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Abstract

Project Code : MRG5480017
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Abstract:
The mitogen-activated protein kinases (MAPKs) play an important role in
ischemia/reperfusion (I/R) injury. Previous evidence suggests that p38 MAPK inhibition
before ischemia is cardioprotective. However, whether p38 MAPK inhibition during
ischemia or reperfusion provides cardioprotection is not well known. We tested the
hypothesis that p38MAPK inhibition at different times during I/R protects the heart from
arrhythmias, reduces the infarct size, attenuates ventricular dysfunction, and reduced
I/R induced cardiac mitochondrial dysfunction. Adult Wistar rats were subject to a 30-
minute left anterior descending coronary artery occlusion, followed by a 120-minute
reperfusion. A p38 MAPK inhibitor, SB203580, was given intravenously before left
anterior descending coronary artery occlusion, during ischemia, or at the onset of
reperfusion. The results showed that SB203580 given either before or during ischemia,
but not at the onset of reperfusion, decreased the ventricular tachycardia/ventricular
fibrillation (VT/VF) incidence and heat shock protein 27 phosphorylation, and increased
connexin 43 phosphorylation. The infarct size and cytochrome c level was decreased in
all SB203580-treated rats. The ventricular function was improved only in SB203580-
pretreated rats. Administration of SB203580 at any time point of I/R injury significantly
attenuated the ROS generation and cardiac mitochondrial swelling. However,

SB203580 given at the onset of reperfusion failed to improve mitochondrial membrane



potential change. Moreover, administration of SB203580 at any time point protected I/R
injury induced mitochondrial ultrastructure rupture. In addition, pre-treatment of
SB203580 significantly reduced the phosphorylation of p38 MAPK, HSP27, p53, CREB,
and (-B-crystalline, decreased Bax expression without any changes in Bcl2 expression,
and reduced cytochrome c¢ and cleaved caspase 3 levels. However, SB203580 given at
the onset of reperfusion could only inhibit the phosphorylation of CREB and (-B-
crystalline, without an effect on apoptotic regulatory proteins. These findings suggest
that timing of p38 MAPK inhibition with respect to onset of ischemia is an important

determinant of therapeutic efficacy and cardiac mitochondria protection.

Keywords : p38 MAPK, SB203580, ischemia/reperfusion injury, arrhythmias,

mitochondrial functions



Executive summary

Ischemic Heart Disease is predicted to be the major cause of death among the population around
the world in 2030. This phenomenon seems to be happened everywhere in the world, not only in
developed countries. Some recent studies showed that ischemic heart disease has become one of

the major causes of death in Thai population.

Myocardial ischemia therefore exists when the reduction of coronary flow is so severe that the
supply of oxygen to the myocardium is inadequate for the oxygen demands of the tissue. This
results in the accumulation of metabolites in the ischemic region. Overwhelming severe and
prolonged ischemia finally results in cellular necrosis. It has been known that myocardial ischemia is
a good stimulant of 38kDa mitogen activated protein kinase (p38 MAPK). Activation of this p38-
MAPK resulted in many cellular responses, which predominantly cause cellular necrosis. Moreover, it
has been demonstrated that ischemia followed by reperfusion results in more profound p38-MAPK
activation and also plays a more significant role in subsequent myocardial injury. Therefore, it has
been thought that inhibition of p38-MAPK in myocardial ischemia/reperfusion could have therapeutic
potential. This idea is supported by the evidence that inhibition of p38-MAPK activation and its
activity by pharmacological inhibitor, such as SB203580, could reduce the infarct size and improve
cardiac function. Although the knowledge that p38 activation is aggravated by myocardial
ischemia/reperfusion injury, there are some evidence lighted up the contrary data suggested that
activation of p38 is beneficial and protect the heart from ischemic damage. However, the advantage
of p38 activation seems to less convincing according to the lesser number of publications that
supported the idea. Finally, there is an attempt to use the p38 MAPK inhibitor as therapeutic drug,

which is now entering the pre-clinical study for acute coronary syndrome.

The information that demonstrated beneficial outcome of p38 inhibition using pharmacological
inhibitors was mostly come from the experiment with pre-ischemic treatment of inhibitor.
Nevertheless, the role of p38-MAPK activation and the consequences of its inhibition in postischemic
and reperfusion period, especially in an in vivo model, have not been intensively determined. While
having insufficient information, it must be aware that the inhibitor drug is not safe enough to use in
real patients. Therefore, it will be more clinically useful to know if inhibition of p38-MAPK activation
at postischemic state such as at reperfusion period will provide cardioprotective effect. Intensive
studies in an in vivo model will provide some useful information closely related to the actual

physiological events occur in the body.



Objectives
1. To determine the effect of SB203580 on cardiac physiology, functions, and sensitivity to
infarction, in rat hearts subjected to in vivo ischemia/reperfusion.
2. To determine the effect of SB203580 on intracellular biochemical alterations in rat heart
subjected to in vivo ischemia/reperfusion.
3. To determine the mechanism and protective effect of SB203580 on mitochondrial

function after in vivo ischemia/reperfusion injury

Research Methodology

1. Preparation of rat myocardial ischemia/reperfusion (I/R)

Rats were anesthetized using an intramuscular injection of zolitii (50 mg/kg) and
xylazine (0.15 ml/kg). To assess the adequacy of anesthesia, the parameters such as
responsiveness, blood pressure and heart rate (HR) were monitored throughout the surgical
procedures. Tracheostomy was performed, and the rat was ventilated with room air from a
positive ventilator (Harvard Apparatus, model 683, Massachusetts, USA), which was started
immediately with a tidal volume of 8-10% of body weight and ventilator rate of 70-110
breaths/min to maintain PCO,, PO,, and pH parameters under physiological condition.(1)
The electrocardiogram (ECG) lead Il was recorded throughout the experiment. The right
carotid artery was cannulated for measuring the left ventricular (LV) pressure and volume
using the pressure-volume (P-V) conductance catheter (SciSense, Ontario, Canada). The
left femoral vein was cannulated for the administration of drug or vehicle. A left
thoracotomy was performed via the fourth intercostal space to expose the heart, and the
pericardium was opened. The left anterior descending coronary artery (LAD) was identified
and ligated at approximately 2 mm from its origin by a 5-0 silk suture with a traumatic
needle.(2) Both ends of the thread were passed through a small vinyl tube to form a
snare.(2) Ischemia was confirmed by an ST elevation on the ECG and the change in color
of the myocardial tissue of the ischemic area. After 30 min of ischemia, the ligature was
loosened, and the ischemic myocardium was reperfused for 120 min. At the end of the
protocol, the hearts were quickly excised when the animals were deeply anesthesized.
Sham-operated animals received all of the above described surgical procedures, except that

no LAD occlusion was performed.

2. Experimental group assignment

Seventy-six rats were used in this study. Rats were randomly allocated to one of seven
groups (Figure 1). In a sham group (n=4), surgery was done without LAD occlusion. In the
I/R group, rats were subject to a 30-min LAD occlusion followed by a 120-min reperfusion,

and were divided into six subgroups (n=12/group) as illustrated in Figure 1A. In these six I/R



subgroups, rats were assigned to receive either vehicle (normal saline solution) or 2-mg/kg
SB203580HCI (Tocris, Ellisville), a p38 MAPK inhibitor, intravenously at 3 different time points
of I/R: 1) 15 min before ischemia (pretreatment), 2) 15 min after the LAD occlusion (during
ischemia), or 3) at the onset of reperfusion.(Ref) Vehicle or drug of the same volume was

administered intravenously via the femoral vein at 0.33 ml/min for 3 min.

Figure 1: Study protocol and arrhythmia scores. Studyprotocol for experimental
groups and timing of SB203580 (SB) or normal saline solution (vehicle, V) administration
(A) and effect of SB203580 on the arrhythmia scores in ischemia/reperfusion (I/R) rats
(B). *p<0.05 vs. vehicle group.

3. Arrhythmia determination

After surgical preparation, the ECG lead Il was recorded using PowerLab 4/25T
(ADInstruments, Inc.). Arrhythmias were characterized in accordance with the Lambeth
Conventions,(3) and the scores were tabulated for the entire experimental period using a
score described previously by Curtis and Walker. The score was based on the frequency
and duration of arrhythmias detected (1 was the lowest and 5 was the highest arrhythmia
incidence).(4) The criteria of arrhythmia score was as follows: 0: <50 ventricular premature
beats; 1: 50-499 ventricular premature beats; 2: > 500 ventricular premature beats and/or

one episode of spontaneously reverting ventricular tachycardia or ventricular fibrillation; 3:



more than one episode of spontaneously reverting ventricular tachycardia or fibrillation (<1
min total combined duration); 4: 1-2 min of total combined ventricular tachycardia or

fibrillation; 5: >2 min of ventricular tachycardia or fibrillation.

4. Cardiac function determination

The heart rate (HR), end-systolic and end-diastolic pressure (ESP, EDP), maximum
and minimum pressure (P, ..., Pmin), maximal (dP/dt,,,) and minimum (dP/dt.;,) slope of LV
pressure waveform, stroke volume (SV), cardiac output (CO) and stroke work (SW) were
measured and recorded using the PV loop system (SciSense, Ontario, Canada), and were
assessed 15 min before the LAD occlusion (baseline), after 30 min of ischemia and at 90

min of the reperfusion period.

5. Infarct size determination

At the end of each experiment, the heart was excised and mounted on the modified
Langendorff apparatus via the aorta. Cold saline solution was used to flush out the blood,
after which the LAD was re-occluded and 1-ml Evans blue dye (0.5%) was injected to
define the area at risk. Then, the hearts were frozen and sliced from apex to base into 7-8
transverse sections of approximately 1-mm thickness. Heart slices were incubated in 1%
buffered 2,3,5-triphenyltetrazolium chloride (TTC) (pH 7.4) at 37°C for at least 15 min to
define the necrotic myocardium, followed by placement in 10% formalin (15-20 hours) to
enhance the contrast between the stained and unstained TTC tissue. The infarct area (TTC
negative) and the non-ischemic area (Evans blue-stained area) were determined by the
Image tool software version 3.0. The infarct size was calculated depending on the weight

of each slice according to Reiss et al.’s formula.

6. Mitochondrial isolation

Mitochondria were freshly isolated from myocardial tissue by differential centrifugation
as describe previously (5). Briefly, ventricular tissue were homogenized in ice-cold isolated
buffer (300 mM sucrose, 0.2 mM EGTA, 56 mM TES, pH 7.2) and centrifuged at 800 x g,
4°C for 5 min. Then, the supernatant were collected and re-centrifuged at 8,800 x g, 4°C
for 5 min. The mitochondrial pellet was washed by resuspending in ice-cold isolation buffer
and re-centrifuged at 8,800 x g, 4°C for 5 min. Mitochondrial protein concentration was
determined by the Bicinchoninic Acid (BCA) method, using bovine serum albumin (BSA) as
a standard. The isolated cardiac mitochondria that harvested from I/R rat hearts with
different time point of SB203580 administration was used to examine mitochondrial swelling,

mitochondrial ROS production, and alteration of mitochondrial membrane potential (ALPm).

7. Determination of mitochondrial swelling

8



To determine the mitochondrial sensitivity to mitochondrial membrane permeability
transition (mPT), the mitochondrial swelling was measured. The isolated cardiac
mitochondria was re-suspended in respiration buffer that consisting of 100 mM KCI, 50 mM
sucrose, 10 mM HEPES, 5 mM KH,PO,. The permeability transition-induced swelling of
mitochondria was measured by rapid loss of the absorbance at A540 nm by
spectrophotometric method. The isolated cardiac mitochondria (0.4 mg/ml) were incubated
with 1.5 ml of respiration buffer, and then measured the decreasing in the absorbance for

30 min at room temperature. The data were represented in arbitrary units of absorbance.

8. Determination of mitochondrial ROS production

It has been known that mitochondrial ROS production increased in many pathological
conditions such as myocardial ischemia/reperfusion and aging (6, 7). Generation of
mitochondrial ROS caused oxidative damage to the cell and finally resulting in cell death.
We tested the hypothesis that SB203580 could protect mitochondrial functions by reducing
the mitochondrial ROS generation. The mitochondrial ROS production was assessed by
measuring the intensity of the fluorescent signal of fluorescent 2',7'—dichlorohydrofluorescein
(DCF), which is converted from non-fluorescent 2’,7° - dichlorofluorescein — diacetate
(DCFH-DA) in the presence of ROS(8). Isolated cardiac mitochondria (0.4 mg/ml) were
incubated with 2 LLM DCFH-DA for 30 min at room temperature. The fluorescence intensity

was determined by fluorescence microplate ready with the excitation at A485 nm and

emission at A530 nm. The ROS level was expressed in arbitrary units of fluorescence

intensity of DCF.

9. Determination of mitochondrial membrane potential changes

One of the molecular responses of mitochondria occurring in myocardial
ischemia/reperfusion injury is an opening of the mitochondrial permeability transition pore
(MPTP), which consequently results in the change of mitochondrial membrane potential
(ALPm), and finally leading to cell death. We tested the hypothesis that treatment of
SB203580 can protect the loss of AWm. The JC-1 or 5,5",6,6’-tetrachloro-1,1’,3,3’-
tetraethylbenzimidazolcarbocyanine iodide is a lipophilic cationic dye that capable of

entering the mitochondrial membrane. Monomeric form of JC-1 could fluoresce in green.
Increasing of mitochondrial membrane potential changes (A‘Pm) causes aggregation of the
dye, which appeared in red fluorescein. Alteration of AW¥m causes changing in red: green

ratio. Isolated cardiac mitochondria (0.4 mg/ml) were incubated with 5 UM JC-1 at 37°C

for 30 min. The fluorescence intensity for monomeric green fluorescein was determined by

fluorescence microplate ready with the excitation at A485 nm and emission at A530 nm,

while the aggregate red fluorescein was determined by fluorescence microplate ready with

the excitation at A485 nm and emission at A590 nm. The ratio of red/green fluorescence



intensity ratio was determined. The decreased red/green fluorescent intensity ratio

indicated mitochondrial membrane depolarization.

10. Identification of cardiac mitochondrial ultrastructure

The mitochondrial pellet was fixed in 2.5% glutaraldehyde at 4°C overnight. Then, the
pellet was rinsed in 0.1 M phosphate buffer (PO,) for 15 min twice and post-fixed in 1%
cacodylate-buffer osmium tetroxide for 2 hr at room temperature. The mitochondrial pellet
was rinsed in 0.1M phosphate buffer (PO,) 5 min twice and was dehydrated in a graded
series of ethanol, 50% ethanol for 5 min twice, 70% ethanol for 5 min twice, 85% ethanol
for 5 min twice, 95% ethanol for 5 min twice and 100% ethanol for 5 min twice, respectively.
After that, the pellet was infiltrated with propylene oxide (PO) for 10 min twice, followed by
the cocktail between resin and PO in 1:2 ratio for 30 min, resin and PO in 1:1 ratio for 60
min and resin for overnight, respectively. On the next day, the pellet was embedded in EM-
bed 812 resin (9). Ultrathin sections were cut with diamond knife, placed in copper grids
and stained with uranyl acetate and lead citrate. The cardiac mitochondria were identified

with transmission electron microscope (TEM).

11. Western blot analysis

At the end of each experiment, the heart was rapidly excised, and then the whole
ventricular tissue was collected, quickly frozen in liquid nitrogen and stored at -80°C until
analysis. Heart proteins were lysed with extraction buffer (20 mmol/L Tris HCI, 1 mmol/L
Naz;VO,, 5 mmol/L NaF) and separated by electrophoresis on 10% or 15% sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and then were transferred onto a
polyvinylidene difluoride (PVDF) membranes. After immunoblots were blocked for 1 h with
5% non-fat dry milk in Tris-buffer saline (pH 7.4) containing 0.1% Tween 20, they were
probed overnight at 4°C with the primary antibodies that recognize total-p38, phospho-p38,
and phospho-HSP27 (Ser82); a downstream substrate of p38 MAPK, connexin 43 (Cx43)
and phospho-Cx43 (Ser368); a marker of intercellular electrical communication, Bcl-2,
cytochrome c¢ (Cell Signaling Technology, Danvers, MA, USA) and Bax (Santa Cruz
Biotechnology, Inc, California, USA); a marker of apoptosis, and actin (Sigma-Aldrich,
Tokyo, Japan); a loading control, phospho-HSP27 (Cell Signaling Technology, Danvers, MA,
USA), total-p53, phospho-p53, total-CREB, phosphor-CREB, total-alpha B-crystalline,
phospho-alpha B-crystalline (Santa Cruz Biotechnology, Inc, California, USA). followed by
1-h of incubation at room temperature with the horseradish peroxidase-conjugated
secondary antibody. The fold phosphorylation of Cx43 at Ser368 per total Cx43 was
measured. The Cx43 antibody detected the total Cx43 protein at the molecular weight that
ranged from 39 to 44 kDa and phosphorylated Cx43 (S368) at molecular weight ranging
from 42 to 46 kDa. The blots were visualized by ECL reagent. The film images of the

western blots were scanned and were analyzed using Image J (NIH image) analysis

10



software. For quantitation of the proteins of interest, phosphorylated proteins were

normalized to total protein expression.

12. Statistical Analysis

All data are expressed as mean + standard error of mean, and statistics were
calculated using SPSS (Statistical Package for Social Sciences, Chicago, IL, USA). Drug-
induced changes in arrhythmia scores, time to VT/VF onset, infarct size, as well as
hemodynamic parameters at baseline, during ischemia, and reperfusion periods were
analyzed using one way ANOVA and followed by a Fisher's Least Significant Difference
(LSD) test. Alterations of protein expression were analyzed using Mann-Whitney U test.
Comparisons between groups for the VT/VF incidence and mortality rate were performed

using a Chi-square test. A p-value < 0.05 was accepted as statistically significant.

11



Results

Occurrence of arrhythmias during I/R

There was no arrhythmia incidence in sham rats. In vehicle-treated I/R rats, before
ischemia, during ischemia or at the onset of reperfusion, arrhythmias were detected and defined as
baseline arrhythmia score (4.2 + 0.3, 4.4 + 0.3 and 3.8 + 0.3, respectively). After treatment with
SB203580 either before LAD occlusion or during ischemia, the arrhythmia scores were significantly
(p<0.05) decreased, compared with the vehicle-treated rats of each group (Figure 2). However,
SB203580 administration at the onset of reperfusion did not reduce the arrhythmia scores (Figure
1B). There were no significant differences in arrhythmia scores among all vehicle control groups.
The occurrence of VT/VF was observed in all of the vehicle-treated groups (Figure 3A). Treatment
of SB203580 either before LAD occlusion or during ischemia significantly reduced the VT/VF
incidence during the whole period of I/R (38% and 33% reduction, respectively) (Figure 2B).
However, SB203580 treatment did not alter the occurrence of VT/VF, when given at the onset of
reperfusion (Figure 3A). The time to VT/VF onset after LAD occlusion was not different when
vehicle or SB203580 was administered before ischemia, during ischemia or at the onset of
reperfusion (vehicle groups; 380 + 17 s, 367 £ 19 s, 391 + 18 s, SB203580 groups; 400 + 15 s, 368
+ 31 s, 358 * 22 s, respectively) (Figure 3B).

P NS W wI WIS YW _— - —_———,—— - — -

ischemia reperfusion

Figure 2: The arrhythmia scores. The effect of SB203580 on the arrhythmia scores in

ischemia/reperfusion (I/R) rats (B). *p<0.05 vs. vehicle group.

12



Figure 3: Arrhythmia determination. The incidence of ventricular tachycardia or ventricular
fibrillation (VT/VF) (A) and time to ventricular tachycardia or ventricular fibrillation (VT/VF) onset (B)

in ischemia/reperfusion rats. *p<0.05 vs. vehicle group.
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SB203580 inhibited p38 MAPK activity

Assessment of the effectiveness of SB203580 to inhibit p38-MAPK activity was performed by
measuring the phosphorylation of downstream substrate HSP27. In I/R rats, the phosphorylation of
HSP27 was significantly (p<0.05) increased in all groups, compared with the sham group (Figure
4A). Administration of SB203580 significantly inhibited p38 MAPK activity, which in turn attenuated
the phosphorylation of its downstream substrate HSP27 when given before and during LAD
occlusion, compared with vehicle-treated groups (Figure 4A). However, SB203580 did not decrease

the level of HSP27 phosphorylation when given at the onset of reperfusion (Figure 4A).

S$B203580 reduced incidence of arrhythmia by increasing connexin 43 phosphorylation

In myocardial ischemia, p38 MAPK activation could cause the dephosphorylation of Cx43,
and induce the loss of cellular communication via gap function, resulting in cardiac arrhythmia. In
the present study, we measured the effect of SB203580 on connexin 43 phosphorylation. The
results showed that_the phosphorylation of Cx43 was significantly (p<0.05) decreased in vehicle I/R
groups, compared with the sham group (Figure 4B). However, SB203580 given before or during
ischemia increased the phosphorylated Cx43, compared to the vehicle-treated group (Figure 4B).

SB203580 given at the onset of reperfusion did not alter the phosphorylated Cx43 (Figure 4B).

Figure 4: HSP27 and connexin 43 phosphorylation. Effects of SB203580 (SB) on myocardial
HSP27 phosphorylation (A) and connexin 43 (Cx43) protein level (B) in heart tissue. Upper panels
indicate representative immunoblots of myocardial rat ventricle tissue from each of the treatment
regimes. Lower panels indicate quantitative data of phosphorylation of HSP27 and Cx43
normalized to total protein. Western blot analysis results were taken from the groups that were
treated with vehicle (V) or SB before ischemia, during ischemia or at the onset of reperfusion in

ischemia/reperfusion rats. {p <0.05 vs. sham group, *p<0.05 vs. vehicle group.
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Infarct size

Administration of SB203580 at any times of I/R (i.e. pretreatment, during ischemia, or at the
onset of reperfusion) significantly decreased the infarct size (30%, 31% and 27% reduction,
respectively), compared with that in the vehicle treated-group (42 £ 4%, 46 = 2% and 45 £ 3%,
respectively) (Figure 5).

Figure 5: Infarct size determination. Effects of SB203580 on the infarct size in
ischemia/reperfusion rats). (A) the percentage of Area at risk/left ventricular volume, (B) The

percentage of infarction/AAR. *p<0.05 vs. vehicle group.

Bax, Bcl-2 and cytochrome c level

The expression of Bax to Bcl-2 and the level of cytochrome ¢ were increased in the vehicle-
treated and SB203580-treated I/R rats, compared to the sham group (Figure 6A and 6B). Although
the infarct size was decreased in the SB203580-treated groups, administration of SB203580 at any
time of I/R injury did not change the ratio of Bax and Bcl-2 expression, compared to the vehicle-
treated rats of the same group (Figure 6A). However, SB203580 administration at any times of I/R
injury, pretreatment, during ischemia, or onset of reperfusion significantly (p<0.05) decreased the
mitochondrial cytochrome c release (6%, 2% and 8% reduction, respectively), compared to that in
the vehicle-treated group (Figure 6B). Furthermore, there was no significant difference in mortality
rate between vehicle and SB203580-treated group either before ischemia, during ischemia or at the
onset of reperfusion (vehicle groups; 8%, 25%, 33% and SB203580 groups; 17%, 33%, 33%,

respectively).
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Figure 6: Bax, Bcl and cytochrome ¢ expression. Immunoblots (upper panels) and quantitation
(lower panels) of Bax and Bcl-2 expression (A) and the expression of mitochondrial cytochrome c¢
release (B) in ventricle hearts treated with SB203580 (SB) before ischemia, during ischemia, or at
the onset of reperfusion in ischemia/reperfusion rats, compared with the vehicle (V) control of each

group {p<0.05 vs. sham group, *p<0.05 vs. vehicle group.

