

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสังเคราะห์สารต้านมะเร็ง cladoniamide G

โดย ดร. ไพบูลย์ เงินมีศรี และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสังเคราะห์สารต้านมะเร็ง cladoniamide G

ผู้วิจัย

1. ดร.ไพบูลย์ เงินมีครี	มหาวิทยาลัยเกษตรศาสตร์
2. นางสาวสโโรชา ชุ้นกิจ	มหาวิทยาลัยเกษตรศาสตร์
3. รศ.ดร.บุญส่ง คงคาทิพย์	มหาวิทยาลัยเกษตรศาสตร์

สังกัด

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย
และมหาวิทยาลัยเกษตรศาสตร์

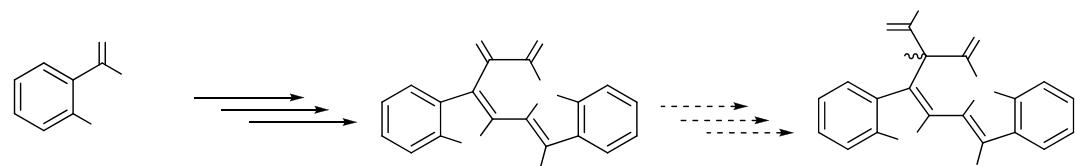
(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกอ. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

	หน้า
บทคัดย่อ (ภาษาไทย)	1
บทคัดย่อ (ภาษาอังกฤษ)	2
Executive Summary	3
วัตถุประสงค์	3
ผลการทดลอง สรุปและวิจารณ์ผลการทดลอง	4
วิธีทดลอง	6
Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.	12

บทคัดย่อ

รหัสโครงการ: MRG5380301


ชื่อโครงการ: การสังเคราะห์สารต้านมะเร็ง **cladoniamide G**

ชื่อหัววิจัย และสถาบัน: ดร. ไฟบูลย์ เงินมีศรี มหาวิทยาลัยเกษตรศาสตร์

อีเมล์: fscipbn@ku.ac.th

ระยะเวลาโครงการ: 15 มิถุนายน 2553 ถึง 14 มิถุนายน 2555

บทคัดย่อ:

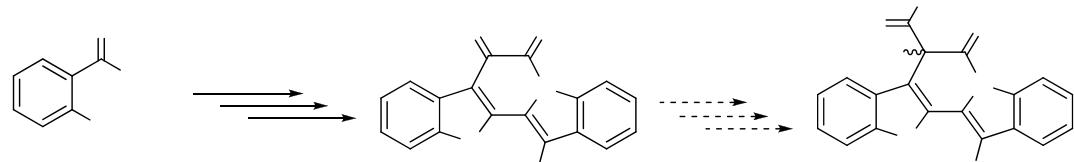
สาร **dioxo bisindole 1** ได้ถูกสังเคราะห์ขึ้นจากสารที่มีโมเลกุลขนาดเล็ก โดยขั้นตอนของการสังเคราะห์มีทั้งหมด 10 ขั้นตอนและร้อยละของผลิตภัณฑ์รวมคือ 19% ขั้นตอนที่สำคัญในการสังเคราะห์นี้คือปฏิกิริยา Suzuki coupling เพื่อต่อ indole ทั้งสองหน่วยเข้าด้วยกัน และปฏิกิริยา nucleophilic addition ของ C3 ของ indole หน่วยที่ไม่มีหมุ่แทนที่ที่ตำแหน่งนี้ และ NH ของ indole อีกหน่วย เข้าไปที่หมุ่ carbonyl ของ oxalyl chloride เพื่อสร้างโครงสร้างหลักสำหรับการสังเคราะห์สาร analog (2) ของ cladoniamide G ซึ่งวิธีการสังเคราะห์เหล่านี้จะเป็นหนทางสำหรับการสังเคราะห์ต้านมะเร็ง cladoniamide G ต่อไป

คำหลัก : จำนวน 3-5 คำ

Cladoniamide G, สารต้านมะเร็ง, ปฏิกิริยา Suzuki Coupling

Abstract

Project Code: MRG5380301


Project Title: Total Synthesis of Anticancer Cladonimide G

Investigator: Dr. Paiboon Ngernmeesri

E-mail Address: fscipbn@ku.ac.th

Project Period: June 15, 2010 to June 14, 2012

Abstract:

The synthesis of dioxo bisindole **1**, a precursor for the synthesis of cladonamide G's analog (**2**), was accomplished in 10 steps (19% overall yield). The key steps are 1) the Suzuki coupling reaction to join two indole fragments together and 2) nucleophilic addition of the non-substituted C3 of one indole unit and the NH of the other to the carbonyl groups of oxalyl chloride to form the desired framework. These synthetic studies will pave the way to the synthesis of anticancer cladonamide G.

