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EXECUTIVE SUMMARY 
 

Background  

Most problems in the errors of simultaneous equations model (SEM) are the 

autocorrelated error (AR) and moving average (MA) error. When these problems 

occur, the ordinary least squares (OLS) estimators can not be used because they are 

not efficient. In this research, we will propose a transformation matrix to correct the 

first-order moving average, MA(1), which generated in the fitted model and to 

recover the one lost observation in a SEM. The MA(1) is in the form, 

 tj tj j t 1, jv ε ε , t 1, 2, , T, j 1, 2, , M    , (1) 

where T is the number of observations in each equation, M is the number of 

equations, the error t 1, jε   is called the first-lag of error tjε , the moving average 

parameter j  of the model must satisfy the following condition to ensure the 

invertibility of the error terms (Box et al., 1994), 

 j 1.   (2) 

The error tjε  in (1) is an independent identically distributed random variable, obeying 

  tj jjε N 0, , (3) 

so that 

 t1 t2 t M Mε ε ε N ,    tε 0 Σ , 

where M M  contemporaneous covariance matrix of the error terms, 

11 12 1M

12 22 2M

1M 2M MM

   
 
  
 
 
 
   

Σ , 

is nonsingular and is of positive symmetric definite matrix. It is noteworthy that the 

values of 1jv  in the MA(1) model in (1) depend on the values of 0 jε , which is 

unknown. The recovery of 1jv  will be find by extend the knowledge of Keerativibool 

(2010).  



 

 

 
 

 

After the errors are transformed to be independent, we consider the problem of 

fitting a parametric model to an observed data set. This problem requires two tasks, 

determination of the order of the model and estimation of these parameters. In real 

life, we may not know what the true model is, but we hope to find a model that is a 

reasonably accurate representation. The crucial part of this fitting problem is to 

determine the order of the model. Such determination is often facilitated by the use of 

a model selection criterion where one only has to evaluate two simple terms that 

trade-off quality of fit to the data and model’s complexity. The widespread criterion 

for choosing the best model in univariate and multivariate regression analysis is the 

Akaike information criterion (AIC) (Akaike, 1973, 1974; Bedrick and Tsai, 1994). 

The corrected version of the AIC (AICc) (Hurvich and Tsai, 1989) is extended for the 

case of small sample. AIC and AICc were designed, respectively, to be asymptotically 

and exactly unbiased estimator of a variant of Kullback-Leibler’s directed divergence 

between the true model and a fitted candidate model. The development of a new 

family of selection criteria, Kullback information criterion (KIC) and the corrected 

version of the KIC (KICc), are the criteria constructed to target a symmetric 

divergence. This divergence is an alternate of directed divergence, obtained by sum of 

the two directed divergences, which arguably more sensitive than either of its 

individual components (Cavanaugh, 1999, 2004; Seghouane and Bekara, 2004; Hafidi 

and Mkhadri, 2006). With this motivation, we will propose a model selection 

criterion, called Kullback information criterion for a system of SEM (SKIC), which 

serves as an asymptotically unbiased estimator of a variant of Kullback-Leibler’s 

symmetric divergence between the true model and the fitted candidate model. Next, 

we will examine the performance of the proposed criterion, SKIC, relative to SAIC 

proposed by Keerativibool (2009).  

 

 

 

 

 

 

 



 

 

 
 

 

Objectives of the Research 

The objectives of this research are to develop a model selection method, to 

separate the most fitting SEM when the errors are both MA(1) and contemporaneously 

correlated for analyzing a specific system, by applying the Kullback information 

criterion (KIC) (Cavanaugh, 1999). The topics covered in this research comprise: 

1) To derive a transformation matrix in order to correct the MA(1) problem of 

errors in a SEM. 

2) To derive the Kullback information criterion for a system of SEM when 

errors are both MA(1) and contemporaneously correlated, called SKIC. 

3) To examine the performance of the proposed criterion, SKIC, relative to 

SAIC proposed by Keerativibool (2009).  

 

Methodologies  

The methodologies of this research are as follows:  

1) Derive a transformation matrix in order to correct the MA(1) problem of 

errors in a SEM. 

2) Simulate the SEM when errors are both MA(1) and contemporaneously 

correlated by the SAS programming. 

3) Carry out a proposed transformation matrix to correct the MA(1) problem of 

errors in a SEM. 

4) Examine the errors of SEM after transformation. 

5) Derive the Kullback information criterion for a system of SEM (SKIC) when 

errors are both MA(1) and contemporaneously correlated. 

6) Examine the performance of the proposed criterion, SKIC, relative to SAIC 

proposed by Keerativibool (2009).  

 

 

 

 

 

 

 



 

 

 
 

 

Plans of the Research  

 

The plans of the research are as follows: 

Activity 

Jun 15, 

2011 – 

Dec 14, 

2011 

Dec 15, 

2011 – 

Jun 14, 

2012 

Jun 15, 

2012 – 

Dec 14, 

2012 

Dec 15, 

2012 – 

Jun 14, 

2013 

1. Derive a transformation matrix in order to 

correct the MA(1) problem of errors in a SEM. 
    

2. Simulate the SEM when errors are both MA(1) 

and contemporaneously correlated by the SAS 

programming. 

    

3. Carry out a proposed transformation matrix to 

correct the MA(1) problem of errors in a SEM. 
    

4. Examine the errors of SEM after 

transformation. 
    

5. Derive the Kullback information criterion for a 

system of SEM (SKIC) when errors are both 

MA(1) and contemporaneously correlated. 

    

6. Examine the performance of the proposed 

criterion, SKIC, relative to SAIC proposed by 

Keerativibool (2009). 
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ABSTRACT :  

 

Moving average in the error of simultaneous equations model (SEM) is a crucial 

problem to make the estimators from the ordinary least squares (OLS) method are not 

efficient. For this reason, we extend the transformation matrix which proposed by 

Keerativibool (2010) in order to correct the first-order moving average, MA(1), that 

generated in the fitted model and to recover the one lost observation in a SEM. After 

the errors are transformed to be independent, the Kullback information criterion for 

select the appropriate SEM, called SKIC, to be going to derive. This criterion is 

constructed based on the symmetric divergence which obtained by sum of the two 

directed divergences. The symmetric divergence is arguably more sensitive than 

either of its individual components. The performance of the proposed criterion, SKIC, 

is examined relative to SAIC proposed by Keerativibool (2009). The results of 

simulation study show that the errors of the model after transformation are 

independent and SKIC convincingly outperformed SAIC, because SAIC has a 

tendency to overfit the order of the model than SKIC.  

 

Keywords: First-order moving average MA(1); Kullback information criterion for a 

system of SEM (SKIC); Simultaneous equations model (SEM); Transformation matrix. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 
 

In the application of statistics, the statistical modeling is considered as a major 

task of study. The statistical processes which can help us to guide a good model with 

the properties are that parsimony, goodness-of-fit, and generalizability, can be classified 

into three ways; hypothesis testing of parameters, variable selection algorithms, and 

model selection criteria (Cavanaugh, 2010). Model selection criterion is a popular tool 

for selecting the appropriate model, by assessing whether it offers an optimal balance 

between goodness of fit and parsimony, which are the attributes of the best model 

(Keerativibool, 2011b). There are many model selection criteria for choosing the 

appropriate model. The Akaike information criterion, AIC (Akaike, 1973, 1974) was 

the first model selection criterion to gain widespread acceptance. The later criterion 

which equally popular was the Kullback information criterion, KIC (Cavanaugh, 

1999). One of the primary focuses of this research is to compare the performance of 

selection the appropriate model from the model selection criterion based on AIC 

proposed by Keerativibool (2009) relative to the model selection criterion based on 

KIC proposed in this research. 

The model to consider in this research is called a simultaneous equations model 

(SEM). It is a model that contains variables with two-way flows of influence 

characteristics. As a consequence, the endogenous variable will become stochastic or 

the explanatory variable and will correlate with the error terms of the equation. The 

structural-form of a SEM may be represented as a set of linear simultaneous equations 

as follows: (Greene, 2008)  
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t1 21 t2 31 t3 M 1,1 t,M 1 M1 t M

11 t1 21 t2 K1 t K t1

y y y y y

x x x u ,
         

       
 

 

t2 12 t1 32 t3 M 1,2 t,M 1 M2 t M

12 t1 22 t2 K2 t K t2

y y y y y

x x x u ,
          

       
 

    ………. (1.1) 

  
t M 1M t1 2M t2 3M t3 M 1,M t,M 1

1M t1 2M t2 KM t K t M

y y y y y

x x x u .
         

    
 

In (1.1), there are M equations and M endogenous variables, denoted by 

t1 t2 t My , y , , y  and K predetermined variables, denoted by t1 t2 t Kx , x , , x . The 

first element of predetermined variables, t1x ,  will usually be a constant, 1, to allow 

for the intercept term in each equation. The  ’s and  ’s are denoted as the 

coefficients of endogenous and predetermined variables, respectively, and t1u ,  

t2 t Mu , , u  denote the structural errors that are in the form of the first-order moving 

average, MA(1), and contemporaneously correlated with zero means. 

In matrix terms, the system in (1.1) can be written as 

  YΓ XB U , ………. (1.2) 

where Y  is a T M  matrix of endogenous variables, Γ  is a M M  matrix of 

coefficients of endogenous variables, and assumed nonsingular, X  is a T K  matrix 

of predetermined variables, and assumed full-column rank, B  is a K M  matrix of 

coefficients of predetermined variables, and U  is a T M  matrix of MA(1) and 

contemporaneously correlated errors; i.e., 

11 12 1M 12 1M

21 22 2M 21 2M

T1 T2 TM M1 M2

y y y 1 γ γ
y y y γ 1 γ

, ,

y y y γ γ 1

    
   

 
    
   
   

    

Y Γ  

11 12 1K 11 12 1M 11 12 1M

21 22 2K 21 22 2M 21 22 2M

T1 T2 TK K1 K2 KM T1 T2 TM

x x x β β β u u u
x x x β β β u u u

, , .

x x x β β β u u u

       
     

  
       
     
     

       

X B U  
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The reduced-form model described by the structural-form of the model in (1.2) 

can be written as 

   Y XΠ V , ………. (1.3) 

where 1 Π BΓ  is a K M  matrix of unknown parameters and 1V UΓ  is a 

T M  matrix of MA(1) and contemporaneously correlated errors; i.e., 

11 12 1M 11 12 1M

21 22 2M 21 22 2M

K1 K2 KM T1 T2 TM

v v v
v v v

, .

v v v

     
   
  
    
   
   
     

Π V  

The thj  equation vector of reduced-form model in (1.3) is  

 j j j , j 1, 2, , M,  y Xπ v  ………. (1.4) 

where jy  is a T 1  observation vector, jπ  is a K 1  parameter vector, and jv  is a 

T 1  vector of MA(1) and contemporaneously correlated errors. For all M  equations, 

the models in (1.4) can be represented as a stacked model as follows: 

 , y Xπ v  ………. (1.5) 

where y  is a TM 1  observation vector consisting of M  T 1  jy  vectors, X  is a 

TM KM  diagonal matrix of rank KM consisting of M  T K  identical X  

matrices, π  is a KM 1  unknown parameter vector consisting of M  K 1  jπ  

vectors, and v  is a TM 1  MA(1) and contemporaneously correlated error vector 

consisting of M  T 1  jv  vectors; i.e., 

, , , .

      
      
         
      
      

      

1 1 1

2 2 2

M M M

y π vX 0 0
y π v0 X 0

y X π v

0 0 Xy π v

 

After we estimate the parameters of the reduced-form model in (1.5), we may 

plot the residuals obtained from the fitted model and may observe a systematic 

pattern. These residuals may suggest that some essential predetermined variables have 

not been included in the model. Exclusion could be due to the analyst’s inadequate 
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knowledge of the problem. In this research, each element tjv  of the error vector v  in 

(1.5) is assumed in the form of MA(1), 

 tj tj j t 1, jv ε ε , t 1, 2, , T, j 1, 2, , M,     ………. (1.6)  

where T  is the number of observations in each equation, M  is the number of 

equations, the error t 1, jε   is called the first-lag of error tjε , the MA(1) parameter j  of 

the model must satisfy the following condition to ensure the invertibility of the error 

terms (Box et al., 1994), 

 j 1.   ………. (1.7) 

The error tjε  in (1.6) is an independent identically distributed random variable, 

obeying 

   tj jjε N 0, ,  ………. (1.8) 

so that 

  t t1 t2 t M Mε ε ε N , ,    ε 0 Σ  ………. (1.9) 

where M M  contemporaneous covariance matrix of the error terms, 

11 12 1M

12 22 2M

1M 2M MM

   
 
  
 
 
 
   

Σ , 

is nonsingular and is of positive symmetric definite matrix. It is noteworthy that the 

values of 1jv  in the MA(1) model in (1.6) depend on the values of 0 jε , which is 

unknown. The recovery of 1jv  will be shown in Chapter 3.  

The major consequences of the MA(1) problem are summarized as follows. 

Although, the ordinary least squares (OLS) estimators are still linear unbiased, they 

are not efficient; i.e., they do not have minimum variance compared the variance in 

the model that takes into account correlation. In short, if MA(1) exists in the errors, 

the OLS estimators are not the best linear unbiased estimators (BLUE). The estimated 

variances of OLS estimators are biased. Therefore, the usual t and F tests are not 

generally reliable, and if applied, are likely to give seriously misleading conclusions 

about the statistical significance of the estimated regression coefficients. Consequently, 
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conventionally computed R2 becomes an unreliable measure of true R2. Finally, the 

conventionally computed variances and standard errors of forecast may be inefficient 

(Gujarati, 2006). Encouraged by the preceding finding, this research attempts to find a 

transformation in order to correct the MA(1) problem by extend the knowledge of 

Keerativibool (2010). After the errors are transformed to be independent, the Kullback 

information criterion for select the appropriate SEM, called SKIC, to be going to 

derive. The performance of the proposed criterion, SKIC, is compared and discussed 

relative to SAIC proposed by Keerativibool (2009). 

 

1.2 Objectives of the Research 
 

The objectives of this research are to develop a model selection method, to 

separate the most fitting SEM when the errors are both MA(1) and contemporaneously 

correlated for analyzing a specific system, by applying the Kullback information 

criterion (KIC) (Cavanaugh, 1999). The topics covered in this research comprise: 

1) To derive a transformation matrix in order to correct the MA(1) problem of 

errors in a SEM. 

2) To derive the Kullback information criterion for a system of SEM when 

errors are both MA(1) and contemporaneously correlated, called SKIC. 

3) To examine the performance of the proposed criterion, SKIC, relative to 

SAIC proposed by Keerativibool (2009).  

 

1.3 Scope of the Research 
 

In this research, the model selection criterion focuses on the M equations of the 

SEM, with an emphasis on whether the equations are exactly identified or over-

identified. In addition, the kinds of correlation among these equations are analyzed, to 

distinguish moving average (correlation of the error terms across periods of time in 

the jth equation) and contemporaneous correlation (correlation across equations at 

time t). The problem of simultaneity is also considered, which is related to some 

repressors’ acting as simultaneous endogenous variables likely to correlate with the 

error. It is assumed that all residuals from the error terms are normally distributed 

with conditional means zero vector. 



CHAPTER 2 
 

LITERATURE REVIEW 
 

This chapter reviews the literature on the following two topics. Firstly, Section 

2.1 is shown the reviews of the transformation matrix to correct the autocorrelation 

and/or moving average problems. Secondly, Section 2.2 is shown the reviews of the 

model selection criteria in various types of the model. 

 

2.1 Transformation Matrix to Correct the Autocorrelation and/or Moving 

Average Problems 
 

Occasionally, when we construct the forecasting model, a common problem in 

the fitted model is the discovery of autocorrelation (AR) and/or moving average (MA) 

problems in the residuals. This problem may occur when we start the plausible 

structural-form of a mis-specified model. A lot of literatures attention to this issue 

from the past to the present, such as Cochrane and Orcutt (1949) constructed an 

algorithm for estimating a time series linear regression in the presence of the first-

order autocorrelation, AR(1), problem by eliminating the first observation. Prais and 

Winsten (1954) improved the original Cochrane and Orcutt algorithm by recovering 

the first observation for the parameter estimation. Ullah et al. (1983) derived a large 

sample asymptotic approximation for the covariance matrix of the two stage Prais-

Winsten estimator of the regression coefficients and then analyzed numerically the 

efficiency properties of this estimator with respect to OLS and generalized least 

squares (GLS) with a known autocorrelation coefficient. Choudhury and Power 

(1995) constructed a new approximate GLS estimator for the linear regression model 

with AR and MA errors which this estimator consists of the two-step procedure 

followed by OLS estimation of the transformed model: the first step eliminates the 

AR component of the error and the second step addresses the MA component. 

Galbraith and Zinde-Walsh (1995) gave a transformation of the general ARMA error-

components in the panel model to yield spherical disturbances. Marazzi and Yohai 
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(2006) proposed new estimators to transform the response variables which are based 

on the minimization of a robust measure of residual autocorrelation. These estimators 

are robust and consistent even if the assumptions of normality and homoscedasticity 

do not hold. Hwang et al. (2007) constructed a GLS estimator for explosive the AR(1) 

processes with conditionally heteroscedastic errors. The model under this consideration 

accommodates diverse conditionally heteroscedastic processes including Engle’s, 

threshold-, and beta-autoregressive conditionally heteroscedastic (ARCH) processes. 

Vougas (2008) proposed the approximations of the usual GLS transformation 

matrices for estimation with the AR(1) and AR(2) errors that remove boundary 

discontinuities. This method avoids constrained optimization that unnecessarily 

enforces estimated parameters to be in the interior. Keerativibool (2009) and 

Keerativibool et al. (2009a, 2009b, 2011) proposed a transformation matrix to correct 

the AR(2) problem in a SEM by extended the Prais-Winsten transformation. 

Keerativibool (2010) proposed a transformation matrix to correct the MA(1) problem 

in a regression model. Keerativibool (2011a) proposed a transformation matrix to 

correct the AR(2) problem in a SEM by using the Cholesky decomposition. 

From the past literatures review, we find that there is none of the transformation 

matrix to correct the MA(1) problem in a SEM. With this motivation, this research 

attempts to construct a transformation matrix to correct the MA(1) problem along with 

the consideration of contemporaneous correlation. The transformation is constructed by 

extend the knowledge of Keerativibool (2010).  

 

2.2 Model Selection Criteria 
 

As mentioned in Chapter 1, the model selection criterion is a popular way to get 

an appropriate model. The first model selection criterion to gain widespread 

acceptance was the Akaike information criterion, AIC (Akaike, 1973, 1974). Many 

other criteria have been then introduced and studied are Bayesian information 

criterion, BIC (Schwarz, 1978), Hannan and Quinn criterion, HQ (Hannan and Quinn, 

1979), corrected version of AIC, AICc (Hurvich and Tsai, 1989), multivariate AIC 

and multivariate AICc (Bedrick and Tsai, 1994), modification of AIC, MAIC 

(Fujikoshi and Satoh, 1997), variants BIC; BIC, Fisher BIC, prior BIC, and Fisher 
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prior BIC (Neath and Cavanaugh, 1997), corrected version of HQ, HQc (McQuarrie 

and Tsai, 1998), Kullback information criterion, KIC (Cavanaugh, 1999), corrected 

version of BIC, BICc (McQuarrie, 1999), an estimation rule of variable selection and 

parameter estimation in a linear statistical model based on generalized maximum 

entropy formalism (Golan, 2001), information complexity (ICOMP) criterion for 

determining influential observations in multivariate time series data based on an 

intelligent data mining and knowledge discovery technique (Bozdogan and Bearse, 

2003), corrected version of KIC, KICc, (Cavanaugh, 2004; Seghouane and Bekara, 

2004; Hafidi and Mkhadri, 2006), modification of KIC, MKIC (Cavanaugh, 2004), 

KICc, improved AIC, and improved KIC for nonlinear regression (Kim and 

Cavanaugh, 2005), incomplete data based on KIC (Seghouane et al., 2005), surface 

selection criterion, SSC (Bab-Hadiashar and Gheissari, 2006; Gheissari and Bab-

Hadiashar, 2008), KICc for vector autoregressive modeling (Hafidi, 2006), 

Multivariate KIC for small sample (Seghouane, 2006), quasi Akaike and quasi 

Schwarz criteria (Giombini and Szroeter, 2007), mixture regression criterion based on 

Kullback asymmetric and symmetric divergences (Naik et al., 2007; Hafidi and 

Mkhadri, 2010), information criterion for probabilistic principal component analysis, 

ICPPCA (Seghouane and Cichocki, 2007), predictive local asymptotic mixed 

normality information criterion, PMIC (Sei and Komaki, 2007), system of 

simultaneous equations AIC, SAIC (Keerativibool, 2009), system of simultaneous 

equations BIC, SBIC (Keerativibool, 20012). 

All of the model selection criteria as reviewed above, AIC and KIC are two 

well-known measures. Although AIC remains arguably the most widely used of 

model selection criterion, KIC is a popular competitor. In fact, KIC is often preferred 

over AIC because its tendency to choose more parsimonious models than AIC. Since 

KIC is the criterion constructed to target a symmetric divergence, whereas AIC is 

based on a directed divergence. Symmetric divergence is an alternate of directed 

divergence, obtained by sum of the two directed divergences, which arguably more 

sensitive than either of its individual components (Cavanaugh, 1999). Unfortunately, 

all of the model selection criteria are stated above can not be used in a SEM when the 

AR and/or MA problems have been occurred, except SAIC and SBIC can be used in a 

SEM, when there exists the AR(2) problem. Keerativibool et al. (2009a, 2009b, and 
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2011) and Keerativibool (2010, 2011a, and 2011c) concluded that the AR and MA 

problems made the overestimated of the errors whether the models were regression or 

SEM. Consequently, the values of all model selection criteria are incorrect, because 

they depend on the sum of squared error (SSE) and the mean squared error (MSE). 

With this motivation, this research attempts to construct a model selection criterion, 

called the Kullback information criterion for a system of SEM (SKIC), in order to 

select the appropriate system of the model where the model’s errors are considered 

both MA(1) and contemporaneously correlated. A comparison of performance from 

SAIC, proposed by Keerativibool (2009) relative to SKIC, proposed in this research, 

will be shown and discussed in Chapter 4. 



