรมีการทดลองสภาวะดำเนินระบบบำบัดด้วยเซลล์ดักติดที่เหมาะสม เช่น ปริมาณ ออกซิเจนที่เหมาะสม ระยะเวลากักน้ำ (hydraulic retention time) ระยะเวลากักเซลล์ (solid retention time) เป็นตัน เพื่อศึกษาความเหมาะสมก่อนการประยุกต์ใช้จริงต่อไป
- 2) ควรมีการศึกษาความคงทนของเซลล์ดักติด เพื่อให้ทราบความเหมาะสมในการใช้งาน จริงต่อไป รวมทั้งควรมีงานศึกษาครอบคลุมการพัฒนาวัสดุดักติดที่มีความคงทนสูง มากขึ้น
- 3) ควรมีงานศึกษาต่อเนื่องในประเด็นกลไกการเสริมของ AgNP ให้เกิดการยับยั้งด้วย ตัวเอง
- 4) ควรมีการศึกษากลไกการยับยั้งของ AgNP ในระดับชีวโมเลกุล

#### บรรณานุกรม

- Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R. 2010. Synthesis and applications of silver nanoparticles. *Arabian Journal of Chemistry*. 3, 135-140.
- Aksu, Z., Bulbul, G., 1999. Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized *P. putida* beads. *Enzyme and Microbial Technology*, 25, 344-348.
- Amendola, V., Polizzi,S.Meneghetti, M. 2007. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. *Langmuir*, 23 (12), 6766–6770.
- Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., Giri, K., Bhattacharyaa, R., Mukherjee, P. 2012. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. *Chemical Society Reviews*. 41, 2943-2970.
- Asharani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles inhuman cells. *ACS Nano*. 3, 279-290.
- Atiyeh, B.S., Costagliola, M., Hayek, S.N., Dibo, S.A. 2007. Effect of silver on burn wound infection controland healing: review of the literature. *Burns*, 33, 139-148.
- Baker, C., Pradhan, A., Pakstis, L., Pochan Darrin, J., Ismat Shah S. 2005. Synthesis and antibacterial properties of silver nanoparticles. *Journal of Nanoscience and Nanotechnology*, 5 (2), 244-249.
- Becker, M.F., Brock, J.R., Cai, H., Henneke, D.E., Keto, J.W., Lee, J., Nichols, W.T., Glicksman, H.D. 1998. Metal nanoparticles generated by laser ablation.

  Nanostructured Materials. 10 (5), 853-863.
- Benn, T.M., Westerhoff, P. 2008. Nanoparticle silver released into water from commercially available sock fabric. *Environmental Science and Technology*. 42, 4133-4139.
- Blaser, S.A., Scheringer, M., MacLeod, M., and Hungerbuhler, K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. *Science of the Total Environment*, 390, 396-409.
- Bokshits, Yu., V., Shevchenko, A.N., Ponyavina, A.N., Rakhmanov, S.K. 2004. Formation of silver and copper nanoparticles upon the reduction of theirpoorly soluble precursors in aqueous solution. *Colloidal Journal*. 66 (5),517-522.

- Carrera, J., Jubany, I., Carvallo, L., Chamy, R., and Lafuente, J. 2004. Kinetic models for Nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems. *Process biochemistry*. 39, 1159-1165.
- Cassidy, M.B., Lee, H., Trevors, J. T., 1996. Environmental applications of immobilized microbial cells: a review. *Journal of Industrial Microbiology*, 16, 79-101.
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 25 (3), 241-258.
- Chaloupka, K., Malam, Y., Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. *Trends in Biotechnology*. 28 (11), 580-588.
- Chen, K.C., Lin, Y.F. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. *Enzyme and Microbial Technology*, 16, 79-83.
- Chen, K.C., Lee, S.C., Chin, S.C., Houng, J.Y. 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. *Enzyme and Microbial Technology*, 23, 311-320.
- Chen, X. Schluesener, H.J. 2008. Nanosilver: a nanoproduct inmedical application. *Toxicology Letters*. 176, 1-12.
- Choi, O., Clevenger, T.E., Deng, B., Surampalli, R.Y., Ross, L., Hu, Z. 2009. Role of sulfide and ligand strength in controlling nanosilver toxicity. *Water Research*, 43, 1879-1886.
- Choi, O., Deng, K.K., Kim, N.J., Ross, L., Surampalli, R.Y., Hu, Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. *Water Research*, 42, 3066-3074.
- Choi, O.K., Hu, Z.Q. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria, *Environmental Science and Technology*, 42, 4583-4588.
- Choi, O.K., Hu, Z.Q. 2009. Nitrification inhibition by silver nanoparticles. *Water Science and Technology*, 59, 1699-1702.
- Damm, C., Munstedt, H., Rosch, A. 2008. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. *Materials Chemistry and Physics*. 108, 61-66.

- Darroudi, M., Ahmad M.B., Abdullah A.H., Ibrahim N.A., Shameli K. 2010. Effect of accelerator in green synthesis of silver nanoparticles. *International Journal of Molecular Sciences*. 11, 3898-3905.
- Dankovich, T.A., Gray, D.G. 2011. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. *Environmental Science and Technology*. 45 (5), 1992-1998.
- Durán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M. 2010.

  Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. *Journal of the Brazilian Chemical Society*. 21 (6), 949-959.
- Dursun, A.Y., Tepe, O., 2005. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized *Ralstoniaeutropha*. *Journal of Hazardous Materials*, 126, 105-111.
- Elichiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., and Yacaman, M.J., 2006. Interaction of silver nanoparticles with HIV-1. *Journal of Nanobiotechnology*, 3, 6.
- Feng, Q.L., Wu, J., Chen, G.Q., Zhao, K., Cui, F.Z., Kim, T.N. 2000. A mechanism study of antibacterial effect of silver ions on *Escherichia coli* and *Staphylococcus aureus*, *Journal of Biomedical Materials Research*, 52, 662-668.
- Gerardi, M.H. 2002. Nitrification and Denitrification in Activated Sludge Process. John Wiley & Sons, Inc., NY.
- Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO<sub>2</sub>, ZnO, Ag, CNT, fullerenes) for different regions. *Environmental Science and Technology*. 43 (24), 9216-9222.
- Guzman, M., Dille, J., Godet, S. 2012. Synthesis and antibacterial activity of silver nanoparticles againstgram-positive and gram-negative bacteria. *Nanomedicine: Nanotechnology, Biology, and Medicine.* 8, 37-45.
- He, B., Tan, J.J., Liew, K.Y., Liu, H., 2004. Synthesis of size controlled Ag nanoparticles. *Journal of Molecular Catalysis A: Chemical*. 221, 121-126.
- Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M., Heijnen, J.J., 1998. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. *Water Science and Technology*, 37, 135-142.
- Hoque, M.E., Khosravi, K., Newman, K., Metcalfe, C.D. 2012. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow

- field flow fractionation with inductively coupled plasma mass spectrometry. *Journal of Chromatography A*. 1233, 109-115.
- Hill, C.B., Khan, E. 2008. A Comparative Study of Immobilized Nitrifying and Co-Immobilized Nitrifying and Denitrifying Bacteria for Ammonia Removal of Sludge Digester Supertanant. Water, Air, and Soil Pollution, 195, 23-33.
- Hsu, S.L., Wu, R. 2007. Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. *Materials Letters*. 61(17), 3719-3722.
- Hu, Z., Liang, Z., Das, A. 2010. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. *Water Research*, 44, 5432-5438.
- Hwang, E., Lee, J., Chae, Y., Kim, Y., Kim, B., Sang, B., Gu, M. 2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. *Small*.4, 746-750.
- Hyning, D.L.V., Zukoski, C.F., 1998. Formation mechanisms and aggregation behavior of borohydride reduced silver particles. *Langmuir*, 14, 7034-7046.
- Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., Park, Y.H. 2008. Antibacterial activity and mechanism of action of the silver ion in *Staphylococcus aureus* and *Escherichia coli*. *Applied and Environmental Microbiology*. 2008, 74(7), 2171-2178.
- Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M. 2010. Release of silver nanoparticles from outdoor facades. *Environmental Pollution*. 158 (9), 2900-2905.
- Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., Siegrist,
  H. 2011. Behavior of metallic silver nanoparticles in a pilot wastewater treatment
  plant. Environmental Science and Technology. 45 (9), 3902-3908.
- Kim, B., Park, C.-S., Murayama, M., Hochella, M.F. 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. *Environmental Science and Technology*. 44 (19), 7509-7514.
- Kok, F.N., Hasirci V. 2000 in: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeieter U. (Eds.), Bioremediation of Contaminated Soils, Marcel Dekker, New York, 465-535.
- Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., Yoshikawa, T. 2010. Silver nanoparticles as a safe preservative for use in cosmetics. *Nanomedicine:*Nanotechnology, Biology, and Medicine. 6 (4), 570-574.

- Konneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B. Waterbury, J.B., Stahl, D.A. 2005. Isolation of an autotrophic ammonia-oxiding marine archeon. *Nature*, 437, 543-546.
- Lapresta-Fernández, A., Fernández, A., Blasco, J. 2012. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. *Trends in Analytical Chemistry*. 32, 40-59.
- Lehtinen, K.E.J., Backman, U., Jokiniemi, J.K., Kulmala, M. 2004. Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis. *Journal of Colloid and Interface Science*. 274(2), 526-530.
- Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W. 2006. Archea predominate among ammonia-oxidizing prokaryotes in soils. *Nature*, 442, 806-809.
- Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L. Liga, M.V., Li, D., and Alvarez, P.J.J. 2008. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. *Water Research*, 42, 4591-4602.
- Limbach, L. K., Wick, P., Manser, P., Grass, R. N., Bruinink, A., Stark, W. J. 2007.
  Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. *Environmental Science and Technology*, 41, 4158-4163.
- Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P.K.-H., Chiu, J.-F., Che, C.-M. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. *Journal of Proteome Research*. 5 (4), 916-924.
- Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R.I. 2009. Silver nanoparticle-decorated porous ceramic composite for water treatment. *Journal of Membrane Science*. 331 (1-2), 50-56.
- Mafuné, F., Kohno, J., Takeda,Y.,Kondow, T.,Sawabe, H. 2000. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. *The Journal of Physical Chemistry B.* 104, 9111-9117.
- Manimegalai, G., Shantha Kumar, S., Sharma, C. 2011. Pesticide mineralization in water using silver nanoparticles. *International Journal of Chemical Sciences*. 9 (3), 1463-1471.
- Marambio-Jones, C., Hoek, E.M.V. 2010. A review of the antibacterial effects of silver nanomaterial sand potential implications for human health and the environment. *Journal of Nanoparticle Research*, 12, 1531-1551.

- Maretti, L., Billone, P.S., Liu, Y.Scaiano, J.C. 2009. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. *Journal of the American Chemical Society*. 131 (39), 13972-13980.
- McFarland, A.D., Van Duyne, R.P. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. *Nano Letters*, 3 (8), 1057-1062.
- Mendis, E., Rajapakse, N., Byun, H., Kim, S. 2005. Investigation of jumbo squid (*Dosidicusgigas*) skin gelatin peptides fortheir in vitro antioxidant effects. *Life Science*. 77, 2166-2178.
- Mitrano, D..M, Lesher, E.K., Bednar, A., Monserud, J., Higgins, C.P., Ranville, J.F. 2011. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. *Environmental Toxicology and Chemistry*. 31(1),115-121.
- Morones, J., Elechiguerra, J., Camacho, A., Holt, K., Kouri, J.,Ramirez, J., Yacaman, M. 2005. The bactericidal effect of silver nanoparticles. *Nanotechnology*. 16, 2346-2353.
- Mueller, N.C., Nowack, B. 2008. Exposure modeling of engineered nanoparticles in the environment. *Environmental Science and Technology*. 42 (12), 4447-4453.
- Murray,B.J., Li,Q., Newberg,J.T.,Menke,E.J.,Hemminger,J.C., Penner, R.M. 2005.Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. *Nano Letters*. 5 (11), 2319-2324.
- Musee, N. 2010.Simulated environmental riskestimation of engineerednanomaterials: A case of cosmeticsin Johannesburg City. *Human and Experimental Toxicology*.DOI: 10.1177/0960327110391387.
- Nel, A., Xia, T., Madler, L., Li, N. 2006. Toxic potential of materials at the nanolevel. *Science*. 311, 622-627.
- Ngeontae, W., Janrungroatsakul, W., Maneewattanapinyo, P., Ekgasit, S., Aeungmaitrepirom, W., Tuntulani, T., 2009. Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. *Sensors and Actuators B: Chemical*, 137, 320-326.
- Nowack, B. 2010. Nanosilver revisited downstream. Science. 330 (6007), 1054-1055.
- Park, S., Bae, W. 2009. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. *Process Biochemistry*, 44, 631-640.

- Park, J.K., Chang, H.N. 2000. Microencapsulation of microbial cells. *Biotechnology Advances*, 18, 303-319.
- Park, S., Ely, R.L. 2008. Candidate stress genes of Nitrosomonas europaea for monitoring inhibition of nitrification by heavy metals. *Apply and Environmental Microbiology*, 74, 5475-5482.
- Park, H.D., Noguera, D.R. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. *Water Research*, 38, 3275-3286.
- Pietrobon, B.,Kitaev, V. 2008.Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. *Chemistry of Materials*. 20 (16), 5186-5190.
- Pramanik, S., Khan, E. 2008. Effects of cell entrapment on growth rate and metabolic activity of mixed cultures in biological wastewater treatment. *Enzyme and Microbial Technology*, 43, 245-251.
- Pyatenko, A., Shimokawa, K., Yamaguchi, M., Nishimura, O., Suzuki, M. 2004. Synthesis of silver nanoparticles by laser ablation in pure water. *Applied Physics A: Materials Science and Processing*. 79 (4-6), 803-806.
- Raffi,M. Rumaiz,A.K., Hasan, M.M.,Ismat Shah,S. 2007. Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. *Journal of Materials Research*, 22, 3378-3384.
- Rai, M., Yadav, A., Gade, A. 2009. Silver Nanoparticles as a new generation of antimicrobials. *Biotechnology Advances*. 27, 76-83.
- Ren, S., Frymier, P.D. 2003. Kinetics of toxicity of metals to luminescent bacteria. *Advanced Environment Research*, 7, 537-547.
- Ren, X., Meng, X., Chen, D., Tang, F., Jiao, J. 2005. Using silver nanoparticle to enhance current response of biosensor. *Biosensors and Bioelectronics*. 21 (3), 433-437.
- Rodríguez-Sánchez, L., Blanco, M.C., López-Quintela, M.A. 2000. Electrochemical synthesis of silver nanoparticles. *The Journal of Physical Chemistry B*. 104, (41), 9683-9688.
- Sharma, V.K., Yngard, R.A., Lin, Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. *Advances in Colloid and Interface Science*. 145, 83-96.

- Siripattanakul, S., Pochant, C. J., and Khan, E. 2008a. Immobilized Cell
  Bioaugmentation for Nitrate Removal from Agricultural Infiltrate: A Sand Column
  Study. *IWA World Water Congress 2008*, Vienna, Austria, September 7-12, 2008.
- Siripattanakul, S., Wirojanagud, W., McEvoy, J., Khan, E. 2008b. Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures for atrazine degradation. *Water, Air, and Soil Pollution: Focus*, 8, 257-266.
- Siripattanakul, S. and Khan, E. 2010. Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal. In: *Emerging Environmental Technologies, Volume 2.* Springer,
- Smidsrod, O., Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells. *Trends in Biotechnology*, 8, 71-78.
- Tian, J., Wong, K.K.Y., Ho, C., Lok, C., Yu, W., Che, C., Chiu, J., Tam, P.K.H. 2007.

  Topical delivery of silver nanoparticles promotes wound healing. *ChemMedChem*.

  2, 129-136.
- van Veen, J.A., van Overbeek, L.S., van Elsas, J.D. 1997, Fate and activity of microorganism introduced into soil. *Microbiology and Molecular Biology Reviews*, 61, 121-135.
- Wang, H., Qiao, X., Chen, J., Ding, S. 2005. Preparation of silver nanoparticles by chemical reduction method. *Colloids and Surface A: Physicochemical and Engineering Aspects*. 256, 111-115.
- Wang, Y., Ma, L., Li, Z., Du, Z., Liu, Z., Qin, J., Wang, X., Huang, Z., Gu, L., Chen, A.S.C. 2004. Synergetic inhibition of metal ions and genistein on ∞-glucosidase. *FEBS Letter*, 576, 46-50.
- Wu, P., Xie, R., Imlay, K., Shang, J.K. 2010. Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver. *Environmental Science and Technology*, 44, 6992-6997.
- Wu, Z., Zhang, Y., Tao, T., Zhang, L., Fong, H. 2010. Silver nanoparticles on amidoximefibers for photo-catalytic degradation of organic dyes in waste water. Applied Surface Science. 257 (3), 1092-1097.
- Xu, X.H., Brownlow, W.J., Kyriacou, S.V., Wan, Q., and Viola, J.J., 2004. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. *Biochemistry*, 43, 10400–10413.

- Xu, R., Wang, D., Zhang, J., Li, Y. 2006. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. *Chemistry An Asian Journal*. 1 (6), 888-893.
- Yang, P.Y., Zhang, Z.Q., Jeong, B.G. 1997. Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. *Water Research*, 31, 2617-2625.
- Yin, B., Ma, H., Wang, S., Chen, S. 2003. Electrochemical synthesis of silver nanoparticles under protection of poly(*N*-vinylpyrrolidone). *The Journal of Physical Chemistry B*. 107 (34), 8898-8904.
- Zheng, X., Guo, D., Shao, Y., Jia, S., Xu, S., Zhao, B., Xu, W., Corredor, C., Lombardi, J.R. 2008. Photochemical modification of an optical fiber tip with a silver nanoparticle film: A SERS chemical sensor. *Langmuir*. 24 (8), 4394-4398.

## ภาคผนวก ก

วิธีการเตรียมตัวอย่างและเซลล์ดักติด

#### ภาคผนวก ก1

## วิธีการเตรียมตัวอย่างสำหรับการศึกษาด้วยกล้องจุลทรรศน์ TEM

- The cell samples were fixed by a glutaraldehyde solution of 2.5% overnight at 4
   °C.
- The fixed cells were washed by a series of solutions including the phosphate buffer and deionized water.
- 3) The washed cells were mixed with an osmium tetroxide solution of 1%.
- 4) After that, the mixture was mixed with melt agar of 1.5% to form the gel.
- 5) The hardened agar was cut as a cube and was then dehydrated with 35%, 50%, 70%, 95% of ethanol, and absolute ethanol, respectively.
- 6) The dehydrated cubic cells were saturated in propylene oxide and were then soaked with spur resin and propylene oxide mixture.
- 7) The cubes were baked at 70 °C for 8 to 10 hr.
- 8) The baked cubes were cut by an ultramicrotome.
- 9) The cut cubes with sizes between 60 and 90 nm were pasted into copper grid and stained with uranyl acetate and lead citrate for increasing the contrast.
- 10) The stained cubes with cells were observed using TEM (JEOL, JEM-2100, Tokyo, Japan) at Chulalongkorn University, Thailand.

## วิธีการเตรียมตัวอย่างสำหรับการศึกษาด้วยกล้องจุลทรรศน์ SEM

- 1) The CA-entrapped cell beads were rinsed in a CaCl<sub>2</sub> solution and fixed in a glutaraldehyde solution. The beads were cut into two parts (half) by ultramicrotome (Leica, CM 3000, Nussloch, Germany). After that, they were dehydrated with a series of ethanol and CaCl<sub>2</sub> solutions. Then, the absolute ethanol was applied as the last step of dehydration. The dehydrated bead pieces were dried using a critical point dryer (Balzers, CPD 020, Liechtenstein). Then, the pieces were attached to a stub by glue and coated with gold using an ion sputter (Balzers, SCD 040, Liechtenstein).
- 2) The PVA-entrapped cells were prepared in a similar manner as the CA-entrapped cells. The PVA-entrapped cells were fixed in a glutaraldehyde solution. The beads were dehydrated with a series of ethanol solutions. Then, the beads were divided into two parts using a razor blade in liquid nitrogen, attached to a stub, and coated with gold.
- 3) For free cells, 2 mL of the NAS samples were fixed with a glutaraldehyde solution. The fixed cells were washed in phosphate buffer and a1% osmium tetroxide solution. The cells were mixed with melt agar of 1.5% to form gel at 45-50°C. The hardened agar was cut into 0.5-mm cubes. The cubes with cells were dehydrated with a series of ethanol solutions.
- 4) The dried CA and PVA beads and the free cells were observed using SEM with an energy dispersive spectroscopyattachment (SEM-EDS) (JEOL, JSM-5410LV, Tokyo, Japan).

## ภาคผนวก ก2 วิธีการเตรียมตัวอย่างและเซลล์ดักติด

The entire CA cell entrapment preparation procedure was described elsewhere (Smidsrod and Skjak-Braek, 1990; Siripattanakul and Khan, 2010). A sodium alginate solution of 2% (w/v) was mixed with the concentrated NAS. The mixture was dropped into a calcium chloride solution of 3.5% (w/v) to form CA spherical beads with a diameter of 3 or 6 mm. The CA beads were kept at 4°C until use.

The PVA cell entrapment preparation procedure was according to Siripattanakul et al. (2008b). A polyvinyl alcohol solution of 10% (w/v) was mixed with the concentrated NAS homogenously. The mixture was dropped into a saturated boric acid solution to form 3 or 6 mm spherical beads. The formed spherical beads were transferred to 500 mL of 1 M sodium orthophosphate buffer (pH 7.0) and left for 1-2 hr to obtain harden PVA beads. The PVA beads were kept at 4 °C until use. Both CA and PVA-entrapped cells were freshly prepared for each experiment.

ภาคผนวก ข

บทความวิชาการ

## บทความวิชาการในงานประชุมวิชาการ

- Ploychankul, C., Rongsayamanont, C., Limpayakorn, T., and Siripattanakul, S.
   Influence of Silver Nanoparticle on Nitrification Performance in Wastewater
   Treatment System. 2010 Asian-Pacific Regional Conference on Practical
   Environmental Technologies, Ubonratchathani, Thailand, March 24-27, 2010.
- Giao N., Siripattanakul S., and Limpiyakorn T. Influence of Nanoparticles on Ammonium Oxidation of Enriched Nitrifying Activated Sludge. The Third Conference on Environmental science, Engineering and Management, Bangkok, Thailand, March 14-15, 2011.

## บทความวิชาการในวารสารวิชาการ

- Siripattanakul-Ratpukdi, S., Ploychankul, C., Limpiyakorn, T., Rongsayamanont, C., Vangnai, A.S., Khan, E., Mitigation of Nitrification Inhibition by Silver Nanoparticles Using Cell Entrapment Technique. Submitted to Water Research
- Siripattanakul-Ratpukdi, S., Fürhacker, M., Vangnai, A.S., Khan, E., Silver Nanoparticles Contaminated in Engineered Environmental Treatment Systems, Prepared for submitting to *Journal of Hazardous material*

Ploychankul, C., Rongsayamanont, C., Limpayakorn, T., and **Siripattanakul, S.**Influence of Silver Nanoparticle on Nitrification Performance in Wastewater Treatment
System. 2010 Asian-Pacific Regional Conference on Practical Environmental
Technologies, Ubonratchathani, Thailand, March 24-27, 2010.