Effect of intervention on hemodynamic parameters

Changes in hemodynamics in the I/R group are summarized in Tables 1-3. At the baseline,
no differences in hemodynamic parameters were found between groups (Table 1). Our results
showed that the end systolic pressure (ESP), and dP/dt,,, were attenuated by the ischemia and
reperfusion. Moreover, the stroke volume and cardiac output were significantly decreased during
ischemia. Pre-treatment of SB203580 partially improved ESP, P, ., Pmin dp/dt,., during ischemic
and reperfusion periods. However, SB203580 administration during ischemia or at the onset of
reperfusion period did not improve the hemodynamic parameters. Although SB203580 treatment
could reduce the infarct size at any given study periods, the cardiac function could be improved only

when SB203580 given prior to ischemia (Tables 2-3).
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p38 MAPK inhibition by SB203580 improved cardiac mitochondrial function

I/R injury caused cardiac mitochondrial swelling by decreasing the absorbance at 540 nm, increasing ROS
production, and mitochondrial membrane depolarization (Figure 7). Administration of SB203580 at any time points
of I/R protocol significantly attenuated cardiac mitochondrial swelling. However, pretreatment of SB203580 was
found to be the most effective timing to prevent cardiac mitochondrial swelling, compared to drug treatment during
ischemia or at the onset of reperfusion (Figure 7A). Administration of SB203580 at any time points in I/R could
also significantly reduce ROS production in cardiac mitochondria caused by I/R injury, compared to the vehicle
control group (Figure 7B). For cardiac mitochondrial membrane potential alteration, we found that administration of
SB203580 prior to ischemia or during ischemia significantly prevented the change of AW caused by I/R injury,
when compared to the vehicle control group (Figure 7C). However, SB203580 administered at the onset of

reperfusion failed to prevent mitochondrial depolarization caused by I/R (Figure 7C).

Figure 7: The effect of SB203580 on cardiac mitochondrial functions. (A) mitochondrial swelling (B)
mitochondrial ROS production, (C) mitochondrial membrane potential, when administration before, during ischemia,
or at the onset of reperfusion in ischemia/reperfusion rats (n=4-7 animals/group). *p<0.05 vs. vehicle group,

#p<0.05 vs. pretreatment group.

Inhibition of p38 MAPK protects I/R-induced cardiac mitochondrial ultrastructure disruption.
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Our results demonstrated that I/R injury not only caused cardiac mitochondrial dysfunction, but also
distorted the cardiac mitochondrial ultrastructure by increasing matrix space and disorganization of cristae (Figure
8A). Administration of SB203580 at any time points could preserve the cardiac mitochondrial ultrastructure from
the disruption caused by I/R (Figure 8B-C). Interestingly, administration of SB203580 prior to ischemia gave the

most effective treatment to protect I/R induced-cardiac mitochondria ultrastructure rupture (Figure 8D).

Figure 8: Effect of SB203580 on mitochondrial ultrastructure. The cardiac mitochondria were isolated from
ischemia/reperfusion rats in the presence of SB203580 before (B), during ischemia (C), or at the onset of

reperfusion (D) (n=4-5 animals/group). *p<0.05 vs. vehicle group.
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p38 MAPK inhibitor, SB203580, protect cardiac mitochondria by attenuation of apoptotic regulatory

molecules activation

Myocardial I/R have been shown to cause activation of p38 MAPK and its activities by phosphorylation of
downstream signaling molecules HSP27. Administration of p38 MAPK inhibitorSB203580, prior to or during
ischemia, significantly reduced p38 MAPK phosphorylation as well as its activity to phosphorylate downstream
substrate HSP27 (Figure 9A-C). However, SB203580 given at the onset of reperfusion could not reduce the p38
MAPK phosphorylation as well as the level of phosphorylated HSP27 (Figure 9A-C). Moreover, we found that
pretreatment of SB203580 significantly inhibited the phosphorylation of p53 and CREB, while SB203580 given
during ischemia failed to inhibit the activation of these two downstream molecules (Figure 9). In addition,
SB203580 given at the onset of reperfusion could significantly inhibit phosphorylation of CREB, but not p53. In
addition, the (-B-crystalline phosphorylation was also significantly inhibited at any time points of SB203580

administration.

Since mitochondria are the key machinery driven cell death, especially the necro-apoptosis in I/R injury, the
effects of SB203580 on apoptotic regulatory molecules such as Bax, Bcl2, caspase 3, and cytochrome ¢ were also
determined. Our results showed that administration of SB203580 prior to or during ischemia, but not at the onset
of reperfusion, significantly decreased Bax expression without any changes in Bcl2 expression level (Figure 10).
Administration of SB203580 significantly reduced the cytochrome c level only when it was given prior to the onset
of ischemia, but failed to change the cytochrome c level when treated during ischemia or at the onset of
reperfusion (Figure 10). Moreover, pretreatment of SB203580 as well as given during ischemia significantly
reduced the level of cleaved caspase 3. However, SB203580 given at the onset of reperfusion failed to prevent

caspase 3 cleavages (Figure 10).
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Figure 9: The effect of SB203580 on p38 MAPK activation and downstream substrates, HSP27, p53, CREB,

and Ol-B-crystalline. The heart homogenate were collected and subjected to Western blot analysis detecting the
activation of interested proteins (A). The quantitation of fold phosphorylation were represented in B-F(n=3

animals/group).
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Figure 10: The effect of SB203580 on apoptotic regulatory proteins. The heart homogenate were collected and
subjected to Western blot analysis detecting the expression of Bax, Bcl2, Cytochrome ¢, and cleaved caspase-3

(A). The quantitation of fold phosphorylation were represented in B-D (n=3 animals/group).
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Discussion and conclusion

The major findings of this study are that in the setting of I/R injury, administration of SB203580 before or
during ischemia decreased the arrhythmia scores, the incidence of VT/VF, the phosphorylation of HSP27 and
increase the Cx43 phosphorylation, whereas SB203580 given at the onset of reperfusion did not provide those
beneficial effects. However, SB203580 decreased the infarct size in all I/R groups. Furthermore, SB203580
reduced cytochrome c release in all I/R groups with the decreasing in total Bax without changes in Bcl-2
expression.__Left ventricular function was improved only when SB203580 was administered prior to ischemia. In
addition, administration of SB203580 before or during ischemia attenuated cardiac mitochondrial dysfunction
caused by I/R as indicated by preventing mitochondrial swelling, reducing mitochondrial ROS generation, and
attenuating mitochondrial membrane potential depolarization. However, given SB203580 at the onset of
reperfusion could attenuate only mitochondrial swelling and ROS production, but failed to prevent the loss of
mitochondrial membrane potential. In addition, inhibition of p38 MAPK activation as well as its activity reduces

activation of p53 and CREB, reduced apoptotic regulatory protein Bax, cytochrome c release, and caspase 3.

p38 MAPK has been shown to be involved in myocardial injury and cell death, and the inhibition of p38
MAPK activation in the ischemic heart has been shown to reduce cell death, infarct size, and attenuate the
degradation of LV function.(10-15) Despite these potential cardioprotective benefits, the effects of p38 MAPK
inhibitor given during myocardial I/R on post-ischemic fatal arrhythmias has never been elucidated. Ischemic-
induced fatal arrhythmias are known to be responsible for high mortality in AMI patients.(16-18) Several studies
demonstrated the beneficial effects of pharmacological interventions on cardiac electrophysiological alterations,
such as decreased VF incidence and prolonged time to the first occurrence of VF during I/R.(19, 20) However,
this is the first study to demonstrate the effect of p38 MAPK inhibitor, SB203580, on cardiac arrhythmias during
myocardial I/R in an in vivo rat model. In I/R rats, SB203580 given before or during ischemia decreased the
incidence of VT/VF and the arrhythmia scores, whereas SB203580 given at the onset of reperfusion did not protect
the heart from arrhythmia during I/R. The possible underlying mechanism of p38 MAPK inhibition in a reduction of
arrhythmia could be due to the improvement in cellular communication via Cx43, which is the major gap junction

protein found in adult mammalian hearts.(21)

During I/R, dephosphorylation of Cx43 occurred, leading to the loss of intercellular electrical
communication via gap junctions in the ischemic heart, results in conduction abnormalities and reentrant
arrhythmias.(22, 23) A previous study also demonstrated that in heterozygous Cx43 knockout mice subjected to
acute ischemia, a higher incidence of arrhythmogenesis including an increase in the frequency of premature
ventricular beats, spontaneous VT, and rapid onset of the first run of VT was observed.(24) Cx43 has been shown
to be regulated by p38 MAPK under ischemia,(25) ischemic preconditioning,(25) and (-adrenergic stimulation.(26,
27) Therefore, under ischemic condition, p38 MAPK activation could lead to dephosphorylation of Cx43,(25)
resulting in decreased gap junction communication and increased occurrence of arrhythmias. However, the actual

link between p38 MAPK, Cx43, and arrhythmogenesis in response to I/R has never been investigated.
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The present study demonstrates that SB203580 given only before or during ischemia in I/R rats increased
the phosphorylation of Cx43 at Ser368, which was associated with decreased arrhythmia scores and VT/VF
incidence in the SB203580-treated rats. Since increased Cx43 phosphorylation at the Ser368 site has been shown
to enhance myocardial resistance to ischemic injury,(28) the increased phosphorylated Cx43 by p38 MAPK
inhibition could be responsible for arrhythmia reduction found in this study. Furthermore, phosphorylation of Cx43
at this site has been shown to limit the infarct size via the gap junction dependent mechanisms.(29) Therefore,
this together with decreased cytochrome c release could be responsible for infarct size reduction found in this
study.

A prior study demonstrated that the activation of p38 MAPK reduced cardiac contractility in cultured rat
cardiomyocytes, and that inhibition of p38 MAPK reversibly enhanced this effect by increasing the myofilament
response to calcium.(30) We observed that timing of p38 MAPK inhibition with respect to onset of ischemia
importantly modulated the effectiveness of the drug; attenuation of left ventricular dysfunction was only observed
when SB203580 was administered prior to onset of ischemia, despite the fact that infarct size was decreased in all
given periods of SB203580. This effect could be due to the protective effect of SB203580 on preventing the p38
MAPK activation which was initiated during ischemia. Therefore, inhibition of p38 MAPK after ischemia, in which

p38 MAPK was already activated, could be too late and thus did not attenuate cardiac dysfunction.

SB203580 action on p38 MAPK activation was confirmed by our findings that SB203580 significantly
inhibited HSP27 phosphorylation, i.e. a downstream substrate of p38 MAPK activity, when given before or during
myocardial I/R. However, its administration at the onset of reperfusion did not inhibit HSP27 phosphorylation. In
myocardial I/R, it has been shown previously that p38 MAPK was activated during ischemia and was reactivated
during reperfusion.(11) Our results that SB203580 effectively decreased HSP27 phosphorylation when given
before ischemia as well as during ischemia but not at reperfusion, indicated that activation of HSP27 during
ischemia occurred late after an LAD occlusion, whereas HSP27 reactivation occurred immediately after
reperfusion. Although SB203580 did not reduce HSP27 phosphorylation when administered at the onset of
reperfusion, it decreased the infarct size and the level of the cytochrome c release. This finding implied that the
effect of SB203580 on the infarct size reduction may occur by means of not only the decreased HSP27
phosphorylation, but also the other downstream transcription factors such as p53,(31) STAT1 (signal transducer
and activator transcription 1),(32) and CHOP (C/EBP-Homologous Protein)(33) which have been shown to involve
in cellular apoptosis. However, the actual mechanism regarding the inhibition of p38 MAPK during reperfusion will
need further investigation in the future.

Previous studies demonstrated that SB203580 reduced the infarct size when it was given prior to ischemia
in both the in vivo,(13, 15) and ex vivo rabbit I/R model.(34) In the present study, our results demonstrated further
the beneficial effect of infarct size reduction by SB203580 given even during ischemia or at the onset of
reperfusion. This beneficial effect was similar to when SB203580 was given before myocardial ischemia. These
findings suggest that myocardial insult leading to myocardial cell death occurred later during reperfusion(35) as
confirmed by equal infarct size reduction by p38 MAPK inhibitor given before or during ischemia and at the onset
of reperfusion. This is also consistent with a previous report that myocardial ischemia alone only provoked
myocardial damage, and that reperfusion activated apoptosis and increased the myocardial injury.(36) In

apoptosis, Bax and Bcl-2 are proteins that play an important role in mitochondrial outer membrane permeabilisation
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pore regulation. Bax promote pore formation on mitochondrial outer membrane, while Bcl-2 prevents this
phenomenon. The releasing of cytochrome ¢ from mitochondria also occurs as process in apoptosis and regulates
cellular morphological alteration in apoptosis. Therefore, Bax, Bcl-2, and cytochrome ¢ have been used as marker
proteins for apoptotic. In the present study, we showed for the first time the direct effect of p38 MAPK inhibitor,
SB203580, on cardiac mitochondrial function, and providing molecular mechanistic insights of cardiac mitochondrial
protection by p38 MAPK inhibition through p5398ax9 cytochrome ¢ ecaspase 3 cascades. Moreover, our
findings suggest the significance of the timing of p38 MAPK inhibition to achieve the effective therapeutic

outcomes.

During I/R injury, cardiac mitochondria loss its function and could contribute to electrical and contractile
dysfunction of the cardiac cell and the whole heart. The excessive formation of ROS during I/R injury has been
shown to induce prolonged-opening of MPTP, dissipates the proton electrochemical gradient or ALPm,
consequently cause ATP insufficiency, leading to further ROS generation, loss of intact cardiac mitochondrial
ultrastructure, and finally resulting in cardiac mitochondrial swelling and rupture. This process then triggers the
apoptotic program due to the leakage of pro-apoptotic molecules from ruptured mitochondria. Therefore prevention

or attenuation the degree of mitochondrial dysfunction caused by I/R injury is one of the fascinating clinical targets.

In the present study, our data show that inhibition of p38 MAPK by pharmacological inhibitor, SB203580,
could inhibit p38 MAPK activation and its activity. Moreover, SB203580 could reduce mitochondrial dysfunction,
damage, and ROS production, and attenuate the mitochondrial stress triggering necro-apoptosis in the heart.
Moreover, our data also suggest the significance of timing of drug administration on prevention of cardiac
mitochondrial dysfunction caused by I/R. Pretreatment of the inhibitor significantly protect I/R induced cardiac
mitochondrial dysfunction, ROS production, ultrastructure damaging, and also attenuate the activation of apoptotic
regulatory molecules. However, treatment of the inhibitor during ischemia or at the onset of reperfusion
demonstrated a partial effect and be in the way that the quicker treatment, the better of protective outcomes. Our
present data show that treatment of SB203580 during ischemia seems to have more benefit to cardiac
mitochondria than given at the onset of reperfusion. This is similar to our previous findings about the effect of
different SB203580 administration on infarct size and the incidence of fatal arrhythmia (37). In fact, given drug
before onset of ischemia seem to be impractical in real life because ischemia is an unpredictable episode. Post-
ischemic period is more likely to be the most effective timing for treatment. Therefore, drug administration soon

after myocardial ischemia should give the most clinical benefits and patient outcomes.

In response to ROS and I/R stress, p53 protein has been known to accumulate in the mitochondrial matrix
and directly mediate mitochondrial outer membrane permeabilization (MOMP) and resulting in the release of
cytochrome ¢, which subsequently activating caspase 3(38). This activation cascade caused programmed cell
death or apoptosis. Recently, a novel role of p53 in mitochondria has been reported. p53 accumulation during I/R
injury caused MPTP opening, leading to the influx of ions, which resulting in AWm dissipation, attenuation of the
oxidative phosphorylation, and ATP depletion(38). The mitochondrial swelling and rupture further caused
sequestered cell death factor releasing, which then orchestrated the cell death. Therefore, p53 activation in I/R is

considered as a key molecule to trigger cellular necro-apoptosis(39). It has been reported that p53 could be
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activated by p38 MAPK(40-42), and mediated cell death(43). In p38'/' cells, phosphorylation of p53 at ser15 was
decreased and contributed to down regulation of Bax protein level in cardiomyocytes (44), suggesting the role of
p38 MAPK in p53-Bax regulation. Moreover, phosphorylation of p53 by p38 MAPK has been shown to stabilize
p53 from Mouse double minute 2 homolog (Mdm2) association and trigger p53 degradation by ubiquitin
system(45). Therefore, based on our data, inhibition of p38 MAPK by SB203580 reduced p53 activation, and Bax
expression level, which in turn attenuated the release of cytochrome c level to trigger the activity of caspase 3
mediated apoptosis. These findings suggest the therapeutic effect of p38 MAPK inhibitor on cardiac mitochondria

protection.

The impairment of mitochondrial activity has been found to activate cAMP-responsive element-binding
protein (CREB) phosphorylation at Ser133(46), which in turn activated p53 in transcriptional dependent manner.
Down regulation of p53 could also affect the p53 mediate mitochondrial dysfunction and apoptosis. Therefore,
inhibition of CREB phosphorylation could be a p53 regulatory target. It has been shown that, during ischemia,
CREB is activated as a downstream event of p38 MAPK activation(47). Our findings are consistent with this
report. Inhibition of p38 MAPK by SB203580 could reduce I/R induced CREB phosphorylation. However, we
found that the protein expression level of p53 was not significantly different. This could possibly due to the study
protocol, which aimed to study the acute effect of p38 MAPK inhibitor. The duration of inhibitor treatment as well
as I/R protocol may not be sufficient to initiate the transcriptional processes of p53. Therefore, our findings

suggest that administration of SB203580 could inhibit p53 activation in a transcriptional independent manner.

From our study, p38 MAPK is phosphorylated as a result of myocardial I/R injury and lead to cardiac
mitochondrial dysfunction and ultrastructure rupture, which consequently result in cell death. Inhibition of p38
MAPK activation and its activity by pharmacological inhibitor SB203580 protect cardiac mitochondria from I/R injury
by reducing the phosphorylated p53 in transcription independent manner (Figure 11). Non-phosphorylated p53 is
degraded by ubiquitin proteolytic system, which is insufficient to mediate mitochondrial membrane permeabilization
and reduce myocardial I/R induced cardiac mitochondrial dysfunction (Figure 11). On the other hands, SB203580
reduced phosphorylated p53 level could also influence Bax expression, which reduces mitochondrial membrane
permeability and cytochrome c level, and reduce caspase 3 level (Figure 11). These mechanistic insight of
SB203580 on cardiac mitochondria explain the cardioprotective effect of p38 MAPK inhibition in myocardial I/R.
Another possible explanation concerning the cardiac mitochondria protective effect of SB203580 is the attenuation
of the voltage dependent anion channel (VDAC) phosphorylation, which is a porin protein involved in mitochondrial
regulator of cell survival(48-51). Phosphorylation of VDAC-1 facilitates other protein binding in MPTP and
mediates mitochondrial damage. Schwertz et al reported that VDAC-1 was a downstream substrate of p38 MAPK
during I/R injury (52). Inhibition of p38 MAPK by PD169316 significantly reduced phosphorylation of VDAC-1, and
reduced cardiac cell injury (52). However, the effect of SB203580 on VDAC-1 phosphorylation in cardiac

mitochondrial from myocardial I/R model need to be further investigated.
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Figure 6: The mechanistic pathway of I/R activate p38 MAPK and downstream activation involving
mitochondrial trigger cell death. Myocardial | /R injury cause p38 MAPK activation, which are consequently,
activate p53 phosphorylation. Phosphorylated p53 stabilized and accumulated in mitochondrial matrix during I/R
injury and mediate MPTP opening. On the other hand, activation of p53 could activate Bax expression, which
regulates cytochrome c release, and activation of caspase 3. P38 MAPK can also phosphorylate CREB, which in
turn regulate p53 pathway in transcription dependent manner. Inhibition of p38 MAPK by SB203580 could reduce
p53 phosphorylation, CREB phosphorylation and then protect mitochondria from injury and cell death.
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Conclusion

In conclusion, this is the first report to demonstrate that p38 MAPK inhibition by SB203580 could reduce
cardiac mitochondrial dysfunction caused by I/R injury through the attenuation of p53-mediate mitochondrial trigger
cell death. Moreover, our data suggest that the therapeutic potential of SB203580 to protect cardiac mitochondria

from I/R injury could provide more clinical benefit when given prior to reperfusion.
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Abstract The p38 mitogen-activated protein kinases (p38s)
are Ser/Thr kinases that are activated as a result of cellular
stresses and various pathological conditions, including myo-
cardial ischemia/reperfusion. p38 activation has been shown
to accentuate myocardial injury and impair cardiac function.
Inhibition of p38 activation and its activity has been pro-
posed to be cardioprotective by slowing the rate of myocar-
dial damage and improving cardiac function. The growing
body of evidence on the use of p38 inhibitors as therapeutic
means for responding to heart problems is controversial,
since both beneficial as well as a lack of protective effects
on the heart have been reported. In this review, the outcomes
from studies investigating the effect of p38 inhibitors on the
heart in a wide range of study models, including in vitro, ex
vivo, and in vivo models, are discussed. The correlations of
experimental models with practical clinical usefulness, as
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well as the need for future studies regarding the use of p38
inhibitors, are also addressed.

Keywords p38 Mitogen-activated protein kinase -
Myocardial ischemia/reperfusion - p38 Inhibitors - Therapy

Introduction

Ischemic heart disease is considered to be the leading cause
of death worldwide and is predicted to be the major cause of
deaths in the future [1]. Myocardial ischemia exists when
the reduction of the coronary flow is so severe that the
supply of oxygen to the myocardium is inadequate for the
oxygen demands of the tissue [2], resulting in the accumu-
lation of metabolites in the ischemic region [2]. Severe and
prolonged ischemia ultimately results in cellular necrosis.
Currently, the most efficient method of reducing mortality in
such patients experiencing ischemia is to achieve rapid
reperfusion by thrombolysis or mechanical disruption of
the occlusion. The mortality from acute myocardial infarc-
tion under these circumstances is inversely related to the
amount of myocardial salvage achieved by reperfusion [3].
However, reperfusion itself can also be harmful, since it can
damage the myocardium, a process known as “reperfusion
injury” [4]. Different intracellular signaling pathways are
considered to play a crucial role in the myocardial response
to ischemia/reperfusion injury and consequent pathological
remodeling. Many highly conserved serine/threonine
mitogen-activated protein kinases (MAPK) are activated in
response to myocardial ischemia/reperfusion [5]. In particular,
the p38 MAPK has been widely studied.