Keywords : 3-5 words

Cladonamide G, Anticancer, Suzuki Coupling Reaction

Executive summary

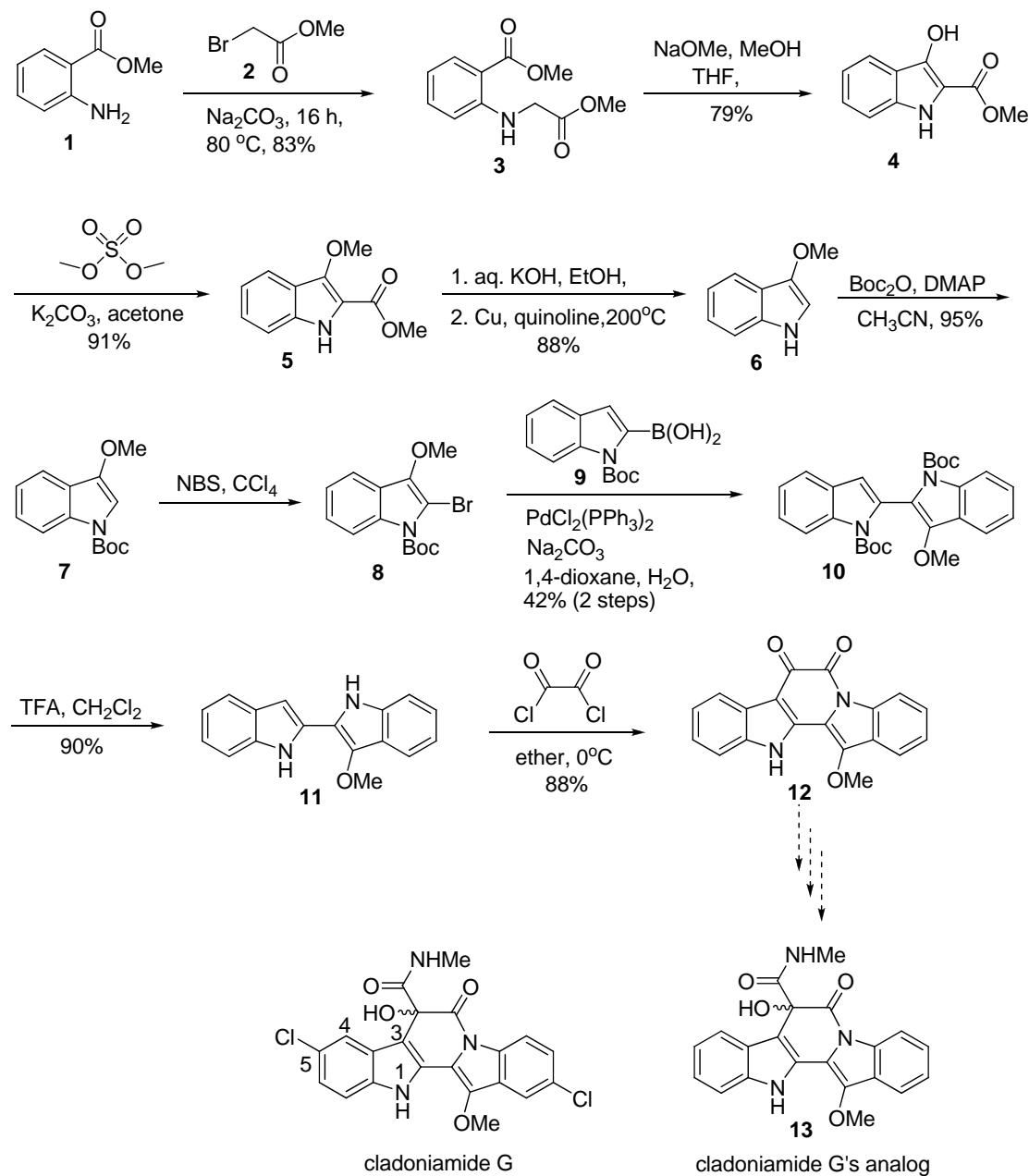
งานวิจัยนี้เป็นการศึกษาการสังเคราะห์สารต้านมะเร็ง cladoniamide G แต่เนื่องจากสารตั้งต้นมีราคาแพงมาก การศึกษาจึงได้เริ่มจากการสังเคราะห์ analog ของ cladoniamide G ก่อน ซึ่งสาร analog นี้แตกต่างจาก cladoniamide G ตรงที่ไม่มี Cl ที่ตำแหน่งที่ 5 ของ indole ทั้งสองหน่วย การสังเคราะห์เริ่มจาก methyl 2-aminobenzoate และ methylbromoacetate ซึ่งเป็นสารที่มีจำหน่าย เพื่อสร้างสาร 3-methoxyindole ซึ่งเป็น indole หน่วยที่หนึ่ง ส่วน indole หน่วยที่สองสามารถสังเคราะห์ได้โดยตรงจากสาร indole ด้วยการเพิ่มหมู่ฟังก์ชันเข้าไป indole ทั้งสองหน่วยจะถูกนำมาร่วมกันด้วยปฏิกิริยา Suzuki coupling หลังจากนั้นวงแหวนวงสุดท้ายในโครงสร้างสามารถสร้างได้โดยปฏิกิริยา nucleophilic addition ของ NH ของ indole หน่วยที่ 1 และ C3 ของ indole หน่วยที่ 2 เข้าไปที่หมู่ carbonyl ของ oxalyl chloride รวมขั้นตอนในการสังเคราะห์ทั้งหมดคือ 10 ขั้นตอนโดยมีร้อยละของผลิตภัณฑ์รวมเป็น 19% การสังเคราะห์สาร analog นี้ยังเหลืออยู่อีก 3-4 ขั้นตอนจึงจะสำเร็จสมบูรณ์และสามารถนำลงมาใช้พิมพ์ได้