# INFLUENCE OF SILVER NANOPARTICLE ON NITRIFICATION PERFORMANCE IN WASTEWATER TREATMENT SYSTEM

<u>Chutima Ploychankul</u><sup>1,2</sup>, Chaiwat Rongsayamanont<sup>1,2</sup>, Tawan Limpayakoru<sup>3</sup>, Sumana Siripattanakul<sup>4\*</sup>

International Postgraduate Programs in Environmental Management, Graduate School,
Chulalongkorn University, Bangkok, 10330 Thailand

<sup>2</sup> National Center of Excellence for Environmental and Hazardous Waste Management
(NCE-EHWM), Chulalongkorn University, Bangkok, 10330 Thailand

<sup>3</sup> Department of Environmental Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok, 10330 Thailand

<sup>4</sup> Department of Chemical Engineering, Faculty of Engineering and NCE-EHWM,
Ubon Ratchathani University, Ubonratchathani 34190, Thailand

\* E-mail: sumana.s@ubu.ac.th Tel: +66-45-353-300 ext. 3359

#### INTRODUCTION

Nanotechnology relates to a wide range of technologies that incorporate materials feature with a range of dimensions between approximately 1 and 100 nm. Nanoparticles, particles in nano scale, are a part of nanotechnologies claimed to substances, such as silver, iron, gold, and the particles that have no direct analog, nanotubes (nano-scale carbon), as well as, dendrimers (nano-scale organic compounds) [1,2]. The nanoparticles have been incorporated in numerous consumer products. Silver nanoparticle (nAg) is one of the most well-liked nanoparticles utilized in the world. It is known as an antimicrobial agent. In industrial sector, nAg was broadly utilized in products, such as bicycles frames, plastic containers, drug, and textiles [3-6]. Thus far, trend of nAg utilization has obviously increased. Although there was no published document of nAg contamination in the environment, the nAg contamination would be a problematic issue in environment either surface water, soil, groundwater, or wastewater treatment systems in the near future.

Silver particle including nAg is used as an antimicrobial agent. The silver particle inhibits growth of microbial cells, synthesis of protein, deoxyribonucleic acid, and ribonucleic acid, and activity of dehydrogenases enzymes in tricarboxylic acid cycle [7]. Previous studies reported that antimicrobial capability of the silver particle was because of its toxicity [8-9]. Otherwise, it was investigated that the silver particle can destroy or attach to cell membrane resulting in the effect on growth or viability [10]. Nonetheless, most of previous studies were focused on effect of silver particles in micro-scale [8-10].

Among wastewater treatment processes, nitrification is known as a sensitive process to environmental conditions, such as temperature, pH, or toxic substance [11-14]. There were a few studies on fate and toxicity mechanism of nAg in wastewater treatment systems. The previous studies focused on effect of the nAg in the difference of sizes [10]. The result indicated that nAg gave worse effect than general silver particle (micro-scale) since nAg could penetrate through cell membrane and attribute to 100-time higher effect to the cells

compared to the micro-scale silver particle. The work is needed to continue in different variations for better understanding in the effect of nAg on the nitrification process.

The aim of this study is to investigate the influence of nAg on the activity of NAS in synthetic wastewater treatment system based on respirometric experiment. The nitrification with different nAg and ammonia concentrations was conducted. Oxygen uptake rate (OUR) and specific oxygen uptake rate (SOUR) were then calculated.

#### MATERIALS AND METHODS

#### Nitrifying Activated Sludge and Cultural Conditions

Returned activated sludge from Siphraya municipal wastewater treatment plant, Bangkok, Thailand was taken and cultivated in two 12-L sequencing batch bioreactors (SBR) under aerobic condition for 1.5 months. The nitrifying bacteria in these bioreactors were enriched at a hydraulic retention time (HRT) of 2 d and a solid retention time (SRT) of approximately 24 d. The compositions of growth medium and inorganic salt were shown in Table 1.

Table 1 The composition of growth medium

| Chemical                                           | Concentration |  |
|----------------------------------------------------|---------------|--|
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>    | 0.33 g/L      |  |
| NaHCO <sub>3</sub>                                 | 0.75 g/L      |  |
| K <sub>2</sub> HPO <sub>4</sub>                    | 2.1 g/L       |  |
| Na <sub>2</sub> HPO <sub>4</sub> 2H <sub>2</sub> O | 5.07 g/L      |  |
| Inorganic salt                                     | l ml/L        |  |

Table2 The composition of inorganic salt

| Chemical                              | Concentration |  |
|---------------------------------------|---------------|--|
| MgSO <sub>4</sub> · 7H <sub>2</sub> O | 40 g/L        |  |
| CaCl <sub>2</sub> · 2H <sub>2</sub> O | 40 g/L        |  |
| $KH_2PO_4$                            | 200 g/L       |  |
| FeSO <sub>4</sub> · 7H <sub>2</sub> O | 1.0 g/L       |  |
| $Na_2MoO_4$                           | 0.1 g/L       |  |
| MnCl <sub>2</sub> · 4H <sub>2</sub> O | 0.2 g/L       |  |
| CuSO <sub>4</sub> · 5H <sub>2</sub> O | 0.02 g/L      |  |
| ZnSO <sub>4</sub> · 7H <sub>2</sub> O | 0.1 g/L       |  |
| CoCl <sub>2</sub> · 6H <sub>2</sub> O | 0.002 g/L     |  |

#### Silver Nanoparticle Characteristics

Silver nanoparticles were obtained from Sensor Research Unit at Department of Chemistry, Chulalongkorn University, Thailand. The nAg was characterized before used. The spherical nAg with an average size of 14 nm was applied in the study since it is a typical properties of nAg widely utilized in industrial section.

#### Respirometer Setup and Operation

The duplicate experiments were conducted. A respirometer was built from a 250-mL flask with a screw cap coupled with the oxygen probe (WTW inoLab Oxi 730, WTW GmbH, Germany). The apparatus was set as shown in Figure 1. The NAS was taken and centrifuged at 4,000 rpm for 5 min. Supernatant was discarded. The centrifuged NAS was resuspended in a washing solution (an inorganic salt solution) and vigorously mixed using a vertical shaker. The resuspended NAS was centrifuged. The washing solution was then discarded. The washed NAS was then rewashed with this manner for 4 times.

The cleaned NAS was transferred into the respirometer. The synthetic wastewater containing with different ammonia and nAg concentrations as shown in Table 3 was added into the respirometer. Note that the final mixture in the respirometer contained the cleaned NAS at volatile suspended solid (VSS) of 500 mg/L. The respirometer was operated and monitored every minute until dissolved oxygen (DO) concentrations reached stable.

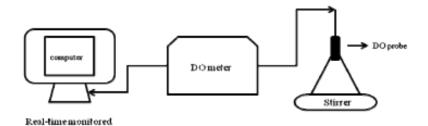



Figure 1 Respirometer setup

Table3 Synthetic wastewater compositions

| Thores of attache wasternier compositions |           |                          |                                      |  |  |
|-------------------------------------------|-----------|--------------------------|--------------------------------------|--|--|
| No.                                       | Test Name | nAg concentration (mg/L) | NH <sub>3</sub> concentration (mg/L) |  |  |
| 1                                         | 00528NP   | 0.05                     | 28                                   |  |  |
| 2                                         | 0528NP    | 0.50                     | 28                                   |  |  |
| 3                                         | 528NP     | 5.00                     | 28                                   |  |  |
| 4                                         | 00570NP   | 0.05                     | 70                                   |  |  |
| 5                                         | 0570NP    | 0.50                     | 70                                   |  |  |
| 6                                         | 570NP     | 5.00                     | 70                                   |  |  |

#### Oxygen Uptake Rate and Specific Oxygen Uptake Rate Calculation

Oxygen Uptake Rate was figured by DO value while SOUR was calculated by OUR and cell mass value in the respirometer. The rates were calculated as shown in equation 1 and 2. Note that the rates were calculated only during the log (rapid declining) period.

$$OUR = \frac{d[DO]}{dt} = Slope of DO value versus time graph (1)$$

$$SOUR = \frac{OUR}{VSS}$$
 (2)

#### RESULTS AND DISCUSSION

#### Effect of Initial Ammonia Concentration

Nitrification of the nAg-contaminated wastewater at the ammonia concentrations of 28 and 70 mg-N/L was performed. The concentrations (28 and 70 mg-N/L) were selected to represent ammonia concentrations in municipal wastewater treatment and sludge digestion systems, respectively. The observed DO values from the tests with each nAg concentration and ammonia concentrations of 28 and 70 mg-N/L were similar as shown in Figure 2. From the tests with nAg concentrations of 0.05 and 0.5 mg/L and ammonia concentrations of 28 and 70 mg-N/L (Test No. 1 to 4), DO quickly decreased during the first 40-60 min and reached steady state at approximately DO of 0 mg O<sub>2</sub>/L thereafter (Figure 2a and 2b). On the contrary, DO of the tests with nAg concentration of 5 mg/L and ammonia concentrations of 28 and 70 mg-N/L (Test No. 5 and 6) gradually decreased (Figure 2c). After testing for 200 min, DO of 3 and 7 mg O<sub>2</sub>/L still observed in the systems with the ammonia concentrations of 28 and 70 mg-N/L, respectively.

Based on the results in Figure 2, OURs and SOURs were calculated as shown in Table 4. The OUR and SOUR values indicated that the different ammonia concentrations (28 and 70 mg-N/L) did not play any role in nitrification process. Normally, the initial ammonia concentration influences nitrification (OUR and SOUR) rate. Higher ammonia concentration gives higher nitrification rate while too high ammonia concentration inhibits the rate. Phenomenon observed in this study could be because the tested ammonia concentrations did not much different resulting in similar nitrification rates. The result indicated that the ammonia concentration of lower than 70 mg-N/L did not inhibit nitrification in the nAg-contaminated wastewater. Similarly, Kim et al. reported ammonia concentration of lower than 350 mg-N/L did not affect nitrification process [15].

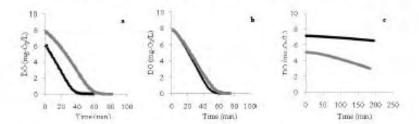



Figure 2 Dissolved oxygen concentration from the tests at 28 mg-N/L (black color) and 70 mg-N/L (grey color) with nAg concentrations of

(a) 0.05 mg/L, (b) 0.5 mg/L, and (c) 5mg/L, respectively

Table4 Oxygen Uptake Rates and Specific Oxygen Uptake Rates

|     |           | $NH_3$        | nAg           | OUR       | SOUR                  |
|-----|-----------|---------------|---------------|-----------|-----------------------|
| No. | Test name | concentration | concentration | (mg       | (mg O <sub>2</sub> /g |
|     |           | (mg-N/L)      | (mg/L)        | O2/L/min) | VSS/min)              |
| 1   | 00528NP   | 28            | 0.05          | 0.1675    | 0.4437                |
| 2   | 0528NP    | 28            | 0.50          | 0.1649    | 0.4368                |
| 3   | 528NP     | 28            | 5.00          | 0.0038    | 0.0101                |
| 4   | 00570NP   | 70            | 0.05          | 0.1359    | 0.3600                |
| 5   | 0570NP    | 70            | 0.50          | 0.1455    | 0.3854                |
| 6   | 570NP     | 70            | 5.00          | 0.0058    | 0.0154                |

The average VSS was 0.3775±0.1 mg-VSS/L

#### Effect of Initial Silver Nano-particle Concentration

Nitrification of the nAg-contaminated wastewater at different nAg concentrations was performed (Figure 3). Figures 3a and 3b present similar results. The DO concentrations of the tests at the nAg concentrations of 0.05 and 0.5 mg/L were similar. The DO values dramatically decreased during the first hour to accomplished DO of 0 mg O<sub>2</sub>/L. On the other hand, DO at the nAg concentration of 5 mg/L was gradually reduced and did not reach steady state. It is also noticed that the tests at the nAg concentration of 5 mg/L were much more time-consuming.

Based on the OUR and SOUR results in Table 4, it is obvious that different nAg concentrations played an important role in nitrification process. The rates of the tests at nAg concentrations of 0.05 and 0.5 mg/L were nearly the same (OUR of 0.014 to 0.016 mg- $O_2$ /L/min and SOUR of 0.36 to 0.44 mg- $O_2$ /g VSS/min) while the rates of the tests at nAg concentrations of 5 mg/L were 50-times less than those from other tests. This indicated that nAg apparently inhibited nitrification process. However, the concentrations of nAg also influenced nitrification differently. It could imply that threshold concentration of nAg to nitrifying bacteria and nitrification process may be between 0.5 and 5 mg/L. Similarly, Çeçen et al. concluded that the increasing of heavy metal concentration inhibited the OUR activity in nitrifying bacteria [16-17].

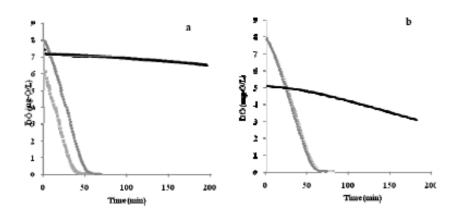



Figure 3 Dissolved oxygen from the tests at nAg concentrations of 0.05 mg/L (light grey), 0.5 mg/L (grey), and 5 mg/L (black) with ammonia concentrations of a) 28 mg-N/L and b) 70 mg-N/L, respectively.

#### CONCLUSIONS

Nitrification of the nAg-contaminated wastewater at different nAg concentrations was investigated. The results showed that the initial ammonia concentration did not influence nitrification while the nAg concentration played an important role in nitrification process. The tests at the nAg concentrations of 0.05 and 0.5 mg/L completed nitrification within an hour while nitrification from the tests with high nAg concentration (5 mg/L) was obviously inhibited. The OUR and SOUR values ranged from 0.004 to 0.016 mg-O<sub>2</sub>/L/min and 0.01 to 0.44 mg-O<sub>2</sub>/gVSS/min, respectively. The rates from tests at nAg concentrations of 5 mg/L were 50-times less than those from other tests. For future study, the other revironmental factors on nitrification of the nAg-contaminated wastewater, such as temperature and pH should be conducted for a better understanding. Also, insight information of the inhibition mechanism and abatement technology should be concerned.

#### ACKNOWLEDGMENTS

Authors thanks Associate Professor Sanong Ekgasit and Pattawat Maneewattanapinyo, the Department of chemistry, Faculty of Science, Chulalongkorn University for providing a nAg solution and its information.

#### REFERENCES

- Kaiser J.-P., Wick P., Manser P., Spohn P., Bruinink A.: J. Mater. Sci. Mater. M. 19, 4 (2008) 1523-1527.
- [2] Savage N., Diallo M.S.: J. Nano. Res. 7, 4-5 (2005) 331-342.
- [3] Kanellos, M. Carbon nanotubes enter Tour de France, CNET News.com, 07/07/2006.
- [4] Yang P.H., Sun X.S., Chiu J.F., Sun H.Z., He Q.Y.: Bioconjugate Chem. 16 (2005) 494-496.
- [5] Hong R., Han G., Fernandez J.M., Kim B.J., Forbes N.S., Rotello V.M.: J. Am. Chem. Soc. 128 (2006) 1078–1079.

- [6] Benn T.M., Westerhoff P.: Environ. Sci. Technol. 42 (2008) 4133-4139.
- [7] Surve N.N., Bagde U.S.: Int. J. Biomed. Sci. 7, 3 (2009) 139-144.
   [8] McGeer J.C., Playle R.C., Wood C.M., Galvez F.: Environ. Sci. Technol. 34, 19 (2000) 4199-4207.
- [9] Fan F.F., A.J.: J. Phys. Chem. B 106, 2 (2002) 279-287.
- [10] Choi O.K., Hu Z.: Environ. Sci. Technol. 42 (2008) 4583-4588.
- [11] Bernet N., Dangcong P., Delgenes J.-P., Moletta R.: J. Environ. Eng. 127, 3 (2001) 266-
- [12] Ford D.L., Churchwell R.L., Kachtick J.W.: J. Water Pollut. Control Fed. 52, (1980) 2726-2746.
- [13] Shammas N.K.: J. Water Poliut. Control Fed. 58, 52 (1986) 52-58.
- [14] Painter H.A.: Water Res. 4 (1970) 393-450.
- [15] Kim Y.M., Park D., Lee D.S., Park J.M.: J. Hazard. Mater. 152, 3 (2008) 915-921.
- [16] Çeçen F., Neslihan S., Geyik A.G.: J. Hazard. Mater. (2010).
- [17] Hu Z., Chandran K., Grasso D., Smets B.F.: Environ. Sci. Technol. 36 (2002) 3074-3078.

Giao N., **Siripattanakul S.**, and Limpiyakorn T. Influence of Nanoparticles on Ammonium Oxidation of Enriched Nitrifying Activated Sludge. The Third Conference on Environmental science, Engineering and Management, Bangkok, Thailand, March 14-15, 2011.

68

## Influence of Silver Nanoparticles on Ammonium Oxidation of Enriched Nitrifying Activated Sludge

Nguyen Thanh Giao<sup>1,2</sup>, Sumana Siripattanakul<sup>3</sup>, Tawan Limpiyakorn<sup>4</sup>

<sup>1</sup>National Center of Excellence for Environmental and Hazardous Waste Management, Chulalongkorn University, Bangkok, Thailand

<sup>2</sup>International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand:

<sup>3</sup>Department of Chemical Engineering, Faculty of Engineering and National Center of Excellence for Environmental and Hazardous Waste Management, Ubon Ratchathani University, Ubonratchathani, Thailand

<sup>4</sup>Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

#### Abstract

Ammonium oxidation plays an important role in nitrogen removal in any wastewater treatment facilities. This process is known as a very low microbial reproduction rate since the microorganisms are very sensitive to non-growth substrates including toxic substances. Silver nanoparticles (AgNPs) are one of the toxic substances significantly increased in production and use. In this study, the inhibitory effect of AgNPs on ammonium oxidation was investigated. The initial concentrations of AgNPs and ammonium nitrogen ranged from 0.25 to 10 mg/L and 14 to 280 mg/L, respectively. The result showed that the effect of AgNPs on ammonium oxidation process followed uncompetitive inhibition model. The calculated inhibition coefficient (*Ki*) was 21.7 mg/L while half saturation coefficient (*Ks*) was 15.9 mgN-NH<sub>4</sub><sup>+</sup>/L. The results also indicated that AgNPs inhibited ammonium oxidation of 25 to 30% for the low and moderate and approximately 41% for the high ammonium containing wastewater treatment plants. The initial concentration of AgNPs caused side-effects for ammonium oxidation was recorded at 0.25 mg/L. Silver nanoparticles at low concentrations of 0.25, 0.5 and 1 mg/L inhibited up to 16%, 26% and 38% ammonium oxidation activities in wastewater treatment plants, respectively. The findings imply that AgNPs have negative impacts on nitrogen removal in biological reactors.

**Key words**: ammonia oxidizing microorganism, silver nanoparticle, inhibition coefficient, nitrifying activated sludge

#### Introduction

Silver nanoparticles (AgNPs) have been widely used and gained public attention due to its biocidal characteristics. It was proved having negative impact on human cells as well as environment (Kim et al., 2008; Kim et al., 2009), especially nitrification process in activated sludge systems (Blaser, 2008). Nitrification is widely used process for biological removal of nitrogen from wastewater. Among wastewater treatment processes, it is believed that one of the most sensitive processes in wastewater treatment systems. The process comprises of two-steps. Ammonia (NH<sub>3</sub>) is oxidized to nitrite (NO<sub>2</sub><sup>-</sup>) by ammonia-oxidizing microorganisms (AOM) and then nitrite is subsequently oxidized to nitrate (NO<sub>3</sub><sup>-</sup>) by nitrite-oxidizing microorganisms (NOM). Of which, ammonium oxidation is known as a rate-limiting and more sensitive step because of the microorganism behaviors. Thus, the presence of AgNPs in wastewater treatment facilities may cause unexpected effects on ammonium oxidative performances of the systems.

Effects of toxic substances in wastewater treatment plants have been intensively investigated. Several heavy metals, such as  $Cr^{3+}$ ,  $Cr^{6+}$ ,  $Zn^{2+}$ ,  $Mn^{2+}$ ,  $Cu^{2+}$ ,  $Ni^{2+}$ , and  $Cd^{2+}$  have been studied and postulated to cause significant effects as a non-competitive inhibitor on nitrification process in activated sludge systems (Lewandowski et al., 1985; Cokgor et al., 2007). However, inhibitory kinetic information of AgNPs in ammonium oxidation process is still lacking.

#### **Purpose**

The purpose of the present study was to investigate the ammonium oxidation inhibitory kinetics by AgNPs. The findings of this study will contribute understanding the effects of AgNPs on wastewater treatment operation. This can be useful in many practical applications that can result in improved biological reactor design and regulations of production and use of AgNPs products.

#### Materials and methods

Silver nanoparticle synthesis

Silver nanoparticles were obtained from Sensor Research Unit at Department of Chemistry, Chulalongkorn University, Thailand. The particles were synthesized by borohydride reduction process followed method described elsewhere (Hyning and Zukoski, 1998; Ngeontae et al., 2009). The silver nanoparticles were synthesized from silver nitrate with sodium borohydride in the methyl cellulose solution. The spherical AgNPs with an average size of 14 nm were characterized using transmission electron microscopy. Note that size and shape were chosen because they are typical characteristics applied in commercial products.

Enrichment of nitrifying activated sludge (NAS)

The activated sludge was collected from Siphraya Municipal Wastewater Treatment Plant (Bangkok, Thailand) and enriched in 12-L reactors in sequencing batch reactor mode for 6 months before use. The hydraulic retention time and solid retention time of the reactors were maintained at 2 days and 24 days, respectively. Temperature, pH, and dissolved oxygen concentration (DO) were maintained at 25-30°C, 7-8, and above 2 mg/L, respectively. The activity of NAS was monitored by measuring the decrease of ammonium (NH<sub>4</sub><sup>+</sup>) and increase of nitrate (NO<sub>3</sub><sup>-</sup>) in the reactors. The stock sludge was used for the respirometric experiments when the ammonia utilization rate reached steady state. Enrichment medium was described elsewhere (Limpiyakorn et al., 2007). A synthetic stock feed medium contained 0.33 g/L (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 4.04 g/L Na<sub>2</sub>HPO<sub>4</sub>, 2.1 g/L K<sub>2</sub>HPO<sub>4</sub>, 0.75 g/L NaHCO<sub>3</sub>, and trace inorganic salt solution 1mL. The solution comprised 40 g/L MgSO<sub>4</sub>.7H<sub>2</sub>O, 40 g/L CaCl<sub>2</sub>.2H<sub>2</sub>O, 200 g/L KH<sub>2</sub>PO<sub>4</sub>, 1 g/L FeSO<sub>4</sub>.7H<sub>2</sub>O, 0.1 g/L Na<sub>2</sub>MoO<sub>4</sub>, 0.2 g/L MnCl<sub>2</sub>.4H<sub>2</sub>O, 0.02 g/L CuSO<sub>4</sub>.5H<sub>2</sub>O, 0.1 g/L ZnSO<sub>4</sub>.7H<sub>2</sub>O, and 0.002 g/L CoCl<sub>2</sub>.6H<sub>2</sub>O. All chemicals were purchased from Merck Company (Darmstadt, Germany) via local distributor.