A growing body of evidence from preclinical investiga-
tions indicates that the inhibition of p38 activation could
reduce myocardial injury [6], suggesting the therapeutic
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potential of p38 inhibitors in ischemic heart disease. How-
ever, the findings of not all studies consistent, and these
inconsistencies raise the question of whether p38 inhibition
is truly cardioprotective. Only a few published reports on
clinical trials with p38 inhibitor in cardiovascular disorders
are currently available [7—10]. The aim of this article is,
therefore, to comprehensively review the findings of
relevant studies regarding the use of p38 inhibitors in
the cardiac ischemia/reperfusion model, including in
vitro, ex vivo, and in vivo models in both animal and
clinical studies. Findings both consistent and inconsis-
tent with the therapeutic potential of p38 inhibition are
discussed, and the future direction of p38 inhibitor therapy
in the cardiac ischemia/reperfusion model is addressed in the
hope of elucidating the possible usefulness of p38 inhibitors in
patients in the future.

Biological and biochemical properties of p38

The p38 MAPK is a family of serine/threonine protein
kinases that plays an important role in cellular responses to
external stress signaling and also functions in many cellular
processes, including inflammation, cell differentiation, cell
growth and death [11]. The human p38 was originally
isolated as a 38-kDa protein that is rapidly tyrosine phos-
phorylated in response to lipopolysaccharide stimulation in
human monocytes [11]. It was also identified as a target of a
pyridinyl imidazole drug that blocked the production of
tumor necrosis factor-alpha (TNF«x), and was consequently
called cytokine-suppressive anti-inflammatory drug-binding
protein [11], and as a reactivating kinase for MAP kinase-
activated protein (MAPKAP) kinase-2 [12], Human p38
cDNA cloning revealed that the amino acid sequence of
human p38 is 94% identical to mouse p38 [13, 14].

The activity of p38 is controlled by the dual phosphory-
lation of the Thr'*°-Gly'®'-Tyr'®? motif within the activa-
tion loop/lip [15]. The traditional view is that this dual
phosphorylation event is achieved by upstream, dual spec-
ificity MAPK kinases (MAPKKs) or MKKs. The major
activators of p38 in vivo are MKK3, MKK®6 [16, 17], and
MKK4 [18]. This serial phosphorylation relay from MKKK
to MKK3/6 to p38, and finally to substrates is termed the
“transphosphorylation” mechanism due to the transfer of the
phosphate group from ATP to downstream signaling mole-
cules. The pharmacological inhibitor, SB203580, inhibits
p38 activity and attenuates the phosphorylation processes
downstream of p38 [19, 20]. Although it is unlikely that
SB203580 will inhibit dual phosphorylation of p38 itself,
growing evidence demonstrates that the inhibitory effect of
SB203580 and of structurally related compounds acts on
p38 phosphorylation [21]. These findings could possibly be

@ Springer

explained by the finding that p38 can phosphorylate itself, a
mechanism called “autophosphorylation” [22-24].

There are four isoforms of p38 that have been identified,
including p38 «, 3, v, and 8. Sequence comparisons have
revealed that each p38 isoform has more than 69% identity
within this group, but only 40-45% to the other MAP kinase
family members [25]. Among all isoforms, p38c and {3 are
highly homologous [26] and sensitive to pyridinyl imidazole
molecules, such as SB203580 [27], but they have only 60%
homology with p38y and 6, which are resistant to
SB203580 [27]. p38«x is ubiquitously expressed in several
tissues and is the best characterized and perhaps the most
physiologically relevant kinase involved in inflammatory
responses [26, 28]; it is also the isoform predominantly
involved in myocardial ischemic injury [24].

p38 MAPK activation in myocardial
ischemia/reperfusion

Myocardial ischemia is a potent stimulant of p38 activation,
which is an important pro-apoptotic kinase in cardiomyo-
cytes [29]. Evidence has been accumulating from preclinical
investigations that the inhibition of p38 during prolonged
ischemia slows the rate of infarction/death and inhibits the
production of inflammatory cytokines, such as TNF«,
interleukin-1 (IL-1), and IL-8, which are known to aggra-
vate ischemic injury [6, 30]. In the clinical context, prompt
reperfusion following coronary artery occlusion remains the
most effective intervention to re-establish arterial patency
and reduce ischemic myocardial injury [29]. However,
reperfusion can re-activate p38, perhaps in response to stim-
uli such as reactive oxygen species (ROS) and osmotic
stress [29]. Although this field of research is still evolving,
compelling evidence supports a causative role of p38 in
myocardial injury and dysfunction following ischemia/
reperfusion [29, 31-33]. Many studies have elucidated the
mechanisms, such as apoptosis and inflammation, through
which p38 activation might contribute to ischemia/reperfu-
sion injury [29]. Bogoyevitch et al. were the first to demon-
strate that p38c and 3 isoforms are activated in response to
ischemia/reperfusion in the heart [34]. Later studies using
ectopic gene expression found that the o isoform is impli-
cated in cardiomyocyte apoptosis and that this isoform alone
is sufficient to cause cell death following ischemia [24,
34-36].

Study models of p38 inhibitors on myocardial
ischemia/reperfusion

The pro-apoptotic role of p38 in cardiomyocytes during
ischemic injury has been highlighted in many studies using
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a selective p38 inhibitor [34, 37]. These studies demon-
strated that the inhibition of p38, using pharmacological
inhibitors, could reduce the infarct size [38—43] and improve
cardiac function [40, 42, 44-48] after myocardial infarction.
However, there are some inconsistent findings indicating that
treatment with p38 inhibitor neither reduced the infarct size
nor improved cardiac function and that it abolished the
beneficial effect ofischemic preconditioning [49-53]. These
studies were performed in various model systems, including
multiple in vitro, ex vivo (isolated whole heart), and in vivo
animal models.

Reports of p38 inhibitor in an in vitro model
of ischemia/reperfusion

Reports from in vitro experiments on the p38 inhibitor in the
model of ischemia/reperfusion injury, either a cardiac cell
line or isolated cardiomyocytes from many species, are
summarized in Table 1. In vitro treatment with a p38 inhib-
itor, mainly SB203580, prior to ischemia at concentrations
ranging from 1 to 15 pM was found to protect the cardiac
cells from ischemia/reperfusion injury, suggesting an unde-
sired effect of p38 activation in myocardial ischemia/reper-
fusion [36, 50, 54-63]. However, there have been some
reports of beneficial effects following p38 activation, in
which its activation could lead to the protection against
injury rather than a harmful effect. Nagarkatti et al. [50]
and Weinbrenner et al. [53] showed that the inhibition of
p38 activation before ischemic preconditioning abolished
the protective effect of preconditioning. Interestingly, in
the same published work, applications with the same inhib-
itor and at a similar concentration before and during ische-
mia showed protection of the cardiac cell from ischemic
injury [50]. These inconsistent findings could be due to the
conditions of the heart at the time of p38 inhibition. The
signal transduction cascade of ischemia can be divided into
triggers and mediators. Triggers are important during the
episode of preconditioning ischemia and reperfusion, while
mediators are important during the prolonged index ischemia
[64]. More importantly, the different signal transduction
pathways and the consequences can possibly be due to differ-
ences in p38 downstream signalings or even end-effectors,
which are specifically and differently activated according to
prolonged ischemia or ischemic preconditioning (IPC). Iden-
tification of these specific targets of p38 is a challenge, as this
information could prove helpful in understanding the com-
plexity of p38 signaling, such as cross-talk between kinase
pathways, desensitization to stimulation, and signal amplifi-
cation, and ultimately lead to the discovery of powerful
therapeutic agents with less harmful side effects.

Despite the fact that the in vitro model provides some
valuable mechanistic information, which is also crucial to a
better understanding of the mechanism of p38 activation

during ischemia/reperfusion, and in the hope that this will
allow circumstance-specific inhibition and/or the identifica-
tion of the harmful downstream pathways, it is important to
note that the major limitation of in vitro studies is that they
determine cell viability based on the release of metabolic
enzymes as outcome measures and do not provide sufficient
information on cardiac function. Therefore, studying the
role of p38 in the whole heart would provide much insight
into the function of the heart as an organ in the body.

Reports of p38 inhibitors in an ex vivo model
of ischemia/reperfusion

A summary of ex vivo studies with cardiac ischemia/reper-
fusion is shown in Table 2. Studies of the inhibitory effect of
p38 inhibitors in an ex vivo model were performed with
concentrations of the inhibitor ranging from 1 to 10 puM,
similar to most in vitro experiments. The pre-treatment of
SB203580 and other p38 inhibitors prior to the ischemic
period had a protective effect by reducing infarct size
[38-43] and improving left ventricular (LV) function [40,
42, 44-48]. However, inconsistent findings were also
reported in which inhibitor treatment in low-flow ischemia
failed to reduce the infarct size [65] or abolished the protec-
tive effect of preconditioning [49, 66], which can also be
seen in some in vitro data [50, 53]. There are many factors
that possibly explain these inconsistent findings, such as
dose of the inhibitor, timing of the treatment, study protocol
of ischemia, and the specific animal model. For example,
Gorog et al. [65] demonstrated that treatment with 1 uM of
p38 inhibitor for 5 min before low-flow ischemia in a mouse
model could not reduce the size of the infarct, whereas
treatment with the same type and concentration of inhibitor
in the same animal model for 10—15 min prior to the onset of
ischemia did limit infarct size [43, 67]. However, treatment
with 1 uM of p38 inhibitor for 5 min before ischemia was
able to reduce infarct size in the rabbit model [38], suggest-
ing different effects of the inhibitor in different species. The
timing of the administration of p38 inhibitor in these experi-
ments could be one of the major factors that should be
considered. The concentration of p38 inhibitor used in most
of these studies ranged from 1 to 10 uM, but the outcomes
were apparently inconsistent. Some studies using either 1 or
10 uM p38 inhibitor showed that the therapy was protective
[24, 3841, 43, 4548, 65, 67], whereas others reported no
effect [42, 46, 49, 51]. These results suggest that timing of
p38 inhibition is crucial for its cardioprotective effects dur-
ing cardiac ischemia/reperfusion injury.

Similar to the findings in in vitro studies, inhibition of
p38 activation prior to ischemic preconditioning also abol-
ished the protective effect of preconditioning in an ex vivo
model. In one study using the isolated rat heart model, 10 uM
of'p38 inhibitor given 5 min before the first precondition cycle
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prevented the cardioprotective effect of preconditioning [49].
However, treatment with a tenfold lower concentration of the
same inhibitor for 10 min before ischemia, which is known to
reduce infarct size in a similar animal model, could not abolish
the subsequent protective effect of ischemic preconditioning
[67]. These findings suggest that, in the ischemic precondi-
tioning model, the dosage of the inhibitor has more influence
on the cardioprotection effect than the timing of administra-
tion of the inhibitor. Similar to the finding in the heart of small
rodents, infusion of p38 inhibitor in the isolated rabbit heart
model also exerted a significant cardioprotective effect during
sustained ischemia [38, 46], although this same inhibitor again
blocked the cardioprotective effect of ischemic precondition-
ing [51]. Therefore, it may be concluded that p38 activation
only during sustained ischemia appears to be proapoptotic,
whereas its activation in ischemia preconditioning seemed to
be more anti-apoptosis. Again, this inconsistency could pos-
sibly be explained by p38 activation playing different roles,
namely, as a trigger or mediator, when subjected to different
stimuli.

Reports of p38 inhibitors in an in vivo model
of ischemia/reperfusion

The cardioprotective effect of p38 inhibitor that was dem-
onstrated in in vivo studies was similar to the findings from
both in vitro and ex vivo models. The in vivo study model
provides valuable functional information which is closely
related to the pathophysiology of myocardial ischemia/
reperfusion. To date, in vivo studies on the use of p38
inhibitors have been reported with different doses, modes
of treatment, duration of treatment, and animal species
(Table 3).

Many studies have demonstrated the benefit of p38 inhib-
itors in the in vivo model of sustained ischemia, either in the
small animal or large animal model, where p38 inhibitors
were found to reduce the infarct size [21, 32, 68, 69] and
improve LV function [33, 69-74]. Nevertheless, inconsis-
tent reports do exist, mostly from studies performed in the
large animal model. It is noticeable that, in large animal
models such as pigs or dogs, p38 activation does not appear
to be as clearly proapoptotic as found in rodents [32]. Kaiser
et al. reported that SB239063 reduced the infarct size in the
mouse model, but failed to protect the pig heart from ische-
mic injury [32]. The failure of the p38 inhibitor to protect
the pig heart from ischemic injury was also reported in
another study using different p38 inhibitors, such as BIX-
645 and SB203580 [75]. The potential explanation for these
inconsistent findings could be species, which can be
explained by the concept that signal transduction varies
among species. The findings in the large animal model also
showed some inconsistencies.

@ Springer

The mode of drug administration and degree of coronary
occlusion have been shown to play important roles in the
cardioprotective effects of p38 inhibitor in a large animal
model [75, 76]. Intracoronary infusion of SB203580 in low-
flow ischemia failed to reduce the infarct size and limited
the beneficial effect of IPC [75], whereas an intramyocardial
injection of SB203580 in the ischemic area in complete
coronary occlusion was able to reduce infarct size and did
not abolish the IPC effect [76]. These findings emphasize
the importance of the intensity of the ischemic stimuli
that may cause variable degrees of signal transduction
activation and responses. Nevertheless, in a dog model, the
intracoronary infusion of SB203580 prior to ischemia/reper-
fusion or during IPC failed to reduce the infarct size and
abrogated the protective effect of IPC, whereas the continuous
treatment of SB203580 during sustained ischemia had a car-
dioprotective effect [52]. This report again emphasizes the
importance of the timing and duration of p38 inhibitor admin-
istration in terms of its cardioprotective effect during ische-
mia/reperfusion.

It is widely accepted that an in vivo model is the best
study model to determine the long-term effect of both drugs
and physiological responses. Chronic studies investigating
the long-term (1-14 weeks) effect of p38 inhibitor in ische-
mia/reperfusion have been reported. Most of these studies
demonstrated that long-term treatment with p38 inhibitors
following the induction of myocardial infarction had bene-
ficial effects, such as improved cardiac function [33, 70-74,
77], inhibited infarct expansion [33], reduced scar size [77],
and suppressed myocardial fibrosis [74].

p38 inhibitor: where do we go from here?

The important questions that still need to be clarified are
whether p38 inhibitors really do have therapeutic potential
in real clinical settings and if so, is the background infor-
mation sufficient to ensure that the p38 inhibitor can be used
effectively in real clinical treatment? It is noticeable that the
majority of the experimental findings that initially indicated
the efficiency of p38 inhibitors in reducing myocardial
injury and impaired cardiac function were associated with
pre-ischemic treatment. Prevention of p38 activation by the
inhibitor prior to ischemia seems to be impractical in the
actual clinical setting, as myocardial ischemia is an unpre-
dictable episodic condition. Therefore, the timing of treat-
ment and its therapeutic potential are critical issues that need
to be addressed. It will be clinically more useful if the
inhibition of p38 activation at the postischemic state, which
includes the reperfusion period, can provide a cardioprotec-
tive effect. Nevertheless, the roles of p38 activation and the
consequences of its inhibition in postischemic and reperfu-
sion periods, especially in an in vivo model, have not been
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intensively investigated. Studies in an in vivo model, either
acute or long-term treatment, are essential and will provide
significant and clinically useful information, which may be
used to develop therapeutic strategies during the actual
pathophysiological events that occur in humans.

In addition to the timing of drug administration, another
important issue is the effect of p38 inhibition on potentially
fatal cardiac arrhythmia during myocardial ischemia/reper-
fusion. Although a number of ischemia/reperfusion stud-
ies reported the incidence of fatal arrhythmias during
ischemia/reperfusion [78, 79], no in vivo study has yet
investigated the effect of p38 inhibitors on a lethal
arrhythmia during ischemia/reperfusion. Similar to the
postischemic mortality rate, no work has presented mor-
tality data in animals treated with p38 inhibitors, which
would support the long-term effect of using a p38 inhib-
itor. This crucial information needs to be obtained if the effect
of p38 inhibitors in myocardial ischemia/reperfusion is to be
of significant relevance.

The small molecule inhibitors of p38 have been
studied for almost 20 years, predominantly in terms of
the anti-inflammatory effect of the inhibitors [80]. How-
ever, most of the outcomes of using the p38 inhibitors
in clinical trials have been disappointing as a result of
adverse events stemming from drug toxicity [81]. Al-
though many studies of the p38 inhibitor in myocardial
ischemia seem to support the benefit of the p38 inhib-
itor in reducing myocardial injury and improving cardi-
ac function, the majority of clinical trials with p38
inhibitors have been mainly aimed at studying its anti-
inflammatory effect, not for myocardial infarctions.
Therefore, at this point do we still have faith in the
p38 inhibitor for attenuating cardiac damage in ischemic
heart disease? Although there have been some clinical
trials on a p38 inhibitor in cardiovascular disease
[7-10], only one study has focused on the acute coro-
nary syndrome [82], namely, the first clinical study of the
p38 inhibitor GW856553 or Losmapimod (NCT00910962;
GlaxoSmithKline, London, UK). In this trial, changes in high-
sensitivity C-reactive protein and cardiac biomarkers are be-
ing measured as primary outcomes, as well as the infarct size
and cardiac functions based on magnetic resonance imaging
data in the sub-study [82]. This study is still ongoing, and the
primary outcome data are expected to be available in April
2012 [82]. At the same time, it is necessary to look back to the
pre-clinical data set derived from p38 inhibitors during myo-
cardial ischemia/reperfusion in order to determine whether
there are still some crucial gap(s) of information as these
should be filled in an attempt to obtain useful information.
This is an essential prerequisite to the exploitation of the
wealth of pre-clinical data which suggests that the inhibition
of p38 activation will benefit patients with ischemic heart
disease.
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Inhibition of p38 MAPK During Ischemia, But Not
Reperfusion, Effectively Attenuates Fatal Arrhythmia in
Ischemia/Reperfusion Heart

Sirirat Surinkaew, BSc,* Sarawut Kumphune, PhD,*t Siriporn Chattipakorn, DDS, PhD,*}
and Nipon Chattipakorn, MD, PhD*

Abstract: The mitogen-activated protein kinases (MAPKSs) play an
important role in ischemia/reperfusion (I/R) injury. Previous evidence
suggests that p38 MAPK inhibition before ischemia is cardioprotective.
However, whether p38 MAPK inhibition during ischemia or reperfusion
provides cardioprotection is not well known. We tested the hypothesis
that p38 MAPK inhibition at different times during I/R protects the heart
from arrhythmias, reduces the infarct size, and attenuates ventricular
dysfunction. Adult Wistar rats were subject to a 30-minute left anterior
descending coronary artery occlusion, followed by a 120-minute
reperfusion. A p38 MAPK inhibitor, SB203580, was given intrave-
nously before left anterior descending coronary artery occlusion, during
ischemia, or at the onset of reperfusion. The results showed that
SB203580 given either before or during ischemia, but not at the onset of
reperfusion, decreased the ventricular tachycardia/ventricular fibrillation
(VT/VF) incidence and heat shock protein 27 phosphorylation, and
increased connexin 43 phosphorylation. The infarct size and cytochrome
¢ level was decreased in all SB203580-treated rats, without the alteration
of the total Bax/Bcl-2 expression. The ventricular function was
improved only in SB203580-pretreated rats. These findings suggest that
timing of p38 MAPK inhibition with respect to onset of ischemia is an
important determinant of therapeutic efficacy.

Key Words: p38 MAPK, ischemia/reperfusion injury, arrhythmias
(J Cardiovasc Pharmacol™ 2013;61:133-141)

INTRODUCTION

Acute myocardial infarction (AMI) is the main cause of
death in most countries around the world. The World Health
Organization predicts that the major cause of mortality in
2030 will still be ischemic heart disease.! Currently, the most
effective method of reducing mortality in these patients is
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rapid reperfusion to reduce ischemic injury.> However, myo-
cardial injury from reperfusion has been shown to lead to
ventricular dysfunction, ventricular arrhythmias, and finally
myocardial cell death.>* Therefore, early reperfusion with the
least amount of reperfusion injury and mortality after ische-
mia/reperfusion (I/R) remains an important clinical target.

Multiple mitogen-activated protein kinases (MAPKSs)
are known to play a crucial role in the myocardial response to
cardiac ischemia. Growing evidence suggests p38 MAPK,
one among 5 MAPK cascades, is activated by myocardial
I/R.>® Moreover, the inhibition of p38 MAPK activation,
using direct (selective) agents’ or by other pharmacological
treatments,®® has been shown to reduce myocardial infarct
size and improve myocardial function after I/R injury.
Although a number of studies demonstrated that the inhibition
of p38 MAPK before ischemia was cardioprotective in ische-
mic heart models of isolated perfused rat and rabbit hearts,'°
as well as in the in vivo models of mouse and pig,”" its effect
on cardiac arrhythmias, cardiac function, and the infarct size
administered after ischemia or during reperfusion is still
unclear.'? Because patients with AMI often arrive at the hos-
pital after arterial occlusion, adoption of clinical treatments
such as p38 MAPK inhibition will occur more rapidly if they
can be administered following onset of symptoms.

In the present study, we determined the effects of p38
MAPK inhibitor, SB203580, on arrhythmias, cardiac func-
tion, and infarct size when administered at various times
during I/R periods in the in vivo rat model. We tested the
hypothesis that the inhibition of p38 MAPK after coronary
artery occlusion and during reperfusion can protect the heart
from fatal arrhythmias, reduce the infarct size, and improve
ventricular functions, similar to inhibition of p38 MAPK
before the coronary artery occlusion.

METHODS

Ethical Approval

This study was approved by the Institutional Animal
Care and Use Committees of the Faculty of Medicine, Chiang
Mai University, and the research was conducted in accor-
dance with the internationally accepted principles for labora-
tory animal use and care (NIH publication 85-23, revised in
1985). Adult male Wistar rats weighing 300-350 g were
obtained from the National Animal Center, Salaya Campus,
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Mahidol University, Bangkok, Thailand. All animals were fed
with normal rat chow and water ad libitum before the study.

Surgical Preparation of Myocardial I/R Model
in Rats

Rats were anesthetized using an intramuscular injection
of zolitil (50 mg/kg) and xylazine (0.15 mL/kg). To assess the
adequacy of anesthesia, the parameters such as responsiveness,
blood pressure, and heart rate were monitored throughout the
surgical procedures. Tracheostomy was performed, and the rat
was ventilated with room air from a positive ventilator (model
683, Harvard Apparatus, MA), which was started immediately
with a tidal volume of 8%—10% of body weight and ventilator
rate of 70—110 breaths per minute to maintain PCO,, PO,, and
pH parameters under physiological condition.'* The electrocar-
diogram (ECG) lead II was recorded throughout the experiment.
The right carotid artery was cannulated for measuring the
left ventricular (LV) pressure and volume using the pressure—
volume (P-V) conductance catheter (SciSense; Ontario,
Canada). The left femoral vein was cannulated for the admin-
istration of drug or vehicle. A left thoracotomy was per-
formed via the fourth intercostal space to expose the heart,
and the pericardium was opened. The left anterior descending
coronary artery (LAD) was identified and ligated at approxi-
mately 2 mm from its origin by a 5-0 silk suture with a traumatic
needle." Both ends of the thread were passed through a small
vinyl tube to form a snare.'* Ischemia was confirmed by an ST
elevation on the ECG and the change in color of the myocardial
tissue of the ischemic area. After 30 minutes of ischemia, the
ligature was loosened, and the ischemic myocardium was reper-
fused for 120 minutes. At the end of the protocol, the hearts were
quickly excised when the animals were deeply anesthetized.
Sham-operated animals received all the above described surgical
procedures, except that no LAD occlusion was performed.