CHAPTER 3 
 

METHODOLOGY  
 

This research attempted to determine a model selection criterion, called the 

Kullback information criterion for a system of SEM (SKIC), in order to enable the 

selection of the most appropriate system for the model, when model’s errors are both 

MA(1) and contemporaneously correlated. The approach adopted consisted of two 

stages. First, the knowledge of transformation from Keerativibool (2010) is extended 

to correct the MA(1) problem and to recover the one lost observation in a SEM. 

Second, the log-likelihood function of the multivariate model is able to be applied 

directly to construct the SKIC for the transformed model. 

 

3.1 Derivation of a Proposed Transformation Matrix 
 

Theorem 1: The TM TM  transformation matrix P , used to correct the MA(1) 

problem in a SEM, is defined by 

 

1

2

M

,

 
 
 
 
 
 

P 0 0
0 P 0

P

0 0 P

 ………. (3.1) 

where the T T  transformation matrix jP  for the thj  equation is 

  

2
j

j

2
j jj

3 2
j j j

T 1 T 2 T 3 T 4
j j j j

1 0 0 0 0
1

1 0 0 0

1 0 0

1 0

1   

 
 

  
 
 
  
 
   
 
 
 

    

P . ………. (3.2) 

 



 
 
 
 

11 

The transformation matrix P  in (3.1) is used to transform y  and X  in (1.5) to 

be y  and X , respectively, such that the errors of the model are independent, 

insignificantly different from zero, and the MA(1) problem does not exist, but 

contemporaneously correlated errors still exist. The transformed model can be written 

as 

 ,  y X π ε  ………. (3.3) 

where , , y Py X = PX   E  ε X 0 , and  

 

11 T 12 T 1M T

21 T 22 T 2M T
T

M1 T M2 T MM T

E .

   
 
  
    
 
 
   

I I I
I I I

εε X Σ I

I I I

 

 

3.2 Derivation of a Proposed Model Selection Criterion 
 

Suppose that the transformed model in (3.3) is called the candidate model, then 

the true model can be given as 

 0 0.
  y X π ε  ………. (3.4) 

The notations in (3.3) and (3.4) are defined as follows: y  is a TM 1  

observation vector consisting of M  T 1  j
y  (or j jP y ) vectors, X  is a TM KM  

diagonal matrix consisting of M  T K  j
X  (or jP X ) matrices, π  and 0π  are the 

KM 1  unknown parameter vectors, ε  and 0ε  are the TM 1  independent identically 

distributed normal random vectors.  

For the derivations of the criterion, the true model is assumed to be correctly 

specified or overfitted by all the candidate models. This means that 0π  has 0K M  

nonzero entries with 00 K M KM   and the rest of  0K K M  entries are equal to 

zero. The Kullback information criterion for a system of SEM (SKIC) is proposed in 

Theorem 2. 
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Theorem 2. When the MA(1) problem is adjusted by the transformation matrix P, the 

Kullback information criterion for a system of SEM defined by 

 TM 2K M 1 2T 2TMˆSKIC Tlog TMlog
T K M 1 2T 2K M 1 2T 2K M 1

   
    

         
Σ  

 ………. (3.5) 

is called an asymptotically unbiased estimator of the Kullback-Leibler’s symmetric 

divergence. 



CHAPTER 4 
 

SIMULATION STUDY 
 

The model to consider in this research is a system of three SEM (M = 3) and the 

errors of the model appear the MA(1) problem, 

 
t1 t2 t3 t4 t1

t2 t2 t3 t4 t2

t3 t2 t3 t4 t3

y 1 2x 3x 4x v
y 1 0.5x 5x 1.5x v
y 1 x x x v ,

    

    

    

 ………. (4.1)  

where t 1, 2, , T 15   for the small sample size, t 1, 2, , T 30   for the 

medium sample size, and t 1, 2, , T 100   for the large sample size. The steps for 

simulation and all results are as follows. 

 

Step 1  Using the IML procedure of SAS programming to generate 100,000 vectors 

of the 3 1  multivariate normal tε  in (1.9) as shown the SAS code in Figure 4.1, 

given zero mean vector, the correlation coefficients of the errors between the 

equations are  

12 13 230.9, 0.7, 0.8,       

and the variances-covariances of the errors are 
2 2 2

11 22 33

12 12 11 22 13 13 11 33 23 23 22 33

0.9 0.81, 0.8 0.64, 0.7 0.49,

0.648, 0.441, 0.448,

        

                 
 

then, the form to generate tε  in (1.9) is represented by 

 
t1

t t2 3

t3

ε 0.81 0.648 0.441
ε ~ N , 0.648 0.64 0.448 .

0.441 0.448 0.49ε

    
    

     
        

ε 0 Σ  ………. (4.2) 
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Figure 4.1 IML procedure to generate 100,000 vectors of the 3x1 multivariate 

normal tε  

 

Step 2  Using the multivariate normal error t1 t2 t3ε , ε , and ε  in Step 1 to construct 

two series of the MA(1) and contemporaneously correlated errors, t1 t2 t3v , v , and v , as 

follows: 

 t1 t1 t 1,1 t2 t2 t 1,2 t3 t3 t 1,3v ε 0.5ε , v ε 0.6ε , and v ε 0.7ε ,         (1st series) 

  ………. (4.3) 

 t1 t1 t 1,1 t2 t2 t 1,2 t3 t3 t 1,3v ε 0.6ε , v ε 0.7ε , and v ε 0.8ε ,         (2nd series) 

  ………. (4.4) 

for t 1, 2, , 100,000  and 0 jε  is arbitrarily given to be zero for all j 1, 2, 3 . Split 

the series of errors t1 t2 t3v , v , and v  in sequence to preserve the MA(1) problem into 

1,000 samples, each of which consists of three levels of sample sizes, T = 15, 30, 100 

observations. Estimate the MA(1) parameters and test the properties of MA(1) by the 

options nonotes; 

title 'Generate the multivariate normal data et1 et2 and et3'; 

data oet; /* data of the parameter for the multivariate normal data */ 

input r1 r2 r3 sigma; 

cards; 

1.0  0.9  0.7  0.9 

0.9  1.0  0.8  0.8 

0.7  0.8  1.0  0.7 

; 

proc iml; 

use oet; 

read all var {r1 r2 r3} into R; 

read all var {sigma} into sigma; 

p = ncol(R); 

diag_sig = diag(sigma); 

DRD = diag_sig * R * t(diag_sig); /*  DRD = Matrix of Sigma  

    sigma11 = 0.9^2 = 0.81 

    sigma22 = 0.8^2 = 0.64 

    sigma33 = 0.7^2 = 0.49 

    sigma12 = r12 * sig1 * sig2 = 0.9*0.9*0.8 = 0.648 

    sigma13 = r13 * sig1 * sig3 = 0.7*0.9*0.7 = 0.441 

    sigma23 = r23 * sig2 * sig3 = 0.8*0.8*0.7 = 0.448 */ 

U = half(DRD); /* U = The upper triangular matrix of Sigma (Choleskey square root matrix)*/ 

do id = 1 to 100000; 

rt = rannor(j(p,1,76532)); 

et = t(U)*rt; 

et_prime = t(et); 

et_all = et_all // et_prime; 

end; 

varnames = {'et1' 'et2' 'et3'}; 

create SKIC.et from et_all [colname = varnames]; 

append from et_all; 

quit; 
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MODEL and ARIMA procedures as shown the SAS code in Figure 4.2. The test 

confirm that the error of 1,000 samples satisfy the property of MA(1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2 IML procedure to split 100,000 vectors of tv  into 1,000 samples and 

MODEL and ARIMA procedures to estimate and test the MA(1) 

parameters 

 

options nonotes; 

/* Generate Macro 1,000 series of vt1, vt2, vt3 */ 

PROC IMPORT OUT= vt  

            DATAFILE= "C:\My Documents\Thaksin\My Paper-

TSU\Statistics\SKIC\Excel\et_150000.csv"  

            DBMS=CSV REPLACE; 

RUN; 

proc iml; 

use vt; read point (2:100001) var {id et1 et2 et3 vt1_s1 vt2_s1 vt3_s1 vt1_s2 vt2_s2 

vt3_s2} into vt; 

varnames = {'id' 'et1' 'et2' 'et3' 'vt1_s1' 'vt2_s1' 'vt3_s1' 'vt1_s2' 'vt2_s2' 'vt3_s2'}; 

create SKIC.vt from vt [colname = varnames]; 

append from vt; 

quit; 

/*************** T15 ***************/ 

proc iml; 

use SKIC.vt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

vt_gp_temp = j(15,10,0); 

k1 = 1+(ii-1)*15; 

k2 = k1+14; 

vt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'et1' 'et2' 'et3' 'vt1_s1' 'vt2_s1' 'vt3_s1' 'vt1_s2' 'vt2_s2' 'vt3_s2'}; 

create SKIC.vt_T15_gp&i from vt_gp_temp [colname = varnames]; 

append from vt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 

title 'Estimate and Test MA(1) First series Theta1 = 0.5, Theta2 = 0.6, Theta3 = 0.7'; 

%macro esttabs1; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T15_gp&i; 

 endo vt1_s1 vt2_s1 vt3_s1; 

 parms theta1 theta2 theta3; 

 vt1_s1 = -theta1*lag1(et1); 

 vt2_s1 = -theta2*lag1(et2); 

 vt3_s1 = -theta3*lag1(et3); 

 fit vt1_s1 vt2_s1 vt3_s1 / outest = SKIC.esttabs1_T15_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T15_gp&i; 

 identify var = vt1_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s1 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs1; 

quit; 
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Figure 4.2 (Continued) 

 

 

 

title 'Estimate and Test MA(1) Second series Theta1 = -0.6, Theta2 = -0.7, Theta3 = -0.8'; 

%macro esttabs2; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T15_gp&i; 

 endo vt1_s2 vt2_s2 vt3_s2; 

 parms theta1 theta2 theta3; 

 vt1_s2 = -theta1*lag1(et1); 

 vt2_s2 = -theta2*lag1(et2); 

 vt3_s2 = -theta3*lag1(et3); 

 fit vt1_s2 vt2_s2 vt3_s2 / outest = SKIC.esttabs2_T15_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T15_gp&i; 

 identify var = vt1_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s2 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs2; 

quit; 

/*************** T30 ***************/ 

proc iml; 

use SKIC.vt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

vt_gp_temp = j(30,10,0); 

k1 = 1+(ii-1)*30; 

k2 = k1+29; 

vt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'et1' 'et2' 'et3' 'vt1_s1' 'vt2_s1' 'vt3_s1' 'vt1_s2' 'vt2_s2' 'vt3_s2'}; 

create SKIC.vt_T30_gp&i from vt_gp_temp [colname = varnames]; 

append from vt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 

title 'Estimate and Test MA(1) First series Theta1 = 0.5, Theta2 = 0.6, Theta3 = 0.7'; 

%macro esttabs1; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T30_gp&i; 

 endo vt1_s1 vt2_s1 vt3_s1; 

 parms theta1 theta2 theta3; 

 vt1_s1 = -theta1*lag1(et1); 

 vt2_s1 = -theta2*lag1(et2); 

 vt3_s1 = -theta3*lag1(et3); 

 fit vt1_s1 vt2_s1 vt3_s1 / outest = SKIC.esttabs1_T30_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T30_gp&i; 

 identify var = vt1_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s1 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs1; 

quit; 
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Figure 4.2 (Continued) 

 

 

 

title 'Estimate and Test MA(1) Second series Theta1 = -0.6, Theta2 = -0.7, Theta3 = -0.8'; 

%macro esttabs2; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T30_gp&i; 

 endo vt1_s2 vt2_s2 vt3_s2; 

 parms theta1 theta2 theta3; 

 vt1_s2 = -theta1*lag1(et1); 

 vt2_s2 = -theta2*lag1(et2); 

 vt3_s2 = -theta3*lag1(et3); 

 fit vt1_s2 vt2_s2 vt3_s2 / outest = SKIC.esttabs2_T30_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T30_gp&i; 

 identify var = vt1_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s2 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs2; 

quit; 

/*************** T100 ***************/ 

proc iml; 

use SKIC.vt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

vt_gp_temp = j(100,10,0); 

k1 = 1+(ii-1)*100; 

k2 = k1+99; 

vt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'et1' 'et2' 'et3' 'vt1_s1' 'vt2_s1' 'vt3_s1' 'vt1_s2' 'vt2_s2' 'vt3_s2'}; 

create SKIC.vt_T100_gp&i from vt_gp_temp [colname = varnames]; 

append from vt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 

title 'Estimate and Test MA(1) First series Theta1 = 0.5, Theta2 = 0.6, Theta3 = 0.7'; 

%macro esttabs1; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T100_gp&i; 

 endo vt1_s1 vt2_s1 vt3_s1; 

 parms theta1 theta2 theta3; 

 vt1_s1 = -theta1*lag1(et1); 

 vt2_s1 = -theta2*lag1(et2); 

 vt3_s1 = -theta3*lag1(et3); 

 fit vt1_s1 vt2_s1 vt3_s1 / outest = SKIC.esttabs1_T100_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T100_gp&i; 

 identify var = vt1_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s1 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs1; 

quit; 

 



 
 
 
 

18 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.2 (Continued) 

 

Step 3 Using the RANNOR function of SAS programming to generate the 

independent variables t 2x  until t ,10x  about 100,000 observations to be the normal 

random variables with zero mean and variance equal to one as shown the SAS code in 

Figure 4.3 where the relevant independent variables are t2 t3 t4x , x , and x  and 

irrelevant independent variables are t5x  until t ,10x . Again, split the series of 

independent variables t 2x  until t ,10x  in sequence into 1,000 samples, each of which 

consists of 15, 30, 100 observations. For this research, t1x  is given as a constant which 

equals one. 

 

 

 

 

 

 

 
Figure 4.3 RANNOR function to generate 100,000 observations of the series of 

independent variables and IML procedure to split them into 1,000 

samples  

options nonotes; 

title 'Generate 100,000 Dataset NID(0,1) of xt2 - xt10’; 

data SKIC.xt; 

do id = -50 to 100000; 

xt2 = rannor(5466666); 

xt3 = rannor(2442111); 

xt4 = rannor(1753365); 

xt5 = rannor(9750004); 

xt6 = rannor(2545654); 

xt7 = rannor(6533777); 

xt8 = rannor(6643221); 

xt9 = rannor(6699044); 

xt10 = rannor(1235566); 

title 'Estimate and Test MA(1) Second series Theta1 = -0.6, Theta2 = -0.7, Theta3 = -0.8'; 

%macro esttabs2; 

%local i; 

%do i = 1 %to 1000; 

proc model data = SKIC.vt_T100_gp&i; 

 endo vt1_s2 vt2_s2 vt3_s2; 

 parms theta1 theta2 theta3; 

 vt1_s2 = -theta1*lag1(et1); 

 vt2_s2 = -theta2*lag1(et2); 

 vt3_s2 = -theta3*lag1(et3); 

 fit vt1_s2 vt2_s2 vt3_s2 / outest = SKIC.esttabs2_T100_gp&i sur normal covout; 

run; quit; 

proc arima data = SKIC.vt_T100_gp&i; 

 identify var = vt1_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3_s2 nlag = 6;  estimate q = 1 noint; 

run; quit; 

%end; 

%mend;  

%esttabs2; 

quit; 
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Figure 4.3 (Continued) 

 

if id > 0 

then output; 

end; 

run; 

/*************** T15 ***************/ 

title 'Generate Macro 1,000 series of xt2 - xt10’; 

proc iml; 

use SKIC.xt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

xt_gp_temp = j(15,10,0); 

k1 = 1+(ii-1)*15; 

k2 = k1+14; 

xt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xt6' 'xt7' 'xt8' 'xt9' 'xt10'}; 

create SKIC.xt_T15_gp&i from xt_gp_temp [colname = varnames]; 

append from xt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 

/*************** T30 ***************/ 

title 'Generate Macro 1,000 series of xt2 - xt10’; 

proc iml; 

use SKIC.xt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

xt_gp_temp = j(30,10,0); 

k1 = 1+(ii-1)*29; 

k2 = k1+29; 

xt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xt6' 'xt7' 'xt8' 'xt9' 'xt10'}; 

create SKIC.xt_T30_gp&i from xt_gp_temp [colname = varnames]; 

append from xt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 

/*************** T100 ***************/ 

title 'Generate Macro 1,000 series of xt2 - xt10’; 

proc iml; 

use SKIC.xt; read all into temp; 

%macro split; 

%local i; 

ii = 0; 

%do i = 1 %to 1000; 

ii = ii+1; 

xt_gp_temp = j(100,10,0); 

k1 = 1+(ii-1)*100; 

k2 = k1+99; 

xt_gp_temp = temp[k1:k2,2:10]; 

varnames = {'xt2' 'xt3' 'xt4' 'xt5' 'xt6' 'xt7' 'xt8' 'xt9' 'xt10'}; 

create SKIC.xt_T100_gp&i from xt_gp_temp [colname = varnames]; 

append from xt_gp_temp; 

%end; 

%mend;  

%split; 

quit; 



 
 
 
 

20 

Step 4  Using the corresponding relevant independent variables t2 t3 t4x , x , and x  

obtained in Step 3 and two series of the MA(1) errors obtained in Step 2 to construct 

the dependent variables described in (4.1). The SAS code is shown in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.4 Macro facility to construct 1,000 samples of the SEM in (4.1)  

/*************** T15 ***************/ 

title 'Construct Macro 1,000 series of yt1_st1 - yt3_s1 and yt1_st2 - yt3_s2'; 

%macro cons_yt; 

%local i; 

%do i = 1 %to 1000; 

data SKIC.yt_T15_gp&i; 

set SKIC.xt_T15_gp&i; 

set SKIC.vt_T15_gp&i; 

yt1_s1 = 1+2*xt2+3*xt3+4*xt4+vt1_s1; 

yt2_s1 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s1; 

yt3_s1 = 1+xt2+xt3+xt4+vt3_s1; 

 

yt1_s2 = 1+2*xt2+3*xt3+4*xt4+vt1_s2; 

yt2_s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s2; 

yt3_s2 = 1+xt2+xt3+xt4+vt3_s2; 

%end; 

%mend;  

%cons_yt; 

run; 

quit; 

/*************** T30 ***************/ 

title 'Construct Macro 1,000 series of yt1_st1 - yt3_s1 and yt1_st2 - yt3_s2'; 

%macro cons_yt; 

%local i; 

%do i = 1 %to 1000; 

data SKIC.yt_T30_gp&i; 

set SKIC.xt_T30_gp&i; 

set SKIC.vt_T30_gp&i; 

yt1_s1 = 1+2*xt2+3*xt3+4*xt4+vt1_s1; 

yt2_s1 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s1; 

yt3_s1 = 1+xt2+xt3+xt4+vt3_s1; 

 

yt1_s2 = 1+2*xt2+3*xt3+4*xt4+vt1_s2; 

yt2_s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s2; 

yt3_s2 = 1+xt2+xt3+xt4+vt3_s2; 

%end; 

%mend;  

%cons_yt; 

run; 

quit; 

/*************** T100 ***************/ 

title 'Construct Macro 1,000 series of yt1_st1 - yt3_s1 and yt1_st2 - yt3_s2'; 

%macro cons_yt; 

%local i; 

%do i = 1 %to 1000; 

data SKIC.yt_T100_gp&i; 

set SKIC.xt_T100_gp&i; 

set SKIC.vt_T100_gp&i; 

yt1_s1 = 1+2*xt2+3*xt3+4*xt4+vt1_s1; 

yt2_s1 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s1; 

yt3_s1 = 1+xt2+xt3+xt4+vt3_s1; 

 

yt1_s2 = 1+2*xt2+3*xt3+4*xt4+vt1_s2; 

yt2_s2 = 1-0.5*xt2-5*xt3-1.5*xt4+vt2_s2; 

yt3_s2 = 1+xt2+xt3+xt4+vt3_s2; 

%end; 

%mend;  

%cons_yt; 

run; 

quit; 
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Step 5  Using the estimated values of MA(1) parameters obtained in Step 2 to 

construct the estimate of transformation matrix jP  in (3.2) for each sample. Apply 

this transformation matrix to transform the SEM in Step 4 to give the stack of 

transformed model as shown in (3.3). Test the MA(1) problem in the errors by the 

ARIMA procedure. The SAS code is shown in Figure 4.5. The test shows that the 

errors of all transformed samples are independent. Therefore, we can say that the 

transformation matrix P in (3.1) has the power of transformation equal to 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5 IML procedure to construct the estimate of transformation matrix 

options nonotes; 

/*****^^^^^*****^^^^^*****^^^^^*****^^^^^ T15 *****^^^^^*****^^^^^*****^^^^^*****^^^^^*****/ 

/* Transform MA(1) */ 

title 'Transform MA(1)';  

proc iml; 

%macro trans; 

%local t; 

%local s; 

%local i; 

 

%do i = 1 %to 1000; 

  TT = I(15);            /* #Obs. per Sample = T */ 

 

  use SKIC.esttabs1_T15_gp&i; read point 1 var {theta1} into theta1s1; 

  use SKIC.esttabs1_T15_gp&i; read point 1 var {theta2} into theta2s1; 

  use SKIC.esttabs1_T15_gp&i; read point 1 var {theta3} into theta3s1; 

  P1_s1 = j(nrow(TT),ncol(TT),0);      /* P1_s1 = T*T */ 

  P2_s1 = j(nrow(TT),ncol(TT),0);      /* P2_s1 = T*T */ 

  P3_s1 = j(nrow(TT),ncol(TT),0);      /* P3_s1 = T*T */ 

 

  use SKIC.esttabs2_T15_gp&i; read point 1 var {theta1} into theta1s2; 

  use SKIC.esttabs2_T15_gp&i; read point 1 var {theta2} into theta2s2; 

  use SKIC.esttabs2_T15_gp&i; read point 1 var {theta3} into theta3s2; 

  P1_s2 = j(nrow(TT),ncol(TT),0);      /* P1_s2 = T*T */ 

  P2_s2 = j(nrow(TT),ncol(TT),0);      /* P2_s2 = T*T */ 

  P3_s2 = j(nrow(TT),ncol(TT),0);      /* P3_s2 = T*T */ 

 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s1 yt1_s1} into y1_s1; 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s1 yt2_s1} into y2_s1; 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s1 yt3_s1} into y3_s1; 

