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EXECUTIVE SUMMARY

Background

Most problems in the errors of simultaneous equations model (SEM) are the
autocorrelated error (AR) and moving average (MA) error. When these problems
occur, the ordinary least squares (OLS) estimators can not be used because they are
not efficient. In this research, we will propose a transformation matrix to correct the
first-order moving average, MA(1), which generated in the fitted model and to
recover the one lost observation in a SEM. The MA(1) is in the form,

vy=g,—0€,,,t=12 .., T, j=1,2, .., M, (1)

tj
where T is the number of observations in each equation, M is the number of

equations, the error ¢ _,; is called the first-lag of error ¢;, the moving average
parameter 6, of the model must satisfy the following condition to ensure the
invertibility of the error terms (Box et al., 1994),
|6, |<1. (2)
The error ¢, in (1) is an independent identically distributed random variable, obeying
g;~N(0,0,), (3)
so that
8;=|:8t1 €,y .- stM]~NM(0,Z),

where MxM contemporaneous covariance matrix of the error terms,

G, Op Oim
(e} (¢} (¢}
12 Oxn M
X= ) ,
GIM G2M v GMM

is nonsingular and is of positive symmetric definite matrix. It is noteworthy that the

values of v,; in the MA(I) model in (1) depend on the values of ¢,;, which is

unknown. The recovery of v,; will be find by extend the knowledge of Keerativibool

(2010).



After the errors are transformed to be independent, we consider the problem of
fitting a parametric model to an observed data set. This problem requires two tasks,
determination of the order of the model and estimation of these parameters. In real
life, we may not know what the true model is, but we hope to find a model that is a
reasonably accurate representation. The crucial part of this fitting problem is to
determine the order of the model. Such determination is often facilitated by the use of
a model selection criterion where one only has to evaluate two simple terms that
trade-off quality of fit to the data and model’s complexity. The widespread criterion
for choosing the best model in univariate and multivariate regression analysis is the
Akaike information criterion (AIC) (Akaike, 1973, 1974; Bedrick and Tsai, 1994).
The corrected version of the AIC (AIC,) (Hurvich and Tsai, 1989) is extended for the
case of small sample. AIC and AIC, were designed, respectively, to be asymptotically
and exactly unbiased estimator of a variant of Kullback-Leibler’s directed divergence
between the true model and a fitted candidate model. The development of a new
family of selection criteria, Kullback information criterion (KIC) and the corrected
version of the KIC (KIC,.), are the criteria constructed to target a symmetric
divergence. This divergence is an alternate of directed divergence, obtained by sum of
the two directed divergences, which arguably more sensitive than either of its
individual components (Cavanaugh, 1999, 2004; Seghouane and Bekara, 2004; Hafidi
and Mkhadri, 2006). With this motivation, we will propose a model selection
criterion, called Kullback information criterion for a system of SEM (SKIC), which
serves as an asymptotically unbiased estimator of a variant of Kullback-Leibler’s
symmetric divergence between the true model and the fitted candidate model. Next,
we will examine the performance of the proposed criterion, SKIC, relative to SAIC

proposed by Keerativibool (2009).



Objectives of the Research

The objectives of this research are to develop a model selection method, to
separate the most fitting SEM when the errors are both MA(1) and contemporaneously
correlated for analyzing a specific system, by applying the Kullback information
criterion (KIC) (Cavanaugh, 1999). The topics covered in this research comprise:

1) To derive a transformation matrix in order to correct the MA(1) problem of
errors in a SEM.

2) To derive the Kullback information criterion for a system of SEM when
errors are both MA(1) and contemporaneously correlated, called SKIC.

3) To examine the performance of the proposed criterion, SKIC, relative to

SAIC proposed by Keerativibool (2009).

Methodologies

The methodologies of this research are as follows:

1) Derive a transformation matrix in order to correct the MA(1) problem of
errors in a SEM.

2) Simulate the SEM when errors are both MA(1) and contemporaneously
correlated by the SAS programming.

3) Carry out a proposed transformation matrix to correct the MA(1) problem of
errors in a SEM.

4) Examine the errors of SEM after transformation.

5) Derive the Kullback information criterion for a system of SEM (SKIC) when
errors are both MA(1) and contemporaneously correlated.

6) Examine the performance of the proposed criterion, SKIC, relative to SAIC

proposed by Keerativibool (2009).



Plans of the Research

The plans of the research are as follows:

Jun 15, Dec 15, Jun 15, Dec 15,

A 2011 - 2011 - 2012 - 2012 -
ctivi
v Dec 14, Jun 14, Dec 14, Jun 14,
2011 2012 2012 2013

1. Derive a transformation matrix in order to

correct the MA(1) problem of errors in a SEM.

2. Simulate the SEM when errors are both MA(1)
and contemporaneously correlated by the SAS

programming.

3. Carry out a proposed transformation matrix to

correct the MA(1) problem of errors in a SEM.

4. Examine the errors of SEM after

transformation.

5. Derive the Kullback information criterion for a
system of SEM (SKIC) when errors are both

MA(1) and contemporaneously correlated.

6. Examine the performance of the proposed
criterion, SKIC, relative to SAIC proposed by
Keerativibool (2009).
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ABSTRACT

Moving average in the error of simultaneous equations model (SEM) is a crucial
problem to make the estimators from the ordinary least squares (OLS) method are not
efficient. For this reason, we extend the transformation matrix which proposed by
Keerativibool (2010) in order to correct the first-order moving average, MA(1), that
generated in the fitted model and to recover the one lost observation in a SEM. After
the errors are transformed to be independent, the Kullback information criterion for
select the appropriate SEM, called SKIC, to be going to derive. This criterion is
constructed based on the symmetric divergence which obtained by sum of the two
directed divergences. The symmetric divergence is arguably more sensitive than
either of its individual components. The performance of the proposed criterion, SKIC,
is examined relative to SAIC proposed by Keerativibool (2009). The results of
simulation study show that the errors of the model after transformation are
independent and SKIC convincingly outperformed SAIC, because SAIC has a
tendency to overfit the order of the model than SKIC.

Keywords: First-order moving average MA(1); Kullback information criterion for a

system of SEM (SKIC); Simultaneous equations model (SEM); Transformation matrix.



ACKNOWLEDGEMENTS

This research would not have been completed without the help and support of
several people and my organization, Thaksin University. Thank is also dedicated to
the research fund by The Thailand Research Fund, Office of The Higher Education
Commission, and Thaksin University under grant No. MRG5480044.

I would like to express my sincere gratitude and appreciation to Assoc.Prof.Dr.
Jirawan Jitthavech, Assoc.Prof.Dr. Vichit Lorchirachoonkul, and Assoc.Prof.Dr.
Pachitjanut Siripanich, National Institute of Development Administration, for their
valuable and continual advice, encouragement, and constructive criticisms throughout
this research, which enabled me to complete this research successfully. Appreciation
is also tendered to all teachers in the School of Applied Statistics, National Institute of
Development Administration for the knowledge provided.

Finally, I would particularly like to thank my parents and my younger sister for
their patience, understanding, and encouragement throughout the duration of this

work. They had more faith in me than could ever be justified by logical argument.

Asst.Prof.Dr. Warangkhana Keerativibool
June 2013



TABLE OF CONTENTS

EXECUTIVE SUMMARY

UNAAEID

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4
CHAPTER 5

INTRODUCTION

1.1 Background

1.2 Objectives of the Research

1.3 Scope of the Research

LITERATURE REVIEW

2.1 Transformation Matrix to Correct the Autocorrelation
and/or Moving Average Problems

2.2 Model Selection Criteria

METHODOLOGY

3.1 Derivation of a Proposed Transformation Matrix

3.2 Derivation of a Proposed Model Selection Criterion

SIMULATION STUDY

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

5.2 Future Works

BIBLIOGRAPHY

APPENDICES

Appendix A Proofs

Appendix B Outputs of this Research

Page

10
10
11
13
31
31
31
32
37
38
44



CHAPTER 1

INTRODUCTION

1.1 Background

In the application of statistics, the statistical modeling is considered as a major
task of study. The statistical processes which can help us to guide a good model with
the properties are that parsimony, goodness-of-fit, and generalizability, can be classified
into three ways; hypothesis testing of parameters, variable selection algorithms, and
model selection criteria (Cavanaugh, 2010). Model selection criterion is a popular tool
for selecting the appropriate model, by assessing whether it offers an optimal balance
between goodness of fit and parsimony, which are the attributes of the best model
(Keerativibool, 2011b). There are many model selection criteria for choosing the
appropriate model. The Akaike information criterion, AIC (Akaike, 1973, 1974) was
the first model selection criterion to gain widespread acceptance. The later criterion
which equally popular was the Kullback information criterion, KIC (Cavanaugh,
1999). One of the primary focuses of this research is to compare the performance of
selection the appropriate model from the model selection criterion based on AIC
proposed by Keerativibool (2009) relative to the model selection criterion based on
KIC proposed in this research.

The model to consider in this research is called a simultaneous equations model
(SEM). It is a model that contains variables with two-way flows of influence
characteristics. As a consequence, the endogenous variable will become stochastic or
the explanatory variable and will correlate with the error terms of the equation. The
structural-form of a SEM may be represented as a set of linear simultaneous equations

as follows: (Greene, 2008)



Ya = YaYe TVa¥s Tt Vv Yeoma TV Yem
+ Bxg+ ByXp et B X+ Uy,

Yo =Yn¥u * TV0Ys Tt Vv Yoma T Vv Yem

+ BXy  BpXp et BoXx Uy

Yeu =VimYu T VomYe TVsmYos oot YvamYima

+PBinXg T BomXi +o - B Xk F Uy
In (1.1), there are M equations and M endogenous variables, denoted by

Yus Yoo --» You and K predetermined variables, denoted by X,, X5, ..., X,x . The
first element of predetermined variables, x,,, will usually be a constant, 1, to allow
for the intercept term in each equation. The y’s and B’s are denoted as the
coefficients of endogenous and predetermined variables, respectively, and u,,
u,,, ..., U, denote the structural errors that are in the form of the first-order moving

average, MA(1), and contemporaneously correlated with zero means.
In matrix terms, the system in (1.1) can be written as
yr+xs=v, - ... (1.2)
where Y is a TxM matrix of endogenous variables, I' is a MxM matrix of
coefficients of endogenous variables, and assumed nonsingular, X is a TxK matrix
of predetermined variables, and assumed full-column rank, B is a KxM matrix of
coefficients of predetermined variables, and U is a TxM matrix of MA(1) and

contemporaneously correlated errors; i.e.,

Yu Y2 - Yim I =y, v =T
Y= 3i21 y.zz y'zM T= _”/.21 1 _'Y‘ZM ’
Yru Y2 oo+ Yim v T VM2 - 1
X Xppoeer Xk B -Bn - B Uy Uy e Uy
X = X X.zz Xk ’ B- _[3.21 _B'zz _B.ZM , U= u'zl 1'.122 u'zM

X1 Xy eee Xy _BKI _BKZ _BKM Upp Upp oee Upy



The reduced-form model described by the structural-form of the model in (1.2)
can be written as

Y=XII+V, (1.3)

where II=—BI'' is a KxM matrix of unknown parameters and V=UI"" is a

TxM matrix of MA(1) and contemporaneously correlated errors; i.e.,

T, Ty oo Tum Vii Vo o --- Vium
T s ... T \% v .. Vv
21 22 2M 21 22 2M
=) . , V= .
g1 Tga - Tgm Voo Voo oeee Vou

The j™ equation vector of reduced-form model in (1.3) is
yj=an+vj,j:1,2,...,M, .......... (1.4)
where y; is a Tx1 observation vector, @; is a Kx1 parameter vector, and v, is a
Tx1 vector of MA(1) and contemporaneously correlated errors. For all M equations,

the models in (1.4) can be represented as a stacked model as follows:

y=Xn+v, e (1.5)

where y is a TMx1 observation vector consisting of M (Txl) y. vectors, X is a

J

TMxKM diagonal matrix of rank KM consisting of M (TxK) identical X

matrices, ® is a KMx1 unknown parameter vector consisting of M (le) T,

vectors, and v is a TMx1 MA(1) and contemporaneously correlated error vector

consisting of M (T x1) v, vectors; i.e.,

A X 0 ... 0 M, v,

- 0 X ... 0 1 A%

y="2 L k=0 T T e v
Ym 0 0 ... X y, Vv

After we estimate the parameters of the reduced-form model in (1.5), we may
plot the residuals obtained from the fitted model and may observe a systematic
pattern. These residuals may suggest that some essential predetermined variables have

not been included in the model. Exclusion could be due to the analyst’s inadequate



knowledge of the problem. In this research, each element v, of the error vector v in

(1.5) is assumed in the form of MA(1),
vi=g;—0g_;,t=L2,...T,j=12,...M, ... (1.6)

where T is the number of observations in each equation, M 1is the number of

equations, the error ¢ _, ; is called the first-lag of error &, the MA(1) parameter 6, of

the model must satisfy the following condition to ensure the invertibility of the error

terms (Box et al., 1994),
o<1 L (1.7)

The error &; in (1.6) is an independent identically distributed random variable,
obeying
e;~N(0,0;), . (1.8)
so that
g =|e, &, - &y |~Ny(0.Z), ... (1.9)

where MxM contemporaneous covariance matrix of the error terms,

G,, Op ... Oy
G, G, .. O
12 22 2M
D e
O Oom -+ O

is nonsingular and is of positive symmetric definite matrix. It is noteworthy that the

values of v; in the MA(1) model in (1.6) depend on the values of &,;, which is

unknown. The recovery of v,; will be shown in Chapter 3.

The major consequences of the MA(1) problem are summarized as follows.
Although, the ordinary least squares (OLS) estimators are still linear unbiased, they
are not efficient; i.e., they do not have minimum variance compared the variance in
the model that takes into account correlation. In short, if MA(1) exists in the errors,
the OLS estimators are not the best linear unbiased estimators (BLUE). The estimated
variances of OLS estimators are biased. Therefore, the usual t and F tests are not
generally reliable, and if applied, are likely to give seriously misleading conclusions

about the statistical significance of the estimated regression coefficients. Consequently,



conventionally computed R? becomes an unreliable measure of true R”. Finally, the
conventionally computed variances and standard errors of forecast may be inefficient
(Gujarati, 2006). Encouraged by the preceding finding, this research attempts to find a
transformation in order to correct the MA(1) problem by extend the knowledge of
Keerativibool (2010). After the errors are transformed to be independent, the Kullback
information criterion for select the appropriate SEM, called SKIC, to be going to
derive. The performance of the proposed criterion, SKIC, is compared and discussed

relative to SAIC proposed by Keerativibool (2009).
1.2 Objectives of the Research

The objectives of this research are to develop a model selection method, to
separate the most fitting SEM when the errors are both MA(1) and contemporaneously
correlated for analyzing a specific system, by applying the Kullback information
criterion (KIC) (Cavanaugh, 1999). The topics covered in this research comprise:

1) To derive a transformation matrix in order to correct the MA(1) problem of
errors in a SEM.

2) To derive the Kullback information criterion for a system of SEM when
errors are both MA(1) and contemporaneously correlated, called SKIC.

3) To examine the performance of the proposed criterion, SKIC, relative to

SAIC proposed by Keerativibool (2009).
1.3 Scope of the Research

In this research, the model selection criterion focuses on the M equations of the
SEM, with an emphasis on whether the equations are exactly identified or over-
identified. In addition, the kinds of correlation among these equations are analyzed, to
distinguish moving average (correlation of the error terms across periods of time in
the j™ equation) and contemporaneous correlation (correlation across equations at
time t). The problem of simultaneity is also considered, which is related to some
repressors’ acting as simultaneous endogenous variables likely to correlate with the
error. It is assumed that all residuals from the error terms are normally distributed

with conditional means zero vector.



CHAPTER 2

LITERATURE REVIEW

This chapter reviews the literature on the following two topics. Firstly, Section
2.1 is shown the reviews of the transformation matrix to correct the autocorrelation
and/or moving average problems. Secondly, Section 2.2 is shown the reviews of the

model selection criteria in various types of the model.

2.1 Transformation Matrix to Correct the Autocorrelation and/or Moving

Average Problems

Occasionally, when we construct the forecasting model, a common problem in
the fitted model is the discovery of autocorrelation (AR) and/or moving average (MA)
problems in the residuals. This problem may occur when we start the plausible
structural-form of a mis-specified model. A lot of literatures attention to this issue
from the past to the present, such as Cochrane and Orcutt (1949) constructed an
algorithm for estimating a time series linear regression in the presence of the first-
order autocorrelation, AR(1), problem by eliminating the first observation. Prais and
Winsten (1954) improved the original Cochrane and Orcutt algorithm by recovering
the first observation for the parameter estimation. Ullah et al. (1983) derived a large
sample asymptotic approximation for the covariance matrix of the two stage Prais-
Winsten estimator of the regression coefficients and then analyzed numerically the
efficiency properties of this estimator with respect to OLS and generalized least
squares (GLS) with a known autocorrelation coefficient. Choudhury and Power
(1995) constructed a new approximate GLS estimator for the linear regression model
with AR and MA errors which this estimator consists of the two-step procedure
followed by OLS estimation of the transformed model: the first step eliminates the
AR component of the error and the second step addresses the MA component.
Galbraith and Zinde-Walsh (1995) gave a transformation of the general ARMA error-

components in the panel model to yield spherical disturbances. Marazzi and Yohai



(2006) proposed new estimators to transform the response variables which are based
on the minimization of a robust measure of residual autocorrelation. These estimators
are robust and consistent even if the assumptions of normality and homoscedasticity
do not hold. Hwang et al. (2007) constructed a GLS estimator for explosive the AR(1)
processes with conditionally heteroscedastic errors. The model under this consideration
accommodates diverse conditionally heteroscedastic processes including Engle’s,
threshold-, and beta-autoregressive conditionally heteroscedastic (ARCH) processes.
Vougas (2008) proposed the approximations of the usual GLS transformation
matrices for estimation with the AR(1) and AR(2) errors that remove boundary
discontinuities. This method avoids constrained optimization that unnecessarily
enforces estimated parameters to be in the interior. Keerativibool (2009) and
Keerativibool et al. (2009a, 2009b, 2011) proposed a transformation matrix to correct
the AR(2) problem in a SEM by extended the Prais-Winsten transformation.
Keerativibool (2010) proposed a transformation matrix to correct the MA(1) problem
in a regression model. Keerativibool (2011a) proposed a transformation matrix to
correct the AR(2) problem in a SEM by using the Cholesky decomposition.

From the past literatures review, we find that there is none of the transformation
matrix to correct the MA(1) problem in a SEM. With this motivation, this research
attempts to construct a transformation matrix to correct the MA(1) problem along with
the consideration of contemporaneous correlation. The transformation is constructed by

extend the knowledge of Keerativibool (2010).

2.2 Model Selection Criteria

As mentioned in Chapter 1, the model selection criterion is a popular way to get
an appropriate model. The first model selection criterion to gain widespread
acceptance was the Akaike information criterion, AIC (Akaike, 1973, 1974). Many
other criteria have been then introduced and studied are Bayesian information
criterion, BIC (Schwarz, 1978), Hannan and Quinn criterion, HQ (Hannan and Quinn,
1979), corrected version of AIC, AIC. (Hurvich and Tsai, 1989), multivariate AIC
and multivariate AIC, (Bedrick and Tsai, 1994), modification of AIC, MAIC
(Fujikoshi and Satoh, 1997), variants BIC; BIC, Fisher BIC, prior BIC, and Fisher



prior BIC (Neath and Cavanaugh, 1997), corrected version of HQ, HQ. (McQuarrie
and Tsai, 1998), Kullback information criterion, KIC (Cavanaugh, 1999), corrected
version of BIC, BIC, (McQuarrie, 1999), an estimation rule of variable selection and
parameter estimation in a linear statistical model based on generalized maximum
entropy formalism (Golan, 2001), information complexity (ICOMP) criterion for
determining influential observations in multivariate time series data based on an
intelligent data mining and knowledge discovery technique (Bozdogan and Bearse,
2003), corrected version of KIC, KIC,, (Cavanaugh, 2004; Seghouane and Bekara,
2004; Hafidi and Mkhadri, 2006), modification of KIC, MKIC (Cavanaugh, 2004),
KIC,, improved AIC, and improved KIC for nonlinear regression (Kim and
Cavanaugh, 2005), incomplete data based on KIC (Seghouane et al., 2005), surface
selection criterion, SSC (Bab-Hadiashar and Gheissari, 2006; Gheissari and Bab-
Hadiashar, 2008), KIC, for vector autoregressive modeling (Hafidi, 2006),
Multivariate KIC for small sample (Seghouane, 2006), quasi Akaike and quasi
Schwarz criteria (Giombini and Szroeter, 2007), mixture regression criterion based on
Kullback asymmetric and symmetric divergences (Naik et al., 2007; Hafidi and
Mkhadri, 2010), information criterion for probabilistic principal component analysis,
ICPPCA (Seghouane and Cichocki, 2007), predictive local asymptotic mixed
normality information criterion, PMIC (Sei and Komaki, 2007), system of
simultaneous equations AIC, SAIC (Keerativibool, 2009), system of simultaneous
equations BIC, SBIC (Keerativibool, 20012).

All of the model selection criteria as reviewed above, AIC and KIC are two
well-known measures. Although AIC remains arguably the most widely used of
model selection criterion, KIC is a popular competitor. In fact, KIC is often preferred
over AIC because its tendency to choose more parsimonious models than AIC. Since
KIC is the criterion constructed to target a symmetric divergence, whereas AIC is
based on a directed divergence. Symmetric divergence is an alternate of directed
divergence, obtained by sum of the two directed divergences, which arguably more
sensitive than either of its individual components (Cavanaugh, 1999). Unfortunately,
all of the model selection criteria are stated above can not be used in a SEM when the
AR and/or MA problems have been occurred, except SAIC and SBIC can be used in a
SEM, when there exists the AR(2) problem. Keerativibool et al. (2009a, 2009b, and



2011) and Keerativibool (2010, 2011a, and 2011c) concluded that the AR and MA
problems made the overestimated of the errors whether the models were regression or
SEM. Consequently, the values of all model selection criteria are incorrect, because
they depend on the sum of squared error (SSE) and the mean squared error (MSE).
With this motivation, this research attempts to construct a model selection criterion,
called the Kullback information criterion for a system of SEM (SKIC), in order to
select the appropriate system of the model where the model’s errors are considered
both MA(1) and contemporaneously correlated. A comparison of performance from
SAIC, proposed by Keerativibool (2009) relative to SKIC, proposed in this research,

will be shown and discussed in Chapter 4.