วัตถุประสงค์

- เพื่อสังเคราะห์สารต้านมะเร็ง cladoniamide G และทดสอบฤทธิ์ทางยาของสารประกอบทุกตัวที่สังเคราะห์ได้
- เพื่อตีพิมพ์ผลงานทางวิชาการ

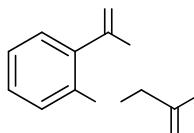
ผลการทดลอง สุรุปและวิจารณ์ผลการทดลอง

Preparation of 3-Methoxyindole (6)


Although 3-methoxyindole (**6**) is commercially available, it is very expensive and only sold in small quantities. Therefore, we had to prepare this compound from cheaper starting materials. Nucleophilic substitution of the bromide of methylbromoacetate (**2**) with methyl 2-aminobenzoate (**1**) gave α -amino ester **3** in 83% yield (Figure 1). Treatment of **3** with NaOMe in MeOH at reflux generated 3-hydroxyl indole **4** in 79% yield. Initial attempts (following the known method) to treat **3** with NaOEt resulted in a mixture of **4** and the corresponding ethyl ester since transesterification did not go completion even after heating for several hours. Subsequent treatment of **4** with excess dimethyl sulfate gave methoxyindole **5** in 91% yield, and no *N*-methylation was observed. The ester group of **5** was then hydrolyzed by aq. LiOH in ethanol at reflux, and the resulting carboxylic acid was decarboxylated by Cu powder in quinoline at 200 $^{\circ}$ C to generate the desired 3-methoxyindole **6** in 88% yield.