#### Respirometric essay setup and operation

In respirometric experiments, mix liquor volatile suspended solids (MLVSS) of  $110 \pm 14$  mg/L was centrifuged, washed, and added to the vessel, which was later filled up with synthetic wastewater. The synthetic wastewater formulation was the same with the stock feed prepared by phosphate buffer with pH range from 7.8 to 8.2. Sodium azide (NaN3) was added to the final concentration of 24  $\mu$ M to inhibit nitrite oxidizers (Ginestet et al., 1998). The vessel was magnetically stirred and operated at room temperature (23-25°C). The DO depletion in the vessel due to ammonium utilization was monitored and recorded every minute by using DO probe (DO meter, WTW GmbH, Weiheim, Germany). For the tests with AgNPs, six duplicate experiments were performed. Each of experiment was carried out with the initial concentrations of N-NH4+ ranged from 14-280 mg/L at fixed AgNPs. The initial AgNP concentrations were 0.25, 0.5, 1, 3, 5, and 10 mg/L. The vessel was aerated until it reached saturation at dissolved oxygen concentration of 7-8 mg/L. The blank experiments were performed as the same manner but no AgNPs were supplied. The oxygen consumption by heterotrophs also was tested by using the treatment without ammonium.

#### Analytical methods

Nitrogen species such as N-NH<sub>4</sub><sup>+</sup>, N-NO<sub>2</sub><sup>-</sup>, N-NO<sub>3</sub><sup>-</sup>, and MLVSS were determined followed protocols in Standard Method for the Examination of Water and Wastewater, 20<sup>th</sup> Edition (APHA, 1998). Regarding to these protocols, ammonium was measured by using phenate method, nitrite was followed colorimetric method, and nitrate was followed ultraviolet spectrophotometric screening method. Analysis of MLVSS was performed by using 2540E method. The DO concentrations and pH were measured by WTW OxiLevel-2 DO meter (WTW GmbH, Weiheim, Germany), respectively.

#### Kinetic analysis

Oxygen Uptake Rate (OUR) was determined based on the change of dissolved oxygen over the time. The OUR was then used for determination of  $OUR_{max}$  and  $K_s$  values by fitting the OUR and initial ammonium concentrations into Monod equation with Mechaelis-Menten type (equation 1) by using SigmaPlot version 11.0 (Sigmaplot, Dick Mitchell, SYSTAT, Inc.):

$$OUR = OUR_{max} \frac{s}{Rs + s} \tag{1}$$

where OUR is the oxygen uptake rate (mg O<sub>2</sub>/L.min<sup>-1</sup>);  $OUR_{max}$  is the maximum oxygen uptake rate (mg O<sub>2</sub>/L.min<sup>-1</sup>), S is the growth-substrate concentration (mg N-NH<sub>4</sub><sup>+</sup>/L), Ks is the half saturation coefficient for growth-substrate (mg N-NH<sub>4</sub><sup>+</sup>/L). Under the presence of AgNPs the equation (1) is rewritten as follow (equation 2):

$$OUR = OUR_{\text{max}} \frac{S}{Ks + S(1 + \frac{I}{K_i})}$$
 (2)

where I is the concentration of AgNPs (mg/L), Ki is inhibition constant (mg/L). The equation (2) can be taken the reciprocal of both sides to give the Lineweaver-Burk model as shown below (equation 3):

$$\frac{1}{OUR} = \frac{K_s}{OUR_{\text{max}}} \frac{1}{S} + \frac{1}{OUR_{\text{max}}} \left( 1 + \frac{I}{K_i} \right)$$
 (3)

The Ki value in equation 2 can be estimated by plotting Ks values against the inhibitor [I] concentration. A better approach to estimate Ki is to plot the Ks/ OUR<sub>max</sub> versus inhibitor concentration [I]. The intercept on the x-axis will give the -Ki value. Enzyme Kinetic Modules incorporated in the SigmaPlot software (Sigmaplot, Dick Mitchell, SYSTAT, Inc.) could easily solve for Ki based on equation (3).

#### **Results and discussion**

Ammonia oxidizing activity without AgNPs

The experiment comprises of phosphate and bicarbonate buffer but no ammonia and no AgNPs were used to test heterotrophic activity. The result (Figure 1) showed that dissolved oxygen was constant at 7.5 mg/L meaning that the slope representing for the oxygen consumption rate was zero (Figure 1a). This implied that heterotrophs insignificantly competed oxygen with ammonium oxidizing microbes. In addition, the experiment included ammonium concentration of 70 mg/L mixed together with relevant amounts of phosphate and bicarbonate buffer, with AgNPs at the concentration of 10 mg/L and without any nitrifying cells was also performed. The result obtained was the same with heterotrophic test that there was found not any dissolved oxygen consumed (Figure 1b) implying that there was only nitrifying microorganisms consumed dissolved oxygen.

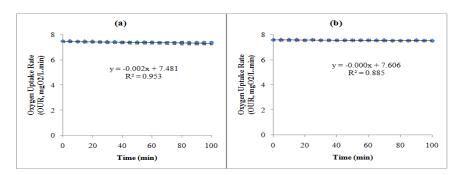



Figure 1. The control experiments (a) heterotrophs test (b) dissolved oxygen sink test

Influence of initial N-NH<sub>4</sub><sup>+</sup> concentrations on ammonium oxidation performance was showed in the Figure 2. The rate of oxygen consumption was expressed by slope of the linear line that represents for depletion of dissolved oxygen with respect to time. The results indicated that the initial N-NH<sub>4</sub><sup>+</sup> concentrations influenced ammonium oxidation activity in the manner that higher N-NH<sub>4</sub><sup>+</sup> concentration result in higher ammonium oxidation rate. Dissolved oxygen decreased rapidly or the slope increased when N-NH<sub>4</sub><sup>+</sup> concentration increased. For instances, the slopes were 0.002, 0.064, 0.123, 0.125, 0.193 and 0.198 mgO<sub>2</sub>/L.min corresponded to N-NH<sub>4</sub><sup>+</sup>

concentrations of 0, 5, 10, 50, 70, and 280 mg/L. It was observed that the slope increase slowly when  $N-NH_4^+$  concentration increased from 70 mg/L to 280 mg/L. The result of this study was in the line with that reported by Kim et al. that the  $N-NH_4^+$  concentration of lower than 350 mg/L did not affect the nitrification process thus did not influence ammonium oxidation process.

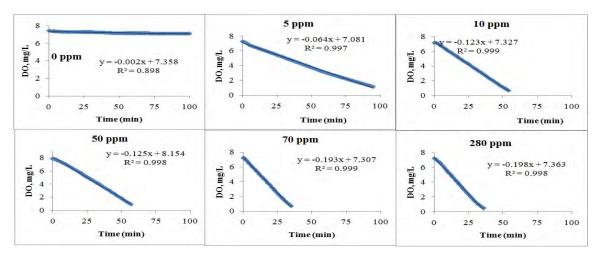



Figure 2. Influence of N-NH<sub>4</sub><sup>+</sup> concentration on Oxygen Uptake Rate

Ammonia oxidizing activity with AgNPs

Influence of AgNPs and N-NH<sub>4</sub> $^+$  on oxygen uptake rate on the ammonium oxidation (Figure 3) was investigated. As can be seen, AgNPs reduced dissolved oxygen consumption ability of nitrifying microbes. For example, at the fixed concentration of N-NH<sub>4</sub> $^+$  of 14 mg/L, the oxygen uptake rates for ammonium oxidation were 0.097, 0.093, 0.088, 0.085, and 0.085 mgO<sub>2</sub>/L.min corresponding to the AgNPs concentrations of 0, 0.25, 0.5, 1 and 5 mg/L. At higher N-NH<sub>4</sub> $^+$  concentrations of 28 mg/L and 70 mg/L which were selected to represent for the N-NH<sub>4</sub> $^+$  concentration in most of the municipal and industrial wastewater treatment plants, the results of oxygen uptake rates also indicated when increasing AgNPs concentrations resulted in decreasing in oxygen uptake rates but the slopes almost leveled off when AgNPs in the range of 1-10 mg/L regardless of the N-NH<sub>4</sub> $^+$  concentration.

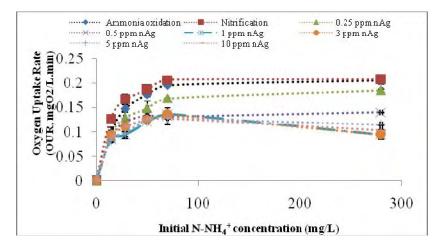



Figure 3. Oxygen Uptake Rate in the presence of AgNPs

#### Inhibitory ammonium oxidation kinetics

The ammonium oxidation kinetics was calculated followed Monod or Michaelis-Menten equation as shown in Figure 4. The calculated OUR<sub>max</sub> and *Ks* were 0.227 mg O<sub>2</sub>/L.min and 15.88 mg N-NH<sub>4</sub>/L respectively. The calculated Ks value was lower to that of Bilge and Cecen (2007) (*Ks* = 60-70 mgN/L) but higher than in Carrera's study (*Ks* = 11mgN/L). This could be because in the prior study, the activated sludge was fed with high initial N-NH<sub>4</sub><sup>+</sup> concentration of 200 mg/L whereas this study only used around 70 mg/L of N-NH<sub>4</sub><sup>+</sup> resulting in lower values. In another study, Racz et al. (2010) found *Ks* values of 17.8 mg-N/L, and 26.5 mg-N/L for peptone-fed reactor and glucose-fed reactor, respectively. It was believed that the concentration of organic carbon was different in activated sludge resulted in different microbial community leading to different in ammonium oxidation. This explanation was in accordance with the result interpretation from Bilge and Cecen (2007). However, the result in Figure 4 shows that NAS in this study mostly consume oxygen for ammonium oxidation process since OUR<sub>max</sub> and *Ks* values of ammonium oxidation and full nitrification were similar.

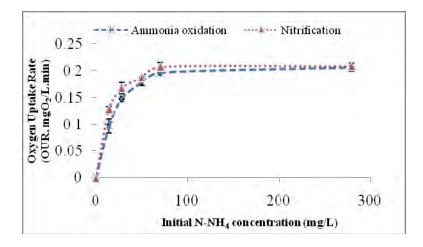



Figure 4. Oxygen uptake rate of the enriched NAS

At different concentrations of AgNPs, apparent OUR patterns followed the Michaelis-Menten type (Figure 3). The Mechaelis-Menten equation is the fundamental equation of Enzymes Kinetics and describes a rectangular hyperbolic dependence of velocity on substrate. It has the dual nature because it is a combination of zero-order and first-order kinetics. When substrate is low, the equation for rate is first-order in substrate and when substrate is high, the equation for rate is zero-order. In this study, an increasing AgNPs led to a decreasing of oxygen uptake rates indicating that the inhibitory effect of AgNPs on ammonium oxidation. It seemed that AgNPs have the characteristics of an uncompetitive inhibition because the apparent OUR<sub>max</sub> and Ks are both slightly decreased. In fact, for true uncompetitive inhibition, the OUR<sub>max</sub> and the Ks are decreased by the same factor (1+ I/Ki), so the ratio of  $Ks/OUR_{max}$  does not change. This resulted in a Lineweaver-Burk plot with two parallel lines corresponding to the uninhibited and inhibited experiments (Figure 5).

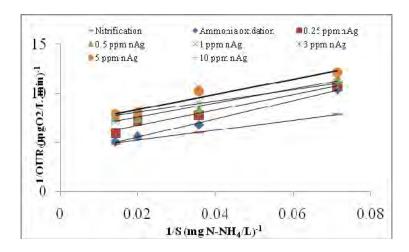



Figure 5. Lineweaver - Burk Plot

#### Inhibition coefficient Ki

The calculated inhibition coefficient Ki was 21.7 mg/L. So far, there is no published report of Ki value for AgNPs for ammonium oxidation in the activated sludge system. Only a few studies have been focused on calculation of Ki values for heavy metals (Lewandowski et al., 1985). Effects of metals on biodegradation of methyl tert-butyl ether (MTBE) by using pure culture of Pseudomonas aeruginosa were studied. Accordingly, the inhibition coefficient Ki for Cr<sup>3+</sup>, Zn<sup>2+</sup>, and Mn<sup>2+</sup> were in the range of 161-165 mg/L while the inhibition coefficient for Cu<sup>2+</sup> was recorded at the concentration of 32.4 mg/L. The calculated Ki for AgNPs in this study was lower than that of literature. Some other studies found lower Ki values compared to this study. For examples, Ki value of 12 mg/L also was estimated for cadmium (Cd<sup>2+</sup>) in the denitrification process in activated sludge (Gumaelius et al., 1996) and inhibition coefficient for Cr<sup>6+</sup> was found to be 1.2 mg/L in the biological reactors (Lewandowski et al., 1985). Silver nanoparticles exhibited inhibitory effect differently from heavy metals. Most of heavy metals fell into noncompetitive inhibition while AgNPs was found to be uncompetitive behavior in the present study. Some heavy metals can stimulate the growth of the microbes for instances, Ni<sup>2+</sup>, Co<sup>2+</sup>, Cr<sup>6+</sup> at the concentration of 10, 5, and 25 mg/L were significantly stimulated the maximum growth rate in the activated sludge (Gikas, 2007). This kind of stimulation effect was not observed in this study.

Quantification of the inhibition of AgNPs for ammonium oxidation indicated that AgNPs at the very low concentrations of 0.25, 0.5 and 1 mg/L inhibit  $16 \pm 8.2\%$ ,  $26 \pm 7.3\%$  and  $38 \pm 11.3\%$  of ammonium oxidation activity in the experimental conditions, respectively. The inhibition effect of AgNPs was slightly changed when its concentrations increased from 1 to 10 mg/L. Furthermore, the effect of N-NH<sub>4</sub><sup>+</sup> concentration under the presence of AgNPs also was observed. The results showed that higher N-NH<sub>4</sub><sup>+</sup> concentration may result in higher inhibition rate of respiration of ammonium oxidative microorganisms. The percentage of inhibition was  $8 \pm 4.85\%$ ,  $25 \pm 8.98\%$ ,  $26 \pm 2.76\%$ ,  $30 \pm 7.93\%$ , and  $41 \pm 17.21\%$  for the concentration of 14, 28, 50, 70 and 280 mg N-NH<sub>4</sub><sup>+</sup>/L, respectively. The integration effect of AgNPs and N-NH<sub>4</sub><sup>+</sup> was observed at high (280 mg/L) concentration of N-NH<sub>4</sub><sup>+</sup> but more evidence needed to make a stronger conclusion.

The previous studies reported that  ${\rm Cr}^{6+}$  and  ${\rm Ni}^{2+}$  inhibited microbial oxygen uptake rate up to 15% and 40%, respectively, within 30 min. Respiration rate of nitrifying bacteria was found to be inhibited by up to 86% at the AgNPs concentration of 1 mg/L (Choi et al., 2008). However,

the result of this present study showed that there was only 38% respiration rate inhibited at the concentration of 1 mg/L. This discrepancy may be because of the presence of both Ammonium Oxidizing Bacteria (AOB) and Ammonium Oxidizing Archaea (AOA) in the cultivated culture. In previous study, it was found that the original activated sludge used in this study comprised both AOA and AOB (Sonthiphand and Limpiyakorn, 2009). Also, it is known that AOA have been reported to be well tolerated in the extreme environments thus they may tolerate with the presence of AgNPs.

Several mechanisms have been proposed for effect of AgNPs on bacteria but not archaea. The growth inhibition of microbes may be related to the formation of free radicals from the surface of AgNPs (Panacek et al., 2009). Uncontrolled generation of free radicals can attach membrane lipids and then lead to a breakdown of membrane function. This may not be the reason for this study, because by nature, free radicals will consume oxygen in the experimental condition; however, the control experiment was conducted and proved that there was no dissolved oxygen consumption other than microbial activity. Another suggested mechanism is the formation of "pits" in the cell wall of bacteria under the presence of AgNPs (Choi et al., 2008). Furthermore, it was recommended that the nanoparticles preferably attack the respiratory chain, cell division finally leading to cell death (Sondi and Salopek-Sondi, 2004). Unfortunately, little information of AgNPs effect mechanisms has been proposed for the case of AOA.

#### **Conclusions**

Influence of AgNPs on ammonium oxidation was investigated by using respirometric method. Under the presence of AgNPs, the maximum oxygen uptake rate (OUR<sub>max</sub>) and half saturation constant (Ks) were slightly declined. The effect of AgNPs on both followed uncompetitive inhibition model. This model was tested using Lineweaver-Burk plot (1/OUR vs 1/S) resulted in the parallel lines of with and without AgNPs. Half saturation constants (Ks) without AgNPs for ammonium oxidation was 15.88mg N-NH<sub>4</sub>+/L and the inhibition coefficients (Ki) was 21.7 mg/L. Silver nanoparticles at the very low concentrations of 0.25, 0.5 and 1 mg/L inhibited  $16 \pm 8.2\%$ ,  $26 \pm 7.3\%$  and  $38 \pm 11.3\%$ , respectively, of ammonium oxidation activity in the experimental conditions. The inhibitory effect of AgNPs was slightly changed when its concentrations increased from 1 to 10 mg/L. It is anticipated that the findings of this study will be useful in regulations of production and use of AgNPs products.

#### Acknowledgement

A financial support of this study was funded by National Center of Excellence for Environmental and Hazardous Waste Management (NCE-EHWM), International Postgraduate Programs in Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand are gratefully acknowledged. We thank to NCE-EHWM laboratory technicians for their academic and technical help during the study period.

#### References

- American Public Health Association. <u>Standard methods for the examination of water</u> and wastewater, 20th edition, Washington DC, USA, 1998.
- Blaser, S. A. Estimation of Cumulative Aquatic Exposure and Risk Due to Silver: Contribution of Nano Functionalized Plastics and Textiles. <u>Journal of the Total Environment</u> 390 (2008): 396-409.
- Choi, O., Deng, K. K., Kim, N. J., Ross, J., Surampallie, R. Y., and Hua, Z. The Inhibitory Effects of Silver Nanoparticles, Silver Ions, and Silver Chloride Colloids on Microbial Growth. <u>Journal of Water Research</u> 42 (2008): 3066-3074.
- Cokgor, E. U., Karahan, O., Ozdemir, S., Insel, G., and Orhon, D. Critical Appraisal of Respirometric Methods for Metal Inhibition on Activated Sludge. <u>Journal of Hazardous Materials B139</u> (2007): 332-339.
- Gikas, P. Kinetic Responses of Activated Sludge to Individual and Joint Nickel (Ni(Ii)) and Cobalt (Co(Ii)): An Isobolographic Approach. <u>Journal of Hazardous Materials</u> 143 (2007): 246-256.
- Ginestet, P., J.M., A., Urbain, V., and Block, J. C. Estimation of Nitrifying Bacterial Activities by Measuring Oxygen Uptake in the Presence of the Metabolic Inhibitors Allylthiourea and Azide. Appl Environ Microbiol. Appl Environ Microbiol., 6 (1998): 2266–2268.
- Gumaelius, L., Smith, E. H., and Dalhammaw, G. Potential Biomarker for Denitrification of Wastewaters: Effects of Process Variables and Cadmium Toxicity. <u>Wat. Res</u> 30,12 (1996): 3025-3031.
- Hyning, D. L. V. and Zukoski, C. F. Formation Mechanisms and Aggregation Behavior of Borohydride Reduced Silver Particles. <u>Langmuir</u> 14 (1998): 7034-7046.
- Kim, S., Choi, E. J., Choi, J., Chung Park, K. H. K., Yi, J., and Ryu, D. Y. Oxidative Stress-Dependent Toxicity of Silver Nanoparticles in Human Hepatoma Cells. <u>Toxicology in Vitro 23 (2009)</u>: 1076–1084.
- Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S., and Yu, I. J. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. <u>Journal of Inhalation Toxicology</u> 20,6 (2008): 575-583.
- Lewandowski, Z., Janta, K., and Mazierski, J. Inhibition Coefficient (Ki) Determination in Activated Sludge Wat. Res 19,5 (1985): 671-674.
- Limpiyakorn, T., Kurisu, F., Sakamoto, Y., and Yagi, O. Effects of Ammonium and Nitrite on Communities and Populations of Ammonia-Oxidizing Bacteria in Laboratory-Scale Continuous-Flow Reactors. <u>FEMS Microbiol Ecol</u> 60 (2007): 501-512.
- Ngeontae, W., Janrungroatsakul, W., Maneewattanapinyo, P., Ekgasit, S., Aeungmaitrepirom, W., and Tuntulani, T. Novel Potentiometric Approach in Glucose Biosensor Using Silver Nanoparticles as Redox Marker. <u>Sensors and Actuators B</u> Chemical 137 (2009): 320-326.
- Panacek, A., Kolar, M., Vecerova, R., Prucek, R., Soukupova, J., Krystof, V., Hamal, P., Zboril, R., and Kvıtek, L. Antifungal Activity of Silver Nanoparticles against Candida Spp. Biomaterials 30 (2009): 6333–6340.
- Sondi, I. and Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E.Coli as a Model for Gram-Negative Bacteria. <u>Journal of Colloid and Interface Science</u> 275 (2004): 177-182.

Sonthiphand, P. and Limpiyakorn, T. Communities of Ammonia-Oxidizing Bacteria and Archaea in Full – Scale Industrial Wastewater Treatment Plants. <u>Applied and environmental microbiology</u> 6 (2009): 2266–2268.

Siripattanakul-Ratpukdi, S., Ploychankul, C., Limpiyakorn, T., Rongsayamanont, C., Vangnai, A.S., Khan, E., Mitigation of Nitrification Inhibition by Silver Nanoparticles

Using Cell Entrapment Technique. Submitted to Water Research

# Mitigation of Nitrification Inhibition by Silver Nanoparticles Using Cell Entrapment Technique

Sumana Siripattanakul-Ratpukdi<sup>1\*</sup>, Chutima Ploychankul<sup>2,3</sup>, Tawan Limpiyakorn<sup>3,4</sup>,

Chaiwat Rongsayamanont<sup>2,3</sup>, Alisa S. Vangnai<sup>5</sup>, Eakalak Khan<sup>6</sup>

<sup>1</sup>Department of Chemical Engineering, Faculty of Engineering and Center of Excellence for Environmental and Hazardous Waste Management,

UbonRatchathani University, UbonRatchathani 34190, Thailand

<sup>2</sup>International Postgraduate Programs in Environmental Management, Graduate School,

ChulalongkornUniversity, Bangkok 10330, Thailand

<sup>3</sup>Center of Excellence for Environmental and Hazardous Waste Management,

Chulalongkorn University, Bangkok 10330, Thailand

<sup>4</sup>Department of Environmental Engineering, Faculty of Engineering,

Chulalongkorn University, Bangkok 10330, Thailand

<sup>5</sup>Department of Biochemistry, Faculty of Science, Chulalongkorn University,

Bangkok 10330, Thailand

<sup>6</sup>Department of Civil Engineering, North Dakota State University,

Fargo, ND 58108, USA

\*Corresponding author. Department of Chemical Engineering, Faculty of Engineering, UbonRatchathani University, Satolmark Street, Warinchamrap, UbonRatchathani 34190, Thailand. Phone: 66-45-353300 ext. 3359; Fax: 66-45-353333; E-mail: ensumasi@ubu.ac.th, jeans sumana@yahoo.com

#### **Abstract**

Silver nanoparticles (AgNPs) have substantially increased in production and utilization resulting in potential of AgNPs contamination in engineered and natural environment including wastewater treatment plants. Effects of AgNPs on nitrification activities of free and entrapped nitrifying activated sludge were investigated using a respirometric assay. Initial ammonia and AgNP concentrations, and entrapment materials and matrix sizeswere the variables. Scanning and transmission electron microscopic observations of the microbial cells and entrapment matrices were also performed. Results showed that the initial ammonia concentration (28 and 70 mg-N/L) did not influence the nitrification activity while the AgNP concentrations (0.05-5.00 mg/L) affected the nitrification activity (2% to 98% compared to the control). In the presence of AgNPs, both calcium alginate (CA)and polyvinyl alcohol (PVA)-entrapped cells had higher nitrification activity compared to free cells. Nitrification activity in the presence of AgNPs by the CA-entrapped cells was better than that of the PVA-entrapped cells (64% to 100% versus 4% to 87% compared to without AgNPs). Cells entrapped in a larger matrix size performed better. Silver nanoparticles caused damages to cell membrane and cytoplasm which very likely led to decreased nitrification activity. The entrapment matrices successfully reduced the adverse effects of AgNPs on nitrification activity.