CHAPTER 3

METHODOLOGY

This research attempted to determine a model selection criterion, called the
Kullback information criterion for a system of SEM (SKIC), in order to enable the
selection of the most appropriate system for the model, when model’s errors are both
MA(1) and contemporaneously correlated. The approach adopted consisted of two
stages. First, the knowledge of transformation from Keerativibool (2010) is extended
to correct the MA(1) problem and to recover the one lost observation in a SEM.
Second, the log-likelihood function of the multivariate model is able to be applied

directly to construct the SKIC for the transformed model.

3.1 Derivation of a Proposed Transformation Matrix

Theorem 1: The TMxTM transformation matrix P, used to correct the MA(1)

problem in a SEM, is defined by

0 0
0 P, ... 0

P= , . 3.1)
0 0 P,

1 0 0o 0 ... 0
1f1+9f
0, 1 0 0 0
P=l O 0, 10 0| s (3.2)
;6] 6, 1 0
07 07 6 6
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The transformation matrix P in (3.1) is used to transform y and X in (1.5) to

be y° and X", respectively, such that the errors of the model are independent,

insignificantly different from zero, and the MA(1) problem does not exist, but
contemporaneously correlated errors still exist. The transformed model can be written

as
y =X'n+eg,

where y* =Py, X" =PX, E(8|5(*)=0, and

o ; ol ... oyl

- o | o,1 o |
E(££'|X*):E®IT: 2‘1 T 22‘ T 21\,4 T
ol ol oo oyl

3.2 Derivation of a Proposed Model Selection Criterion

Suppose that the transformed model in (3.3) is called the candidate model, then

the true model can be given as
y=X'm+g. (3.4)
The notations in (3.3) and (3.4) are defined as follows: y" is a TMxI
observation vector consisting of M (Tx1) y; (or Pyy;) vectors, X" is a TMxKM
diagonal matrix consisting of M (TxK) X; (or P,X) matrices, ®# and m, are the

KM x1 unknown parameter vectors, € and g, are the TM x1 independent identically
distributed normal random vectors.

For the derivations of the criterion, the true model is assumed to be correctly
specified or overfitted by all the candidate models. This means that @, has KM

nonzero entries with 0 <K M <KM and the rest of (K—K,)M entries are equal to

zero. The Kullback information criterion for a system of SEM (SKIC) is proposed in

Theorem 2.
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Theorem 2. When the MA(1) problem is adjusted by the transformation matrix P, the
Kullback information criterion for a system of SEM defined by

TM(2K+M+1) 2T 2TM
+TMlog +
T-K-M-1 2T-2K-M+1) 2T-2K-M+1

SKIC:Tlog‘ﬁ‘.‘+

is called an asymptotically unbiased estimator of the Kullback-Leibler’s symmetric

divergence.



CHAPTER 4

SIMULATION STUDY

The model to consider in this research is a system of three SEM (M = 3) and the
errors of the model appear the MA(1) problem,

Yy =1+2x, +3x,; +4x,, + Vv,
Y, =1-0.5x, -5x,;-1.5x ,+v,, ...l 4.1)

Yo =14+X, X5 +X,+V,,
where t=1,2,...,T=15 for the small sample size, t=1,2,..., T=30 for the
medium sample size, and t=1, 2, ..., T=100 for the large sample size. The steps for

simulation and all results are as follows.

Step 1 Using the IML procedure of SAS programming to generate 100,000 vectors
of the 3x1 multivariate normal ¢, in (1.9) as shown the SAS code in Figure 4.1,
given zero mean vector, the correlation coefficients of the errors between the
equations are
p, =09, p;=0.7, p,; =0.8,

and the variances-covariances of the errors are

c,,=0.97=0.81, 5,, =0.8> =0.64, o, =0.7° = 0.49,

G, =P12\[0,05, =0.648, 6, =p /0,05, =0.441, 6, = p,,1[0,,0,, =0.448,

then, the form to generate €, in (1.9) is represented by

g, 0.81 0.648 0.441
g =|c, |~N,|0,Z=[0.648 0.64 0448 | ... (4.2)

£, 0.441 0.448  0.49
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options nonotes;

title 'Generate the multivariate normal data etl et2 and et3';

data oet; /* data of the parameter for the multivariate normal data */
input rl r2 r3 sigma;

cards;

1.0 0.9 0.7 0.9

0.9 1.0 0.8 0.8
0.8 1.0 0.7

0.7

proc iml;

use oet;

read all var {rl r2 r3} into R;

read all var {sigma} into sigma;

p = ncol (R);

diag sig = diag(sigma);

DRD = diag sig * R * t(diag sig); /* DRD = Matrix of Sigma
sigmall = 0.972 = 0.81
sigma22 = 0.8"2 = 0.64
sigma33 = 0.772 = 0.49
sigmal2 = rl2 * sigl * sig2 0.9*0.9%0.8 = 0.648
sigmal3 = rl1l3 * sigl * sig3 = 0.7*%0.9*0.7 = 0.441
sigma23 = r23 * sig2 * sig3 = 0.8*0.8*0.7 = 0.448 */

do id = 1 to 100000;
rt = rannor (j(p,1,76532));
et = t(U)*rt;

et prime = t(et);

et_all = et_all // et _prime;
end;

varnames = {'etl' 'et2' 'et3'};

create SKIC.et from et all [colname = varnames];
append from et all;

quit;

U = half(DRD); /* U = The upper triangular matrix of Sigma (Choleskey square root matrix) */

Figure 4.1 IML procedure to generate 100,000 vectors of the 3x1 multivariate

normal g,

Step 2 Using the multivariate normal error €, €,,, and €,; in Step 1 to construct

tl»

two series of the MA(1) and contemporaneously correlated errors, v,;, v,,, and v,;, as

follows:

v, =¢,—0.5¢ V,=¢,-0.6¢_,,and v;=¢

st .
D€ 15 Vy ;—0.7¢_,5, (1% series)

t

for t=1,2,...,100,000 and &, is arbitrarily given to be zero for all i=1,2,3. Split

the series of errors v,;, v,,, and v,; in sequence to preserve the MA(1) problem into

1,000 samples, each of which consists of three levels of sample sizes, T = 15, 30, 100

observations. Estimate the MA(1) parameters and test the properties of MA(1) by the
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MODEL and ARIMA procedures as shown the SAS code in Figure 4.2. The test
confirm that the error of 1,000 samples satisfy the property of MA(1).

options nonotes;

/* Generate Macro 1,000 series of vtl, vt2, vt3 */

PROC IMPORT OUT= vt

DATAFILE= "C:\My Documents\Thaksin\My Paper-
TSU\Statistics\SKIC\Excel\et_150000.csv"
DBMS=CSV REPLACE;

RUN;
proc iml;
use vt; read point (2:100001) var {id etl et2 et3 vtl sl vt2 sl vt3 sl vtl s2 vt2 s2
vt3 s2} into vt;
varnames = {'id' 'etl' 'et2' 'et3' 'wvtl sl1' 'vt2 sl' 'vt3 sl' 'vtl s2' 'vt2 s2' 'vt3 s2'};
create SKIC.vt from vt [colname = varnames];

append from vt;
quit;

/*************** Tl5 ***************/
proc iml;
use SKIC.vt; read all into temp;

$macro split;

$local i;

ii = 0;

$do 1 = $to 1000;

ii = 1ii+1;

vt gp temp = j(15,10,0);

k1l = 1+(ii-1)*15;

k2 = k1+14;

vt gp temp = temp[kl:k2,2:10];

varnames = {'etl' 'et2' 'et3' 'vtl sl' 'vt2 sl' 'vt3 sl' 'vtl s2' 'vt2 s2' 'vt3 s2'};
create SKIC.vt T15 gp&i from vt gp temp [colname = varnames];

append from vt gp temp;

%end;

%$mend;

Ssplit;

quit;

title 'Estimate and Test MA(l) First series Thetal = 0.5, Theta2 = 0.6, Theta3 = 0.7"';
%macro esttabsl;

$local i;

$do i = $to 1000;
proc model data = SKIC.vt T15 gpé&i;

endo vtl sl vt2 sl vt3 sl;

parms thetal theta2 theta3;

vtl sl = -thetal*lagl(etl);
vt2 sl = -theta2*lagl(et2);
vt3 sl = -theta3*lagl(et3);

fit vtl sl vt2 sl vt3 sl / outest = SKIC.esttabsl T15 gp&i sur normal covout;
run; quit;
proc arima data = SKIC.vt T15 gpé&i;
identify var = vtl sl nlag = 6; estimate g = 1 noint;
identify var = vt2 sl nlag = 6; estimate g = 1 noint;
identify var = vt3_sl nlag = 6; estimate g = 1 noint;
run; quit;
%end;
$mend;
Sesttabsl;

quit;

Figure 4.2 IML procedure to split 100,000 vectors of v, into 1,000 samples and

MODEL and ARIMA procedures to estimate and test the MA(1)

parameters
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title 'Estimate and Test MA (1) Second series Thetal = -0.6, Theta2 = -0.7, Theta3 = -0.
$macro esttabs2;

$local i;

%do i = %$to 1000;
proc model data = SKIC.vt T15 gpé&i;

endo vtl s2 vt2 s2 vt3 s2;

parms thetal theta2 thetal;

vtl s2 = -thetal*lagl(etl);
vt2 s2 = -theta2*lagl(et2);
vt3 s2 = -theta3*lagl(et3);

fit vtl_s2 vt2_s2 vt3_s2 / outest = SKIC.esttabs2 T15 gp&i sur normal covout;
run; quit;
proc arima data = SKIC.vt T15 gpé&i;
identify var = vtl s2 nlag = 6; estimate g = 1 noint;
identify var = vt2 s2 nlag = 6; estimate g = 1 noint;
identify var = vt3 s2 nlag 6; estimate g = 1 noint;
run; quit;
%end;
$mend;
sesttabs2;
quit;
/*************** TSO ***************/
proc iml;
use SKIC.vt; read all into temp;
$macro split;
$local i;
ii = 0;
%$do i = 1 %$to 1000;
ii = 1i+1;
vt gp temp = j(30,10,0);
kl = 1+(ii-1)*30;
k2 k1+29;
vt gp temp = temp[kl:k2,2:10];
varnames = {'etl' 'et2' 'et3' 'vtl sl' 'vt2 sl' 'vt3 sl' 'vtl s2' 'vt2 s2' 'vt3 s2'};
create SKIC.vt T30 gp&i from vt gp temp [colname = varnames];
append from vt gp_ temp;
Send;
%mend;
Ssplit;
quit;
title 'Estimate and Test MA(1l) First series Thetal = 0.5, Theta2 = 0.6, Theta3 = 0.7"';
%macro esttabsl;
%local 1i;
%do i = %to 1000;
proc model data = SKIC.vt T30 gpé&i;
endo vtl sl vt2 sl vt3_sl;
parms thetal theta2 theta3;

vtl sl = -thetal*lagl(etl);
vt2 sl = -theta2*lagl(et2);
vt3 sl = -theta3*lagl (et3);

fit vtl sl vt2 sl vt3 sl / outest = SKIC.esttabsl T30 gp&i sur normal covout;
run; quit;
proc arima data = SKIC.vt T30 gpé&i;
identify var = vtl sl nlag = 6; estimate g = 1 noint;
identify var = vt2 sl nlag = 6; estimate g = 1 noint;
identify var = vt3 sl nlag estimate g = 1 noint;
run; quit;
%end;
$mend;
Sesttabsl;
quit;

I
o

Figure 4.2 (Continued)
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title 'Estimate and Test MA(1l) Sec
$macro esttabs2;

$local i;

%do i %to 1000;

proc model data SKIC.vt _T30_gpé&i
endo vtl s2 vt2 s2 vt3 s2;

parms thetal theta2 thetal;

vtl s2 = -thetal*lagl(etl);
vt2 s2 = -theta2*lagl(et2);
vt3 s2 = -theta3*lagl(et3);

fit vtl s2 vt2 s2 vt3 s2 / outest
run; quit;
proc arima data
identify var
identify var
identify var
quit;

SKIC.
vtl s2
vt2_ s2
vt3 s2

vt T30 gpé&i
nlag 6;
nlag 6;
nlag 6;

run;
%end;
$mend;
Sesttabs2;
quit;
/*************** TlOO
proc iml;
use SKIC.vt;
$macro split;
$local i;
ii 0;
$do i =1
ii ii+1;
vt gp temp 3(100,10,0) ;
k1l 1+(ii-1)*100;
k2 k1+99;
vt gp_ temp temp[kl:k2,2:10];
varnames {'etl' 'et2' 'et3' 'wvtl
create SKIC.vt T100 gp&i from vt g
append from vt gp_ temp;
Send;
%mend;
Ssplit;
quit;
title 'Estimate and Test MA(1)
%macro esttabsl;
%local 1i;
%do 1 %to 1000;
proc model data SKIC.vt T100_gpé&
endo vtl sl vt2 sl vt3_sl;
parms thetal theta2 theta3;

*khkkhkKkhkKk Kk kK

read all into temp;

%$to 1000;

Fir

vtl sl = -thetal*lagl(etl);
vt2 sl = -theta2*lagl(et2);
vt3 sl = -theta3*lagl (et3);

fit vtl sl vt2 sl vt3 sl / outest
run; quit;
proc arima data
identify var
identify var
identify var
run; quit;
%end;
$mend;
Sesttabsl;
quit;

SKIC.vt T100 gpé&
vtl sl nlag = 6;
vt2 sl nlag

vt3_sl nlag

’

[20))

’

ond series Thetal -0.6, Theta2 -0.7,

’

sur normal covout;

SKIC.esttabs2 T30 gpé&i

’

Theta3

estimate g = 1 noint;

estimate g = 1 noint;

estimate g = 1 noint;

***/

s1' 'wvt2 sl1' 'vt3 sl' 'vtl s2' 'vt2 s2' 'vt3 s2'};
p_temp [colname = varnames];

st series Thetal = 0.5, Theta2 = 0.6, Thetal3 =

i;

SKIC.esttabsl T100_gp&i sur normal covout;

i;

estimate g = 1 noint;
estimate g = 1 noint;
estimate g = 1 noint;

0.

7'

-0.

Figure 4.2 (Continued)
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title 'Estimate and Test MA(l) Second series Thetal = -0.6, Theta2 = -0.7, Theta3 = -0.8';
$macro esttabs2;

$local i;

%$do i = 1 %to 1000;
proc model data = SKIC.vt T100 gpé&i;

endo vtl s2 vt2 s2 vt3 s2;

parms thetal theta2 thetal;

vtl s2 = -thetal*lagl(etl);
vt2 s2 = -theta2*lagl(et2);
vt3 s2 = -theta3*lagl(et3);

fit vtl_s2 vt2_s2 vt3_s2 / outest = SKIC.esttabs2 T100_gp&i sur normal covout;
run; quit;
proc arima data = SKIC.vt T100 gpé&i;
identify var = vtl s2 nlag = 6; estimate g = 1 noint;
identify var = vt2 s2 nlag = 6; estimate g = 1 noint;
identify var = vt3 s2 nlag 6; estimate g = 1 noint;
run; quit;
%end;
$mend;
Sesttabs2;

quit;

Figure 4.2 (Continued)

Step 3 Using the RANNOR function of SAS programming to generate the
independent variables x, until X , about 100,000 observations to be the normal

random variables with zero mean and variance equal to one as shown the SAS code in

Figure 4.3 where the relevant independent variables are x,,, X, and x,, and

t32
irrelevant independent variables are x until X ,. Again, split the series of
independent variables x,, until X, in sequence into 1,000 samples, each of which

consists of 15, 30, 100 observations. For this research, x,, is given as a constant which

equals one.

options nonotes;
title 'Generate 100,000 Dataset NID(0,1) of xt2 - xtl0’;
data SKIC.xt;

do id = -50 to 100000;

xt2 = rannor (5466666

) i
xt3 = rannor (2442111);
xt4 = rannor (1753365);
xt5 = rannor (9750004) ;
xt6 = rannor (2545654) ;
xt7 = rannor (6533777) ;
xt8 = rannor (6643221) ;
xt9 = rannor (6699044) ;
xt1l0 = rannor (1235566) ;

Figure 4.3 RANNOR function to generate 100,000 observations of the series of
independent variables and IML procedure to split them into 1,000

samples
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if id > 0
then output;
end;

run;

JRA KKK KKK KAAAAAL T]5 hhkhkhkhkkx A Xk kkkkk /

title 'Generate Macro 1,000 series of xt2 - xtl10’;

proc iml;

use SKIC.xt; read all into temp;

$macro split;

%$local i;

ii = 0;

$do i = $to 1000;

ii = 1ii+1;

xt gp temp = j(15,10,0);

k1l = 1+(ii-1)*15;

k2 = k1+14;

xt gp temp = temp[kl:k2,2:10];

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xte6e' 'xt7' 'xt8' 'xt9' 'xtl0'};
create SKIC.xt T15 gp&i from xt gp temp [colname = varnames];
append from xt gp_ temp;

%end;

%mend;

Ssplit;

quit;

/~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k T3O ~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k/

title 'Generate Macro 1,000 series of xt2 - xtl0’;

proc iml;

use SKIC.xt; read all into temp;

$macro split;

$local i;

ii = 0;

%$do i = 1 %$to 1000;

ii = 1ii+1;

xt gp temp = j(30,10,0);

k1l = 1+(ii-1)*29;

k2 = k1+29;

xt gp temp = temp[kl:k2,2:10];

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xt6' 'xt7' 'xt8' 'xt9' 'xtl0'};
create SKIC.xt T30 gp&i from xt gp temp [colname = varnames];
append from xt gp_temp;

%end;

%$mend;

Ssplit;

quit;

/*************** TlOO ***************/

title 'Generate Macro 1,000 series of xt2 - xtl0’;

proc iml;

use SKIC.xt; read all into temp;

%$macro split;

%local 1i;

ii = 0;

Sdo 1 = $to 1000;

ii = 1ii+1;

xt gp temp = j(100,10,0);

k1l = 1+(ii-1)*100;

k2 = k1+99;

xt gp temp = temp[kl:k2,2:10];

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xt6' 'xt7' 'xt8' 'xt9' 'xtl0'};
create SKIC.xt T100 gp&i from xt gp temp [colname = varnames];
append from xt gp_temp;

%end;

$mend;

$split;

quit;

Figure 4.3 (Continued)
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Step 4 Using the corresponding relevant independent variables x,,, X,;, and Xx,,

t2°
obtained in Step 3 and two series of the MA(1) errors obtained in Step 2 to construct

the dependent variables described in (4.1). The SAS code is shown in Figure 4.4.

/~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k T15 ~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k/

title 'Construct Macro 1,000 series of ytl stl - yt3 sl and ytl st2 - yt3 s2';
%macro cons_yt;

%$local i;

$do 1 = $to 1000;

data SKIC.yt T15 gpé&i;

set SKIC.xt T15 gpé&i;

set SKIC.vt T15 gpé&i;

ytl sl = 1+42*xt2+3*xt3+4*xtd+vtl sl;

yt2 sl = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 sl;

yt3 sl = 1+xt2+xt3+xtd+vt3 sl;

ytl s2 = 1+42*xt2+3*xt3+4*xtd+vtl s2;

yt2 s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 s2;
yt3 s2 = 1+xt2+xt3+xtd+vt3 s2;

send;

%mend;

scons_yt;

run;

quit;

/*************** T3O ***************/
title 'Construct Macro 1,000 series of ytl stl - yt3 sl and ytl st2 - yt3 s2';
%macro cons_yt;

$local 1i;

sdo 1 = sto 1000;

data SKIC.yt T30 gpé&i;

set SKIC.xt T30 gpé&i;

set SKIC.vt T30 gpé&i;

ytl sl = 1+42*xt2+3*xt3+4*xtd+vtl sl;

yt2 sl = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 sl;
yt3 sl = 1+xt2+xt3+xtd+vt3_sl;

ytl s2 = 1+42*xt2+3*xt3+4*xtd+vtl s2;

yt2 s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 s2;
yt3 s2 = 1+xt2+xt3+xtd+vt3 s2;

send;

%mend;

scons_yt;

run;

quit;

/*************** T:LOO ***************/
title 'Construct Macro 1,000 series of ytl stl - yt3 sl and ytl st2 - yt3 s2';
%macro cons_yt;

$local 1i;

$do 1 = $to 1000;

data SKIC.yt T100 gpé&i;

set SKIC.xt T100 gpé&i;

set SKIC.vt T100 gpé&i;

ytl sl = 1+42*xt2+3*xt3+4*xtd+vtl sl;

yt2 sl = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 sl;
yt3 sl = 1+xt2+xt3+xtd+vt3 sl;

ytl s2 = 1+42*xt2+3*xt3+4*xtd+vtl s2;

yt2 s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2 s2;
yt3 s2 = 1+xt2+xt3+xtd+vt3_s2;

%end;

$mend;

scons_yt;

run;

quit;

Figure 4.4 Macro facility to construct 1,000 samples of the SEM in (4.1)
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Step 5 Using the estimated values of MA(1) parameters obtained in Step 2 to

construct the estimate of transformation matrix P; in (3.2) for each sample. Apply

this transformation matrix to transform the SEM in Step 4 to give the stack of
transformed model as shown in (3.3). Test the MA(1) problem in the errors by the
ARIMA procedure. The SAS code is shown in Figure 4.5. The test shows that the
errors of all transformed samples are independent. Therefore, we can say that the

transformation matrix P in (3.1) has the power of transformation equal to 100%.

options nonotes;

/*****/\/\/\/\/\*****/\/\/\/\/\*****/\/\/\/\/\*****/\/\/\/\/\ T15 ~)<****/\/\/\/\/\*****/\/\/\/\/\*****/\/\/\/\/\*****/\/\/\/\/\*****/
/* Transform MA (1) */

title 'Transform MA(1l)';

proc iml;

%$macro
%local
%local
$local

trans;
t;
s;
i

%do i =

1 %to 1000;

TT = I(15); /* #0Obs. p
use SKIC.esttabsl T15 gp&i; read
use SKIC.esttabsl T15 gp&i; read
use SKIC.esttabsl T15 gp&i; read
P1 sl = j(nrow(TT),ncol(TT),0);
P2_sl = j(nrow(TT),ncol(TT),0);
P3_sl = j(nrow(TT),ncol(TT),0);

use SKIC.esttabs2 T15 gpé&i; read
use SKIC.esttabs2 T15 gp&i; read

er Sample =

point 1 var
point 1 var
point 1 var
/* Pl_s
/* P2_s
/* P3_s

T */

{thetal}
{theta2}
{theta3}
1 =
1 =
1 =

T*T */
T*T */
T*T */

point 1 var {thetal
point 1 var {theta2

}
}

use SKIC.esttabs2 T15 gpé&i;

read

point 1 var {theta3}

into
into
into

into
into
into

thetalsl;
theta2sl;
theta3sl;

thetals2;
theta2s2;
theta3s2;

Pl s2 = j
P2 s2 = j
P3 s2 =3

SKIC.
SKIC.
SKIC.