Experimental Groups

Seventy-six rats were used in this study. Rats were
randomly allocated to 1 of the 7 groups (Fig. 1A). In a sham
group (n = 4), surgery was done without LAD occlusion. In
the I/R group, rats were subject to a 30-minute LAD occlu-
sion followed by a 120-minute reperfusion and were divided
into 6 subgroups (n = 12/group) as illustrated in Figure 1A. In
these six I/R subgroups, rats were assigned to receive either
vehicle (normal saline solution) or 2-mg/kg SB203580HCI
(Tocris, Ellisville, MO),'* a p38 MAPK inhibitor, intrave-
nously at 3 different time points of I/R: (1) 15 minutes before
ischemia (pretreatment), (2) 15 minutes after the LAD occlu-
sion (during ischemia), or (3) at the onset of reperfusion.
Vehicle or drug of the same volume was administered intra-
venously via the femoral vein at 0.33 mL/min for 3 minutes.'*

Arrhythmia Determination

After surgical preparation, the ECG lead II was recorded
using PowerLab 4/25T (AD Instruments, Inc). Arrhythmias were
characterized in accordance with the Lambeth Conventions,'®
and the scores were tabulated for the entire experimental period
using a score described previously by Curtis and Walker.'” The
score was based on the frequency and duration of arrhythmias
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FIGURE 1. Study protocol and arrhythmia scores. Study pro-
tocol for experimental groups and timing of SB203580 (SB) or
normal saline solution (vehicle, V) administration (A) and effect
of SB203580 on the arrhythmia scores in ischemia/reperfusion
(I/R) rats (B). *P < 0.05 versus vehicle group.

detected (1 was the lowest and 5 was the highest arrhythmia
incidence).'® The criteria of arrhythmia score was as fol-
lows: 0: <50 ventricular premature beats; 1: 50-499 ven-
tricular premature beats; 2: >500 ventricular premature
beats and/or one episode of spontaneously reverting ventric-
ular tachycardia or ventricular fibrillation (VT/VF); 3: more
than one episode of spontaneously reverting VT/VF (<1
minute total combined duration); 4: 1-2 minutes of total
combined VT/VF; 5: >2 minutes of VI/VF.!”

Cardiac Function Determination

The heart rate, end-systolic pressure (ESP) and end-
diastolic pressure (EDP), maximum and minimum pressure
(Pmax> Pmin), maximal (dP/dt,.,) and minimum (dP/dt,;,)
slope of LV pressure waveform, stroke volume, cardiac out-
put, and stroke work (SW) were measured and recorded using
the PV loop system (SciSense) and were assessed 15 minutes
before the LAD occlusion (baseline), after 30 minutes of
ischemia, and at 90 minutes of the reperfusion period.

© 2013 Lippincott Williams & Wilkins
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Infarct Size Determination

At the end of each experiment, the heart was excised and
mounted on the modified Langendorff apparatus via the
aorta.'*! Cold saline solution was used to flush out the blood,
after which the LAD was reoccluded and 1-mL Evans blue dye
(0.5%) was injected to define the area at risk.?> Then, the hearts
were frozen and sliced from apex to base into 7-8 transverse
sections of approximately 1-mm thickness.>? Heart slices were
incubated in 1% buffered 2,3,5-triphenyltetrazolium chloride
(TTC) (pH 7.4) at 37°C for at least 15 minutes to define the
necrotic myocardium,** followed by placement in 10% form-
aldehyde (15-20 hours) to enhance the contrast between the
stained and unstained TTC tissue.® The infarct area (TTC
negative) and the nonischemic area (Evans blue—stained area)
were determined by the ImageTool software version 3.0. The
infarct size was calculated depending on the weight of each
slice according to the formula of Reiss et al.**2¢

Western Blot Analysis

At the end of each experiment, the heart was rapidly
excised, and then the whole ventricular tissue was collected,
quickly frozen in liquid nitrogen, and stored at —80°C until
analysis. Heart proteins were lysed with extraction buffer
(20 mmol/L Tris—HCI, 1 mmol/L. Na3VO,, 5 mmol/L. NaF)
and separated by electrophoresis on 10% or 15% sodium dodec-
yl sulfate—polyacrylamide gel electrophoresis and then were
transferred onto a polyvinylidene difluoride (PVDF) membranes.
After immunoblots were blocked for 1 hour with 5% nonfat dry
milk in Tris-buffer saline (pH 7.4) containing 0.1% Tween 20,
they were probed overnight at 4°C with the primary antibodies
that recognize phospho-HSP27 (Ser82); a downstream sub-
strate of p38 MAPK, connexin 43 (Cx43) and phospho-Cx43
(Ser368); a marker of intercellular electrical commun-
ication, Bcl-2, cytochrome ¢ (Cell Signaling Technology, Dan-
vers, MA) and Bax (Santa Cruz Biotechnology, Inc, CA);
a marker of apoptosis, and actin (Sigma-Aldrich, Tokyo, Japan);
a loading control, followed by 1 hour of incubation at room
temperature with the horseradish peroxidase—conjugated second-
ary antibody. The fold phosphorylation of Cx43 at Ser368 per
total Cx43 was measured. The Cx43 antibody detected the total
Cx43 protein at the molecular weight that ranged from 39 to 44
kDa and phosphorylated Cx43 (S368) at molecular weight rang-
ing from 42 to 46 kDa. The blots were visualized by ECL
reagent. The film images of the western blots were scanned
and were analyzed using Image] (NIH image) analysis soft-
ware.”” For quantitation of the proteins of interest, phosphory-
lated proteins were normalized to total protein expression.

Statistical Analysis

All data are expressed as mean * SEM, and statistics
were calculated using SPSS (Statistical Package for Social Sci-
ences, Chicago, IL). Drug-induced changes in arrhythmia scores,
time to VT/VF onset, infarct size, as well as hemodynamic
parameters at baseline, during ischemia, and reperfusion periods
were analyzed using one-way ANOVA and followed by a Fisher
least significant difference (LSD) test. Alterations of protein
expression were analyzed using Mann—Whitney U test. Compar-
isons between groups for the VT/VF incidence and mortality rate

© 2013 Lippincott Williams & Wilkins

were performed using a x? test. P < 0.05 was accepted as
statistically significant.

RESULTS

Occurrence of Arrhythmias During I/R

There was no arrhythmia incidence in sham rats. In
vehicle-treated I/R rats, before ischemia, during ischemia, or
at the onset of reperfusion, arrhythmias were detected and
defined as baseline arrhythmia score (4.2 = 0.3, 44 = 0.3
and 3.8 = 0.3, respectively). After treatment with SB203580
either before LAD occlusion or during ischemia, the arrhyth-
mia scores were significantly (P < 0.05) decreased compared
with the vehicle-treated rats of each group (Fig. 1B). How-
ever, SB203580 administration at the onset of reperfusion did
not reduce the arrhythmia scores (Fig. 1B). There were no
significant differences in arrhythmia scores among all vehicle
control groups. The occurrence of VI/VF was observed in all
the vehicle-treated groups (Fig. 2A). Treatment of SB203580
either before LAD occlusion or during ischemia significantly
reduced the VT/VF incidence during the whole period of I/R
(38% and 33% reduction, respectively) (Fig. 2A). However,
SB203580 treatment did not alter the occurrence of VT/VF,
when given at the onset of reperfusion (Fig. 2A). The time
to VI/VF onset after LAD occlusion was not different
when vehicle or SB203580 was administered before ische-
mia, during ischemia, or at the onset of reperfusion (vehicle
groups; 380 = 17 seconds, 367 * 19 seconds, 391 * 18
seconds, SB203580 groups; 400 * 15 seconds, 368 *= 31
seconds, 358 = 22 seconds, respectively) (Fig. 2B).

SB203580 Inhibited p38 MAPK Activity

Assessment of the effectiveness of SB203580 to inhibit
p38-MAPK activity was performed by measuring the phos-
phorylation of downstream substrate HSP27. In I/R rats, the
phosphorylation of HSP27 was significantly (P < 0.05)
increased in all groups compared with the sham group (Figure
3A). Administration of SB203580 significantly inhibited p38
MAPK activity, which in turn attenuated the phosphorylation
of its downstream substrate HSP27 when given before and
during LAD occlusion compared with vehicle-treated groups
(Fig. 3A). However, SB203580 did not decrease the level of
HSP27 phosphorylation when given at the onset of reperfu-
sion (Fig. 3A).

SB203580 Reduced Incidence of Arrhythmia
by Increasing Cx43 Phosphorylation

In myocardial ischemia, p38 MAPK activation could
cause the dephosphorylation of Cx43 and induce the loss of
cellular communication via gap function, resulting in cardiac
arrhythmia. In the present study, we measured the effect of
SB203580 on Cx43 phosphorylation. The results showed that
the phosphorylation of Cx43 was significantly (P < 0.05)
decreased in vehicle I/R groups compared with the sham
group (Fig. 3B). However, SB203580 given before or during
ischemia increased the phosphorylated Cx43 compared with
the vehicle-treated group (Fig. 3B). SB203580 given at the
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FIGURE 2. Arrhythmia determination. The incidence of VT/VF
(A) and time to VT/VF onset (B) in ischemia/reperfusion rats.
*P < 0.05 versus vehicle group.

FIGURE 3. HSP27 and Cx43 phos-
phorylation. Effects of SB203580
(SB) on myocardial HSP27 phos-
phorylation (A) and Cx43 protein
level (B) in heart tissue. Upper panels
indicate representative immunoblots
of myocardial rat ventricle tissue
from each of the treatment regimes.
Lower panels indicate quantitative
data of phosphorylation of HSP27
and Cx43 normalized to total pro-
tein. Western blot analysis results
were taken from the groups that
were treated with vehicle (V) or SB
before ischemia, during ischemia or
at the onset of reperfusion in ischemia/
reperfusion rats. TP < 0.05 versus
sham group, *P < 0.05 versus vehicle

group.
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onset of reperfusion did not alter the phosphorylated Cx43
(Fig. 3B).

Infarct Size

Administration of SB203580 at any times of I/R
(ie, pretreatment, during ischemia, or at the onset of reperfu-
sion) significantly decreased the infarct size (30%, 31%, and
27% reduction, respectively) compared with that in the vehicle-
treated group (42 = 4%, 46 = 2% and 45 = 3%, respectively)

(Fig. 4).

Bax, Bcl-2, and Cytochrome c Level

The expression of Bax to Bcl-2 and the level of
cytochrome ¢ were increased in the vehicle-treated and
SB203580-treated I/R rats compared with the sham group
(Figs. 5A, B). Although the infarct size was decreased in the
SB203580-treated groups, administration of SB203580 at any
time of I/R injury did not change the ratio of Bax and Bcl-2
expression compared with the vehicle-treated rats of the same
group (Fig. SA). However, SB203580 administration at any
times of I/R injury, pretreatment, during ischemia, or onset of
reperfusion significantly (P < 0.05) decreased the mitochon-
drial cytochrome c release (6%, 2%, and 8% reduction,
respectively) compared with that in the vehicle-treated group
(Fig. 5B). Furthermore, there was no significant difference in
mortality rate between vehicle- and SB203580-treated group
either before ischemia, during ischemia, or at the onset of
reperfusion (vehicle groups: 8%, 25%, and 33%; SB203580
groups, 17%, 33%, and 33%, respectively).

Effect of Intervention on
Hemodynamic Parameters

Changes in hemodynamics in the I/R group are summa-
rized in Tables 1-3. At the baseline, no differences in hemody-
namic parameters were found between groups (Table 1). Our
results showed that the ESP, and dP/dt.,, were attenuated
by the ischemia and reperfusion. Moreover, the stroke volume
and cardiac output were significantly decreased during ischemia.
Pretreatment of SB203580 partially improved ESP, Ppax, Prin,
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FIGURE 4. Infarct size determination. Effects of SB203580 on the
infarct size in ischemia/reperfusion rats). A, The percentage of
AAR/LV volume. B, The percentage of infarction/AAR. *P < 0.05
versus vehicle group. AAR, area at risk; LV, left ventricular.

dp/dt,,.x during ischemic and reperfusion periods. However,
SB203580 administration during ischemia or at the onset of
reperfusion period did not improve the hemodynamic parameters.
Although SB203580 treatment could reduce the infarct size at
any given study periods, the cardiac function could be improved
only when SB203580 given before ischemia (Tables 2, 3).

DISCUSSION

The major findings of this study are that in the setting of
I/R injury, administration of SB203580 before or during
ischemia decreased the arrhythmia scores, the incidence of
VT/VF, the phosphorylation of HSP27, and increase the Cx43
phosphorylation, whereas SB203580 given at the onset of
reperfusion did not provide those beneficial effects. However,
SB203580 decreased the infarct size in all I/R groups.
Furthermore, SB203580 reduced cytochrome c release in all
I/R groups without altering total Bax/Bcl-2 expression. LV

© 2013 Lippincott Williams & Wilkins

function was improved only when SB203580 was adminis-
tered before ischemia.

p38 MAPK has been shown to be involved in
myocardial injury and cell death, and the inhibition of p38
MAPK activation in the ischemic heart has been shown to
reduce cell death, infarct size, and attenuate the degradation
of LV function.>>®!! Despite these potential cardioprotective
benefits, the effects of p38 MAPK inhibitor given during
myocardial I/R on postischemic fatal arrhythmias has never
been elucidated. Ischemic-induced fatal arrhythmias are
known to be responsible for high mortality in AMI
patients.”® 3% Several studies demonstrated the beneficial
effects of pharmacological interventions on cardiac electro-
physiological alterations, such as decreased VF incidence and
prolonged time to the first occurrence of VF during I/R.2>%¢
However, this is the first study to demonstrate the effect of
p38 MAPK inhibitor, SB203580, on cardiac arrhythmias dur-
ing myocardial I/R in an in vivo rat model. In I/R rats,
SB203580 given before or during ischemia decreased the
incidence of VT/VF and the arrhythmia scores, whereas
SB203580 given at the onset of reperfusion did not protect
the heart from arrhythmia during I/R. The possible underlying
mechanism of p38 MAPK inhibition in a reduction of
arrhythmia could be due to the improvement in cellular com-
munication via Cx43, which is the major gap junction protein
found in adult mammalian hearts.*!

During I/R, dephosphorylation of Cx43 occurred, leading
to the loss of intercellular electrical communication via gap
junctions in the ischemic heart, results in conduction abnor-
malities, and reentrant arrhythmias.****> A previous study also
demonstrated that in heterozygous Cx43 knockout mice sub-
jected to acute ischemia, a higher incidence of arrhythmogen-
esis including an increase in the frequency of premature
ventricular beats, spontancous VT, and rapid onset of the first
run of VT was observed.* Cx43 has been shown to be regulated
by p38 MAPK under ischemia,** ischemic preconditioning,*
and a-adrenergic stimulation.>>*® Therefore, under ischemic
condition, p38 MAPK activation could lead to dephosphoryla-
tion of Cx43,** resulting in decreased gap junction communi-
cation and increased occurrence of arrhythmias. However, the
actual link between p38 MAPK, Cx43, and arrhythmogenesis
in response to I/R has never been investigated.

The present study demonstrates that SB203580 given
only before or during ischemia in I/R rats increased the
phosphorylation of Cx43 at Ser368, which was associated
with decreased arrhythmia scores and VT/VF incidence in the
SB203580-treated rats. Because increased Cx43 phosphory-
lation at the Ser368 site has been shown to enhance
myocardial resistance to ischemic injury,>’ the increased
phosphorylated Cx43 by p38 MAPK inhibition could be
responsible for arrhythmia reduction found in this study. Fur-
thermore, phosphorylation of Cx43 at this site has been
shown to limit the infarct size via the gap junction—dependent
mechanisms.*® Therefore, this together with decreased cyto-
chrome c release could be responsible for infarct size reduc-
tion found in this study.

A previous study demonstrated that the activation of
p38 MAPK reduced cardiac contractility in cultured rat
cardiomyocytes, and that inhibition of p38 MAPK reversibly
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FIGURE 5. Bax, Bcl and cytochrome c
expression.  Immunoblots  (upper
panels) and quantitation (lower
panels) of Bax and Bcl-2 expression
(A) and the expression of mito-
chondrial cytochrome c release (B)
in ventricle hearts treated with
SB203580 (SB) before ischemia,
during ischemia, or at the onset of
reperfusion in ischemia/reperfusion
rats, compared with the vehicle (V)
control of each group 1P < 0.05
versus sham group, *P < 0.05 versus
vehicle group.

enhanced this effect by increasing the myofilament response
to calcium.** We observed that timing of p38 MAPK inhibi-
tion with respect to onset of ischemia importantly modulated
the effectiveness of the drug; attenuation of LV dysfunction
was only observed when SB203580 was administered before
the onset of ischemia, despite the fact that infarct size was
decreased in all given periods of SB203580. This effect could
be because of the protective effect of SB203580 on prevent-
ing the p38 MAPK activation, which was initiated during
ischemia. Therefore, inhibition of p38 MAPK after ischemia,
in which p38 MAPK was already activated, could be too late
and thus did not attenuate cardiac dysfunction.

SB203580 action on p38 MAPK activation was
confirmed by our findings that SB203580 significantly
inhibited HSP27 phosphorylation, that is,. a downstream
substrate of p38 MAPK activity, when given before or
during myocardial I/R. However, its administration at the
onset of reperfusion did not inhibit HSP27 phosphorylation.
In myocardial I/R, it has been shown previously that p38

MAPK was activated during ischemia and was reactivated
during reperfusion.” Our results that SB203580 effectively
decreased HSP27 phosphorylation when given before ische-
mia as well as during ischemia but not at reperfusion, indi-
cated that activation of HSP27 during ischemia occurred
late after an LAD occlusion, whereas HSP27 reactivation
occurred immediately after reperfusion.  Although
SB203580 did not reduce HSP27 phosphorylation when
administered at the onset of reperfusion, it decreased the
infarct size and the level of the cytochrome c release. This
finding implied that the effect of SB203580 on the infarct
size reduction may occur by means of not only the decreased
HSP27 phosphorylation but also the other downstream tran-
scription factors such as p53,*° STATI (signal transducer
and activator transcription 1),*' and CHOP (C/EBP homol-
ogous protein),** which have been shown to involve in cel-
lular apoptosis. However, the actual mechanism regarding
the inhibition of p38 MAPK during reperfusion will need
further investigation in the future.

TABLE 1. Cardiac Function Parameters at Baseline in I/R Rats Treated With Vehicle or SB203580

Pretreatment During Ischemia Onset of Reperfusion
Hemodynamic Parameters \% SB \4 SB \% SB
HR (beats/min) 264 + 14 271 = 18 265 = 20 274 = 12 262 = 10 266 = 8
ESP (mm Hg) 148 = 7 164 = 14 144 = 6 149 = 12 141 =9 157 = 8
EDP (mm Hg) 154 136 137 136 14=6 14=*3
Pax (mm Hg) 148 = 6 167 = 13 150 = 6 150 = 12 146 = 8 161 =7
Piin (mm Hg) 49 = 4 51 £3 47 = 4 44 =6 46 £ 5 44 = 4
dP/dt ;. (mm Hg/s) 9577 = 752 10,316 = 631 8947 = 1134 8766 = 1169 7948 = 1576 8882 = 777
dP/dt,;, (mm Hg/s) —4304 = 399 —4572 * 467 —4253 *= 359 —4267 = 413 —4442 * 290 —4978 = 391
Stroke volume (mL) 0.17 £ 0.01 0.20 = 0.02 0.21 £ 0.02 0.19 £ 0.03 0.18 = 0.02 0.18 = 0.01
Cardiac output (mL/min) 50 = 4 557 48 £ 7 50 £9 44 £ 4 49 £5
Stroke work (mm Hg/mL) 16 £ 2 21 £3 18 2 155 14 x2 18 £2

*V, vehicle; SB, SB203580-p38 MAPK inhibitor; HR, heart rate; Py, maximum pressure; P, minimum pressure; dP/dt,,,, maximal slope of left ventricle pressure waveform;

dP/dt,,;,, maximum slope of left ventricle pressure waveform.
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TABLE 2. Cardiac Function Parameters at Ischemic Period in I/R Rats Treated With Vehicle or SB203580

Pretreatment During Ischemia Onset of Reperfusion
Hemodynamic Parameters A\ SB \% SB \4 SB
HR (beats/min) 251 = 15 274 = 23 249 = 14 280 = 8 269 = 15 290 = 20
ESP (mm Hg) 124 £ 9 155 = 6* 141 £ 10 126 + 12 131 = 10 133 £ 7
EDP (mm Hg) 154 18 =4 157 159 155 14 =4
Ppax (mm Hg) 133 £ 7 159 + 6* 145+ 9 131 = 11 134 = 10 138 = 8
Pmin (mm Hg) 51 =4 61 = 2* 516 46 = 7 50=*5 49 + 4
dP/dt;, (mm Hg/s) 9580 = 768 12,246 * 414* 10,130 = 1144 9281 = 1366 10,063 = 950 9822 + 851
dP/dt,i, (mm Hg/s) —3611 £ 561 —4093 *= 320 —3875 £ 495 —3888 = 503 —3430 = 238 —3759 * 444
Stroke volume (mL) 0.09 = 0.01 0.11 = 0.03 0.17 £ 0.02 0.12 = 0.03 0.09 = 0.02 0.10 = 0.01
Cardiac output (mL/min) 25 %5 26 £ 4 395 35 £8 246 24 £3
Stroke work (mm Hg/mL) 7*1 10 =2 11 £2 9+3 8§ +£4 8§ +2

*P < 0.05 versus vehicle.

V, vehicle; SB, SB203580-p38 MAPK inhibitor; HR, heart rate; P,,,,,, maximum pressure; P,,;,, minimum pressure; dP/dt,,,,, maximal slope of left ventricle pressure waveform;

dP/dt,;,, maximum slope of left ventricle pressure waveform.