**Keywords:** cell entrapment, cell physiology, nitrification, respirometry, silver nanoparticle

#### 1. Introduction

Silver nanoparticle (AgNP) is one of the most widely utilized nanoparticles in the world. It is known as an effective biocidal agent (Blaser et al., 2008; Marambio-Jones and Hoek, 2010). Silver nanoparticles are broadly applied in products, such as plastic containers, drug, detergent, and textiles. Previous studies have proved that AgNPs adversely influenced microbial viability (Zhang et al., 2008; Marambio-Jones and Hoek, 2010; Guzman et al., 2012). Therefore, AgNP contamination after production or utilization could potentially be a problematic environmental issue in the near future.

Blaser et al. (2008) reported that most AgNPs polluted environment via wastewater treatment systems. The particles might enter wastewater stream via industrial production processes or products during use. Silver nanoparticles tended to attach on microbial sludge at a concentration of up to 39 mg-Ag/kg dry sludge (Blaser et al., 2008). This can cause failure tobiological wastewater treatment systems. Among traditional wastewater treatment processes (carbonaceous and nitrogenous removal processes), nitrification is known as a sensitive process (Choi et al., 2008). This is because nitrifying microorganisms are slow growing and sensitive to environmental stresses such as temperature, dissolved oxygen concentration, pH, and toxic substances. For example, nitrification was inhibited at 86% when wastewater was contaminated with1 mg/L ofAgNPs(Choi et al., 2008). Thus far, there have been only few studies on fate and toxicity mechanism of AgNPs in the nitrification process (Choi et al., 2008; Choi and Hu, 2009; Radniecki et al, 2011). There has been no published report on how to mitigate the negative effect of AgNPson the process.

Cell entrapment technique, immobilization of microorganism in a porous polymeric matrix, is a potential method to alleviate the AgNP inhibition problem. The technique was successfully applied for removal of nitrogen, carbon, and hazardous substances (Chen et al., 1998; Siripattanakul et al., 2008; Siripattanakul and Khan, 2010). Several previous studies reported the success of the entrapped cell utilization for toxic protection(Cassidy et al., 1996; Dursun and Tepe, 2005; Siripattanakul and Khan, 2010). In this case, the technique should be able to lessen the AgNP toxicity leading to reliable nitrification activity in wastewater treatment plant.

This study aimed to investigate the use of cell entrapment technique for providing effective nitrification of wastewater contaminated with AgNPs. Two widely used polymeric materials including calcium alginate (CA) and polyvinyl alcohol (PVA) were chosen as entrapment matrices. Nitrification kinetics was tested using a respirometric assay. Initial ammonia and AgNP concentrations, entrapment material types (CA and PVA), and matrix sizes (small and large diameter beads) were the variables. A free cell system was examined as a comparison. Microbial cells and matrix microstructures were observed using electron microscopy to gain insight information on AgNP toxicity.

#### 2. Materials and Methods

#### 2.1 Chemicals

Alginic acid sodium salt was acquired from Sigma-Aldrich (Singapore) and polyvinyl alcohol (99.0-99.8% fully hydrolyzed, molecular weight 77,000-79,000) was obtained from J.T. Baker (NJ, USA). Other chemicals including chemicals for cultural medium,

cell entrapment, nitrification parameter analyses, and sample preparation for microscopic observation were laboratory grade obtaining from local distributors (Bangkok, Thailand).

#### 2.2 Silver nanoparticle synthesis

Silver nanoparticleswere synthesized by aborohydridereduction process followinga method described elsewhere (Hyning and Zukoski, 1998; Ngeontae et al., 2009). The plasmon extinction of the particles was at 403 nm with a narrow full width at half height of 50 nm. The particles were spherical and had an average size of 14 nm based on transmission electron microscopy (TEM) (Figure 1). The size and shape were consistent with typical characteristics of commercial AgNPs.

#### 2.3 Nitrifying activated sludge and cultural condition

Returned activated sludge was collected from a Municipal Wastewater Treatment Plant, Bangkok, Thailand. The plant employs an activated sludge process with a flow rate of 30,000 m<sup>3</sup>/d and a solids retention time of 28 d. Nitrifying bacteria in the collected sludge was enriched in two 12-L sequencing batch reactors under aerobic conditions for 1.5 months. The hydraulic and solids retention times of the reactors were 2 and 24 d, respectively. Synthetic wastewater was used for the enrichment and comprised (in 1L): 0.33 g of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 0.75 g of NaHCO<sub>3</sub>, K<sub>2</sub>HPO<sub>4</sub> of 2.1 g, Na<sub>2</sub>HPO<sub>4</sub>•2H<sub>2</sub>O of 5.07, and an inorganic salt solution of 1mL. The inorganic salt solution contained 40 g of MgSO<sub>4</sub>•7H<sub>2</sub>O, 40 g of CaCl<sub>2</sub>•2H<sub>2</sub>O, KH<sub>2</sub>PO<sub>4</sub> of 20 g, FeSO<sub>4</sub>•7H<sub>2</sub>O of 1 g, Na<sub>2</sub>MoO<sub>4</sub> of 0.1 g, MnCl<sub>2</sub>•4H<sub>2</sub>O of 0.2g, CuSO<sub>4</sub>•5H<sub>2</sub>O of 0.02 g, ZnSO<sub>4</sub>•7H<sub>2</sub>O of 0.1 g, and CoCl<sub>2</sub>•6H<sub>2</sub>O of 0.002 g.

#### 2.4 Cell preparation

#### 2.4.1 Free cell preparation

The enriched nitrifying activated sludge (NAS) was centrifuged at 4,000 rpm for 5 min and the supernatant was discarded. The centrifuged NAS was resuspended in a washing solution of 10 mL (an inorganic salt solution described earlier) and vigorously mixed using a vertical shaker for 5 min. The resuspended NAS was washed by vigorous shaking, centrifuging, and discarding the washing solution for 4 times. The washed NAS was then resuspended in the inorganic salt solution to obtain concentrated NAS of 5,000 mg/L.

#### 2.4.2 Entrapped cell preparation

The entire CA cell entrapment preparation procedure was described elsewhere (Smidsrod and Skjak-Braek, 1990;Siripattanakul and Khan, 2010). A sodium alginate solution of 2% (w/v) was mixed with the concentrated NAS. The mixture was dropped into a calcium chloride solution of 3.5% (w/v) to form CA spherical beads with a diameter of 3 or 6 mm. The CA beads were kept at 4°C until use.

The PVA cell entrapment preparation procedure was according to Siripattanakul et al. (2008). A polyvinyl alcohol solution of 10% (w/v) was mixed with the concentrated NAS homogenously. The mixture was dropped into a saturated boric acid solution to form 3 or 6 mm spherical beads. The formed spherical beads were transferred to 500 mL of 1 M sodium orthophosphate buffer (pH 7.0) and left for 1-2 hr to obtain harden PVA

beads. The PVA beads were kept at 4 °C until use. Both CA and PVA-entrapped cells were freshly prepared for each experiment.

#### 2.5 Respirometer setup and operation

A respirometer was built from a 250-mL flask with a screw cap coupled with a dissolved oxygen (DO) meter (WTW inoLabOxi 730, WTW GmbH, Germany). The DO concentration was continuously measured and recorded in a computer for the entirety of each experiment. The setup was tested for interferences from the environment by monitoring DO concentration continuously using sterilized synthetic wastewater with no inoculation. It was found that the DO remained stable throughout the test duration of 12 hr.

The cleaned NAS (free cells), CA-entrapped cells, or PVA-entrapped cells were transferred into the respirometer which was later completely filled with the synthetic wastewater containing different ammonia and AgNP concentrations (described later) to avoid oxygen diffusion into the system. The final mixture in the respirometer contained the cleaned NAS at a volatile suspended solids (VSS) concentration of 500 mg/Lfor both free and entrapped cells. The respirometer was operated and monitored every minute until DO concentration stabilized. The DO data were recorded and calculated for oxygen uptake rate (*OUR*) according to equation 1. The rates were calculated only during the log (rapid DO declining) period. Percentage of the nitrification activity was calculated using equation 2.

$$OUR = \frac{d[DO]}{dt}$$
 equation 1

$$\% Activity = \frac{OUR_{test}}{OUR_{control}} \times 100$$
 equation 2

[DO] is DO concentration (mg/L) while t is time (min).  $OUR_{test}$  (mg-O<sub>2</sub>/L/min) is a calculated OUR of the test (such as one for CA-entrapped cells, 3 mm matrix diameter, ammonia of 28 mg/L, and AgNPs of 0.50 mg/L, see the next paragraph for variables).  $OUR_{control}$  is a calculated OUR of the test at the same conditions but without AgNPs.

All experiments in this study were duplicated. For the tests by free NAS, the influences of initial ammonia concentration (28 and 70 mg-N/L) and AgNP concentration (0.00, 0.05, 0.50, and 5.00 mg/L) were examined. Later, the effect of the CA and PVA-entrapped bead sizes (3 mm and 6mm in diameter representing small and large beads) was determined for selected initial ammonia and AgNP concentrations. After the respirometric assay, the entrapped NAS and the matrices (only the material used as a control to compare to the entrapped cells) of 5 beads were observed for bead physiology using scanning electron microscopy (SEM). Twenty milliliters of the free cells and 20 beads of CA and PVA-entrapped cells were also examined for structural changes using TEM and SEM, respectively.

#### 2.6 Scanning electron microscopy

The CA and PVA-entrapped cells were prepared for SEM observations according to a procedure described elsewhere (Siripattanakul et al., 2008; Siripattanakul et al., 2010). Briefly, the CA-entrapped cell beads were rinsed in a CaCl<sub>2</sub> solution and fixed in a glutaraldehyde solution. The beads were cut into two parts (half) by ultramicrotome (Leica, CM 3000, Nussloch, Germany). After that, they were dehydrated with a series of ethanol and CaCl<sub>2</sub> solutions. Then, the absolute ethanol was applied as the last step of

dehydration. The dehydrated bead pieces were dried using a critical point dryer (Balzers, CPD 020, Liechtenstein). Then, the pieces were attached to a stub by glue and coated with gold using an ion sputter (Balzers, SCD 040, Liechtenstein).

The PVA-entrapped cells were prepared in a similar manner as the CA-entrapped cells. The PVA-entrapped cells were fixed in a glutaraldehyde solution. The beads were dehydrated with a series of ethanol solutions. Then, the beads were divided into two parts using a razor blade in liquid nitrogen, attached to a stub, and coated with gold. The dried CA and PVA beads were observed using SEM with an energy dispersive spectroscopy attachment (SEM-EDS) (JEOL, JSM-5410LV, Tokyo, Japan).

#### 2.7 Transmission electron microscopy

For free cells, 2 mL of the NAS samples were fixed with aglutaraldehyde solution. The fixed cells were washed in phosphate buffer and a 1% osmium tetroxide solution. The cells were mixed with melt agar of 1.5% to form gel at 45-50°C. The hardened agar was cut into 0.5-mm cubes. The cubes with cells were dehydrated with a series of ethanol solutions similar to the SEM sample preparation. The dehydrated cubes were saturated in a series of propylene oxide and spur resin. Next, the cubes were baked at 70°C for 8-10 hr. The baked cubes were cut by an ultramicrotome. The cut cubes with thickness of between 60 and 90 nm were pasted onto copper grid and stained with uranyl acetate and lead citrate to increase the contrast. For the entrapment beads, 5 beads were cut into small pieces and then squeezed to get the microbial cells out of the matrices. After that, the cells were prepared in the same manner as the free cells. The stained cubes with cells were observed using TEM (JEOL, JEM-2100, Tokyo, Japan).

#### 3. Results and Discussion

3.1 Effects of initial ammonia and AgNP concentrations on nitrification activity of free cells

The DO curves from the tests at different AgNP concentrations (0.00, 0.05, 0.50, and 5.00 mg/L) and ammonia concentrations (28 and 70 mg-N/L) are shown in Figure 2. It is noted that these two ammonia concentrations were chosen because they are the typical influent concentrations of the municipal wastewater treatment systems. For most of the tests, the DO quickly decreased during the first 150 min and tended to stabilize after it was approaching depletion. Only DO of the tests at AgNP concentration of 5.00 mg/L decreased gradually and at the end of the experiments (180 to 200 min), DO of approximately 4 to 7 mg-O<sub>2</sub>/L remained.

Based on the results in Figure 2, *OUR*s were calculated and presented in Table 1. The *OUR* values for the tests at different AgNP concentrations ranged from 0.004 to 0.168 and 0.006 to 0.146 mg-O<sub>2</sub>/L/min at the initial ammonia concentrations of 28 and 70 mg-N/L, respectively. These *OUR* results suggested that initial ammonia concentration slightly affected nitrification activity (OUR). Normally, initial ammonia concentration influences nitrification rate (Anthonisen et al., 1976; Yoon and Kim, 2003; Kim et al., 2006; Park et al., 2009). Higher ammonia concentration gives higher nitrification rate while too high ammonia concentration inhibits the activity. The phenomenon observed in this study could be because both tested ammonia concentrations were much lower than inhibition level and were not different enough resulting in similar *OUR*s.

It is obvious that initial AgNP concentrations affected *OUR*. The *OUR*s at the initial AgNP concentrations of 0.00 (control), 0.05, and 0.50 mg/L were nearly the same (*OUR* of 0.1 mg-O<sub>2</sub>/L/min) (Table 1). The nitrification activity decreased 18-29% as the initial

AgNP concentration increased from 0.05 to 0.50 mg/L. The *OUR*s of the tests at the initial AgNP concentration of 5.00 mg/L were up to 14-times less than those of the other tests and decreased 96% compared to the test without AgNP (control)(Table 1). The results suggested that AgNPs at a concentration of 5.00mg/L or higher almost completely inhibited nitrification.

It was reported that portions of AgNPs can dissolve to Ag<sup>+</sup> ions (ranging between 0.1 to 2.2% of the total silver content) but the degree of dissolution depends on AgNP preparation method and experimental conditions (Lok et al., 2007; Choi et al., 2008). Silver can affect cellular physiology especially interactions with proteins including cell organelles, enzymes, or nucleic acids resulting in partial or complete inhibition to microbial activity (Ren and Frymier, 2003; Choi et al., 2008; Marambio-Jones and Hoek, 2010). Antibacterial action of AgNPs can be from two mechanisms: 1) Intracellular protein damage by Ag<sup>+</sup> ions releasing from AgNPs or reactive oxygen species created by Ag<sup>+</sup> ions and AgNPs and 2) Cell surface damage by attachment of Ag<sup>+</sup> ions and AgNPs (Marambio-Jones and Hoek, 2010). The nitrification inhibition observed in this study could be from either cell surface or protein damage by AgNPs and Ag<sup>+</sup> ions. Since ammonia monooxygenase and hydroxylamine oxidoreductase, which are enzymes governing ammonia oxidation, are located in cell membrane (Choi et al., 2008), the attachment of AgNPs and Ag<sup>+</sup> ions onto the cell surface and penetration into cell membrane may result in deactivation of the enzymes.

#### 3.2 Nitrification mitigation using the entrapped cells

Dissolved oxygen concentrations along the tests involving the small and large matrices of entrapped cells are presented in Figures 3 to 4. The trends of DO profiles for all the tests were similar when comparing to the tests by the free cells. The DO value gradually dropped. The DO of the tests at higher AgNP concentrations decreased slower than those from the tests at lower AgNPs.

For the CA-entrapped cells, the *OUR*s by the small and large matrices were 0.009-0.014 and 0.019-0.024 mg-O<sub>2</sub>/L/min, respectively (Table 2). The nitrification activities by the small and large CA matrices of entrapped cells were 65-110% and 81-94% of the control. The inhibition by AgNPs was less in the tests of the CA-entrapped cells compared to the PVA-entrapped cells, especially, for those in the large matrix.

The *OUR*s by the small and large matrices of PVA-entrapped cells were 0.000-0.006 and 0.006-0.014 mg-O<sub>2</sub>/L/min, respectively (Table 2). The nitrification activities by the small and large PVA-entrapped cells were 5-11% and 44-88% of the control. Dissolved oxygen reduction in the tests with the PVA-entrapped cells at high AgNPs (> 0.50 mg/L) was limited, especially for the small matrix. Similar to the CA-entrapped cells, the two sizes of the entrapment matrix provided different levels of mitigation on nitrification inhibition by AgNPs.

Previous studies reported that small entrapment beads have better mass (including toxic substance) and gas transfer (Aksu and Bulbul, 1999; Dursun and Tepe, 2005). As expected, the cells entrapped in the larger matrix were less adversely affected by AgNPs in term of nitrification activity. This could be because the thicker layer of matrix led to

more torturous transport of AgNPs resulting in less AgNP contact (also Ag<sup>+</sup> released from AgNPs) with the cells.

The entrapped cells at the optimum preparation conditions significantly alleviated the inhibition by AgNPs compared to the free cells. The entrapment matrices could reduce contact between cells and AgNP leading to lower inhibition. Also, it is known that several toxic substances could sorb on the entrapment matrices (Cassidy et al., 1996; Siripattanakul et al., 2008). Therefore, some AgNPs may sorb on the matrices resulting in lower AgNP penetration.

Between the CA and PVA-entrapped cells, the CA-entrapped cells exhibited more effective nitrification. As an example, for the large matrix, the activity of CA-entrapped cells at the AgNP concentration at 5.00 mg/L was twice of the PVA-entrapped cells (Table 2). This indicates that the CA matrix provided better environment (better cell protection) for the cells resulting in higher nitrification performances.

#### 3.3 Microscopic observation on the free and entrapped cells

The microstructures of the CA and PVA entrapment matrices were investigated by SEM (Figures 5 and 6). In Figure 5a, a dense network (sheet like) contained numerous very fine pores fully occupied by the cells (Figure 5b). The dense cross-linking was network of calcium and alginate (Smidsrod and Skjak-Braek, 1990). Some microcolonies were also found in macropores (Figure 5a). The SEM images supported the nitrification test results. There were numerous pores leading to torturous transport and sorption of AgNPs as discussed earlier.

Figure 6a presents the PVA matrix which contained plenty of pores and rough surface. The pore sizes ranged from 10 to 20  $\mu$ m. The cells occupied as microcolonies

inside the matrix as found in the CA matrix were observed. It is noted that in Figures 6b and 6c, only AgNPs with no cells were added. Interestingly, agglomeration of AgNPs within the PVA matrix was detected as white balls (Figures6b and 6c). Similarly, Kim et al. (2006) synthesized AgNPs using a technique utilizing PVA; they also found the agglomeration between AgNPs and PVA (as white balls). This observation supported that, the PVA-entrapped cells physically protected the cells from AgNPs. The matrix could reduce opportunity for AgNP-cell contact. Also, in the PVA matrix, the agglomerated AgNPs adhered on the net structure increasing the reduction of the AgNP-cell contact (Figure 6c).

To compare the CA and PVA-entrapped cells, even though the CA matrix did not bind with AgNPs as the PVA matrix, the nitrification performance was even higher than the PVA-entrapped cells. This might be from the CA microstructure which was much smaller. The microscopic results suggested that the entrapment matrices play an important role on the cell protection from AgNPs. The main protection mechanism is likely physical.

The free cell and the cells separated from the PVA and CA matrices were observed for the influence of AgNPs using TEM (Figure 7). The damage observed in the free and entrapped cells was similar but the magnitude of the damage in the free cells was more than those observed in the entrapped cells (data not shown). Figure 7a presents a free NAS cell without damage which was taken from the control test (no AgNPs). It is evident that AgNPs penetrated into the cells (Figure 7b). The cell membrane and cell wall were noticeably damaged (soft edge) after treating with AgNPs (Figures 7b and 7c). The interior component moved out of the cells (white area in Figure 7c). The result was

similar to previous studies that reported penetration of nanoparticles through cell membrane and wall causing cell damage (Choi and Hu, 2008; Marambio-Jones and Hoek, 2010; Wu et al., 2010).

### 4. Conclusions

The initial AgNP concentration apparently affected the nitrification process. Higher AgNP concentrations inhibited nitrification more (up to 98% inhibition). This study successfully mitigated the AgNP inhibition problem using the entrapped cell technique. Both CA and PVA-entrapped cells could lessen the inhibition but nitrification performance by the CA-entrapped cells was better. The larger entrapment matrix performed better than the small one. The microscopic observations supported the respirometric results. Silver nanoparticles injured cell membrane and cytoplasm. A future study on microbial viability and community change induced by AgNPs is recommended. A long-term reliability of entrapped cells exposed to AgNPs should be investigated.

### Acknowledgments

This material is based upon work supported by the Thailand Research Fund, Office of the Higher Education Commission, and Ubon Ratchathani University, Thailand under the New Researcher Grant (MRG5380280). This work was also conducted as a part of a research cluster "Fate and Removal of Emerging Micropollutants in Environment" financially supported by Center of Excellence for Environmental and Hazardous Waste Management and a Special Task Force for Activating Research (STAR) program of Chulalongkorn University. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

### References

- Aksu, Z., Bulbul, G., 1999. Determination of the effective diffusion coefficient of phenol in Ca-alginate-immobilized *P. putida* beads. Enzyme and Microbial Technology 25, 344-348.
- Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Stinath, E.G., 1976.Inhibition of nitrification by ammonia and nitric acid. Journal of Water Pollution Control Federation 48, 835-852.
- Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbuhler, K., 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. Science of the Total Environment 390, 396-409.
- Cassidy, M.B., Lee, H., Trevors, J. T., 1996. Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology 16, 79-101.
- Chen, K.C., Lee, S.C., Chin, S.C., Houng, J.Y., 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology 23, 311-320.
- Choi, O., Deng, K.K., Kim, N.J., Ross, L., Surampalli, R.Y., Hu, Z., 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research 42, 3066-3074.

- Choi, O.K., Hu, Z.Q., 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology 42, 4583-4588.
- Choi, O.K., Hu, Z.Q., 2009. Nitrification inhibition by silver nanoparticles. Water Science and Technology 59, 1699-1702.
- Dursun, A.Y., Tepe, O., 2005. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized *Ralstoniaeutropha*. Journal of Hazardous Materials 126, 105-111.
- Guzman, M., Dille, J., Godet, S. 2012. Synthesis and antibacterial activity of silver nanoparticles againstgram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine8, 37-45.
- Hyning, D.L.V., Zukoski, C.F., 1998. Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14, 7034-7046.
- Kim, D., Lee, D., Keller, J. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresource Technology 97, 459-468.
- Kim, H., Lee, K., Kim, S., 2006.Growth of monodisperse silver nanoparticles in polymer matrix by spray pyrolysis. Aerosol Science and Technology 40, 536-544.
- Lok, C., Ho, C., Chen, R., He, Q., Yu, W., Sun, H., Tam, P.K., Chiu, J., Che, C., 2007. Silver nanoparticles: partial oxidation and antibacterial activities. Journal of Biological Inorganic Chemistry 12, 527-534.

- Marambio-Jones, C., Hoek, E.M.V., 2010.A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment.