SKIC.
SKIC.
SKIC.
xtl = j(n
ytl_sl =
yt2_sl =
yt3_sl =

ytl_s2 =
yt2_s2 =
yt3_s2 =

ncol (TT
ncol (TT
ncol (TT

(nrow(TTT,
(nrow (TT),
(nrow (TT),
read

read
read

yt_T15_gp&i;
yt_T15_gp&i;
yt_T15_gp&i;

read
read
read

yt T15 gpé&i;
yt T15 gpé&i;
yt T15 gpé&i;

row(TT),1,1);

j(nrow(TT),12,0);
j(nrow(TT),12,0);
j(nrow(TT),12,0);

j(nrow(TT),12,0);
j(nrow(TT),12,0);
j(nrow(TT),12,0);

), 0);
), 0);
), 0);
all
all
all

var
var
var

all
all
all

var
var
var

ytl sl
yt2_sl
yt3_sl

ytl _s2
yt2_s2
yt3_s2

/*
/*
/*

{xt2
{xt2
{xt2

{xt2
{xt2
{xt2

= xtl

xtl

= xtl

= xtl

xtl

= xtl

Pl
P2
P3_

xt3
xt3
xt3

xt3
xt3
xt3

T*T
T*T
T*T

s2 =
s2 =
s2 =

xt5
xt5
xt5

xt4
xt4
xt4

xt5
xt5
xt5

xt4
xt4
xt4

yl_sl;
y2_sl;
y3_sl;

yl_s2;
y2_s2;
y3_s2;

*/
*/
*/

xXt6
xXt6
xXt6

xt6
xt6
xt6

xt7
xt7
xt7

xt7
xt7
xt7

xt8
xt8
xt8

xt8
xt8
xt8

xt9
xt9
xt9

xt9
xt9
xt9

xt10
xt10
xt1l0

xt1l0
xt10
xt1l0

vtl_ sl
vt2_sl
vt3_sl

vtl s2
vt2 s2
vt3 s2

ytl_sl}
yt2_sl}
yt3_sl}

ytl s2}
yt2 s2}
yt3 s2}

into
into
into

into
into
into

yl_sl;
y2_sl;
y3_sl;

yl s2;
y2 s2;
y3_s2;

[FFFxxxARFF X% Construct Transformation Matrix ***xxxkkkxxx/
%do t = 1 %to 15; /* Change #obs per rep */

%do s =

P1_.
$if %eval (&t >= &s)
Pl sl[&t,&s] =

%el

P2 .
$if %eval (&t >= &s)
P2_sll&t,&s] =

el

1 %to 15;

[FFFrxKHFF KAk xkK The First Series:
1/sqrt (l+thetalsl**2);

sl[1,1] =
se %do;
s1[1,1]

se %do;

/* Change #obs per rep */

S1 KR kkkokkkkkkk /

$then %do;

0;

P1_slfl&t,&s] =
%end;

thetalsl** (&t-&s);

= 1/sqgrt (l+theta2sl**2);

$then %do;

0;

P2_sll&t,&s] =
%end;

theta2sl** (&t-&s);

%end;

%end;

Figure 4.5 IML procedure to construct the estimate of transformation matrix
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P3 s1[1,1] = 1/sgrt(l+thetal3sl**2);
%if %eval (&t >= &s) %then %do; P3_sl[&t,&s] = theta3sl**(&t-&s); %end;
%else %do; P3_sl[&t,&s] = 0; %Send;
/************ The SeCOnd Series: 52 ************/
Pl s2[1,1] = 1/sqgrt(l+thetals2**2);
$if %eval (&t >= &s) %then %do; Pl _s2[&t,&s] = thetals2** (&t-&s); %end;
%else %do; Pl_s2[&t,&s] = 0; %end;
P2 s2[1,1] = 1/sqgrt(l+theta2s2**2);
3if %eval (&t >= &s) %then %do; P2 _s2[&t,&s] = theta2s2** (&t-&s); %end;
%else %do; P2_s2[&t,&s] = 0; %end;
P3 s2[1,1] = 1/sqgrt(l+theta3s2**2);
$if %eval (&t >= &s) %then %do; P3_s2[&t,&s] = theta3s2** (&t-&s); %end;
%else %do; P3_s2[&t,&s] = 0; %Send;
%end;
%end;
ytls_sl = Pl _sl*ytl sl;
yt2s_sl = P2_sl*yt2 sl;
yt3s_sl = P3_sl*yt3 sl;
yts sl = j(nrow(TT),36,0); yts sl = ytls sl || yt2s sl || yt3s_sl;
ytls_s2 = Pl _s2*ytl s2;
yt2s_s2 = P2_s2*yt2 s2;
yt3s_s2 = P3_s2*yt3 s2;
yts_s2 = j(nrow(TT),36,0); yts_s2 = ytls_s2 || yt2s_s2 || yt3s_s2;
cn_yts sl = {"xtl sl eql" "xt2 sl eqgl" "xt3 sl eqgl" "xt4 sl eql" "xt5 sl eqgl" "xt6 sl eql"
"xt8 sl eqgl" "xt9 sl eql" "xtl0_sl eql" "vtls sl" "ytls sl"
"xtl sl eqg2" "xt2 sl eqg2" "xt3 sl eq2" "xt4 sl eq2" "xt5 sl eg2" "xt6 sl eq2"
"xt8 sl eqg2" "xt9 sl eqg2" "xtl0_sl eq2" "vt2s sl" "yt2s sl"
"xtl sl eg3" "xt2 sl eqg3" "xt3 sl eq3" "xt4 sl eq3" "xt5 sl eg3" "xt6 sl eq3"
"xt8 sl eqg3" "xt9 sl eqg3" "xtl0_sl eq3" "vt3s sl" "yt3s sl"};
cn_yts s2 = {"xtl s2 eql" "xt2 s2 eqgl" "xt3 s2 eql" "xt4 s2 eql" "xt5 s2 eqgl" "xt6 s2 eql"
"xt8 s2 eqgl" "xt9 s2 eql" "xtl0_s2 eql" "vtls s2" "ytls s2"
"xtl s2 eqg2" "xt2 s2 eqg2" "xt3 s2 eq2" "xt4d s2 eq2" "xt5 s2 eqg2" "xt6 s2 eq2"
"xt8 s2 eqg2" "xt9 s2 eqg2" "xtl0_s2 eq2" "vt2s s2" "yt2s s2"
"xtl s2_eqg3" "xt2 s2 eq3" "xt3_s2 eq3" "xtd s2 eq3" "xt5 s2 eq3" "xt6_s2 eq3"
"xt8_s2_eqg3" "xt9 s2 eq3" "xtl0_s2_ eqg3" "vt3s_s2" "yt3s_s2"};
create SKIC.yts_T15 sl gp&i from yts_sl [colname = cn_yts_sl]; append from yts_sl;
create SKIC.yts_T15_s2 gp&i from yts_s2 [colname = cn_yts_s2]; append from yts_s2;
%end;
%$mend;
%trans;
quit;
title 'Test MA(l) First series Thetal = 0.5, Theta2 = 0.6, Theta3 = 0.7"';
%$macro testmasl;
$local i;
%do i = 1 %to 1000;
proc arima data = SKIC.yts T15 sl gpé&i;
identify var = vtls_sl nlag = 6; estimate g = 1 noint;
identify var = vt2s_sl nlag = 6; estimate g = 1 noint;
identify var = vt3s_sl nlag = 6; estimate g = 1 noint;
run;
$end;
$mend;
%testmasl;
quit;
title 'Test MA(1l) Second series Thetal = -0.6, Theta2 = -0.7, Theta3 = -0.8"';
%$macro testmas2;
$local 1i;
%do i =1 %to 1000;
proc arima data = SKIC.yts T15 s2 gpé&i;
identify var = vtls_s2 nlag = 6; estimate g = 1 noint;
identify var = vt2s_s2 nlag = 6; estimate g = 1 noint;
identify var = vt3s_s2 nlag = 6; estimate g = 1 noint;

run;
$end;
$mend;
%testmas2;
quit;

"xt7 sl eql"
"xt7 sl eqg2"

"xt7 sl eqg3"

"xt7 s2 eql"
"xt7 s2 eqg2"

"xt7_s2_eqg3"

Figure 4.5

(Continued)
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/* Transform MA(1l) */

title
proc i
$macro
%local
%local
%local

'Tra
ml;

nsform MA (1) ';

trans;

t;
s;
i;

$to 1000;
)

; /* #Obs. per Sample =

use SKIC.esttabsl T30 gp&i; read point 1 var
use SKIC.esttabsl T30 gp&i; read point 1 var
use SKIC.esttabsl T30 gp&i; read point 1 var

Pl s
P2_s
P3_s

1 =
1 =
1 =

j (nrow (TT) ,ncol (TT)
j (nrow (TT) ,ncol (TT)
j (nrow (TT) ,ncol (TT)

use SKIC.esttabs2 T30 gpé&i;
use SKIC.esttabs2 T30 gpé&i;
use SKIC.esttabs2 T30 gpé&i;

Pl s
P2_s
P3 s

use
use
use

use
use
use

xtl

ytl_
yt2_
yt3_
ytl_

yt2_
yE3_

e

2 =
2 =
2 =

SKIC.
SKIC.
SKIC.

SKIC.
SKIC.
SKIC.

=3¢

sl =
sl =
sl =

s2 =
s2 =
s2 =

j(nrow(TTT,ncol(TT)
j (nrow (TT) ,ncol (TT)
j (nrow (TT) ,ncol (TT)

yt T30 _gp&i; read
yt T30 gp&i; read
yt T30 gp&i; read

yt T30 gp&i; read
yt T30 gp&i; read
yt T30 gp&i; read

nrow (TT),1,1);

j (nrow(TT),12,0);
j (nrow(TT),12,0);
j (nrow(TT),12,0);

j (nrow(TT),12,0);
j (nrow(TT),12,0);
j (nrow(TT),12,0);

,0)
,0)
,0)

re
re
re
,0)

,0)
,0)

all
all
all

all
all
all

ytl
yt2
yt3

ytl
yt2
yt3

i /* Pl_s
i /* P2_s
i /* P3_s

ad point 1 var
ad point 1 var
ad point 1 var
i /* Pl s
i /* P2 s
i /* P3_s

var {xt2 xt3
var {xt2 xt3
var {xt2 xt3

var {xt2 xt3
var {xt2 xt3
var {xt2 xt3

sl = xtl || vy
sl = xtl || vy
sl = xtl || y
s2 = xtl || y
82 = xtl || y
o s2 = xtl || y

T */

{thetal} into
{theta2} into
{theta3} into

1 = T*T */

1 = T*T */

1 = T*T */

{thetal} into
{theta2} into
{theta3} into

2 = T*T */

2 = T*T */

2 = T*T */

xtd xt5 xt6 xt7
xt4 xt5 xt6 xt7
xt4 xt5 xt6 xt7

xt4 xt5 xt6 xt7
xt4 xt5 xt6 xt7
xt4 xt5 xt6 xt7

1_s1;
2_sl;
3_sl;

1 s2;
2 s2;
3 s2;

thetalsl;
theta2sl;
theta3sl;

thetals2;
theta2s2;
theta3s2;

xt8 xt9 xtl0 vtl_sl ytl sl} into
xt8 xt9 xtl0 vt2 sl yt2 sl} into
xt8 xt9 xtl0 vt3 sl yt3 sl} into

xt8 xt9 xtl0 vtl s2 ytl s2} into
xt8 xt9 xtl0 vt2 s2 yt2 s2} into
xt8 xt9 xtl0 vt3 s2 yt3 s2} into

[/*xxxxxxxxxxx Construct Transformation Matrix *****x*xxxxx/
=1 %to 30; /* Change #obs per rep */
s = %to 30; /* Change #obs per rep */

Pl
%1

e

P2
%1

se

P3
%1

se

Pl
%1

%e

P2
i

%e

P3
i

%e

%end
nd;

_s2[1,1]

_s2[1,1]

[/**xxxxxxxxxx The First Series:

~s1[1,1] = 1/sqgrt(l+thetalsl**2);

f %eval (&t >= &s) %then %do; Pl_sl[é&
lse %do; Pl _sl[&t,&s] = 0; %end;
_s1[1,1] = 1/sqgrt(l+theta2sl**2);

f %eval (&t >= &s) Sthen %do; P2 _sl[é&
lse %do; P2_sl[&t,&s] = 0; %end;
~s1[1,1] = 1/sqgrt(l+theta3sl**2);

f %eval (&t >= &s) Sthen %do; P3_sl[é&
lse %do; P3_sl[é&t,&s]

[*xFFxHk*xkKkx%x*% The Second Series:
~s2[1,1] = 1/sqgrt(l+thetals2**2);

= 0; %end;

f %eval (&t >= &s) Sthen %do; Pl _s2[&
lse %do; Pl _s2[&t,&s]

= 0; %end;

= 1/sqgrt (l+theta2s2**2);

f %eval (&t >= &s) %then %do; P2_s2[&
lse %do; P2_s2[&t,&s]

= 0; %end;

= 1/sqgrt (l+theta3s2**2);

f %eval (&t >= &s) %then %do; P3_s2[&
lse %do; P3_s2[&t,&s]

;

= 0; %end;

S1 KR kkkkkkkkokk /

t,&s] = thetals

t,&s] = thetals

t,&s] = thetals

t,&s] = thetals

t,&s] = thetals

t,&s] = theta3s

1** (&t-&s); %end;

1** (&t-&s); %end;

1** (&t-&s); %end;

S2 Kk Kkkkkkkkkk [

2** (&t-&s); %end;

2** (&t-&s); %end;

2** (&t-&s); %end;

yl sl;
y2_sl;
y3_sl;

yl s2;
y2_s2;
y3_s2;

Figure 4.5 (Continued)
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ytls_sl = Pl _sl*ytl sl;
yt2s_sl = P2_sl*yt2 sl;
yt3s_sl = P3_sl*yt3 sl;
yts_sl = j(nrow(TT),36,0);
ytls_s2 = Pl _s2*ytl s2;
yt2s_s2 = P2_s2*yt2_s2;
yt3s_s2 = P3_s2*yt3 s2;
yts_s2 = j(nrow(TT),36,0);
cn_yts sl = {"xtl sl eqgl"
"xt8 sl eql"
"xtl sl _eqg2"
"xt8 sl eqg2"
"xtl sl _eqg3"
"xt8 sl _eqg3"
cn_yts_s2 = {"xtl s2 eql"
"xt8 s2_eql"
"xtl s2_eqg2"
"xt8_s2_eqg2"
"xtl s2_eq3"
"xt8 s2_eqg3"
create SKIC
create SKIC
send;
$mend;
%trans;
quit;
title 'Test MA(1)
%$macro testmasl;
$local i;
%do i = 1 %to 1000;

proc arima data =
identify var
identify var
identify var

run;

%end;

%$mend;

%testmasl;

quit;

title 'Test MA (1)

$macro testmas2;

%local 1i;

%do i =1

proc arima data
identify var =
identify var =
identify var

run;

%end;

$mend;

%testmas2;

quit;

vtls_sl nlag
vt2s_sl nlag
vt3s_sl nlag

%to 1000;

vtls_s2 nlag
vt2s_s2 nlag
vt3s_s2 nlag

JHHEKKKANARAL K KKK ANNAAKKKKKANANN KKK KKANAAA T ()()

/* Transform MA (1) */

title 'Transform MA(1l)';

proc iml;

%macro trans;

%$local t;

%$local s;

$local 1i;

%do i =
TT =

%to 1000;

1
I(100); /*

use SKIC.esttabsl T100 gpé&i;
use SKIC.esttabsl T100 gpé&i;
use SKIC.esttabsl T100 gpé&i;

Pl sl = j(nrow(TTY,ncol(TT
P2 sl = j(nrow(TT),ncol (TT
P3 sl = j(nrow(TT),ncol (TT

yts_sl ytl

yts_s2 ytl
"xt2 sl _eql"
"xt9 sl _eql"
"xt2 sl _eq2"
"xt9 sl _eq2"
"xt2_sl_eqg3"
"xt9 sl _eqg3"

"xt2_s2_eql"
"xt9 s2_eql"
"xt2_s2 eq2"
"xt9_s2 eq2"
"xt2_s2_eqg3"
"xt9_s2 eqg3"

.yts_T30_sl gp&i from yts_ sl
.yts_T30_s2 gp&i from yts_s2

First series Thetal = 0.

SKIC.yts T30 sl gp&i;

= 6; estima
= 6; estima
= 6; estima

Second series Thetal =

SKIC.yts_T30_s2_ gpé&i;

= 6; estima
= 6; estima
= 6; estima

#0bs .

read point
read point

read point
),0); /*
),0); /*
),0); /*

per Sample =

s sl || yt2s sl || yt3s_sl;

s_s2 || yt2s_s2 || yt3s_s2;
"xt3 sl eqgl" "xtd4 sl eql" "xt5 sl eql"
"xt10_sl egl" "vtls sl" "ytls sl1"
"xt3 sl eqg2" "xtd sl eqg2" "xt5 sl _eq2"
"xt1l0_sl eg2" "vt2s_sl" "yt2s sl"
"xt3 sl eg3" "xtd4 sl eqg3" "xt5 sl _eq3"
"xt1l0_sl_eg3" "vt3s_sl" "yt3s_sl"};

"xt3_s2_eql" "xtd s2 eql" "xt5 s2 eql"
"xt1l0_s2_eql" "vtls_s2" "ytls_s2"
"xt3_s2_eq2" "xtd s2 _eq2" "xt5_s2 eq2"
"xt1l0_s2_eqg2" "vt2s_s2" "yt2s_s2"
"xt3_s2_eq3" "xtd s2 eq3" "xt5 s2 eq3"
"xt10_s2_eqg3" "vt3s_s2" "yt3s_s2"};

"xt6_sl eql"
"xt6_sl eq2"

"xt6_sl eq3"

"xt6_s2_eql"
"xt6_s2_eq2"

"xt6_s2_eq3"

[colname = cn_yts_sl]; append from yts_sl;
[colname = cn_yts_s2]; append from yts_ s2;
5, Theta2 = 0.6, Theta3 = 0.7"';

te g = 1 noint;

te g = 1 noint;

te g = 1 noint;

-0.6, Theta2 = -0.7, Theta3 = -0.8";

te g = 1 noint;

te g = 1 noint;

te g = 1 noint;

T */

{thetal} into thetalsl;
{theta2} into theta2sl;
{theta3} into theta3sl;
T*T */
T*T */
T*T */

1 var
1 var
1 var
Pl sl
P2_sl
P3_sl =

Kk KKK AANNNK KK KK ANANNF K KKK ANNAN Kk kK ANNNAK KKk k[

"xt7_sl _eqgl"
"xt7_sl _eqg2"

"xt7_ sl _eqg3"

"xt7_s2_eql"
"xt7_s2_eqg2"

"xt7_s2_eq3"

Figure 4.5 (Continued)
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use SKIC.esttabs2 T100_gp&i; read point 1 var {thetal} into thetals2;
use SKIC.esttabs2 T100_gp&i; read point 1 var {theta2} into theta2s2;
use SKIC.esttabs2 T100_gp&i; read point 1 var {theta3} into theta3s2;

Pl s2 = j(nrow(TTT,ncol(TT),O); /* Pl _s2 T*T */
P2 _s2 = j(nrow(TT),ncol (TT),0); /* P2 _s2 = T*T */
P3_s2 = j(nrow(TT),ncol (TT),0); /* P3_s2 = T*T */

use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vtl_sl ytl_sl} into yl_sl;
use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vt2_sl yt2_sl} into y2_sl;
use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vt3_sl yt3_sl} into y3_sl;

use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vtl_s2 ytl_s2} into yl_s2;
use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vt2_s2 yt2_ s2} into y2_s2;
use SKIC.yt T100_gpé&i; read all var {xt2 xt3 xtd xt5 xt6 xt7 xt8 xt9 xtl0 vt3_s2 yt3_s2} into y3_s2;

xtl = j(nrow(TT),1,1);

ytl sl = j(nrow(TT),12,0); ytl sl = xtl || yl sl;
yt2 sl = j(nrow(TT),12,0); yt2 sl = xtl || y2 sl;
yt3_ sl = j(nrow(TT),12,0); yt3 sl = xtl || y3 sl;
ytl s2 = j(nrow(TT),12,0); ytl s2 = xtl || yl s2;
yt2 s2 = j(nrow(TT),12,0); yt2 s2 = xtl || y2 s2;
yt3_s2 = j(nrow(TT),12,0); yt3 s2 = xtl || y3 s2;