 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s2 yt1_s2} into y1_s2; 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s2 yt2_s2} into y2_s2; 

  use SKIC.yt_T15_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s2 yt3_s2} into y3_s2; 

 

  xt1 = j(nrow(TT),1,1); 

 

  yt1_s1 = j(nrow(TT),12,0); yt1_s1 = xt1 || y1_s1; 

  yt2_s1 = j(nrow(TT),12,0); yt2_s1 = xt1 || y2_s1; 

  yt3_s1 = j(nrow(TT),12,0); yt3_s1 = xt1 || y3_s1; 

 

  yt1_s2 = j(nrow(TT),12,0); yt1_s2 = xt1 || y1_s2; 

  yt2_s2 = j(nrow(TT),12,0); yt2_s2 = xt1 || y2_s2; 

  yt3_s2 = j(nrow(TT),12,0); yt3_s2 = xt1 || y3_s2; 

 

 /************ Construct Transformation Matrix ************/ 

    %do t = 1 %to 15;    /* Change #obs per rep */ 

      %do s = 1 %to 15;  /* Change #obs per rep */ 

 

     /************ The First Series: s1 ************/ 

        P1_s1[1,1] = 1/sqrt(1+theta1s1**2); 

        %if %eval(&t >= &s) %then %do; P1_s1[&t,&s] = theta1s1**(&t-&s); %end; 

        %else %do; P1_s1[&t,&s] = 0; %end; 

 

        P2_s1[1,1] = 1/sqrt(1+theta2s1**2); 

        %if %eval(&t >= &s) %then %do; P2_s1[&t,&s] = theta2s1**(&t-&s); %end; 

        %else %do; P2_s1[&t,&s] = 0; %end; 
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Figure 4.5 (Continued) 

        P3_s1[1,1] = 1/sqrt(1+theta3s1**2); 

        %if %eval(&t >= &s) %then %do; P3_s1[&t,&s] = theta3s1**(&t-&s); %end; 

        %else %do; P3_s1[&t,&s] = 0; %end; 

 

     /************ The Second Series: s2 ************/ 

        P1_s2[1,1] = 1/sqrt(1+theta1s2**2); 

        %if %eval(&t >= &s) %then %do; P1_s2[&t,&s] = theta1s2**(&t-&s); %end; 

        %else %do; P1_s2[&t,&s] = 0; %end; 

 

        P2_s2[1,1] = 1/sqrt(1+theta2s2**2); 

        %if %eval(&t >= &s) %then %do; P2_s2[&t,&s] = theta2s2**(&t-&s); %end; 

        %else %do; P2_s2[&t,&s] = 0; %end; 

 

        P3_s2[1,1] = 1/sqrt(1+theta3s2**2); 

        %if %eval(&t >= &s) %then %do; P3_s2[&t,&s] = theta3s2**(&t-&s); %end; 

        %else %do; P3_s2[&t,&s] = 0; %end; 

 

      %end; 

    %end; 

  yt1s_s1 = P1_s1*yt1_s1; 

  yt2s_s1 = P2_s1*yt2_s1; 

  yt3s_s1 = P3_s1*yt3_s1; 

  yts_s1 = j(nrow(TT),36,0); yts_s1 = yt1s_s1 || yt2s_s1 || yt3s_s1; 

 

  yt1s_s2 = P1_s2*yt1_s2; 

  yt2s_s2 = P2_s2*yt2_s2; 

  yt3s_s2 = P3_s2*yt3_s2; 

  yts_s2 = j(nrow(TT),36,0); yts_s2 = yt1s_s2 || yt2s_s2 || yt3s_s2; 

 

  cn_yts_s1 = {"xt1_s1_eq1" "xt2_s1_eq1" "xt3_s1_eq1" "xt4_s1_eq1" "xt5_s1_eq1" "xt6_s1_eq1" "xt7_s1_eq1"  

               "xt8_s1_eq1" "xt9_s1_eq1" "xt10_s1_eq1" "vt1s_s1" "yt1s_s1" 

               "xt1_s1_eq2" "xt2_s1_eq2" "xt3_s1_eq2" "xt4_s1_eq2" "xt5_s1_eq2" "xt6_s1_eq2" "xt7_s1_eq2"  

               "xt8_s1_eq2" "xt9_s1_eq2" "xt10_s1_eq2" "vt2s_s1" "yt2s_s1" 

               "xt1_s1_eq3" "xt2_s1_eq3" "xt3_s1_eq3" "xt4_s1_eq3" "xt5_s1_eq3" "xt6_s1_eq3" "xt7_s1_eq3"  

               "xt8_s1_eq3" "xt9_s1_eq3" "xt10_s1_eq3" "vt3s_s1" "yt3s_s1"}; 

 

  cn_yts_s2 = {"xt1_s2_eq1" "xt2_s2_eq1" "xt3_s2_eq1" "xt4_s2_eq1" "xt5_s2_eq1" "xt6_s2_eq1" "xt7_s2_eq1"  

               "xt8_s2_eq1" "xt9_s2_eq1" "xt10_s2_eq1" "vt1s_s2" "yt1s_s2" 

               "xt1_s2_eq2" "xt2_s2_eq2" "xt3_s2_eq2" "xt4_s2_eq2" "xt5_s2_eq2" "xt6_s2_eq2" "xt7_s2_eq2"  

               "xt8_s2_eq2" "xt9_s2_eq2" "xt10_s2_eq2" "vt2s_s2" "yt2s_s2" 

               "xt1_s2_eq3" "xt2_s2_eq3" "xt3_s2_eq3" "xt4_s2_eq3" "xt5_s2_eq3" "xt6_s2_eq3" "xt7_s2_eq3"  

               "xt8_s2_eq3" "xt9_s2_eq3" "xt10_s2_eq3" "vt3s_s2" "yt3s_s2"}; 

 

  create SKIC.yts_T15_s1_gp&i from yts_s1 [colname = cn_yts_s1]; append from yts_s1; 

  create SKIC.yts_T15_s2_gp&i from yts_s2 [colname = cn_yts_s2]; append from yts_s2; 

 

%end; 

 

%mend;  

%trans; 

quit; 

title 'Test MA(1) First series Theta1 = 0.5, Theta2 = 0.6, Theta3 = 0.7'; 

%macro testmas1; 

%local i; 

%do i = 1 %to 1000; 

proc arima data = SKIC.yts_T15_s1_gp&i; 

 identify var = vt1s_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2s_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3s_s1 nlag = 6;  estimate q = 1 noint; 

run; 

%end; 

%mend;  

%testmas1; 

quit; 

title 'Test MA(1) Second series Theta1 = -0.6, Theta2 = -0.7, Theta3 = -0.8'; 

%macro testmas2; 

%local i; 

%do i = 1 %to 1000; 

proc arima data = SKIC.yts_T15_s2_gp&i; 

 identify var = vt1s_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2s_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3s_s2 nlag = 6;  estimate q = 1 noint; 

run; 

%end; 

%mend;  

%testmas2; 

quit; 
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Figure 4.5 (Continued) 

/*****^^^^^*****^^^^^*****^^^^^*****^^^^^ T30 *****^^^^^*****^^^^^*****^^^^^*****^^^^^*****/ 

/* Transform MA(1) */ 

title 'Transform MA(1)';  

proc iml; 

%macro trans; 

%local t; 

%local s; 

%local i; 

 

%do i = 1 %to 1000;         

  TT = I(30);            /* #Obs. per Sample = T */ 

 

  use SKIC.esttabs1_T30_gp&i; read point 1 var {theta1} into theta1s1; 

  use SKIC.esttabs1_T30_gp&i; read point 1 var {theta2} into theta2s1; 

  use SKIC.esttabs1_T30_gp&i; read point 1 var {theta3} into theta3s1; 

  P1_s1 = j(nrow(TT),ncol(TT),0);      /* P1_s1 = T*T */ 

  P2_s1 = j(nrow(TT),ncol(TT),0);      /* P2_s1 = T*T */ 

  P3_s1 = j(nrow(TT),ncol(TT),0);      /* P3_s1 = T*T */ 

 

  use SKIC.esttabs2_T30_gp&i; read point 1 var {theta1} into theta1s2; 

  use SKIC.esttabs2_T30_gp&i; read point 1 var {theta2} into theta2s2; 

  use SKIC.esttabs2_T30_gp&i; read point 1 var {theta3} into theta3s2; 

  P1_s2 = j(nrow(TT),ncol(TT),0);      /* P1_s2 = T*T */ 

  P2_s2 = j(nrow(TT),ncol(TT),0);      /* P2_s2 = T*T */ 

  P3_s2 = j(nrow(TT),ncol(TT),0);      /* P3_s2 = T*T */ 

 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s1 yt1_s1} into y1_s1; 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s1 yt2_s1} into y2_s1; 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s1 yt3_s1} into y3_s1; 

 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s2 yt1_s2} into y1_s2; 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s2 yt2_s2} into y2_s2; 

  use SKIC.yt_T30_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s2 yt3_s2} into y3_s2; 

 

  xt1 = j(nrow(TT),1,1); 

 

  yt1_s1 = j(nrow(TT),12,0); yt1_s1 = xt1 || y1_s1; 

  yt2_s1 = j(nrow(TT),12,0); yt2_s1 = xt1 || y2_s1; 

  yt3_s1 = j(nrow(TT),12,0); yt3_s1 = xt1 || y3_s1; 

 

  yt1_s2 = j(nrow(TT),12,0); yt1_s2 = xt1 || y1_s2; 

  yt2_s2 = j(nrow(TT),12,0); yt2_s2 = xt1 || y2_s2; 

  yt3_s2 = j(nrow(TT),12,0); yt3_s2 = xt1 || y3_s2; 

 

 /************ Construct Transformation Matrix ************/ 

    %do t = 1 %to 30;    /* Change #obs per rep */ 

      %do s = 1 %to 30;  /* Change #obs per rep */ 

 

     /************ The First Series: s1 ************/ 

        P1_s1[1,1] = 1/sqrt(1+theta1s1**2); 

        %if %eval(&t >= &s) %then %do; P1_s1[&t,&s] = theta1s1**(&t-&s); %end; 

        %else %do; P1_s1[&t,&s] = 0; %end; 

 

        P2_s1[1,1] = 1/sqrt(1+theta2s1**2); 

        %if %eval(&t >= &s) %then %do; P2_s1[&t,&s] = theta2s1**(&t-&s); %end; 

        %else %do; P2_s1[&t,&s] = 0; %end; 

 

        P3_s1[1,1] = 1/sqrt(1+theta3s1**2); 

        %if %eval(&t >= &s) %then %do; P3_s1[&t,&s] = theta3s1**(&t-&s); %end; 

        %else %do; P3_s1[&t,&s] = 0; %end; 

 

     /************ The Second Series: s2 ************/ 

        P1_s2[1,1] = 1/sqrt(1+theta1s2**2); 

        %if %eval(&t >= &s) %then %do; P1_s2[&t,&s] = theta1s2**(&t-&s); %end; 

        %else %do; P1_s2[&t,&s] = 0; %end; 

 

        P2_s2[1,1] = 1/sqrt(1+theta2s2**2); 

        %if %eval(&t >= &s) %then %do; P2_s2[&t,&s] = theta2s2**(&t-&s); %end; 

        %else %do; P2_s2[&t,&s] = 0; %end; 

 

        P3_s2[1,1] = 1/sqrt(1+theta3s2**2); 

        %if %eval(&t >= &s) %then %do; P3_s2[&t,&s] = theta3s2**(&t-&s); %end; 

        %else %do; P3_s2[&t,&s] = 0; %end; 

 

      %end; 

    %end; 
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Figure 4.5 (Continued) 

  yt1s_s1 = P1_s1*yt1_s1; 

  yt2s_s1 = P2_s1*yt2_s1; 

  yt3s_s1 = P3_s1*yt3_s1; 

  yts_s1 = j(nrow(TT),36,0); yts_s1 = yt1s_s1 || yt2s_s1 || yt3s_s1; 

 

  yt1s_s2 = P1_s2*yt1_s2; 

  yt2s_s2 = P2_s2*yt2_s2; 

  yt3s_s2 = P3_s2*yt3_s2; 

  yts_s2 = j(nrow(TT),36,0); yts_s2 = yt1s_s2 || yt2s_s2 || yt3s_s2; 

 

  cn_yts_s1 = {"xt1_s1_eq1" "xt2_s1_eq1" "xt3_s1_eq1" "xt4_s1_eq1" "xt5_s1_eq1" "xt6_s1_eq1" "xt7_s1_eq1"  

               "xt8_s1_eq1" "xt9_s1_eq1" "xt10_s1_eq1" "vt1s_s1" "yt1s_s1" 

               "xt1_s1_eq2" "xt2_s1_eq2" "xt3_s1_eq2" "xt4_s1_eq2" "xt5_s1_eq2" "xt6_s1_eq2" "xt7_s1_eq2"  

               "xt8_s1_eq2" "xt9_s1_eq2" "xt10_s1_eq2" "vt2s_s1" "yt2s_s1" 

               "xt1_s1_eq3" "xt2_s1_eq3" "xt3_s1_eq3" "xt4_s1_eq3" "xt5_s1_eq3" "xt6_s1_eq3" "xt7_s1_eq3"  

               "xt8_s1_eq3" "xt9_s1_eq3" "xt10_s1_eq3" "vt3s_s1" "yt3s_s1"}; 

 

  cn_yts_s2 = {"xt1_s2_eq1" "xt2_s2_eq1" "xt3_s2_eq1" "xt4_s2_eq1" "xt5_s2_eq1" "xt6_s2_eq1" "xt7_s2_eq1"  

               "xt8_s2_eq1" "xt9_s2_eq1" "xt10_s2_eq1" "vt1s_s2" "yt1s_s2" 

               "xt1_s2_eq2" "xt2_s2_eq2" "xt3_s2_eq2" "xt4_s2_eq2" "xt5_s2_eq2" "xt6_s2_eq2" "xt7_s2_eq2"  

               "xt8_s2_eq2" "xt9_s2_eq2" "xt10_s2_eq2" "vt2s_s2" "yt2s_s2" 

               "xt1_s2_eq3" "xt2_s2_eq3" "xt3_s2_eq3" "xt4_s2_eq3" "xt5_s2_eq3" "xt6_s2_eq3" "xt7_s2_eq3"  

               "xt8_s2_eq3" "xt9_s2_eq3" "xt10_s2_eq3" "vt3s_s2" "yt3s_s2"}; 

 

  create SKIC.yts_T30_s1_gp&i from yts_s1 [colname = cn_yts_s1]; append from yts_s1; 

  create SKIC.yts_T30_s2_gp&i from yts_s2 [colname = cn_yts_s2]; append from yts_s2; 

 

%end; 

 

%mend;  

%trans; 

quit; 

title 'Test MA(1) First series Theta1 = 0.5, Theta2 = 0.6, Theta3 = 0.7'; 

%macro testmas1; 

%local i; 

%do i = 1 %to 1000; 

proc arima data = SKIC.yts_T30_s1_gp&i; 

 identify var = vt1s_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2s_s1 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3s_s1 nlag = 6;  estimate q = 1 noint; 

run; 

%end; 

%mend;  

%testmas1; 

quit; 

title 'Test MA(1) Second series Theta1 = -0.6, Theta2 = -0.7, Theta3 = -0.8'; 

%macro testmas2; 

%local i; 

%do i = 1 %to 1000; 

proc arima data = SKIC.yts_T30_s2_gp&i; 

 identify var = vt1s_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt2s_s2 nlag = 6;  estimate q = 1 noint; 

 identify var = vt3s_s2 nlag = 6;  estimate q = 1 noint; 

run; 

%end; 

%mend;  

%testmas2; 

quit; 

/*****^^^^^*****^^^^^*****^^^^^*****^^^^^ T100 *****^^^^^*****^^^^^*****^^^^^*****^^^^^*****/ 

/* Transform MA(1) */ 

title 'Transform MA(1)';  

proc iml; 

%macro trans; 

%local t; 

%local s; 

%local i; 

 

%do i = 1 %to 1000;         

  TT = I(100);            /* #Obs. per Sample = T */ 

 

  use SKIC.esttabs1_T100_gp&i; read point 1 var {theta1} into theta1s1; 

  use SKIC.esttabs1_T100_gp&i; read point 1 var {theta2} into theta2s1; 

  use SKIC.esttabs1_T100_gp&i; read point 1 var {theta3} into theta3s1; 

  P1_s1 = j(nrow(TT),ncol(TT),0);      /* P1_s1 = T*T */ 

  P2_s1 = j(nrow(TT),ncol(TT),0);      /* P2_s1 = T*T */ 

  P3_s1 = j(nrow(TT),ncol(TT),0);      /* P3_s1 = T*T */ 
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Figure 4.5 (Continued) 

 

  use SKIC.esttabs2_T100_gp&i; read point 1 var {theta1} into theta1s2; 

  use SKIC.esttabs2_T100_gp&i; read point 1 var {theta2} into theta2s2; 

  use SKIC.esttabs2_T100_gp&i; read point 1 var {theta3} into theta3s2; 

  P1_s2 = j(nrow(TT),ncol(TT),0);      /* P1_s2 = T*T */ 

  P2_s2 = j(nrow(TT),ncol(TT),0);      /* P2_s2 = T*T */ 

  P3_s2 = j(nrow(TT),ncol(TT),0);      /* P3_s2 = T*T */ 

 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s1 yt1_s1} into y1_s1; 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s1 yt2_s1} into y2_s1; 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s1 yt3_s1} into y3_s1; 

 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt1_s2 yt1_s2} into y1_s2; 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt2_s2 yt2_s2} into y2_s2; 

  use SKIC.yt_T100_gp&i; read all var {xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 xt10 vt3_s2 yt3_s2} into y3_s2; 

 

  xt1 = j(nrow(TT),1,1); 

 

  yt1_s1 = j(nrow(TT),12,0); yt1_s1 = xt1 || y1_s1; 

  yt2_s1 = j(nrow(TT),12,0); yt2_s1 = xt1 || y2_s1; 

  yt3_s1 = j(nrow(TT),12,0); yt3_s1 = xt1 || y3_s1; 

 

  yt1_s2 = j(nrow(TT),12,0); yt1_s2 = xt1 || y1_s2; 

  yt2_s2 = j(nrow(TT),12,0); yt2_s2 = xt1 || y2_s2; 

  yt3_s2 = j(nrow(TT),12,0); yt3_s2 = xt1 || y3_s2; 

 

 /************ Construct Transformation Matrix ************/ 

    %do t = 1 %to 100;    /* Change #obs per rep */ 

      %do s = 1 %to 100;  /* Change #obs per rep */ 

 

     /************ The First Series: s1 ************/ 

        P1_s1[1,1] = 1/sqrt(1+theta1s1**2); 

        %if %eval(&t >= &s) %then %do; P1_s1[&t,&s] = theta1s1**(&t-&s); %end; 

        %else %do; P1_s1[&t,&s] = 0; %end; 

 

        P2_s1[1,1] = 1/sqrt(1+theta2s1**2); 

        %if %eval(&t >= &s) %then %do; P2_s1[&t,&s] = theta2s1**(&t-&s); %end; 

        %else %do; P2_s1[&t,&s] = 0; %end; 

 

        P3_s1[1,1] = 1/sqrt(1+theta3s1**2); 

        %if %eval(&t >= &s) %then %do; P3_s1[&t,&s] = theta3s1**(&t-&s); %end; 

        %else %do; P3_s1[&t,&s] = 0; %end; 

 

     /************ The Second Series: s2 ************/ 

        P1_s2[1,1] = 1/sqrt(1+theta1s2**2); 

        %if %eval(&t >= &s) %then %do; P1_s2[&t,&s] = theta1s2**(&t-&s); %end; 

        %else %do; P1_s2[&t,&s] = 0; %end; 

 

        P2_s2[1,1] = 1/sqrt(1+theta2s2**2); 

        %if %eval(&t >= &s) %then %do; P2_s2[&t,&s] = theta2s2**(&t-&s); %end; 

        %else %do; P2_s2[&t,&s] = 0; %end; 

 

        P3_s2[1,1] = 1/sqrt(1+theta3s2**2); 

        %if %eval(&t >= &s) %then %do; P3_s2[&t,&s] = theta3s2**(&t-&s); %end; 

        %else %do; P3_s2[&t,&s] = 0; %end; 

 

      %end; 

    %end; 

 

  yt1s_s1 = P1_s1*yt1_s1; 

  yt2s_s1 = P2_s1*yt2_s1; 

  yt3s_s1 = P3_s1*yt3_s1; 

  yts_s1 = j(nrow(TT),36,0); yts_s1 = yt1s_s1 || yt2s_s1 || yt3s_s1; 

 

  yt1s_s2 = P1_s2*yt1_s2; 

  yt2s_s2 = P2_s2*yt2_s2; 

  yt3s_s2 = P3_s2*yt3_s2; 

  yts_s2 = j(nrow(TT),36,0); yts_s2 = yt1s_s2 || yt2s_s2 || yt3s_s2; 

 

  cn_yts_s1 = {"xt1_s1_eq1" "xt2_s1_eq1" "xt3_s1_eq1" "xt4_s1_eq1" "xt5_s1_eq1" "xt6_s1_eq1" "xt7_s1_eq1"  

               "xt8_s1_eq1" "xt9_s1_eq1" "xt10_s1_eq1" "vt1s_s1" "yt1s_s1" 

               "xt1_s1_eq2" "xt2_s1_eq2" "xt3_s1_eq2" "xt4_s1_eq2" "xt5_s1_eq2" "xt6_s1_eq2" "xt7_s1_eq2"  

               "xt8_s1_eq2" "xt9_s1_eq2" "xt10_s1_eq2" "vt2s_s1" "yt2s_s1" 

               "xt1_s1_eq3" "xt2_s1_eq3" "xt3_s1_eq3" "xt4_s1_eq3" "xt5_s1_eq3" "xt6_s1_eq3" "xt7_s1_eq3"  

               "xt8_s1_eq3" "xt9_s1_eq3" "xt10_s1_eq3" "vt3s_s1" "yt3s_s1"}; 
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Figure 4.5 (Continued) 

 

Step 6  Using the assumption of nested model to construct the candidate models 

which are the models include the columns of independent variables in a sequentially 

nested fashion; i.e., columns 1 to K define the design matrix for the candidate model 

with dimension K. For 1,000 transformed samples, we estimate the parameters of the 

transformed model by the GLS method. Then calculate SKIC in (3.5) and SAIC 

proposed by Keerativibool (2009), 

  UE
ˆSAIC Tlog M K M 3 ,   Σ  ………. (4.5) 

where UE
Tˆ ˆ

T K



Σ Σ , UEΣ̂  and Σ̂  represent the estimated contemporaneous covariance 

matrix of the error terms by the methods of unbiased estimator and maximum 

likelihood estimator, respectively. Therefore SAIC in (4.5) can be rewritten as 

  
TˆSAIC Tlog TMlog M K M 3 .