  Journal of Nanoparticle Research 12, 1531-1551.
- Ngeontae, W., Janrungroatsakul, W., Maneewattanapinyo, P., Ekgasit, S., Aeungmaitrepirom, W., Tuntulani, T., 2009.Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sensors and Actuators B: Chemical 137, 320-326.
- Park, S., Bae, W., 2009.Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochemistry 44, 631-640.
- Radniecki, T.S., Stankus, D.P., Neigh, A., Nason, J.A., Semprini, L., 2011. Influence of liberated silver from silver nanoparticles on nitrification inhibition of *Nitrosomonas* europaea. Chemosphere 85, 43-49.
- Ren, S., Frymier, P.D., 2003. Kinetics of toxicity of metals to luminescent bacteria.

  Advances in Environmental Research 7, 537-547.
- Siripattanakul, S., Khan, E., 2010. Fundamentals and applications of entrapped cell bioaugmentation for contaminant removal. In: Emerging Environmental Technologies, Volume 2. Springer.
- Siripattanakul, S., Pochant, C.J., Khan, E., 2010. Nitrate removal from agricultural infiltrate by bioaugmented free and alginate entrapped cells. Water Environment Research 82, 617-621.

- Siripattanakul, S., Wirojanagud, W., McEvoy, J., Khan, E., 2008. Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures for atrazine degradation. Water, Air, and Soil Pollution: Focus 8, 257-266.
- Smidsrod, O., Skjak-Braek, G., 1990. Alginate as immobilization matrix for cells. Trends in Biotechnology 8, 71-78.
- Wu, P., Xie, R., Imlay, K., Shang, J.K., 2010. Visible-light-induced bactericidal activity of titanium dioxide codoped with nitrogen and silver. Environmental Science and Technology 44, 6992-6997.
- Yoon, H.J., Kim, D.J., 2003. Nitrification and nitrite accumulation characteristics of high strength ammonia wastewater in a biological aerated filter. Journal of Chemical Technology and Biotechnology 78, 377-383.
- Zhang, Y., Peng, H., Huang, W., Zhou, Y., Yan, D., 2008. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. Journal of Colloid Interface Science 325, 371-376.

**Table 1** Oxygen uptake rates by free NAS

**Table 2**Oxygen uptake rate by entrapped NAS

Figure 1 TEM images of AgNPs

**Figure 2** Dissolved oxygen concentrations from the tests by free cells (FC) at ammonia concentrations of 28 and 70 mg/L and AgNP concentrations of 0.00, 0.05, 0.050, and 5.00 mg/L

**Figure 3**Dissolved oxygen concentrations from the tests by small and large matrices of CA-entrapped cells (SCA and LCA)

**Figure 4**Dissolved oxygen concentrations from the tests by small and large matrices of PVA-entrapped cells (SPVA and LPVA)

**Figure 5** SEM images of a) CA-entrapment matrix at 150× and b) cells inside the CA matrix at 10,000×(Both figures were from the test with the entrapped NAS at AgNPs of 0.05 mg/L)

**Figure 6** SEM images of a) PVA-entrapment matrix at 1,500×, b) AgNP agglomeration in PVA-entrapment matrix (no NAS) at 1,000×, and c) AgNP agglomeration in PVA-

entrapment matrix at  $10,000 \times$  (Figure 6a was from the test with the entrapped NAS at AgNPs of 1.00 mg/L). Figures 6b and 6c were from the test with AgNPs of 1.00 mg/L)

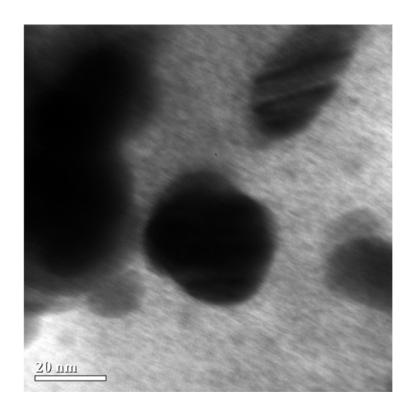

**Figure 7** TEM images of a) control cell, b) cell with AgNPs, and c) damaged cell (Figure 7a was the free NAS without AgNP contact. Figure 7b was from the test with the free NAS at AgNPs of 5 mg/L. Figure 7c was from the test with the PVA-entrapped NAS at AgNPs of 5 mg/L.)

Table 1

| Test conditions                                |                                   | OVID/               | % Activity              |
|------------------------------------------------|-----------------------------------|---------------------|-------------------------|
| Initial NH <sub>3</sub> concentration (mg-N/L) | Initial AgNP concentration (mg/L) | $OUR(mg-O_2/L/min)$ | (% compared to control) |
| 28                                             | 0.00                              | 0.168               | 100                     |
| 28                                             | 0.05                              | 0.165               | 98                      |
| 28                                             | 0.50                              | 0.120               | 71                      |
| 28                                             | 5.00                              | 0.004               | 2                       |
| 70                                             | 0.00                              | 0.146               | 100                     |
| 70                                             | 0.05                              | 0.136               | 93                      |
| 70                                             | 0.50                              | 0.120               | 82                      |
| 70                                             | 1.00                              | 0.082               | 56                      |
| 70                                             | 5.00                              | 0.006               | 4                       |

Table 2

| Type of entrapment material | Bead size                      | Initial AgNP concentration (mg/L) | OUR<br>(mg-O <sub>2</sub> /L/min) | % Activity (% compared to control) |
|-----------------------------|--------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| CA -                        | Small<br>(3 mm in<br>diameter) | 0.00                              | 0.014                             | 100                                |
|                             |                                | 0.50                              | 0.013                             | 90                                 |
|                             |                                | 1.00                              | 0.015                             | 110                                |
|                             |                                | 5.00                              | 0.009                             | 65                                 |
|                             | Large<br>(6 mm in<br>diameter) | 0.00                              | 0.024                             | 100                                |
|                             |                                | 0.50                              | 0.023                             | 94                                 |
|                             |                                | 1.00                              | 0.020                             | 84                                 |
|                             |                                | 5.00                              | 0.019                             | 81                                 |
| PVA                         | Small<br>(3 mm in<br>diameter) | 0.00                              | 0.006                             | 100                                |
|                             |                                | 0.50                              | 0.001                             | 11                                 |
|                             |                                | 1.00                              | 0.000                             | 5                                  |
|                             | Large<br>(6 mm in<br>diameter) | 0.00                              | 0.014                             | 100                                |
|                             |                                | 0.50                              | 0.013                             | 88                                 |
|                             |                                | 1.00                              | 0.012                             | 82                                 |
|                             |                                | 5.00                              | 0.006                             | 44                                 |



2 Figure 1

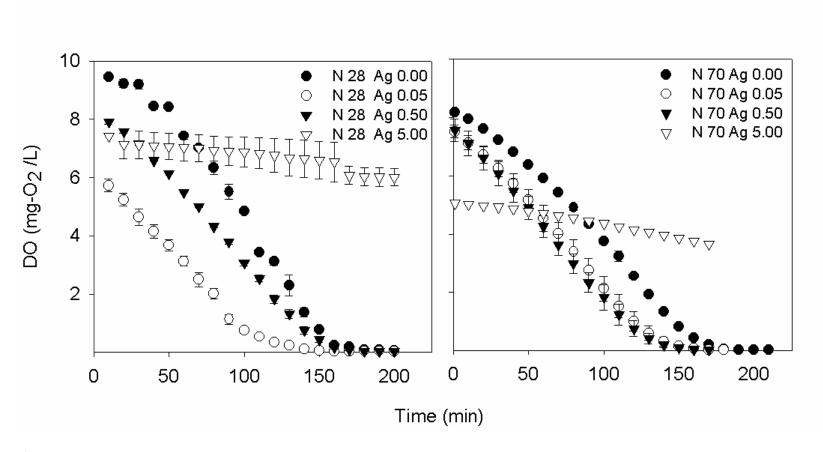
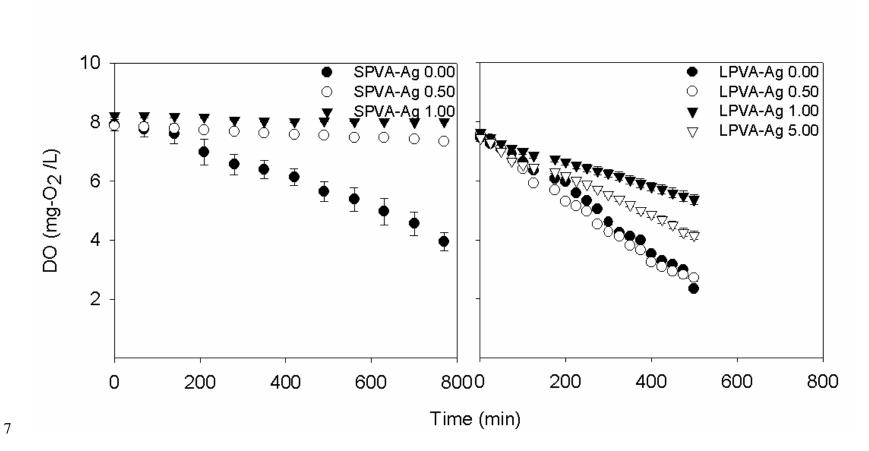




Figure 2



8 Figure 3

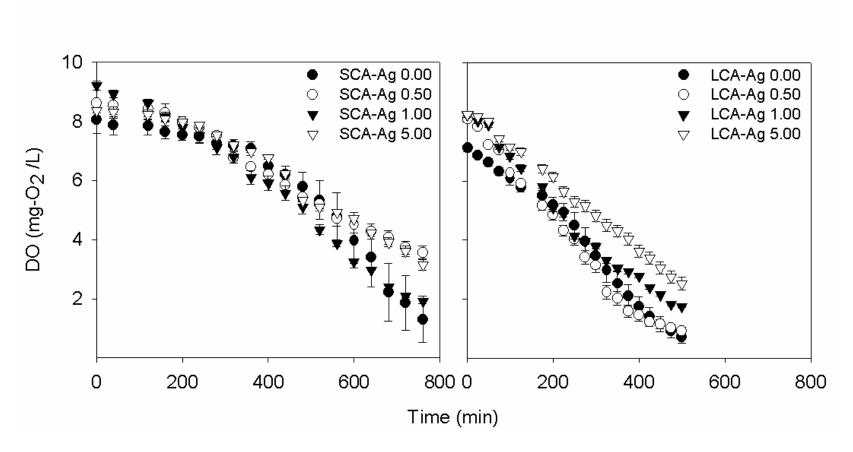
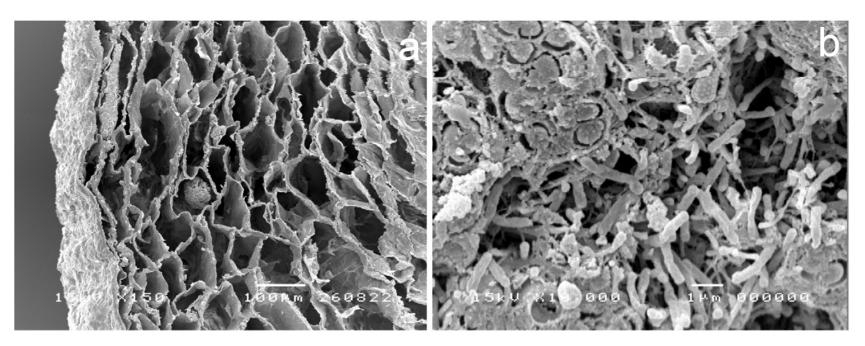
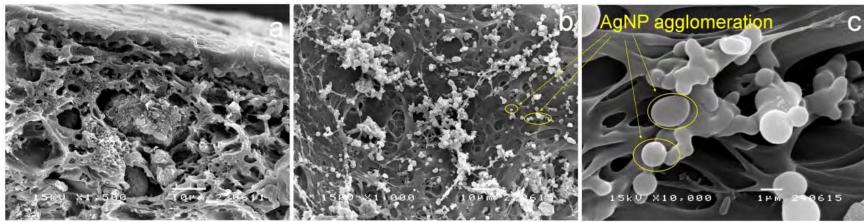





Figure 4



14 Figure 5



18 Figure 6

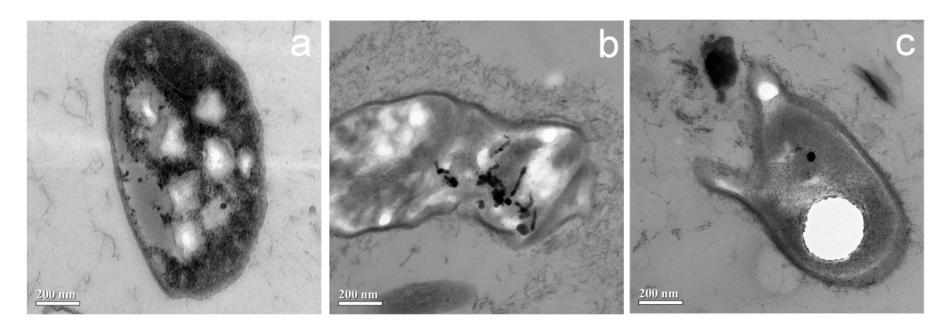



Figure 7

Siripattanakul-Ratpukdi, S., Fürhacker, M., Vangnai, A.S., Khan, E., Silver Nanoparticles

Contaminated in Engineered Environmental Treatment Systems, Prepared for submitting

to Journal of Hazardous material

Silver Nanoparticles Contaminated in Engineered Environmental Treatment Systems

Sumana Siripattanakul-Ratpukdi<sup>1\*</sup>, MariaFürhacker<sup>2</sup>, Alisa S. Vangnai<sup>3</sup>, Eakalak Khan<sup>4</sup>

Department of Chemical Engineering, Faculty of Engineering and Center of Excellence for Environmental and Hazardous Waste Management,

UbonRatchathani University, UbonRatchathani, Thailand

<sup>2</sup>Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Austria

<sup>3</sup>Department of Biochemistry, Faculty of Science, Chulalongkorn University,

Bangkok, Thailand

<sup>4</sup>Department of Civil Engineering, North Dakota State University,

Fargo, North Dakota, USA

\*Corresponding author. Department of Chemical Engineering, Faculty of Engineering, UbonRatchathani University, Satolmark Street, Warinchamrap, UbonRatchathani 34190, Thailand. Phone: 66-45-353300 ext. 3359; Fax: 66-45-353333; E-mail: ensumasi@ubu.ac.th, jeans\_sumana@yahoo.com

# Highlight

- Silver nanoparticles distribute, deposit in, and influence the engineered environmental treatment systemsincluding wastewater treatment and environmental remediation.
- Silver contamination in the systems could be in particle or ion forms.
- Silver could minimize chemical process performance by chemical reactions.
- Silver could fail biological processes by damaging biological organisms in the systems.
- Effect of silver nanoparticles in the engineered environmental treatment systems varied based on the particle properties and studied conditions.

#### **Abstract**

Silver nanoparticles (AgNPs) have been developed and broadly used for various applications, especially biocidal propose. This could lead to contamination of AgNPsin engineered environmental treatment systems which include wastewater treatment and environmental remediation. This review conveys basic knowledge of AgNPsincluding synthesis techniques, fate and contamination, and toxicity mechanism. The work emphasizes on the influence of AgNPsto the wastewater treatment and environmental remediation system performances. Silver nanoparticles could be synthesized using physical, chemical, or biological methods. After production or utilization, AgNPs distribute into the wastewater treatment and remediation systems via wastewater and wastewater treatment excess sludge, respectively. Toxicity of AgNPs including cell surface defection, cell metabolism inhibition, and protein damage by AgNPs, silver ions, or reactive oxygen species is reviewed. In the engineered environmental treatment systems, silver (ions and particles) may substantially influence the chemical and biological processes. For the chemical processes, silver species are able to lessen the process performance by chemical interaction while silver could be toxic to organisms in biological processes and fail the process performance later on. It was found that previous works presented inconsistent results oninfluence of AgNPs to theengineered environmental treatment systems because of difference in AgNP properties, tested conditions, and environmental conditions.

**Keywords:**AgNP, biological, chemical, performance, process, remediation,wastewater treatment

### 1. Introduction

Silver is a metal which has been known to be useful for medical, industrial, and householdapplications, such as biocides, electrical conductors, currency coins, and ornaments forlong time (Arvizo et al., 2012). Recently, nanotechnology has been developed and silver was also synthesized in nano size (1-100 nm), called silver nanoparticle (AgNP). Silver nanoparticles broadly used because of its highereffectivenesscompared to traditional silver (Ray et al., 2009; Rai et al., 2009; Guzman, 2012).

Silver nanoparticles have been normally applied for biocidal purposein various applications, such as a component in wound dressings, medical device coatings, textile fabrics, cosmetic products, and detergents (Ray et al., 2009; Rai et al., 2009). This leads to a large amount of the AgNP utilization. Blaser et al. (2008) claimed that the biocidal silver use increased for up to 30 to230 ton/yrin 2004 and 2010, respectively. It was also reported that up to 15% of total silver in the form of monovalent silver ions (Ag<sup>+</sup>) or AgNPs could be released from biocidal plastics and textile into water. Another recent study confirmed that AgNPs were easily released from AgNP-coated socks during washing process (Benn and Westerhoff, 2008). Based on a large amount of AgNP utilization and the AgNPrelease information from the earlier studies, AgNPs are likely to be spread over and might cause a problem in aquatic, terrestrial, or atmospheric environments in the near future (Blaser et al., 2008; Lapresta-Fernández et al., 2012).

According to silver fate and transport reported by Blaser et al. (2008), the silver residue after production or utilization mostly went to solid waste management systems including solid waste landfill and incineration. Incinerators may create tiny portion of silver in smoke moving out to atmosphere. The incineration ashes and fresh solid waste (from the areas where do not incinerate the waste) are disposed in landfills. The landfillswhich line by

impermeable materials then compactly restrict the silver-containing waste at the waste disposal site. Therefore, the rest of silver residue distributing in the environment was in wastewater. This residue then passed through natural receiving water and soil *via* treated wastewater and sludge, respectively.

As known, engineered environmental treatment systemsinclude water treatment, wastewater treatment, air pollution control, solid waste management, and site remediation systems. The engineered environmental treatment systems related to silver fateare wastewater treatment and site remediation which receive AgNPs from wastewater and sludge, respectively. Especially, biological treatment processes (biological wastewater treatment and bioremediation) could be substantially influenced because AgNPs damage microorganisms in the systems leading to failure of the treatment.

Thus far, there was no published review focusing on the influence of AgNPs to the engineered environmental systems. Previously, review studies mainly concentrated on AgNP syntheses, applications, toxicities (Sharma et al., 2009; Abou El-Nour et al., 2010; Durán et al., 2010; Marambio-Jones and Hoek, 2010; Arvizo et al., 2012; Guzman, 2012). From previous works, it was clear that AgNPs are toxic to microorganisms, plants, and animals; however, the particles are very useful and likely remain as an important composition in daily life products in the long run. Therefore, along with the development of AgNP-containing products, knowledge of AgNP fate in the engineered environmental treatment systems is also needed. Consequently, this study emphasizes on the influence of AgNPson the wastewater treatment system (WWTS) and environmental remediation system (ERS) performances. The work also includes information of AgNP synthesis, utilization, fate, contamination, toxicity mechanism, and potential AgNP control techniques. This work should assemble the knowledge related to AgNPs and give perspective to deal with the influence of AgNPs in the future.

# 2. Silver nanoparticle synthesis, utilization, and contamination

# 2.1 Silver nanoparticle synthesis and utilization

Several synthesis methods have been developed to achieve desired characteristics (sizes, shapes, and surfaces) (Xu et al., 2006; Choi and Hu, 2008; Durán et al., 2010; Marambio-Jones and Hoek, 2010). The AgNP synthesis methods could be divided into 3 approaches including physical, chemical, and biological approaches. Details of the methods are presented inTable 1. The physical approach uses minimal or no chemicals but the approach consumes a lot of energy and time (Abou El-Nour et al., 2010). The chemical approach is the most common technique to synthesize silver materials (Marambio-Jones and Hoek, 2010). This approach can use various chemicals and easily modifies the method to accomplish target properties. However, the approach deals with many hazardous chemicals (Marambio-Jones and Hoek, 2010). Lately, a biological approach which applies extracts from organisms as reducing agents and/or capping agents was developed. This technique is a green synthesis but biological reaction rate sometimes is slow resulting in the need of accelerators (Darroudi et al., 2010).

Silver nanoparticles have beendeveloped and used in variousapplications, such as medical, residential, and industrial applications (Abou El-Nour et al., 2010; Arvizo et al., 2012). For medical application, AgNPshave been applied for disinfection and therapeutics, such as infected burn and wound reduction, medical device sterilization, tumor therapy, and cardiovascular implant (Atiyeh et al., 2007; Tian et al., 2007; Chen and Schluesener, 2008; Rai et al., 2009; Chaloupka et al., 2010; Arvizo et al., 2012). Silver nanoparticles are also incorporated in daily life products, such as apparel, cosmetics, and plastics for antimicrobial property (Benn and Westerhoff, 2008; Blaser et al., 2008; Chaudhry et al., 2008; Kokura et al., 2010). Moreover, in industrial sector, AgNPs are used as sensors and a component in biosensors (McFarland and Van Duyne, 2003; Ren et al., 2005; Zheng et al., 2008). The

particles also begin to apply in water and wastewater treatments, such as for pesticide and bacterial removals(Lv et al., 2009; Wu et al., 2010; Dankovich and Gray, 2011; Manimegalai et al., 2011).

## 2.2 Silver nanoparticle fate and contamination

Silver nanoparticlesare new components in real practice; therefore, fate and contamination of AgNPs are not well understood. The published information mostly is estimated from computer models and detected from laboratory or pilot results (Blaser et al., 2008; Benn and Westerhoff, 2008; Kaegi et al., 2010; Kim et al., 2010). Currently, there is no complete mass balance of AgNPs in the environment.

Fate of AgNPsrelated to textiles and plastics from a study by Blaser et al. (2008) was calculated. It was reported that the silver residuesfrom many countries in Asia, North America, and Europe generally went to solid waste managementand retained in solid waste landfill. The rest of silver residues(approximately 190-410 ton/yr) passed to WWTSs and distributed to natural water and soil (Table 2). Otherwise, small portion of silver could be released to the atmosphere *viastack* gas from solid waste incineration (Table 2). Based on the silver flow mentioned above, the potential AgNP fate in the environment including the engineered environmental treatment systems is presented in Figure 1.It is noticed that after passing the processes,AgNPs may change their form (Figure 1) (Nowack, 2010). Recently, Kim et al. (2010) found nanosized silver sulfide particles(Ag<sub>2</sub>SP) in sludge from aAgNP-contaminated wastewater treatment plant in USA. It was implied that AgNPs could change their form to be Ag<sup>+</sup> and Ag<sub>2</sub>SP. Later,Kaegi et al. (2011) confirmed that most AgNPs transformed to Ag<sub>2</sub>SPin the non-aerated wastewater treatment tank. This resulted in Ag<sub>2</sub>SPs suspended in the treated effluent or sorbed on sludge.

Table 3 is a summary of silver contamination related to AgNPs from previous works. Most studies reported the contamination in term of total silver due to quick and

reversible transformation of silver species and limitation of detection method. Table 3 shows that the silver contamination wasvaried. This caused by AgNP-incorporated technology used in each product, wastewater collection and treatment systems, and wastewater compositions (Benn and Westerhoff, 2008; Kim et al., 2010; Nowack, 2010; Hoque et al., 2012).