/*xxxxxxxxxxx Construct Transformation Matrix *****xxxxxxx/

%do t = 1 %to 100; /* Change #obs per rep */
%do s = %to 100; /* Change #obs per rep */
/************ The First Series: Sl ************/

Pl s1[1,1] = 1/sqgrt(l+thetalsl**2);

$if %eval (&t >= &s) %then %do; Pl _sl[&t,&s] = thetalsl** (&t-&s); %end;
%else %do; Pl_sl[&t,&s] = 0; %end;

P2 s1[1,1] = 1/sqgrt(l+theta2sl**2);

$if %eval (&t >= &s) %then %do; P2 sl[&t,&s] = theta2sl** (&t-&s); %end;
%else %do; P2_sl[&t,&s] = 0; %end;

P3_s1[1,1] = 1/sqgrt(l+theta3sl**2);

$if %eval (&t >= &s) %then %do; P3_sl[&t,&s] = theta3sl**(&t-&s); %end;
selse %do; P3_sl[&t,&s] = 0; %end;

/************ The Second Series: 32 ************/

Pl s2[1,1] = 1/sqrt(l+thetals2**2);

%if %eval (&t >= &s) %then %do; Pl _s2[&t,&s] = thetals2**(&t-&s); %end;
selse %do; Pl _s2[&t,&s] = 0; %end;

P2 s2[1,1] = 1/sqrt(l+theta2s2**2);

%if %eval (&t >= &s) %then %do; P2_s2[&t,&s] = theta2s2**(&t-&s); %end;
selse %do; P2 _s2[&t,&s] = 0; %end;

P3 s2[1,1] = 1/sqrt(l+theta3s2**2);

$if %eval (&t >= &s) %then %do; P3_s2[&t,&s] = theta3s2** (&t-&s); %end;
%else %do; P3_s2[&t,&s] = 0; %end;

$end;
$end;

ytls sl = Pl sl*ytl sl;
yt2s sl = P2 sl*yt2 sl;
yt3s sl = P3 sl*yt3 sl;
yts_sl = j(nrow(TT),36,0); yts_sl = ytls_sl || yt2s_sl || yt3s_sl;

ytls s2 = Pl s2*ytl s2;
yt2s_s2 = P2_s2*yt2 s2;
yt3s_s2 = P3_s2*yt3 s2;
yts_s2 = j(nrow(TT),36,0); yts s2 = ytls s2 || yt2s s2 || yt3s s2;

cn_yts_sl = {"xtl sl eql" "xt2 sl eqgl" "xt3 sl eql" "xt4 sl eql" "xt5 sl eqgl" "xt6_sl eqgl" "xt7_ sl _eql"
"xt8 sl _eql" "xt9 sl eql" "xtl0_sl eql" "vtls_sl" "ytls sl"
"xtl sl _eqg2" "xt2 sl eqg2" "xt3 sl _eq2" "xt4d_sl eqg2" "xt5 sl eq2" "xt6_sl_eq2" "xt7_sl _eqg2"
"xt8_ sl _eqg2" "xt9 sl eg2" "xtl0_sl eqg2" "vt2s_sl" "yt2s sl"
"xtl sl _eqg3" "xt2 sl eqg3" "xt3 sl _eq3" "xt4d_sl eqg3" "xt5 sl eq3" "xt6_sl_eq3" "xt7_sl eqg3"
"xt8 sl _eqg3" "xt9 sl eqg3" "xtl0_sl _eg3" "vt3s_sl" "yt3s_sl"};

Figure 4.5 (Continued)
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cn_yts_s2 = {"xtl s2 eql" "xt2 s2 eql" "xt3_s2_eql" "xtd_s2 eql" "xt5 s2 eql" "xt6_s2_eql" "xt7_s2_ eql"
"xt8 s2 eqgl" "xt9 s2 eql" "xtl0 s2 eql" "vtls s2" "ytls s2"
"xtl s2 eqg2" "xt2 s2 eq2" "xt3 s2 eq2" "xt4d s2 eqg2" "xt5 s2 eq2" "xt6 s2 eq2" "xt7 s2 eqg2"
"xt8 s2 eqg2" "xt9 s2 eqg2" "xtl0_s2 eq2" "vt2s s2" "yt2s s2"
"xtl s2 eg3" "xt2 s2 eq3" "xt3 s2 eq3" "xt4d s2 eq3" "xt5 s2 eq3" "xt6_s2 eq3" "xt7_s2 eqg3"
"xt8 s2 eg3" "xt9 s2 eq3" "xtl0_s2 eq3" "vt3s_ s2" "yt3s s2"};

create SKIC.yts T100 sl gp&i from yts sl [colname
create SKIC.yts T100 s2 gp&i from yts s2 [colname

n_yts_sl]; append from yts sl;
n_yts_s2]; append from yts s2;

Q Q

$end;

$mend;
%trans;

quit;

Figure 4.5 (Continued)

Step 6 Using the assumption of nested model to construct the candidate models
which are the models include the columns of independent variables in a sequentially
nested fashion; i.e., columns 1 to K define the design matrix for the candidate model
with dimension K. For 1,000 transformed samples, we estimate the parameters of the
transformed model by the GLS method. Then calculate SKIC in (3.5) and SAIC
proposed by Keerativibool (2009),

SAIC =Tlog| £,

+M(K+M+3), . 4.5)

A T ~ -
where X, =——X X

“T K ue and X represent the estimated contemporaneous covariance

matrix of the error terms by the methods of unbiased estimator and maximum

likelihood estimator, respectively. Therefore SAIC in (4.5) can be rewritten as

SAIC:Tlog‘ﬁ‘.‘+TMlog[TTKj+M(K+M+3). .......... (4.6)

The candidate model that has the minimum value of model selection criterion is
called the best model. Model selection criterion performance is examined by a
measure of counting the frequency of order being selected. The results of comparing

are shown in Table 1.
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Table 1. Frequency of the model order being selected by SAIC and SKIC for 1,000

samples
Series of K
T Criteria
Errors v, 2 3 4 5 6 7 8 9 10
15 (4.3) SAIC 0 0O 82 75 30 15 16 2 30
SKIC 0 0 1000 O 0 0 0 0 0
15 (4.4) SAIC 0 0 809 98 32 13 18 2 28
SKIC 0 0 1000 O 0 0 0 0 0
30 (4.3) SAIC 0 0 919 60 13 6 2 0 0
SKIC 0 0 999 1 0 0 0 0 0
30 (4.4) SAIC 0 0O 886 8 20 6 2 0 0
SKIC 0 0 994 o6 0 0 0 0 0
100 (4.3) SAIC 0 0 952 39 9 0 0 0 0
SKIC 0 0 1000 O 0 0 0 0 0
100 (4.4) SAIC 0 0 910 55 20 7 5 0 3
SKIC 0 0 982 12 5 0 0 0 1

Note: Boldface type indicates the maximum frequency of correct order being selected.

Step 7 Calculate the observed L, distance, scaled by 1/T, between the true model

in (3.4) and the candidate model in (3.3) which was defined by McQuarrie et al.
(1997) and McQuarrie (1999),

! ~

L, (k)= %(no —a) X7 (27 ®L )X (n, - ).
and calculate the observed L, efficiency which defined as

min

i Lo (K)
L,(k,)

where K is the class of all possible candidate models, k is the rank of fitted candidate

Observed L, efficiency =

2

model, and k_ is the model selected by specific model selection criterion. The closer

the selected model is to the true model, the higher the efficiency. Therefore, the best

model selection criterion will select a model which yields high efficiency even in
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small samples. For 1,000 transformed samples, the results of comparing the observed

L, efficiency are shown in Table 2.

Table 2. Average and standard deviation of the observed L, efficiency over 1,000

samples
Series of Statistics
T Criteria
Errors v, Ave. L, eff. S.D. L,eff.
15 4.3) SAIC 0.7762 0.3170
SKIC 0.8843 0.2060
15 (4.4) SAIC 0.7213 0.3486
SKIC 0.8293 0.2749
30 4.3) SAIC 0.9436 0.1718
SKIC 0.9860 0.0868
30 (4.4) SAIC 0.8999 0.2341
SKIC 0.9487 0.1822
100 4.3) SAIC 0.9757 0.1113
SKIC 1.0000 0.0005
100 (4.4) SAIC 0.9527 0.1581
SKIC 0.9894 0.0810

Note: Boldface type indicates the best performance.

Step 8 The results of the frequency of correct order being selected from Steps 6 in
Table 1 can be concluded that the performance of SKIC in (3.5) convincingly
outperformed SAIC in (4.6) for all three levels of the sample sizes (T = 15, 30, 100)

and two series of the MA(1) and contemporaneously correlated errors v, in (4.3) and
(4.4), because SAIC has a tendency to overfit the order of the model than SKIC. The
results of the observed L, efficiency from Steps 7 in Table 2 also confirm that SKIC
has a large observed L, efficiency and small standard deviation of the observed L,

efficiency than SAIC, then SKIC is likely better than SAIC. In Table 3, we show the
average and standard deviation of SAIC and SKIC for 1,000 transformed samples. In
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this table we found that SAIC presents a large negative bias than SKIC that maybe the

main reason for the number of correct model order being selected is less.

Table 3. Average and standard deviation of SAIC and SKIC for 1,000 samples of the

sample size T and the series of errors v, in (4.3) and (4.4)

T =15 and errors v, in (4.3) T =15 and errors v, in (4.4)

SAIC SKIC SAIC SKIC
s Ave. S.D. Mean S.D. s Ave. S.D. Mean S.D.
2 6295 0977 8281 0977 2 7215 1310 9.201 1.311
3 3290 0998 6443 0998 3 3.888 1.232 7.041 1.232
4 -2351 0862 2309 0862 4 -2.300 0903 2359 0.903
5 -1.934 0904 4732 0904 S5 -1919 0949 4747  0.949
6 -1.507 0964 7954 0964 6 -1.493 1.006 7.968  1.006
7 -1.075 1.023 12.541 1.023 7 -1.066 1.072 12.549 1.072
8 -0.649 1.160 19.800 1.160 8 -0.648 1.174 19.801 1.174
9 1434 1375 35330 1375 9 1577 1406 35473 1.406
10 0.185 1.529 73.700 1.529 10 0.143 1.481 73.659 1.481

T =30 and errors v, in (4.3) T =30 and errors v, in (4.4)

SAIC SKIC SAIC SKIC
s Ave. S.D. Mean S.D. s Ave. S.D. Mean S.D.
2  6.197 0875 6824 0875 2 7.103 1.259 7.730  1.259
3 2967 0859 3916 0859 3 3617 1.109 4566 1.109
4 3131 0494 -1.827 0494 4 -3.065 0522 -1.762 0.522
5 -2938 0.501 -1.243 0501 5 -2.885 0.529 -1.191 0.529
6 -2.734 0.509 -0.606 0509 6 -2.685 0.533 -0.557 0.533
7 -2.528 0.527 0.081 0.527 7 -2.485 0.545 0.124 0.545
8 2306 0543 0.840 0.543 8 -2.275 0555 0.872  0.555
9 -0.309 0.656 3.440 0.656 9 -0.168 0.704 3.581 0.704
10 -1.846 0.559 2582 0559 10 -1.834 0.585 2.594 0.585




Table 3. (Continued)

30

T =100 and errors v, in (4.3) T =100 and errors v, in (4.4)

SAIC SKIC SAIC SKIC
* Ave. S.D. Mean S.D. £ Ave. S.D. Mean S.D.
2  6.104 0.617 6241 0617 2 7.028 1.034 7.166 1.034
3 2721 0570 2927 0570 3 3453  0.898  3.659  0.898
4 -3752 0265 -3476 0265 4 -3.7718 0.293 -3.442 0.293
5 -3.693 0266 -3.344 0266 5 -3.664 0.289 -3.315 0.289
6 -3.634 0267 -3.210 0267 6 -3.610 0.288 -3.187 0.288
7 -3.574 0267 -3.074 0267 7 -3.552 0.288 -3.053 0.288
8 -3.514 0267 -2936 0267 8 -3.496 0.284 -2918 0.284
9 -1.369 0383 -0.711 0383 9 -1.041 0.448 -0.383 0.448
10 -3392 0271 -2.652 0271 10 -3.379 0.279 -2.638 0.279

Note: Boldface type indicates the minimum average value of SAIC and SKIC.



CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

In this research, the transformation matrix in order to correct the MA(1)
problem and to recover the one lost observation along with the consideration of
contemporaneous correlation in a SEM is proposed. Then, the Kullback information
criterion for a system of SEM, called SKIC, is proposed for selecting the most
appropriate system of the models. SKIC is compared the performance of selection the
order of the model, relative to SAIC proposed by Keerativibool (2009). The results of
simulation study show that the proposed transformation matrix P can transform the
MA(1) errors for both forms of (4.3) and (4.4) to be independent. For all situations of
the sample sizes; small (T = 15), medium (T = 30), and large (T = 100), including two
series of errors generated in the SEM, SKIC convincingly outperformed SAIC,
because SAIC has a tendency to overfit the order of the model than SKIC. The results

of the observed L, efficiency also confirm that SKIC has a large observed L,
efficiency and small standard deviation of the observed L, efficiency than SAIC, then

SKIC is likely better than SAIC. The average and standard deviation of SAIC and
SKIC for 1,000 transformed samples show that SAIC presents a large negative bias

than SKIC, which maybe the main reason of selecting the correct order of the model

from SAIC is less than SKIC.

5.2 Future Works

Nowadays, there is not much the criterion to select the appropriate SEM.
Therefore, it should be studied and established the other criteria. Including, other
schema of the error-generation might also be considered, such as the autoregressive
and moving average (ARMA) scheme instead of only the moving average (MA)

scheme.
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APPENDIX A
PROOFS

Proof of Theorem 1.
The reduced-form model in (1.5) at the t" observation and the j" equation can
be written as follows:
Yi=Xm+v, t=12, ..., T, j=12,... M, (A1.1)
where
t=2,3,...,T,j=1,2,..., M. (Al.2)

,_
X, =[xy Xpu oo Xg ] Vy=8,—08,t

Replacing v in (A1.2) into (A1.1) and rearrange it into the term of &,
t=2,3,...T,j=L2,...., M. (A1.3)

_ /
€ =Y — X + stH,j ,

The i lag of &, in (A1.3) can be written as
—L) ZYt i,] Xt 1“] +918t (1+1) (A14)

Using the knowledge of (A1.4), the equation in (A1.1) becomes

o '
Vi =XT+E _ej (Yt—l,j —X T +ej8t—2,j)

2
)nj+s GJ 2

Vi 0¥ :( +e_]xtl

2
(x +ejxt 1)ﬂ:jﬂstj—ej (yH,j X, zn +9J . 3J)

2 _ 21 3
Ytj+ert—1,j+ert—2,j _( +e_]xtl+e_] t2)nj+8 e] t-3,j

T
Ze;yt_m Z:OJXt M, GT“ T (A1.5)
i=0

As T becomes large and 0; satisfies the invertibility condition, the value of GJ.T“
in (A1.5) approach zero. Therefore, (A1.5) can be rewritten as

i =xf'1tj +g,, (A1.6)

where ytJ Z:Gyt i and x| —ZGJ x,, fort=2,3,..,T,j=12,..., M.



39

From (A1.6) we found that Var(yfj

xf) = Var(atj) =0y, then we can argue that

the MA(1) problem at t=2,3,..., Tand j=1, 2, ..., M has been corrected. However,

the transformation in (A1.6) does not include the first observation in (Al.1). The
heteroskedasticity remains unsolved unless the first observation is eliminated, but if

the first observation is included in the analysis, the transformation must be extended

by the following steps. Firstly, we take the expectation to v in (Al.2),
E(vy)=E(e;) - 0,E(e 1) =E(e;)-0,E(e;) = (1-6, ) E(e, ).
Using the assumption in (1.8), we have the expectation of v, is equal to zero.

Therefore, from (A1.1) the variance of y, given x, for t=1,2,...,Tand j=1,2,...,.M

can be written as

Var(v,) =E| (2,0, ) | =E(e2)+ 02E(e3) = (1+62)E(e3)

(1+65)o;:
Hence, the first observation should weighted by ﬁ , yields the model
\/ +6°
J

Yii :xf'nj+81j, (A1.7)

1 ' 1 .
where y|. = |——vy,. and x; = |[——x for j=1,2,..., M.
Yij \/1+9f Yii ! \/1+ N ]

It can be shown that the MA(1) problem at t = 1 has been corrected,

Var ( Yii

o ! :
xl)zmvar(yu \X1)=@~(1+ef)cjj =i

Combining the results in (A1.6) and (A1.7), we get the TxT transformation

matrix P; which was exhibited in (3.2).
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Proof of Theorem 2.

The Kullback-Leibler’s symmetric divergence is a measure that used to separate
the discrepancy between the candidate model in (3.3) and the true model in (3.4),
defined by

21(8,,6)=d(6,,6)—d(6,.6,)+d(6,06,)—d(6.,6), (A2.1)

where d(ei,ej) =E, {—ZIOgL(Gj ‘y) }

Dropping d(8,,6,) in (A2.1) since it does not depend on @ . The ranking of the
candidate models according to 2J(8,,0) in (A2.1) is then identical to ranking them

according to
K (6,,0)=d(6,,0)+d(6.0,)—d(6,0). (A2.2)
Given a set of GLS estimators ©=(#, £, P) where P is the estimate of the
transformation matrix P in (3.1),
7= [X (= ®IT))~(*T X' (' e,y
and
oL, ——(y -Xn)(y -X'xf
we have therefore the estimate of the symmetric measure in (A2.2) as
K(0,,6)=d(e,,6)+d(6,6,)-d(6.6), (A2.3)
where d(8,,8)=E, {-2logL(6[y’)}| . d(6.6,)=E,{-210gL(8,]y")}| .

0=6
y*) } ‘e:é '

From the minus twice log likelihood of the candidate model in (3.3),

andd(é,é) =E, {—2 logL(O

—2logL(B|y")=TMlog(2m)+Tlog| £|+(y" —X*n)' (' eL)(y -X'n),
we have each term of the estimated symmetric measure in (A2.3) as follows:
d(OO,é) = TMlog(Zn)JrTlog‘ )3 ‘+(1t0 —ﬁ:)' X" ()i"l ®IT)X* (7, —7)

+Tur(27g,),
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d(6,6, ) =TMlog(2m)+ Tlog| E, |+ (&—m,) X" (L, ®1, )X’ (=,

—

+Ttr(Z,'E),
d(6,6) =TMlog(2r)+Tlog|£|+TM.
Therefore, the expected of the estimated symmetric measure in (A2.3) becomes
Q(8,,K) =E, { K(0,.0) } —E, { d(eo,é)+d(é,eo)—d(é,é)}

=TM][ log(2m)+1]+E, { Tlog‘ z ‘ }

+E,, { Ttr():“."ZO)}+E90 {(&—no)' X' (2 ®1,)X (2—m,) }

+E, | Ttr(Z7'E) |- E,, {Tlog( 2]/1%1) }—2TM. (A2.4)

From the facts that, # and TE are asymptotically independent where @ is

asymptotically distributed as a Gaussian distribution with mean vector @ and

variance-covariance matrix [5(*' ():51 L ) X*J ,and T T is asymptotically distributed

as the Wishart distribution with T—K degrees of freedom, W,,, (X,, T-K), then

(Anderson, 2003)
Eq, { TZ}=(T-K)X, and B, { £} =ﬁzg‘.
Using the above results, we have
E,, { Ttr(£7%,) } = Ttr{EeO (& )):O} - Ttr{ﬁzg‘zo} = %

E,, { Ttr(Z7'E) } = tr{Z;lEeo (Tz)} =tr{Z (T-K)E,} =(T-K)M.,

! ~

E,, {(n0 ~-7) X” (ﬁ“ ®IT)5(* (m, —fz)}
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!

Eeo{(ﬁ:—no) X*’(20‘®IT)X*(ﬁ—n0)}=KM,

then ©(6,,K) in (A2.4) can be written as

TKM M
+ +
T-K-M-1 T-K-M-1

Q(0,.K) =TM[log(2n)+1]+Eeo{Tk’g\ﬁ‘}

+KM+(T—K)M—E90{T10g(‘ﬁ‘.‘/| z, |)}—2TM

L TM(2K +M +1)
T-K-M-1

= TM[log(2n)+1]+Eeo { Tlog‘ )3 ‘ }
—TEeo{log(‘sz‘/mo |)}+TMlogT. (A2.5)
Because ‘T):“.‘/ | X, | in (A2.5) is the distribution of a product of independent

2 . M 5
3" random variables, | [.” x7_x_u.: - then we have

M
log( ‘ TZ‘/| X, | ) - ZlogX"zl'—K—M+i'
i=1
Using the second-order of Taylor’s series expansions to expand the function of

log(xi) about the mean p, we have

1

log(xf,) = log(p)+$(xﬁ —p)—g(xﬁ —p)2 and E[log(xﬁ )] = log(p)—i.

Then, the last two terms of the right-hand side in (A2.5) is

~TE,, { log(| T2 /| %, |)}+TMlogT

+TMlogT. (A2.6)

M
=T | log(T-K-M+i)-——
Z{Og( +) T—K—M+i}

i=1
McQuarrie and Tsai (1998) gave the simplification formulae for any T, K, M

and assume T—K —M is much larger than M as follows:

M _ — —
ZIOg(T—K—MH):Mlog(T—K—Mle=Mlog(2T 2K2 M“), (A2.7)

i=1
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and

i M ~ M
ST-K-M+i T_K_M2—1 2T-2K-M+1

Replacing the results in (A2.7) and (A2.8) into (A2.6), we have

~TE,, { log(| T2 /| %, |)}+TMlogT

ﬁ_TNHOg[n—2K—M+1j+ 2TM

+TMlog T
2 2T-2K-M+1
=TMlog( 21 j+ 2TM .
2T-2K-M+1) 2T-2K-M+1

Replacing the results in (A2.9) into (A2.5), we have
Q(6,,K)=TM[ log(2m)+1]+E, {SKIC},

where SKIC was exhibited in (3.5).

