

บทคัดย่อ

รหัสโครงการ :	MRG5480061
ชื่อโครงการ :	การศึกษาคุณลักษณะ การกระจาย และการประยุกต์ใช้ชื่อรูปโนน ที่ควบคุมการหลังอิหร์โนนกระดับต่ำต่ำเพื่อเพิ่มความก้าวหน้า
ชื่อนักวิจัย:	ผศ. ดร. ยศวันต์ ตินิกุล (หัวหน้าโครงการวิจัย) ศ. ดร. ประเสริฐ โศกาน (นักวิจัยที่ปรึกษาโครงการวิจัย)
อีเมล :	anatch2002@yahoo.com
ระยะเวลาโครงการ :	15 มิถุนายน 2554 ถึง 15 มิถุนายน 2556

กุ้งขาว (*Litopenaeus vannamei*) เป็นสัตว์น้ำที่มีคุณค่าสูงทางเศรษฐกิจของประเทศไทย ซึ่งมีการเพาะเลี้ยงกันอย่างกว้างขวางในแหล่งภูมิภาคเอเชีย ปัจจุบันและอุปสรรคที่มีจำกัดในการเพาะเลี้ยงกุ้งขาวในปัจจุบัน คือ การตัดตาแม่พันธุ์กุ้ง (eyestalk ablation) เพื่อการตัดต่อการพัฒนาของรังไข่ (ovarian maturation) และการฟักอوكเป็นตัว (spawning) ของลูกกุ้งให้เร็วขึ้น ซึ่งวิธีการเหล่านี้ นอกจากจะเป็นวิธีการทรมานกุ้งแล้ว ยังส่งผลต่ออายุขัยและจำนวนครั้งของการสืบพันธุ์ของแม่พันธุ์กุ้ง และปริมาณของลูกกุ้งในแต่ละครั้งด้วย ซึ่งวิธีการเหล่านี้อาจจะไม่เป็นที่ยอมรับในอนาคต ได้มีการรายงานมา ก่อนว่า gonadotropin-releasing hormone (GnRH) มีผลต่อวงจรของการพัฒนาของรังไข่ ของสัตว์น้ำกลุ่ม crustacean ชนิดอื่น และอาจจะมีผลต่อวงจรการพัฒนาของรังไข่ในกุ้งขาวด้วย ดังนั้น วัตถุประสงค์หลักของโครงการวิจัยนี้คือ ทำการตรวจสอบผลของ GnRH ต่อวงจรการพัฒนาของรังไข่ และการตอกไข่ นอกจากนี้เราได้ศึกษาระดับ การปรากម្ព และการกระจายของสารสื่อประสาทหลัก และความสมพันธ์ที่เป็นไปได้กับ GnRH ในกุ้งขาว เพื่อเป็นพื้นฐานนำไปสู่การศึกษาความสมพันธ์ของการทำงานร่วมกันของสารนิวโรเปปไทด์และสารสื่อประสาท เราได้ทำการกระตุ้นพ่อแม่พันธุ์กุ้งขาวด้วย GnRH isoforms ซึ่งน่าจะมีคุณลักษณะที่ใกล้เคียงและอยู่ในสัตว์ที่มีระดับความสมพันธ์เชิงวิัฒนาการ ใกล้เคียงกับกุ้งขาวมากที่สุด คือ octopus-GnRH และ lampreyGnRH-III ต่อผลการพัฒนาของรังไข่ และการตอกไข่ การศึกษาการกระจายตัวของสารสื่อประสาทในเนื้อเยื่อระบบประสาทกลางและรังไข่ของ กุ้งขาวด้วยกรรมวิธี HPLC และ immunohistochemistry เพื่อบ่งชี้ระดับและระบุตำแหน่งของเซลล์ และโครงสร้างที่อยู่ในระบบประสาทส่วนกลางและรังไข่ จากการวิจัยในครั้งนี้มีประโยชน์ โดยอาจจะนำ GnRH มาใช้ในการกระตุ้นการพัฒนาของรังไข่และการฟักออกเป็นตัว (spawning) ของลูกกุ้งขาวให้เร็วขึ้นแทนการใช้วิธีตัดตาได้ในอนาคต

คำสำคัญ: โภนาโด trobiphenylisostyrene, ชีโรโทอน, โอดามีน, ระบบประสาทส่วนกลาง, รังไข่, วิธีอิมมูโนอิสโตเมดีสทรี, กุ้งขาว

Abstract

Project Code :	MRG5480061
Project Title :	Characterizations, Localization, and Possible applications of gonadotropin-releasing hormone (GnRHs) for stimulating ovarian maturation and spawning in the Pacific white shrimp, <i>Litopenaeus vannamei</i>
Investigators :	Assist. Prof. Dr. Yotsawan Tinikul (Principal investigator) Prof. Dr. Prasert Sobhon (Mentor)
E-mail Address :	anatch2002@yahoo.com
Project Period :	15 June 2011 to 15 June 2013

The Pacific white shrimp, *Litopenaeus vannamei*, is a commercially important species in Thailand. One major drawback in the aquaculture of this shrimp is that female broodstocks must have their eyestalks ablated to stimulate ovarian maturation of the ovary. Stimulation by gonadotropin-releasing hormone (GnRH) could conceivably avoid the eyestalk ablation as it could over-ride the inhibition of the gonad-inhibiting hormone (GIH) produced by the eyestalk. In this proposal, we investigated the effects of GnRHs (octopusGnRH (OctGnRH) and lampreyGnRH-III (lGnRH-III), and dopamine on ovarian maturation and spawning, and study of the existence and possible relationship of GnRH and major neurotransmitters in the CNS and ovaries during ovarian maturation in *L. vannamei*. We found that both GnRH groups showed significantly shortened ovarian maturation period, increased GSI and OD, whereas DA-injected groups exhibited significantly delayed ovarian maturation, decreased GSI and OD, compared with control groups. The numbers of eggs per spawn among experimental groups showed no statistical difference compared with the control group. Both GnRH-ir were more intense in the follicular cells surrounding Oc2 and Oc3. These findings also suggest that GnRHs have a stimulating effect in stimulating ovarian maturation, while DA may play opposite role. Furthermore, we studied the changes in serotonin (5-HT) and dopamine (DA) levels, and their distribution patterns, in regions of the central nervous system (CNS) and ovary, during the ovarian maturation cycle to better understanding about the relationship of neurotransmitters and GnRHs. 5-HT concentration exhibited a gradual increase in the brain and thoracic ganglia, and reaching a maximum at the mature ovarian stage IV. In contrast, DA showed the highest concentration at ovarian stage II in the brain and thoracic ganglia, and then declined to the lowest concentration at ovarian stage IV. In the ovaries, 5-HT was highest at ovarian stage IV, whereas the concentration of DA was highest at ovarian stage II. 5-HT-ir and DA-ir were distributed extensively in neurons, fibers, and neuropils in the brain, CEG, SEG, thoracic ganglia and abdominal ganglia. In the ovary, 5-HT-ir exhibited high intensity in late oocytes, whereas DA-ir was more intense in early oocytes. This work showed opposing changes in the levels of these two neurotransmitters, and their specific localizations in the CNS and ovary, during ovarian maturation. Overall, this research could provide a useful knowledge for important involvements of GnRH and neurotransmitters in enhancing female white shrimp reproduction.

Keywords: Gonadotropin-releasing hormone; Serotonin, Dopamine; Central nervous system; Ovary; Immunohistochemistry; Pacific white shrimp, *Litopenaeus vannamei*