Previous studies demonstrated that SB203580 reduced
the infarct size when it was given before ischemia in both the
in vivo”'" and ex vivo rabbit I/R model.'® In the present
study, our results demonstrated further the beneficial effect
of infarct size reduction by SB203580 given even during
ischemia or at the onset of reperfusion. This beneficial effect
was similar to when SB203580 was given before myocardial
ischemia. These findings suggest that myocardial insult lead-
ing to myocardial cell death occurred later during reperfu-
sion** as confirmed by equal infarct size reduction by p38
MAPK inhibitor given before or during ischemia and at the
onset of reperfusion. This is also consistent with a previous
report that myocardial ischemia alone only provoked myocar-
dial damage, and that reperfusion activated apoptosis and
increased the myocardial injury.** In apoptosis, Bax and
Bcl-2 are proteins that play an important role in mitochondrial
outer membrane permeabilization pore regulation. Bax pro-
mote pore formation on mitochondrial outer membrane,
whereas Bcl-2 prevents this phenomenon. The releasing of
cytochrome ¢ from mitochondria also occurs as a process in

apoptosis and regulates cellular morphological alteration in
apoptosis. Therefore, Bax, Bcl-2, and cytochrome c have
been used as marker proteins for apoptotic. Our results found
that cytochrome c¢ release was also decreased in all
SB203580-treated groups, directly associated with infarct size
reduction. However, the decreased infarct size was not related
to total Bax/Bcl-2 expression. It is possible that this
unchanged pattern of Bax and Bcl-2 was the result of the
limitation of the method used in this study because we used
the whole heart homogenate, rather than proteins extracted
from the remote area, area at risk, and the infarct area. Fur-
thermore, direct apoptosis assessment such as TUNEL assay
was not performed in this study. The reduction in cytochrome
¢ release was small and may not have significant physiolog-
ical effect in this study. Nevertheless, our findings that
SB203580 reduced cytochrome c level, without changing
the Bax/Bcl-2 level, suggested that the decreasing of mito-
chondrial cytochrome c release may be involved in the sup-
pression of mitochondrial permeability transition pore
opening that prevented myocardial apoptosis.*® Future studies

TABLE 3. Cardiac Function Parameters at Reperfusion Period in I/R Rats Treated With Vehicle or SB203580

Pretreatment During Ischemia Onset of Reperfusion
Hemodynamic Parameters \% SB \% SB v SB
HR (beats/min) 261 = 16 263 £ 15 290 £ 8 253 £ 24 252 £ 13 281 £ 14
ESP (mm Hg) 141 = 14 162 £ 11 167 £ 11 150 £ 13 129 £ 9 135 £ 16
EDP (mm Hg) 12+3 17 = 2* 14 =4 12 =10 13£5 13 =8
Ppnax (mm Hg) 146 £ 10 163 £ 11 170 £ 10 154 £ 13 1329 140 £ 15
Pin (mm Hg) 42 £3 58 = 2% 526 46 £ 6 44 =5 44 =7
dP/dt;,,, (mm Hg/s) 7951 = 782 11,553 = 473* 10,446 = 1229 9295 *= 1230 8788 = 944 8805 = 1372
dP/dt,,;, (mm Hg/s) —4666 *= 749 —4558 * 980 —5239 *= 574 —4477 *= 897 —4010 = 730 —4530 = 903
Stroke volume (mL) 0.09 = 0.02 0.08 = 0.02 0.14 = 0.02 0.08 = 0.03 0.08 = 0.02 0.11 = 0.01
Cardiac output (mL/min) 25*5 20 =6 373 24 =10 19 =4 29 =2
Stroke work (mm Hg/mL) 9+2 7*x2 14 £1 84 5*+2 8§*+2

*P < 0.05 versus vehicle.

V, vehicle; SB, SB203580-p38 MAPK inhibitor; HR, heart rate; P, maximum pressure; P,,;,, minimum pressure; dP/dt,,,,, maximal slope of left ventricle pressure waveform;

dP/dt,,;,, maximum slope of left ventricle pressure waveform.
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are needed to verify the exact mechanisms of p38 MAPK-
mediated apoptosis under myocardial I/R injury.

CONCLUSIONS
Our study demonstrated that the inhibition of p38

MAPK activation by SB203580 in an in vivo rat model
before or during the coronary artery occlusion attenuated
ischemia-induced fatal arrhythmias. However, SB203580
given at the onset of reperfusion did not reduce fatal
arrhythmia in these I/R rats. These findings suggest that
timing of p38 MAPK inhibition with respect to onset of
ischemia is an important determinant of therapeutic efficacy.
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Abstract: Insulin resistance is associated with the impairment of the response of insulin receptor to insulin, resulting in the reduction of
glucose uptake, leading to the alteration of myocardial glucose metabolism, impairment of cardiac electrophysiology, and increased sus-
ceptibility to ischemia-induced myocardial injury. Insulin resistance is associated with the impairment of the intracellular insulin signal
transduction pathway. Among the MAPK family, p38-MAPK is a serine/threonine protein kinase, which has been shown to play an im-
portant role in cellular responses to various kinds of stress, including insulin resistance. Since growing evidence indicates the involve-
ment of p38-MAPK in cardiovascular dysfunction, it is possible that the activation of p38-MAPK is responsible in part as a causative
mechanism for cardiovascular complications in the insulin resistant heart. In addition, several anti-diabetic drugs have been shown to af-
fect the myocardial p38-MAPK pathway. The effect of these drugs on p38-MAPK could be associated with their cardiovascular results in
patients with insulin resistance. In this article, the signal transduction pathways of myocardial p38-MAPK activation in the insulin resis-
tant heart, as well as the effects of anti-diabetic drugs on the myocardial p38-MAPK pathway, are comprehensively reviewed. Further-
more, the possible therapeutic approach regarding the utilization of a p38-MAPK inhibitor in diabetes patients to prevent cardiovascular

complications is also addressed.

Keywords: Diabetes, insulin resistance, p38-MAPK, anti-diabetic drugs, cardiovascular complications.

INTRODUCTION

Diabetes mellitus impacts around 285 million people around the
world and is expected to reach 438 million in less than 15 years [1].
It has been shown that diabetes patients have a two to four fold
higher risk of cardiovascular disease than the non-diabetic subjects
[2]. Insulin resistance is a prediabetic condition, which refers to the
impairment of insulin receptor function in response to insulin bind-
ing in target tissues [3]. Previous reports from both pre-clinical and
clinical studies demonstrated that insulin resistance is associated
with cardiac dysfunction [4-8]. The impairment of intracellular
insulin signaling, particularly in the insulin resistant heart, has been
shown to be involved in the alteration of myocardial glucose me-
tabolism,[9] impairment of cardiac electrophysiology, abolishment
of the cardioprotective effect of insulin that worsens ischemia-
induced myocardial injury,[10-12] alteration of systolic and dia-
stolic function,[13] left ventricular (LV) hypertrophy, [14] dilated
cardiomyopathy, and cardiac fibrosis [15].

p38-Mitogen Activate Protein Kinase (MAPK) is a ser-
ine/threonine kinase that is activated in response to variety of cellu-
lar stresses [16]. Growing evidence indicates that the activation of
p38-MAPK during myocardial ischemia/reperfusion could aggra-
vate lethal injury, and that inhibition of p38-MAPK activity, by
using pharmacological inhibitors, could attenuate the myocardial
injury and infarction [17-22]. Recently, evidence has strongly dem-
onstrated the linkage between myocardial increased p38-MAPK
activation and insulin resistance [23]. Moreover, since several anti-
diabetic drugs have been shown to activate the myocardial p38-
MAPK pathway, and possibly cause subsequent adverse effects on
the heart [24-30], extensive understanding regarding the role of
p38-MAPK and insulin resistance in the heart should provide
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promising therapeutic as well as preventive strategies in diabetes
patients in the future. In this article, the comprehensive review of
the association between the signaling pathways of insulin resistance
and their involvement in myocardial p38-MAPK activation, as well
as the effect of anti-diabetic drugs on the myocardial p38-MAPK
pathway is presented, and the consistent as well as controversial
reports regarding these issues are discussed.

INSULIN RESISTANCE AND MYOCARDIAL P38-MAPK

Insulin resistance is a pre-diabetic condition in which hyperin-
sulinemia with euglycemia can be observed [31]. It is well known
that obesity, aging, and inappropriate lifestyle are major risk factors
for developing insulin resistance [32]. Chronic inflammation to-
gether with increased plasma insulin and free fatty acid levels have
been reported under an insulin resistant condition [3]. Interestingly,
the activation of p38-MAPK has been demonstrated since the de-
velopment of insulin resistance [23]. A progression from insulin
resistance that leads to type 2 diabetes is characterized by the pres-
ence of a hyperglycemic condition. The biochemical changes occur-
ring in both insulin resistance and type 2 diabetes are capable of
activating p38-MAPK as illustrated in (Fig. 1).

Hyperinsulinemia and High Plasma Free Fatty Acid Activate
p38-MAPK

The major insulin signaling pathway impairment downstream
of insulin receptor is the signaling through the phosphatidylinosi-
tide-3 kinase (P13K)/Protein Kinase B (PKB, or Akt) pathway [33].
In the heart, a balance between the PI3K-Akt signaling cascade and
the classical mitogenic cascade (Ras-ERK) co-operatively main-
tains normal cardiac growth, metabolism, and functions [34]. It has
been shown that insulin resistance predominantly affects the PI3K-
Akt cascade, rather than the Ras-ERK cascade, by de-sensitizing
the insulin receptors [34].

Plasma free fatty acid (FFA) has been shown to be related to
insulin resistance. The increase in plasma FFA has been suggested

© 2013 Bentham Science Publishers
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Fig. (1). Signal transduction of p38-MAPK activation in insulin resistance.
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The biochemical changes in insulin resistance such as increase in free fatty acid and plasma insulin, as well as chronic inflammation and, lead to p38-MAPK
activation. The major signaling pathway affected by the insensitivity of insulin receptor is PI3K/Akt cascade. p38-MAPK can be indirectly activated via the
augmentation of the signal inactivation mechanism. Inflammatory cytokines can activate the MAPK kinase upstream of p38-MAPK. In addition, hyperglyce-
mia that occurs as a result of the progression to diabetes can also activate p38-MAPK, predominantly by reactive oxygen species and diacylglycerol, via an

activation of MAPK kinase upstream of p38-MAPK.

to be associated with the impairment of insulin signaling and re-
sponses, which consequently lead to p38-MAPK activation in the
heart. In this regards, FFA has been shown to inhibit the association
and activation of insulin receptor substrate-1 (IRS-1) to the intracel-
lular compartment of insulin receptor, which subsequently reduced
the PI3K-Akt activation [35; 36]. Normally, activated PKB/Akt can
phosphorylate AMP-activated protein kinase (AMPK),[37] leading
to the inactivation of AMPK, which is an upstream activator of
MKK3/6-p38-MAPK [38; 39]. Therefore, reduction of PI3K-Akt
activation in insulin resistance could indirectly activate p38-MAPK
(Fig. 1). In addition, impairment of PI3K-Akt signaling could re-
duce the phosphatase activity of MAPK phosphatase-1 (MKP-1)
and hence activate p38-MAPK [40; 41]. Interestingly, the impair-
ment of PI3K-Akt activation has been shown to reduce the nitric
oxide (NO) production via endothelial nitric oxide synthase (eNOS)
phosphorylation and hyperglycemia-induced eNOS glycosylation
by O-GIcNAc modification [34]. Since NO has been shown to acti-
vate cGMP and protein kinase G-1 (PKG 1), which subsequently
interfere with TAB1 association and induction of p38-MAPK auto-
phosphorylation [42], the reduction of NO as a result of impaired
PI3K-Akt activation could further increase p38-MAPK activation
(Fig. 1).

In addition, high plasma FFA concentration has been shown to
increase the myocardial fatty acid uptake rate and oxidation. The -

oxidation of fatty acid in cardiomyocytes primarily occurs in the
mitochondria and for a less extent in myocardial peroxisomes [43;
441, where uncoupling of oxidative phosphorylation as well as ROS
production occurred [45; 46]. The increased ROS production and
oxidative stress have been shown to cause stress-sensitive ser-
ine/threonine kinase signaling activation, which was capable of
phosphorylating IR and IRS protein in serine and threonine resi-
dues, thus reducing the sensitivity of tyrosine phosphorylation by
insulin stimulation [47; 48]. Furthermore, it has been shown that
FFA not only induces oxidative stress, but also reduces the intracel-
lular antioxidant molecules such as glutathione [49; 50]. This phe-
nomenon aggravates the insulin signaling impairment, thus worsen-
ing the insulin resistant condition.

The overproduction of mitochondrial superoxide has been
shown to increase the formation of advanced glycation end products
(AGEs), polyole pathway flux, activation of protein kinase C (PKC)
isoforms, and increase the activity of hexosamine pathway [51].
These metabolic products have been shown to activate p38-MAPK
[52-56] (Fig. 1). Under an insulin resistant condition, the pancreatic
cells produce a high amount of insulin. The hyperinsulinemia in
insulin resistance is known as a strong stimulant of a classical Ras-
MEKK1signaling pathway, which possibly indirectly activates the
MKK3/6-p38-MAPK signaling [57; 58]. In addition, Ras phos-
phorylation could also activate Rac/cdc42 and subsequently activate
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MLKZ1, which is an upstream kinase activated MKK3/6 —p38-
MAPK cascade,[59; 60] thus leading to increased p38-MAPK acti-
vation (Fig. 1). Furthermore, hyperinsulinemia has been shown to
increase the plasma level of angiotensin Il (Ang I1), an octapeptide
that is a potent vasopressor, via the hyperinsulin- induced Renin-
Angiotensin system [61]. Increased Ang Il not only promotes vaso-
constriction, but also produces superoxide, which can mediate the
conversion of NO to peroxynitrite and resulting in the reduction of
NO bioavailability,[62] which could restrain the NO-cGMP-PKG |
pathway and enhance TAB1-induced p38-MAPK autophosphoryla-
tion (Fig. 1) [42].

Inflammatory Cytokines Induce p38-MAPK Activation

In an insulin resistant condition, inflammatory cytokines, such
as TNF-a, IL-6, IL-1, IL-18, monocyte chemotactic protein (MCP)-
1, and C-reactive protein (CRP), have been released [63-68]. These
cytokines have been shown to activate p38-MAPKuvia either the
apoptosis  signal-regulating kinase 1 (ASK1) pathway or
JAK/STAT-MKK4 pathway [69]. Moreover, it has been shown that
TNF-o could induce serine phosphorylation and reduce tyrosine
phosphorylation of IRS-1, resulting in the impairment of the IRS-
1/PI3K/Akt pathway [70]. Less Akt phosphorylation under this
circumstance could attenuate NO generation, which could indirectly
stimulate TAB1-induce-p38-MAPK autophosphorylation as previ-
ously discussed,[42] leading to increased p38-MAPK activation.

Progression of Insulin Resistance to Type-2 Diabetes and p38-
MAPK Activation

One of the most serious progressions of insulin resistance is its
transition to type 2 diabetes, a condition in which the plasma glu-
cose level is increased above the normal reference range. The hy-
perglycemic condition has been shown to activate the aldose reduc-
tase activity and cause the generation of sorbital,[71-73] which is
known as a potent activator of p38-MAPK (Fig. 1) [74]. Further-
more, the increasing in the plasma glucose level also enhances de
novo synthesis of diacylglycerol (DAG) and consequently activates
protein kinase C (PKC) [75]. The PKC activation is an important
signal transduction, which triggers the transforming growth factor
beta 1 (TGF-B) activation [52], which subsequently activates the
MKK3/6-p38-MAPK cascade (Fig. 1) [55].

Hyperglycemia is also known to cause increased reactive oxy-
gen species (ROS) production via mitochondrial ROS generation
pathway, as described in the previous session, which could lead to
NAD(P)H oxidase (NOX) activation [76]. NOX-derived ROS has
been shown to activate various redox-sensitive kinases such as Mis-
shapen/NIKs-related kinase (MINK),[77] which is capable of acti-
vating the MKK?3/6-p38-MAPKpathway [78]. NOX also generates
further amounts of ROS, particularly superoxide anion (O,) and
increases the overall oxidative stress. The elevation of the O,’level
could also result in the formation of advanced glycation end prod-
ucts (AGEs), polyole pathway flux, activation of protein kinase C
(PKC) isoforms, and increased activity of hexosamine pathway
[51], which could activate p38-MAPK [52-56], as previously dis-
cussed (Fig. 1). Moreover, high superoxide ion could lead to the
reduction of NO bioavailability,[79] resulting in TAB1-induced
p38-MAPK autophosphorylation,[42] and finally activating p38-
MAPK (Fig. 1). In addition, high plasma glucose also activates
apoptosis signal-regulating kinase 1 (ASK1) [80], which is the
MAPKK kinase capable of dual activating JINK and p38-MAPK via
MKK4 and MKK3/6, or mixed linage kinase 1(MLK)1 (Fig. 1)
[81].

It has been reported that the activation of myocardial p38-
MAPK plays an important role in the pathophysiological mecha-
nism of cardiomyopathies such as ischemia-induced cardiomyocyte
injury and apoptosis,[19] cardiac arrhythmia,[82] and cardiac hy-
pertrophy [83]. Since several biochemical changes occurring under
an insulin resistant condition could lead to an activation of p38-
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MAPK in the heart, this association may be a mechanistic explana-
tion of cardiac complications found in insulin resistant subjects [7;
84-90]. Therefore, targeting p38-MAPK activation by using a p38-
MAPK inhibitor in insulin resistance may be a promising therapeu-
tic strategy to prevent or reduce early cardiac complications in this
group of patients.

EFFECT OF ANTI-DIABETIC DRUGS ON MYOCARDIAL
P38-MAPK SIGNALING

Anti-diabetic drugs have been used for many decades for gly-
cemic control as well as to enhance insulin sensitivity [91]. Al-
though these drugs are shown to provide therapeutic benefits in
patients with insulin resistance and diabetes, some of these anti-
diabetic drugs have been shown to cause adverse effects in the heart
[3]. Since p38-MAPK plays an important role in facilitating unde-
sirable cardiac effects in insulin resistance and diabetes, it is neces-
sary to understand the association between these anti-diabetic drugs
and their effects on p38-MAPK activation. In this section, the mo-
lecular mechanism of anti-diabetic drugs that have been reported to
affect myocardial p38-MAPK will be comprehensively discussed.

Thiazolidinediones (Pioglitazone, Rosiglitazone, Ciglitazone,
Troglitazone)

Thiazolidinediones (TZD) was introduced to the pharmaceutical
market in 1997 [92]. The main mechanistic action of these drugs is
their ability to stimulate nuclear peroxisome proliferators activated
receptor (PPAR)-y, which is known to control the transcription
process of genes enhancing insulin sensitivity [93]. TZD acts
through its association to the PPAR-y receptor and subsequently
mediates retinoic-X receptor (RXR-receptor) binding. This receptor
activation initiates the transcription process of genes that are in-
volved in carbohydrate and lipid metabolism and suppress the ex-
pression of TNF-o [94]. Although the TZD has been shown to be
beneficial in many studies, the results from meta-analysis of clinical
studies on the cardiovascular effects of TZD revealed that TZD is
associated with significantly higher odds ratios of congestive heart
failure and myocardial infarction [95]. Currently, the drugs in this
group are no longer available for use in diabetes patients in many
countries.

In pre-clinical studies, TZD has been shown to affect the myo-
cardial p38-MAPK signaling and consequently resulting in various
undesirable biological responses in the heart [96-99]. During
ischemia/reperfusion (I/R), p38-MAPK activation has been shown
to mediate cellular apoptosis [100-102]. Treatment of rosiglitazone
was shown to reduce cardiomyocyte death by inhibiting p38-
MAPK activation (Fig. 2) [103]. Similarly, treatment of pioglita-
zone in the ischemia/reperfusion model also reduced the infarct
size, preserved mitochondrial ultrastructure, down regulation of
pro-apoptotic protein Bax, and upregulation of anti-apoptotic pro-
tein Bcl-2 (Fig. 2) [28]. This anti-apoptotic activity was mediated
by down regulation of p38-MAPK [28]. However, Ye et al reported
inconsistent findings in which pioglitazone could reduce the infarct
size in an ischemia/reperfusion model, but its mechanism was not
associated with p38-MAPK (Table 1) [104]. Although using a simi-
lar animal model and study protocol of ischemia/reperfusion, the
dosages and routes of drug administration were different between
those studies. A higher concentration of the drug, given intrave-
nously, could down-regulate p38-MAPK, whereas oral administra-
tion of the less concentrated drug did not affect p38-MAPK activa-
tion (Table 1). This could possibly explain the inconsistency be-
tween these two studies. In addition, pioglitazone was shown to
reduce the duration of atrial fibrillation (AF) without any changes
in p38-MAPK signaling,[29] whereas rosiglitazone was shown to
increase the ventricular fibrillation (VF) incidence [105]. However,
the latter study still lacks the information of the linkage between the
activation of p38-MAPK and those arrhythmia incidences.
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Fig. (2). Effect of Thiazolidinediones on p38-MAPK activation in the insulin resistant heart. Thiazolidinediones cause p38-MAPK activation and consequently
result in various biological responses in the heart. Ischemia/Reperfusion cause p38-MAPK to mediate cellular apoptosis. Rosiglitazone and pioglitazone re-
duced cardiomyocytes death via inhibiting p38-MAPK activation. However, rosiglitazone could inhibit ischemia but induced fatal arrhythmia. Treatment
cardiomyocytes with rosiglitazone induced p38-MAPK activation and hypertrophy. However, pioglitazone could inhibit p38-MAPK mediate angiotensin 1l

induced pro-collagen expression, cell length and hypertrophy.

TZD has also been shown to induce cardiac hypertrophy [106].
Rosiglitazone has been shown to induced p38-MAPK activation
and hypertrophy (Fig. 2) [27]. In contrast, pioglitazone has been
shown to have anti-hypertrophic effect without changes in the p38-
MAPK activation (Table 1) [25; 107]. Although treatment of piogli-
tazone alone could not affect the p38-MAPK, the combined treat-
ment of pioglitazone with pravastatin has been shown to inhibit
p38-MAPK mediated angiotensin Il induced pro-collagen expres-
sion and hypertrophy [25]. These findings suggested the detrimental
effect of p38-MAPK activation, which seem to be prevented by
TZD administration. However, TZD (ciglitazone and troglitazone)
have also been shown to enhance TNF-a induced IL-6 expression
in cardiac fibroblast, with this activity requiring p38-MAPK activa-
tion [30]. Since the pro-inflammatory cytokines has been shown to
act as a strong modulator for cardiac fibrosis,[108] receiving TZD
could possibly cause cardiac fibrosis. All of these studies suggested
that the effects of drugs in the TZD group on p38-MAPK depended
in part on the concentration and route of administration. These find-
ings regarding the effect of TZD on p38-MAPK are summarized in
(Table 1).

Biguanides (Metformin)

Metformin has been available since 1950s when it was reported
to reduce blood glucose levels in patients [109]. The molecular
mechanisms of the action of metformin is thought to improve insu-

lin sensitivity via its modification of the insulin signaling pathway
at a post-receptor level, possibly AMPK [110; 111]. Metformin has
been shown to reduce gluconeogenesis and glycogenolysis via the
increased hepatic insulin sensitivity, and increased glucose uptake
by the upregulation of glucose transporter (GLUT)-4 and GLUT-1
transporters [112].