(A2.8)

(A2.9)
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Abstract

The Kullback information criterion (KIC) was proposed by Cavanaugh (1999) to serve as
an asymptotically unbiased estimator of a variant of Kullback’s symmetric divergence between
the true and fitted candidate models. It was arguably more sensitive than the criterion based
on the directed divergence. However, for a small sample size or if the dimension of candidate
model is large relative to the sample size, it displayed a large negative bias. Many authors,
Cavanaugh (2004), Seghouane and Bekara (2004), Hafidi and Mkhadri (2006), proposed the
criteria to correct this bias, i.e., the corrected versions of KIC called, respectively, in this
paper KICc¢, KICcsp, and KICcpy. Because they have multiple formulas, the aims of this
paper are to unify and examine the performance of them relative to the AIC family of criteria,
using theoretical and extensive simulation study methods.

Keywords: KIC; KICc; Kullback’s directed divergence; Kullback’s symmetric divergence;
model selection.

1. Introduction

The Kulback information criterion (KIC) by Cavanaugh (1999) and the corrected versions
(KICc) by Cavanaugh (2004) called KICcc, by Seghouane and Bekara (2004) called KICcgg,
and by Hafidi and Mkhadri (2006) called KICcyy were designed based on Kullback’s
symmetric divergence, also known as the J-divergence, in order to assess the dissimilarity
between the model generating the data and a fitted candidate model. However, when the
dimension of candidate model increases compared to the sample size, the corrected version of
the model selection criterion was better than the original version because it produced a bias
reduction and strongly improved model selection (Hurvich and Tsai, 1989; Bedrick and Tsai,
1994; Cavanaugh, 1997, 2004; McQuarrie, 1999; Seghouane and Bekara, 2004; Hafidi, 2006;
Hafidi and Mkhadri, 2006). Although KIC, KICc¢, KICcsg, and KICcyy share the same
fundamental objective, the justifications of the criteria proceed along different directions,
making it difficult to reconcile how the different corrected versions of KIC refine the
approximations used to establish KIC in the setting of linear regression model. With this
motivation, the aims of this paper are to unify the derivations of KIC and the corrected
versions in order to link the justifications of these criteria and the performance of them is then
examined by the extensive simulation study. The remainder of this paper is organized as
follows. In Section 2, we review the model selection criteria based on Kullback’s directed
and symmetric divergences. In Section 3, we show the unifications for the derivations of KIC
and the corrected versions. Simulation study for 1,000 realizations of multiple regression
models to examine the performance of the AIC and KIC families of criteria is shown in
Section 4. Finally, Section 5 is the conclusions, discussion, and further study.
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2. A review of model selection criteria based on Kullback’s directed and symmetric
divergences

Suppose that the true and the candidate models are, respectively, given by
y =XB, +£&,. &~N, (0, 5;1,), (1)
y=Xp+e e~N,(0,01,), )
where y is an Nx1 dependent random vector of observations, X is an Nx p matrix of
independent variables with full-column rank, B, and B are px1 parameter vectors of
regression coefficients, €, and &€ are Nx1 noise vectors. The true model is assumed to be

correctly specified or overfitted by all the candidate models. This means that B, has p,

nonzero entries with 0 < p, < p and the rest of the (p— po) entries are equal to zero. The

(p+1)x1 vector of parameters is 8, = [Bg o, ]’ and the maximum likelihood estimator of

0, is é:[ﬁ' &2} where B=(X'X)" Xy and 6" =(y-XB) (y-XB)/n. 3)
The minus twice log likelihood of the candidate model in (2) when replacing the dependent
vector y in (1) is defined by

1 1 . 2
—2log L(9|y)=nlog27r+nlogc72+?£080+?(B0—B) XX(BO—B)Jr;sOX(BO—B).
4)

A well-known measure to separate the discrepancy between two models is given by
Kullback’s directed divergence or I-divergence (Kullback, 1968),

L<90 |y)

21(6,,0)=E, {2logw } =d(6,,0)-d(6,.0,),
where
d(6,,8)=E, {~2logL(6]y)}, d(6,,8,)=E, {-2logL(6,]y)}.
and the expectation E, is taken with respect to the true model. Because d (90,90) does not
depend on 0, any ranking of the candidate models according to 21 (90,9) would be identical

to ranking them according to d (90,9). Given a set of maximum likelihood estimators 0 in

(3), the estimated directed measure d (90,9) is
d(0,.8) =E, {-210gL(6]y)}|

0=6
2 , R
=nlog27 + n10g6'2+n§2° +§(BO—B) X'X(B, -B)- (5)

However, the evaluation in (5) is not possible because it requires the knowledge of 0,
Akaike (1973, 1974) proposed an asymptotically unbiased estimator of

A(8,,p)= Eeo{d(eoaé)} 6)

as
AIC=nlogé’ +2(p+1), (7)

ic, E, {AIC}+0(1)=A(0,, p).



Because of a large negative bias of AIC when the sample size is small or the dimension of
candidate model is large relative to the sample size, Hurvich and Tsai (1989) proposed an
exactly unbiased estimator of (6) as
2n(p+1)

AICc=nlogé” + ,
n-p-2

(8)

ie., Ey { AICc}=A(6,,p).

Cavanaugh (1999), Seghouane and Bekara (2004), Seghouane (2006b) summarized that
the directed divergence produced too underfitted value of model selection, and then it tended
to be large for overparameterized models. An alternate measure to prevent both overfitting
and underfitting problems is obtained by reversing the roles of two models in the definition of
the measure, called Kullback’s symmetric divergence or J-divergence,

2J(6,.6)=21(6,.0)+21(6,6,)=[d(6,.6)-d(8,.6,)]|+[d(6,8,)—-d(6,0)],
where d(6,8,)=E, {—210g L( 0 |y)} and d(0,0)=E, {—2log L(O |y) }
Dropping d (90, 0, ) , the ranking of the candidate models according to 2J (90, 9) is identical

to rank
K (6,.8)=d(6,.8)+d(6,6,)—d (6,6).
Given a set of maximum likelihood estimators @ in (3), the estimated symmetric measure
K(6,.0) is
<(0,,0)=d(0,,0)+d(0,6,)-d (6.0), o)
where d (9 é) is exhibited in (5),
0

A2

=nlog27 +nlogo: + ”"0 Gig(s Bo) 'X(fa—so), (10)
and

d (é,é) =E, {—210g L(9|y)}‘e=é =nlog27z+nlogé” +n. (11)

Yet, evaluating K (60, é) in (9) requires 0, , Cavanaugh (1999) proposed an asymptotically
unbiased estimator of
Q(Oo,p)zEeo{K(eo,é)} (12)
as
KIC =nlogé” +3(p+1), (13)
ie., E, {KIC}+0(1)=Q(0,, p).

Seghouane and Bekara (2004) proposed an exactly unbiased estimator of (12) in order to
correct a large negative bias of KIC in (13) as follows:

2n 1 —
KICc=nlog&2+M—n(//(uj+nlog(ﬂj’
n-p-2 2 2

ie., By {KICc}=Q(8,,p).



Because the phi (l//) or digamma function in KICc has no closed-form solution, Cavanaugh

(2004), Seghouane and Bekara (2004), Hafidi and Mkhadri (2006) gave the asymptotically
unbiased estimators of (12) called, respectively, in this paper KICcc, KICcgg, and KICcy,

)(2p+3)-
KICcc =nlog&2+nlog( J n[ p+ ], (14)
n-p) (n- p 2)(n-p)
KiCess —nlogg?+ PHIGN=P=2) p (15)
n-p-2 n-p
KICcin =nlog&2+(p+1)(3n_;_2). (16)
n-p-

3. The unified derivations of KIC and KICc

To begin the unification of the derivations KIC, KICc¢, KICcsp, and KICcyy, we consider
the expectation of the discrepancies in (5), (10), and (11) with respect to the true model
(Seghouane and Bekara, 2004),

Eeo{d(eo,é)}=n10g27z+ Eeo{nlog& }+E {r:- }+E90 {%(Bo—ﬁ)rx'x(ﬁo_ﬁ)},(n)

E,, { d(é,eo)}znlog2n+nlogo-02 +E, {”G;‘;}Jr E,, {%(ﬁ—ﬁo)' x’x(fs—ﬁo)}, (18)

Eeo{d(é,é)}=n10g27r+ Eeo{nlog&z}Jrn. (19)

A2
From the fact that the terms ng and (B BO) 'X(B—BO) are the independent y’
Oy

distributions with the degrees of freedom Wthh are, respectively, n — p and p, we have

EQO{”:O }—n p and E, {alg (ﬁ—BO)’X'X(ﬁ—BO)}: p. (20)

Using the facts in (20), we have
no, n’ n’
Eeo A_zo = Ee(J > 2
o no”/o,| n-p-2
and

s s 1 no, X'X(B -
e e e

(21)
Substituting the results in (21) into the expected discrepancy in (17) leads to
2
= 9! = ~2 np
A(8,,p) =E,, { d (90,9>} =nlog2z +E, {nloga }+ —— +— 3
=n(log27 +1)+E, {AlCc}, (22)

where AICc is the corrected version of AIC that was exhibited in (8).
Replacing the facts in (20) into the expected discrepancy in (18) yields

Eeo{d(é,eo)}:n(log27z+l)+nlog0'§. (23)



Using the results in (19), (22), and (23), the expected value of K (90, é) in (9) becomes

)
Q(8,,p)=E,, { K (90,9) } =n(log27+1)+E, {AlCc|-E, {nloga—z}, (24)
)
where AICc is the corrected version of AIC that was exhibited in (8).

It is noteworthy that, in KIC and various corrected versions derived from K (90, é) in (9),

the differences in all formulas come from the last term of the right-hand side in (24).
Therefore, in order to show the connections of KIC, KICc¢, KICcgg, and KICcyym, we give
the following lemmas.

ol n—pj n (n} n
L 1. -E, <nlog— ¢ =-nlog| —— |+——+nlog| — |[+0| —— |. 25
emma 0, { og oﬁ} og( 5 n—p og > (n— p)2 (25)

Proof. From McQuarrie and Tsai (1998) and Bernardo (1976) we have, respectively,
df 1 1
E, {log y; t =w|— |+log2 and w(X)=logx——+0| — | as X = oo 26
o, {108 73 | ‘”(2) g2 and y(x) =logx—— (ij (26)

Applying the facts E, {n6”/c7}=n—p in (20) and (26), we have

) ) _
—E,, {nloga—z} =-E, {nlog n02 }+nlogn :—n{w(n—zpj+log2}+nlogn
o,

0 O,

=-n log(n_pj— ! +0 ! > | [=nlog2+nlogn
2/ n=p \(-p)
n-p n n n
=-nlo + +nlog| — [+0 .
g( 2 j n—p gtzj L(n—p)zJ
Lemma 2.

nlog[ =P, " n A PO N i n
nlog( 5 j+n_p+nlog(2j+o£(n_p)2j p+n_p+o[nj+o[(n_p)2J. (27)

Proof. Applying the first-order Taylor’s series expansion to expand the term log((n - p) / 2)

about n/2, i.e.,
2
n-p ny p p
log| — |=log| = [-=+0|| = | |,
o 5wl 5)-2o{ (2]

to obtain the approximation in (27).

Lemma 3. p+ n? n +O[%2J+o[(n_np)2J:(p+l) +0(1). (28)

Proof. Rearrange p+ n/(n— p) to be (p+1)+ p/(n— p). As N—00 and p is held constant,

the term
2
oo oo
) ()

is 0 (1) which yields the approximation in (28).

Appling Lemma 1 into Q(GO, p) in (24), we obtain



n— n n n
Q(8,,p) =n(log2r+1)+E, {AICc}—nlog[—2 pj+—n— > +nlog(§)+0L(n_ p)zJ

=n(log27 +1)+E, {KICc. +0 n =1t
(n-p)
where KICcc is the corrected version of KIC from Cavanaugh (2004) that was exhibited in
(14).
Appling Lemmas 1 and 2 into Q(OO, p) in (24), we obtain

n p’ n
Q(0,,p) =n(log2x+1)+E, {AICc!+ p+ +0| — [+0
(8:P) =nllog2m 1)+ &, tAICe}+ 0+ 75 H [(n—pr

=n(log27+1)+E, %KICCSB +°[p72j+0£(n—np)2 J}

where KICcgp is the corrected version of KIC from Seghouane and Bekara (2004) that was
exhibited in (15).
Appling Lemmas 1, 2, and 3 into Q(BO, p) in (24), we obtain
Q(8,,p) =n(log2z+1)+E, {AlCc}+(p+1)+0(1)
=n(log27+1)+E, {KICc,, +0(1)},
where KICcyy is the corrected version of KIC from Hafidi and Mkhadri (2006) that was

exhibited in (16).
The connections of KIC, KICcpy, KICcsp, and KICcc are given by

KICCHM =KIC + 2(p+1)(p+2),

n-p-2

KICess =KICeuy+ —P—
n-p
KICcc =KlICcsg+ n logLLJ— p. (29)
n-p
From the connections in (29), we found that the terms
2 1 2
(p+1)(P+2) . P
n-p-2 n—-p

are not greater than zero if and only if n— p>2 and p belong to the sets of [—2, —1] and

(—00, O], respectively. Therefore, we can argue that these two terms have values of at least

zero because p represents the number of regression coefficients which has the value of at
least one and both terms are very close to zero if the ratio of p/n tends to zero. This
conclusion links to KICcsg = KlICcyy = KIC. While the term

nlogLran “p (30)

has the value in the range [— p, 00) where it is close to the lower bound —p if the ratio of

p/n tends to zero. If the value of p is fixed, this term is the decreasing function of n, whereas



when the value of n is fixed, it is the increasing function of p. Whenever n— p >0 and the
condition

(1-p/n)exp(p/n)<1 (31)
is true, we have the term in (30) being greater than zero. This means that the penalty function
of KICcc is stronger than other criteria, KICcgg, KICcyy, and KIC, under the condition in
(31). The strong penalty may cause KICcc to have the maximum frequency of the correct
order being selected. However, occasionally it causes the model selection criterion to select

underparameterized models (McQuarrie and Tsai, 1998). This confusion is studied by the
extensive simulation in the next section.

4. Simulation study

To examine the model selection criteria performance, we generated 1,000 realizations of
true multiple regression models in (1) for four cases as follows.
Model I represents a very weakly identifiable true model with large dimension of the

model: y, =1+0.5X, +0.1X; +0.05X, +0.01X, +0.005X, +0.001X, +0.0005X, +&,.
Model II represents a weakly identifiable true model with small dimension of the model:
y, =14+0.5X, +0.25X, +¢,.

Model III represents a very strongly identifiable true model with small dimension of the
model: y, =1+2X, +3X,+4X, +¢&,.

Model IV represents a strongly identifiable true model with large dimension of the model:

Y, =1+ X, + X5+ X, + X+ X+ X, + X + &,

Model I and Model II represent the weakly identifiable true models which mean they are
not easily identified compared to the strongly identifiable true models such as Model III and
Model IV. From a previous study, Kundu and Murali (1996) concluded that the criteria
performance did not change much when the true variance O'é and the distributions of €, in
(1) were changed. As a result, we have taken the error random variables to be normally
distributed with zero mean and the true variance o, is assumed to be equal to 1. For each

model, four different sample sizes are split into two categories: small sample (n = 15, 25) and

large sample (n = 100, 500). Ten candidate variables, X, until X,,, are stored in an Nx10

matrix X of the candidate model in (2), with a column of ones, followed by nine independent
identically distributed normal random variables with zero mean and variance-covariance
matrix equal to identity matrix I,,. The candidate models include the columns of X in a
sequentially nested fashion; i.e., columns 1 to p define the design matrix for the candidate
model with dimension p. The criteria considered in this simulation are divided into two
families. Firstly, is the criteria based on Kullback’s directed divergence: AIC in (7) and AICc
in (8). Secondly, is the criteria based on Kullback’s symmetric divergence: KIC in (13),
KICcc in (14), KICcgp in (15), and KICcyy in (16). Model selection criteria performance is
examined by a measure of counting the frequency of order being selected. Particularly for the
case of true model being weakly identifiable, we use an additional measure which is the
observed L, efficiency. Observed L, distance, scaled by 1/n, between the true model in (1)

and the fitted candidate model in (2) is defined as (McQuarrie et al., 1997; McQuarrie, 1999)
1 A\ A
=—(B,-B| XX(B,—B].
L,(p)=—(B,~B) XX(8, ~B)
Observed L, efficiency is defined by the ratio



minlspsP LZ ( p)
L, (ps)

where P is the class of all possible candidate models, p is the rank of fitted candidate model,
and p, is the model selected by specific model selection criterion. The closer the selected

Observed L, efficiency =

2

model is to the true model, the higher the efficiency. Therefore, the best model selection
criterion will select a model which yields high efficiency even in small samples or if the true
model is weakly identifiable. For 1,000 realizations, the results of comparing the model
selection criteria performance are shown in Table 1 and 2. Columns “d” and “K” in Table 1
stand for the estimated measures in (5) and (9), respectively. The conclusions of this simulation
are as follows. In Table 1, for the small sample size and the true model is somewhat difficult
to identify, such as Model I, Model II for n = 15, 25, and Model IV for n = 15, the original
criteria AIC and KIC perform better than their corrected versions. When the sample size is
still small but the true model is easily to identify, such as Model III for n = 15, 25 and Model
IV for n = 25, the corrected versions work better. For the large sample size but the true model
is very difficult to detect, such as Model I for n = 100, 500, the AIC family of criteria performs
better than the KIC family. When the sample size is still large and the true model can be
specified more easily, such as Model II, Model III, and Model IV for n = 100, 500, the KIC
family performs the best. This simulation also found that when the true model is very difficult
to detect, such as Model I and the sample size is small n = 15, 25, the estimated symmetric
measure in (9) has the opportunity to cause more underfitted order being selected than the
estimated directed measure in (5). This result contributes the criteria in KIC family to having
a low frequency of choosing the correct model. In Table 2, the observed L, efficiency suggests

that KICcc in KIC family is the best criterion for all sample sizes of a weakly identifiable true
model.

Table 1. Frequency of the model order being selected by each criterion for 1,000 realizations

Model n Order Criteria
AIC AlICc KIC KICcHM KICeSB  KICcC d K
1 15 Underfitted 596 1000 837 1000 1000 1000 982 986
very Correct 54 0 26 0 0 0 0 0
weakly Overfitted 350 0 137 0 0 0 18 14
identifiable 25 Underfitted 859 998 972 1000 1000 1000 987 992
(true order Correct 39 1 11 0 0 0 0 0
po=18) Overfitted 102 1 17 0 0 0 13 8
100 Underfitted 944 974 993 998 999 999 998 998
Correct 23 14 5 2 1 1 0 0
Overfitted 33 12 2 0 0 0 2 2
500 Underfitted 958 962 998 998 998 999 1000 1000
Correct 21 21 1 1 1 0 0 0
Overfitted 21 17 1 1 1 1 0 0
I 15 Underfitted 284 820 542 859 864 875 571 547
weakly Correct 132 123 148 111 109 105 423 453
identifiable Overfitted 584 57 310 30 27 20 0 0
(true order 25 Underfitted 374 653 575 716 720 727 368 344
po=13) Correct 244 235 264 235 231 226 631 655
Overfitted 382 112 161 49 49 47 1 1
100 Underfitted 109 133 214 230 231 232 34 26
Correct 609 642 676 677 678 680 966 974
Overfitted 282 225 110 93 91 88 0 0
500 Underfitted 0 0 0 0 0 0 0 0
Correct 737 751 890 895 895 896 1000 1000

Overfitted 263 249 110 105 105 104 0 0




Table 1. (Continued)

Model n Order Criteria
AIC AlICc KIC KICcHM KICeSB  KICcC d K
1 15 Underfitted 0 0 0 0 0 0 30 0
very Correct 325 939 583 964 964 968 970 1000
strongly Overfitted 675 61 417 36 36 32 0 0
identifiable 25 Underfitted 0 0 0 0 0 0 0 0
(true order Correct 549 855 749 899 904 920 1000 1000
po=4) Overfitted 451 145 251 101 96 80 0 0
100 Underfitted 0 0 0 0 0 0 0 0
Correct 687 756 855 874 874 878 1000 1000
Overfitted 313 244 145 126 126 122 0 0
500 Underfitted 0 0 0 0 0 0 0 0
Correct 713 731 885 889 889 889 1000 1000
Overfitted 287 269 115 111 111 111 0 0
v 15 Underfitted 36 887 94 943 955 969 724 554
strongly Correct 444 113 532 57 45 31 214 377
identifiable Overfitted 520 0 374 0 0 0 62 69
(true order 25 Underfitted 5 31 9 60 62 67 281 133
Po=18) Correct 710 950 840 928 928 925 663 846
Overfitted 285 19 151 12 10 8 56 21
100 Underfitted 0 0 0 0 0 0 0 0
Correct 815 882 925 950 950 953 1000 1000
Overfitted 185 118 75 50 50 47 0 0
500 Underfitted 0 0 0 0 0 0 0 0
Correct 854 864 951 956 956 956 1000 1000
Overfitted 146 136 49 44 44 44 0 0

Note: Boldface type indicates the maximum frequency of correct order being selected.

