

บทคัดย่อ

รหัสโครงการ: MRG5480072

ชื่อโครงการ: ลักษณะทางโครงสร้างและทางแสงของอนุภาคนาโนซิงค์ออกไซด์ที่เจือด้วยเผลนทานัมต่อความสามารถในการ слายสี้อมด้วยปฏิกิริยาการเร่งด้วยแสง

ชื่อนักวิจัยและสถาบัน: ผศ.ดร.สุเมรา สุวรรณบูรณ์
ภาควิชาวิทยาศาสตร์และเทคโนโลยีวัสดุ คณะวิทยาศาสตร์
มหาวิทยาลัยสงขลานครินทร์

อีเมล: ssrunwanboon@yahoo.com; sumetha.s@psu.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

ผง ZnO ถูกสังเคราะห์ด้วยวิธีตากตะกอนด้วยตัวตากตะกอนที่แตกต่างกัน คือ NaOH, HMTA และ Na_2CO_3 โดยใช้ PEO_{128} - PPO_{54} - PEO_{128} เป็นสารแคป และ $Zn(CH_3COO)_2 \cdot 2H_2O$ เป็นแหล่งของสังกะสี สารตัวอย่างทั้งหมดถูกตรวจสอบทางลักษณะเฉพาะด้วยเครื่องมือต่างๆ เช่น TG-DTA, XRD, SEM และ EDS ผง ZnO และ ZnO ที่เจือด้วยเผลนทานัมมีโครงสร้างแบบเวิร์ทไชต์ ขนาดผลึกของ ZnO เล็กลงเมื่อความเข้มข้นของ PEO_{128} - PPO_{54} - PEO_{128} เพิ่มขึ้น ขนาดผลึกของ ZnO ที่เจือด้วยเผลนทานัมขึ้นกับตัวตากตะกอนและปริมาณเผลนทานัม ผง ZnO มีรูปร่างเป็นทรงกลมเมื่อปริมาณเผลนทานัมเพิ่มขึ้น ซึ่งว่างพลังงานของ ZnO ลดลงเมื่อความเข้มข้นของ PEO_{128} - PPO_{54} - PEO_{128} เพิ่มขึ้น ในขณะที่ซึ่งว่างพลังงานของ ZnO ที่เจือด้วยเผลนทานัมขึ้นกับชนิดของตัวตากตะกอนและปริมาณเผลนทานัม ประสิทธิภาพในการ слายสี้อมเพิ่มขึ้นเมื่อฉายแสงเป็นระยะเวลาเพิ่มขึ้น และประสิทธิภาพในการ слายสี้อมมีแนวโน้มลดลงเมื่อปริมาณสารเจือเพิ่มขึ้น

คำหลัก: ซิงค์ออกไซด์; การตากตะกอน; PEO_{128} - PPO_{54} - PEO_{128} ; สมบัติทางแสง;
การย้อมสลายสี้อม

Abstract

Project Code: MRG5480072

Project Title: Dependence of dye degradation by photocatalytic reaction on structural and optical characteristics of La-doped ZnO nanoparticles

Investigator: Asst.Prof.Dr.Sumetha Suwanboon
Department of Materials Science and Technology, Faculty of Science
Prince of Songkla University

E-mail Address: ssuwanboon@yahoo.com; sumetha.s@psu.ac.th

Project Period: 2 years

Abstract:

ZnO powders were synthesized by precipitation method by different precipitating agent including NaOH, HMTA and Na₂CO₃. PEO₁₂₈-PPO₅₄-PEO₁₂₈ acted as a capping agent and Zn(CH₃COO)₂.2H₂O was zinc source. All samples were characterized by various techniques such as TG-DTA, XRD, SEM and EDS. ZnO and La-doped ZnO powders exhibited a wurtzite structure. The crystallite size of ZnO decreased when the concentration of PEO₁₂₈-PPO₅₄-PEO₁₂₈ was increased. The crystallite size of La-doped ZnO depended on precipitating agent and lanthanum contents. ZnO powders showed spherical shape when lanthanum contents were increased. The bandgap energy of ZnO decreased when PEO₁₂₈-PPO₅₄-PEO₁₂₈ concentration was increased whereas the bandgap energy of La-doped ZnO depended upon the precipitating agents and lanthanum contents. The efficiency of photocatalytic degradation increased as a function of irradiation time and the efficiency of photocatalytic degradation tended to decrease when the lanthanum content was increased.

Keywords: Zinc oxide; precipitation; PEO₁₂₈-PPO₅₄-PEO₁₂₈; optical properties; dye degradation