Preparation of Dioxo Bisindole **12**

Bromination of 3-methoxyindole **6** with NBS in CCl₄ at room temperature resulted in partial recovery of the starting material after 1 h or complete decomposition after 3 h. When the reaction was carried out at 0 $^{\circ}$ C for 1 h, most of the starting material still remained and no desired product was observed. Surprisingly, when the NH group of 3-methoxyindole was protected with as *t*-butyl carbamate (**7**), bromination of this compound went to completion in less than an hour at room temperature to give bromoindole **8**. Although TLC analysis showed that **8** was formed almost exclusively, this compound is not very stable. Purification by chromatography on SiO₂ became a problem as some (or all in some runs) of the desired product decomposed and no more than 60% yield of this compound could be isolated (the yield was improved to 71% when Al₂O₃ was used instead of SiO₂). To avoid this problem, the crude product from this step was usually carried on to the next step without purification. Suzuki coupling of bromoindole **8** and boronic acid **9** generated bisindole **10**. However, there are several by-products formed in this reaction. Thus, low reaction yield (no more than 42% over 2 steps) was obtained, and this problem could not be solved by the use of purified starting material. Efforts are being made with different catalysts/reaction conditions to improve yield of this step. To reveal the NH groups and increase the nucleophilicity of C3 of


one of the indoles, the Boc protecting groups were removed to afford unprotected bisindole **11** in 90% yield. Finally, treatment of **11** with oxalyl chloride furnished the desired framework **12** with all the rings in place to complete the synthesis.

In conclusion, dioxo bisindole **12** was synthesized in 10 steps with 19% overall yield from commercially available methyl 2-aminobenzoate (**1**) and methylbromoacetate (**2**).

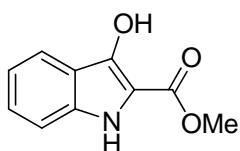
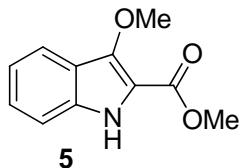
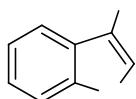


Figure 1: Synthesis of dioxo bisindole **12**

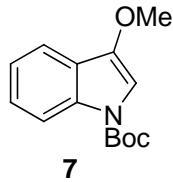
วิธีทดลอง


Methyl 2-(2-Methoxy-2-oxoethylamino)benzoate (3): To a suspension of Na_2CO_3 (9.83 g, 92.7 mmol) in DMF (40 mL) was added methyl 2-amionbenzoate (1) (10.0 mL, 77.3 mmol) followed by methylbromoacetate (8.52 mL, 92.7 mmol). The reaction mixture was heated at 80°C for 15 h. It was allowed to cool to room temperature, then filtered through a fritted funnel and washed with EtOAc to remove Na_2CO_3 . The filtrate was concentrated to dryness under reduced pressure. Water (50 mL) was added to the solid residue. The resulting suspension was then filtered through a fritted funnel and washed several times with water to collect a white solid. The solid was then dissolve in EtOAc (300 mL), dried over Na_2SO_4 and concentrated under reduced pressure to remove most of the solvent. The crude residue was allowed to sit at room temperature and ether (10 mL) was then added. A white precipitate formed immediately. The liquid phase was carefully removed with a pipette. Additional ether (5 mL) was added to the solid and the liquid phase was again carefully removed with a pipette to leave the desired product as a white solid (14.28 g, 83% yield). ^1H NMR (400 MHz, CDCl_3) δ 8.17 (br s, 1H), 7.89 (dd, J = 1.7, 8.0 Hz, 1H), 7.31 (ddd, J = 1.7, 7.2, 8.6 Hz, 1H), 6.62 (dt, J = 1.0, 7.6 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 3.96 (d, J = 5.4 Hz, 2H), 3.83 (s, 3H), 3.74 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 170.5, 168.4, 149.5, 134.3, 131.4, 115.2, 110.8, 110.6, 51.9, 51.2, 44.4; LRMS(ESI) m/z (relative intensity) 246.1 (100%, $\text{M}+\text{Na}^+$).

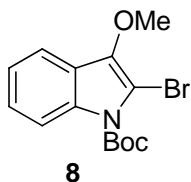

4

Methyl 3-Hydroxy-1*H*-indole-2-carboxylate (4): Anhydrous methanol (15 mL) was added to a flask containing sodium (2.94 g, 128 mmol) at 0°C and the suspension was stirred until sodium completely dissolved. This solution was then cannulated to a solution of α -amino ester 3 (14.28 g, 64.0 mmol) in THF (45 mL). The resulting orange/yellow solution was heated at reflux for 2 h. The reaction mixture was allowed