Evidence demonstrated that metformin could affect myocardial
p38-MAPK signaling in the heart. The purposed mechanism of
metformin influence p38-MAPK activation is illustrated in (Fig. 3).
Treatment of cardiac cells with metformin increased AMPK-
induced p38-MAPK activation, a similar process found in p38-
MAPK activation in myocardial ischemia or in cell treated with
AMP analog, so-called AICAR [113]. An in vitro treatment of met-
formin potentially activates p38-MAPK-mediate Bax translocation
in response to ischemia/reperfusion, resulting in increased cellular
apoptosis (Fig. 3) [24]. It is noteworthy that this is the only study
that suggested that metformin could possibly aggravate cardiac cell
death during ischemia/reperfusion injury and led to a doubt in the
safety issue of using this drug. In contrast, several in vivo studies
demonstrated the cardioprotective ability of metformin in the
ischemia/reperfusion model [114; 115]. However, the evidence
regarding the direct effect of the drug on myocardial p38-MAPK
activation in ischemia/reperfusion studies has not been mentioned.
Besides the ischemia/reperfusion study, metformin administration
demonstrated a beneficial effect to the heart by enhancing intracel-
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Table 1. Effect of Thiazolidinediones on Myocardial p38-MAPK Activation.
Effect on p38-
Mode of Drug Drugs Dosage Study model Outcome MAPKp References
Insulin Sensiti- Ciglitazone 10 uM for 1 hour In vitro:
zers Troglitazone pretreatment Isolated human cardiac fibroblast Increased TNF-a induced | Tp38-MAPK [30]
Rosiglitazone stimulated with 0.1-10 ng/ml TNF-a IL-6 secretion by ciglita-
zone and troglitazone,
but not rosiglitazone
Pioglitazone 400 mg /kg for 2 In vitro:
weeks - Adult rat ventricular cardiomyo- Pioglitazone reduced cell No change on [107]
cytes length in wild-type, not p38-MAPK
- Transgenic mice KO-PPARy PPARy KO mice, or
i . PPARy KO mice +
- Tra'nsgemc rats overexpressing pioglitazone
renin
1-10 uM for three In vitro: 5 uM Pioglitazone Pioglitazone alone [25]
hours pretreatment Isolated mouse cardiac fibroblast decreased ANGII- indu- had no change on
stimulated with 1uM ANGII for24h | Cced NADPH oxidase p38-MAPK
o expression, superoxide
Pioglitazone treat- . X
X o anion production, procol-
m_ent in combination lagen-1 expression Pioglitazone + pra-
with 0.1uM pravas- vastatin
tatin 1 p38-MAPK
Insulin Sensiti- Pioglitazone 5 mg/kg orally daily In vivo:
zers for 14 days before Rabbit + Ventricular tachypacing at Pioglitazone reduced the No change on p38- [29]
tr_1e onset of te%chypa— 380-400 bpm for 4 weeks duration of AF, attenuate | MAPK
cing and continued +pioglitazone atrial structural remode- | ¢ TERK1/2
for 28 days ling, reduction in intera-
trial activation time, and
atrial fibrosis
Reduced TGF-B1, TNF-a
3mg/kg, i.v. 24 In vivo:
hours before I/R Adult male Sprague-Dawley rats Pioglitazone reduced Down-regulation of [28]
subjected to 30 minutes Ischemia/4 infarct size, mitochon- p38-MAPK
hours reperfusion drial ultrastructure
damage, downregulation
of Bax, upregulation of
Bcl-2
2.5 mg/kg/d by oral In vivo:
gavage five days Adult male Sprague-Dawley rats Pioglitazone reduced No change on p38- [104]
before IIR f ;
subjected to 30 minutes Ischemia/4 infarct size. The effect MAPK
hours reperfusion was additive in combina-
tion of TAK-491 and
Pioglitazone. The left
ventricular functions
were improved. Only
Pioglitazone decreased
COX2 expression
Rosiglitazone 10 mg/kg BW/day in | Invivo: Rosiglitazone induced 1p38-MAPK [27]
chow for 4 weeks Cardiac specific PPARy knockout hypertrophy in both
mouse control and knockout
mice.
3 mg/kg/day oral In vivo:
gavage 5 weeks Adult male New Zealand white rabbits | Rosiglitazone reduced 1 p38-MAPK [103]

post-ischemia

fed with high cholesterol diet for eight
weeks, subjected to 60 min Ische-
mia/four hours reperfusion

high cholesterol increa-
sed post-ischemia myo-
cardial apoptosis
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Fig. (3). Effect of biguanides drugs on p38-MAPK activation in the insulin resistant heart. Metformin increased AMPK activity, activated p38-MAPK-
mediated Bax translocation in response to ischemia/reperfusion and resulted in increased cellular apoptosis. However, activation of p38-MAPK by metformin
could increase 1L-6 production, which is believed to be a late cardioprotection mechanism. Moreover, metformin could enhance intracellular metabolism and

cardiac function via activation of p38-MAPK.

lular metabolism and cardiac function via p38-MAPK activation
[116]. The previous study by Du et al demonstrated that activation
of p38-MAPK by metformin could increase IL-6 production,[26]
which is claimed as a late cardioprotective mechanism [117; 118].
Moreover, activation of p38-MAPK, together with other survival
kinases, in ischemia preconditioning has been shown to protect the
heart from ischemia/reperfusion injury and death [119; 120] . At
this point, it could be speculated that the cardioprotective effect of
metformin, seen in in vivo ischemia/reperfusion studies,[26; 116]
may be due to metformin-induced p38-MAPK activation. Although
p38-MAPK activation can cause an undesirable effect in the heart,
metformin may exert its cardioprotection by pharmacological pre-
conditioning. Since the association between metformin and p38-
MAPK in the heart is still limited, intensive investigation on
molecular signaling of metformin preconditioning associated with
p38-MAPK will provide useful information and better under-
standing regarding the cellular effects of this drug. The studies
concerning the effect of metformin on myocardial p38-MAPK are
summarized in (Table 2).

Sulfonylureas (Glibenclamide, Gliclazide, Glipizide, Glime-
piride)

Anti-glycemic activity of sulfonylureas was first discovered in
1942 and was not used as anti-diabetic drug for type 2 DM until
1955 [3]. The mechanism of action is known to directly enhance
glucose induced insulin secretion from B-cells [121]. The Sulfony-
lureas can bind to the transmembrane sulfonylurea receptor (SUR-

1) and induce the closing of the potassium sensitive ATP channel,
thus reducing cellular efflux of potassium, reducing membrane
polarization, increasing calcium influx, and resulting in the release
of pre-formed insulin granules [122]. Although sulfonylureas have
therapeutic potential against diabetes, it has been shown to worsen
the angina symptoms in diabetes patients with existing coronary
artery disease, and increase the risk of in-hospital mortality among
diabetic patients undergoing coronary angioplasty for acute myo-
cardial infarction [123; 124].

It has been shown that the cardioprotective effect of ischemic
preconditioning (IPC) is mediated via p38-MAPK activation [119;
120]. In addition, Bugge and Ytrehus reported that bradykinin could
protect the heart from ischemia and exerts the protective effect,
similar to IPC, via p38-MAPK activation (Fig. 4) [125; 126]. The in
vitro treatment of sulfonylureas including glibenclamide and gli-
clazide has been shown to abolish the cardioprotective effect of
IPC, as well as the beneficial effect of bradykinin (Fig. 4) [127;
128]. However, there was no evidence indicating the direct effect of
glibenclamide and gliclazide treatment on myocardial p38-MAPK.
In addition, the information regarding the effects of sulfonylureas
such as IPC may not be useful in a real clinical setting. Currently,
limited data are available regarding the effects of sulfonylureas on
p38-MAPK activation in an insulin resistant heart subjected to
ischemia/reperfusion, as well as in other cardiomyopathies such as
cardiac fibrosis and cardiac hypertrophy. Future investigation on
this issue will provide useful information regarding the adverse
effect of the drugs reported in clinical studies [110,111].
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Table 2.  Effect of Biguanides drugs on myocardial p38-MAPK activation.
Mode of Effect on
Drugs Dosage Study model Outcome References
Drug p38-MAPK
Insulin Biguanides 3 mM Met- In vitro:
Sensitizers (Metformin) formin 30 Neonatal rat ventricular myocytes subjected | Metformin stimulate Bax translocation Tp38-MAPK [24]
minutes prior to | ¢, 3nrs simulate ischemia in response to p38-MAPK MAPK
ischemia
Metformin 1 mM Met- In vitro: Metformin dose-dependently increased Tp38-MAPK [26]
formin 12 hours | A gyt mice cardiac fibroblast treated with IL-6 production
AICAR or Metformin
Metformin 2 mM Met- In vitro: In vitro: In vitro: [116]
formin Rat cardiac myoblast cell line (H9¢2) treat- | Metformin accelerate glycolysis Tp38-MAPK
ment with metformin in buffer containing
insulin for 8 hours i i
Ex vivo: Ex vivo:
Ex vivo: . .
Metformin enhanced cardiac output, Tp38-MAPK
Isolated male Sprague-Dawley heart per- heart rate, and hydraulic work
fused with metformin
Metformin 300, 600 In vivo:
mgrkg/d in Adult male Sprague-Dawley rats treated Both AMPK agonist AICAR and Tp38-MAPK [113]
drinking water with Metformin for 2 weeks Metformin increased AMPK activity,
for 2 weeks Ex vivo: and increased cardiac endothelial
. i lipoprotein lipase translocation, in-
The hearts were isolated and perfused with .
: creased triacylglycerol (TAG) accumu-
AMPK activator (0.5 mM AICAR) - .
lation in cardiomyocytes

Fig. (4). Effect of sulfonylureas on p38-MAPK activation in the insulin
resistant heart. Glibenclamide and gliclazide abolished the cardioprotective
effect p38-MAPK mediated ischemia preconditioning, and bradykinin.

Incretins (Exendin-4, Liraglutide, Vildagliptin, Sitagliptin)

The glucagon-like peptide-1 (GLP-1) as well as glucose-
dependent insulinotropic polypeptide (GIP), are secreted from the
small intestine when being stimulated by food intake, and can acti-
vate insulin secretion [129]. The GLP-1 molecule is normally rap-

idly degraded by the activity of the dipeptidyl peptidase enzyme
(DPP-1V). There are several anti-diabetic drugs in this group in-
cluding GLP-1 analogues such as exedin-4 and liraglutide, and
DDP-IV inhibitors such as vildagliptin and sitagliptin. GPL-1 has
been shown to reduce cardiac cell death by the down-regulation of
Bax and up-regulation of Bcl-2,[130] and increased cell survival via
the cAMP mediated inhibition of p38-MAPK (Fig. 5) [131]. Cur-
rently, there is only one study investigating the association between
GLP-1 and p38-MAPK in the low-flow ischemia model of Wistar
rats [132]. This study demonstrated that GLP-1 increased the in
vitro kinase activity of p38-MAPK. These inconsistent findings
regarding GLP-1 and p38-MAPK will need further investigation,
especially in terms of the direct effect of GLP-1 on myocardial p38-
MAPK activation, in the presence and absence of a p38-MAPK
inhibitor, as well as the sensitivity to infarction. Moreover, GLP-1
has been reported to increase NO production via p38-MAPK in-
duced nitric oxide synthase 2 (NOS2) production [133]. In addition,
it has been shown that GLP-lenhanced NO production not only
reduced cell death,[130] but also increased the glucose uptake [133]
and improved the functional recovery of the post-ischemic myocar-
dium [132]. Recently, Chinda et al demonstrated that vildagliptin
could protect the heart from ischemia/reperfusion injury [134].
However, the direct effect of vildagliptin on myocardial p38-
MAPK activation is still unclear. Further experiments concerning
the effect of the drugs on myocardial p38-MAPK in the ische-
mia/reperfusion model, as well as in other cardiomyopathies, will
provide useful information not only in clinical application, but also
in terms of mechanistic insight on p38-MAPK activation. The stud-
ies concerning the effect of incretin on p38-MAPK are summarized
in (Table 4).

Effect of p38-MAPK Inhibitor on Insulin Resistant Heart

The activation of p38-MAPK is known to be associated with
pathophysiology in cardiovascular dysfunction [19; 135-138]. The
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Fig. (5). Effect of incretin on p38-MAPK activation in the insulin resistant heart.GPL-1 promotes a cardioprotective effect by enhancing p38-MAPK mediating
Bcl-2 expression and nitric oxide production. Moreover, GLP-1 enhanced glucose uptake and improved functional recovery of the post ischemic myocardium.
Vildagliptin, the DPP-4 inhibitor, protected the heart from ischemia/reperfusion injury.

Table 3.  Effect of Sulfonylureas drugs on myocardial p38-MAPK activation.
Mggjgm Drugs Dosage Study model Outcome Effel\(;lt A°S£ 38- References
Insulin Gliclazide 1,10,30,and | Invitro:
se- 100 um Human trabecular muscle Cardioprotection of Both Gliclazide and [127]
Cretagogu section from the right atrial ischemia preconditioning | Glibenclamide did
es appendage. was abolished in all not block p38-
concentration of gliben- MAPK activation
. . . clamide, and by su-
Glibenclamide 0.1,1,3,and Sgctnons were mc_ubate in pratherapeutic concen-
10 uM S|mulateq |schem|a sh) bL{ffer tration of gliclazide
for 90 min and incubated in
reoxygenation buffer for 120
min. Preconditioning was
performed by 5 minutes sl / 5
minutes reoxygenation
Glibenclamide 1 uM before In vitro: Bradykinin and precon- Not mentioned [128]
and during Rat neonatal cardiac fibro- ditioning with 5HD
precondition- | past subjected to simulated reduced cardiac fibro-
ing ischemia and preconditioning | Plast cell death via acti-
by 1 UM 5,hydroxydecanoate | Vation of p38-MAPK
(5HD) Bradykinin was MAPK. Glibenclamide
administered 30 minutes prior | reduced cell survival as
to lethal ischemia well as abolish precondi-
tioning
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Table 4. Effect of incretin on myocardial p38-MAPK activation.
Mode of Drugs Dosage Study model Outcome Effect on p38- References
Drug MAPK
Incretin GLP-1 500 pM Ex vivo:
Langendorff-perfused rat heart GLP-1stimulated myocar- Tp38-MAPK [132]
perfused with GLP-1 for 30 min- | dial glucose uptake
utes followed by 30 minutes through increased myocar-
insulin perfusion. dial nitric oxide production
Hearts subjected to low-flow p38-MAPK activat?on, and
ischemia in the presence and GLUT-4 translocation
absence of GLP-1 pretreatment
GLP-1 enhanced func-
tional recovery of
postischemic myocardium
GLP-1(7- 2.5 pM/kg/minutes In vivo: GLP-1 stimulate myocar- Tp38-MAPK [133]
36) amide for 48 hours Mongrel dogs were induced to be | dial glucose uptake via
dilated cardiomyopathy by rapid | P38-MAPK de_pe_ndent
right ventricular pacing (240/min) pathway, .medlat_mg
for 28 days. The hemodynamic chronic hlberpatlon "f‘"d
parameters were collected. GLP- | late phas_e_ Of_'SChem'C
1 was infused for 48 hours. preconditioning

inhibition of p38-MAPK activation has been proposed to provide
therapeutic potential [19; 139-141]. The majority of findings in
insulin resistance, as well as diabetic models, suggested that the
activation of p38-MAPK could aggravate cardiomyopathy [23].
Therefore, the inhibition of p38-MAPK by pharmacological inhibi-
tors may possibly be beneficial in the insulin resistant heart. Evi-
dence demonstrated that the administration of p38-MAPK inhibi-
tors in insulin resistant, or diabetic models, improved left ventricu-
lar function and endothelial function, and reduced cardiac inflam-
mation [142]. In addition, treatment of p38-MAPK inhibitor,
SB203580, has been shown to improve cardiac contractile functions
in insulin resistance and hyperleptinemia,[143] and also inhibited
advanced glycation end products (AGEs), induced overexpression
of collagen type | in cardiac fibroblasts, which were implicated in
cardiac fibrosis [144]. These findings point out the usefulness of
p38-MAPK inhibition in diabetes. Recently, the cardioprotective
effects of the p38-MAPK inhibitor, SB203580, was demonstrated
in an ischemic/reperfusion injury in rats [82; 145] However, infor-
mation regarding p38-MAPK inhibition in ischemia/reperfusion
injury of the diabetic heart has never been demonstrated elsewhere.

Insulin resistance and type 2 DM are known to enhance suscep-
tibility to myocardial ischemia/reperfusion,[146] which is possibly
due to the high basal level of activated p38-MAPK in the insulin
resistant heart [147]. As previously discussed, treatment with some
anti-diabetic agents could also enhance p38-MAPK phosphoryla-
tion [24; 26; 113; 116; 132; 133]. Any attempt to maintain glycemic
control, by using anti-diabetic agents, especially in patients with
existing coronary artery disease, may require caution since they
could worsen the clinical outcomes, particularly the drugs that
could cause p38-MAPK activation. Despite these facts, only limited
knowledge is currently available from both basic and clinical stud-
ies regarding the roles of anti-diabetic drugs on p38-MAPK in the
heart. Future studies are needed to extensively investigate these
issues to warrant their clinical application in patients with insulin
resistance and diabetes.
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APPENDIX
MATERIALS & METHODS

Plasma Analysis

Plasma glucose and cholesterol concentrations were determined
by colorimetric assay with a commercially available kit (Biotech,
Bangkok, Thailand). Plasma insulin was measured by Sandwich
ELISA (LINCO Research, St. Charles, MO, USA). Plasma
osteocalcin was measured by ELISA (Takara Bio Inc., Tokyo,
Japan). Insulin resistance was assessed by the Homeostasis
Model Assessment (HOMA) (Haffner et al., 1997). A higher
HOMA index indicates a higher degree of insulin resistance.

Preparation of Primary Osteoblastic Culture

Rat osteoblasts from calvariae were isolated by the enzymatic
isolation method, as described in a previous study (Fulzele
et al., 2010). Bone-derived cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% fetal bovine
serum (FBS) and 50 mg/mL ascorbic acid. Isolated cells were
tested for osteoblastic phenotypes by the alkaline phosphatase
(ALP) activity and Alizarin red staining methods, as described
in a previous study (Perrini et al., 2008). For cell culture exper-
iments, at least 4 osteoblastic cultures derived from different
rats in each dietary group (n = 6 rats per group) were used.

Cell Proliferation and Apoptosis Assay

The osteoblasts isolated from ND and HFD groups were plated
in 96-well plates at a density of 1 x 10°cells/well and cultured
in DMEM supplemented with 10% FBS for 24 hrs. Cells were
starved by DMEM supplemented with 1% FBS for 24 hrs before
stimulation with 10 nM insulin for 24 hrs. Cell proliferation was
measured by the Alamarblue™ fluorometric cell viability assay
(Biosource, Carlsbad, CA, USA). Inaddition to the Alamarblue™
assay, a TUNEL assay was used to determine cellular apoptosis.
The osteoblasts isolated from ND and HFD groups were plated

Decreased Jaw Bone
Density and Osteoblastic
Insulin Signaling in a Model

of Obesity

on SPL cell culture slides (SPL Life Sciences Inc., Seoul, Korea)
at a density of 5 x 102 cells/well and cultured in DMEM supple-
mented with 10% FBS for 24 hrs. Cells were starved by DMEM
supplemented with 1% FBS for 24 hrs before stimulation with
10 nM insulin for 24 hrs. Cells were then fixed with 4% parafor-
maldehyde in PBS, permeabilized with 0.25% Triton® X-100 in
PBS, and assessed for apoptosis with the Click-iT® TUNEL
Alexa Fluor® 594 (Invitrogen, Carlsbad, CA, USA) imaging
assay according to the manufacturer’s instructions. The percent-
ages of TUNEL-positive cells were randomly counted and cal-
culated as the number of TUNEL-positive cells per total cells.
Cell proliferation/apoptosis was given as percentage of control
(non-insulin-stimulated cells).

Micro-computed Tomography (micro-CT) of the Mandible

Mandibles (n = 5 in each group) were embedded in polymethyl
methacrylate (PMMA) and imaged at the molar region, as
described previously (Abbassy et al., 2010), with micro-CT
(Skyscan 1072 microCT, Skyscan, Aartselaar, Belgium). Three-
dimensional images of each hemi-mandible were acquired with
a resolution voxel size of 15 pm/pixel. Raw data were obtained
by rotating the sample stage 360 degrees. Slice images were
then prepared, and reconstruction of the specimens for analysis
was obtained with ANT software (Skyscan, Aartselaar, Belgium).
The following parameters were measured: tissue volume (TV),
bone volume (BV), and percentage of bone volume (BV/TV).
Four properties of the trabeculae were calculated: trabecular
thickness (Th.Th), trabecular number (Tb.N), trabecular separa-
tion (Th.Sp), and percentage of porosity (%porosity).

Assessment of Bone Formation Rate with Tetracycline

Rats were injected intra-peritoneally with tetracycline (7.5 mg/
kg BW) on the 1st, 7th, and 14th days after the end of 12 wks of
either diet (n = 5/group). At the end of the treatment, all animals
were sacrificed. The mandible of each rat was used to determine
the bone apposition rate.
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Appendix Figure. Decreased osteoblastic proliferation and increased osteoblastic apoptosis in HFD-fed rats. Osteoblastic proliferation is shown in
panel A, and osteoblastic apoptosis is shown in panel B. The determination of cell proliferation was performed by the Alarmablue™ fluorometric
cell viability assay (A). Osteoblastic apoptosis was measured by TUNEL assay (B). Data are expressed as mean + SEM; n = 5-6 animals for each
group. *p < .05 compared with the ND group. #*p < .05 compared with the non-insulin-stimulation group. ND, normal diet group; HFD, high-

fat-diet group; -, non-insulin stimulation; +, insulin-stimulation.

The bone apposition rate was measured as described by
Parfitt et al. (1987). The distance between the tetracycline lines
from the first dose of labeling to the subsequent ones (second
and third doses) was measured. Then, each distance was divided
by the labeling intervals of 7 days and presented as pm/day. The
distance between the tetracycline lines of each mandible was
measured at 10 positions in each mandible. Each bone apposi-
tion rate (um/day) was normalized with body weight in each rat.
The average of 10 apposition rates in each animal (uM/day/
bodyweight) represented the bone apposition rate of that animal.
We used a confocal laser scanning microscope (FLUOVIEW
FV10i, Olympus, Tokyo, Japan) to detect the tetracycline-
labeled lines. The frontal sections of the lower second molar
area were evaluated for the mineral apposition rate (MAR), as
described in a previous study (Abbassy et al., 2010).
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ABSTRACT

Previous studies have demonstrated that decreased
bone mass results from either the impairment of
osteoblastic insulin signaling or obesity. Our pre-
vious study revealed that 12-week high-fat-diet
(HFD) consumption caused obesity as well as
peripheral and brain insulin resistance. However,
the osteoblastic insulin resistance induced by HFD
has not been elucidated. Therefore, we hypothe-
sized that 12-week HFD rats exhibited not only
peripheral insulin resistance but also osteoblastic
insulin resistance, which leads to decreased jaw-
bone quality. We found that the jawbones of rats
fed a 12-week HFD exhibited increased osteopo-
rosis. The osteoblastic cells isolated from HFD-fed
rats exhibited the impairment of osteoblastic insu-
lin signaling as well as reduction of cell prolifera-
tion and survival. In conclusion, this study
demonstrated that insulin resistance induced by
12-week HFD impaired osteoblastic insulin sig-
naling, osteoblast proliferation, and osteoblast sur-
vival and resulted in osteoporosis in the jawbone.

KEY WORDS: obesity, insulin resistance, osteo-
blast, mandible, cell proliferation.[AQ: 2]
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Decreased Jaw Bone Density and
Osteoblastic Insulin Signaling in a

Model of Obesity

INTRODUCTION

igh-fat food consumption contributes to obesity (Pratchayasakul et al.,

2011). Fat accumulation causes changes in bone health (Chen et al., 2010;
Pollock et al., 2011). Some studies have shown a positive correlation between
body mass and bone density (Felson et al., 1993; Lee et al., 2012), suggesting
that obesity protects against osteoporosis. However, other clinical and pre-
clinical studies have shown an inverse relationship between bone quality and
obesity (Chen et al., 2010; Pollock et al., 2011). The effect of obesity on bone
density and bone quality remains controversial. Furthermore, the relationship
between obesity and jawbone loss and the underlying mechanisms involved
have not been investigated.