Table 2. Average and standard deviation of the observed L, efficiency over 1,000 realizations

. Criteria
Circumstance Stat.
AIC AlCce KIC KICcum KICcgp KICcc
Ave. L; eff. 0.5332 0.7791 0.6826 0.8048 0.8062 0.8098
weakly identifiable Rank 6 4 5 3 2 1
(Model I and Model II),
small sample size (15, 25) S.D. Ljeff. 0.3598 0.2765 0.3343 0.2480 0.2462 0.2420
Rank 6 4 5 3 2 1
Ave. L, eff. 0.7239 0.7418 0.7771 0.7808 0.7810 0.7817
weakly identifiable
(Model T and Model I), Rank 6 3 4 3 2 1
large sample size (100, 500) S.D. Ljeff. 0.3096 0.3001 0.2601 0.2563 0.2562 0.2554
Rank 6 5 4 3 2 1
Ave. L; eff. 0.6286 0.7604 0.7299 0.7928 0.7936 0.7958
weakly identifiable Rank 6 4 5 3 2 1
(Model I and Model II) S.D. Lpeff. 0.3347 0.2883 0.2972 0.2522 0.2512 0.2487
Rank 6 4 5 3 2 1

Note: Boldface type indicates the best performance.
5. Conclusions, discussion, and further study

This paper presents the derivations to unify the justifications of the criteria based on
Kullback’s symmetric divergence; the Kulback information criterion (KIC) by Cavanaugh
(1999) and the corrected versions; KICcc by Cavanaugh (2004), KICcsg by Seghouane and
Bekara (2004), and KICcy by Hafidi and Mkhadri (2006). The results show that KICc¢ has
the strongest penalty function under the condition in (31), followed, respectively, by KICcgp,
KICcpuym, and KIC. The performance of them is examined by the extensive simulation study
relative to the criteria based on Kullback’s directed divergence, AIC and AICc. Our simulation
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study indicates that, for the small sample size and the true model is somewhat difficult to
identify, the performance of the original criteria AIC and KIC is better than their corrected
versions. When the sample size is still small but the true model is easily to identify, the
corrected versions perform the best. For the large sample size but the true model is very
difficult to detect, the AIC family of criteria performs better than the KIC family. When the
sample size is still large and the true model can be specified more easily, the KIC family
performs the best. This simulation also found that, although the proofs in this study show that
the criteria based on Kullback’s symmetric divergence are stronger than the criteria based on
the directed divergence, sometimes the performance of them is worse. This result may be
because the estimated symmetric measure in (9) contributes to all criteria in KIC family
usually having stronger penalty functions than the AIC family. This problem causes a greater
number of underfitted orders being selected, which then contributes to a low frequency of
choosing the correct model. However, when the true model is very difficult to detect, such as
Model 1; none of the criteria correctly identify the true model more than 6% of the time. As a
result, the frequency of correct order being selected may not be meaningful. For this reason,
we have also used the observed L, efficiency to assess model selection criteria performance.

This measure suggests that, in a weakly identifiable true model, whether the sample size is
small or large, KICcc is the best criterion because it has highest average value of the

observed L, efficiency and lowest standard deviation. The better performance of KICcc may

be because its formula is closer to the expected estimated symmetric discrepancy than others.
However, KICcc is more likely to select an underfitted model than other criterion which is
because its penalty function is strong. Although KICcc tends to select underfitted models,
these selected models are close to the true model which is weak.

In future work, we hope to extend KICcc from Cavanaugh (2004) to construct a model
selection criterion to serve as an asymptotically unbiased estimator of a variant of Kullback’s
symmetric divergence for multivariate regression and seemingly unrelated regression models.
Because, at this time, there exists the multivariate model selection based on the extensions of
KICcsp (Seghouane, 2006a) and KICcpy (Hafidi and Mkhadri, 2006).
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Abstract

The aim of this paper is to study the penalty functions of the well-known model selection
criteria, AIC, BIC, and KIC, which can unify their formulas as

APICa=10g(&2)+a(p+1)/n,

called Adjusted Penalty Information Criterion. The appropriate value of « for APIC«a has
been found to reduce the probabilities of over- and underfitting and also to overcome the
weak signal-to-noise ratio. The value of « is selected based on four measurements: the
probability of over- and underfitting, the signal-to-noise ratio, the probability of order
selected, and the observed L, efficiency. Performance of APICe is examined by theoretical

and extensive simulation study.

Keywords: model selection; penalty function; probability of overfitting; signal-to-noise ratio;
observed L, efficiency

1. Introduction

In regression analysis, the choice of an appropriate model from a class of candidate
models to characterize the study data is a key issue. In real life, we may not know what the
true model is, but we hope to find a model that is a reasonably accurate representation. A
model selection criterion represents a useful tool to judge the propriety of a fitted model by
assessing whether it offers an optimal balance between goodness of fit and parsimony. The
first model selection criterion to gain widespread acceptance was the Akaike information
criterion, AIC (Akaike, 1973). This serves as an asymptotically unbiased estimator of a
variant of Kullback’s directed divergence between the true model and a fitted approximating
model. The directed divergence, also known as the Kullback-Leibler information, the I-
divergence, or the relative entropy, assesses the dissimilarity between two statistical models.
Other well-known criteria were subsequently introduced and studied such as Bayesian
information criterion, BIC (Schwarz, 1978), and Kullback information criterion, KIC
(Cavanaugh, 1999). BIC is an asymptotic approximation to a transformation of the Bayesian
posterior probability of a candidate model (Neath and Cavanaugh, 1997). KIC is a symmetric
measure, meaning that an alternate directed divergence may be obtained by reversing the
roles of the two models in the definition of the measure. The sum of the two directed
divergences is Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh,
1999; Cavanaugh, 2004). Although AIC remains arguably the most widely used model
selection criterion, BIC and KIC are popular competitors. In fact, BIC is often preferred
over AIC by practitioners who find appeal in either its Bayesian justification or its tendency
to choose more parsimonious models than AIC (Neath and Cavanaugh, 1997). Likewise,
KIC is a symmetric measure which combines the information in two related, though distinct
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measures; it functions as a gauge of model disparity that is arguably more sensitive than AIC
that corresponds to only individual components (Cavanaugh, 1999; Cavanaugh, 2004).
However, AIC,BIC, and KIC still have the problems of overfitting and weak signal-to-noise
ratio due to the weak penalty functions. With this motivation, the aim of this paper is to study
the penalty functions based on these criteria for the case of univariate regression model in
order to find the appropriate value of penalty to reduce the probabilities of over- and
underfitting and also to overcome the weak signal-to-noise ratio. The remainder of this paper
is organized as follows. In Section 2, we unify AIC,BIC, and KIC in one form, called

Adjusted Penalty Information Criterion (APICa) . The studies on the probability of overfitting

and signal-to-noise ratio are also considered in this section. In Section 3, we simulate 1,000
realizations of multiple regression models in order to study the probability of the order
selected and the observed L, efficiency of APICa where the values of o range from 1 to

14. Finally, Section 4 is the conclusions, discussion, and further study.
2. Model selection criteria, probability of overfitting, and signal-to-noise ratio

Suppose data are generated by the operating model, i.e., true model

y=XBy+&, & ~ N, (Oa Ugln)» (1
and the candidate or approximating model is in the form
y=XB+e,&e~N,(0,0°1), )

where y is an nx1 dependent random vector of observations, X, and X are nxp, and
Nx p matrices of independent variables with full-column rank, respectively, B, and B are

P, x1 and px1 parameter vectors of regression coefficients, respectively, €, and € are nx1

noise vectors. The (p+1)x1 vector of parameters is 6, :[B(’) O'(f] and the maximum

likelihood estimator of 0, is é:[ﬁ’ 6'2] where

B=(XX)" Xy and 67 = (y—xﬁ) (y—xﬁ)/n .
For each data set, we can construct many fitted candidate models. Nevertheless, we cannot

know which model is the best. Criterion for model selection is a way to solve this problem.
AIC,BIC, and KIC are three well-known criteria to consider in this study. We scale these

criteria by 1/n in order to express them as a rate per observation. The formulas for them are
based on the form of the log of the likelihood function of the maximum likelihood estimator
of o plus a penalty function, called Adjusted Penalty Information Criterion,

AP|Ca=1og(&2)+@. 3)

When the values of « in (3) are equal to 2, 1og(n), and 3, APICa becomes AIC, BIC,

and KIC, respectively. The appropriate value of « has been found to reduce the probabilities
of over- and underfitting and also to overcome the weak signal-to-noise ratio. The value of «
is selected by four measurements: the probability of over- and underfitting, the signal-to-
noise ratio, the probability of order selected, and the observed L, efficiency. Theoretical and
empirical methods are used to examine the performance of APIC« .

The terms over- and underfitting can be defined in two ways. Under consistency, when a
true model is itself a candidate model, overfitting is a situation when the model has extra



variables with more parameters than the optimal model and underfitting is defined as
choosing a model that either has too few variables or is incomplete. In view of efficiency,
overfitting can be defined as choosing a model that has more variables than the model
identified as closest to the true model, thereby reducing efficiency. Underfitting is defined as
choosing a model with too few variables compared to the closest model, also reducing
efficiency. Both over- and underfitting can lead to problems with the predictive abilities of a
model. An underfitted model may have poor predictive ability due to a lack of detail in the
model, while an overfitted model may be unstable in the sense that repeated samples from the
same process can lead to widely differing predictions due to variability in the extraneous
variables. A criterion that can balance the tendencies of over- and underfitted is preferable.
(McQuarrie and Tsai, 1998; Seghouane, 2006).

The probability of model selection criterion preferring the overfitted model is analyzed
here by comparing the true model of order p, to a more complex model or overfitted model

of order p,+1, | >0. Hence for finite n, the probability that APIC«a prefers the overfitted
model is defined by
a(p,+ 1)}

n

a(p,+1+1)
n

&2 &2 &2 —&°
= P{log| =2 Sadl_p P >exp(—alj —pJh il >exp(—alj—1 L@
Gp0+l n 0p0+l n O-p0+l n

Under the assumption of nested models; p > p, and | >0, we have n(&f) —6';, ) ~ Jg 7,

P{APICa,, < APICa, } = P{log(6§0+. )+ <log(63, )+

n&f, ~0o; Zﬁ_p, where . represents the chi-square distribution with k degrees of freedom,
and &, -6, is independent of 6;,, (McQuarrie and Tsai, 1998). (5)

Then the probability of overfitting by | extra variables of APIC« in (4) becomes
P{APICa, , < APICa, | = P{F, o> #{exp(ﬂj—q } 6)
0 0 s 0 n

In (6), we found that APIC« ’s probability of overfitting depends on the value of o in
(3). If the value of a tends to infinity under the same values of the sample size (n), the

order of true model (p, ), and the additional variable (1), APICa tends to less overfitting.
When we replace the values of « in (6) by 2, log(n), and 3, we get the probabilities of
overfitting of AIC,BIC, and KIC, respectively. The proof of the probability of overfitting
can be confirmed numerically in Table 1. The explanation of the result in Table 1 is that, e.g.
for n=15, p, =3, and | =1, the probability of overfitting of APICI is 0.4025, this means

that this criterion would select the model whose order is higher by one order than true model
with a probability of 0.4025. Although the large value of « resulted in APICa having the
low probability of overfitting, sometimes it will be prone to underfitting. This result will be
shown in the simulation study.



Table 1. Probability of overfitting by | extra variables of APIC o for different values of n, p,, and |

Criteria
" a I APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
15 3 1 0.4025 0.2363 0.1469 0.0939 0.0611 0.0402 0.0266 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017
15 3 2 0.5134 0.2636 0.1353 0.0695 0.0357 0.0183 0.0094 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001
15 3 3 0.5947 0.2857 0.1287 0.0561 0.0240 0.0101 0.0042 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000
15 3 4 0.6664 0.3143 0.1305 0.0508 0.0190 0.0070 0.0025 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000
15 4 1 0.4257 0.2599 0.1676 0.1110 0.0747 0.0509 0.0349 0.0241 0.0167 0.0117 0.0082 0.0057 0.0040 0.0028
15 4 2 0.5488 0.3012 0.1653 0.0907 0.0498 0.0273 0.0150 0.0082 0.0045 0.0025 0.0014 0.0007 0.0004 0.0002
15 4 3 0.6384 0.3362 0.1667 0.0802 0.0378 0.0176 0.0082 0.0037 0.0017 0.0008 0.0004 0.0002 0.0001 0.0000
15 4 4 0.7154 0.3784 0.1780 0.0788 0.0336 0.0140 0.0058 0.0023 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000
30 3 1 0.3565 0.1922 0.1102 0.0651 0.0392 0.0239 0.0147 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006
30 3 2 0.4346 0.1889 0.0821 0.0357 0.0155 0.0067 0.0029 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000
30 3 3 0.4846 0.1795 0.0617 0.0204 0.0066 0.0021 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
30 3 4 0.5256 0.1720 0.0482 0.0125 0.0031 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
30 4 1 0.3661 0.2012 0.1175 0.0706 0.0433 0.0268 0.0168 0.0106 0.0067 0.0043 0.0027 0.0017 0.0011 0.0007
30 4 2 0.4493 0.2019 0.0907 0.0408 0.0183 0.0082 0.0037 0.0017 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000
30 4 3 0.5033 0.1954 0.0705 0.0245 0.0083 0.0028 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
30 4 4 0.5475 0.1902 0.0568 0.0157 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 3 1 0.3284 0.1670 0.0905 0.0506 0.0289 0.0167 0.0097 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003
100 3 2 0.3867 0.1496 0.0578 0.0224 0.0087 0.0033 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
100 3 3 04178 0.1288 0.0367 0.0100 0.0027 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 3 4 0.4395 0.1109 0.0236 0.0046 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 4 1 0.3310 0.1692 0.0922 0.0519 0.0297 0.0173 0.0101 0.0060 0.0035 0.0021 0.0013 0.0008 0.0005 0.0003
100 4 2 0.3906 0.1526 0.0596 0.0233 0.0091 0.0036 0.0014 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
100 4 3 0.4227 0.1322 0.0382 0.0106 0.0029 0.0008 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
100 4 4 0.4453 0.1144 0.0248 0.0050 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




The signal-to-noise ratio is the second measure used to study the property of APIC«.
McQuarrie and Tsai (1998) defined the signal-to-noise ratio as a measurement that is
basically a ratio of the expectation to the standard deviation of the difference in criterion
values for two models. The ratio tends to assess whether the penalty function is sufficiently

strong in relation to the goodness of fit term. From the true model order p, and a candidate
model order p,+1 where | >0, the true model is considered better than a candidate model if
the criterion value of a model of order p, is less than that of order p, +1, APIC« 0, < APICap,+ -

Then, the signal-to-noise ratio that the true model has selected compared to a candidate
model is defined by

signal  E| APICa 1~ APICa, |
noise  sd| APICa . — APICas, |

A2
I 1 1 (70+ al
E{log( p+l)+“(l%n++)_10g(&3o)_“(|°§+)} E{log[&pz'}n}
) - G
a(p,+1+1 . a(p, +1 ~2
Sd{log( p+|)+(p0n)—log(o"2)0)—(pr°l)} Sd{log(afgﬂ}ral}
(o2

Applying the second-order of Taylor’s series expansions in order to find the signal in (7) is
as follows: suppose X ~ y7, expanding log(X) about E(X)=p, we have

1
log(X )= log( p)+B(X -p)- s (x p) and E[log(X)]=log( ) e
Using the results in (8) and the assumption in (5), the approximate signal in (7) is

E[ APIC@up.1 ~ APICau,, |=E[ log(né2 ) |-E[log(ns?, )}%‘

i{log(a;)ﬂog(n_p0_|)_$}_{10g(ag)+1og(n_po)_n_lp }+%‘
o] PR | al
_logL n-py J (n—p,—N{n=p,) 1 ®

Using the assumption in (5) to find the noise in (7) by the Q-statistic which has the Beta

distribution as follows:
né> _n —
Q:¢+I Beta (w,l} (10)
n 2

GpO 2

and the log-distribution of Q-statistic is

NG, . -
log(Q)—log( ° J log - Beta(%l,li) (11)
n(fp0

Applying the first-order of Taylor’s series expansions when X ~ y+, we expand log( X )
about E(X)=p as follows:

log(X)ilog(p)+%(X ~p). (12)

(n-p,-1)/2  n-p,-I
(n—p,=1)/2+1/2  n-p,

Using (12) to expand log(Q) in (11) about E(Q)= , We

have



1og(Q)ﬁlogL”‘p°"J+ NP, LQ—”"OO"J. (13)

n—1p, n_po_l n—1p,
The variance of log(Q) in (11) is approximated by the variance of log(Q) in (13) as

follows:

Va{loglnnéj%j H:var[log(Q)]iva{log[”;_pzo—l}r r]rl—popo_I (Q_ nr:—popo_lﬂ
:(&IW(Q) __(n-p) { [(n—p,~1)/2](1/2) ‘

n—p, | (n=po=1)" | ((n—p,=1)/2+1/2) ((n-p,~1)/2+1/2+1)
21

= . 14
(n—p,—1)(n—p,+2) (14

Therefore, the standard deviation of log(Q) in (14) or the approximate noise in (7) is

6'2 I al n&2+| . \/j
dil BT+ |=sd| ] By =sd| 1 = . (15
i l:og[ 6-r230 }4— n:l i {Og( noA-éo ]:| ) [Og(Q):I \j(n—po—|)(n—p0+2) ( )

Combined, the approximations of signal in (9) and noise in (15) to be the approximate
signal-to-noise ratio in (7) is as follows:

signal \/(n—po—|)(n—po+2) n-p,—I I al
noise 21 n-p, ) (n—-p,—1)(n=p,) n

In (16), we found that the signal-to-noise ratio of APIC«a depends on the value of « in

(3). This conclusion is similar to the probability of overfitting, that is if the value of « tends

to infinity under the same values of n, p,, and I, APICa has a strong signal-to-noise ratio.

When we replace the values of a in (16) by 2, log(n), and 3, we have the approximate

signal-to-noise ratios for AIC,BIC, and KIC, respectively. The proof of the signal-to-noise
ratio can be confirmed numerically in Table 2. McQuarrie and Tsai (1998) concluded that the
signal-to-noise ratios are strong or weak as follows. A strong signal-to-noise ratio refers to a
large positive value (often greater than 2) and leads to small probability of overfitting. A
weak signal-to-noise ratio usually refers to one that is small (less than 0.5) or negative and
results in high probability of overfitting. The model selection criterion that has strong signal-
to-noise ratio and lowest probability of overfitting is preferable.



Table 2. Signal-to-noise ratio of APIC ¢ for different values of n, p,, and |

Criteria

" o I APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
15 3 1 -0.2450 0.3400 0.9250 1.5100 2.0950 2.6800 3.2650 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600
15 3 2 -0.3884 0.4004 1.1892 1.9780 2.7668 3.5556 4.3444 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661
15 3 3 -0.5291 0.3874 1.3039 2.2204 3.1370 4.0535 4.9700 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856
15 3 4 -0.6752 0.3225 1.3203 2.3181 3.3159 43136 53114 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958
15 4 1 -0.3042 0.2333 0.7707 1.3082 1.8457 2.3832 2.9207 3.4582 3.9956 4.5331 5.0706 5.6081 6.1456 6.6831
15 4 2 -0.4734 0.2477 0.9688 1.6899 24110 3.1321 3.8532 4.5743 5.2954 6.0166 6.7377 7.4588 8.1799 8.9010
15 4 3 -0.6351 0.1976 1.0302 1.8629 2.6956 3.5282 4.3609 5.1936 6.0262 6.8589 7.6916 8.5242 9.3569 10.1896
15 4 4 -0.8002 0.0992 0.9985 1.8979 2.7973 3.6967 4.5961 5.4955 6.3948 7.2942 8.1936 9.0930 9.9924 10.8917
30 3 1 -0.1132 0.5340 1.1812 1.8284 2.4756 3.1229 3.7701 4.4173 5.0645 57117 6.3589 7.0062 7.6534 8.3006
30 3 2 -0.1785 0.7190 1.6166 2.5141 34116 4.3092 5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894
30 3 3 -0.2414 0.8356 1.9127 2.9897 4.0667 5.1438 6.2208 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600
30 3 4 -0.3054 0.9120 2.1295 3.3470 4.5644 5.7819 6.9994 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216
30 4 1 -0.1389 0.4847 1.1083 1.7319 2.3555 2.9791 3.6027 4.2263 4.8500 5.4736 6.0972 6.7208 7.3444 7.9680
30 4 2 -0.2149 0.6492 1.5133 2.3774 3.2415 4.1056 4.9697 5.8338 6.6979 7.5620 8.4261 9.2902 10.1543 11.0184
30 4 3 -0.2861 0.7499 1.7859 2.8219 3.8579 4.8940 5.9300 6.9660 8.0020 9.0380 10.0740 11.1101 12.1461 13.1821
30 4 4 -0.3573 0.8127 1.9827 3.1527 43227 5.4927 6.6627 7.8327 9.0027 10.1727 11.3427 12.5127 13.6827 14.8527
100 3 1 -0.0324 0.6569 1.3463 2.0356 2.7250 3.4143 4.1037 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291
100 3 2 -0.0510 0.9188 1.8886 2.8584 3.8282 4.7980 5.7678 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564
100 3 3 -0.0687 1.1128 2.2942 3.4757 4.6572 5.8387 7.0202 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905
100 3 4 -0.0867 1.2703 2.6273 3.9843 5.3413 6.6982 8.0552 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541
100 4 1 -0.0396 0.6426 1.3249 2.0072 2.6895 3.3717 4.0540 4.7363 5.4186 6.1008 6.7831 7.4654 8.1477 8.8299
100 4 2 -0.0612 0.8986 1.8584 2.8182 3.7780 4.7378 5.6976 6.6574 7.6171 8.5769 9.5367 10.4965 11.4563 12.4161
100 4 3 -0.0813 1.0880 22572 3.4264 4.5957 5.7649 6.9341 8.1034 9.2726 10.4418 11.6111 12.7803 13.9495 15.1187
100 4 4 -0.1011 1.2417 2.5845 3.9274 5.2702 6.6130 7.9559 9.2987 10.6415 11.9844 13.3272 14.6700 16.0129 17.3557




3. Simulation study

In addition to the proofs of probability of overfitting in (6) and the approximate signal-to-
noise ratio in (16), we use the simulation data to find the appropriate value of « for APIC«
in (3). Four cases of the true multiple regression models in (1) are constructed as follows.