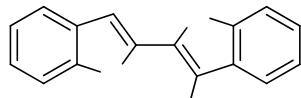
to cool to room temperature and water (30 mL) was added. The mixture was extracted with ether (2 x 30 mL). Dry ice was added to the aqueous phase until a precipitate formed (pH ~ 8). The precipitate was collected by filtration through a fritted funnel and washed several times with water. This off-white solid was dissolved in EtOAc (200 mL), dried over Na_2SO_4 and concentrated to dryness under reduced pressure to give the desired product as a pale purple/brown solid (9.71 g, 79% yield). ^1H NMR (400 MHz, CDCl_3) δ 7.85 (br s, 2H), 7.75 (dd, J = 0.4, 8.1 Hz, 1H), 7.35 (ddd, J = 1.2, 6.9, 8.4 Hz, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.10 (ddd, J = 1.0, 6.9, 8.1 Hz, 1H), 3.96 (s, 3H).

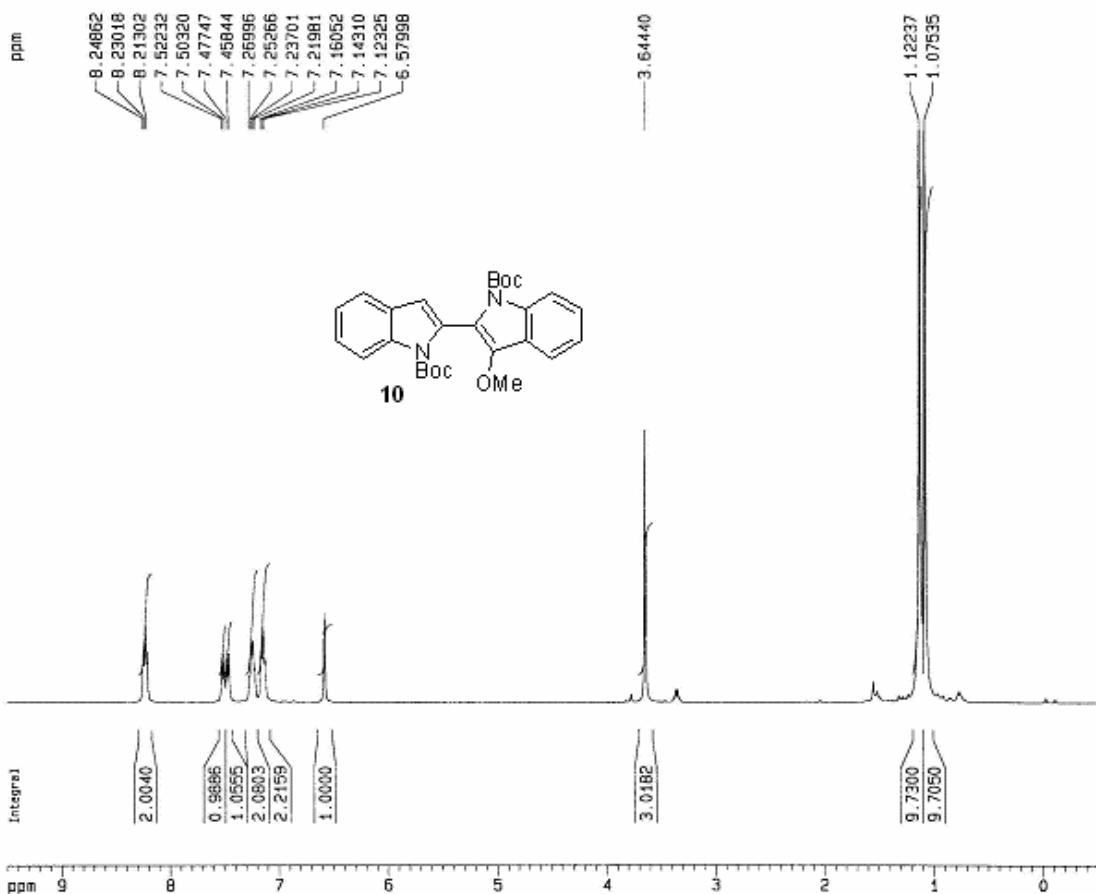


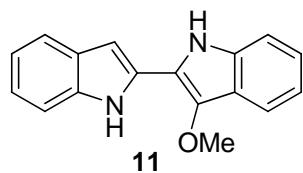
Methyl 3-Methoxy-1H-indole-2-carboxylate (5): To a mixture of methoxyindole **4** (2.26 g, 11.8 mmol) and K_2CO_3 (1.80 g, 1.26 mmol) was added acetone (60 mL) followed by dimethyl sulfate (3.4 mL, 35.7 mmol). The reaction mixture was stirred at room temperature for 18 h, and then