T K
 

     
 

Σ  ………. (4.6) 

The candidate model that has the minimum value of model selection criterion is 

called the best model. Model selection criterion performance is examined by a 

measure of counting the frequency of order being selected. The results of comparing 

are shown in Table 1. 

 

 

 

 

 

  cn_yts_s2 = {"xt1_s2_eq1" "xt2_s2_eq1" "xt3_s2_eq1" "xt4_s2_eq1" "xt5_s2_eq1" "xt6_s2_eq1" "xt7_s2_eq1"  

               "xt8_s2_eq1" "xt9_s2_eq1" "xt10_s2_eq1" "vt1s_s2" "yt1s_s2" 

               "xt1_s2_eq2" "xt2_s2_eq2" "xt3_s2_eq2" "xt4_s2_eq2" "xt5_s2_eq2" "xt6_s2_eq2" "xt7_s2_eq2"  

               "xt8_s2_eq2" "xt9_s2_eq2" "xt10_s2_eq2" "vt2s_s2" "yt2s_s2" 

               "xt1_s2_eq3" "xt2_s2_eq3" "xt3_s2_eq3" "xt4_s2_eq3" "xt5_s2_eq3" "xt6_s2_eq3" "xt7_s2_eq3"  

               "xt8_s2_eq3" "xt9_s2_eq3" "xt10_s2_eq3" "vt3s_s2" "yt3s_s2"}; 

 

  create SKIC.yts_T100_s1_gp&i from yts_s1 [colname = cn_yts_s1]; append from yts_s1; 

  create SKIC.yts_T100_s2_gp&i from yts_s2 [colname = cn_yts_s2]; append from yts_s2; 

 

%end; 

 

%mend;  

%trans; 

quit; 
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Table 1. Frequency of the model order being selected by SAIC and SKIC for 1,000 

samples 

T 
Series of 

Errors tjv  
Criteria 

K 

2 3 4 5 6 7 8 9 10 

15 (4.3) SAIC 0 0 832 75 30 15 16 2 30 

  SKIC 0 0 1000 0 0 0 0 0 0 

15 (4.4) SAIC 0 0 809 98 32 13 18 2 28 

  SKIC 0 0 1000 0 0 0 0 0 0 

30 (4.3) SAIC 0 0 919 60 13 6 2 0 0 

  SKIC 0 0 999 1 0 0 0 0 0 

30 (4.4) SAIC 0 0 886 86 20 6 2 0 0 

  SKIC 0 0 994 6 0 0 0 0 0 

100 (4.3) SAIC 0 0 952 39 9 0 0 0 0 

  SKIC 0 0 1000 0 0 0 0 0 0 

100 (4.4) SAIC 0 0 910 55 20 7 5 0 3 

  SKIC 0 0 982 12 5 0 0 0 1 

Note: Boldface type indicates the maximum frequency of correct order being selected. 

 

Step 7  Calculate the observed 2L  distance, scaled by 1 T , between the true model 

in (3.4) and the candidate model in (3.3) which was defined by McQuarrie et al. 

(1997) and McQuarrie (1999), 

       1
2 0 0

1 ˆˆ ˆL k ,
T

      Tπ π X Σ I X π π  

and calculate the observed 2L  efficiency which defined as 

 

 
1 k K 2

2
2 s

min L k
Observed  L efficiency ,

L k
 

  

where K is the class of all possible candidate models, k is the rank of fitted candidate 

model, and sk  is the model selected by specific model selection criterion. The closer 

the selected model is to the true model, the higher the efficiency. Therefore, the best 

model selection criterion will select a model which yields high efficiency even in 
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small samples. For 1,000 transformed samples, the results of comparing the observed 

2L  efficiency are shown in Table 2.  

 

Table 2. Average and standard deviation of the observed 2L  efficiency over 1,000 

samples  

T 
Series of 

Errors tjv  
Criteria 

Statistics 

Ave. 2L  eff. S.D. 2L eff. 

15 (4.3) SAIC 0.7762 0.3170 

  SKIC 0.8843 0.2060 

15 (4.4) SAIC 0.7213 0.3486 

  SKIC 0.8293 0.2749 

30 (4.3) SAIC 0.9436 0.1718 

  SKIC 0.9860 0.0868 

30 (4.4) SAIC 0.8999 0.2341 

  SKIC 0.9487 0.1822 

100 (4.3) SAIC 0.9757 0.1113 

  SKIC 1.0000 0.0005 

100 (4.4) SAIC 0.9527 0.1581 

  SKIC 0.9894 0.0810 

Note: Boldface type indicates the best performance. 

 

Step 8  The results of the frequency of correct order being selected from Steps 6 in 

Table 1 can be concluded that the performance of SKIC in (3.5) convincingly 

outperformed SAIC in (4.6) for all three levels of the sample sizes (T = 15, 30, 100) 

and two series of the MA(1) and contemporaneously correlated errors tjv  in (4.3) and 

(4.4), because SAIC has a tendency to overfit the order of the model than SKIC. The 

results of the observed 2L  efficiency from Steps 7 in Table 2 also confirm that SKIC 

has a large observed 2L  efficiency and small standard deviation of the observed 2L  

efficiency than SAIC, then SKIC is likely better than SAIC. In Table 3, we show the 

average and standard deviation of SAIC and SKIC for 1,000 transformed samples. In 
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this table we found that SAIC presents a large negative bias than SKIC that maybe the 

main reason for the number of correct model order being selected is less. 

 

Table 3.  Average and standard deviation of SAIC and SKIC for 1,000 samples of the 

sample size T and the series of errors tjv  in (4.3) and (4.4) 

T = 15 and errors tjv  in (4.3) T = 15 and errors tjv  in (4.4) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 

2 6.295 0.977 8.281 0.977 2 7.215 1.310 9.201 1.311 

3 3.290 0.998 6.443 0.998 3 3.888 1.232 7.041 1.232 

4 -2.351 0.862 2.309 0.862 4 -2.300 0.903 2.359 0.903 

5 -1.934 0.904 4.732 0.904 5 -1.919 0.949 4.747 0.949 

6 -1.507 0.964 7.954 0.964 6 -1.493 1.006 7.968 1.006 

7 -1.075 1.023 12.541 1.023 7 -1.066 1.072 12.549 1.072 

8 -0.649 1.160 19.800 1.160 8 -0.648 1.174 19.801 1.174 

9 1.434 1.375 35.330 1.375 9 1.577 1.406 35.473 1.406 

10 0.185 1.529 73.700 1.529 10 0.143 1.481 73.659 1.481 

T = 30 and errors tjv  in (4.3) T = 30 and errors tjv  in (4.4) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 

2 6.197 0.875 6.824 0.875 2 7.103 1.259 7.730 1.259 

3 2.967 0.859 3.916 0.859 3 3.617 1.109 4.566 1.109 

4 -3.131 0.494 -1.827 0.494 4 -3.065 0.522 -1.762 0.522 

5 -2.938 0.501 -1.243 0.501 5 -2.885 0.529 -1.191 0.529 

6 -2.734 0.509 -0.606 0.509 6 -2.685 0.533 -0.557 0.533 

7 -2.528 0.527 0.081 0.527 7 -2.485 0.545 0.124 0.545 

8 -2.306 0.543 0.840 0.543 8 -2.275 0.555 0.872 0.555 

9 -0.309 0.656 3.440 0.656 9 -0.168 0.704 3.581 0.704 

10 -1.846 0.559 2.582 0.559 10 -1.834 0.585 2.594 0.585 

 

 



 
 
 
 

30 

Table 3.  (Continued) 

T = 100 and errors tjv  in (4.3) T = 100 and errors tjv  in (4.4) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 

2 6.104 0.617 6.241 0.617 2 7.028 1.034 7.166 1.034 

3 2.721 0.570 2.927 0.570 3 3.453 0.898 3.659 0.898 

4 -3.752 0.265 -3.476 0.265 4 -3.718 0.293 -3.442 0.293 

5 -3.693 0.266 -3.344 0.266 5 -3.664 0.289 -3.315 0.289 

6 -3.634 0.267 -3.210 0.267 6 -3.610 0.288 -3.187 0.288 

7 -3.574 0.267 -3.074 0.267 7 -3.552 0.288 -3.053 0.288 

8 -3.514 0.267 -2.936 0.267 8 -3.496 0.284 -2.918 0.284 

9 -1.369 0.383 -0.711 0.383 9 -1.041 0.448 -0.383 0.448 

10 -3.392 0.271 -2.652 0.271 10 -3.379 0.279 -2.638 0.279 

Note: Boldface type indicates the minimum average value of SAIC and SKIC. 

 

 



CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORKS 
 

5.1 Conclusions 
 

In this research, the transformation matrix in order to correct the MA(1) 

problem and to recover the one lost observation along with the consideration of 

contemporaneous correlation in a SEM is proposed. Then, the Kullback information 

criterion for a system of SEM, called SKIC, is proposed for selecting the most 

appropriate system of the models. SKIC is compared the performance of selection the 

order of the model, relative to SAIC proposed by Keerativibool (2009). The results of 

simulation study show that the proposed transformation matrix P can transform the 

MA(1) errors for both forms of (4.3) and (4.4) to be independent. For all situations of 

the sample sizes; small (T = 15), medium (T = 30), and large (T = 100), including two 

series of errors generated in the SEM, SKIC convincingly outperformed SAIC, 

because SAIC has a tendency to overfit the order of the model than SKIC. The results 

of the observed 2L  efficiency also confirm that SKIC has a large observed 2L  

efficiency and small standard deviation of the observed 2L  efficiency than SAIC, then 

SKIC is likely better than SAIC. The average and standard deviation of SAIC and 

SKIC for 1,000 transformed samples show that SAIC presents a large negative bias 

than SKIC, which maybe the main reason of selecting the correct order of the model 

from SAIC is less than SKIC. 

 

5.2 Future Works 
 

Nowadays, there is not much the criterion to select the appropriate SEM. 

Therefore, it should be studied and established the other criteria. Including, other 

schema of the error-generation might also be considered, such as the autoregressive 

and moving average (ARMA) scheme instead of only the moving average (MA) 

scheme. 
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APPENDIX A 

PROOFS 
 

Proof of Theorem 1. 

The reduced-form model in (1.5) at the tht  observation and the thj  equation can 

be written as follows: 

 tj t j tjy v , t 1, 2, , T, j 1, 2, , M,   x π  (A1.1) 

where  

  t t1 t2 tK tj tj j t 1, jx x x , v ε ε , t 2, 3, , T, j 1, 2, , M.
     x  (A1.2) 

Replacing tjv  in (A1.2) into (A1.1) and rearrange it into the term of tjε , 

 tj tj t j j t 1, jε y ε , t 2, 3, , T, j 1, 2, , M.
    x π  (A1.3) 

The thi  lag of tjε  in (A1.3) can be written as 

  t i, jε   
 t i, j t i j j t i 1 , jy ε .   

  x π  (A1.4) 

Using the knowledge of (A1.4), the equation in (A1.1) becomes 

   tjy   t j tj j t 1, j t 1 j j t 2, jε y ε  
     x π x π  

  tj j t 1, jy y     2
t j t 1 j tj j t 2, jε ε 
    x x π  

     2
t j t 1 j tj j t 2, j t 2 j j t 3, jε y ε   
       x x π x π  

 2
tj j t 1, j j t 2, jy y y     2 3

t j t 1 j t 2 j tj j t 3, jε ε  
      x x x π  

   

  
T

i
j t i, j

i 0
y 



   

T
i T 1
j t i j tj j t T 1 , j

i 0
ε ε .

  


    x π  (A1.5) 

As T becomes large and j  satisfies the invertibility condition, the value of T 1
j
  

in (A1.5) approach zero. Therefore, (A1.5) can be rewritten as  

 tj t j tjy ε ,  x π  (A1.6) 

where 
T

i
tj j t i, j

i 0
y y





   and 
T

i
t j t i

i 0







  x x  for t 2, 3, , T, j 1, 2, , M.   
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From (A1.6) we found that    tj t tj jjVar y Var ε    x , then we can argue that 

the MA(1) problem at t 2, 3, , T and j 1, 2, , M   has been corrected. However, 

the transformation in (A1.6) does not include the first observation in (A1.1). The 

heteroskedasticity remains unsolved unless the first observation is eliminated, but if 

the first observation is included in the analysis, the transformation must be extended 

by the following steps. Firstly, we take the expectation to tjv  in (A1.2), 

             tj tj j t 1, j tj j tj j tjE v E ε E ε E ε E ε 1 E ε .       

Using the assumption in (1.8), we have the expectation of tjv  is equal to zero. 

Therefore, from (A1.1) the variance of tjy  given tx  for t 1, 2, , T and j 1, 2, , M   

can be written as 

             
2 2 2 2 2 2 2

tj tj j t 1, j tj j tj j tj j jjVar v E ε ε E ε E ε 1 E ε 1 .
         
  

 

Hence, the first observation should weighted by 2
j

1
1 

, yields the model 

 1j 1 j 1jy ε ,  x π  (A1.7) 

where 1j 1j2
j

1y y
1

 
 

 and 1 12
j

1
1

 
 

x x  for j 1, 2, , M.  

It can be shown that the MA(1) problem at t = 1 has been corrected, 

       2
1j 1 1j 1 j jj jj2 2

j j

1 1Var y Var y 1 .
1 1

         
 

x x   

Combining the results in (A1.6) and (A1.7), we get the T T  transformation 

matrix jP  which was exhibited in (3.2).  
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Proof of Theorem 2. 
The Kullback-Leibler’s symmetric divergence is a measure that used to separate 

the discrepancy between the candidate model in (3.3) and the true model in (3.4), 

defined by 

          0 0 0 0 02J , d , d , d , d , ,              (A2.1) 

where      ii j jd , E 2log L .  y     

Dropping  0 0d ,   in (A2.1) since it does not depend on  . The ranking of the 

candidate models according to  02J ,   in (A2.1) is then identical to ranking them 

according to 

        0 0 0K , d , d , d , .           (A2.2) 

Given a set of GLS estimators  ˆ ˆ ˆˆ , , π Σ P  where P̂  is the estimate of the 

transformation matrix P  in (3.1),  

   
1

1 1
T Tˆ ,


         

 
π X Σ I X X Σ I y  

and 

  T
1ˆ ,
T

    
   Σ I y X π y X π  

we have therefore the estimate of the symmetric measure in (A2.2) as  

        0 0 0
ˆ ˆ ˆ ˆ ˆK , d , d , d , ,           (A2.3) 

where           00 0 0ˆ ˆ
ˆ ˆd , E 2log L , d , E 2log L ,    y y 

 

       

and      ˆ
ˆ ˆd , E 2log L .  y



    

From the minus twice log likelihood of the candidate model in (3.3), 

        1
T2log L TMlog 2 Tlog ,     

       y Σ y X π Σ I y X π  

we have each term of the estimated symmetric measure in (A2.3) as follows: 

     0
ˆd ,          1

0 T 0
ˆ ˆˆ ˆTMlog 2 Tlog          Σ π π X Σ I X π π  

    1
0

ˆT tr , Σ Σ  
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    0
ˆd , 

 
       1

0 0 0 T 0ˆ ˆTMlog 2 Tlog          Σ π π X Σ I X π π
   

   
 1

0
ˆT tr , Σ Σ

 
     ˆ ˆd ,     ˆTMlog 2 Tlog TM.   Σ  

Therefore, the expected of the estimated symmetric measure in (A2.3) becomes 

 0 ,K            0 00 0 0
ˆ ˆ ˆ ˆ ˆE K , E d , d , d ,              

    0
ˆTM log 2 1 E Tlog      Σ

 

        0

1
0 T 0

ˆˆ ˆE       π π X Σ I X π π
 

           0 0

1 1
0 0 0 T 0

ˆ ˆ ˆE T tr E        Σ Σ π π X Σ I X π π 
 

       0 0

1
0 0

ˆ ˆE T tr E Tlog / 2TM.  Σ Σ Σ Σ   (A2.4) 

From the facts that, π̂  and ˆT Σ  are asymptotically independent where π̂  is 

asymptotically distributed as a Gaussian distribution with mean vector π  and 

variance-covariance matrix  
1

1
0 T ,


    

 
X Σ I X  and ˆT Σ  is asymptotically distributed 

as the Wishart distribution with T K  degrees of freedom,  KM 0W , T KΣ , then 

(Anderson, 2003) 

     0 0

1 1
0 0

Tˆ ˆE T T K and E .
T K M 1

   
  

Σ Σ Σ Σ   

Using the above results, we have 

     0 0

2
1 1 1

0 0 0 0
T T Mˆ ˆE T tr T tr E T tr ,

T K M 1 T K M 1
   

   
      

Σ Σ Σ Σ Σ Σ 
  

          
0 0

1 1 1
0 0 0 0

ˆ ˆE T tr tr E T tr T K T K M,      Σ Σ Σ Σ Σ Σ 
  

      0

1
0 T 0

ˆˆ ˆE      π π X Σ I X π π
  

      0

1
T 0 0

ˆ ˆ ˆE tr        
  

Σ I X π π π π X  
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     0 0

1
T 0 0

ˆ ˆ ˆtr E E        
    

Σ I X π π π π X   

      1
0 0 T 0

T TKMˆ ˆtr ,
T K M 1 T K M 1

       
     

π π X Σ I X π π   

      0

1
0 0 T 0ˆ ˆE KM,      π π X Σ I X π π

  

then  0 ,K   in (A2.4) can be written as 

 
  0 ,K      0

2TKM T MˆTM log 2 1 E Tlog
T K M 1 T K M 1

             
Σ  

       0 0
ˆKM T K M E Tlog / 2TM    Σ Σ  

      
0

TM 2K M 1ˆTM log 2 1 E Tlog
T K M 1

 
         

Σ  

      0 0
ˆT E log T / TMlogT. Σ Σ  (A2.5) 

Because 0
ˆT /Σ Σ  in (A2.5) is the distribution of a product of independent 

2  random variables, M 2
T K M ii 1   

 , then we have 

 
M

2
0 T K M i

i 1

ˆlog T / log .  



Σ Σ  

Using the second-order of Taylor’s series expansions to expand the function of 

 2
plog   about the mean p , we have  

           
22 2 2 2

p p p p2

1 1 1log log p p p and E log log p .
p 2p p

         
 

 

Then, the last two terms of the right-hand side in (A2.5) is  

   0 0
ˆTE log T / TMlogT Σ Σ  

  
M

i 1

1T log T K M i TMlogT.
T K M i

 
         
  (A2.6) 

McQuarrie and Tsai (1998) gave the simplification formulae for any T, K, M 

and assume T – K – M  is much larger than M as follows: 

  
M

i 1

M 1 2T 2K M 1log T K M i Mlog T K Mlog
2 2

      
         

   
 , (A2.7) 
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and 

 
M

i 1

1 M 2M .M 1T K M i 2T 2K M 1T K
2




     

 
  (A2.8) 

Replacing the results in (A2.7) and (A2.8) into (A2.6), we have 

  0 0
ˆTE log T / TMlogT Σ Σ   

2T 2K M 1 2TMTMlog TMlogT
2 2T 2K M 1

   
   

   
 

2T 2TMTMlog .
2T 2K M 1 2T 2K M 1

 
  

      
 (A2.9) 

Replacing the results in (A2.9) into (A2.5), we have 

     
00 ,K TM log 2 1 E SKIC ,        

where SKIC was exhibited in (3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

44 

APPENDIX B 

OUTPUTS OF THIS RESEARCH 
 

Submitted paper 

 

Author(s) Title Journal Vol Page Year Data Base 
Impact 

factor/year 

Warangkhana 

Keerativibool 

Unifying the 

derivations of 

Kullback 

information 

criterion and 

corrected 

versions 

Thailand 

Statistician: 

Journal of 

Thai 

Statistical 

Association 

   MathScinet - 

Warangkhana 

Keerativibool 

Study on the 

penalty 

functions of 

model selection 

criteria 

Thailand 

Statistician: 

Journal of 

Thai 

Statistical 

Association 

   MathScinet - 

Warangkhana 

Keerativibool 

and Jirawan 

Jitthavech 

Model selection 

criterion based 

on Kullback-

Leibler’s 

symmetric 

divergence  

for simultaneous 

equations model 

Statistics and 

Probability 

Letters 

   ISI 0.531/2012 

 



Unifying the derivations of Kullback information criterion and corrected versions 
 

Warangkhana Keerativibool 
 

Department of Mathematics and Statistics, Faculty of Science, 
Thaksin University, Phatthalung, Thailand. 

  
E-Mail Address: warang27@gmail.com 
 
Abstract 
 

The Kullback information criterion (KIC) was proposed by Cavanaugh (1999) to serve as 
an asymptotically unbiased estimator of a variant of Kullback’s symmetric divergence between 
the true and fitted candidate models. It was arguably more sensitive than the criterion based 
on the directed divergence. However, for a small sample size or if the dimension of candidate 
model is large relative to the sample size, it displayed a large negative bias. Many authors, 
Cavanaugh (2004), Seghouane and Bekara (2004), Hafidi and Mkhadri (2006), proposed the 
criteria to correct this bias, i.e., the corrected versions of KIC called, respectively, in this 
paper KICcC, KICcSB, and KICcHM. Because they have multiple formulas, the aims of this 
paper are to unify and examine the performance of them relative to the AIC family of criteria, 
using theoretical and extensive simulation study methods. 
 
Keywords: KIC; KICc; Kullback’s directed divergence; Kullback’s symmetric divergence; 
model selection. 
 