Model 1 (very weakly identifiable true model with the true order p, =7):

y, =X, +0.5X, +0.1X, +0.05X, +0.01X, +0.005X, +0.001 X, + &,
Model 2 (weakly identifiable true model with the true order p, =3):
y, =X, +0.5X,+0.25X, +¢,,

Model 3 (very strongly identifiable true model with the true order p, =4):
Y, = X, +2X,+2X,+2X, +&;,

Model 4 (strongly identifiable true model with the true order p, =8):
Y, =X+ X, + X+ X, + X+ X+ X, + X+,

Model 1 and Model 2 represent the weakly identifiable true models which mean they are
not easily identified compared to the strongly identifiable true models such as Model 3 and
Model 4. In this study, the true variance o, in (1) is assumed equal to one. For each model,
we consider 1,000 realizations for three levels of the sample sizes which are n=15 (small),
n =30 (moderate), and n=100 (large). Ten candidate variables, X, to X,,, are stored in an
nx10 matrix X of the candidate model in (2), where X, is given as a constant which equals

one, followed by nine independent identically distributed normal random variables with zero
mean and equal variance-covariance matrix to identity matrix I,,. The candidate models
include the columns of X in a sequentially nested fashion; i.e., columns 1 to p define the
design matrix for the candidate model with dimension p. Over 1,000 realizations, we apply
APIC« in (3) with the values of « ranging from 1 to 14 on the datasets y of four models
constructed. The probability of order selected by APIC« is a measure used to examine the
effects of weak or strong penalty function in the proposed criterion. In addition to above
measure, many authors (McQuarrie et al., 1997; McQuarrie, 1999) use the observed L,
efficiency to assess model selection criterion performance, especially when the true model is
very difficult to detect. The observed L, distance, scaled by 1/n, between the true model in

(1) and the fitted candidate model in (2) is defined as

Lz ( p) = (XOBO —X[A})' (XOBO _Xﬁ)/ n.
Observed L, efficiency is defined by the ratio
minlspSP L, ( p)
L, (p;)

where P is the class of all possible candidate models, p is the rank of fitted candidate model,
and p, is the model selected by specific model selection criterion. The closer the selected

b

Observed L, efficiency =

model is to the true model, the higher the efficiency. Therefore, the best model selection
criterion will select a model which yields high efficiency even in small samples or the true
model is weakly identifiable. In order to summarize the results in this study, the average
observed L, efficiencies over the 1,000 realizations are ranked for APICa where the values
of o range from 1 to 14. The first rank of average observed L, efficiencies goes to the

highest efficiency criterion and denotes better relative performance. Results of comparing the



probability of order selected by APICa and average observed L, efficiencies are shown in

Table 3.

From the results of simulation in Table 3 we found that, for Model 1 and Model 2 which
are the situations where the true model cannot be easily identified, APIC« with the small
value of « (about 1 to 3) gives the greater probability of correct order being selected than the
case of large value and also prevents the probability of underfitting. While, the observed L,

efficiency suggests the large value of « causes the high efficiency of APIC«, except when
the true model can be specified more easily, such as Model 2, and sample sizes are moderate
to large, the small value of a (about 3 to 4) is preferable. For Model 3 and Model 4 which
are the situations where the true model is strongly identifiable, the value of « should be large
(at least 8), except when the regression coefficients are not large enough, such as Model 4,
and the sample sizes are small to moderate, the value of & should be moderate (about 4 to 6).

For all models, if the value of « tends to infinity, the probability of overfitted tends to
decrease whereas the probability of underfitting tends to increase. The point that has the
optimal probability of over- and underfitting always presents the maximum probability of
correct order being selected.

4. Conclusions, discussion, and further study

In this paper, we study the penalty functions based on the well-known model selection
criteria, AIC,BIC, and KIC, which can be unified in the form of the log likelihood function

of the maximum likelihood estimator of & plus a penalty function, called Adjusted Penalty
Information Criterion, i.e.,

APICa = log(6) + (P)
n

when the values of o are equal to 2, log(n), and 3, APICa becomes AIC,BIC, and KIC,

respectively. Each criterion has a different value due to its penalty function, the differences in
strong or weak penalty affecting the probabilities of over- and underfitting, including the
problem of signal-to-noise ratio being weak.

The theoretical results show that, when the value of « tends to infinity, the probability of
overfitting tends to zero and the signal-to-noise ratio tends to strong. At the same time, the
results of simulation based on values of o for APIC«a ranging from 1 to 14 suggest that,
when the true model is weakly identifiable, the value of o should be small to give a high
probability of correct order being selected and to prevent the probability of underfitting.
However in the case of the true model is very difficult to detect, such as Model 1; none of the
criteria correctly identify the true model more than 8% of the time. As a result, the probability
of correct order being selected may not be meaningful. For this reason, we used the observed
L, efficiency to assess the appropriate value of « . This measure suggests the large value of

o causes the high efficiency of APICa which indicates that the correct model is also the
closet model, except when the true model can be specified more easily, such as Model 2, and
sample sizes are moderate to large, then the small value of « is preferable. For the strongly
identifiable true model, the large value of « performs well. Because the problem of
underfitting does not occur in this situation, the underfitted order often gives the maximum
value of the estimated mean squared error and hence, under the model selection criterion, it is
not possible to select the underfitted model. In the situation where the regression coefficients
are not large enough, such as Model 4, and the sample sizes are small to moderate, the value
of « should be moderate.
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In further work, we attempt to construct the model selection criteria to overcome the
probability of over- and underfitting in the multivariate regression and simultaneous equations
models.
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Table 3. Probability of the order selected by APIC « and average observed L, efficiencies over 1,000 realizations

Model n Order Criteria
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
1 15 Underfitted 0.191 0.560 0.809 0.931 0.980 0.997 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
very Correct 0.055 0.044 0.018 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
weakly Overfitted 0.754 0.396 0.173 0.063 0.019 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000
identifiable Ave. L; eff. 0.266 0.483 0.687 0.811 0.890 0.922 0.937 0.952 0.960 0.961 0.962 0.964 0.965 0.966
(true order Rank 14 13 12 11 10 9 8 7 6 5 4 3 2 1
po=7) 30 Underfitted 0.441 0.853 0.982 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correct 0.067 0.029 0.006 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Overfitted 0.492 0.118 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L; eff. 0.386 0.646 0.795 0.858 0.885 0.913 0.923 0.929 0.934 0.935 0.939 0.941 0.942 0.942
Rank 14 13 12 11 10 9 8 7 6 5 4 3 1.5 1.5
100 Underfitted 0.588 0.927 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Correct 0.079 0.022 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Overfitted 0.333 0.051 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L, eff. 0.470 0.642 0.703 0.723 0.735 0.748 0.756 0.765 0.772 0.778 0.782 0.784 0.784 0.786
Rank 14 13 12 11 10 9 8 7 6 5 4 3 2 1
2 15 Underfitted 0.058 0.288 0.545 0.721 0.826 0.890 0.930 0.955 0.970 0.978 0.986 0.990 0.990 0.992
weakly Correct 0.038 0.136 0.167 0.158 0.123 0.090 0.061 0.042 0.030 0.022 0.014 0.010 0.010 0.008
identifiable Overfitted 0.904 0.576 0.288 0.121 0.051 0.020 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000
(true order Ave. L; eff. 0.301 0.469 0.615 0.703 0.746 0.771 0.786 0.797 0.802 0.805 0.808 0.810 0.810 0.811
Po=3) Rank 14 13 12 11 10 9 8 7 6 5 4 2.5 2.5 1
30 Underfitted 0.102 0.376 0.584 0.712 0.799 0.857 0.900 0.927 0.941 0.959 0.972 0.978 0.982 0.990
Correct 0.124 0.282 0.271 0.234 0.183 0.135 0.096 0.069 0.057 0.039 0.028 0.022 0.018 0.010
Overfitted 0.774 0.342 0.145 0.054 0.018 0.008 0.004 0.004 0.002 0.002 0.000 0.000 0.000 0.000
Ave. L, eff. 0.402 0.602 0.663 0.670 0.659 0.648 0.642 0.643 0.643 0.646 0.650 0.650 0.652 0.656
Rank 14 13 2 1 3 8 12 11 10 9 7 6 5 4
100 Underfitted 0.029 0.118 0.223 0.333 0.417 0.499 0.582 0.652 0.704 0.768 0.814 0.847 0.876 0.892
Correct 0.271 0.575 0.663 0.628 0.565 0.496 0.415 0.346 0.295 0.231 0.186 0.153 0.124 0.108
Overfitted 0.700 0.307 0.114 0.039 0.018 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000
Ave. L, eff. 0.515 0.748 0.806 0.782 0.732 0.679 0.616 0.562 0.524 0.479 0.449 0.427 0.407 0.397
Rank 9 3 1 2 4 5 6 7 8 10 11 12 13 14
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Model n Order Criteria
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14
3 15 Underfitted 0.000 0.000 0.000 0.002 0.005 0.008 0.010 0.020 0.030 0.042 0.062 0.099 0.144 0.192
very Correct 0.091 0312 0.558 0.728 0.851 0.909 0.944 0.948 0.946 0.942 0.929 0.895 0.851 0.805
strongly Overfitted 0.909 0.688 0.442 0.270 0.144 0.083 0.046 0.032 0.024 0.016 0.009 0.006 0.005 0.003
identifiable Ave. L; eff. 0.435 0.568 0.719 0.828 0.906 0.942 0.964 0.964 0.961 0.955 0.941 0.909 0.867 0.823
(true order Rank 14 13 12 10 8 5 2 1 3 4 6 7 9 11
po=4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.223 0.602 0.789 0.890 0.937 0.961 0.978 0.984 0.989 0.991 0.996 1.000 1.000 1.000
Overfitted 0.777 0.398 0.211 0.110 0.063 0.039 0.022 0.016 0.011 0.009 0.004 0.000 0.000 0.000
Ave. L; eff. 0.525 0.753 0.868 0.928 0.958 0.973 0.984 0.988 0.993 0.994 0.997 1.000 1.000 1.000
Rank 14 13 12 11 10 9 8 7 6 5 4 2 2 2
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.307 0.684 0.855 0.932 0.961 0.982 0.989 0.993 0.997 0.997 0.999 0.999 1.000 1.000
Overfitted 0.693 0.316 0.145 0.068 0.039 0.018 0.011 0.007 0.003 0.003 0.001 0.001 0.000 0.000
Ave. L, eff. 0.577 0.805 0910 0.955 0.974 0.988 0.992 0.995 0.998 0.998 0.999 0.999 1.000 1.000
Rank 14 13 12 11 10 9 8 7 5.5 5.5 35 35 1.5 1.5
4 15 Underfitted 0.011 0.036 0.094 0.171 0.300 0.503 0.680 0.834 0.922 0.968 0.995 0.997 0.998 0.999
strongly Correct 0.253 0.444 0.532 0.555 0.517 0.384 0.251 0.140 0.069 0.028 0.003 0.002 0.001 0.000
identifiable Overfitted 0.736 0.520 0.374 0.274 0.183 0.113 0.069 0.026 0.009 0.004 0.002 0.001 0.001 0.001
(true order Ave. L, eff. 0.788 0.815 0.830 0.812 0.746 0.602 0.449 0.311 0.224 0.171 0.134 0.129 0.124 0.121
Po=218) Rank 4 2 1 3 5 6 7 8 9 10 11 12 13 14
30 Underfitted 0.001 0.001 0.003 0.006 0.011 0.019 0.047 0.104 0.209 0.350 0.560 0.736 0.871 0.947
Correct 0.489 0.759 0.875 0.932 0.964 0.967 0.944 0.895 0.790 0.649 0.440 0.264 0.129 0.053
Overfitted 0.510 0.240 0.122 0.062 0.025 0.014 0.009 0.001 0.001 0.001 0.000 0.000 0.000 0.000
Ave. L, eff. 0.848 0912 0.950 0.969 0.982 0.981 0.962 0.917 0.820 0.688 0.485 0.317 0.185 0.109
Rank 8 7 5 3 1 2 4 6 9 10 11 12 13 14
100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Correct 0.593 0.815 0.925 0.966 0.985 0.995 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Overfitted 0.407 0.185 0.075 0.034 0.015 0.005 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
Ave. L, eff. 0.857 0.919 0.960 0.980 0.991 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Rank 14 13 12 11 10 9 7.5 7.5 35 35 35 35 35 35

Note: Boldface type indicates the maximum value.
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Abstract

Moving average in the error of simultaneous equations model (SEM) is a crucial problem
to make the estimators from the ordinary least squares (OLS) method are not efficient. For
this reason, we proposed the transformation matrix in order to correct the first-order moving
average, MA(1), that generated in the fitted model and to recover the one lost observation in a
SEM. After the errors are transformed to be independent, the Kullback information criterion
for select the appropriate SEM, called SKIC, to be going to derive. This criterion is
constructed based on the symmetric divergence which obtained by sum of the two directed
divergences. The symmetric divergence is arguably more sensitive than either of its
individual components. The performance of the proposed criterion, SKIC, is examined
relative to SAIC proposed by Keerativibool (2009). The results of simulation study show that
the errors of the model after transformation are independent and SKIC convincingly
outperformed SAIC, because SAIC has a tendency to overfit the order of the model than
SKIC.

Keywords: First-order moving average MA(1); Transformation matrix; Simultaneous equations
model (SEM); Kullback information criterion for a system of SEM (SKIC).

1. Introduction

A system of simultaneous equations model (SEM) is a model that contains variables with
two way flows of influence characteristics which most common and straightforward methods
for modelling the economic data. The endogenous explanatory variable will become stochastic
and will correlate with the error terms of the equation in which it appears as an explanatory
variable. Most problems in the errors of SEM are the autocorrelated (AR) error or moving
average (MA) error or both (ARMA). When these problems occur, the ordinary least squares
(OLS) estimators cannot be used because they are not efficient (Gujarati, 2006). Therefore, in
this paper we will propose a transformation matrix to correct the first-order moving average,
MA(1), which generated in the fitted model and to recover the one lost observation in a SEM.
After the errors are transformed to be independent, we consider the problem of fitting a
parametric model to an observed data set. This problem requires two tasks, determination of
the order of the model and estimation of these parameters. In real life, we may not know what
the true model is, but we hope to find a model that is a reasonably accurate representation.
The crucial part of this fitting problem is to determine the order of the model. Such
determination is often facilitated by the use of a model selection criterion where one only has
to evaluate two simple terms that trade-off quality of fit to the data and model’s complexity.
A lot of previous literary attention to the issue of model selection, the widespread criterion
for choosing the best model in univariate and multivariate regression analysis is the Akaike
information criterion (AIC) (Akaike, 1973, 1974; Bedrick and Tsai, 1994). The corrected
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version of the AIC (AIC,) (Hurvich and Tsai, 1989) is extended for the case of small sample.
AIC and AIC. were designed, respectively, to be asymptotically and exactly unbiased
estimator of a variant of Kullback-Leibler’s directed divergence between the true model and a
fitted candidate model. The development of a new family of selection criteria, Kullback
information criterion (KIC) and the corrected version of the KIC (KIC,), are the criteria
constructed to target a symmetric divergence. This divergence is an alternate of directed
divergence, obtained by sum of the two directed divergences, which arguably more sensitive
than either of its individual components (Cavanaugh, 1999, 2004; Seghouane and Bekara,
2004; Hafidi and Mkhadri, 2006). Recently it has developed the KICc more in the case of
vector autoregressive and multivariate regression (Hafidi, 2006; Seghouane, 2006).
Unfortunately, as of now, there is only one criterion, Akaike information criterion for a
system of SEM (SAIC), for selecting a workable system of SEM (Keerativibool, 2009). With
this motivation, we will propose the model selection criterion, called Kullback information
criterion for a system of SEM (SKIC), which serves as an asymptotically unbiased estimator
of a variant of Kullback-Leibler’s symmetric divergence between the true model and the
fitted candidate model. The remainder of this paper is organized as follows. In Section 2, we
propose a transformation matrix in order to correct the MA(1) problem in the errors of a
SEM. The criterion, SKIC, for selecting the best system of SEM is also proposed in this
section. In Section 3, we simulate 1,000 samples of SEM in order to study the frequency of
order being selected and the observed L, efficiency of the proposed criterion, SKIC, relative

to SAIC proposed by Keerativibool (2009). Finally, Section 4 is the conclusions, discussion,
and future works.

2. Methodology
The structural-form and reduced-form of the SEM (Greene, 2008) may be represented,
respectively, as follows:

YI'+XB=U and Y=XII+V, (1)
where Y is a TxM matrix of observations, X is a TxK design matrix of full-column
rank, I' is an M xM nonsingular matrix of coefficients of endogenous variables, B is a
KxM matrix of coefficients of predetermined variables, I1=-BI'"' is a KxM matrix of
unknown parameters, U and V=UI'"' are the TxM matrices of MA(l) and
contemporaneously correlated errors. The " equation vector of reduced-form model in (1)
is

yjzxnj+vjaj:1725"':Ma (2)
where y; is a T x1 observation vector, @; is a Kx1 parameter vector, and v; is a T x1
vector of MA(1) and contemporaneously correlated errors. Each element V; in the vector v
is in the form of MA(1),

Vy =g, -0, t=L2,..,T, j=12,.., M, 3)
where T is the number of observations in each equation, M is the number of equations, the
error €, ; is called the first-lag of error &;, the MA(1) parameter &, of the model must
satisfy the following condition to ensure the invertibility of the error terms (Box et al., 1994),

tjo

|6, |<1. 4)
The error & in (3) is an independent identically distributed random variable, obeying
g~ N (0=‘7n‘)’ (5)

so that



8{=[8t1 E,p .- stMJ~NM (0.2), (6)
where X is the M xM contemporaneous covariance matrix of the error terms which is
nonsingular and is of positive symmetric definite matrix. It is noteworthy that the values of

v,; in the MA(1) model in (3) depend on the values of ¢,;, which is unknown. The recovery
of v;; will be shown in Theorem 1.
For all M equations, the models in (2) can be represented as a stacked model as follows:
y=Xm+vV, (7)
where y is a TMx1 observation vector consisting of M (T x1) y; vectors, X is a
TM xKM  diagonal matrix of rank KM consisting of M (T x K) identical X matrices, n is
a KM x1 unknown parameter vector consisting of M (K x1) m; vectors, and v is a TM x1

MA(1) and contemporaneously correlated error vector consisting of M (T ><1) V; vectors.
The transformation matrix to correct the MA(1) correlated error vector is given in Theorem 1.

Theorem 1: The TM xTM transformation matrix P, used to correct the MA(1) problem in a
SEM, is defined by

0 0
0 P 0
P= . , (8)
0 0 P,
where the T xT transformation matrix P; for the j™ equation is
! 0 0 0 ... 0
1/1+6?j2
0, 1 0 0o ... 0
2
P, = 0, 0, 1 0 ... Of. 9)
3 2
0, 0, 0, 1 ... 0
T-1 T-2 T-3 T—4
i 0, 0, 0, 0, ... 1

The transformation matrix P in (8) is used to transform y and X in (7) to be y* and X",
respectively, such that the MA(1) of the errors v in (7) is eliminated, to give the model
y =X'm+e, (10)
where y* =Py, X" =PX, E(s|5(*)=0, and E(ss’ 5(*):)2®IT )
Suppose that the transformed model in (10) is called the candidate model, then the true
model can be given as

y =X'm, +¢,. (11)
The notations in (10) and (11) are defined as follows: y* is a TM x1 observation vector
consisting of M (T ><1) y; (or P;y;) vectors, X" isa TM xKM diagonal matrix consisting
of M (T x K) X (or P;X) matrices, n and m, are the KM x1 unknown parameter vectors,

¢ and g, are the TM x1 independent identically distributed normal random vectors.



For the derivations of the criterion, the true model is assumed to be correctly specified or
overfitted by all the candidate models. This means that w, has K /M nonzero entries with
0< K,M <KM and the rest of (K —K,)M entries are equal to zero. The Kullback information
criterion for a system of SEM (SKIC) is given in Theorem 2.

Theorem 2. When the MA(1) problem is adjusted by the transformation matrix P, the Kullback
information criterion for a system of SEM defined by

M(2K+M +1

( ) +TM log 27 + 2™ (12)
T-K-M-1 2T -2K-M +1) 2T -2K-M +1
is called an asymptotically unbiased estimator of the Kullback-Leibler’s symmetric
divergence.

SKIC:Tlog‘ﬁ‘+T

3. Simulation study
The model to consider in this study is a system of three SEM (M = 3) and the errors of
the model appear the MA(1) problem,
Yo =1+2X;, +3X; +4X, +V,,
Y, =1-0.5%, — 5%, —1.5X, +V,, (13)
Yis =14 X, + X5 + Xy + Vi3
where t=1,2,...,T=15 for the small sample size, t=1,2,..., T =30 for the medium
sample size, and t=1, 2, ..., T =100 for the large sample size. The steps for simulation and
all results are as follows.

1. Using the IML procedure of SAS programming to generate 150,000 vectors of the 3x1
multivariate normal ¢, in (6), given zero mean vector, the correlation coefficients of the

errors between the equations are
P =09, p;=0.7, p); =0.8,
and the variances-covariances of the errors are
o, = 0.9° =0.81, 0,, = 0.8° =0.64, Oy = 0.7> =0.49,

O, = Piu\OC110yp = 0.648, 0, = Pi3N011033 = 0.441, 0,, = Pr34/0203; = 0.448,

then, the form to generate €, in (6) is represented by

&, 0.81 0.648 0.441
g =g, |~N,| 0,Z=]0.648 0.64 0.448
£, 0.441 0.448 0.49

2. Using the multivariate normal error €, €,,, and €, in Step 1 to construct two series of the
MA(1) and contemporaneously correlated errors, V,, V,,, and V,;, as follows:
Vy =&, —0.58_,,, Vi, =€, —0.6¢,_,,, and V; =g, —0.7g_,;, (1" series) (14a)
V, =g, +0.6e_,,,V, =€, +0.7¢_,, and V; =¢,, +0.8¢,_,;, (2"'series)  (14b)
for t=1,2,...,150,000 and ¢,; is arbitrarily given to be zero for all j=1 2, 3. Split the
series of errors V,, V,,, and V,; in sequence to preserve the MA(1) problem into 1,000

samples, each of which consists of three levels of sample sizes, T = 15, 30, 100 observations.
Estimate the MA(1) parameters and test the properties of MA(1) by the MODEL and ARIMA



procedures in SAS version 9.1. Discard the samples that fail the test, and retain only 1,000
samples for further study.