concentrated to dryness under reduced pressure. The crude residue was dissolved in EtOAc (50 mL) and poured into water (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 30 mL). The organic extracts were combined, dried over Na_2SO_4 and concentrated to dryness under reduced pressure. The crude product was purified by flash chromatography on SiO_2 (1:4 and 1:2 ether/hexanes) to give the desired product as a white solid (2.20 g, 91% yield). ^1H NMR (400 MHz, CDCl_3) δ 9.00 (br s, 1H), 7.75 (dd, J = 0.8, 8.2 Hz, 1H), 7.32-7.25 (m, 2H), 7.07 (ddd, J = 1.3, 6.6, 8.1 Hz, 1H), 4.12 (s, 3H), 3.94 (s, 3H); LRMS(ESI) m/z (relative intensity) 228.1 (100%, $\text{M}+\text{Na}^+$).

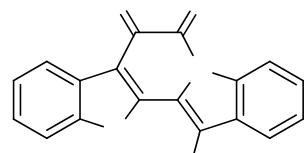


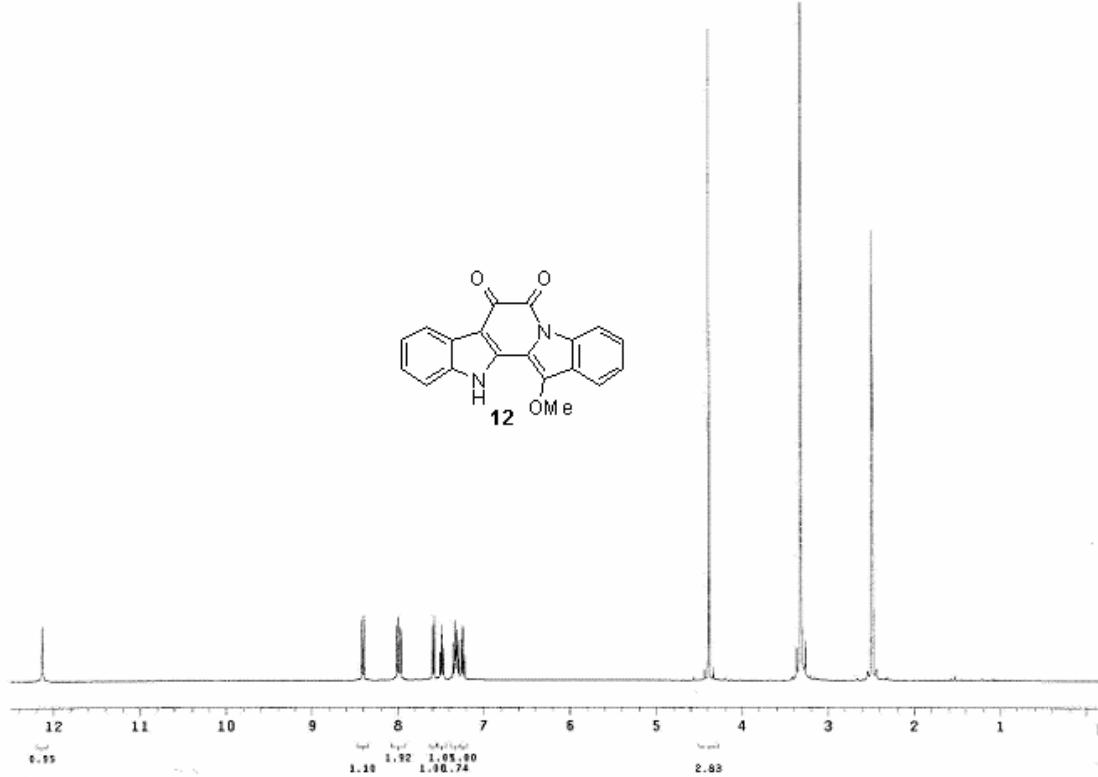
3-Methoxyindole (6): To a solution of methoxyindole **5** (700 mg, 3.41 mmol) in EtOH was added 1 M aq. LiOH solution (6.8 mL, 6.8 mmol). The reaction mixture was heated at reflux for 1 h. It was then allowed to cool to room temperature, diluted with EtOAc (20 mL) and poured into ice cold 1 M HCl (10 mL). The organic layer was separated