1. Introduction 

 
The Kulback information criterion (KIC) by Cavanaugh (1999) and the corrected versions 

(KICc) by Cavanaugh (2004) called KICcC, by Seghouane and Bekara (2004) called KICcSB, 
and by Hafidi and Mkhadri (2006) called KICcHM were designed based on Kullback’s 
symmetric divergence, also known as the J-divergence, in order to assess the dissimilarity 
between the model generating the data and a fitted candidate model. However, when the 
dimension of candidate model increases compared to the sample size, the corrected version of 
the model selection criterion was better than the original version because it produced a bias 
reduction and strongly improved model selection (Hurvich and Tsai, 1989; Bedrick and Tsai, 
1994; Cavanaugh, 1997, 2004; McQuarrie, 1999; Seghouane and Bekara, 2004; Hafidi, 2006; 
Hafidi and Mkhadri, 2006). Although KIC, KICcC, KICcSB, and KICcHM share the same 
fundamental objective, the justifications of the criteria proceed along different directions, 
making it difficult to reconcile how the different corrected versions of KIC refine the 
approximations used to establish KIC in the setting of linear regression model. With this 
motivation, the aims of this paper are to unify the derivations of KIC and the corrected 
versions in order to link the justifications of these criteria and the performance of them is then 
examined by the extensive simulation study. The remainder of this paper is organized as 
follows. In Section 2, we review the model selection criteria based on Kullback’s directed 
and symmetric divergences. In Section 3, we show the unifications for the derivations of KIC 
and the corrected versions. Simulation study for 1,000 realizations of multiple regression 
models to examine the performance of the AIC and KIC families of criteria is shown in 
Section 4. Finally, Section 5 is the conclusions, discussion, and further study. 

 

mailto:warang27@gmail.com
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2. A review of model selection criteria based on Kullback’s directed and symmetric 
divergences 

 
Suppose that the true and the candidate models are, respectively, given by 

 0 0 0, y X     2
0, ,n n 0 I  (1) 

 , y X     2, ,n n 0 I  (2) 

where y  is an 1n  dependent random vector of observations, X  is an n p  matrix of 
independent variables with full-column rank, 0  and   are 1p  parameter vectors of 
regression coefficients, 0  and   are 1n  noise vectors. The true model is assumed to be 
correctly specified or overfitted by all the candidate models. This means that 0  has 0p  

nonzero entries with 00 p p   and the rest of the  0p p  entries are equal to zero. The 

 1 1p    vector of parameters is 2
0 0 0

      and the maximum likelihood estimator of 

0  is 2ˆ ˆ ̂
 

 
 

 
where

 
 

1ˆ 
  X X X y  and    2 ˆ ˆˆ / n


  y X y X  . (3) 

The minus twice log likelihood of the candidate model in (2) when replacing the dependent 
vector y  in (1) is defined by 

       2
0 0 0 0 0 02 2 2

1 1 22log log 2 logL n n 
  

          y X X X          . 

  (4) 
A well-known measure to separate the discrepancy between two models is given by 

Kullback’s directed divergence or I-divergence (Kullback, 1968),  

 
 
 

   
0

0
0 0 0 02 , 2log , ,

L
I E d d

L

  
   

  

y
y


     


, 

where  
         0 00 0 0 0, 2log , , 2log ,d E L d E L   y y        

and the expectation 
0

E  is taken with respect to the true model. Because  0 0,d    does not 

depend on  , any ranking of the candidate models according to  02 ,I    would be identical 

to ranking them according to  0 ,d   . Given a set of maximum likelihood estimators ̂  in 

(3), the estimated directed measure  0 ,d    is  

 0
ˆ,d  

 
  0 ˆ

2logE L  y


  

    
2

2 0
0 02 2

1 ˆ ˆˆlog 2 log .
ˆ ˆ

n
n n


 

 


     X X     (5) 

However, the evaluation in (5) is not possible because it requires the knowledge of 0 , 
Akaike (1973, 1974) proposed an asymptotically unbiased estimator of 

 

 
    00 0

ˆ, ,p E d      (6) 

as 
   2ˆAIC log 2 1 ,n p    (7) 

     
0 0i.e., AIC 1 , .E o p     
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Because of a large negative bias of AIC when the sample size is small or the dimension of 
candidate model is large relative to the sample size, Hurvich and Tsai (1989) proposed an 
exactly unbiased estimator of (6) as 

  2 2 1
ˆAICc log ,

2
n p

n
n p




 
 

 (8) 

   
0 0i.e., AICc , .E p    

Cavanaugh (1999), Seghouane and Bekara (2004), Seghouane (2006b) summarized that 
the directed divergence produced too underfitted value of model selection, and then it tended 
to be large for overparameterized models. An alternate measure to prevent both overfitting 
and underfitting problems is obtained by reversing the roles of two models in the definition of 
the measure, called Kullback’s symmetric divergence or J-divergence,  

             0 0 0 0 0 0 02 , 2 , 2 , , , , , ,J I I d d d d                          

where     0 0, 2logd E L  y    and     , 2log .d E L  y    

Dropping  0 0, ,d    the ranking of the candidate models according to  02 ,J    is identical 
to rank 

       0 0 0, , , , .K d d d           

Given a set of maximum likelihood estimators ̂  in (3), the estimated symmetric measure 
 0 ,K    is  

        0 0 0
ˆ ˆ ˆ ˆ ˆ, , , , ,K d d d           (9) 

where  0
ˆ,d    is exhibited in (5), 

 

 
 0
ˆ,d     0 ˆ

2logE L  y


  

    
2

2
0 0 02 2

0 0

ˆ 1 ˆ ˆlog 2 log ,n
n n


 

 


     X X     (10) 

and 
 

  
 ˆ ˆ,d       2

ˆ
ˆ2log log 2 log .E L n n n     y


  (11) 

Yet, evaluating  0
ˆ,K    in (9) requires 0 , Cavanaugh (1999) proposed an asymptotically 

unbiased estimator of 
 

  
    00 0

ˆ, ,p E K      (12) 

as  
  2ˆKIC log 3 1 ,n p    (13) 

     
0 0i.e., KIC 1 , .E o p    

Seghouane and Bekara (2004) proposed an exactly unbiased estimator of (12)
 
in order to 

correct a large negative bias of KIC in (13) as follows: 

  2 2 1
ˆKICc log log ,

2 2 2
n p n p n

n n n
n p

 
    

      
     

  

   
0 0i.e., KICc , .E p   
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Because the phi    or digamma function in KICc has no closed-form solution, Cavanaugh 
(2004), Seghouane and Bekara (2004), Hafidi and Mkhadri (2006) gave the asymptotically 
unbiased estimators of (12)

 
called, respectively, in this paper KICcC, KICcSB, and KICcHM, 

 

 KICcC  
  

  
2 2 3 2

ˆlog log ,
2

n n p pn
n n

n p n p n p


         
    

 (14) 

 KICcSB  
  2 1 3 2

ˆlog ,
2

p n p p
n

n p n p


  
  

  
 (15) 

 KICcHM    2 1 3 2
ˆlog .

2
p n p

n
n p


  

 
 

 (16) 

 
3. The unified derivations of KIC and KICc 

 
To begin the unification of the derivations KIC, KICcC, KICcSB, and KICcHM, we consider 

the expectation of the discrepancies in (5), (10), and (11) with respect to the true model 
(Seghouane and Bekara, 2004),  

        0 0 0 0

2
2 0

0 0 02 2

1ˆ ˆ ˆˆ, log 2 log ,(17)
ˆ ˆ

n
E d n E n E E


 

 

   
        

  
X X        

      0 0 0

2
2

0 0 0 02 2
0 0

ˆ 1ˆ ˆ ˆ, log 2 log ,n
E d n n E E


 

 

   
        

   
X X         (18) 

    
0 0

2ˆ ˆ ˆ, log 2 log .E d n E n n       (19) 

From the fact that the terms 
2

2
0

ˆn


 and    0 02

0

1 ˆ ˆ



 X X     are the independent 2  

distributions with the degrees of freedom which are, respectively, n – p and p, we have 

  
0

2

2
0

ˆn
E n p





 
  

 
  and    0 0 02

0

1 ˆ ˆE p


 
   

 
X X     . (20) 

Using the facts in (20), we have 

0 0

2 2 2
0

2 2 2
0ˆ ˆ / 2

n n n
E E

n n p



  

  
    

    
   

and 

       0 0 0

2
0

0 0 0 02 2 2
0

1 1 1ˆ ˆ ˆ ˆ .
ˆ ˆ 2

n np
E E E

n n p



  

    
           

      
X X X X           

 (21) 
Substituting the results in (21) into the expected discrepancy in (17) leads to 

  0 , p     0 0
ˆ,E d     

0

2
2ˆlog 2 log

2 2
n np

n E n
n p n p

    
   


 

     
0

log 2 1 AICc ,n E     (22) 
where AICc is the corrected version of AIC that was exhibited in (8). 

Replacing the facts in (20) into the expected discrepancy in (18) yields 

     
0

2
0 0

ˆ, log 2 1 log .E d n n       (23) 
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Using the results in (19), (22), and (23), the expected value of  0
ˆ,K    in (9) becomes 

         
0 0 0

2

0 0 2
0

ˆˆ, , log 2 1 AICc log ,p E K n E E n





 
       

 
      (24) 

where AICc is the corrected version of AIC that was exhibited in (8). 
It is noteworthy that, in KIC and various corrected versions derived from  0

ˆ,K    in (9), 

the differences in all formulas come from the last term of the right-hand side in (24). 
Therefore, in order to show the connections of KIC, KICcC, KICcSB, and KICcHM, we give 
the following lemmas. 

Lemma 1. 
 0

2

22
0

ˆ
log log log .

2 2
n p n n n

E n n n o
n p n p





      
                     

  (25) 

Proof. From McQuarrie and Tsai (1998) and Bernardo (1976) we have, respectively, 

    
0

2
2

1 1log log 2 and log o as .
2 2df

df
E x x x

x x
  

   
        

   
  (26) 

Applying the facts  
0

2 2
0ˆE n n p     in (20) and (26), we have  

0

2

2
0

ˆ
logE n





 
  

 
  

0

2

2
0

ˆ
log log log 2 log

2
n n p

E n n n n n n





     
          

   
  

 
 

2
1 1log log 2 log

2
n p

n o n n n
n p n p

   
               

 

 
 

2log log .
2 2

n p n n n
n n o

n p n p

    
                

 

Lemma 2.  

   

2

2 2log log .
2 2

n p n n n n p n
n n o p o o

n p n p nn p n p

       
                            

 (27) 

Proof. Applying the first-order Taylor’s series expansion to expand the term   log 2n p  

about 2n , i.e., 
2

log log ,
2 2

n p n p p
o

n n

      
                

 

to obtain the approximation in (27). 

Lemma 3. 
 

   
2

2 1 1 .n p n
p o o p o

n p n n p

  
             

 (28) 

Proof. Rearrange  p n n p   to be    1 .p p n p    As n  and p is held constant, 
the term  

 

2

2
p p n

o o
n p n n p

  
          

 

is  1o  which yields the approximation in (28). 

Appling Lemma 1 into  0 , p   in (24), we obtain 
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 0 , p      
 0 2log 2 1 AICc log log

2 2
n p n n n

n E n n o
n p n p


    

                  
  

  
 0 C 2log 2 1 KICc ,n

n E o
n p


   

          
  

where KICcC is the corrected version of KIC from Cavanaugh (2004) that was exhibited in 
(14). 

Appling Lemmas 1 and 2 into  0 , p   in (24), we obtain 

 0 , p      
 0

2

2log 2 1 AICc n p n
n E p o o

n p n n p


  
               

  

  
 0

2

SB 2log 2 1 KICc ,p n
n E o o

n n p


    
              

  

where KICcSB is the corrected version of KIC from Seghouane and Bekara (2004) that was 
exhibited in (15). 

Appling Lemmas 1, 2, and 3 into  0 , p   in (24), we obtain  

 0 , p          
0

log 2 1 AICc 1 1n E p o       

     
0 HMlog 2 1 KICc 1 ,n E o     

where KICcHM is the corrected version of KIC from Hafidi and Mkhadri (2006) that was 
exhibited in (16). 

The connections of KIC, KICcHM, KICcSB, and KICcC are given by 

KICcHM = KIC +   2 1 2
,

2
p p

n p

 

 
 

KICcSB = KICcHM + ,p

n p
  

KICcC = KICcSB + log .n
n p

n p

 
 

 
  (29) 

From the connections in (29), we found that the terms  
  2 1 2

and
2

p p p

n p n p

 

  
  

are not greater than zero if and only if 2n p   and p belong to the sets of  2, 1   and 

 , 0 , respectively. Therefore, we can argue that these two terms have values of at least 
zero because p represents the number of regression coefficients which has the value of at 
least one and both terms are very close to zero if the ratio of p n  tends to zero. This 
conclusion links to KICcSB   KICcHM   KIC. While the term 

 log n
n p

n p

 
 

 
 (30) 

has the value in the range  ,p   where it is close to the lower bound p  if the ratio of 
p n  tends to zero. If the value of p is fixed, this term is the decreasing function of n, whereas 
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when the value of n is fixed, it is the increasing function of p. Whenever 0n p   and the 
condition  
    1 exp 1p n p n   (31) 
is true, we have the term in (30) being greater than zero. This means that the penalty function 
of KICcC is stronger than other criteria, KICcSB, KICcHM, and KIC, under the condition in 
(31). The strong penalty may cause KICcC to have the maximum frequency of the correct 
order being selected. However, occasionally it causes the model selection criterion to select 
underparameterized models (McQuarrie and Tsai, 1998). This confusion is studied by the 
extensive simulation in the next section. 

 
4. Simulation study 

 
To examine the model selection criteria performance, we generated 1,000 realizations of 

true multiple regression models in (1) for four cases as follows.  
Model I represents a very weakly identifiable true model with large dimension of the 

model: 1 2 3 4 5 6 7 8 11 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 .y X X X X X X X           
Model II represents a weakly identifiable true model with small dimension of the model: 

 2 2 3 21 0.5 0.25 .y X X      
Model III represents a very strongly identifiable true model with small dimension of the 

model: 3 2 3 4 31 2 3 4 .y X X X       
Model IV represents a strongly identifiable true model with large dimension of the model: 

 4 2 3 4 5 6 7 8 41 .y X X X X X X X           
Model I and Model II represent the weakly identifiable true models which mean they are 

not easily identified compared to the strongly identifiable true models such as Model III and 
Model IV. From a previous study, Kundu and Murali (1996) concluded that the criteria 
performance did not change much when the true variance 2

0  and the distributions of 0  in 
(1) were changed. As a result, we have taken the error random variables to be normally 
distributed with zero mean and the true variance 2

0  is assumed to be equal to 1. For each 
model, four different sample sizes are split into two categories: small sample (n = 15, 25) and 
large sample (n = 100, 500). Ten candidate variables, 1X  until 10X , are stored in an 10n  
matrix X of the candidate model in (2), with a column of ones, followed by nine independent 
identically distributed normal random variables with zero mean and variance-covariance 
matrix equal to identity matrix 10I . The candidate models include the columns of X in a 
sequentially nested fashion; i.e., columns 1 to p define the design matrix for the candidate 
model with dimension p. The criteria considered in this simulation are divided into two 
families. Firstly, is the criteria based on Kullback’s directed divergence: AIC in (7) and AICc 
in (8). Secondly, is the criteria based on Kullback’s symmetric divergence: KIC in (13), 
KICcC in (14), KICcSB in (15), and KICcHM in (16). Model selection criteria performance is 
examined by a measure of counting the frequency of order being selected. Particularly for the 
case of true model being weakly identifiable, we use an additional measure which is the 
observed 2L  efficiency. Observed 2L  distance, scaled by 1 n , between the true model in (1) 
and the fitted candidate model in (2) is defined as (McQuarrie et al., 1997; McQuarrie, 1999) 

     2 0 0
1 ˆ ˆ .L p
n


  X X     

Observed 2L  efficiency is defined by the ratio 
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 

 
1 2

2
2

min
Observed  efficiency ,p P

s

L p
L

L p

 
  

where P is the class of all possible candidate models, p is the rank of fitted candidate model, 
and sp  is the model selected by specific model selection criterion. The closer the selected 
model is to the true model, the higher the efficiency. Therefore, the best model selection 
criterion will select a model which yields high efficiency even in small samples or if the true 
model is weakly identifiable. For 1,000 realizations, the results of comparing the model 
selection criteria performance are shown in Table 1 and 2. Columns “d” and “K” in Table 1 
stand for the estimated measures in (5) and (9), respectively. The conclusions of this simulation 
are as follows. In Table 1, for the small sample size and the true model is somewhat difficult 
to identify, such as Model I, Model II for n = 15, 25, and Model IV for n = 15, the original 
criteria AIC and KIC perform better than their corrected versions. When the sample size is 
still small but the true model is easily to identify, such as Model III for n = 15, 25 and Model 
IV for n = 25, the corrected versions work better. For the large sample size but the true model 
is very difficult to detect, such as Model I for n = 100, 500, the AIC family of criteria performs 
better than the KIC family. When the sample size is still large and the true model can be 
specified more easily, such as Model II, Model III, and Model IV for n = 100, 500, the KIC 
family performs the best. This simulation also found that when the true model is very difficult 
to detect, such as Model I and the sample size is small n = 15, 25, the estimated symmetric 
measure in (9) has the opportunity to cause more underfitted order being selected than the 
estimated directed measure in (5). This result contributes the criteria in KIC family to having 
a low frequency of choosing the correct model. In Table 2, the observed 2L  efficiency suggests 
that KICcC in KIC family is the best criterion for all sample sizes of a weakly identifiable true 
model. 
 
Table 1. Frequency of the model order being selected by each criterion for 1,000 realizations 

Model n Order 
Criteria        

AIC AICc KIC KICcHM KICcSB KICcC d K 

I 15 Underfitted 596 1000 837 1000 1000 1000 982 986 
very  Correct 54 0 26 0 0 0 0 0 

weakly  Overfitted 350 0 137 0 0 0 18 14 

identifiable 25 Underfitted 859 998 972 1000 1000 1000 987 992 
(true order  Correct 39 1 11 0 0 0 0 0 

p0 = 8)  Overfitted 102 1 17 0 0 0 13 8 

 100 Underfitted 944 974 993 998 999 999 998 998 

  Correct 23 14 5 2 1 1 0 0 

  Overfitted 33 12 2 0 0 0 2 2 

 500 Underfitted 958 962 998 998 998 999 1000 1000 

  Correct 21 21 1 1 1 0 0 0 

  Overfitted 21 17 1 1 1 1 0 0 
II 15 Underfitted 284 820 542 859 864 875 577 547 

weakly  Correct 132 123 148 111 109 105 423 453 
identifiable  Overfitted 584 57 310 30 27 20 0 0 
(true order 25 Underfitted 374 653 575 716 720 727 368 344 

p0 = 3)  Correct 244 235 264 235 231 226 631 655 

  Overfitted 382 112 161 49 49 47 1 1 

 100 Underfitted 109 133 214 230 231 232 34 26 

  Correct 609 642 676 677 678 680 966 974 

  Overfitted 282 225 110 93 91 88 0 0 

 500 Underfitted 0 0 0 0 0 0 0 0 

  Correct 737 751 890 895 895 896 1000 1000 

  Overfitted 263 249 110 105 105 104 0 0 
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Table 1. (Continued) 
Model n Order 

Criteria        
AIC AICc KIC KICcHM KICcSB KICcC d K 

III 15 Underfitted 0 0 0 0 0 0 30 0 
very  Correct 325 939 583 964 964 968 970 1000 

strongly  Overfitted 675 61 417 36 36 32 0 0 
identifiable 25 Underfitted 0 0 0 0 0 0 0 0 
(true order  Correct 549 855 749 899 904 920 1000 1000 

p0 = 4)  Overfitted 451 145 251 101 96 80 0 0 

 100 Underfitted 0 0 0 0 0 0 0 0 

  Correct 687 756 855 874 874 878 1000 1000 

  Overfitted 313 244 145 126 126 122 0 0 

 500 Underfitted 0 0 0 0 0 0 0 0 

  Correct 713 731 885 889 889 889 1000 1000 

  Overfitted 287 269 115 111 111 111 0 0 
IV 15 Underfitted 36 887 94 943 955 969 724 554 

strongly  Correct 444 113 532 57 45 31 214 377 
identifiable  Overfitted 520 0 374 0 0 0 62 69 
(true order 25 Underfitted 5 31 9 60 62 67 281 133 

p0 = 8)  Correct 710 950 840 928 928 925 663 846 

  Overfitted 285 19 151 12 10 8 56 21 

 100 Underfitted 0 0 0 0 0 0 0 0 

  Correct 815 882 925 950 950 953 1000 1000 

  Overfitted 185 118 75 50 50 47 0 0 

 500 Underfitted 0 0 0 0 0 0 0 0 

  Correct 854 864 951 956 956 956 1000 1000 

  Overfitted 146 136 49 44 44 44 0 0 

Note: Boldface type indicates the maximum frequency of correct order being selected. 
 
Table 2. Average and standard deviation of the observed 2L  efficiency over 1,000 realizations  

Circumstance Stat. 
Criteria      

AIC AICc KIC KICcHM KICcSB KICcC 

weakly identifiable  
(Model I and Model II),  

small sample size (15, 25) 

Ave. L2 eff. 0.5332 0.7791 0.6826 0.8048 0.8062 0.8098 
Rank 6 4 5 3 2 1 

S.D.  L2 eff. 0.3598 0.2765 0.3343 0.2480 0.2462 0.2420 
Rank 6 4 5 3 2 1 

weakly identifiable  
 (Model I and Model II),  

large sample size (100, 500) 

Ave. L2 eff. 0.7239 0.7418 0.7771 0.7808 0.7810 0.7817 
Rank 6 5 4 3 2 1 

S.D.  L2 eff. 0.3096 0.3001 0.2601 0.2563 0.2562 0.2554 
Rank 6 5 4 3 2 1 

weakly identifiable  
(Model I and Model II) 

Ave. L2 eff. 0.6286 0.7604 0.7299 0.7928 0.7936 0.7958 
Rank 6 4 5 3 2 1 

S.D.  L2 eff. 0.3347 0.2883 0.2972 0.2522 0.2512 0.2487 
Rank 6 4 5 3 2 1 

Note: Boldface type indicates the best performance. 
 