3. Using the RANNOR function of SAS programming to generate the independent variables
X, until X ,, about 150,000 observations to be the normal random variables with zero mean

and variance equal to one where the relevant independent variables are X,,, X, and X, and
irrelevant independent variables are X until X ,,. Again, split the series of independent
variables X, until X,, in sequence into 1,000 samples, each of which consists of 15, 30, 100

observations. For this study, X, is given as a constant which equals one. Test the

multicollinearity problem for the series of independent variables and then discard the samples
that fail the test, retain only 1,000 samples for further study.

4. Using the corresponding relevant independent variables X,,, X;, and X, obtained in Step

3 and two series of the MA(1) errors obtained in Step 2 to construct the dependent variables
described in (13).

5. Using the estimated values of MA(1) parameters obtained in Step 2 to construct the
estimate of transformation matrix P; in (9) for each sample. Apply this transformation matrix

to transform the SEM in Step 4 to give the stack of transformed model as shown in (10). Test
the MA(1) problem and the multivariate normality for the errors of the model by the ARIMA
and MODEL procedures, respectively. The test shows that the errors of all transformed
samples are independent. Therefore, we can say that the transformation matrix P in (8) has
the power of transformation equal to 100%.

6. Using the assumption of nested model to construct the candidate models which are the
models include the columns of independent variables in a sequentially nested fashion; i.e.,
columns 1 to K define the design matrix for the candidate model with dimension K. For 1,000
transformed samples, we estimate the parameters of the transformed model by the GLS
method. Then calculate SKIC in (3.5) and SAIC proposed by Keerativibool (2009),

SAIC =T log| £ [+ M (K +M +3), (15a)

A A

where X ZWZ, ¥, and ¥ represent the estimated contemporaneous covariance

matrix of the error terms by the methods of unbiased estimator and maximum likelihood
estimator, respectively. Therefore SAIC in (15a) can be rewritten as

KJ+M(K+M +3). (15b)

SAIC=Tlog‘)i‘+TM log[TT

The candidate model that has the minimum value of model selection criterion is called the
best model. Model selection criterion performance is examined by a measure of counting the
frequency of order being selected. The results of comparing are shown in Table 1.

7. Calculate the observed L, distance, scaled by 1/T , between the true model in (11) and the

candidate model in (10) which was defined by McQuarrie et al. (1997) and McQuarrie
(1999),
l(no—ft)' X*'(ﬁ‘fl@IT)X*(no—ﬁ),

NOR



and calculate the observed L, efficiency which defined as

min, . L, (k)

L, (k,)
where K is the class of all possible candidate models, k is the rank of fitted candidate model,
and K, is the model selected by specific model selection criterion. The closer the selected

Observed L, efficiency =

model is to the true model, the higher the efficiency. Therefore, the best model selection
criterion will select a model which yields high efficiency even in small samples. For 1,000
transformed samples, the results of comparing the observed L, efficiency are shown in Table 2.

Table 1. Frequency of the model order being selected by SAIC and SKIC for 1,000 samples

Series of K

Criteria

Errors v 2 3 4 5 6 7 8 9 10
15 (14a) SAIC 0 0 832 75 30 15 16 2 30
SKIC 0 0 1000 O 0 0 0 0 0
15 (14b) SAIC 0 0 809 98 32 13 18 2 28
SKIC 0 0 1000 O 0 0 0 0 0
30 (14a) SAIC 0 0 919 60 13 6 2 0 0
SKIC 0 0 999 1 0 0 0 0 0
30 (14b) SAIC 0 0 886 86 20 6 2 0 0
SKIC 0 0 994 6 0 0 0 0 0
100 (14a) SAIC 0 0 952 39 9 0 0 0 0
SKIC 0 0 1000 O 0 0 0 0 0
100 (14b) SAIC 0 0 910 55 20 7 5 0 3
SKIC 0 0 982 12 5 0 0 0 1
Note: Boldface type indicates the maximum frequency of correct order being selected.
Table 2. Average and standard deviation of the observed L, efficiency over 1,000 samples
Series of o Statistics
T Errors V, Criteria Ave. L eff. S.D. L eff.
15 (14a) SAIC 0.7762 0.3170
SKIC 0.8843 0.2060
15 (14b) SAIC 0.7213 0.3486
SKIC 0.8293 0.2749
30 (14a) SAIC 0.9436 0.1718
SKIC 0.9860 0.0868
30 (14b) SAIC 0.8999 0.2341
SKIC 0.9487 0.1822
100 (14a) SAIC 0.9757 0.1113
SKIC 1.0000 0.0005
100 (14b) SAIC 0.9527 0.1581
SKIC 0.9894 0.0810

Note: Boldface type indicates the best performance.

8. The results of the frequency of correct order being selected from Steps 6 in Table 1 can be
concluded that the performance of SKIC in (12) convincingly outperformed SAIC in (15b) for
all three levels of the sample sizes (T = 15, 30, 100) and two series of the MA(1) and

contemporaneously correlated errors V; in (14a) and (14b), because SAIC has a tendency to



overfit the order of the model than SKIC. The results of the observed L, efficiency from Steps

7 in Table 2 also confirm that SKIC has a large observed L, efficiency and small standard
deviation of the observed L, efficiency than SAIC, then SKIC is likely better than SAIC. In

Table 3, we show the average and standard deviation of SAIC and SKIC for 1,000 transformed
samples. In this table we found that SAIC presents a large negative bias than SKIC that maybe
the main reason for the number of correct model order being selected is less.

Table 3. Average and standard deviation of SAIC and SKIC for 1,000 samples of the sample
size T and the series of errors V;; in (14a) and (14b)

T =15 and errors V; in (14a)

T =15 and errors V; in (14b)

K SAIC SKIC K SAIC SKIC
Ave. S.D. Mean S.D. Ave. S.D. Mean S.D.
2 6.295 0.977 8.281 0.977 2 7.215 1.310 9.201 1.311
3 3.290 0.998 6.443 0.998 3 3.888 1.232 7.041 1.232
4 -2351 0.862 2.309 0.862 4  -2.300 0.903 2.359 0.903
5 -1.934 0.904 4.732 0.904 5 -1.919 0.949 4.747 0.949
6 -1.507 0.964 7.954 0.964 6 -1493 1.006 7.968 1.006
7 -1.075 1.023 12.541 1.023 7  -1.066 1.072 12.549 1.072
8 -0.649 1.160 19.800 1.160 8 -0.648 1.174 19.801 1.174
9 1.434 1.375 35.330 1.375 9 1.577 1.406  35.473 1.406
10  0.185 1.529  73.700 1.529 10 0.143 1.481 73.659 1.481
T =30 and errors V; in (14a) T =30 and errors V, in (14b)
K SAIC SKIC K SAIC SKIC
Ave. S.D. Mean S.D. Ave. S.D. Mean S.D.
2 6.197 0.875 6.824 0.875 2 7.103 1.259 7.730 1.259
3 2.967 0.859 3.916 0.859 3 3.617 1.109 4.566 1.109
4 3131 0.494 -1.827 0.494 4  -3.065 0.522 -1.762 0.522
5 -2.938 0.501 -1.243 0.501 5 -2.885 0.529 -1.191 0.529
6 -2.734 0.509 -0.606 0.509 6  -2.685 0.533 -0.557 0.533
7 -2.528 0.527 0.081 0.527 7 -2.485 0.545 0.124 0.545
8 -2.306 0.543 0.840 0.543 8 -2.275 0.555 0.872 0.555
9 -0.309 0.656 3.440 0.656 9 -0.168 0.704 3.581 0.704
10 -1.846 0.559 2.582 0.559 10 -1.834 0.585 2.594 0.585
T =100 and errors V; in (14a) T =100 and errors V; in (14b)
K SAIC SKIC K SAIC SKIC
Ave. S.D. Mean S.D. Ave. S.D. Mean S.D.
2 6.104 0.617 6.241 0.617 2 7.028 1.034 7.166 1.034
3 2.721 0.570 2.927 0.570 3 3.453 0.898 3.659 0.898
4  -3.752 0.265 -3.476 0.265 4  -3.718 0.293 -3.442 0.293
5 -3.693 0.266 -3.344 0.266 5 -3.664 0.289 -3.315 0.289
6  -3.634 0.267 -3.210 0.267 6 -3.610 0.288 -3.187 0.288
7 -3.574 0.267 -3.074 0.267 7 -3.552 0.288 -3.053 0.288
8 -3.514 0.267 -2.936 0.267 8 -3.496 0.284 -2.918 0.284
9 -1.369 0.383 -0.711 0.383 9 -1.041 0.448 -0.383 0.448
10 -3.392 0.271 -2.652 0.271 10 -3.379 0.279 -2.638 0.279
Note: Boldface type indicates the minimum average value of SAIC and SKIC.



4. Conclusions, discussion, and future works

In this paper, the transformation matrix in order to correct the MA(1) problem and to
recover the one lost observation along with the consideration of contemporaneous correlation
in a SEM is proposed. Then, the Kullback information criterion for a system of SEM, called
SKIC, is proposed for selecting the most appropriate system of the models. SKIC is
compared the performance of selection the order of the model, relative to SAIC proposed by
Keerativibool (2009). The results of simulation study show that the proposed transformation
matrix P can transform the MA(1) errors for both forms of (14a) and (14b) to be independent.
For all situations of the sample sizes; small (T = 15), medium (T = 30), and large (T = 100),
including two series of errors generated in the SEM, SKIC convincingly outperformed SAIC,
because SAIC has a tendency to overfit the order of the model than SKIC. The results of the
observed L, efficiency also confirm that SKIC has a large observed L, efficiency and small

standard deviation of the observed L, efficiency than SAIC, then SKIC is likely better than

SAIC. The average and standard deviation of SAIC and SKIC for 1,000 transformed samples
show that SAIC presents a large negative bias than SKIC, which maybe the main reason of
selecting the correct order of the model from SAIC is less than SKIC.

Nowadays, there is not much the criterion to select the appropriate SEM. Therefore, it
should be studied and established the other criteria. Including, other schema of the error-
generation might also be considered, such as the autoregressive and moving average
(ARMA) scheme instead of only the moving average (MA) scheme.
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Appendix
Proofs
Proof of Theorem 1.

The reduced-form model in (7) at the t" observation and the j" equation can be written
as follows:

Yy =xm +Vy, t=12, ..., T, j=1,2,..., M, (A1)
where
X =[x Xo oo X ] Vy =83 —08,;,t=2,3,..,T, j=12,..., M. (A2)
Replacing V;; in (A2) into (A1) and rearrange it into the term of &,
g =Yy X%, +0g ,;,t=2,3,...T, j=12,..., M. (A3)

The i" lag of .. in (A3) can be written as
i = Yiij — X, +OE -

Using the knowledge of (A4), the equation in (A1) becomes
Yy =X7;+&;—0, (yt—l,j =X+ 08, | )

(A4)

_ ' ' 2
ytj +9j yt—l,j - (Xt +0jxt—l)nj +8tj —9j 8t—z,j
_ ' ' 2 '
—(Xt +91Xt_1)7‘j +8 —6?]. (yt_z’j — X, T, +0j8t_3’j)

2 _ i ' 2! 3
Y+ (9,- Yoo+ (9j Vioj = (xt + Hj X, + 0j X , ) T e — «9j €3]



T

T .
DOy, =D 0x m +e, -0 e, (1)) (AS5)
i=0

i=0
As T becomes large and 6, satisfies the invertibility condition, the value of HJ-T“ in (AS)
approach zero. Therefore, (A5) can be rewritten as

Vi =X; 'n +E (A6)

T R
where Y =ZG}yt_i,j and x; =Y Ox;; fort=2,3,..,T, j=1,2,..., M.

i=0

From (A6) we found that Var(ytJ ‘ ) Var( ) then we can argue that the MA(1)

JJ 2
problem at t=2,3,...,T and j=1, 2, ..., M has been corrected. However, the transformation

in (A6) does not include the first observation in (Al). The heteroskedasticity remains
unsolved unless the first observation is eliminated, but if the first observation is included in
the analysis, the transformation must be extended by the following steps. Firstly, we take the

expectation to Vy in (A2),

E(v)= E(gti)_ejE(St—l,J): E(Stj)_91E<8tj):(1_91)E(8t1)'
Using the assumption in (5), we have the expectation of V; is equal to zero. Therefore,

from (A1) the variance of Yy given x, for t=1,2,...,T and j=1,2,..., M can be written

Var(vy ) =E| (e, =66, ) |=E(53)+ 0B (e5) = (1+6})E(e5) = (1+ 6} )

Hence, the first observation should weighted by /ﬁ , yields the model
+ @
j

as

Vi = X'n (FE (A7)

) f 1 o f 1, i
where y;; = ﬁy” and x; = mxl for j=1,2,..., M
J J

It can be shown that the MA(1) problem at t = 1 has been corrected,

Var(yl*j XT) - ezVar(y”‘xl) ﬁ.(1+9j2)0'jj=0'jj.
J

Combining the results in (A6) and (A7), we get the T xT transformation matrix P; which
was exhibited in (9).

Proof of Theorem 2.
The Kullback-Leibler’s symmetric divergence is a measure that used to separate the
discrepancy between the candidate model in (10) and the true model in (11), defined by

2J(8,,0)=d(6,,6)—d(6,.6,)+d(6,6,)-d(6,0), (B1)
where d (ei,ej): E,, {—210g L(Oj ‘y*)}.
Dropping d(6,,0,) in (B1) since it does not depend on 0. The ranking of the candidate

models according to 2J (90, 9) in (B1) is then identical to ranking them according to
K(8,.8)=d(6,.6)+d(6,6,)—d (6.0). (B2)
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A

Given a set of GLS estimators 0 = (ﬁ:, )i, f’) where P is the estimate of the transformation
matrix P in (8),
7= [X (z'er, )5(}1 X' (8L )y,
and
o 1. & Y
X1, :?(y -X n)(y -X n) ,
we have therefore the estimate of the symmetric measure in (B2) as
K(0,,6)=d(0,,6)+d(6.,8,)-d(8.6), (B3)
where d (Oo,é) =B, {—2 log L(O |y) } ‘e:é ,d (é, 90) =E, {—2 log L(G0 |y) } ‘e:é , and
d (é,é) =E, {—2log L(G |y*) }
From the minus twice log likelihood of the candidate model in (10),
—2log L(G |y*) =TM log(27)+T log| )y |+(y* —X*n)’ (2"1 g )(y* —X*n),
we have each term of the estimated symmetric measure in (B3) as follows:

d (Go,é) =TM log(27)+T log‘ )3 ‘+(n0 —fr)' X ()i_] g )5(* (m,—7)+T tr():“."l)lo),

0=6

d(8.8, ) =TM log(27)+T log| Z, |+ (7 —=,) X' (&, ®1 ) X' (7—m,) +Ttr (L, 'Z),
d(6,6) =TM log(27)+T log|£|+TM.
Therefore, the expected of the estimated symmetric measure in (B3) becomes
Q(6,,K) =E, { K(Oo,é)}: Eeo{d(eo,é)+d(6,90)—d(6,é)}
=TM [log(27z)+1]+ B, {T 1og‘ )3 ‘ }+ E,, {(no —ﬁt)' X (ﬁ;—l ®I, )f{* (7, —7) }
+E, {Ttr(27E,) |45, {(ﬁ—no)’ X (z, ®IT)X*(ﬁ—nO)}
+E, [Ttr(Z'E) | -E, {T tog(| £[/[ 2, ) }—2T|v|. (B4)

From the facts that, # and T X are asymptotically independent where 7 is asymptotically

distributed as a Gaussian distribution with mean vector @ and variance-covariance matrix
-1

[5(*' (251 I, )X*} ,and TX is asymptotically distributed as the Wishart distribution with

T —K degrees of freedom, W, (ZO, T- K), then (Anderson, 2003)
T =

Eg {TE}=(T-K)Z and £, | £} = — —— /'

Using the above results, we have

B {THr(27%,) | =Ttr{E, (272, :Ttr{mzolzo}:%,

E,, {Ttr(Zgli)}:tr{Eg‘EeD (T 2)} =tr {2, (T-K)Z,} =(T-K)M,

£, | (m,~#) X (27 1) (m,-#) | =E, {tr (£ 01, )X (7, ~&)(n, ~7) X" | }
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=tr“E°o(§:1)®IT}E90[X*(“o—ft)(no—ft)'i*'”

T il AT (e e 1K (| M
_T—K—M—ltr{(7t0 #) X7 (2, O )X (m, “)} T-K-M-I’
Eeo{(ﬁ_n())'fi*'():al®IT)X*(ﬁ—n0)}:KM’

then Q(GO, K) in (B4) can be written as
KM T°M
T-K-M-1 T-K-M-I
+KM +(T —K)M —E, {Tlog(‘ﬁ‘.MZ )}-2m™
M (2K +M +1)
T-K-M-1
TE,, {Tog(|TE[/|Z,] ) |+ T logT. (B5)

Q(GO,K) =TM [10g(2;z)+1]+ B, {Tlog‘ ﬁ‘}Jr

=TM [log(27) +1]+E, {Tlog‘):‘}

Because ‘T ﬁ‘.‘/ | X, | in (BS) is the distribution of a product of independent »° random

. M s
variables, Hi_l Xt_k_msi » then we have

n M
log( TE)/z, |)~ D108 17w
i=1

Using the second-order of Taylor’s series expansions to expand the function of log( ;(f,)

about the mean p, we have

log(;(;‘;)ﬁlog(p)+%(;($ - p)—z::)2 (;(ﬁ — p)2 and E[log(gﬁ)]ilog(p)——

Then, the last two terms of the right-hand side in (B5) is

—TE,, { log(‘T ﬁ‘/| X, |)}+TM logT é—Ti{log(T ~K-M +i)- }+TM logT.
i=1

T-K-M +i
(B6)
McQuarrie and Tsai (1998) gave the simplification formulae for any T, K, M and assume
T—-K—M is much larger than M as follows:

M a— — a—
> log(T-K -M +i)=Mlog(T—K—%J=Mlog(2T 2K2 M”j, (B7)
i=1

and
M B 2M
=T -K- Mti ~M-1 2T-2K-M+1
2

'MZ

(B8)
T-K

Replacing the results in (B7) and (B8) into (B6), we have

- ) 2T 2T™M
—TE, { 1og( TE]/|z, |)}+TM logT =TM log[z_l_ Ty +J+ T
Replacing the results in (B9) into (B5), we have
Q(6,,K)=TM [ log(27)+1]+E, {SKIC},

where SKIC was exhibited in (12).

.(BY)



12

References

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle.
In: Petrov, B.N., Csaki, F. (Eds.), Proc. 2nd Int. Symp. on Information Theory. Akademia
Kiado, Budapest, pp. 267-281.

Akaike, H., 1974. A new look at the statistical model identification. IEEE T. Automat. Contr.
19, 716-723.

Anderson, T.W. 2003. An introduction to multivariate statistical analysis. 3" ed. Hoboken,
New Jersey: Wiley.

Bedrick, E.J., Tsai, C.L., 1994. Model selection for multivariate regression in small samples.
Biometrics. 50, 226-231.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C. 1994. Time series analysis: forecasting and
control. 3 ed. Englewood Cliffs, New Jersey: Prentice Hall.

Cavanaugh, J.E., 1999. A large-sample model selection criterion based on Kullback’s
symmetric divergence. Stat. Probabil. Lett. 42, 333-343.

Cavanaugh, J.E., 2004. Criteria for linear model selection based on Kullback’s symmetric
divergence. Aust. NZ. J. Stat. 46, 257-274.

Greene, W. 2008. Econometric analysis. 6™ ed. Upper Saddle River, New Jersey: Prentice-
Hall.

Gujarati, D.N. 2006. Essentials of econometrics. 3" ed. Singapore: McGraw-Hill.

Hafidi, B., 2006. A small-sample criterion based on Kullback’s symmetric divergence for
vector autoregressive modeling. Stat. Probabil. Lett. 76, 1647-1654.

Hafidi, B., Mkhadri, A., 2006. A corrected Akaike criterion based on Kullback’s symmetric
divergence: applications in time series, multiple and multivariate regression. Comput. Stat.
Data. An. 50, 1524-1550.

Hurvich, C.M., Tsai, C.L., 1989. Regression and time series model selection in small
samples. Biometrika. 76, 297-307.

Keerativibool, W. 2009. Selection of a system of simultaneous equations model. Dissertation,
School of Applied Statistics, National Institute of Development Administration,
THIALAND.

McQuarrie, A.D., Shumway, R., Tsai, C.L., 1997. The model selection criterion AICu. Stat.
Probabil. Lett. 34, 285-292.

McQuarrie, A.D., Tsai, C.L., 1998. Regression and time series model selection. Singapore:
World Scientific.

McQuarrie, A.D., 1999. A small-sample correction for the Schwarz SIC model selection
criterion. Stat. Probabil. Lett. 44, 79-86.

Seghouane, A.K., Bekara M., 2004. A small sample model selection criterion based on
Kullback’s symmetric divergence. IEEE T. Signal Proces. 52, 3314-3323.

Seghouane, A.K., 2006. Multivariate regression model selection from small samples using
Kullback’s symmetric divergence. Signal Process. 86, 2074-2084.