and the aqueous layer was extracted with EtOAc (20 mL). The organic extracts were combined, dried over Na_2SO_4 and concentrated to dryness under reduced pressure to give a white solid. To this solid was added Cu powder (28 mg, 0.44 mmol) followed by distilled quinoline (1.7 mL). The reaction mixture was heated to 200°C for 1 h. It was then allowed to cool to room temperature, diluted with EtOAc (50 mL) and poured into ice-cooled 1 M HCl (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (20 mL). The organic extracts were combined, dried over Na_2SO_4 and concentrated to dryness under reduced pressure. The crude residue was purified by flash chromatography on SiO_2 (1:4, 1:3 and 1:2 ether/hexanes) to give the desired product as a brown liquid (440 mg, 88% yield over 2 steps). ^1H NMR (400 MHz, CDCl_3) δ 7.65 (dd, J = 0.8, 7.9 Hz, 1H), 7.33 (br s, 1H), 7.61 (s, 1H), 7.17-7.10 (m, 2H), 7.05 (ddd, J = 1.7, 6.4, 8.0 Hz, 1H), 3.79 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 141.7, 134.2, 122.6, 119.3, 118.7, 117.7, 111.2, 104.2, 58.0; LRMS(ESI) m/z (relative intensity) 148.1 (88%, $\text{M}+\text{H}^+$).


N-Boc-3-Methoxyindole (7): To a solution of 3-methoxyindole (**6**) (299 mg, 2.03 mmol) in CH_3CN (10 mL) was added DMAP (25 mg, 0.20 mmol) followed by Boc_2O (532 mg, 2.44 mmol). The reaction mixture was stirred at room temperature for 1 h. It was concentrated to dryness and the crude residue was purified by flash chromatography on SiO_2 (1-3% ether in hexanes) to give the desired product as a clear and colorless oil (475 mg, 95% yield). ^1H NMR (400 MHz, CDCl_3) δ 8.09 (br s, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 6.95 (br s, 1H), 3.85 (s, 3H), 1.64 (s, 9H); ^{13}C NMR (100 MHz, CDCl_3) δ 149.9, 144.6, 133.7, 125.1, 123.7, 122.1, 117.9, 115.1, 103.1, 83.0, 57.4, 28.1.


N-Boc-2-Bromo-3-Methoxyindole (8): To a solution of *N*-Boc-3-methoxyindole **7** (300 mg, 1.21 mmol) in CCl_4 (5 mL) was added NBS (270 mg, 1.25 mmol). The resulting suspension was stirred at room temperature under N_2 for 15 min. The reaction mixture was filtered through a pad of Celite and washed with CCl_4 (5 mL). The filtrate was concentrated to ~2 mL under reduced pressure. This solution was purified by flash chromatography on basic Al_2O_3 (5% ether in hexanes) to give the desired product as a clear and colorless oil (280 mg, 71% yield). ^1H NMR (400 MHz, CDCl_3) δ 8.13 (d, J = 8.3 Hz, 1H), 7.56 (d, J = 7.7 Hz, 1H), 7.29 (t, J = 7.7 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 4.00 (s, 3H), 1.69 (s, 9H); ^{13}C NMR (75 MHz, CDCl_3) δ 149.3, 143.2, 135.0, 124.9, 123.1, 122.8, 117.0, 115.6, 99.1, 84.9, 61.2, 28.2; LRMS(ESI) m/z (relative intensity) 348.5 (91%, $\text{M}+\text{Na}^+$).