### 3. Silver nanoparticletoxicity and resistance

### 3.1 Toxicity and resistance mechanism

Numerous previous studies informed toxicity of AgNPs to microbial, plant, or animal cells (Lok et al., 2006; Choi et al.; 2008; Damm et al., 2008; Marambio-Jones and Hoek, 2010; Guzman, 2012; Lapresta-Fernández et al., 2012). The silver nanoparticles could damage the cells by AgNPs themselves and Ag<sup>+</sup> and/or reactive oxygen species (ROS) created by AgNP oxidation (Choi et al, 2008; Asharani et al., 2009; Marambio-Jones and Hoek, 2010). These three species could: i) defectcell wall, membrane, and components, ii) inhibit cell metabolism, and iii) damage cell DNA. Generally, biological cells correlated to the engineered environmental treatment systems is microorganisms, especially bacteria. Consequently, in this review, the mechanism of AgNP toxicity to microorganisms was focuses.

Defection of cell wall, membrane, and components--Silver nanoparticles could attach on cell membrane and penetrate into and damage the cells. This action varied based on microbial species. Mostly, gram-positive bacteria had higher resistant to AgNPs compared to gramnegative bacteria (Jung et al., 2008; Guzman, 2012). The previous results suggested that gram-positive bacteria had thick peptidoglycan layer resulted in high tolerance of AgNP toxicity(Jung et al., 2008; Guzman, 2012).

Silver (AgNPs and Ag<sup>+</sup>) was likely to bind/attach to proteins containing sulphur at the cell surface (Morones et al. 2005; Hwang et al., 2008). Another explanation was about

electrostatic attractive force (Raffi et al. 2008; Dasari et al., 2010). The positively charged particles could easily attach onto the microbial cells which normally are negative charge. The particles were then interact to cell membrane and caused broken walls and membranes. Some portion of cellular content disappeared thereafter (Smetana et al., 2008). Figure 2 presents an example of the cell damage by AgNPs. The activated sludge after nitrification process in presence of AgNPs (5 mg/L) was studied. The cell envelope obviously damaged and cellular content released out.

Inhibition of cell metabolism and Damaging of DNA--Silver ions could interact with enzymes involving respiration in the microbial cells (Marambio-Jones and Hoek, 2010; Lapresta-Fernández et al., 2012). Silver had high affinity to react with thiol group (-SH) of respiratory proteins locating at the cell membrane (Durán et al., 2010; Marambio-Jones and Hoek, 2010). Silver ionscould also inhibit ATP synthesis and phosphate uptakeand increase DNA mutation. Futhermore, free radicals caused by ROS could damage membrane lipid resulting in membrane collapse, protein malfunction, and DNA damage (Mendiset al., 2005; Nel et al., 2006; Choi et al., 2008; Marambio-Jones and Hoek, 2010).

For AgNP resistance, like silvermicroparticles, silver ions, and other biocidal agents, some microorganisms could tolerate some toxic substances naturally (Marambio-Jones and Hoek, 2010). Most previous worksinvolving the AgNP-resistant strainsfocused on the use of the strains for the AgNP biosynthesis (Parikh et al., 2008; Suresh et al., 2010; Saravanan et al. 2011). The prior works emphasizing mechanism of silver resistance was on silver ion (Gupta et al., 2001; Silver, 2003). The silver ion resistance was encoded in both chromosome and plasmid genes, such as *sil* and *agr*gene series in *Salmonella* and *Escherichia coli*, respectively (Gupta et al., 2001; Silver, 2003). These genes brought Ag<sup>+</sup> out by pumping H<sup>+</sup> into the cellsresulting in Ag-resistant property.

In overall, thus far, AgNP toxicity and resistance mechanisms mostly depended on the mechanism of Ag+. Even though AgNPs were likely to dissolve in an aqueous solution, the portion of Ag<sup>+</sup>was varied ranged from 0.1% to 70% (Lok et al., 2007; Choi et al., 2008; Liu and Hurt, 2010; Sotiriou andPratsinis, 2010; Hou et al., 2012). Previous works reported less Ag dissolution (0.1 to 4.0% of total Ag) found that AgNP toxicity was higher than that of Ag<sup>+</sup>(Lok et al., 2007; Choi et al., 2008; Liu and Hurt, 2010; Hou et al., 2012). This indicated that AgNPs themselves were also toxic to microorganisms. Contrarily, a few studies presented that toxicity of AgNPs was from Ag+ only (Navarro et al., 2008; Sotiriou and Pratsinis, 2010). The different results should be due to high Ag dissolution took place in the cases leading to insignificant toxicity of AgNPs. Currently, directtoxicity mechanism of AgNPs was proved only the cell surface damage by microscopic imaging. No publication on the functional genes (or protein) involving in the direct AgNP toxicity and resistance mechanismswas clearly proposed. The continued work on these mechanisms to microorganisms should be conducted.

# 3.2 Toxicity influencing factors

Factors influencing toxicity could be divided into two main groups: i) AgNP properties and ii) environmental conditions. Silver nanoparticle properties related to toxicity includedphysical properties (size, shape, crystallinity, and surface charge)and chemical properties (surface coating, elemental composition, and solubility)(Morones et al., 2005; Pal et al. 2007; Choi and Hu, 2008; Somasundaran et al., 2010; Marambio-Jones and Hoek, 2010; Lapresta-Fernández et al., 2012). Environmental conditions, such as pH, ionic strength, organic matters (OM), dissolved oxygen concentration (DO), and lightaffected the AgNP toxicity (Dasari et al., 2010; Marambio-Jones and Hoek, 2010; Lapresta-Fernández et al., 2012). Table 4 presents the summary of the factors on AgNP toxicity.

Based on the information from previous works, cytotoxicity caused by the above factorshas been inconsistently presented. For example, earlier, Choi and Hu (2008) reported that the AgNP sizes significantly affected toxicity level of nitrifying microorganisms. Later, another study by Suresh et al. (2012) found that the sizes did not influence AgNP toxicity but the particle surface (coating type) played an important role in the cytotoxicity. The inconsistent results were due to the tested AgNPs and environmental conditions performed by each research group were varied. In this context, it could state that toxicity mechanism and toxicity influencing factors could be generally described as mentioned above but the relatively exact prediction needs to estimate case by case.

## 4. Influence of AgNPs to engineered environmental treatment systems

# 4.1 Wastewater treatment systems

Based on fate of AgNPs shown in Figure 1, the engineered environmental treatment systems include wastewater treatment and site remediation could be noticeably influenced by AgNPs. General wastewater treatment comprisesphysical, chemical, and biological processes.

Physical processes--The physical processes normally apply for preliminary and primary treatments to remove debris, grit, large particles, such as screening, sedimentation, flocculation, and filtration. Since, as known, the physical processes are gravity and/or size separation processes, the physical processes should not be obviously disturbed by AgNPs (small and light weight). Nevertheless, these processes may be able to remove some portion of AgNPs sorbing on the large particles (Brar et al., 2010). The particles (mono-dispersed particles or aggregates) could attach on general particles in the wastewater but opportunity of aggregation and attachment depended on wastewater characteristics, such as alkalinity, NOM concentration, and solids concentration (Huang and Wang, 2001). However, slight efficiency (approximately 10%) of AgNP treatment by the physical process (simulated primary clarifier

by jar test) was reported (Hou et al., 2012). This could imply that AgNPs should not substantially affect the physical processes, and vice versa.

Chemical processes--The chemical processes involving chemical reactions, such asadsorption, coagulation, ion exchange, precipitation target for reducing small particles or dissolved solids. Silver nanoparticles could play a role in the chemical processes. Silver may battle other particles (with similar surface charge) in the chemical processes resulting in lower treatment efficiency. Figure 3 is a schematic diagram of potential reactions related to AgNPs. Reactions including dissolution/oxidation, precipitation, sulfidation, complexation, aggregation, attachment/adsorption, and sedimentation (physical process) may take place. Silver nanoparticles could dissolve or oxidize and convert to Ag<sup>+</sup>. Along with the oxidation, ROS may be created. These dissolution and oxidationare important processes which normally occur in all WWTSs (Lok et al., 2007; Choi et al., 2008; Liu and Hurt, 2010; Hou et al., 2012). The reaction may decrease amount of oxidizing agent (such as O<sub>2</sub> or H<sub>2</sub>O<sub>2</sub>) in the systems.

Precipitation and sulfidation (precipitation by sulfide) are to form Ag insoluble species, such as Ag<sub>2</sub>SP. It was reported that AgNPs directly and indirectly precipitated to Ag2SP which is less toxicity and more stable (highly insoluble) compared to AgNPs as shown in Figure 3 (Kim et al., 2010; Liu et al., 2011). These reactions depended on wastewater characteristics, such as pH,DO, NOM concentration, and ionic strength. For sulfidation, even though the reaction needs O<sub>2</sub>, this chemical reaction well arises in the incompletely anaerobic treatment systems (slight oxygen concentration). This is due to in aerobic environment sulphur normally is in sulfate and sulfite forms (mainly sulfate) which were proved no reaction to AgNPs while the sulfidation was also inhibitedin oxygen-absent condition (Liu et al., 2011). Aggregation is AgNP self complexation which could lead to higher (or easier) Ag sedimentation. Complexation and attachment/adsorption are to bind Ag species to solids,

such as debris and biosolids. These reactions are important process to remove Ag from the wastewater; however, Ag in biosolids could be toxic to microorganisms as mentioned in the previous section (details on the effect to biosolids the WWTSs presented in later content).

In practice, AgNPs are likely to contaminate in environment at low concentration. The AgNP concentrations in WWTS of 2-18 µg/L was estimated (Blaser et al, 2008).In this context, AgNPs may not greatlyimpact the chemical processes. On the other hand, the chemical processes could reduce or detoxify AgNPs contaminated the wastewater via sulfidation,complexation and sorption.

Biological processes--The biological processes normally used for secondary or advanced wastewater treatment. The processes are to remove organic, nutrient, and specific organic compounds by microorganisms. Previously, it was reported that AgNPs in the contaminated wastewater after passing a simulated first clarifier (physical process) were removed for only 10% (Hou et al., 2012). Therefore, microorganisms in the biological processes could be noticeably influenced by AgNPs leading to lower performance of the treatment systems. The examples of the affected systems were summarized in Table 5.It is notice that the environmental studies mostly applied AgNPs with spherical shape at average size of 5-30 nm (Table 5). This is because the particles with this shape and sizes are likely to use in commercial products. Hence, in the case of utilizedAgNPs are in other shapes, such as triangular shape, the toxicity and influence should be higher than those of spherical AgNPs (information of shape-dependent toxicity is reviewed earlier). Based on the information in Table 5, the summary suggested that the biological processes could be either totally inhibited or uninhibited. The results from each study obviously varied.

In aerobic biological process, autotrophs are responsible for nitrification while heterotrophs are organic carbon oxidizers. Among the studies, it was found that trend of AgNP effect to autotrophs and nitrificationactivities was higher than that of heterotrophs

(Table 5). Unsurprisingly,nitrification is known as a sensitive process. This is because the nitrifying microorganisms are slow growing and sensitive to environmental stresses, such as temperature, DO, pH, and toxic substances. The nitrification inhibition could be due to thedamage of cell surface and protein by AgNPs, Ag<sup>+</sup>,and ROS. Moreover, ammonia monooxygenase and hydroxylamine oxidoreductasewhich were enzymes governing ammonia oxidation, located in cell membrane and periplasm (Chain et al., 2003; Choi et al., 2008). Therefore, AgNPs and Ag<sup>+</sup>not only damage the cell viability but also the nitrification process performance.

In the aerobic heterotrophic process, the AgNP toxicity action on aerobic heterotrophs was similar to autotrophs stated above. It was found either substantial or slight effects by AgNPs (Choi et al., 2008; Liang et al., 2010; García et al., 2012). This conflict results could be from two reasons as follows. The first reason is the difference in tested environmental conditions and cultures. For example, Choi et al. (2008) found the heterotrophic process inhibition of 55% from the test with AgNPs of 1 mg/L while García et al.(2012) reported slight significant inhibition from the test with AgNPs of 0.17 mg/L. The tested concentrations were much different (approximately 6 times). Additionally, the test with the low concentration of AgNPs may be not over susceptibility of the microbial cultures leading to stable wastewater treatment performance. Another reason is different interaction of AgNPs to WWTSs. Numerous studies reported the difference of the AgNP dissolution or agglomeration magnitudes as stated in previous section. For example, Wang et al. (2012) found the AgNP sorption of 88% onto microbial sludge while Kiser et al. (2010) reported the AgNPbiosorption of 97%. This couldresult in different biological performance. The more sorption may cause the more toxicity to microbial cells and the less AgNP distribution in the WWTS. Also, in the long term, this may cause the accumulation of AgNP in returned sludge resulting lower wastewater treatment efficiency thereafter.

In the anaerobic heterotrophic process, theoretically, the AgNP toxicity action should be similar to autotrophs and aerobic heterotrophs stated above. However, there was a report of no to moderate effect of AgNP to the anaerobic WWTSs (García et al., 2012; Yang et al., 2012). This may be due to the occurrence of AgNP sulfidation resulting in lower AgNPbioavailabity. A good illustration of this situation is the work by Yang et al. (2012). The studied reported the stable anaerobic treatment and microbial community from the experiment at the AgNP concentration of up to 40 mg/L.

For comparative study of suspended microbial cells and biofilm performance, interestingly, the cells in biofilm form performed much better than the suspended microbial cells in the test at AgNP concentration of 200 mg/L (Sheng and Liu, 2011). This is because of a role of EPS and physical protection by the layer of the cells. The result suggested that the microorganisms themselves have their own protection system. However, based on overall of the AgNP effect to biological process, it could say that the biological process could be severely affected by AgNPs. The exact biological wastewater treatment response mechanism to AgNPs is still inconclusive. The continued work on the point is needed.

#### 4.2 Environmental remediation systems

Environmental remediation systems involve pollutant detoxification in soil, groundwater, surface water, and sediment. In general, the pollutants go to environment *via* direct wastewater discharge, treated wastewater discharge, sludge, and runoff as shown in Figure 1. The two main sources of AgNPs polluted in environment are the treated wastewater (to surface water) and the sludge (to soil). As referred formerly, most AgNPs were probable to sorb on sludge resulting in low AgNP concentrations in the treated effluent (Kiser et al., 2010; Wang et al., 2012). It was estimated that only 10% of Ag would be in the treated wastewater while 90% of Ag was in the sludge applying in soil later (Whiteley et al., 2011). Therefore, in this case, soil and groundwater contamination and remediation should be more

concerned. Table 5 presents previous studies on effect of AgNPs related to ERSs. Similar to the wastewater treatment processes, general environmental remediation comprises physical, chemical, and biological processes. Details of the processes and AgNP effect are follows.

Physical processes for ERSsinclude the application of physical techniques, such as in-situ grouting, soil washing, and air sparging/air stripping. The physical processes are onlyphysical separation, such as the in-situ grouting is to restrict the pollutants by cement wall or containment. Hence, the physical processes should not be visiblyinfluenced by AgNPs. It is notice that the particles could physically attach tosoilon the top soil layer (Bradford et al., 2009; Coutris et al., 2012).

Chemical processes--Chemical processes are the main remediation process in practice. The processes involve the application of chemicals to immobilize or extract the pollutants off the soil and groundwater. There are several techniques, such as pump and treat, surfactant enhanced aquifer remediation (to use surfactant to increase pollutant solubility before removal), chemical stabilization, and chemical oxidation.

In the environment, Ag may be in various forms. Silver has four oxidation states (0,+1, +2, and +3) and can exist in the forms of silver oxide, silver nitrate, silver halides (Fluoride, Chloride, Bromide), silver sulfate, silver thiosulfate complexes and silver sulfide also. But Ag<sup>0</sup> and Ag<sup>+</sup> typically found in the environment (Purcell and Peters, 1998). In remediation systems, Ag species distributing in the system should be rely on the species in sludge. Silverspecies including AgNPs, Ag<sup>+</sup>, and Ag<sub>2</sub>SPsare expected.All Ag species could then respond to chemical processes.

All reactions which could occur in WWTSs, may take place in the remediation systems (Figure 3). It was reported that the Ag species could sorb on soil (Ag fixation) but with different degrees of sorption (Coutris et al., 2012). Silver sulfide particles are known about their low toxicity and reactivity. Physical sorption of Ag<sub>2</sub>SPs was believed. Silver ions are

possible to sorb quicker and higher than AgNPs. Hou et al. (2005) reported that 88% of Ag<sup>+</sup> (at 3 mg/kg soil) was sorbed on the top soil (0-2 cm). It can say that the sorbed Ag is an inactive (fixed) form. Therefore, among Ag<sup>+</sup>, AgNPs, and Ag<sub>2</sub>SPs, AgNPs (with the lowest sorption) are possible to cause the most influence to the chemical process.

Thus far, there was no report on direct effect of AgNPs to the chemical process performance. However, apparently, silver residues could respond the chemicals on chemical processes. For example, AgNPs can be oxidized by H<sub>2</sub>O<sub>2</sub> used in the in-situ catalyzed peroxide remediation resulting in lower remediation efficiency. However, factors associated the level of influence, such as soil characteristics (organic content, soil composition, and pH) and chemicals used in the systems are needed for consideration.

*Biological processes*--Biological processes are important processes for removing contaminants in soil or groundwater by organisms (microorganisms called microbial remediation and plants called phytoremediation). Normally, the processes are applied for degrading organic compound to be less mobility or toxicity, such as carbon dioxide and water.

Effect of AgNPs (and all other transformed species) to bioremediation process is similar to that of WWTSs which were inconsistent as shown in Table 5 (Bradford et al., 2009; Kumar et al., 2011). This mainly caused by different environmental conditions and microbial community tolerance. The studied conditions with organic matter or salt-rich environments are likely to lessen silver-biocidalability leading to lower effect on the bioremediation performance (Bradford et al., 2009; Dasari et al., 2010). However, in the bioremediation systems, the microbial community is more complex than one in the WWTSs. Whether some microbial cultures are sensitive and could not survive in the Ag contaminated environment, this may contribute to failure for entire of the ecosystems. For example, Kumar et al. (2011) reported that in arctic soil, bacteria under order of Bacillales were growing better in presence

of AgNPs but *Bradyrhizobium*, a nitrogen-fixing species, was noticeably influenced. This situation could cause the impact to nitrogen cycle at the arctic ecosystem.

## 5. Potential AgNP control alternatives

Silver nanoparticle contamination control strategy could be completed in two incorporated ways: policies and technical alternatives. For policies, regulations, environmental standards, or economic incentives could be set. In this review, the alternatives in technical point of view are focused. The technical AgNP control alternatives have considered recently. Table 6 is a summary of the control alternatives presented earlier. Based on Table 6, natural/existing and modified/additional control techniques were proposed.

It can be seen that the AgNPcontrol alternatives could be divided into 2 main processes: chemical and biological processes. Note that the physical processes (gravity separation) may not be appropriate for AgNP removal except the case of AgNP macro-aggregates. For the chemical processes, precipitation and sorption were proposed based on previous investigation (Choi et al., 2009; Kim et al., 2010; Kiser et al., 2010; Elmachliy et al., 2011; Hou et al., 2012; Liu et al., 2012; Wang et al., 2012). Precipitation by sulfide is to convert Ag<sup>+</sup> and AgNPs to Ag<sub>2</sub>SP as referred in earlier section. Biosorption on biomass or plant was another efficient chemical process to remove Ag species. Although these two techniques provide efficient Ag species, there is a drawback needed to consider before real practice. Earlier, Ag precipitation in anaerobic biological reactors was proposed (Liu et al., 2012). After precipitation, Ag in solid forms (such as Ag<sub>2</sub>SP) will attach on sludge. Therefore, it could say that AgNPs end up associated in biosludge for both control techniques. These techniques could affect biological process performance after Ag accumulation for the long time. Also, excess biosludge with contaminated Ag may cause the problem during land application later

on. However, the additional precipitation or sorption tank before secondary treatment may be better alternatives (Figure 4).

For the biological processes, Ag-detoxifying species, such as *Chromobacteriumviolaceum* were isolated for cell bioaugmentation (Durán et al., 2010). Cell bioaugmentation, addition of pollutant-detoxifying microorganisms, is one of the efficient engineered environmental treatment techniques which could apply for both wastewater treatment and environmental remediation (Siripattanakul and Khan, 2010).

Alternatively, cell entrapment technique may apply for this situation. The technique is to immobilize microorganism in a porous polymeric matrix. The technique was successfully applied for either removal of hazardous substances or minimization of hazardous substance-cell contact (Cassidy et al., 1996; Siripattanakul et al., 2008; Siripattanakul-Ratpukdi, *in press*). The technique may combine to bioaugmentation, called entrapped cell bioaugmentation. The combined technique is an efficient and economical alternative because the pollutant-detoxifying in the entrapped cell form can be reused. Figure 4 presents the application of cell bioaugmentation and cell entrapment for Ag control. Lastly, phytoremediation could apply for nano-size Ag similar to traditional metal remediation(Bech et al., 2002; Archer and Caldwell, 2004).

### 6. Conclusion and future perspectives

Silver nanoparticles have been developed to serve various applications. Also, influence of AgNPs in the environment including the engineered environmental treatment systems has been considered and studied lately. In conclusion, what can state here is inconclusive. Numerous questions on AgNPsversus speciation, transport, and influence mechanism to engineered environmental treatment systems arise. This is because a number of factors involving in this issue. Thus far, the issue is critical because of its unpredictability.

Silver nanoparticles enter WWTSs and remediation systems *via* wastewater and sludge, respectively. Silver nanoparticles could dissolve and re-precipitate definitely. Silver in nano sizes (ions and particles) spreads over and deposits in the engineered environmental treatment systems. This circumstance could substantially influence the chemical and biological processes. For the chemical processes, Ag species are able to lessen the process performance by their substitution of chemical reaction components or as interference in chemical reaction. In biological processes, a role of Ag toxicity to biological organisms in the systems is considered. This affects biological process performance eventually. Up to now, potential AgNP control techniques are not well proposed since Ag influence mechanisms are limited. However, the chemical processes (precipitation and sorption) and biological processes (cell bioaugmentation and cell entrapment) may be considered.

Further required works are listed below.

- i) Fate of AgNPs in the engineered environmental treatment systems including AgNP dissolution, Ag re-precipitation, AgNP aggregation and sorption, and interaction to chemical processes
- ii) Operating and environmental conditions affecting the systems in presence of AgNPs,
   such as hydraulic retention time, solid retention time, substrate concentration,
   biomass concentration, pH, and temperature
- iii)Insight AgNP influence mechanism on microbial community and microbial response (toxicity and resistance related to corresponded functional genes, enzymes, and proteins)

# Acknowledgment

This material is based upon work supported by Thailand Research Fund, Office of the Higher Education Commission, and UbonRatchathani University, Thailand under New Researchers Grant (MRG5380280). The work is also supported by Office of the Higher Education Commission, Thailandand Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH) under ASEA-Uninet Staff Exchange fellowship (2011-2012). This work was conducted as a part of the research cluster "Fate and Removal of Emerging Micropollutants in Environment" granted by Center of Excellence for Environmental and Hazardous Waste Management, Thailand. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the grant/scholarship providers.

### References

Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R. 2010. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry. 3, 135-140.

Amendola, V., Polizzi, S.Meneghetti, M. 2007. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23 (12), 6766–6770.

Archer, M.J.G., Caldwell, R.A. 2004. Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water, Air, and Soil Pollution 157 (1-4), 257-267.

Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., Giri, K., Bhattacharyaa, R., Mukherjee,
P.2012. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews. 41, 2943-2970.