Several studies and our previous study have shown that rats fed with a
10- to 12-week high-fat diet (HFD) developed obesity, insulin resistance, and
the impairment of insulin receptor function in several organs: brain
(Pratchayasakul et al., 2011), heart (Apaijai et al., 2012), and skeletal muscles
(Bernard et al., 2006). Osteoblasts have been known as insulin target cells,
since they express insulin receptor (Ferron et al., 2010; Fulzele et al., 2010).
However, defects of insulin signaling in osteoblasts isolated from insulin-
resistant subjects have not been intensively investigated.

Insulin plays important roles in bone development and physiology, as has
been shown in previous in vitro and in vivo studies (Kream et al., 1985; Pun
et al., 1989; Ogata et al., 2000; Kawamura et al., 2007; Mukherjee and
Rotwein, 2009; Fulzele et al., 2010; Yang et al., 2010). Insulin increases bone
anabolic markers, including collagen synthesis, and alkaline phosphatase
production and promotes osteoblast proliferation and differentiation (Kream
etal., 1985; Pun et al., 1989; Yang et al., 2010). Several studies have revealed
that insulin receptor signaling molecules, including IR, IRS-1, and Akt, are
required for osteoblast proliferation and differentiation (Ogata et al., 2000;
Kawamura et al., 2007; Mukherjee and Rotwein, 2009; Fulzele et al., 2010).
Osteoblasts isolated from osteoblastic-specific insulin receptor knock-out
mice exhibited a decrease in osteoblast proliferation as well as an increase in
osteoblast apoptosis, which resulted in the reduction of bone acquisition
(Fulzele et al., 2010). In addition, osteoblasts isolated from IRS-1 knockout
mice showed a lack of tyrosine phosphorylation activation as well as a reduction
in proliferation and differentiation, which may entail the osteopenic pheno-
type as shown in that animal model (Ogata et al., 2000). Moreover, the deletion
of Akt in osteoblasts resulted in an increase in osteoblast apoptosis (Kawamura
et al.,, 2007). Those findings suggest that an impairment of osteoblastic
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insulin receptor signaling could lead to the negative effect on
bone quality. However, the effects of obesity-induced insulin
resistance on bone quality as well as osteoblastic insulin signal-
ing have not yet been investigated. Therefore, the aims of this
study were (1) to investigate changes of jawbone quality
induced by 12-week HFD consumption in insulin-resistant
obese rats, (2) to investigate whether the impairment of insulin
signaling in osteoblasts contributes to insulin resistance in those
obese rats, and (3) to determine the proliferation and survival of
osteoblasts in those obese rats.

MATERIALS & METHODS

Animals

Fifty male Wistar rats (180-200 g) were obtained from the
National Laboratory Animal Center, Salaya Campus, Mahidol
University, Thailand. All experiments in animals were per-
formed in accordance with a protocol approved by the Faculty
of Medicine, Chiang Mai University Institutional Animal Care
and Use Committee, in compliance with NIH guidelines. Rats
were randomly assigned to two different dietary groups (n = 25/
group): normal diet (ND) and high-fat diet (HFD). Rats in the
ND group and HFD group were given 12 wks of standard chow
(19.77% fat) and high-fat chow (59.28% fat), respectively, as
previously described in our study (Pratchayasakul et al., 2011).
At the end of week 12, all animals were deeply anesthetized and
sacrificed after fasting for at least 5 hrs. Blood samples were
collected. Plasma was separated and stored at -80°C for subse-
quent biochemical analysis, including plasma glucose, choles-
terol, insulin, and osteocalcin. The calvariae from 20 rats in each
dietary group were rapidly removed for the preparation of osteo-
blastic culture, and the mandibles were removed for micro-CT
analysis. The other 5 rats in each dietary group were used for
bone formation assessment. (See details on plasma analysis and
preparation of primary osteoblastic culture in the Appendix.)

Immunoprecipitation and Imnmunoblotting

Osteoblastic cells from ND and HFD groups were cultured in
osteogenic culture medium for 7 days. Cells were starved in
0.1% FBS for 24 hrs to reduce cellular activity to quiescent
levels before the addition of insulin (500 nM) for 5 min. Then,
the cells underwent lysis with buffer containing protease and
phosphatase inhibitors. The protein samples were subjected to
immunoprecipitation with IR, IRS-1 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) conjugated with protein A-Sepharose
beads, followed by immunoblotting with antibodies against the
IR, IRS-1, and tyrosine phosphorylation. The cell-extracted
protein was subjected to Western blot analysis with antibodies
against the Akt, phosphorylated Akt (S473), Bax, caspase-8,
Bcl-2, and cyclin D1, as described in previous studies (Perrini
et al., 2008; Pramojanee et al., 2011).

Cell Proliferation and Apoptosis Assay

The osteoblasts isolated from ND and HFD groups were plated
in 96-well plates at a density of 1 x 10° cells/well and cultured
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in DMEM supplemented with 10% FBS for 24 hrs. Cells were
starved by DMEM supplemented with 1% FBS for 24 hrs before
being stimulated with 10 nM insulin for 24 hrs. Cell prolifera-
tion was measured by Alamarblue™ fluorometric cell viability
assay (Biosource, Carlsbad, CA, USA) (see details in the
Appendix). The TUNEL assay was used to determine cellular
apoptosis (see details in the Appendix). Cell proliferation/
apoptosis was given as percentage of control (non-insulin-
stimulated cells).

Micro-computed Tomography (micro-CT) of the Mandible

Mandibles (n = 5 in each group) were embedded in polymethyl
methacrylate (PMMA) and imaged at the molar region, as
described previously (Abbassy et al.,, 2010) by micro-CT
(Skyscan 1072 microCT, Skyscan, Aartselaar, Belgium). (See
details in the Appendix.)

Assessment of Bone Formation Rate with Tetracycline

Rats were injected intra-peritoneally with tetracycline (7.5 mg/
kg BW) on the 1st, 7th, and 14th days after the end of 12 wks of
either diet (n = 5/group). At the end of the treatment, all animals
were sacrificed. The mandible of each rat was used to determine
the bone apposition rate, which was measured as described by
Parfitt et al. (1987). (See details in the Appendix.)

Data Analysis

All data were expressed as means + SEM. Comparisons between
groups were determined by the independent-sample t test. A p value
< .05 was considered statistically significant.

RESULTS

Twelve-week HFD consumption caused a decline in bone for-
mation and an increase in jawbone porosity.

Rats fed a 12-week HFD developed peripheral insulin resis-
tance, as indicated by significantly increased body weight, vis-
ceral fat, plasma insulin level, plasma cholesterol level, and
HOMA index, compared with those of ND-fed rats (p < .05,
Table). We also investigated the plasma level of osteocalcin, a
marker for osteoblastic formation (Brown et al., 1984), compar-
ing the 12-week ND-fed rats and the 12-week HFD-fed rats. Our
results demonstrated that the 12-week HFD-fed rats had reduced
plasma osteocalcin levels compared with 12-week ND-fed rats
(p < .05, Table). These findings suggest that the osteoblastic
formation of HFD-fed rats was decreased compared with that of
ND-fed rats.

The alveolar bones at the molar area of 12-week HFD rats
revealed increases in porosity in both 2D and 3D micro-CT
images, compared with those of 12-week ND rats (Fig. 1A). The
quantitative changes in trabecular bone in the mandibles of ND
and HFD groups are shown in Fig. 1B. In the HFD group, tra-
becular thickness and the BT/TV were significantly decreased
compared with those of the ND group (p < .05, Fig. 1B). The
trabecular separation and percentage of porosity were signifi-
cantly higher in the HFD group (p < .05, Fig. 1B).
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Table. Metabolic Parameters, Osteoblastic Proliferation, and Osteoblastic Apoptosis of Normal-dietfed (ND) Rats and

of High-fatdietfed (HFD) Rats

Dietary

Measurement Parameters 12-week ND 12-week HFD
Body weight (g) 460.18 = 8.37 546.25 + 8.32*
Visceral fat (g) 25.19 £ 1.96 45.47 +2.01*
Plasma glucose (mg/dL) 149.41 + 4.39 153.42 + 2.95
Plasma insulin (ng/ml) 2.14 £ 0.54 4.23 + 0.59*
Plasma cholesterol (mg/dL) 90.80 + 4.33 136.02 + 7.36*
Plasma osteocalcin (ng/ml) 37.44 £ 3.08 24.89 £ 1.71*
HOMA index 20.05 £ 5.57 39.69 + 5.69*
Percentage of cell proliferation (%) (with Alamarblue™ cell viability assay) 245.6 = 27.62 173.8 + 14.88*
Percentage of cell apoptosis (%) 4.75 £ 0.25 8.20 + 0.58*

Reduction of the Mineral Apposition
Rate in Mandibles of Insulin-
resistant Obese Rats Induced by
12-week HFD Consumption

Green fluorescent lines labeled with a
tetracycline fluorescent marker at 3 dif-
ferent time-points (Fig. 1C) indicated
that bone growth occurred on days 1, 7,
and 14 after 12-week diet consumption
in both ND and HFD groups. The HFD
group represented a significant reduction
of mineral apposition rate in alveolar
bone after normalizing for body weight
compared with the ND group (p < .05,
Fig. 1D).

Determination of Osteoblastic
Phenotypes of Isolated Bone Cells

The cultured bone-derived cells had pos-
itive Alizarin Red Staining at 14 days in
the presence of osteogenic medium
(OM) in both ND and HFD groups (Fig.
2A), indicating that these cultured cells
were osteoblasts. In addition, the ALP
activities at day 7 between the ND (3.03
+ 0.77 mM of p-nitrophenol/mg protein)
and HFD groups (3.92 £ 0.58 mM of
p-nitrophenol/mg protein) were not sig-
nificantly different.

The Impairment of Osteoblastic
Insulin Signaling in Insulin-resistant
Obese Rats Induced by 12-week
HFD Consumption

Figs. 2B-2D demonstrate the phosphory-
lation of IR, IRS-1, and Akt. The baseline
expression levels (without insulin stimu-
lation) of p-IR, p-IRS-1, and p-Akt were

Figure 1. The changes of skeletal phenotype in jawbones extracted from ND and HFD rats.
(A) A representative micro-CT of mandibular trabecular bone in the second molar region of
ND and HFD rats. Note increased porosity demonstrated in both 2D and 3D images of
trabecular bone in HFD rats. (B) Structural properties of alveolar bones of mandibles from ND
rats and HFD rats. (C) Fluorescent labeling on the periosteal surface indicates new alveolar
bone formation in ND and HFD rats. (D) Changes in the mineral apposition rate (MAR) of the
alveolar bone between the ND group and the HFD group after normalizing for body weight.
The data are expressed as mean = SEM; n = 5 for each group. *p < .05 compared with the
ND group. ND, normal diet group; HFD, high-fat-diet group; 2D, two-dimensional image; 3D,
three-dimensional images; (BV/TV), percentage of bone volume; Tb.Th, trabecular thickness;
Th.N, trabecular number; Tb.Sp, trabecular separation; and % porosity, percentage of

porosity.
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Figure 2. [AQ: 7] (A) Mineralization properties of bone-derived cells. Osteoblasts isolated
from ND and HFD groups were grown in standard medium and osteogenic medium (OM).
The cultured bone-derived cells had positive Alizarin Red Staining at 14 days in the presence
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However, the Bax/Bcl-2 ratio in HFD
osteoblasts (2.087 + 0.123) was signifi-
cantly increased, compared with that of
ND osteoblasts (1.519 + 0.196; p < .05).
Furthermore, the expression of cyclin D1
was significantly decreased in HFD
osteoblasts, compared with that in the
ND group (p < .05, Fig. 3E). In addition,
the Alamarblue™ cell viability assay,
which was used to determine the effects
of insulin on osteoblast proliferation,
demonstrated that the percentages of
insulin-induced cell proliferation of HFD
osteoblastic cells (173.8 + 14.88%) were
significantly lower than those isolated
from the ND group (245.6 + 27.62%, n =
6/group; p < .05 as shown in the Table;
details in the Appendix Fig.). A TUNEL
assay demonstrated that HFD osteoblasts
exhibited higher percentages of cell
apoptosis than those of ND osteoblasts
(8.20 £ 0.58% vs. 4.75 + 0.25%, n = 5/
group; p = .0017) (Table; details in the
Appendix Fig.). These findings indicated
that the physiological effect of insulin in
HFD osteoblasts was impaired.

of osteogenic medium (OM). The representative blots of tyrosine phosphorylation (upper

traces) illustrate a decrease in the ability of insulin to stimulate IR (B), IRS-1 (C), and serine 473

DISCUSSION

kinase of Akt (D) in osteoblasts of HFD-fed rats, compared with those of ND-fed rats. Fold

phosphorylation of insulin-stimulated p-IR, p-IRS-1, and p-Akt (S473) was significantly greater
in ND osteoblasts than in HFD osteoblasts. Data are expressed as mean = SEM; n = 4 for
each group. *p < .05 compared with the ND group. ND, normal diet group; HFD, high-fat-diet
group; -, non-insulin stimulation; +, insulin-stimulation; p-IR, tyrosine phosphorylation of insulin
receptor; pIRS, tyrosine phosphorylation of insulin receptor substrate 1; p-Akt{S473),

phosphorylation of serine 473 kinase of Akt.

not significantly different between both dietary groups (Figs. 2B,
2C, 2D). These Figs. also demonstrate that the HFD osteoblasts
exhibited a significant decrease in insulin-stimulated p-IR, p-IRS,
and p-Akt (S473), compared with those in the ND osteoblasts,
accounting for ~24% reduction (p < .05), indicating the impair-
ment of osteoblastic insulin signaling in the HFD group.

Insulin Resistance Induced by 12-week HFD
Consumption Caused a Reduction in Osteoblastic
Proliferation and an Increase in Osteoblastic Apoptosis

Since the impairment of insulin signaling was found in osteo-
blasts isolated from HFD rats, the effects of HFD-induced insu-
lin resistance on osteoblastic survival as well as on osteoblastic
proliferation were further investigated by measurement of the
basal expression of the apoptotic indicators Bax/Bcl-2 ratio and
caspase-8, and proliferative protein cyclin D1 (Fig. 3). Pro-
apoptotic protein expression was significantly increased in HFD
osteoblasts, as indicated by an increased Bax and caspase-8
expression (p < .05, Figs. 3B, 3C), whereas the expression of the
anti-apoptotic protein Bcl-2 was not significantly different
between ND osteoblasts and HFD osteoblasts (Fig. 3D).

The present study revealed for the first time
that HFD-induced obesity impaired jaw-
bone density. Consistent with our study,
previous studies in skeletal bones demon-
strated that HFD-induced obesity caused
adverse effects on bone mass by decreas-
ing bone density and micro-architecture
(Cao et al., 2009; Chen et al., 2010). Those previous studies
proposed several mechanisms linking impaired bone quality and
obesity, such as hyperlipidemia-induced osteoclastogenesis
(Graham et al., 2010) and free fatty acid (FFA)-induced adipo-
genesis instead of osteoblastogenesis (Chen et al., 2010).
However, no such studies illustrated the adverse effects of obesity
on bone in terms of the impairment of osteoblastic insulin signal-
ing and the reduction of osteoblastic proliferation and survival.

It is well-known that obesity is a major cause of insulin resis-
tance, a condition in which insulin signaling in target tissues is
impaired. Several previous studies demonstrated that 10- to
12-week HFD consumption caused an impairment of insulin
receptor signaling in skeletal muscle (Bernard et al., 2006), fat
(Boyd et al., 1990), liver (Watarai et al., 1988), and brain
(Pratchayasakul et al., 2011). The osteoblast is one of the insulin
target organs, and insulin signaling is required for bone growth
and development (Fulzele et al., 2010). However, changes in the
osteoblastic insulin signaling of HFD-induced insulin-resistant
animals have not been elucidated.

In the present study, rats with 12-week HFD-induced obesity
developed not only peripheral insulin resistance, but also impair-
ment of osteoblastic insulin signaling, as demonstrated by the
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Figure 3. [AQ: 8] (A) The expression of Bax, caspase-8, Bcl-2, and cyclin D1 at basal levels (non-insulin stimulation) in ND and HFD osteoblasts
after 12-week feeding. The two representative immunoblots of ND osteoblasts (ND1 and ND2) and of HFD osteoblasts (HFD1 and HFD2) are
illustrated. The representative blots of Bax and caspase-8 demonstrate an increase in Bax and caspase-8 expression in HFD osteoblasts compared
with that in ND osteoblasts, whereas the representative blots of cyclin D1 show a decrease in cyclin D1 expression in HFD osteoblasts compared
with that in ND osteoblasts. (B) Densitometric quantitation of Bax in the ND osteoblasts was significantly lower than that in the HFD osteoblasts.
(C) Densitometric quantitation of caspase-8 in the HFD osteoblasts was significantly higher than that in the ND osteoblasts. (D) Densitometric
quantitation of Bcl-2 was not significantly different between ND osteoblasts and HFD osteoblasts. (E) Densitometric quantitation of cyclin D1 in the
HFD osteoblasts was significantly lower than that in the ND osteoblasts. All immunoblotting lanes were loaded with equal amounts of protein
(40 pg/lane). Data are expressed as mean + SEM; n = 4 for each group. *p < .05 compared with the ND group. ND, normal diet group; HFD,

high-fat-diet group.

failure of insulin-induced tyrosine phosphorylation of the insu-
lin receptor (IR), of insulin receptor substrate-1 (IRS-1), and of
serine473 phosphorylation of Akt. In addition, our findings
demonstrated that the impairment of insulin signaling initially
occurred at all levels of the signaling pathway, from the post-
insulin receptor level down to Akt.

Previous studies have demonstrated that osteoblastic insulin
receptor signaling is indispensable for osteoblast proliferation,
osteoblast differentiation, and osteoblast survival (Ogata et al.,
2000; Kawamura et al., 2007; Fulzele et al., 2010). Therefore, the
impairment of osteoblastic insulin signaling in rats with HFD-
induced obesity can affect the osteoblastic proliferation and sur-
vival of osteoblasts isolated from HFD rats. This hypothesis was
confirmed by the present findings that the percentage of insulin-
induced osteoblastic proliferation in HFD group was significantly
lower than that of the ND group, whereas cellular apoptosis was
greater in the HFD than ND osteoblasts, indicating that the
physiological osteoblastic proliferation in response to insulin of
osteoblasts isolated from the HFD group is impaired (as shown
in the Table). Among insulin signaling molecules, Akt, a

downstream signal in the insulin signaling cascade, is a key mol-
ecule regulating both cellular proliferation and cell survival
(Lawlor and Alessi, 2001). Akt promotes cell proliferation by
stimulating proliferative regulatory proteins, such as cyclin D1
(Fatrai et al., 2006), and prevents cellular apoptosis by suppress-
ing pro-apoptotic proteins, such as Bax (Yamaguchi and Wang,
2001) and caspase-8 (Numata et al., 2011). Our results demon-
strated that the impairment of osteoblastic insulin signaling in rats
can lead to the impairment of cellular proliferation and of cellular
survival, as shown by down-regulation of cyclin D1 and up-
regulation of Bax and caspase-8, without the alteration of Bcl-2
expression level. In addition, 12-week HFD-fed rats had decreased
osteoblastic formation, as demonstrated by the reduction of
plasma osteocalcin levels. Therefore, our findings indicated that
HFD-induced obesity can lead to not only the impairment of
osteoblastic insulin signaling, but also the impairment of osteo-
blastic formation and abnormalities in osteoblast growth and
survival, all of which can lead to impaired jawbone quality.

In conclusion, this study demonstrated that HFD consump-
tion induced not only peripheral insulin resistance, but also
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osteoblastic insulin resistance. The impairment of osteoblastic
insulin signaling may lead to decreased osteoblastic prolifera-
tion and decreased osteoblastic survival, and could cause the
reduction of jawbone quality.

Although we demonstrated the osteoblast insulin resistance
in osteoblastic cells isolated from insulin-resistant rats, the con-
dition might not specifically represent the physiologic condition
of osteoblast insulin resistance in vivo. In addition, decreased
osteoblastic proliferation in HFD-fed rats has been demon-
strated with the Alamarblue™ fluorometric cell viability assay,
which is still the indirect method for the measurement of osteo-
blastic proliferation. Future studies for direct measurement are
needed to investigate the role of HFD.
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Abstract
Inhibition of p38 MAPK has been shown to reduce cardiac cell death, improve left
ventricular function, and decrease the incidence of fatal arrhythmia during myocardial
ischemia/reperfusion (I/R), suggesting its promising therapeutic benefits. Although cardiac
mitochondrial dysfunction is known as a key underlying cause of I/R injury, the in vivo
effects of p38 MAPK inhibition on cardiac mitochondrial function have not been directly
investigated. In the present study, adult male Wistar rats were subject to a 30-min left
anterior descending coronary artery (LAD) occlusion and 120-min reperfusion in the
presence of 2 mg/Kg body weight of SB203580 given at one of the 3 different time points: at
15 min before LAD occlusion, or at 15 min after the onset of ischemia (during ischemia), or
at the onset of reperfusion. At the end of the experiment, the mitochondrial function,
ultrastructure, and Western blot analysis were performed. Administration of SB203580, a
p38 MAPK inhibitor, at any time point of I/R injury significantly attenuated the ROS
generation and cardiac mitochondrial swelling. SB203580 attenuated mitochondrial
membrane depolarization only when given prior to the LAD occlusion or during ischemia.
Nevertheless, administration of SB203580 at any time point effectively protected
mitochondrial ultrastructure rupture caused by I/R. In addition, pre-treatment of SB203580
significantly reduced the phosphorylation of p38 MAPK, HSP27, p53, CREB, and o-B-
crystalline, decreased Bax expression without any changes in Bcl2 expression, and reduced
cytochrome c and cleaved caspase 3 levels. However, SB203580 given at the onset of
reperfusion could only inhibit the phosphorylation of CREB and a-B-crystalline, without an
effect on apoptotic regulatory proteins. These findings suggest that timing of p38 MAPK
inhibition with respect to onset of ischemia is an important determinant of cardiac
mitochondria protection through the attenuation of p53-mediate mitochondrial trigger cell

death pathway.



Highlight:
e p38 MAPK inhibitor SB203580 preserves I/R induced cardiac mitochondrial
dysfunction
e SB203580 preserves I/R induced cardiac mitochondrial ultrastructure rupture
e The beneficial effect of SB203580 was mediated by inhibition of p53 phosphorylation

e Administration of p38 MAPK reduced the level of Bax, caspase 3, and cytochrome ¢

Keywords:p38 MAPK; SB203580; ischemia/reperfusion injury; mitochondrial functions



1. Introduction

Acute myocardial infarction has been a serious health burden in most countries
around the world for many decades [1]. Although myocardial reperfusion has been shown to
be the effective way of myocardial salvage, reperfusion itself is known to cause cellular
injury [2]. One of the major underlying causes of myocardial ischemia/reperfusion (I/R)
injury is cardiac mitochondrial dysfunction. In particular, I/R injury has been shown to lead
to mitochondrial swelling, increased mitochondrial reactive oxygen species (ROS)
production, and mitochondrial membrane depolarization [3].