5. Conclusions, discussion, and further study 
 

This paper presents the derivations to unify the justifications of the criteria based on 
Kullback’s symmetric divergence; the Kulback information criterion (KIC) by Cavanaugh 
(1999) and the corrected versions; KICcC by Cavanaugh (2004), KICcSB by Seghouane and 
Bekara (2004), and KICcHM by Hafidi and Mkhadri (2006). The results show that KICcC has 
the strongest penalty function under the condition in (31), followed, respectively, by KICcSB, KICcHM, and KIC. The performance of them is examined by the extensive simulation study 
relative to the criteria based on Kullback’s directed divergence, AIC and AICc. Our simulation 
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study indicates that, for the small sample size and the true model is somewhat difficult to 
identify, the performance of the original criteria AIC and KIC is better than their corrected 
versions. When the sample size is still small but the true model is easily to identify, the 
corrected versions perform the best. For the large sample size but the true model is very 
difficult to detect, the AIC family of criteria performs better than the KIC family. When the 
sample size is still large and the true model can be specified more easily, the KIC family 
performs the best. This simulation also found that, although the proofs in this study show that 
the criteria based on Kullback’s symmetric divergence are stronger than the criteria based on 
the directed divergence, sometimes the performance of them is worse. This result may be 
because the estimated symmetric measure in (9) contributes to all criteria in KIC family 
usually having stronger penalty functions than the AIC family. This problem causes a greater 
number of underfitted orders being selected, which then contributes to a low frequency of 
choosing the correct model. However, when the true model is very difficult to detect, such as 
Model 1; none of the criteria correctly identify the true model more than 6% of the time. As a 
result, the frequency of correct order being selected may not be meaningful. For this reason, 
we have also used the observed 2L  efficiency to assess model selection criteria performance. 
This measure suggests that, in a weakly identifiable true model, whether the sample size is 
small or large, KICcC is the best criterion because it has highest average value of the 
observed 2L  efficiency and lowest standard deviation. The better performance of KICcC may 
be because its formula is closer to the expected estimated symmetric discrepancy than others. 
However, KICcC is more likely to select an underfitted model than other criterion which is 
because its penalty function is strong. Although KICcC tends to select underfitted models, 
these selected models are close to the true model which is weak.  

In future work, we hope to extend KICcC from Cavanaugh (2004) to construct a model 
selection criterion to serve as an asymptotically unbiased estimator of a variant of Kullback’s 
symmetric divergence for multivariate regression and seemingly unrelated regression models. 
Because, at this time, there exists the multivariate model selection based on the extensions of 
KICcSB (Seghouane, 2006a) and KICcHM (Hafidi and Mkhadri, 2006). 
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Abstract 

 
The aim of this paper is to study the penalty functions of the well-known model selection 

criteria, AIC, BIC, and KIC, which can unify their formulas as  
   2ˆlog 1 / ,  APIC p n    

called Adjusted Penalty Information Criterion. The appropriate value of   for APIC  has 
been found to reduce the probabilities of over- and underfitting and also to overcome the 
weak signal-to-noise ratio. The value of   is selected based on four measurements: the 
probability of over- and underfitting, the signal-to-noise ratio, the probability of order 
selected, and the observed 2L  efficiency. Performance of APIC  is examined by theoretical 
and extensive simulation study. 
 
Keywords: model selection; penalty function; probability of overfitting; signal-to-noise ratio; 
observed 2L  efficiency 
 
1. Introduction 

 
In regression analysis, the choice of an appropriate model from a class of candidate 

models to characterize the study data is a key issue. In real life, we may not know what the 
true model is, but we hope to find a model that is a reasonably accurate representation. A 
model selection criterion represents a useful tool to judge the propriety of a fitted model by 
assessing whether it offers an optimal balance between goodness of fit and parsimony. The 
first model selection criterion to gain widespread acceptance was the Akaike information 
criterion, AIC  (Akaike, 1973). This serves as an asymptotically unbiased estimator of a 
variant of Kullback’s directed divergence between the true model and a fitted approximating 
model. The directed divergence, also known as the Kullback-Leibler information, the I-
divergence, or the relative entropy, assesses the dissimilarity between two statistical models. 
Other well-known criteria were subsequently introduced and studied such as Bayesian 
information criterion, BIC  (Schwarz, 1978), and Kullback information criterion, KIC  
(Cavanaugh, 1999). BIC  is an asymptotic approximation to a transformation of the Bayesian 
posterior probability of a candidate model (Neath and Cavanaugh, 1997). KIC  is a symmetric 
measure, meaning that an alternate directed divergence may be obtained by reversing the 
roles of the two models in the definition of the measure. The sum of the two directed 
divergences is Kullback’s symmetric divergence, also known as the J-divergence (Cavanaugh, 
1999; Cavanaugh, 2004). Although AIC  remains arguably the most widely used model 
selection criterion, andBIC KIC  are popular competitors. In fact, BIC  is often preferred 
over AIC  by practitioners who find appeal in either its Bayesian justification or its tendency 
to choose more parsimonious models than AIC  (Neath and Cavanaugh, 1997). Likewise, 
KIC  is a symmetric measure which combines the information in two related, though distinct 
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measures; it functions as a gauge of model disparity that is arguably more sensitive than AIC  
that corresponds to only individual components (Cavanaugh, 1999; Cavanaugh, 2004). 
However, , , andAIC BIC KIC  still have the problems of overfitting and weak signal-to-noise 
ratio due to the weak penalty functions. With this motivation, the aim of this paper is to study 
the penalty functions based on these criteria for the case of univariate regression model in 
order to find the appropriate value of penalty to reduce the probabilities of over- and 
underfitting and also to overcome the weak signal-to-noise ratio. The remainder of this paper 
is organized as follows. In Section 2, we unify , , andAIC BIC KIC  in one form, called 
Adjusted Penalty Information Criterion  APIC . The studies on the probability of overfitting 
and signal-to-noise ratio are also considered in this section. In Section 3, we simulate 1,000 
realizations of multiple regression models in order to study the probability of the order 
selected and the observed 2L  efficiency of APIC  where the values of   range from 1 to 
14. Finally, Section 4 is the conclusions, discussion, and further study.  
 
2. Model selection criteria, probability of overfitting, and signal-to-noise ratio 

 
Suppose data are generated by the operating model, i.e., true model 

  2
0 0 0 0 0, , ,  n ny X 0 I    (1) 

and the candidate or approximating model is in the form 
  2, , ,  n ny X 0 I    (2) 

where y  is an 1n  dependent random vector of observations, 0X  and X  are 0n p  and 
n p  matrices of independent variables with full-column rank, respectively, 0  and   are 

0 1p  and 1p  parameter vectors of regression coefficients, respectively, 0  and   are 1n  

noise vectors. The  1 1 p  vector of parameters is 2
0 0 0

      and the maximum 

likelihood estimator of 0  is 2ˆ ˆ ˆ  
 

   where  

 
1ˆ 

  X X X y  and    2 ˆ ˆˆ /
   n y X y X  . 

For each data set, we can construct many fitted candidate models. Nevertheless, we cannot 
know which model is the best. Criterion for model selection is a way to solve this problem. 

, , andAIC BIC KIC  are three well-known criteria to consider in this study. We scale these 
criteria by 1 n  in order to express them as a rate per observation. The formulas for them are 
based on the form of the log of the likelihood function of the maximum likelihood estimator 
of 2  plus a penalty function, called Adjusted Penalty Information Criterion, 

  
 2 1

ˆlog


 
p

APIC
n


  . (3) 

When the values of   in (3) are equal to  2, log , and 3,n APIC  becomes AIC, BIC, 
and KIC, respectively. The appropriate value of   has been found to reduce the probabilities 
of over- and underfitting and also to overcome the weak signal-to-noise ratio. The value of   
is selected by four measurements: the probability of over- and underfitting, the signal-to-
noise ratio, the probability of order selected, and the observed 2L  efficiency. Theoretical and 
empirical methods are used to examine the performance of APIC .  

The terms over- and underfitting can be defined in two ways. Under consistency, when a 
true model is itself a candidate model, overfitting is a situation when the model has extra 
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variables with more parameters than the optimal model and underfitting is defined as 
choosing a model that either has too few variables or is incomplete. In view of efficiency, 
overfitting can be defined as choosing a model that has more variables than the model 
identified as closest to the true model, thereby reducing efficiency. Underfitting is defined as 
choosing a model with too few variables compared to the closest model, also reducing 
efficiency. Both over- and underfitting can lead to problems with the predictive abilities of a 
model. An underfitted model may have poor predictive ability due to a lack of detail in the 
model, while an overfitted model may be unstable in the sense that repeated samples from the 
same process can lead to widely differing predictions due to variability in the extraneous 
variables. A criterion that can balance the tendencies of over- and underfitted is preferable. 
(McQuarrie and Tsai, 1998; Seghouane, 2006). 

The probability of model selection criterion preferring the overfitted model is analyzed 
here by comparing the true model of order 0p  to a more complex model or overfitted model 
of order 0 p l , 0l . Hence for finite n , the probability that APIC  prefers the overfitted 
model is defined by 

   
 

 
 

0 0 0 0

0 02 21 1
ˆ ˆ= log log 

   
    

 
p l p p l p

p l p
P APIC APIC P

n n

 
     

0 0 0 0

0 0 0

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ
= log exp exp 1

ˆ ˆ ˆ


  

              
                             

p p p p l

p l p l p l

l l l
P P P

n n n

     

  
. (4) 

 Under the assumption of nested models; 0 and 0 p p l , we have  2 2 2 2
0ˆ ˆ

p p l ln     , 
2 2 2

0ˆ
p n pn   , where 2

k  represents the chi-square distribution with k  degrees of freedom, 
and 2 2ˆ ˆ

p p l   is independent of 2ˆ
p l  (McQuarrie and Tsai, 1998).  (5) 

 Then the probability of overfitting by l  extra variables of APIC  in (4) becomes 

  0 0 0

0
, exp 1  

     
      

   
p l p l n p l

n p l l
P APIC APIC P F

l n


  . (6) 

In (6), we found that APIC ’s probability of overfitting depends on the value of   in 
(3). If the value of   tends to infinity under the same values of the sample size  n , the 
order of true model  0p , and the additional variable  l , APIC  tends to less overfitting. 
When we replace the values of   in (6) by  2, log , and 3,n  we get the probabilities of 
overfitting of , , and ,AIC BIC KIC  respectively. The proof of the probability of overfitting 
can be confirmed numerically in Table 1. The explanation of the result in Table 1 is that, e.g. 
for 015, 3, and 1  n p l , the probability of overfitting of 1APIC  is 0.4025, this means 
that this criterion would select the model whose order is higher by one order than true model 
with a probability of 0.4025. Although the large value of   resulted in APIC  having the 
low probability of overfitting, sometimes it will be prone to underfitting. This result will be 
shown in the simulation study.  
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Table 1. Probability of overfitting by l  extra variables of APIC  for different values of n , 0p , and l  

n p0 l 
Criteria          

    

APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 0.4025 0.2363 0.1469 0.0939 0.0611 0.0402 0.0266 0.0178 0.0119 0.0080 0.0054 0.0037 0.0025 0.0017 

15 3 2 0.5134 0.2636 0.1353 0.0695 0.0357 0.0183 0.0094 0.0048 0.0025 0.0013 0.0007 0.0003 0.0002 0.0001 

15 3 3 0.5947 0.2857 0.1287 0.0561 0.0240 0.0101 0.0042 0.0018 0.0007 0.0003 0.0001 0.0001 0.0000 0.0000 

15 3 4 0.6664 0.3143 0.1305 0.0508 0.0190 0.0070 0.0025 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 

15 4 1 0.4257 0.2599 0.1676 0.1110 0.0747 0.0509 0.0349 0.0241 0.0167 0.0117 0.0082 0.0057 0.0040 0.0028 

15 4 2 0.5488 0.3012 0.1653 0.0907 0.0498 0.0273 0.0150 0.0082 0.0045 0.0025 0.0014 0.0007 0.0004 0.0002 

15 4 3 0.6384 0.3362 0.1667 0.0802 0.0378 0.0176 0.0082 0.0037 0.0017 0.0008 0.0004 0.0002 0.0001 0.0000 

15 4 4 0.7154 0.3784 0.1780 0.0788 0.0336 0.0140 0.0058 0.0023 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000 

30 3 1 0.3565 0.1922 0.1102 0.0651 0.0392 0.0239 0.0147 0.0091 0.0057 0.0035 0.0022 0.0014 0.0009 0.0006 

30 3 2 0.4346 0.1889 0.0821 0.0357 0.0155 0.0067 0.0029 0.0013 0.0006 0.0002 0.0001 0.0000 0.0000 0.0000 

30 3 3 0.4846 0.1795 0.0617 0.0204 0.0066 0.0021 0.0007 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 3 4 0.5256 0.1720 0.0482 0.0125 0.0031 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30 4 1 0.3661 0.2012 0.1175 0.0706 0.0433 0.0268 0.0168 0.0106 0.0067 0.0043 0.0027 0.0017 0.0011 0.0007 

30 4 2 0.4493 0.2019 0.0907 0.0408 0.0183 0.0082 0.0037 0.0017 0.0007 0.0003 0.0002 0.0001 0.0000 0.0000 

30 4 3 0.5033 0.1954 0.0705 0.0245 0.0083 0.0028 0.0009 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 

30 4 4 0.5475 0.1902 0.0568 0.0157 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 3 1 0.3284 0.1670 0.0905 0.0506 0.0289 0.0167 0.0097 0.0057 0.0034 0.0020 0.0012 0.0007 0.0004 0.0003 

100 3 2 0.3867 0.1496 0.0578 0.0224 0.0087 0.0033 0.0013 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 

100 3 3 0.4178 0.1288 0.0367 0.0100 0.0027 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 3 4 0.4395 0.1109 0.0236 0.0046 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 4 1 0.3310 0.1692 0.0922 0.0519 0.0297 0.0173 0.0101 0.0060 0.0035 0.0021 0.0013 0.0008 0.0005 0.0003 

100 4 2 0.3906 0.1526 0.0596 0.0233 0.0091 0.0036 0.0014 0.0005 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 

100 4 3 0.4227 0.1322 0.0382 0.0106 0.0029 0.0008 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

100 4 4 0.4453 0.1144 0.0248 0.0050 0.0009 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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The signal-to-noise ratio is the second measure used to study the property of APIC . 
McQuarrie and Tsai (1998) defined the signal-to-noise ratio as a measurement that is 
basically a ratio of the expectation to the standard deviation of the difference in criterion 
values for two models. The ratio tends to assess whether the penalty function is sufficiently 
strong in relation to the goodness of fit term. From the true model order 0p  and a candidate 
model order 0 p l  where 0l , the true model is considered better than a candidate model if 
the criterion value of a model of order 0p  is less than that of order 

0 00 ,  p p lp l APIC APIC  . 
Then, the signal-to-noise ratio that the true model has selected compared to a candidate 
model is defined by 

 0 0

0 0





  
  

p l p

p l p

E APIC APICsignal

noise sd APIC APIC

 

 
  

 
 

 
 

 

 
 

 
 

0

0 0
0

0
0 0

0

2

2 20 0
2

2
2 20 0

2

ˆ1 1 logˆ ˆlog log ˆ
= =

1 1 ˆˆ ˆlog log log
ˆ








     
            

      
       

      

p l

p l p
p

p l
p l p

p

lp l p
EE

nn n

p l p lsd sd
n n n

  
 



    


. (7) 

Applying the second-order of Taylor’s series expansions in order to find the signal in (7) is 
as follows: suppose 2

pX  , expanding  log X  about   E X p , we have  

        
2

2

1 1log log
2

   X p X p X p
p p

 and    
1log log   E X p
p

. (8) 

Using the results in (8) and the assumption in (5), the approximate signal in (7) is  

    0 0 0 0

2 2
U U ˆ ˆlog log 

            p l p p l p

l
E E n E nAPIC APIC

n


    

 
       2 2

0 0 0 0
0 0

1 1log log log log
   

           
     

l
n p l n p

n p l n p n


   

 
  

0

0 0 0

log
  

   
    

n p l l l

n p n p l n p n

 . (9) 

 Using the assumption in (5) to find the noise in (7) by the Q-statistic which has the Beta 
distribution as follows: 

 

0

0

2
0

2

ˆ
,

ˆ 2 2
   

  
 

p l

p

n n p l l
Q Beta

n




, (10) 

and the log-distribution of Q-statistic is  

   0

0

2
0

2

ˆ
log log log - ,

ˆ 2 2


    
        

p l

p

n n p l l
Q Beta

n




. (11) 

Applying the first-order of Taylor’s series expansions when 2
pX  , we expand  log X  

about   E X p  as follows: 

 
     

1log log  X p X p
p

. (12) 

 Using (12) to expand  log Q  in (11) about   E Q
 

 
0 0

0 0

/ 2
/ 2 / 2

   


   

n p l n p l

n p l l n p
, we 

have 
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  0 0 0

0 0 0

log log
       

    
      

n p l n p n p l
Q Q

n p n p l n p
. (13) 

 The variance of  log Q  in (11) is approximated by the variance of  log Q  in (13) as 
follows: 

 
 0

0

2
0 0 0

2
0 0 0

ˆ
var log var log var log

ˆ

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                        

p l

p

n n p l n p n p l
Q Q

n n p n p l n p




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0
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      
          
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  0 0

2
2


   

l

n p l n p
. (14) 

Therefore,
 
the standard deviation of  log Q  in (14) or the approximate noise in (7) is

 

 
 

  
0 0

0 0

2 2

2 2
0 0

ˆ ˆ 2log log log
ˆ ˆ 2

 
      

                            

p l p l

p p

nl l
sd sd sd Q

n n n p l n p

 

 
.  (15) 

 Combined, the approximations of signal in (9) and noise in (15) to be the approximate 
signal-to-noise ratio in (7) is as follows: 

 
  

  
0 0 0

0 0 0

2
log

2

       
   

     

n p l n p n p lsignal l l

noise n p n p l n p nl

 . (16) 

In (16), we found that the signal-to-noise ratio of APIC  depends on the value of   in 
(3). This conclusion is similar to the probability of overfitting, that is if the value of   tends 
to infinity under the same values of n , 0p , and l , APIC  has a strong signal-to-noise ratio. 
When we replace the values of   in (16) by  2, log , and 3,n  we have the approximate 
signal-to-noise ratios for , , and ,AIC BIC KIC  respectively. The proof of the signal-to-noise 
ratio can be confirmed numerically in Table 2. McQuarrie and Tsai (1998) concluded that the 
signal-to-noise ratios are strong or weak as follows. A strong signal-to-noise ratio refers to a 
large positive value (often greater than 2) and leads to small probability of overfitting. A 
weak signal-to-noise ratio usually refers to one that is small (less than 0.5) or negative and 
results in high probability of overfitting. The model selection criterion that has strong signal-
to-noise ratio and lowest probability of overfitting is preferable. 
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Table 2. Signal-to-noise ratio of APIC  for different values of n , 0p , and l  

n p0 l 
Criteria          

    

APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

15 3 1 -0.2450 0.3400 0.9250 1.5100 2.0950 2.6800 3.2650 3.8500 4.4350 5.0200 5.6050 6.1900 6.7750 7.3600 

15 3 2 -0.3884 0.4004 1.1892 1.9780 2.7668 3.5556 4.3444 5.1333 5.9221 6.7109 7.4997 8.2885 9.0773 9.8661 

15 3 3 -0.5291 0.3874 1.3039 2.2204 3.1370 4.0535 4.9700 5.8865 6.8030 7.7195 8.6360 9.5526 10.4691 11.3856 

15 3 4 -0.6752 0.3225 1.3203 2.3181 3.3159 4.3136 5.3114 6.3092 7.3070 8.3047 9.3025 10.3003 11.2981 12.2958 

15 4 1 -0.3042 0.2333 0.7707 1.3082 1.8457 2.3832 2.9207 3.4582 3.9956 4.5331 5.0706 5.6081 6.1456 6.6831 

15 4 2 -0.4734 0.2477 0.9688 1.6899 2.4110 3.1321 3.8532 4.5743 5.2954 6.0166 6.7377 7.4588 8.1799 8.9010 

15 4 3 -0.6351 0.1976 1.0302 1.8629 2.6956 3.5282 4.3609 5.1936 6.0262 6.8589 7.6916 8.5242 9.3569 10.1896 

15 4 4 -0.8002 0.0992 0.9985 1.8979 2.7973 3.6967 4.5961 5.4955 6.3948 7.2942 8.1936 9.0930 9.9924 10.8917 

30 3 1 -0.1132 0.5340 1.1812 1.8284 2.4756 3.1229 3.7701 4.4173 5.0645 5.7117 6.3589 7.0062 7.6534 8.3006 

30 3 2 -0.1785 0.7190 1.6166 2.5141 3.4116 4.3092 5.2067 6.1042 7.0017 7.8993 8.7968 9.6943 10.5918 11.4894 

30 3 3 -0.2414 0.8356 1.9127 2.9897 4.0667 5.1438 6.2208 7.2978 8.3749 9.4519 10.5289 11.6060 12.6830 13.7600 

30 3 4 -0.3054 0.9120 2.1295 3.3470 4.5644 5.7819 6.9994 8.2168 9.4343 10.6518 11.8692 13.0867 14.3041 15.5216 

30 4 1 -0.1389 0.4847 1.1083 1.7319 2.3555 2.9791 3.6027 4.2263 4.8500 5.4736 6.0972 6.7208 7.3444 7.9680 

30 4 2 -0.2149 0.6492 1.5133 2.3774 3.2415 4.1056 4.9697 5.8338 6.6979 7.5620 8.4261 9.2902 10.1543 11.0184 

30 4 3 -0.2861 0.7499 1.7859 2.8219 3.8579 4.8940 5.9300 6.9660 8.0020 9.0380 10.0740 11.1101 12.1461 13.1821 

30 4 4 -0.3573 0.8127 1.9827 3.1527 4.3227 5.4927 6.6627 7.8327 9.0027 10.1727 11.3427 12.5127 13.6827 14.8527 

100 3 1 -0.0324 0.6569 1.3463 2.0356 2.7250 3.4143 4.1037 4.7930 5.4824 6.1717 6.8611 7.5504 8.2398 8.9291 

100 3 2 -0.0510 0.9188 1.8886 2.8584 3.8282 4.7980 5.7678 6.7376 7.7074 8.6772 9.6470 10.6168 11.5866 12.5564 

100 3 3 -0.0687 1.1128 2.2942 3.4757 4.6572 5.8387 7.0202 8.2016 9.3831 10.5646 11.7461 12.9276 14.1091 15.2905 

100 3 4 -0.0867 1.2703 2.6273 3.9843 5.3413 6.6982 8.0552 9.4122 10.7692 12.1262 13.4831 14.8401 16.1971 17.5541 

100 4 1 -0.0396 0.6426 1.3249 2.0072 2.6895 3.3717 4.0540 4.7363 5.4186 6.1008 6.7831 7.4654 8.1477 8.8299 

100 4 2 -0.0612 0.8986 1.8584 2.8182 3.7780 4.7378 5.6976 6.6574 7.6171 8.5769 9.5367 10.4965 11.4563 12.4161 

100 4 3 -0.0813 1.0880 2.2572 3.4264 4.5957 5.7649 6.9341 8.1034 9.2726 10.4418 11.6111 12.7803 13.9495 15.1187 

100 4 4 -0.1011 1.2417 2.5845 3.9274 5.2702 6.6130 7.9559 9.2987 10.6415 11.9844 13.3272 14.6700 16.0129 17.3557 
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3. Simulation study 
 
In addition to the proofs of probability of overfitting in (6) and the approximate signal-to-

noise ratio in (16), we use the simulation data to find the appropriate value of   for APIC  
in (3). Four cases of the true multiple regression models in (1) are constructed as follows.  

