บทคัดย่อ

เหล็กหล่อไฮโปยูเทคติคที่มีปริมาณโครเมียม 26% โดยมวลที่เติมโมลิบดีนัม 0-3% ได้ถูกเตรียมขึ้นเพื่อ ศึกษาความต้านทานการสึกหรอแบบขัดสี ได้ทำการอบอ่อนขึ้นงานที่อุณหภูมิ 1173 K เป็นเวลา 18 ks และทำการ ชุบแข็งขึ้นงานที่อุณหภูมิ 1323 K และจากนั้นอบคืนตัวที่อุณหภูมิสามระดับระหว่าง 673 ถึง 823 K เป็นเวลา 7.2 ks ได้แก่ อุณหภูมิที่ให้ความแข็งสูงที่สุด (H-H_{Tmax}), อุณหภูมิต่ำกว่าอุณหภูมิที่ให้ความแข็งสูงที่สุด (L-H_{Tmax}) และ อุณหภูมิสูงกว่าอุณหภูมิที่ให้ความแข็งสูงที่สุด (Bh-H_{Tmax}) ทำการประเมินผลความต้านทานการสึกหรอแบบขัดสีโดย ใช้การทดสอบการสึกหรอแบบขัดสีแบบ Suga abrasive wear test และการทดสอบการสึกหรอแบบขัดสีเลยาง แบบ Rubber wheel abrasion wear test ผลการทดลองพบว่าความแข็งและสัดส่วนเชิงปริมาตรของออสเตน ในท์เหลือค้าง (V_Y) ในขึ้นงานที่ผ่านกรรมวิธีทางความร้อนแปรผันตามปริมาณโมลิบดีนัมและเงื่อนไขของกรรมวิธีทางความร้อน ความสัมพันธ์เชิงเส้นระหว่างน้ำหนักที่สูญเสียและระยะทางเป็นเส้นตรงในทุกขึ้นงาน อัตราการสึกหรอ (Rw) ต่ำที่สุดเกิดขึ้นในขึ้นงานทั้งในสภาพชุบแข็งและในชิ้นงาน H_{Tmax} ทั้งสองวิธีทดสอบ ค่า Rw ในการ ทดสอบการสึกหรอแบบ Suga abrasive wear test จะมากกว่าในการทดสอบการสึกหรอแบบล้อยางภายใต้ เพิ่มขึ้น ค่า Rw สูงที่สุดในชิ้นงาน L-H_{Tmax}หรือ H-H_{Tmax} นอกจากนี้ยังพบว่าค่า Rw ลดลงตามความแข็งที่ เพิ่มขึ้น ค่า Rw ต่ำที่สุดในชิ้นงานที่มีปริมาณออสเตนไนต์เหลือค้าง 10-15 เปอร์เซ็นต์โดยปริมาตร ค่า Rw ลดลง ตามปริมาณโมลิบดีนัมที่เพิ่มขึ้นในการทดสอบการสึกหรอแบบ Suga abrasive wear test และ Rw ลดลงเล็กน้อย เมื่อปริมาณโมลิบดีนัมพี่มีขึ้นสำหรับการทดสอบการสึกหรอแบบชัดสีล้อยาง

คำหลัก: เหล็กหล่อโครเมียมสูง 26% Cr, กรรมวิธีทางความร้อน, ความแข็ง, ออสเตนในต์เหลือค้าง, ความต้านทาน ต่อการสึกหรอแบบขัดสี, ผลของ Mo

Abstract

Hypoeutectic 26 wt% Cr cast irons with 0-3 wt% Mo were prepared in order to investigate

their abrasive wear behavior. The annealed test pieces were hardened from 1323 K and then

tempered at three levels of temperatures between 673 and 823 K for 7.2ks, the temperature giving

the maximum hardness (H_{Tmax}), lower temperature than that at H_{Tmax} (L- H_{Tmax}) and higher

temperature than that at H_{Tmax} (H-H_{Tmax}). The abrasive wear resistance was evaluated using Suga

wear test (two-body-type) and Rubber wheel wear test (three-body-type). It was found that

hardness and volume fraction of retained austenite (Vy) in the heat-treated specimens varied

depending on the Cr and Mo contents. A linear relation was obtained between wear loss and wear

distance. The lowest wear rate (R_W) was obtained in both the as-hardened and H_{Tmax} specimens.

The highest R_W was mostly obtained in the H-H_{Tmax} specimens. Under the same heat treatment

condition, the R_W in Suga wear test was much greater than that in Rubber wheel wear test. The R_W

decreased with increasing the hardness. The lowest R_W obtained in the specimen with a certain

amount of retained austenite, 10-15% V_{γ} . The Rw decreased with increasing Mo content in Suga

abrasive test and it decreased little by Mo addition in Rubber wheel wear test.

Keywords: 26% Cr cast iron, heat treatment, hardness, retained austenite, abrasive wear

resistance, Mo effect