Previous studies demonstrated that the activation of the 38kDa mitogen activated
protein kinase (p38 MAPK) during myocardial ischemia aggravates lethal injury and has
been found to be worsen in ischemia followed by reperfusion[4-6]. The pharmacological
catalytic site inhibitor SB203580 has been shown to prevent p38 MAPK activation and
activity and also reduce cardiomyocytes death and the infarct size, as well as improve left
ventricular function [5-9]. However, prevention of p38 MAPK activation by using inhibitor
prior to ischemia seems to be impractical in real clinical setting, as myocardial ischemia is an
unpredictable condition. Therefore, it will be more clinically useful to know if inhibition of
p38 MAPK activation at postischemic state, such as at reperfusion period, could provide
cardioprotection. Recently, we reported the cardioprotective effect of SB203580 against
myocardial infarction and the incidence of fatal arrhythmia in I/R rat model and also
suggested that timing of drug administration is critical related to its therapeutic outcomes [9].

Since inhibition of p38MAPK provides benefit on infarct size reduction in I/R hearts,
the role of p38 MAPK inhibition could directly involve cardiac mitochondria. Moreover,
since pS3 [11-13], CREB [14, 15], and a-B-crystalline [16, 17] could be activated
downstream of p38 MAPK, they could play an important role in cardiac mitochondrial

responses to I/R, particularly on the cellular necro-apoptotic regulatory molecules such as



Bax, Bcl2, caspase 3, and cytochrome c. However, the effects of SB203580 on these
markers, in term of linkage between cardiac mitochondrial dysfunction and cell death, have
not been investigated. Therefore, in the present study, we determined the effects of p38
MAPK inhibitor, SB203580, on cardiac mitochondrial function, including mitochondrial
swelling, ROS production, mitochondrial membrane potential changes (A¥m), as well as
cardiac mitochondrial ultrastructure, in an in vivo I/R rat model. The signaling cascades
involved in cardiac mitochondrial protection downstream of p38 MAPK activation such as
p53, CREB, and a -B-crystalline as well as necro-apoptotic regulatory molecules such as

Bax, Bcl2, caspase 3, and cytochrome ¢ were also determined.

2. Materials and Methods

2.1 Animal model

Adult male Wistar rats weighing 350-400 g were obtained from the National Animal
center, Salaya campus, Mahidol University, Bangkok, Thailand, and were fed with normal
food and water. All animal experiments were approved by the Institutional Animal Care and
Use Committees and conform to the Guide for the Care and Use of Animals of the Faculty of

Medicine, Chiang Mai University, Chiang Mai, Thailand.

2.2 Ischemia and reperfusion

Myocardial ischemia/reperfusion was induced for 30-min by ligation of the left
anterior descending coronary artery (LAD), followed by reperfusion for 120-min as described
previously[18]. Ischemic heart was confirmed by the change in the myocardial tissue color
and ST elevation on the electrocardiogram that was recorded throughout the experiment. The

left femoral vein was cannulated for administration of either SB203580, p38 inhibitor (2



mg/kg) [19] or normal saline as a vehicle at 0.33 ml/min for 3 min[18]. Rats were divided
into 3 treatment groups to receive SB203580 at 15-min before LAD occlusion (pretreatment
group), 15-min after the onset of ischemia (during ischemia group), or at the onset of
reperfusion (reperfusion group) (Figure 1). Rats in the control group received normal saline.
At the end of the experiment, the heart was excised and washed in cold NSS. The ventricles

were used for mitochondrial study or heart protein collection.

2.3 Mitochondrial isolation

Mitochondria were freshly isolated from myocardial tissue by differential
centrifugation as describe previously [20]. Briefly, ventricular tissue were homogenized in
ice-cold isolated buffer (300 mM sucrose, 0.2 mM EGTA, 5 mM TES, pH 7.2) and
centrifuged at 800 x g, 4°C for 5 min. Then, the supernatant were collected and re-
centrifuged at 8,800 x g, 4°C for 5 min. The mitochondrial pellet was washed by
resuspending in ice-cold isolation buffer and re-centrifuged at 8,800 x g, 4°C for 5 min.
Mitochondrial protein concentration was determined by the Bicinchoninic Acid (BCA)
method, using bovine serum albumin (BSA) as a standard. The isolated cardiac mitochondria
that harvested from I/R rat hearts with different time point of SB203580 administration was
used to examine mitochondrial swelling, mitochondrial ROS production, and alteration of

mitochondrial membrane potential (A%¥Ym).

2.4 Determination of mitochondrial swelling

To determine the mitochondrial sensitivity to mitochondrial membrane permeability
transition (mPT), the mitochondrial swelling was measured. The isolated cardiac
mitochondria was re-suspended in respiration buffer that consisting of 100 mM KCl, 50 mM

sucrose, 10 mM HEPES, 5 mM KH,PO,4. The permeability transition-induced swelling of



mitochondria was measured by rapid loss of the absorbance at A540 nm by
spectrophotometric method. The isolated cardiac mitochondria (0.4 mg/ml) were incubated
with 1.5 ml of respiration buffer, and then measured the decreasing in the absorbance for 30

min at room temperature. The data were represented in arbitrary units of absorbance.

2.5 Determination of mitochondrial ROS production

It has been known that mitochondrial ROS production increased in many pathological
conditions such as myocardial ischemia/reperfusion and aging [21, 22]. Generation of
mitochondrial ROS caused oxidative damage to the cell and finally resulting in cell death.
We tested the hypothesis that SB203580 could protect mitochondrial functions by reducing
the mitochondrial ROS generation. The mitochondrial ROS production was assessed by
measuring the intensity of the fluorescent signal of fluorescent 2’,7'-dichlorohydrofluorescein
(DCF), which is converted from non-fluorescent 2°,7° - dichlorofluorescein — diacetate
(DCFH-DA) in the presence of ROS[23]. Isolated cardiac mitochondria (0.4 mg/ml) were
incubated with 2 uM DCFH-DA for 30 min at room temperature. The fluorescence intensity
was determined by fluorescence microplate ready with the excitation at A485 nm and
emission at A530 nm. The ROS level was expressed in arbitrary units of fluorescence

intensity of DCF.

2.6 Determination of mitochondrial membrane potential changes

One of the molecular responses of mitochondria occurring in myocardial
ischemia/reperfusion injury is an opening of the mitochondrial permeability transition pore
(MPTP), which consequently results in the change of mitochondrial membrane potential
(A¥m), and finally leading to cell death. We tested the hypothesis that treatment of

SB203580 can protect the loss of A¥Ym. The JC-1 or 5,5°,6,6 -tetrachloro-1,1",3,3’-



tetracthylbenzimidazolcarbocyanine iodide is a lipophilic cationic dye that capable of
entering the mitochondrial membrane. Monomeric form of JC-1 could fluoresce in green.
Increasing of mitochondrial membrane potential changes (AWm) causes aggregation of the
dye, which appeared in red fluorescein. Alteration of AYm causes changing in red: green
ratio. Isolated cardiac mitochondria (0.4 mg/ml) were incubated with 5 uM JC-1 at 37°C for
30 min. The fluorescence intensity for monomeric green fluorescein was determined by
fluorescence microplate ready with the excitation at A485 nm and emission at A530 nm, while
the aggregate red fluorescein was determined by fluorescence microplate ready with the
excitation at A485 nm and emission at A590 nm. The ratio of red/green fluorescence intensity
ratio was determined. The decreased red/green fluorescent intensity ratio indicated

mitochondrial membrane depolarization.

2.7 1dentification of cardiac mitochondrial ultrastructure

The mitochondrial pellet was fixed in 2.5% glutaraldehyde at 4°C overnight. Then,
the pellet was rinsed in 0.1 M phosphate buffer (PO4) for 15 min twice and post-fixed in 1%
cacodylate-buffer osmium tetroxide for 2 hr at room temperature. The mitochondrial pellet
was rinsed in 0.1M phosphate buffer (PO4) 5 min twice and was dehydrated in a graded series
of ethanol, 50% ethanol for 5 min twice, 70% ethanol for 5 min twice, 85% ethanol for 5 min
twice, 95% ethanol for 5 min twice and 100% ethanol for 5 min twice, respectively. After
that, the pellet was infiltrated with propylene oxide (PO) for 10 min twice, followed by the
cocktail between resin and PO in 1:2 ratio for 30 min, resin and PO in 1:1 ratio for 60 min
and resin for overnight, respectively. On the next day, the pellet was embedded in EM-bed
812 resin [24]. Ultrathin sections were cut with diamond knife, placed in copper grids and
stained with uranyl acetate and lead citrate. The cardiac mitochondria were identified with

transmission electron microscope (TEM).



2.8 Western blot analysis

The heart tissue was homogenated in extraction buffer (20 mmol/L Tris HCI, 1
mmol/L NazVOy, 5 mmol/L NaF). The heart protein was collected and subjected to 10% or
15% SDS-Polyacrylamide gel electrophoresis; transferred to polyvinylidene difluoride
membranes, which were blocked for 2 h with 5% non-fat milk in Tris-buffered saline (pH
7.4) containing 0.1% Triton X-100. The membranes were probed overnight at 4°C with the
appropriate primary antibody as follows:total-p38, phospho-p38, and phospho-HSP27 (Cell
Signaling Technology, Danvers, MA, USA), total-p53, phospho-p53, total-CREB, phosphor-
CREB, total-alpha B-crystalline, phospho-alpha B-crystalline, Bax, Bcl2, Cytochrome c,
caspase-3 (Santa Cruz Biotechnology, Inc, California, USA). After washing and exposure to
horseradish peroxidase-conjugated secondary antibody for 1 hour at room temperature,
antibody-antigen complexes were visualized by enhanced chemiluminescence assay. Bands
corresponding to the protein of interest were appeared as dark regions on the developed film.
The film images of the western blots were scanned and were analyzed using Image J (NIH
image) analysis software[25]. For quantitation of the proteins of interest, phosphorylated

proteins were normalized to total protein expression.

2.9 Statistical analysis

All data were expressed as mean = SEM. Statistical analysis was performed with
one-way analysis of variance (ANOVA) and LSD. All procedures were performed with an
SPSS statistical program (Version 15.0). A p-values < 0.05 was accepted as statistically

significant.



3. Results

3.1 p38 MAPK inhibition by SB203580 improved cardiac mitochondrial function

I/R injury caused cardiac mitochondrial swelling by decreasing the absorbance at 540
nm, increased mitochondrial ROS production, and mitochondrial membrane depolarization
(Figure 2). Although administration of SB203580 at any time points of I/R protocol
significantly attenuated cardiac mitochondrial swelling pretreatment of SB203580 was found
to be the most effective timing to prevent cardiac mitochondrial swelling, compared to drug
treatment during ischemia or at the onset of reperfusion (Figure 2A). Administration of
SB203580 at any time points in I/R could also significantly reduce ROS production in cardiac
mitochondria caused by I/R injury, compared to the vehicle control group (Figure 2B). For
cardiac mitochondrial membrane potential alteration, we found that administration of
SB203580 prior to ischemia or during ischemia significantly prevented the change of AYm
caused by I/R injury, when compared to the vehicle control group (Figure 2C). However,
SB203580 administered at the onset of reperfusion failed to prevent mitochondrial

depolarization caused by I/R (Figure 2C).

3.2 Inhibition of p38 MAPK protected I/R-induced cardiac mitochondrial

ultrastructure disruption.

Our results demonstrated that I/R injury not only caused cardiac mitochondrial
dysfunction, but also distorted the cardiac mitochondrial ultrastructure by increasing matrix
space and disorganization of cristae (Figure 3A). Administration of SB203580 at any time
points could preserve the cardiac mitochondrial ultrastructure from the disruption caused by

I/R (Figure 3B-C). Interestingly, administration of SB203580 prior to ischemia gave the
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most effective treatment to protect I/R induced-cardiac mitochondria ultrastructure rupture

(Figure 3D).

3.3 p38 MAPK inhibitor, SB203580, protected cardiac mitochondria by attenuation of

apoptotic regulatory molecules activation

Myocardial I/R has been shown to cause activation of p38 MAPK and its activities by
phosphorylation of downstream signaling molecules HSP27. Administration of p38 MAPK
inhibitor SB203580, prior to or during ischemia, significantly reduced p38 MAPK
phosphorylation as well as its activity to phosphorylate downstream substrate HSP27
( Figure 4A-C). However, SB203580 given at the onset of reperfusion could not reduce the
p38 MAPK phosphorylation as well a s the level of phosphorylated HSP27 (Figure 4A-C).
Moreover, we found that pretreatment of SB203580 significantly inhibited the
phosphorylation of p53 and CREB, while SB203580 given during ischemia failed to inhibit
the activation of these two downstream molecules (Figure 4). In addition, SB203580 given at
the onset of reperfusion could significantly inhibit phosphorylation of CREB, but not p53

Since mitochondria are the key machinery driven cell death, especially the necro-
apoptosis in I/R injury, the effects of SB203580 on apoptotic regulatory molecules such as
Bax, Bcl2, caspase 3, and cytochrome ¢ were also determined. Our results showed that
administration of SB203580 prior to or during ischemia, but not at the onset of reperfusion,
significantly decreased Bax expression without any changes in Bcl2 expression level (Figure
5). Administration of SB203580 significantly reduced the cytochrome c level only when it
was given prior to the onset of ischemia, but failed to change the cytochrome c level when

treated during ischemia or at the onset of reperfusion. Moreover, pretreatment of SB203580
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as well as given during ischemia significantly reduced the level of cleaved caspase 3.

However, SB203580 given at the onset of reperfusion failed to prevent caspase 3 cleavages.
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4. Discussion

In the present study, we demonstrated for the first time the direct effect of p38 MAPK
inhibitor, SB203580, on cardiac mitochondrial function in the heart underwent I/R injury, and
provided molecular mechanistic insights of cardiac mitochondrial protection by p38 MAPK
inhibition through the p53-Bax-cytochrome c-caspase 3 cascades. The major findings of this
study are that in the heart underwent I/R injury, administration of SB203580 before or during
ischemia attenuated cardiac mitochondrial dysfunction caused by I/R as indicated by
preventing mitochondrial swelling, reducing mitochondrial ROS generation, and attenuating
mitochondrial membrane potential depolarization. However, given SB203580 at the onset of
reperfusion could attenuate only mitochondrial swelling and ROS production, but failed to
prevent the loss of mitochondrial membrane potential. In addition, inhibition of p38 MAPK
activation as well as its activity reduced the activation of p5S3 and CREB, and decreased the
apoptotic regulatory protein Bax, cytochrome c release, and caspase 3.

Mitochondria are vital organelles orchestrate in cellular activities by generating ATP
to energize cells. In the heart, cardiac mitochondria play an important role not only
generating the energy, but also involving in cell death regulation. Cardiac mitochondrial
dysfunction is known as a key mechanism involved in I/R injury and cardiac cell death[3, 26-
30]. During I/R injury, cardiac mitochondria loss their function and could contribute to
electrical and contractile dysfunction of the cardiac cell and the whole heart[31]. The
excessive formation of ROS during I/R injury has been shown to induce prolonged-opening
of mitochondria permeability transition pore (MPTP), thus dissipating the proton
electrochemical gradient or A¥m, consequently causing ATP insufficiency, leading to further
ROS generation and the loss of intact cardiac mitochondrial ultrastructure, which finally
resulting in cardiac mitochondrial swelling and rupture[32]. This process is known to trigger

the apoptotic program due to the leakage of pro-apoptotic molecules from ruptured
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mitochondria[33]. Therefore, prevention or attenuation of the degree of cardiac
mitochondrial dysfunction caused by I/R injury is one of the fascinating clinical targets.

In the present study, we demonstrated that inhibition of p38 MAPK by SB203580
could inhibit p38 MAPK activation and its activity. Moreover, SB203580 could reduce
cardiac mitochondrial dysfunction and mitochondrial damage, and attenuate the
mitochondrial stress triggering necro-apoptosis in the heart. Moreover, our data also suggest
the significance of timing of drug administration on the prevention of cardiac mitochondrial
dysfunction caused by I/R. Pretreatment of the inhibitor significantly protected I/R-induced
cardiac mitochondrial dysfunction, and also attenuated the activation of apoptotic regulatory
molecules. However, inhibition of p38 MAPK during ischemia or at the onset of reperfusion
demonstrated a partial effect and be in the way that the quicker the treatment, the better the
protective outcomes. Our present data show that treatment of SB203580 during ischemia
seems to have more benefit to cardiac mitochondria than given at the onset of reperfusion.
This is similar to our previous findings about the effect of different times of SB203580
administration on the infarct size and the incidence of fatal arrhythmia[9]. Since given drug
before the onset of acute myocardial ischemia is not practical in real life because ischemia is
an unpredictable episode, our findings suggested that giving drug before myocardial
reperfusion could be the most effective timing to get the benefit from p38 inhibition.

In response to ROS and I/R stress, p53 protein has been known to accumulate in the
mitochondrial matrix and directly mediate mitochondrial outer membrane permeabilization
(MOMP) and resulting in the release of cytochrome ¢, which subsequently activating caspase
3[32]. This activation cascade caused programmed cell death or apoptosis. Recently, a novel
role of p53 in mitochondria has been reported. p53 accumulation during I/R injury has been
shown to cause MPTP opening, leading to the influx of ions, which resulting in AYm

dissipation, leading to the attenuation of the oxidative phosphorylation, and ATP
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depletion[32]. The mitochondrial swelling and rupture further caused sequestered cell death
factor releasing, which then orchestrated the cell death. Therefore, p53 activation in I/R is
considered as a key molecule to trigger cellular necro-apoptosis[34]. It has been reported that
p53 could be phosphorylated by p38 MAPK]11, 13, 35], and mediated cell death[12]. In p38”
" cells, phosphorylation of p53 at serl5 was decreased and contributed to down regulation of
Bax protein level in cardiomyocytes[36], suggesting the role of p38 MAPK in p53-Bax
regulation. Moreover, phosphorylated p53 has been shown to be less affinity for from Mouse
double minute 2 homolog (Mdm?2) association. None-phosphorylated p53-Mdm?2 complex is
an inactive and labile form, which could be subsequently degraded by ubiquitin proteolytic
system[37]. Our results are consistent with those reports in which inhibition of p38 MAPK
by SB203580 reduced p53 activation and Bax expression level, which in turn attenuated the
release of cytochrome c level to trigger the activity of caspase 3 mediated apoptosis. The
impairment of mitochondrial activity has been found to activate cAMP-responsive element-
binding protein (CREB) phosphorylation at Ser133[14], which in turn activated p53 in
transcriptional dependent manner. Down regulation of p53 could also affect the pS3 mediate
mitochondrial dysfunction and apoptosis. Therefore, inhibition of CREB phosphorylation
could be a p53 regulatory target. It has been shown that, during ischemia, CREB is activated
as a downstream event of p38 MAPK activation[15]. Inhibition of p38 MAPK by SB203580
could reduce I/R-induced CREB phosphorylation. However, we found that the protein
expression level of p53 was not significantly different. This could possibly be due to the
study protocol, which aimed to study the acute effect of p38 MAPK inhibitor. The duration
of inhibitor treatment as well as I/R protocol may not be sufficient to initiate the
transcriptional processes of p53. Nevertheless, our findings suggest that administration of

SB203580 could inhibit p53 activation in a transcriptional independent manner.
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In the present study, p38 MAPK was phosphorylated as a result of myocardial I/R
injury, leading to cardiac mitochondrial dysfunction and ultrastructure rupture, which
consequently resulting in cell death. Inhibition of p38 MAPK activation and its activity by
SB203580 protected cardiac mitochondria from I/R injury by reducing the phosphorylated
p53 in a transcription-independent manner (Figure 6). Non-phosphorylated p53 is degraded
by ubiquitin proteolytic system, which is insufficient to mediate mitochondrial membrane
permeabilization and reduce myocardial I/R induced cardiac mitochondrial dysfunction
(Figure 6). Furthermore, the reduction of phosphorylated p53 level by SB203580 could also
influence Bax expression, resulting in the decrease of mitochondrial membrane permeability,
cytochrome c, and caspase 3 levels (Figure 6). These mechanistic insights of SB203580 on
cardiac mitochondria explain the cardioprotective effects of p38 MAPK inhibition in
myocardial I/R. Another possible explanation concerning the cardiac mitochondria
protective effect of SB203580 is the attenuation of the voltage dependent anion channel
(VDAC) phosphorylation, which is a porin protein involved in mitochondrial regulator of cell
survival[26, 40-42]. Phosphorylation of VDAC-1 facilitates other protein binding in MPTP
and mediates mitochondrial damage. Schwertz et al. reported that VDAC-1 was a
downstream substrate of p38 MAPK during I/R injury[43]. Inhibition of p38 MAPK by
PD169316 significantly reduced phosphorylation of VDAC-1, and reduced cardiac cell injury
[43]. However, the effect of SB203580 on VDAC-1 phosphorylation in cardiac
mitochondrial from myocardial I/R model need to be further investigated.

In summary, this is the first report to demonstrate that p38 MAPK inhibition by
SB203580 could reduce cardiac mitochondrial dysfunction caused by I/R injury through the
attenuation of p53-mediate mitochondrial trigger cell death. Moreover, our data suggest that
the therapeutic potential of SB203580 to protect cardiac mitochondria from I/R injury could

provide more clinical benefit when given prior to reperfusion.
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Figure legends

Figure 1: Study protocol and arrhythmia scores. Study protocol for experimental groups
and timing of SB203580 (SB) or normal saline solution (NSS) administration.

Figure 2: The effect of SB203580 on cardiac mitochondrial function. (A) mitochondrial
swelling (B) mitochondrial ROS production, (C) mitochondrial membrane potential, when
administration before, during ischemia, or at the onset of reperfusion in ischemia/reperfusion
rats (n=4-7 animals/group). *p<0.05 vs. vehicle group, "p<0.05 vs. pretreatment group.
Figure 3: Effect of SB203580 on mitochondrial ultrastructure. The cardiac mitochondria
were isolated from ischemia/reperfusion rats in the presence of SB203580 before (B), during
ischemia (C), or at the onset of reperfusion (D) (n=4-5 animals/group). *p<0.05 vs. vehicle
group.

Figure 4: The effect of SB203580 on p38 MAPK activation and downstream substrates,
HSP27, p53, CREB, and a-B-crystalline. The heart homogenates were collected and
subjected to Western blot analysis detecting the activation of interested proteins (A). The
quantitation of fold phosphorylation is shown in panels B-F (n=3 animals/group).

Figure S: The effect of SB203580 on apoptotic regulatory proteins. The heart
homogenates were collected and subjected to Western blot analysis detecting the expression
of Bax, Bcl2, Cytochrome c, and cleaved caspase-3 (A). The quantitation of fold
phosphorylation is shown in panels B-D (n=3 animals/group).

Figure 6: The proposed mechanistic pathway of I/R-activated p38 MAPK and
downstream activation involving mitochondrial trigger cell death. Myocardial I/R injury
caused p38 MAPK activation, which consequently activated p53 phosphorylation.
Phosphorylated p53 stabilized and accumulated in mitochondrial matrix during I/R injury and

mediated MPTP opening. Activation of p53 also activated Bax expression, which regulated
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cytochrome c release, and activation of caspase 3. p38 MAPK could also phosphorylate
CREB, which in turn regulated p53 pathway in a transcription-dependent manner. Inhibition
of p38 MAPK by SB203580 could reduce p53 phosphorylation, CREB phosphorylation and

then protect cardiac mitochondria from I/R injury and cell death.
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