Model 1 (very weakly identifiable true model with the true order 0 7p ):  

1 1 2 3 4 5 6 7 10.5 0.1 0.05 0.01 0.005 0.001 ,       y X X X X X X X   
Model 2 (weakly identifiable true model with the true order 0 3p ):  

2 1 2 3 20.5 0.25 ,   y X X X   
Model 3 (very strongly identifiable true model with the true order 0 4p ):  

3 1 2 3 4 32 2 2 ,    y X X X X   
Model 4 (strongly identifiable true model with the true order 0 8p ): 

4 1 2 3 4 5 6 7 8 4.        y X X X X X X X X   
Model 1 and Model 2 represent the weakly identifiable true models which mean they are 

not easily identified compared to the strongly identifiable true models such as Model 3 and 
Model 4. In this study, the true variance 2

0  in (1) is assumed equal to one. For each model, 
we consider 1,000 realizations for three levels of the sample sizes which are 15n  (small), 

30n  (moderate), and 100n  (large). Ten candidate variables, 1X  to 10X , are stored in an 
10n  matrix X of the candidate model in (2), where 1X  is given as a constant which equals 

one, followed by nine independent identically distributed normal random variables with zero 
mean and equal variance-covariance matrix to identity matrix 10I . The candidate models 
include the columns of X in a sequentially nested fashion; i.e., columns 1 to p define the 
design matrix for the candidate model with dimension p. Over 1,000 realizations, we apply 
APIC  in (3) with the values of   ranging from 1 to 14 on the datasets y of four models 
constructed. The probability of order selected by APIC  is a measure used to examine the 
effects of weak or strong penalty function in the proposed criterion. In addition to above 
measure, many authors (McQuarrie et al., 1997; McQuarrie, 1999) use the observed 2L  
efficiency to assess model selection criterion performance, especially when the true model is 
very difficult to detect. The observed 2L  distance, scaled by 1 n , between the true model in 
(1) and the fitted candidate model in (2) is defined as  

     2 0 0 0 0
ˆ ˆ /

  L p nX X X X    . 

Observed 2L  efficiency is defined by the ratio 

Observed 2L  efficiency = 
 

 
1 2

2

min  p P

s

L p

L p
, 

where P is the class of all possible candidate models, p is the rank of fitted candidate model, 
and sp  is the model selected by specific model selection criterion. The closer the selected 
model is to the true model, the higher the efficiency. Therefore, the best model selection 
criterion will select a model which yields high efficiency even in small samples or the true 
model is weakly identifiable. In order to summarize the results in this study, the average 
observed 2L  efficiencies over the 1,000 realizations are ranked for APIC  where the values 
of   range from 1 to 14. The first rank of average observed 2L  efficiencies goes to the 
highest efficiency criterion and denotes better relative performance. Results of comparing the 
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probability of order selected by APIC  and average observed 2L  efficiencies are shown in 
Table 3.  

From the results of simulation in Table 3 we found that, for Model 1 and Model 2 which 
are the situations where the true model cannot be easily identified, APIC  with the small 
value of   (about 1 to 3) gives the greater probability of correct order being selected than the 
case of large value and also prevents the probability of underfitting. While, the observed 2L  

efficiency suggests the large value of   causes the high efficiency of APIC , except when 
the true model can be specified more easily, such as Model 2, and sample sizes are moderate 
to large, the small value of   (about 3 to 4) is preferable. For Model 3 and Model 4 which 
are the situations where the true model is strongly identifiable, the value of   should be large 
(at least 8), except when the regression coefficients are not large enough, such as Model 4, 
and the sample sizes are small to moderate, the value of   should be moderate (about 4 to 6). 

For all models, if the value of   tends to infinity, the probability of overfitted tends to 
decrease whereas the probability of underfitting tends to increase. The point that has the 
optimal probability of over- and underfitting always presents the maximum probability of 
correct order being selected. 

 
4. Conclusions, discussion, and further study 
 

In this paper, we study the penalty functions based on the well-known model selection 
criteria, , , and ,AIC BIC KIC  which can be unified in the form of the log likelihood function 
of the maximum likelihood estimator of 2  plus a penalty function, called Adjusted Penalty 
Information Criterion, i.e., 

 
 2 1

ˆlog


 
p

APIC
n


   

when the values of   are equal to  2, log , and 3,n APIC  becomes , , and ,AIC BIC KIC  

respectively. Each criterion has a different value due to its penalty function, the differences in 
strong or weak penalty affecting the probabilities of over- and underfitting, including the 
problem of signal-to-noise ratio being weak.  

The theoretical results show that, when the value of   tends to infinity, the probability of 
overfitting tends to zero and the signal-to-noise ratio tends to strong. At the same time, the 
results of simulation based on values of   for APIC  ranging from 1 to 14 suggest that, 
when the true model is weakly identifiable, the value of   should be small to give a high 
probability of correct order being selected and to prevent the probability of underfitting. 
However in the case of the true model is very difficult to detect, such as Model 1; none of the 
criteria correctly identify the true model more than 8% of the time. As a result, the probability 
of correct order being selected may not be meaningful. For this reason, we used the observed 

2L  efficiency to assess the appropriate value of  . This measure suggests the large value of 
  causes the high efficiency of APIC  which indicates that the correct model is also the 
closet model, except when the true model can be specified more easily, such as Model 2, and 
sample sizes are moderate to large, then the small value of   is preferable. For the strongly 
identifiable true model, the large value of   performs well. Because the problem of 
underfitting does not occur in this situation, the underfitted order often gives the maximum 
value of the estimated mean squared error and hence, under the model selection criterion, it is 
not possible to select the underfitted model. In the situation where the regression coefficients 
are not large enough, such as Model 4, and the sample sizes are small to moderate, the value 
of   should be moderate. 
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In further work, we attempt to construct the model selection criteria to overcome the 
probability of over- and underfitting in the multivariate regression and simultaneous equations 
models. 
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Table 3. Probability of the order selected by APIC  and average observed 2L  efficiencies over 1,000 realizations 

Model n Order 
Criteria              
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

1 15 Underfitted 0.191 0.560 0.809 0.931 0.980 0.997 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 
very  Correct 0.055 0.044 0.018 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

weakly  Overfitted 0.754 0.396 0.173 0.063 0.019 0.003 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

identifiable  Ave. L2 eff. 0.266 0.483 0.687 0.811 0.890 0.922 0.937 0.952 0.960 0.961 0.962 0.964 0.965 0.966 
(true order  Rank 14 13 12 11 10 9 8 7 6 5 4 3 2 1 

p0 = 7) 30 Underfitted 0.441 0.853 0.982 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Correct 0.067 0.029 0.006 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Overfitted 0.492 0.118 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.386 0.646 0.795 0.858 0.885 0.913 0.923 0.929 0.934 0.935 0.939 0.941 0.942 0.942 

  Rank 14 13 12 11 10 9 8 7 6 5 4 3 1.5 1.5 

 100 Underfitted 0.588 0.927 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

  Correct 0.079 0.022 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Overfitted 0.333 0.051 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.470 0.642 0.703 0.723 0.735 0.748 0.756 0.765 0.772 0.778 0.782 0.784 0.784 0.786 

  Rank 14 13 12 11 10 9 8 7 6 5 4 3 2 1 
2 15 Underfitted 0.058 0.288 0.545 0.721 0.826 0.890 0.930 0.955 0.970 0.978 0.986 0.990 0.990 0.992 

weakly  Correct 0.038 0.136 0.167 0.158 0.123 0.090 0.061 0.042 0.030 0.022 0.014 0.010 0.010 0.008 
identifiable  Overfitted 0.904 0.576 0.288 0.121 0.051 0.020 0.009 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
(true order  Ave. L2 eff. 0.301 0.469 0.615 0.703 0.746 0.771 0.786 0.797 0.802 0.805 0.808 0.810 0.810 0.811 

p0 = 3)  Rank 14 13 12 11 10 9 8 7 6 5 4 2.5 2.5 1 

 30 Underfitted 0.102 0.376 0.584 0.712 0.799 0.857 0.900 0.927 0.941 0.959 0.972 0.978 0.982 0.990 

  Correct 0.124 0.282 0.271 0.234 0.183 0.135 0.096 0.069 0.057 0.039 0.028 0.022 0.018 0.010 

  Overfitted 0.774 0.342 0.145 0.054 0.018 0.008 0.004 0.004 0.002 0.002 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.402 0.602 0.663 0.670 0.659 0.648 0.642 0.643 0.643 0.646 0.650 0.650 0.652 0.656 

  Rank 14 13 2 1 3 8 12 11 10 9 7 6 5 4 

 100 Underfitted 0.029 0.118 0.223 0.333 0.417 0.499 0.582 0.652 0.704 0.768 0.814 0.847 0.876 0.892 

  Correct 0.271 0.575 0.663 0.628 0.565 0.496 0.415 0.346 0.295 0.231 0.186 0.153 0.124 0.108 

  Overfitted 0.700 0.307 0.114 0.039 0.018 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.515 0.748 0.806 0.782 0.732 0.679 0.616 0.562 0.524 0.479 0.449 0.427 0.407 0.397 

  Rank 9 3 1 2 4 5 6 7 8 10 11 12 13 14 
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Table 3. (Continued)  
Model n Order 

Criteria              
APIC1 APIC2 APIC3 APIC4 APIC5 APIC6 APIC7 APIC8 APIC9 APIC10 APIC11 APIC12 APIC13 APIC14 

3 15 Underfitted 0.000 0.000 0.000 0.002 0.005 0.008 0.010 0.020 0.030 0.042 0.062 0.099 0.144 0.192 
very  Correct 0.091 0.312 0.558 0.728 0.851 0.909 0.944 0.948 0.946 0.942 0.929 0.895 0.851 0.805 

strongly  Overfitted 0.909 0.688 0.442 0.270 0.144 0.083 0.046 0.032 0.024 0.016 0.009 0.006 0.005 0.003 

identifiable  Ave. L2 eff. 0.435 0.568 0.719 0.828 0.906 0.942 0.964 0.964 0.961 0.955 0.941 0.909 0.867 0.823 
(true order  Rank 14 13 12 10 8 5 2 1 3 4 6 7 9 11 

p0 = 4) 30 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Correct 0.223 0.602 0.789 0.890 0.937 0.961 0.978 0.984 0.989 0.991 0.996 1.000 1.000 1.000 

  Overfitted 0.777 0.398 0.211 0.110 0.063 0.039 0.022 0.016 0.011 0.009 0.004 0.000 0.000 0.000 

  Ave. L2 eff. 0.525 0.753 0.868 0.928 0.958 0.973 0.984 0.988 0.993 0.994 0.997 1.000 1.000 1.000 

  Rank 14 13 12 11 10 9 8 7 6 5 4 2 2 2 

 100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Correct 0.307 0.684 0.855 0.932 0.961 0.982 0.989 0.993 0.997 0.997 0.999 0.999 1.000 1.000 

  Overfitted 0.693 0.316 0.145 0.068 0.039 0.018 0.011 0.007 0.003 0.003 0.001 0.001 0.000 0.000 

  Ave. L2 eff. 0.577 0.805 0.910 0.955 0.974 0.988 0.992 0.995 0.998 0.998 0.999 0.999 1.000 1.000 

  Rank 14 13 12 11 10 9 8 7 5.5 5.5 3.5 3.5 1.5 1.5 
4 15 Underfitted 0.011 0.036 0.094 0.171 0.300 0.503 0.680 0.834 0.922 0.968 0.995 0.997 0.998 0.999 

strongly  Correct 0.253 0.444 0.532 0.555 0.517 0.384 0.251 0.140 0.069 0.028 0.003 0.002 0.001 0.000 
identifiable  Overfitted 0.736 0.520 0.374 0.274 0.183 0.113 0.069 0.026 0.009 0.004 0.002 0.001 0.001 0.001 
(true order  Ave. L2 eff. 0.788 0.815 0.830 0.812 0.746 0.602 0.449 0.311 0.224 0.171 0.134 0.129 0.124 0.121 

p0 = 8)  Rank 4 2 1 3 5 6 7 8 9 10 11 12 13 14 

 30 Underfitted 0.001 0.001 0.003 0.006 0.011 0.019 0.047 0.104 0.209 0.350 0.560 0.736 0.871 0.947 

  Correct 0.489 0.759 0.875 0.932 0.964 0.967 0.944 0.895 0.790 0.649 0.440 0.264 0.129 0.053 

  Overfitted 0.510 0.240 0.122 0.062 0.025 0.014 0.009 0.001 0.001 0.001 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.848 0.912 0.950 0.969 0.982 0.981 0.962 0.917 0.820 0.688 0.485 0.317 0.185 0.109 

  Rank 8 7 5 3 1 2 4 6 9 10 11 12 13 14 

 100 Underfitted 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

  Correct 0.593 0.815 0.925 0.966 0.985 0.995 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

  Overfitted 0.407 0.185 0.075 0.034 0.015 0.005 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

  Ave. L2 eff. 0.857 0.919 0.960 0.980 0.991 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 

  Rank 14 13 12 11 10 9 7.5 7.5 3.5 3.5 3.5 3.5 3.5 3.5 

Note: Boldface type indicates the maximum value. 
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Abstract 

Moving average in the error of simultaneous equations model (SEM) is a crucial problem 
to make the estimators from the ordinary least squares (OLS) method are not efficient. For 
this reason, we proposed the transformation matrix in order to correct the first-order moving 
average, MA(1), that generated in the fitted model and to recover the one lost observation in a 
SEM. After the errors are transformed to be independent, the Kullback information criterion 
for select the appropriate SEM, called SKIC, to be going to derive. This criterion is 
constructed based on the symmetric divergence which obtained by sum of the two directed 
divergences. The symmetric divergence is arguably more sensitive than either of its 
individual components. The performance of the proposed criterion, SKIC, is examined 
relative to SAIC proposed by Keerativibool (2009). The results of simulation study show that 
the errors of the model after transformation are independent and SKIC convincingly 
outperformed SAIC, because SAIC has a tendency to overfit the order of the model than 
SKIC. 
 
Keywords: First-order moving average MA(1); Transformation matrix; Simultaneous equations 
model (SEM); Kullback information criterion for a system of SEM (SKIC). 
 
1. Introduction 

A system of simultaneous equations model (SEM) is a model that contains variables with 
two way flows of influence characteristics which most common and straightforward methods 
for modelling the economic data. The endogenous explanatory variable will become stochastic 
and will correlate with the error terms of the equation in which it appears as an explanatory 
variable. Most problems in the errors of SEM are the autocorrelated (AR) error or moving 
average (MA) error or both (ARMA). When these problems occur, the ordinary least squares 
(OLS) estimators cannot be used because they are not efficient (Gujarati, 2006). Therefore, in 
this paper we will propose a transformation matrix to correct the first-order moving average, 
MA(1), which generated in the fitted model and to recover the one lost observation in a SEM. 
After the errors are transformed to be independent, we consider the problem of fitting a 
parametric model to an observed data set. This problem requires two tasks, determination of 
the order of the model and estimation of these parameters. In real life, we may not know what 
the true model is, but we hope to find a model that is a reasonably accurate representation. 
The crucial part of this fitting problem is to determine the order of the model. Such 
determination is often facilitated by the use of a model selection criterion where one only has 
to evaluate two simple terms that trade-off quality of fit to the data and model’s complexity. 
A lot of previous literary attention to the issue of model selection, the widespread criterion 
for choosing the best model in univariate and multivariate regression analysis is the Akaike 
information criterion (AIC) (Akaike, 1973, 1974; Bedrick and Tsai, 1994). The corrected 
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version of the AIC (AICc) (Hurvich and Tsai, 1989) is extended for the case of small sample. 
AIC and AICc were designed, respectively, to be asymptotically and exactly unbiased 
estimator of a variant of Kullback-Leibler’s directed divergence between the true model and a 
fitted candidate model. The development of a new family of selection criteria, Kullback 
information criterion (KIC) and the corrected version of the KIC (KICc), are the criteria 
constructed to target a symmetric divergence. This divergence is an alternate of directed 
divergence, obtained by sum of the two directed divergences, which arguably more sensitive 
than either of its individual components (Cavanaugh, 1999, 2004; Seghouane and Bekara, 
2004; Hafidi and Mkhadri, 2006). Recently it has developed the KICc more in the case of 
vector autoregressive and multivariate regression (Hafidi, 2006; Seghouane, 2006). 
Unfortunately, as of now, there is only one criterion, Akaike information criterion for a 
system of SEM (SAIC), for selecting a workable system of SEM (Keerativibool, 2009). With 
this motivation, we will propose the model selection criterion, called Kullback information 
criterion for a system of SEM (SKIC), which serves as an asymptotically unbiased estimator 
of a variant of Kullback-Leibler’s symmetric divergence between the true model and the 
fitted candidate model. The remainder of this paper is organized as follows. In Section 2, we 
propose a transformation matrix in order to correct the MA(1) problem in the errors of a 
SEM. The criterion, SKIC, for selecting the best system of SEM is also proposed in this 
section. In Section 3, we simulate 1,000 samples of SEM in order to study the frequency of 
order being selected and the observed 2L  efficiency of the proposed criterion, SKIC, relative 
to SAIC proposed by Keerativibool (2009). Finally, Section 4 is the conclusions, discussion, 
and future works. 

 
2. Methodology 

The structural-form and reduced-form of the SEM (Greene, 2008) may be represented, 
respectively, as follows: 
  YΓ XB U  and  Y XΠ V , (1) 
where Y  is a T M  matrix of observations, X  is a T K  design matrix of full-column 
rank, Γ  is an M M  nonsingular matrix of coefficients of endogenous variables, B  is a 
K M  matrix of coefficients of predetermined variables, 1Π = BΓ  is a K M  matrix of 

unknown parameters, U  and 1V = UΓ  are the T M  matrices of MA(1) and 
contemporaneously correlated errors. The thj  equation vector of reduced-form model in (1) 
is  
 , 1, 2, , ,  j j j j My Xπ v  (2) 
where jy  is a 1T  observation vector, jπ  is a 1K  parameter vector, and jv  is a 1T  
vector of MA(1) and contemporaneously correlated errors. Each element tjv  in the vector jv  
is in the form of MA(1), 
 1,ε ε , 1, 2, , , 1, 2, , ,   tj tj j t jv t T j M  (3) 
where T  is the number of observations in each equation, M  is the number of equations, the 
error 1,ε t j  is called the first-lag of error ε tj , the MA(1) parameter j  of the model must 
satisfy the following condition to ensure the invertibility of the error terms (Box et al., 1994), 
 1.j  (4) 

The error ε tj  in (3) is an independent identically distributed random variable, obeying 

  ε 0, ,tj jjN   (5) 
so that 



3 
 

  1 2ε ε ε , ,    t t t t M MNε 0 Σ  (6) 
where Σ  is the M M  contemporaneous covariance matrix of the error terms which is 
nonsingular and is of positive symmetric definite matrix. It is noteworthy that the values of 

1v j  in the MA(1) model in (3) depend on the values of 0ε j , which is unknown. The recovery 
of 1v j  will be shown in Theorem 1.  

For all M  equations, the models in (2) can be represented as a stacked model as follows: 
 , y Xπ v  (7) 
where y  is a 1TM  observation vector consisting of M  1T  jy  vectors, X  is a 

TM KM  diagonal matrix of rank KM consisting of M  T K  identical X  matrices, π  is 
a 1KM  unknown parameter vector consisting of M  1K  jπ  vectors, and v  is a 1TM  
MA(1) and contemporaneously correlated error vector consisting of M  1T  jv  vectors. 
The transformation matrix to correct the MA(1) correlated error vector is given in Theorem 1. 
 
Theorem 1: The TM TM  transformation matrix P , used to correct the MA(1) problem in a 
SEM, is defined by 

 

1

2 ,

 
 
 
 
 
 M

P 0 0
0 P 0

P

0 0 P

 (8) 

where the T T  transformation matrix jP  for the thj  equation is 

 

2

2

3 2

1 2 3 4

1 0 0 0 0
1

1 0 0 0

1 0 0

1 0

1   

 
 

 
 
 
 
 
 
 
 
 
 

j

j

j jj

j j j

T T T T

j j j j





 

  

   

P . (9) 

The transformation matrix P  in (8) is used to transform y  and X  in (7) to be y  and X , 
respectively, such that the MA(1) of the errors v  in (7) is eliminated, to give the model 
 ,  y X π ε  (10) 
where , , y Py X = PX    E ε X 0 , and     TE εε X Σ I . 

Suppose that the transformed model in (10) is called the candidate model, then the true 
model can be given as 
 0 0.

  y X π ε  (11) 
The notations in (10) and (11) are defined as follows: y  is a 1TM  observation vector 

consisting of M  1T  

jy  (or j jP y ) vectors, X  is a TM KM  diagonal matrix consisting 
of M  T K  

jX  (or jP X ) matrices, π  and 0π  are the 1KM  unknown parameter vectors, 
ε  and 0ε  are the 1TM  independent identically distributed normal random vectors.  
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For the derivations of the criterion, the true model is assumed to be correctly specified or 
overfitted by all the candidate models. This means that 0π  has 0K M  nonzero entries with 

00  K M KM  and the rest of  0K K M  entries are equal to zero. The Kullback information 
criterion for a system of SEM (SKIC) is given in Theorem 2. 