- Asharani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles inhuman cells. ACS Nano. 3, 279-290.
- Atiyeh, B.S., Costagliola, M., Hayek, S.N., Dibo, S.A. 2007. Effect of silver on burn wound infection controland healing: review of the literature. Burns 33, 139-148.
- Baker, C., Pradhan, A., Pakstis, L., Pochan Darrin, J., IsmatShah S. 2005. Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5 (2), 244-249.
- Bech, J., Poschenrieder, C., Barceló, J., Lansac, A. 2002. Plants from mine spoils in the South American Area as potential sources of germplasm for phytorenmediation technologies. Acta Biotechnologica. 22 (1-2), 5-11.
- Becker, M.F., Brock, J.R., Cai, H., Henneke, D.E., Keto, J.W., Lee, J., Nichols, W.T., Glicksman, H.D. 1998. Metal nanoparticles generated by laserablation. Nanostructured Materials. 10 (5), 853-863.
- Benn, T.M., Westerhoff, P. 2008. Nanoparticle silver released into water from commercially available sock fabric. Environmental Science and Technology. 42, 4133-4139.
- Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. Journal of the Total Environment 390, 396-409.
- Bokshits, Yu., V., Shevchenko, A.N., Ponyavina, A.N., Rakhmanov, S.K. 2004. Formation of silver and copper nanoparticles upon the reduction of their poorly soluble precursors in aqueous solution. Colloidal Journal. 66 (5),517-522.
- Bradford, A., Handy, R.D., Readman, J.W., Atfield, A., Mühling, M. 2009.Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environmental Science and Technology. 43 (12), 4530-4536.

- Brar, S.K., Verma, M., Tyagi, R.D., Surampalli, R.Y. 2010. Engineered nanoparticles in wastewater and wastewater sludge Evidence and impacts. Waste Management. 30 (3), 504-520.
- Carlson, C., Hussein, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L., Schlager, J.J. 2008. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. Journal of Physical Chemistry B. 112 (43), 13608-13619.
- Cassidy, M.B., Lee, H., Trevors, J. T. 1996. Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology, 16, 79-101.
- Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., Hooper, A., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., Whittaker, M., Arp, D. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph *Nitrosomonaseuropaea*. Journal of Bacteriology. 185 (9), 2759-2773.
- Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., Watkins, R. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants Part A Chemistry, Analysis, Control, Exposure and Risk Assessment. 25 (3), 241-258.
- Chaloupka, K., Malam, Y., Seifalian, A.M. 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology. 28 (11), 580-588.
- Chen, X. Schluesener, H.J. 2008. Nanosilver: a nanoproduct inmedical application.

  Toxicology Letters. 176, 1-12.
- Chinnapongse, S.L., MacCuspie, R.I., Hackley, V.A. 2011.Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Science of the Total Environment. 409 (12), 2443-2450.

- Choi, O., Cleuenger, T., Deng, B., Surampalli, R., Ross, L., Hu, Z. 2009. Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research. 43, 1879-1886.
- Choi, O., Deng, K.K., Kim, N.J., Ross, L., Surampalli, R.Y., Hu, Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research, 42, 3066-3074.
- Choi, O.K., Hu, Z.Q. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42, 4583-4588.
- Choi, O., Yu, C.-P., Esteban Fernández, G., Hu, Z. 2010.Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research. 44 (20), 6095-6103.
- Coutris, C., Joner, E.J., Oughton, D.H. 2012. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Science of the Total Environment. 420, 327-333.
- Damm, C., Munstedt, H., Rosch, A. 2008. Theantimicrobial efficacy of polyamide 6/silvernano- and microcomposites. Materials Chemistry and Physics. 108, 61-66.
- Dankovich, T.A., Gray, D.G. 2011.Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environmental Science and Technology. 45 (5), 1992-1998.
- Darroudi, M., Ahmad M.B., Abdullah A.H., Ibrahim N.A., Shameli K. 2010.Effect of accelerator in green synthesis of silver nanoparticles.International Journal of Molecular Sciences. 11,3898-3905.
- Dasari, T.P., Hwang, H.-M. 2010. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Science of the Total Environment. 408 (23), 5817-5823.
- Durán, N., Marcato, P.D., Alves, O.L., Da Silva, J.P.S., De Souza, G.I.H., Rodrigues, F.A., Esposito, E. 2010. Ecosystem protection by effluent bioremediation: Silver nanoparticles

- impregnation in a textile fabrics process. Journal of Nanoparticle Research. 12 (1), 285-292.
- Durán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M. 2010.
   Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. Journal of the Brazilian Chemical Society. 21 (6), 949-959.
- El Badawy, A.M., Silva, R.G., Morris, B., Scheckel, K.G., Suidan, M.T., Tolaymat, T.M. 2011.Surface charge-dependent toxicity of silver nanoparticles. Environmental Science and Technology. 45(1), 283-287.
- Elmachliy, S., Chefetz, B., Tel-Or, E., Vidal, L., Canals, A., Gedanken, A. 2011. Removal of silver and lead ions from water wastes using Azollafiliculoides, an aquatic plant, which adsorbs and reduces the ions into the corresponding metallic nanoparticles under microwave radiation in 5 min. Water, Air, and Soil Pollution. 218 (1-4), 365-370.
- El-Temsah, Y.S., Joner, E.J. 2010.Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.Environmental Toxicology. 27 (1), 42-49.
- Gao, J., Youn, S., Hovsepyan, A., Llaneza, V.L., Wang, Y., Bitton, G., Bonzongo, J.C.J.
  2009. Dispersion and toxicity of selectedmanufactured nanomaterials in natural river water samples:effects of water chemical composition. Environmental Science and Technology.
  43, 3322-3328.
- Gottschalk, F., Sonderer, T., Scholz, R.W., Nowack, B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology. 43 (24), 9216-9222.
- García, A., Delgado, L., Torà, J.A., Casals, E., González, E., Puntes, V., Font, X., Carrera, J., Sánchez, A. 2012. Effect of cerium dioxide, titanium dioxide, silver, and gold

- nanoparticles on the activity of microbial communities intended in wastewater treatment. Journal of Hazardous Materials. 199-200, 64-72.
- Gupta, A., Phung, L.T., Taylor, D.E., Silver, S. 2001.Diversity of silver resistance genes in *IncH* incompatibility groupplasmids.Microbiology. 147, 3393-3402.
- Guzman, M., Dille, J., Godet, S. 2012. Synthesis and antibacterial activity of silver nanoparticles againstgram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology, and Medicine. 8, 37-45.
- He, B., Tan, J.J., Liew, K.Y., Liu, H., 2004. Synthesis of size controlled Ag nanoparticles.

  Journal of Molecular Catalysis A: Chemical. 221, 121-126.
- Hoque, M.E., Khosravi, K., Newman, K., Metcalfe, C.D. 2012.Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry.Journal of Chromatography A. 1233, 109-115.
- Hou, L., Li, K., Ding, Y., Li, Y., Chen, J., Wu, X., Li, X. 2012. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH<sub>4</sub> reduction. Chemosphere. 87 (3), 248-252.
- Hou, H., Takamatsu, T., Koshikawa, M.K., Hosomi, M. 2005. Migration of silver, indium, tin, antimony, and bismuth and variations in their chemical fractions on addition to uncontaminated soils. Soil Science. 170, 624-39.
- Hsu, S.L., Wu, R.2007. Synthesis of contamination-free silvernanoparticle suspensions for micro-interconnects. Materials Letters. 61(17), 3719-3722.
- Huang, C.P., Wang, J.M. 2001. Factors affecting the distribution of heavy metals in wastewater treatment processes: Role of sludge particulate. Water Science and Technology. 44 (10), 47-52.

- Hwang, E., Lee, J., Chae, Y., Kim, Y., Kim, B., Sang, B., Gu, M. 2008. Analysis of the toxic mode of action of silver nanoparticlesusing stress-specific bioluminescent bacteria. Small. 4, 746-750.
- Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., Park, Y.H. 2008. Antibacterial activity and mechanism of action of the silver ion in *Staphylococcus aureus* and *Escherichia coli*. Applied and Environmental Microbiology. 2008, 74(7), 2171-2178.
- Kaegi, R., Sinnet, B., Zuleeg, S., Hagendorfer, H., Mueller, E., Vonbank, R., Boller, M., Burkhardt, M. 2010.Release of silver nanoparticles from outdoor facades. Environmental Pollution. 158 (9), 2900-2905.
- Kaegi, R., Voegelin, A., Sinnet, B., Zuleeg, S., Hagendorfer, H., Burkhardt, M., Siegrist, H. 2011. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environmental Science and Technology. 45 (9), 3902-3908.
- Khan, S.S., Mukherjee, A., Chandrasekaran, N. 2012. Adsorptive removal of silver nanoparticles (SNPs) from aqueous solution by *Aeromonaspunctata* and its adsorption isotherm and kinetics. Colloids and Surfaces B: Biointerfaces. 92, 156-160.
- Kim, B., Park, C.-S., Murayama, M., Hochella, M.F. 2010.Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environmental Science and Technology. 44 (19), 7509-7514.
- Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y., Yoshikawa, T. 2010.Silver nanoparticles as a safe preservative for use in cosmetics.Nanomedicine: Nanotechnology, Biology, and Medicine. 6 (4), 570-574.
- Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M., Zboril, R. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C,112, 5825-5834.

- Kumar, N., Shah, V., Walker, V.K. 2011. Perturbation of an arctic soil microbial community by metal nanoparticles. Journal of Hazardous Materials. 190 (1-3), 816-822.
- Lapresta-Fernández, A., Fernández, A., Blasco, J. 2012. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. Trends in Analytical Chemistry. 32, 40-59.
- Lehtinen, K.E.J., Backman, U., Jokiniemi, J.K., Kulmala, M. 2004. Three-body collisions as a particle formation mechanism in silvernanoparticlesynthesis. Journal of Colloid and Interface Science. 274(2), 526-530.
- Liang, Z., Das, A., Hu, Z. 2010. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Research. 44 (18), 5432-5438.
- Liu, J., Hurt, R.H. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environmental Science and Technology. 44 (6), 2169-2175.
- Liu, J., Pennell, K.G., Hurt, R.H. 2011. Kinetics and mechanisms of nanosilveroxysulfidation. Environmental Science and Technology. 45 (17), 7345-7353.
- Lok, C.-N., Ho, C.-M., Chen, R., He, Q.-Y., Yu, W.-Y., Sun, H., Tam, P.K.-H., Chiu, J.-F., Che, C.-M. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research. 5 (4), 916-924.
- Lushchak, V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 101(1), 13-30.
- Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J., Boughton, R.I. 2009. Silver nanoparticle-decorated porous ceramic composite for water treatment. Journal of Membrane Science. 331 (1-2), 50-56.
- Mafuné,F., Kohno, J., Takeda,Y.,Kondow, T.,Sawabe, H. 2000. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. The Journal of Physical Chemistry B. 104, 9111-9117.

- Manimegalai, G., Shantha Kumar, S., Sharma, C. 2011. Pesticide mineralization in water using silver nanoparticles. International Journal of Chemical Sciences. 9 (3), 1463-1471.
- Marambio-Jones, C.,Hoek, E.M.V. 2010.A review of the antibacterial effects of silver nanomaterials and potential implications for human healthand the environment. Journal of Nanoparticle Research., 12, 1531-1551.
- Maretti, L., Billone, P.S., Liu, Y. Scaiano, J.C. 2009. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. Journal of the American Chemical Society. 131 (39), 13972-13980.
- McFarland, A.D., Van Duyne, R.P. 2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters, 3 (8), 1057-1062.
- Mendis, E., Rajapakse, N., Byun, H., Kim, S. 2005. Investigation of jumbo squid (*Dosidicusgigas*) skin gelatin peptides fortheir in vitro antioxidant effects. Life Science. 77, 2166-2178.
- Mitrano, D., M., Lesher, E.K., Bednar, A., Monserud, J., Higgins, C.P., Ranville, J.F. 2011. Detecting nanoparticulate silver using single-particle inductively coupled plasmamass spectrometry. Environmental Toxicology and Chemistry. 31(1),115-121.
- Morones, J., Elechiguerra, J., Camacho, A., Holt, K., Kouri, J., Ramirez, J., Yacaman, M. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology. 16, 2346-2353.
- Mueller, N.C., Nowack, B. 2008. Exposure modeling of engineered nanoparticles in the environment. Environmental Science and Technology. 42 (12), 4447-4453.
- Murray, B.J., Li, Q., Newberg, J.T., Menke, E.J., Hemminger, J.C., Penner, R.M. 2005. Shape-and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Letters. 5 (11), 2319-2324.

- Musee, N. 2010. Simulated environmental riskestimation of engineerednanomaterials: A case of cosmeticsin Johannesburg City. Human and Experimental Toxicology. DOI: 10.1177/0960327110391387.
- Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra,R. 2008. Toxicity of silver nanoparticles to *Chlamydomonasreinhardtii*. EnvironmentalScience and Technology. 42 (23), 8959-8964.
- Nel, A., Xia, T., Madler, L., Li, N. 2006. Toxic potential of materials at the nanolevel. Science. 311, 622-627.
- Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials. 8, 543-557.
- Nowack, B. 2010. Nanosilver revisited downstream. Science. 330 (6007), 1054-1055.
- Pal,S.,Tak,Y.K., Song, J.M. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? astudy of the gram-negative bacterium *Escherichia coli*. Applied and Environmental Microbiology. 73 (6), 1712-1720.
- Parikh, R.Y., Singh, S., Prasad, B.L.V., Patole, M.S., Sastry, M., Schouche, Y.S. 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from *Morganella* sp.: Towards understanding biochemical synthesis mechanism. ChemBioChem. 9 (9), 1415-1422.
- Pietrobon, B., Kitaev, V. 2008. Photochemical synthesis of monodispersesize-controlled silver decahedral nanoparticles and their remarkable optical properties. Chemistry of Materials. 20 (16), 5186-5190.
- Purcell, T.W., Peters, J.J. 1998. Sources of silver in the environment. Environmental Toxicology and Chemistry. 17 (4), 539-546.

- Pyatenko, A., Shimokawa, K., Yamaguchi, M., Nishimura, O., Suzuki, M. 2004. Synthesis of silver nanoparticles by laser ablation in pure water. Applied Physics A: Materials Science and Processing. 79 (4-6), 803-806.
- Raffi, M., Hussain, F., Bhatti, T., Akhter, J., Hameed, A., Hasan, M. 2008. Antibacterial characterization of silver nanoparticles against *E. coli* ATCC-15224. Journal of Materials Science and Technology. 24, 192-196.
- Raffi,M. Rumaiz,A.K., Hasan, M.M.,IsmatShah,S. 2007. Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. Journal of Materials Research, 22, 3378-3384.
- Rai, M., Yadav, A., Gade, A. 2009. Silver Nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 27, 76-83.
- Ray, P.C., Yu, H.T.M., Fu, P.P. 2009. Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C, 27, 1-35.
- Ren, X., Meng, X., Chen, D., Tang, F., Jiao, J. 2005. Using silver nanoparticle to enhance current response of biosensor. Biosensors and Bioelectronics. 21 (3), 433-437.
- Rodríguez-Sánchez, L., Blanco, M.C., López-Quintela, M.A. 2000. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B. 104, (41), 9683-9688.
- Saravanan, M., Vemu, A.K., Barik, S.K. 2011.Rapid biosynthesis of silver nanoparticles from *Bacillus megaterium* (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens. Colloids and Surfaces B: Biointerfaces. 88 (1), 325-331.
- Sharma, V.K., Yngard, R.A., Lin, Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 145, 83-96.
- Sheng, Z., Liu, Y. 2011. Effects of silver nanoparticles on wastewater biofilms. Water Research 45 (18), 6039-6050.

- Silver, S. 2003. Bacterial silver resistance: molecular biologyand uses and misuses of silver compounds. FEMSMicrobiology Review. 27, 341-353.
- Siripattanakul, S. and Khan, E. 2009. Fundamentals and Applications of Entrapped Cell Bioaugmentation for Contaminant Removal. In Shah, V. Emerging Environmental Technologies, Volume II, Springer Science, Berlin, Germany. pp. 147-170.
- Siripattanakul, S., Wirojanagud, W., McEvoy, J., Khan, E. 2008. Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures for atrazine degradation. Water, Air, and Soil Pollution: Focus, 8, 257-266.
- Siripattanakul-Ratpukdi, S. Entrapped cell system for decentralized hospital wastewater treatment: inhibitory effect of disinfectants. Environmental Technology. *in press*.
- Smetana, A., Klabunde, K., Marchin, G., Sorensen, C. 2008.Biocidalactivity ofnanocrystalline silver powders and particles.Langmuir. 24, 7457-7464.
- Somasundaran, P., Fang, X., Ponnurangam, S., Li, B. 2010. Nanoparticles: characteristics, mechanisms and modulation of biotoxicity. KONA Powder and Particle Journal. 28,38-49.
- Sotiriou, G.A., Pratsinis, S.E. 2010. Antibacterial activity of nanosilver ions and particles. Environmental Science and Technology. 44 (14), 5649-5654.
- Suresh, A.K., Pelletier, D.A., Wang, W., Moon, J.-W., Gu, B., Mortensen, N.P., Allison, D.P., Joy, D.C., Phelps, T.J., Doktycz, M.J. 2010. Silver nanocrystallites: Biofabrication using *Shewanellaoneidensis*, and an evaluation of their comparative toxicity on gramnegative and gram-positive bacteria. Environmental Science and Technology. 44 (13), 5210-5215.
- Suresh, A.K., Pelletier, D.A., Wang, W., Morrell-Falvey, J.L., Gu, B., Doktycz, M.J. 2012.

  Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir. 28 (5), 2727-2735.

- Tian, J., Wong, K.K.Y., Ho, C., Lok, C., Yu, W., Che, C., Chiu, J., Tam, P.K.H.2007.

  Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem. 2, 129-136.
- Wang, Y., Westerhoff, P., Hristovski, K.D. 2012. Fate and biological effects of silver, titanium dioxide, and C<sub>60</sub> (fullerene) nanomaterials during simulated wastewater treatment processes. Journal of Hazardous Materials. 201-202, 16-22.
- Wang, H., Qiao, X., Chen, J., Ding, S. 2005. Preparation of silvernanoparticles by chemical reduction method. Colloids and Surface A:Physicochemical and Engineering Aspects. 256, 111-115.
- Whiteley, C.M, Valle, M.D., Jones, K.C., Sweetman, A.J. 2011. Challenges in assessing the environmental fate and exposure of nano silver. Journal of Physics: Conference Series. 304, doi:10.1088/1742-6596/304/1/012070.
- Wu, Z., Zhang, Y., Tao, T., Zhang, L., Fong, H. 2010. Silver nanoparticles on amidoximefibers for photo-catalytic degradation of organic dyes in waste water. Applied Surface Science. 257 (3), 1092-1097.
- Xu, R., Wang, D., Zhang, J., Li, Y. 2006. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chemistry An Asian Journal. 1 (6), 888-893.
- Yang, Y., Chen, Q., Wall, J.D., Hu, Z. 2012.Potential nanosilver impact on anaerobic digestion at moderate silver concentrations. Water Research 46 (4), 1176-1184.
- Yin, B., Ma, H., Wang, S., Chen, S. 2003. Electrochemical synthesis of silver nanoparticles under protection of poly(*N*-vinylpyrrolidone). The Journal of Physical Chemistry B. 107 (34), 8898-8904.
- Zheng, X., Guo, D., Shao, Y., Jia, S., Xu, S., Zhao, B., Xu, W., Corredor, C., Lombardi, J.R.2008. Photochemical modification of an optical fiber tip with a silver nanoparticle film: ASERS chemical sensor. Langmuir. 24 (8), 4394-4398.

**Table 2.** Calculated amount of silver from textile and plastic industry in each environmental medium

Table 3. Summary of silver contaminations related to AgNPs

**Table 4.**Factors influencing AgNPtoxicity

**Table 5.** Engineered environmental treatment systems affected by AgNPs

Table 6. Potential AgNP control alternatives

Figure 1. Silver nanoparticle fate in environment

**Figure 2.** Example of damaged microbial cells by AgNPs (a microbial cell from nitrification system contaminated by AgNPs of 5 mg/L)

Figure 3. Schematic diagram of potential reactions related to AgNPs

**Figure 4.**Potential chemical and biological processes for Ag control in the wastewater treatment systems

Table 1.

| Method              | Method description                                                              | Examples               |
|---------------------|---------------------------------------------------------------------------------|------------------------|
| Physical approach   |                                                                                 |                        |
| Evaporation/condens | Silver ion solution is vaporized into a carrier gas and then cooled for         | Lehtinen et al. (2004) |
| ation               | nucleation and nanoparticle formation.                                          | Baker et al. (2005)    |
|                     |                                                                                 | Raffi et al. (2007)    |
| Irradiation         | Silver nanoparticles are produced by irradiating (laser, microwave, or          | Becker et al. (1998)   |
|                     | ionization) silver solution. The particle size could be controlled by variation | Mafuné et al. (2000)   |
|                     | of irradiation time and laser power.                                            | Pyatenko et al. (2004) |
|                     |                                                                                 | Amendola et al. (2007) |
| Chemical approach   |                                                                                 |                        |
| Chemical reduction  | Silver ion in a solution is reduced by a reducing agent (such as                | Bokshits et al. (2004) |
|                     | borohydride, citrate, poly (vinylpyrolidone), and poly (ethylene glycol))       | He et al. (2004)       |
|                     | and formed silver atom $(Ag^0)$ . The silver atoms agglomerate and become       | Wang et al. (2005)     |
|                     | particles. Also, a capping agent (such as surfactant) might be used to          | Hsu and Wu (2007)      |
|                     | stabilize AgNPs.                                                                |                        |

| Electrochemical     | A silver anode is electrochemically dissolved in a solvent. The silver         | Rodríguez-Sánchez et al. |
|---------------------|--------------------------------------------------------------------------------|--------------------------|
| reduction           | nanoparticles are then separated from the solvent.                             | (2000)                   |
|                     |                                                                                | Yin et al. (2003)        |
|                     |                                                                                | Murray et al. (2005)     |
| Photochemical       | Silver ion in a solution is reduced by a reducing agent and then irradiated to | Pietrobon andKitaev      |
| reduction           | form silver nanoparticles.                                                     | (2008)                   |
|                     |                                                                                | Maretti et al. (2009)    |
| Biological approach | The method is biochemical reduction. It is similar to chemical reduction       | Sharma et al. (2009)     |
|                     | method but use extracts from organisms (microorganisms and plants) as          | Darroudi et al.(2010)    |
|                     | reducing agents and/or capping agents. The well-known biological extracts      | Marambio-Jones and Hoek  |
|                     | used for AgNP synthesis are proteins, amino acids, and polysaccharides.        | (2010)                   |
|                     |                                                                                |                          |

Table 2.

| Environmental medium                                             | Amount of silver |             |  |
|------------------------------------------------------------------|------------------|-------------|--|
| Environmental medium                                             | ton/yr           | %           |  |
| WWTSs                                                            | 190-410          | 100.00      |  |
| Natural receiving water (from treated wastewater)                | 20-130           | 11.53-31.70 |  |
| Soil (from wastewater treatment sludge for agricultural purpose) | 80-190           | 42.10-46.34 |  |
| Atmosphere (from solid waste incineration smoke)                 | 8-17             | 4.06-4.21   |  |

Remark: silver entered solid waste landfill is neglect

Table 3.

| Study description                       | Silver detected  | Contaminated concentration                                  | Location     | Reference         |
|-----------------------------------------|------------------|-------------------------------------------------------------|--------------|-------------------|
|                                         | form             |                                                             |              |                   |
| Silver released from nanoparticles      | Total Ag (model) | Predicted silver concentrations in WWTS and                 | Switzerland  | Blaser et al.     |
| incorporated into textiles and plastics |                  | sludge were 2-18 $\mu$ g/L and 7-39 $m$ g/kg,               |              | (2008)            |
| and risk freshwater ecosystems were     |                  | respectively. The silver concentrations in Rhine            |              |                   |
| determined.                             |                  | river were estimated at up to 148 ng/L.                     |              |                   |
| Quantities of AgNPs released into       | AgNP (model)     | Predicted AgNP concentrations in air, water, and            | Switzerland  | Muller and        |
| environment and their risk were         |                  | soil ranged 0.002-0.004 $\mu g/m^3$ , 0.03-0.08 $\mu g/L$ , |              | Nowack (2008)     |
| modelled.                               |                  | 0.02-0.1 μg/kg, respectively.                               |              |                   |
| Probabilistic material flow analysis    | AgNP (model)     | Predicted AgNP concentrations in soil, sludge               | Europe, USA, | Gottschalk et al. |
| was used to model AgNP                  |                  | treated soil, surface water, WWTS effluent,                 | and          | (2009)            |
| concentrations in environment.          |                  | WWTS sludge, sediment, and air in Europe were               | Switzerland  |                   |
|                                         |                  | 22.7 ng/kg/yr, 1,581 ng/kg/yr, 0.8 ng/L, 42.5 ng/L,         |              |                   |
|                                         |                  | 1.7 mg/kg, 952 ng/kg/yr, and 0.008 ng/m <sup>3</sup> ,      |              |                   |

2.1

respectively.