3-Methoxy-*N,N'*-diBoc-2,2'-biindole (10): A Schlenk flask containing indolyl boronic acid **9** (150 mg, 0.57 mmol), for 1 h), $\text{PdCl}_2(\text{PPh}_3)_2$ (27 mg, 0.038 mmol) and Na_2CO_3 (81 mg, 0.76 mmol) was evacuated under high vacuum and then filled with N_2 . A solution of bromoindole **8** (crude, prepared from *N*-Boc methoxyindole **7** (94 mg, 0.38 mmol) and NBS (90 mg, 0.51 mmol) in CCl_4 (4 mL) for 1 h) in 1,4-dioxane (4 mL) was added to the Schlenk flask followed by deoxygenated water (0.8 mL). The reaction mixture was heated at reflux for 1 h. It was then allowed to cool to room temperature and poured into ice water (30 mL). This mixture was extracted with ether (3 x 30 mL). The organic extract was dried over Na_2SO_4 and concentrated to dryness under reduced pressure. The crude residue was purified by flash chromatography on SiO_2 (1-5% ether in hexanes) to give the desired product as a colorless oil (73 mg, 42% yield). ^1H NMR (400 MHz, CDCl_3) δ 8.25-8.21 (m, 2H), 7.51 (d, J = 7.7 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.27-7.22 (m, 2H), 7.16-7.12 (m, 2H), 6.58 (s, 1H), 3.64 (s, 3H), 1.12 (s, 9H), 1.08 (s, 9H); ^{13}C NMR (100 MHz, CDCl_3) δ 150.1, 149.9, 142.8, 137.1, 134.4, 128.9, 128.8, 125.6, 124.8, 123.4, 122.8, 122.5, 120.7, 117.9, 117.4, 115.8, 115.7, 112.5, 83.1, 83.0, 61.1, 27.72, 27.69.


Figure 2: ^1H NMR of bisindole **10** in CDCl_3 .

3-Methoxy-1H,1'H-2,2'-biindole (11): To an ice-cooled solution of bisindole **10** (149 mg, 0.32 mmol) in CH_2Cl_2 (2 mL) was added TFA (2 mL). The reaction mixture was stirred overnight (0°C to rt). The resulting yellow solution was cooled to 0°C and sat. NaHCO_3 (20 mL) was added. This mixture was then extracted with CH_2Cl_2 (3 x 20 mL). The organic extracts were combined, dried over Na_2SO_4 and concentrated to dryness under reduced pressure. The crude residue was purified by flash chromatography on SiO_2 (1:1 ether/hexanes) to give the desired product as a green solid (78 mg, 90% yield). ^1H NMR (400 MHz, CDCl_3) δ 9.34 (br s, 1H), 7.77 (br s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.21-7.15 (m, 2H), 7.12-7.08 (m, 2H), 6.55 (s, 1H), 4.11 (s, 3H).

Dioxo Bisindole 12: To a solution of *N,N'*-unprotected bisindole **11** (78 mg, 0.30 mmol) in ether (5 mL) was added dropwise oxalyl chloride (50 μ L, 0.58 mmol) at 0°C. A red/brown precipitate formed immediately. The reaction mixture was stirred in an ice bath for 1 h. Hexanes (10 mL) and ether (10 mL) were added to the reaction mixture and the liquid phase was carefully removed. This process was repeated two more times to leave the desired product as a red solid (83 mg, 88% yield). 1 H NMR (400 MHz, DMSO-d6) δ 12.13 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.49 (dt, J = 1.0, 7.8 Hz, 1H), 7.33 (dt, J = 0.9, 7.7 Hz, 1H), 7.31 (dt, J = 1.4, 7.6 Hz, 1H), 7.24 (dt, J = 1.1, 7.5 Hz, 1H), 4.38 (s, 3H); 13 C NMR (100 MHz, DMSO-d6) δ 170.4, 155.9, 144.8, 138.8, 137.3, 137.0, 128.9, 125.0, 124.9, 123.9, 123.1, 122.8, 121.8, 120.6, 116.2, 113.0, 112.3, 110.9, 60.9; LRMS(ESI) m/z (relative intensity) 339.2 (100%, $M+Na^+$).

Figure 3: 1 H NMR of dioxo bisindole **12** in DMSO-d6.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกอ.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า) หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

การสังเคราะห์สารยังไม่เสร็จสมบูรณ์และยังไม่ได้ตีพิมพ์ผลงาน

- การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้ โดยภาคธุรกิจ/บุคคลทั่วไป)
- เชิงนโยบาย (มีการกำหนดนโยบายอิองงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลง ระเบียบข้อบังคับหรือวิธีทำงาน)
- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)
- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)

ยังไม่ได้มีการนำผลงานวิจัยไปใช้ประโยชน์

- อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุม วิชาการ หนังสือ การจดสิทธิบัตร)

ยังไม่มี