 
Theorem 2. When the MA(1) problem is adjusted by the transformation matrix P, the Kullback 
information criterion for a system of SEM defined by 

   2 1 2 2ˆSKIC log log
1 2 2 1 2 2 1

   
    

         

TM K M T TM
T TM

T K M T K M T K M
Σ  (12) 

is called an asymptotically unbiased estimator of the Kullback-Leibler’s symmetric 
divergence. 

 
3. Simulation study 

The model to consider in this study is a system of three SEM (M = 3) and the errors of 
the model appear the MA(1) problem, 

 
1 2 3 4 1

2 2 3 4 2

3 2 3 4 3

1 2 3 4
1 0.5 5 1.5
1 ,

    

    

    

t t t t t

t t t t t

t t t t t

y x x x v

y x x x v

y x x x v

 (13) 

where 1, 2, , 15 t T  for the small sample size, 1, 2, , 30 t T  for the medium 
sample size, and 1, 2, , 100 t T  for the large sample size. The steps for simulation and 
all results are as follows. 
 
1. Using the IML procedure of SAS programming to generate 150,000 vectors of the 3 1  
multivariate normal tε  in (6), given zero mean vector, the correlation coefficients of the 
errors between the equations are  

12 13 230.9, 0.7, 0.8,      
and the variances-covariances of the errors are 

2 2 2
11 22 33

12 12 11 22 13 13 11 33 23 23 22 33

0.9 0.81, 0.8 0.64, 0.7 0.49,

0.648, 0.441, 0.448,

     

     

  

           
 

then, the form to generate tε  in (6) is represented by 

1

2 3

3

ε 0.81 0.648 0.441
ε ~ , 0.648 0.64 0.448 .

0.441 0.448 0.49ε

    
    

     
        

t

t t

t

Nε 0 Σ  

 
2. Using the multivariate normal error 1 2 3ε , ε , and εt t t  in Step 1 to construct two series of the 
MA(1) and contemporaneously correlated errors, 1 2 3, , andt t tv v v , as follows: 
 1 1 1,1 2 2 1,2 3 3 1,3ε 0.5ε , ε 0.6ε , and ε 0.7ε ,       t t t t t t t t tv v v   (1st series) (14a)
 1 1 1,1 2 2 1,2 3 3 1,3ε 0.6ε , ε 0.7ε , and ε 0.8ε ,       t t t t t t t t tv v v  (2nd series) (14b) 
for 1, 2, , 150,000t  and 0ε j  is arbitrarily given to be zero for all 1, 2, 3j . Split the 
series of errors 1 2 3, , andt t tv v v  in sequence to preserve the MA(1) problem into 1,000 
samples, each of which consists of three levels of sample sizes, T = 15, 30, 100 observations. 
Estimate the MA(1) parameters and test the properties of MA(1) by the MODEL and ARIMA 
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procedures in SAS version 9.1. Discard the samples that fail the test, and retain only 1,000 
samples for further study. 
 
3. Using the RANNOR function of SAS programming to generate the independent variables 

2 ,10untilt tx x  about 150,000 observations to be the normal random variables with zero mean 
and variance equal to one where the relevant independent variables are 2 3 4, , andt t tx x x  and 
irrelevant independent variables are 5 ,10untilt tx x . Again, split the series of independent 
variables 2 ,10untilt tx x  in sequence into 1,000 samples, each of which consists of 15, 30, 100 
observations. For this study, 1tx  is given as a constant which equals one. Test the 
multicollinearity problem for the series of independent variables and then discard the samples 
that fail the test, retain only 1,000 samples for further study. 
 
4. Using the corresponding relevant independent variables 2 3 4, , andt t tx x x  obtained in Step 
3 and two series of the MA(1) errors obtained in Step 2 to construct the dependent variables 
described in (13).  

 
5. Using the estimated values of MA(1) parameters obtained in Step 2 to construct the 
estimate of transformation matrix jP  in (9) for each sample. Apply this transformation matrix 
to transform the SEM in Step 4 to give the stack of transformed model as shown in (10). Test 
the MA(1) problem and the multivariate normality for the errors of the model by the ARIMA 
and MODEL procedures, respectively. The test shows that the errors of all transformed 
samples are independent. Therefore, we can say that the transformation matrix P in (8) has 
the power of transformation equal to 100%. 
 
6. Using the assumption of nested model to construct the candidate models which are the 
models include the columns of independent variables in a sequentially nested fashion; i.e., 
columns 1 to K define the design matrix for the candidate model with dimension K. For 1,000 
transformed samples, we estimate the parameters of the transformed model by the GLS 
method. Then calculate SKIC in (3.5) and SAIC proposed by Keerativibool (2009), 
  ˆSAIC log 3 ,   UET M K MΣ  (15a) 

where ˆ ˆ


UE

T

T K
Σ Σ , ˆ

UEΣ  and Σ̂  represent the estimated contemporaneous covariance 

matrix of the error terms by the methods of unbiased estimator and maximum likelihood 
estimator, respectively. Therefore SAIC in (15a) can be rewritten as 

  ˆSAIC log log 3 . 
     

 

T
T TM M K M

T K
Σ  (15b) 

The candidate model that has the minimum value of model selection criterion is called the 
best model. Model selection criterion performance is examined by a measure of counting the 
frequency of order being selected. The results of comparing are shown in Table 1. 
 
7. Calculate the observed 2L  distance, scaled by 1 T , between the true model in (11) and the 
candidate model in (10) which was defined by McQuarrie et al. (1997) and McQuarrie 
(1999), 

       1
2 0 0

1 ˆˆ ˆ ,      L k
T

Tπ π X Σ I X π π  
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and calculate the observed 2L  efficiency which defined as 
 

 
1 2

2
2

min
Observed  efficiency , 


k K

s

L k
L

L k
 

where K is the class of all possible candidate models, k is the rank of fitted candidate model, 
and sk  is the model selected by specific model selection criterion. The closer the selected 
model is to the true model, the higher the efficiency. Therefore, the best model selection 
criterion will select a model which yields high efficiency even in small samples. For 1,000 
transformed samples, the results of comparing the observed 2L  efficiency are shown in Table 2.  
 
Table 1. Frequency of the model order being selected by SAIC and SKIC for 1,000 samples 

T 
Series of 
Errors tjv  

Criteria 
K 

2 3 4 5 6 7 8 9 10 
15 (14a) SAIC 0 0 832 75 30 15 16 2 30 
  SKIC 0 0 1000 0 0 0 0 0 0 

15 (14b) SAIC 0 0 809 98 32 13 18 2 28 
  SKIC 0 0 1000 0 0 0 0 0 0 

30 (14a) SAIC 0 0 919 60 13 6 2 0 0 
  SKIC 0 0 999 1 0 0 0 0 0 

30 (14b) SAIC 0 0 886 86 20 6 2 0 0 
  SKIC 0 0 994 6 0 0 0 0 0 

100 (14a) SAIC 0 0 952 39 9 0 0 0 0 
  SKIC 0 0 1000 0 0 0 0 0 0 

100 (14b) SAIC 0 0 910 55 20 7 5 0 3 
  SKIC 0 0 982 12 5 0 0 0 1 

Note: Boldface type indicates the maximum frequency of correct order being selected. 
 
Table 2. Average and standard deviation of the observed 2L  efficiency over 1,000 samples  

T 
Series of 
Errors tjv  

Criteria 
Statistics 

Ave. 2L  eff. S.D. 2L eff. 
15 (14a) SAIC 0.7762 0.3170 
  SKIC 0.8843 0.2060 

15 (14b) SAIC 0.7213 0.3486 
  SKIC 0.8293 0.2749 

30 (14a) SAIC 0.9436 0.1718 
  SKIC 0.9860 0.0868 

30 (14b) SAIC 0.8999 0.2341 
  SKIC 0.9487 0.1822 

100 (14a) SAIC 0.9757 0.1113 
  SKIC 1.0000 0.0005 

100 (14b) SAIC 0.9527 0.1581 
  SKIC 0.9894 0.0810 

Note: Boldface type indicates the best performance. 
 
8. The results of the frequency of correct order being selected from Steps 6 in Table 1 can be 
concluded that the performance of SKIC in (12) convincingly outperformed SAIC in (15b) for 
all three levels of the sample sizes (T = 15, 30, 100) and two series of the MA(1) and 
contemporaneously correlated errors tjv  in (14a) and (14b), because SAIC has a tendency to 
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overfit the order of the model than SKIC. The results of the observed 2L  efficiency from Steps 
7 in Table 2 also confirm that SKIC has a large observed 2L  efficiency and small standard 
deviation of the observed 2L  efficiency than SAIC, then SKIC is likely better than SAIC. In 
Table 3, we show the average and standard deviation of SAIC and SKIC for 1,000 transformed 
samples. In this table we found that SAIC presents a large negative bias than SKIC that maybe 
the main reason for the number of correct model order being selected is less. 
 
Table 3. Average and standard deviation of SAIC and SKIC for 1,000 samples of the sample 
size T and the series of errors tjv  in (14a) and (14b) 

T = 15 and errors tjv  in (14a) T = 15 and errors tjv  in (14b) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 
2 6.295 0.977 8.281 0.977 2 7.215 1.310 9.201 1.311 
3 3.290 0.998 6.443 0.998 3 3.888 1.232 7.041 1.232 
4 -2.351 0.862 2.309 0.862 4 -2.300 0.903 2.359 0.903 
5 -1.934 0.904 4.732 0.904 5 -1.919 0.949 4.747 0.949 
6 -1.507 0.964 7.954 0.964 6 -1.493 1.006 7.968 1.006 
7 -1.075 1.023 12.541 1.023 7 -1.066 1.072 12.549 1.072 
8 -0.649 1.160 19.800 1.160 8 -0.648 1.174 19.801 1.174 
9 1.434 1.375 35.330 1.375 9 1.577 1.406 35.473 1.406 
10 0.185 1.529 73.700 1.529 10 0.143 1.481 73.659 1.481 

T = 30 and errors tjv  in (14a) T = 30 and errors tjv  in (14b) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 
2 6.197 0.875 6.824 0.875 2 7.103 1.259 7.730 1.259 
3 2.967 0.859 3.916 0.859 3 3.617 1.109 4.566 1.109 
4 -3.131 0.494 -1.827 0.494 4 -3.065 0.522 -1.762 0.522 
5 -2.938 0.501 -1.243 0.501 5 -2.885 0.529 -1.191 0.529 
6 -2.734 0.509 -0.606 0.509 6 -2.685 0.533 -0.557 0.533 
7 -2.528 0.527 0.081 0.527 7 -2.485 0.545 0.124 0.545 
8 -2.306 0.543 0.840 0.543 8 -2.275 0.555 0.872 0.555 
9 -0.309 0.656 3.440 0.656 9 -0.168 0.704 3.581 0.704 
10 -1.846 0.559 2.582 0.559 10 -1.834 0.585 2.594 0.585 

T = 100 and errors tjv  in (14a) T = 100 and errors tjv  in (14b) 

K 
SAIC SKIC 

K 
SAIC SKIC 

Ave. S.D. Mean S.D. Ave. S.D. Mean S.D. 
2 6.104 0.617 6.241 0.617 2 7.028 1.034 7.166 1.034 
3 2.721 0.570 2.927 0.570 3 3.453 0.898 3.659 0.898 
4 -3.752 0.265 -3.476 0.265 4 -3.718 0.293 -3.442 0.293 
5 -3.693 0.266 -3.344 0.266 5 -3.664 0.289 -3.315 0.289 
6 -3.634 0.267 -3.210 0.267 6 -3.610 0.288 -3.187 0.288 
7 -3.574 0.267 -3.074 0.267 7 -3.552 0.288 -3.053 0.288 
8 -3.514 0.267 -2.936 0.267 8 -3.496 0.284 -2.918 0.284 
9 -1.369 0.383 -0.711 0.383 9 -1.041 0.448 -0.383 0.448 
10 -3.392 0.271 -2.652 0.271 10 -3.379 0.279 -2.638 0.279 
Note: Boldface type indicates the minimum average value of SAIC and SKIC. 

 



8 
 

4. Conclusions, discussion, and future works 
In this paper, the transformation matrix in order to correct the MA(1) problem and to 

recover the one lost observation along with the consideration of contemporaneous correlation 
in a SEM is proposed. Then, the Kullback information criterion for a system of SEM, called 
SKIC, is proposed for selecting the most appropriate system of the models. SKIC is 
compared the performance of selection the order of the model, relative to SAIC proposed by 
Keerativibool (2009). The results of simulation study show that the proposed transformation 
matrix P can transform the MA(1) errors for both forms of (14a) and (14b) to be independent. 
For all situations of the sample sizes; small (T = 15), medium (T = 30), and large (T = 100), 
including two series of errors generated in the SEM, SKIC convincingly outperformed SAIC, 
because SAIC has a tendency to overfit the order of the model than SKIC. The results of the 
observed 2L  efficiency also confirm that SKIC has a large observed 2L  efficiency and small 
standard deviation of the observed 2L  efficiency than SAIC, then SKIC is likely better than 
SAIC. The average and standard deviation of SAIC and SKIC for 1,000 transformed samples 
show that SAIC presents a large negative bias than SKIC, which maybe the main reason of 
selecting the correct order of the model from SAIC is less than SKIC. 

Nowadays, there is not much the criterion to select the appropriate SEM. Therefore, it 
should be studied and established the other criteria. Including, other schema of the error-
generation might also be considered, such as the autoregressive and moving average 
(ARMA) scheme instead of only the moving average (MA) scheme. 
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Appendix 
Proofs 

Proof of Theorem 1. 
The reduced-form model in (7) at the tht  observation and the thj  equation can be written 

as follows: 
 , 1, 2, , , 1, 2, , ,   tj t j tjy v t T j Mx π  (A1) 
where  
  1 2 1,, ε ε , 2, 3, , , 1, 2, , .

     t t t tK tj tj j t jx x x v t T j Mx  (A2) 
Replacing tjv  in (A2) into (A1) and rearrange it into the term of ε tj , 
 1,ε ε , 2, 3, , , 1, 2, , .

    tj tj t j j t jy t T j Mx π  (A3) 

The thi  lag of .. in (A3) can be written as 
  ,ε t i j   , 1 ,ε .   

  t i j t i j j t i j
y x π  (A4) 

Using the knowledge of (A4), the equation in (A1) becomes 
   tjy   1, 1 2,ε ε  

     t j tj j t j t j j t jy x π x π  

  1,tj j t jy y    2
1 2,ε ε 

    t j t j tj j t j x x π  

      2
1 2, 2 3,ε ε   

       t j t j tj j t j t j j t jy  x x π x π  

 2
1, 2,  tj j t j j t jy y y    2 3

1 2 3,ε ε  
      t j t j t j tj j t j  x x x π  
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  ,
0






T

i

j t i j

i

y   
1

1 ,
0

ε ε .

  


  
T

i T

j t i j tj j t T j
i

 x π  (A5) 

As T becomes large and j  satisfies the invertibility condition, the value of 1T

j  in (A5) 
approach zero. Therefore, (A5) can be rewritten as  

 ε ,  tj t j tjy x π  (A6) 

where ,
0








T

i

tj j t i j

i

y y  and 
0







 
T

i

t j t i

i

x x  for 2, 3, , , 1, 2, , . t T j M  

From (A6) we found that    Var Var ε   tj t tj jjy x , then we can argue that the MA(1) 

problem at 2, 3, , and 1, 2, , t T j M  has been corrected. However, the transformation 
in (A6) does not include the first observation in (A1). The heteroskedasticity remains 
unsolved unless the first observation is eliminated, but if the first observation is included in 
the analysis, the transformation must be extended by the following steps. Firstly, we take the 
expectation to tjv  in (A2), 

             1,ε ε ε ε 1 ε .     tj tj j t j tj j tj j tjE v E E E E E    

Using the assumption in (5), we have the expectation of tjv  is equal to zero. Therefore, 
from (A1) the variance of tjy  given tx  for 1, 2, , and 1, 2, , t T j M  can be written 
as 

             
2 2 2 2 2 2 2

1,Var ε ε ε ε 1 ε 1 .
        
  tj tj j t j tj j tj j tj j jjv E E E E      

 Hence, the first observation should weighted by 2

1
1 j

, yields the model 

 1 1 1ε ,  j j jy x π  (A7) 

where 1 12

1
1

 


j j

j

y y


 and 1 12

1
1

 
 j

x x  for 1, 2, , .j M  

It can be shown that the MA(1) problem at t = 1 has been corrected, 

       2
1 1 1 12 2

1 1Var Var 1 .
1 1

      
 

j j j jj jj

j j

y y   
 

x x   

Combining the results in (A6) and (A7), we get the T T  transformation matrix jP  which 
was exhibited in (9).  

 
Proof of Theorem 2. 

The Kullback-Leibler’s symmetric divergence is a measure that used to separate the 
discrepancy between the candidate model in (10) and the true model in (11), defined by 
          0 0 0 0 02 , , , , , ,   J d d d d           (B1) 

where      , 2log . 
ii j jd E L y     

Dropping  0 0,d    in (B1) since it does not depend on  . The ranking of the candidate 

models according to  02 ,J    in (B1) is then identical to ranking them according to 

        0 0 0, , , , .  K d d d         (B2) 
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Given a set of GLS estimators  ˆ ˆ ˆˆ , , π Σ P  where P̂  is the estimate of the transformation 

matrix P  in (8),  

   
1

1 1ˆ ,


         
 T Tπ X Σ I X X Σ I y  

and 

  
1ˆ ,    

   T
T

Σ I y X π y X π  

we have therefore the estimate of the symmetric measure in (B2) as  

        0 0 0
ˆ ˆ ˆ ˆ ˆ, , , , ,  K d d d         (B3) 

where           00 0 0ˆ ˆ
ˆ ˆ, 2log , , 2log ,    d E L d E Ly y 

 

       and

     ˆ
ˆ ˆ, 2log . d E L y



    

From the minus twice log likelihood of the candidate model in (10), 

        12log log 2 log ,     
      TL TM Ty Σ y X π Σ I y X π  

we have each term of the estimated symmetric measure in (B3) as follows: 

  
  0

ˆ,d             1 1
0 0 0

ˆ ˆ ˆˆ ˆlog 2 log ,          TTM T T tr Σ π π X Σ I X π π Σ Σ  

    0
ˆ,d             1 1

0 0 0 0 0
ˆˆ ˆlog 2 log ,          TTM T T tr Σ π π X Σ I X π π Σ Σ

   
  
  
  ˆ ˆ,d      ˆlog 2 log .  TM T TM Σ  

Therefore, the expected of the estimated symmetric measure in (B3) becomes
 

 
  0 , K           0 00 0 0

ˆ ˆ ˆ ˆ ˆ, , , ,   E K E d d d           

           0 0

1
0 0

ˆ ˆˆ ˆlog 2 1 log             TTM E T E Σ π π X Σ I X π π 
 

          0 0

1 1
0 0 0 0

ˆ ˆ ˆ        TE T tr EΣ Σ π π X Σ I X π π 
 

      0 0

1
0 0

ˆ ˆlog / 2 .  E T tr E T TMΣ Σ Σ Σ 
 (B4) 

From the facts that, π̂  and ˆT Σ  are asymptotically independent where π̂  is asymptotically 
distributed as a Gaussian distribution with mean vector π  and variance-covariance matrix 

 
1

1
0 ,


    

 TX Σ I X  and ˆT Σ  is asymptotically distributed as the Wishart distribution with 

T K  degrees of freedom,  0W , KM T KΣ , then (Anderson, 2003) 

     0 0

1 1
0 0

ˆ ˆand .
1

   
  

T
E T T K E

T K M
Σ Σ Σ Σ   

Using the above results, we have 

     0 0

2
1 1 1

0 0 0 0
ˆ ˆ ,

1 1
   

   
      

T T M
E T tr T tr E T tr

T K M T K M
Σ Σ Σ Σ Σ Σ 

  

          
0 0

1 1 1
0 0 0 0

ˆ ˆ ,      E T tr tr E T tr T K T K MΣ Σ Σ Σ Σ Σ    

            0 0

1 1
0 0 0 0

ˆ ˆˆ ˆ ˆ ˆ              
  

T TE E trπ π X Σ I X π π Σ I X π π π π X    



11 
 

     0 0

1
0 0

ˆ ˆ ˆ        
    

Ttr E EΣ I X π π π π X   

      1
0 0 0ˆ ˆ ,

1 1
       

     
T

T TKM
tr

T K M T K M
π π X Σ I X π π   

      0

1
0 0 0ˆ ˆ ,      TE KMπ π X Σ I X π π

  

then  0 , K  in (B4) can be written as 

 
 0 , K     0

2
ˆlog 2 1 log

1 1
            

TKM T M
TM E T

T K M T K M
 Σ  

      0 0
ˆlog / 2    KM T K M E T TMΣ Σ

 

      
0

2 1ˆlog 2 1 log
1

 
        

TM K M
TM E T

T K M
 Σ  

    0 0
ˆlog / log . T E T TM TΣ Σ

 (B5) 

Because 0
ˆ /T Σ Σ  in (B5) is the distribution of a product of independent 2  random 

variables, 2
1   

M

T K M ii
 , then we have 

  2
0

1

ˆlog / log .  




M

T K M i

i

T Σ Σ  

Using the second-order of Taylor’s series expansions to expand the function of  2log p  
about the mean p , we have  

           
22 2 2 2

2

1 1 1log log and log log .
2

     
 p p p pp p p E p

p p p
     

Then, the last two terms of the right-hand side in (B5) is  

    
0 0

1

1ˆlog / log log log .


 
           


M

i

TE T TM T T T K M i TM T
T K M i

Σ Σ

  (B6) 
McQuarrie and Tsai (1998) gave the simplification formulae for any T, K, M and assume 
– –T K M  is much larger than M as follows: 

  
1

1 2 2 1log log log
2 2

      
         

   

M

i

M T K M
T K M i M T K M , (B7) 

and 

 
1

1 2 .1 2 2 1
2




     

 

M

i

M M

MT K M i T K M
T K

 (B8) 

Replacing the results in (B7) and (B8) into (B6), we have 

  0 0
2 2ˆlog / log log .

2 2 1 2 2 1
 

   
      

T TM
TE T TM T TM

T K M T K M
Σ Σ (B9) 

Replacing the results in (B9) into (B5), we have 
     

00 , log 2 1 SKIC ,    K TM E   
where SKIC was exhibited in (12). 
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