Predicted AgNP concentrations in soil, sludge

treated soil, surface water, WWTS effluent,

WWTS sludge, sediment, and air in USA were 8.3

ng/kg/yr, 662 ng/kg/yr, 0.1 ng/L, 21 ng/L, 1.6

mg/kg, 195 ng/kg/yr, and 0.002 ng/m<sup>3</sup>,

respectively.

Predicted AgNP concentrations in soil, surface

water, WWTS effluent, WWTS sludge, sediment,

and air in Switzerland were 11.2 ng/kg/yr, 0.7

ng/L, 38.7 ng/L, 1.9 mg/kg, 1,203 ng/kg/yr, and

0.021 ng/m<sup>3</sup>, respectively.

Release of AgNPs from paints used Total Ag Silver nanoparticles could leach at the Switzerland Kaegi et al.

for outdoor applications *via* rain was concentration of up to 145 µg-Ag/L during the (2010)

investigated.

| Predicted AgNP concentrations        | AgNP (model)     | Silver nanoparticles released into wastewater were | Johannesburg, | Musee et al.   |
|--------------------------------------|------------------|----------------------------------------------------|---------------|----------------|
| releasing from cosmetic-based nano-  |                  | 7.8-306.6 kg/annum while AgNPs in WWTSs            | South Africa  | (2010)         |
| products to environment were         |                  | were 6.2-184.2 kg/annum. Silver nanoparticles of   |               |                |
| predicted and used for risk          |                  | 2.8-183.2 kg/annum were released into aquatic      |               |                |
| assessment.                          |                  | systems. The predicted AgNP concentration in       |               |                |
|                                      |                  | aquatic ecosystem were 0.003 to 0.619 $\mu g/L$ .  |               |                |
| Silver nanoparticle analysis by an   | Dissolved silver | In influent, dAg of 520 ng/L and AgNPs of 200      | Boulder, CO,  | Mitrano et al. |
| inductively coupled plasma-mass      | (dAg) and AgNP   | ng/L were detected while dAg of 60 ng/L and        | USA           | (2011)         |
| spectrometry, operated in a single-  |                  | AgNPs of 100 ng/L were measured in the final       |               |                |
| particle counting mode technique was |                  | effluent.                                          |               |                |
| developed. Influent and effluent     |                  |                                                    |               |                |
| samples from a wastewater treatment  |                  |                                                    |               |                |
| in Boulder, CO, USA were detected    |                  |                                                    |               |                |
| for AgNP concentrations.             |                  |                                                    |               |                |
|                                      |                  |                                                    |               |                |

| Novel detection method for AgNPs AgNP  | The concentration and size of AgNPs in the        | Ontario, | Hoque et al. |
|----------------------------------------|---------------------------------------------------|----------|--------------|
| was developed. The                     | influent from a wastewater treatment in           | Canada   | (2012)       |
| AgNPconcentratons in surface water     | Peterborough, Ontario, Canada were 1.90 ng/mL     |          |              |
| and influent of a wastewater treatment | and 9.3 nm, reespectively. Surface water samples  |          |              |
| plant were detected.                   | collected from Plastic Lake, Chemong Lake, and    |          |              |
|                                        | Otonabee River in central Ontario, Canada did not |          |              |
|                                        | detect AgNPs at detection limit of 0.8 ng/mL.     |          |              |

Table 4.

| Factor                        | Description                                                                        | Examples                   |
|-------------------------------|------------------------------------------------------------------------------------|----------------------------|
| Silver nanoparticle propertie | <u>es</u>                                                                          |                            |
| Physical properties           | AgNPs synthesized todifferent shapes (such as truncated triangular, spherical,     | Pal et al. (2007)          |
| (size, shape, and surface)    | and rod-shapes) had different active facets. Silver nanoparticles with a {111}     | Carlson et al. (2008)      |
|                               | lattice plane as the basal plane (like truncated triangular shape) showed the      | Choi and Hu (2008)         |
|                               | highest biocidal property compared to others. For size, it is obvious that the     | Somasundaran et al. (2010) |
|                               | particles at smaller size had higher surface area resulting in higher biocidal     | El Badawy et al. (2011)    |
|                               | activities. Futhermore, the AgNP surface physical properties including surface     |                            |
|                               | charge, surface curvature, crystallinity, porosity, heterogeneity, and roughness   |                            |
|                               | influenced toxicity but degree of toxicity was varied.                             |                            |
| Chemical properties           | Among various AgNP synthesis methods, several reducing and capping agents          | Kvitek et al. (2008)       |
| (surface coating, elemental   | and synthesis techniques were applied and resulted in different particle surface   | El Badawy et al. (2011)    |
| composition, and stability)   | properties. These properties significantly affected the microbial cell surface and | Suresh et al. (2012)       |
|                               | membrane causing cell death or malfunction. Moreover, the factors also             |                            |
|                               | influencedAgNP stability; the more particle stability (less aggregation) leaded    |                            |

|                          | to the more toxicity.                                                              |                     |
|--------------------------|------------------------------------------------------------------------------------|---------------------|
| Environmental conditions | Environmental conditions, such as pH, light,ionic strength, salinity, OM, and      | Lok et al. (2007)   |
|                          | DO affected the AgNP toxicity. The pH close to the isoelectric pointand OM         | Choi and Hu (2008)  |
|                          | (including natural OM and exopolymeric substances (EPS) released during cell       | Choi et al. (2009)  |
|                          | lysis) could stimulate AgNPaggregation resulting in lower toxicity. For DO and     | Gao et al. (2009)   |
|                          | light, these parameters promoted ROS attributing to higher AgNP toxicity.          | Nel et al. (2009)   |
|                          | Natural chemicals related to ionic strength and salinity (such as cysteine ligands | Dasari et al (2010) |
|                          | and chloride) influence both AgNP dissolution and re-precipitation. Therefore,     | Lushchak (2011)     |
|                          | these factors could either promote or decrease the AgNP toxicity.                  |                     |
|                          |                                                                                    |                     |

| <b>T</b> | 1 1 |    | _ |
|----------|-----|----|---|
| า ล      | hΙ  | e. | ` |

| System description                                                                                                                       | Effect on system performance and microbial community                             | Reference          |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|
| Wastewater treatment systems                                                                                                             |                                                                                  |                    |
| The inhibitory effect by AgNPs at concentration •                                                                                        | Growth of autotrophic nitrifying organisms (86%) was inhibited more              | Choi et al. (2008) |
| of 1 mg/L on theautotrophic and heterotrophic                                                                                            | than that of heterotrophic Escherichia coli PHL628-gfp (55%).EPS was             |                    |
| growth was determined in bench scale. The                                                                                                | observed. AgNPs attached to cell surface might cause the damage on cell          |                    |
| commercial AgNPs at 14 nm were applied but the                                                                                           | membrane.                                                                        |                    |
| measured size of AgNPs was approximately 200                                                                                             |                                                                                  |                    |
| nm because of their aggregation.                                                                                                         |                                                                                  |                    |
| The study was to determine inhibition of nitrifying •                                                                                    | Sizes of AgNPs played an important to nitrifying organism growth                 | Choi and Hu (2008) |
| organism growth by AgNPs at different sizes (9-                                                                                          | inhibition. The effective concentration of AgNPs causing 50% inhibition          |                    |
| 21 nm)in bench scale.                                                                                                                    | (EC <sub>50</sub> ) was 0.14 mg/L. The intracellular ROS generation by AgNPs was |                    |
|                                                                                                                                          | observed and likely to influence inhibition of the cell growth.                  |                    |
| The research was to study the impact of ligands •                                                                                        | Nitrification inhibition of 100% occurred at AgNPs of 1 mg/L. Sulfide            | Choi et al. (2009) |
| (Cl <sup>-</sup> , SO <sub>4</sub> <sup>-2</sup> , PO <sub>4</sub> <sup>-3</sup> , EDTA <sup>-4</sup> , and S <sup>-2</sup> ) on AgNP(at | effectively reduced AgNP toxicity (by 80%).                                      |                    |
| average size of 6-24 nm) toxicity to nitrification.                                                                                      | Ammonia-oxidizing microorganisms (related to ammonia                             |                    |

|                                                     | monooxygenase enzyme) were more sensitive than nitrite-oxidizing          |                     |
|-----------------------------------------------------|---------------------------------------------------------------------------|---------------------|
|                                                     | microorganisms.                                                           |                     |
| Planktonic and biofilm activities from AgNP (at •   | Biofilms were four-time higher resistance to AgNPs compared to            | Choi et al. (2010)  |
| average size of 15-21 nm) contaminated              | planktonic cells.                                                         |                     |
| wastewater treatment were determined.               | Silver ion was more toxic to E. coli because AgNPs were aggregated and    |                     |
|                                                     | resulted in lower toxicity.                                               |                     |
| Sorption of AgNPs (at average size of 13 nm) onto • | Sorption of AgNPs on HIV-1 virus(39% removal) should cause                | Kiser et al. (2010) |
| activated sludge was studied.                       | bybinding of AgNPs and glycoprotein from the virallipid                   |                     |
|                                                     | membrane.Sorption, aggregation, and sedimentation promoted AgNP           |                     |
|                                                     | removal of 97% in total.                                                  |                     |
| The inhibitory effectfrom shock loading of AgNPs •  | Silver nanoparticles and Ag+ (total Ag of 1 mg/L) inhibited nitrification | Liang et al. (2010) |
| (at average size of 1-29 nm and concentration of 1  | for 41.4% and 13.5%, respectively.                                        |                     |
| mg/L) to autotrophs and heterotrophswas             | Silver significantly affected nitrifying microorganisms (both ammonia     |                     |
| evaluated.                                          | and nitrite-oxidizing microorganisms) resulting in lower nitrification    |                     |
|                                                     | performance while heterotrophs could resist in the Ag-contaminated        |                     |
|                                                     | wastewater and maintain organic removal performance.                      |                     |
|                                                     |                                                                           |                     |

| Effect of AgNPs on biofilm and planktonic pure   | • | Biofilm well grew in the contaminated wastewater which was promoted       | Sheng and Liu        |
|--------------------------------------------------|---|---------------------------------------------------------------------------|----------------------|
| culture in wastewater treatment was performed.   |   | by EPS.                                                                   | (2011)               |
| The study was conducted at AgNPs of 200 mg-      | • | In comparison to planktonic pure culture, biofilm microbial community     |                      |
| Ag/Land average size of < 5 nm.                  |   | was much more tolerant. Among bacteria in biofilm, Thiotrichales is more  |                      |
|                                                  |   | sensitive to AgNPs than others.                                           |                      |
| Effect of AgNPs on activated sludge process was  | • | Silver nanoparticles did not present effecton WWTS performance. Also,     | Wang et al. (2012)   |
| studied. Sequencing batch reactors were operated |   | AgNPs of 88% was removed during the treatment. The result revealed        |                      |
| under sludge retention time, AgNP loadings and   |   | that AgNPsshould accumulate in biomass rather than treated effluent.      |                      |
| biomass concentrations of 6 d, 0.5-1.5 mg/L, and |   |                                                                           |                      |
| 1,500-2,500 mg/L, respectively similar to a      |   |                                                                           |                      |
| WWTS in Arizona, USA.                            |   |                                                                           |                      |
| The work determined effect of AgNPs on aerobic   | • | Silver nanoparticles caused biogas production inhibition of 33 to 50% and | García et al. (2012) |
| and anaerobic wastewater treatment. The study    |   | a slight inhibition in aerobic heterotrophic treatment andnitrification.  |                      |
| was conducted at AgNPs of 0.17 mg /L and         |   |                                                                           |                      |
| average size of 30 nm.                           |   |                                                                           |                      |
| Fate and impact of AgNPs (0.1-1.0 mg/L)          | • | Silver nanoparticles of 90% remained in the wastewater after simulated    | Hou et al. (2012)    |

| insimulated wastewater treatment processes were  | primary clarification. In sequencing batch reactor processes, AgNPs                    |                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------|--------------------|
| determined.                                      | werecompletely removed. Removal of COD remained stable while                           |                    |
|                                                  | reduction of NH <sub>4</sub> was inhibited in early period and then fully recovered in |                    |
|                                                  | later period of the experiment.                                                        |                    |
| Impact of AgNPs on anaerobic glucose             | There was nosignificant difference in biogas and methane production                    | Yang et al. (2012) |
| degradation and sludge digestion was performed.  | between the sludge treated with AgNPs at the concentrations up to 40 mg-               |                    |
| The study was conducted at AgNPs of 40 mg /L     | Ag/L.In treated wastewater, more than 90% of AgNPs was removed into                    |                    |
| and average size of 21 nm.                       | sludge. Almost no silver ions were released from AgNPs under the tested                |                    |
|                                                  | conditions.                                                                            |                    |
| •                                                | The microbial community which Methanosaeta and Methanomicrobiales                      |                    |
|                                                  | were dominant remained unchanged.                                                      |                    |
| Environmental remediation systems                |                                                                                        |                    |
| Effects of AgNPs on naturalbacterial community   | It was found that AgNPs accumulated in the surface layer of the sediment               | Bradford et al.    |
| in estuarine environment were studied. The study | (approximately 3 mm from top).                                                         | (2009)             |
| was conducted at AgNPs of 0-1 mg/L and average   | No or little significant AgNP impacts on the prokaryotic abundance were                |                    |
| size of <100 nm.                                 | detected. Possible reasons for inactive (non-toxic) AgNPs could be due to              |                    |

|                                                    |   | environmental factors, especially chloride ions in estuarywater. This             |                 |
|----------------------------------------------------|---|-----------------------------------------------------------------------------------|-----------------|
|                                                    |   | could affect the chemistry and behavior of AgNPs.                                 |                 |
| The effect of humic acid (HA) on the AgNP          | • | In river water, AgNPs were reduced to Ag <sup>+</sup> up to 33% but HA could bind | Dasari et al.   |
| cytotoxicity to aquatic bacterial community was    |   | Ag <sup>+</sup> and reduce Ag <sup>+</sup> toxicity.                              | (2010)          |
| studied. The study was conducted at AgNPs of 0-    | • | Concentrations of AgNP, types of HA, and light influenced the                     |                 |
| $5\mu M$ and average size of 15-25 nm and HA of 0- |   | cytotoxicity.                                                                     |                 |
| 40 ppm.                                            |   |                                                                                   |                 |
| The influence of AgNPs on arctic soil microbial    | • | Silver nanoparticles significantly reduced the recovery of 16S sequences          | Kumar et al.    |
| Diversity was investigated. The study was          |   | (13-70%) in orders of Solirubrobacterales, Actinomycetales, Rhizobiales,          | (2011)          |
| conducted at AgNP average size of 20 nm.           |   | Acidobacteriales and Clostridiales.Bacillales relatively increased in             |                 |
|                                                    |   | number. This may be because Bacillales are spore-formers which are well           |                 |
|                                                    |   | survived under extreme conditions. Moreover, nitrogen-fixing                      |                 |
|                                                    |   | Bradyrhizobium species found to be susceptible to AgNPs may impact to             |                 |
|                                                    |   | biogeochemical cycles and arctic ecosystem.                                       |                 |
| The work was to assessthe colloidal stability and  | • | Silver nanoparticles partially agglomerated in the pond water. Degree of          | Chinnapongse et |
| agglomeration of AgNPs in aquatic ecosystem.       |   | agglomeration and sedimentation depended on water hardness orsalinity             | al. (2011)      |

| The study was conducted at AgNP average size of      | (high agglomeration at high hardness or salinity)                       |                       |
|------------------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| 20 nm.                                               | It was also found that NOM promoted colloidal stabilization.            |                       |
| The study was to compare soil-binding behavior o     | All types of silver were more mobile in themineral soil than in the     | Coutris et al. (2012) |
| silver nitrate, citrate-stabilized Ag NPs (5 nm) and | organic soil. Silver nitrate and citrate-stabilized Ag NPs were rapidly |                       |
| uncoated Ag NPs (19 nm) in two soils (organic        | immobilized in soil (low bioaccessibility) while the uncoated           |                       |
| and mineral soils).                                  | AgNPbioaccessibilityincreased over time.                                |                       |

Table 6.

| Control technique                                                                                         | Reference               |
|-----------------------------------------------------------------------------------------------------------|-------------------------|
| Natural / existing control techniques                                                                     |                         |
| Transformation of AgNPs to Ag <sub>2</sub> SP which less toxicity and more stable by anaerobic wastewater | Kim et al. (2010)       |
| treatment systems withsulphur-rich environments                                                           |                         |
| Sorption on biomass during biological treatment process                                                   | Hou et al. (2012)       |
|                                                                                                           | Wang et al. (2012)      |
| Modified/additional control techniques                                                                    |                         |
| Addition of sulfide to form Ag <sub>2</sub> SP which less toxic and stable in an aqueous solution         | Choi et al. (2009)      |
|                                                                                                           | Liu et al. (2012)       |
| Isolation of Ag-detoxifying species, such as <i>Chromobacteriumviolaceum</i> to augment in contaminated   | Durán et al. (2010)     |
| wastewater or soil.                                                                                       |                         |
| Sorption on biomass in biological treatment process                                                       | Kiser et al. (2010)     |
|                                                                                                           | Khan et al. (2012)      |
| • Microwave radiation and plant biosorption as an additional (advanced) treatment                         | Elmachliy et al. (2011) |

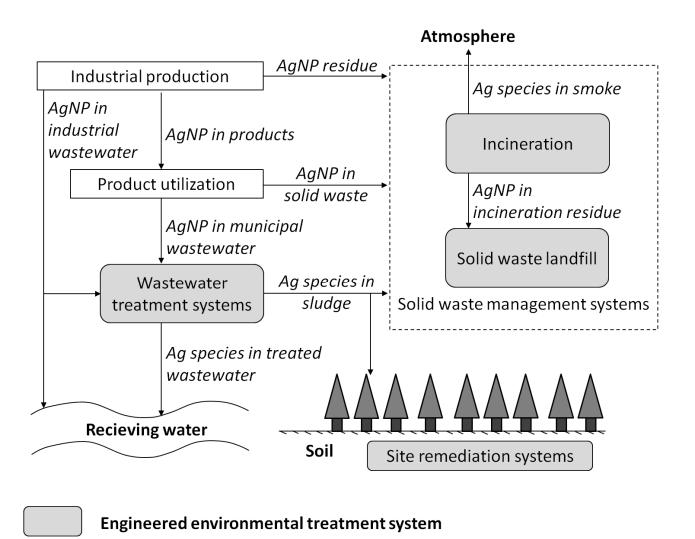



Figure 1.

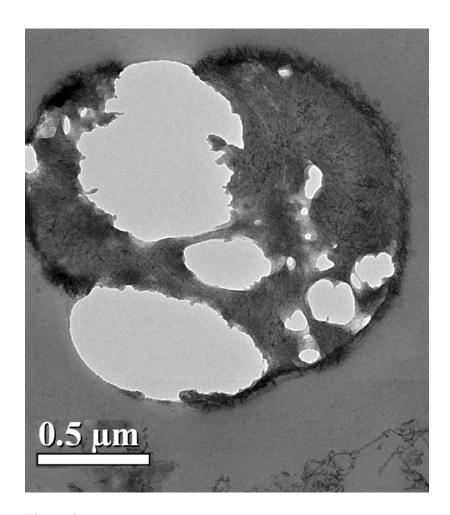



Figure 2.

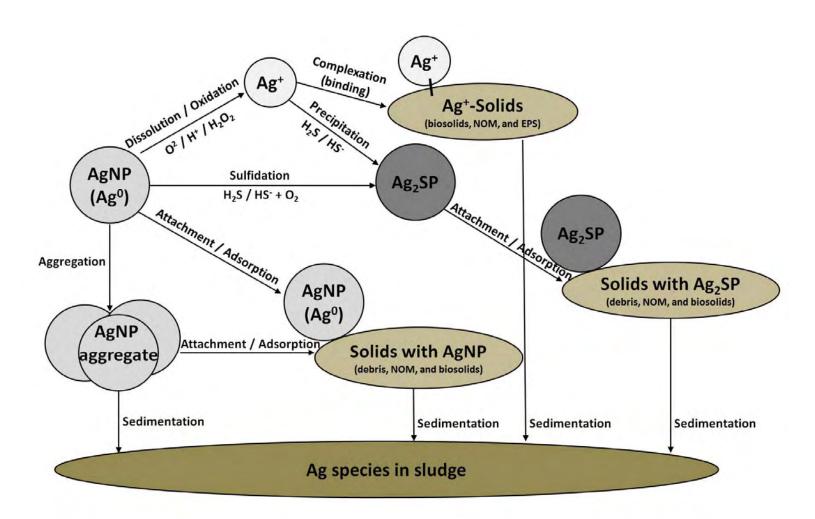



Figure 3.

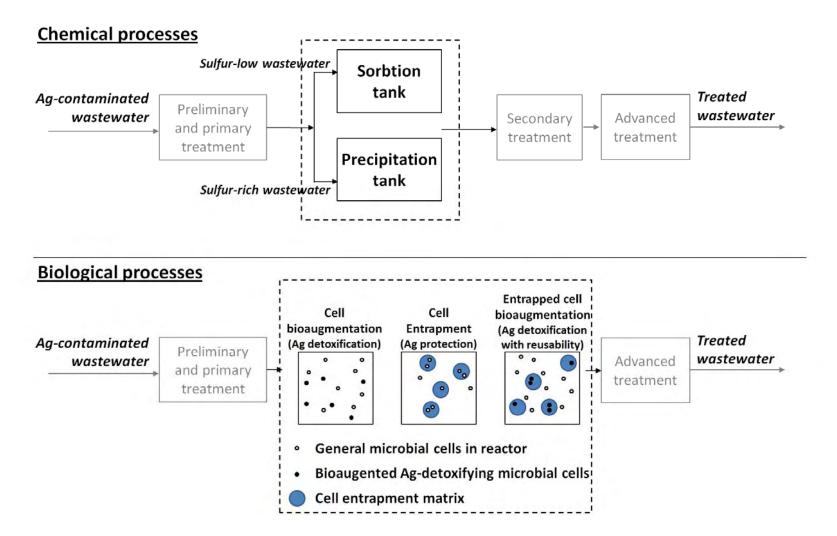



Figure 4