

บทคัดย่อ

เชื้อราแซบโพร์ไฟฟ์และเห็ดบางชนิดสามารถผลิตเอนไซม์ย่อยสลายเมลานินสังเคราะห์ได้ แต่ยังไม่เคยมีรายงานว่าเชื้อราเอนโดไฟฟ์มีความสามารถดังกล่าวหรือไม่ งานวิจัยนี้มีวัตถุประสงค์เพื่อคัดกรองเชื้อราเอนโดไฟฟ์ที่มีความสามารถในการผลิตเอนไซม์ย่อยสลายเมลานินสังเคราะห์ เพื่อหาแนวทางประยุกต์ใช้เป็นสารทำให้ผิวขาวจากธรรมชาติในตัวรับเครื่องสำอาง โดยแยกเชื้อราเอนโดไฟฟ์ 332 โอโซเลท จากพีช 21 สายพันธุ์ และคัดกรองเชื้อราที่สามารถผลิตเอนไซม์ลิกนินเปอร์ออกซิเดสด้วยวิธีคัดกรองแบบดังเดิมบนอาหารแข็งที่มีส่วนผสมของสี Azure B และวัดผลจากโคนิสเรอบฯ โคลนีเชื้อรา และคัดกรองในอาหารเหลวที่มีส่วนผสมของสี Azure B และวัดผลโดยการวัดค่าการดูดกลืนแสงที่ลดลงของ Azure B แล้วคำนวณค่าร้อยละการทำให้สี Azure B จลง (% decolorization) ซึ่งเป็นวิธีใหม่ พบว่าวิธีใหม่มีความเหมาะสมสำหรับการคัดกรองลิกนินเปอร์ออกซิเดสจากเชื้อรา โดยจะประเมินผลคัดกรองเป็นบวกเมื่อ $\% \text{decolorization} \geq 70$ ซึ่งการคัดกรองตัวอย่างวิธีใหม่นี้จะช่วยประหยัดเวลาและต้นทุน เนื่องจากสามารถทดสอบเชื้อราหลายโอโซเลทได้ในคราวเดียว ใช้ปริมาณอาหารเลี้ยงเชื้อน้อย (10 มล/โอโซเลท) และได้ผลการคัดกรองในเชิงปริมาณเป็นเบื้องต้นอีกด้วย ในขณะที่วิธีแบบดังเดิมจะทำได้เพียง 1 โอโซเลทต่ออาหารแข็ง 1 งาน (25 มล/โอโซเลท) จากการคัดกรอง พบว่าเชื้อราเอนโดไฟฟ์ 14 โอโซเลท ให้ผลเป็นบวกกับทั้งสองวิธีโดยมีค่า $\% \text{decolorization} \geq 95$ โดยเมื่อวัดกิจกรรมเอนไซม์ที่ผลิตได้ในอาหารเหลวแล้ว พบว่าเชื้อราเอนโดไฟฟ์ MPO3 ให้กิจกรรมเอนไซม์สูงที่สุด ซึ่งมีค่าสูงถึง 439 ยูนิต/มล. เมื่อเพาะเลี้ยงในสภาวะที่เหมาะสมที่สุด และสามารถทำให้สีของเมลานินสังเคราะห์จางลงได้ประมาณ 36% การศึกษานี้แสดงให้เห็นว่าเอนไซม์ลิกนินเปอร์ออกซิเดสจากเชื้อราเอนโดไฟฟ์อาจจะสามารถประยุกต์ใช้ในตัวรับเครื่องสำอางเพื่อผิวขาวได้ และเนื่องจากเอนไซม์นี้ผลิตได้จากแหล่งชีวภาพดังนั้นจึงน่าจะเป็นสารที่ได้รับการยอมรับมากกว่าการใช้สารเคมีในตัวรับเครื่องสำอาง

คำสำคัญ: เชื้อราเอนโดไฟฟ์, เมลานิน, สารทำให้ผิวขาว, ลิกนินเปอร์ออกซิเดส, เอนไซม์

ABSTRACT

Various species of saprobic fungi and mushroom have been reported to produce specific enzyme to degrade synthetic melanin and hypothesized that fungal enzyme could produce melanolytic activity which may potential application in cosmetics. However, endophytic fungi have never been reported for its application in melanolytic activity. This study aimed to investigate an alternative approach of melanin lightening through activity of lignin peroxidase (LiP) from endophytic fungi, which may help to avoid the adverse effects of chemical to skin. The 332 endophytic fungi isolated from 21 plant species were screened for LiP activity using traditional azure B agar medium together with a new introduce azure B liquid medium methods. The production of LiP with agar medium method was observed as clearance diameter of blue colored medium around fungal colony, while %decolorization of azure B was measured for analysis of LiP production under liquid medium method. A positive result of new screening method was interpreted from an occurrence of $\geq 70\%$ azure B decolorization. All positive strains were subjected to produce LiP in liquid medium, assayed for enzyme activity, and assessed melanin decolorization ability. Fourteen endophytes were signified as strongly positive since they showed $\geq 95\%$ azure B decolorization in liquid medium screening methods. Of these, isolate MP03 expressed highest activity of LiP and when cultured under optimized conditions, enzyme activity was expressed as high as 439 units/ml which able to reduced melanin pigment about 36%. This study demonstrated that LiP from endophytic fungi may possible to use as melanin lightening agent in whitening-cosmetic formulation. This approach appears to be importance because the enzyme is a biological origin and will be more acceptable for cosmetic purpose than chemical formulations.

Keywords: Endophytic fungi, Enzyme, Lignin peroxidase, Melanin, Whitening agent