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ABSTRACT 

In the present situation, modern electric power systems comprise large-scale and highly 
complex interconnected transmission networks, thus transmission expansion planning (TEP) 
is now an important power system optimization problem. Regarding the modern TEP problem 
is a complex and mixed integer nonlinear problem where a number of candidate solutions to 
be evaluated increases exponentially with system size. An accurate solution of the TEP 
problem is very significant in order to plan electric power systems in both an economic and 
efficient manner. Therefore, the applied optimization techniques should be sufficiently efficient 
when solving such problem. Over several past decades, a large number of computational 
techniques were presented for solving this efficiency issue. Such methods include algorithms 
inspired by observations of natural phenomena for solving complex combinatorial optimization 
problems. These algorithms are successfully applied to a wide variety of electrical power 
system optimization problems. 
 In recent years, a differential evolution algorithm (DEA) methodology has been 
attracting significant attention from many researchers as such the procedure has been found 
to be effective in solving power system optimization problems, for instance, economic power 
dispatch, unit commitment, optimal power flow, including TEP problem as presented in the 
author’s Ph.D. thesis. Although a novel DEA method proposed in the author’s Ph.D. thesis 
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was successfully applied many cases of the TEP problem, it was not yet sufficiently robust 
for practical use for industry. Such DEA method has the notable limitation of DEA control 
parameter tuning due to a complex interaction of parameters. Therefore, a further 
improvement of the conventional DEA method is essentially required before it can be 
generally adopted for practical use in industry. 
 The main goal of this research is to improve the conventional DEA method as 
proposed in the previous author’s works. An enhanced DEA technique has been directly 
applied to a DC power flow based model in order to solve the TEP problem with n-1 security 
constraint and system losses considerations. The n-1 security criterion is an essential index 
in power system reliability study as it states that the system should be expanded in such a 
way that, if a single line or generator is withdrawn, the expanded system should still operate 
adequately. Moreover, the TEP with system losses consideration is a significant issue that 
should be included in the TEP problem for enhancing the solution accuracy in practical 
operation. Therefore, the proposed TEP problem has been investigated in both n-1 security 
criterion and system losses considerations in this research. The analyses of an enhanced 
DEA optimization procedure have been performed within a mathematical programming 
environment of MATLAB and detailed comparisons between the proposed method and other 
algorithms are also presented in this final report. 

Keywords: Transmission Expansion Planning, Differential Evolution Algorithm, Security 
Constraint, Transmission Losses, Power System Optimization 
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บทคดัย่อ 

ในสภาวะการณ์ปจัจุบนั ระบบไฟฟ้าก าลงัสมยัใหม่มกัจะประกอบไปด้วยโครงข่ายสายส่งไฟฟ้าที่มี
ขนาดใหญ่และมคีวามซบัซอ้นมาก ดงันัน้ในการวางแผนการขยายสายส่งไฟฟ้าจงึเป็นหวัขอ้ทีส่ าคญั
มากในเรื่องปญัหาของการหาค่าความเหมาะสมที่สุดในระบบไฟฟ้าก าลงั เน่ืองด้วยปญัหาการวาง
แผนการขยายสายส่งไฟฟ้ามลีกัษณะของปญัหาทีซ่บัซอ้นและไม่เป็นเชงิเสน้ ซึง่จ านวนของค าตอบที่
เป็นไปได้จะเพิ่มขึ้นทวีคูณเป็นเลขยกก าลงัแบบเอ็กโพเนนเชียลตามขนาดของระบบไฟฟ้า และ
ค าตอบทีเ่หมาะสมทีสุ่ดส าหรบัปญัหาการวางแผนการขยายสายส่งน้ีจงึเป็นสิง่ทีส่ าคญัมากส าหรบัการ
ท าแผนงานของระบบไฟฟ้าทัง้ในดา้นของเศรษฐศาสตรแ์ละเรือ่งประสทิธภิาพในการท างานของระบบ 
ดงันัน้เทคนิคการหาค่าเหมาะสมที่สุดควรมคีวามสามารถและประสิทธิภาพเพียงพอส าหรบัการ
แก้ปญัหาดงักล่าว ในหลายทศวรรษที่ผ่านมาเทคนิคการค านวณจ านวนมากได้ถูกน าเสนอเพื่อ
แก้ปญัหาน้ี โดยที่เทคนิคต่างๆ เหล่านี้ได้รวมถงึอลักอรทึมึที่ได้มาจากการสงัเกตปรากฏการณ์ทาง
ธรรมชาติส าหรบัใช้แก้ปญัหาการหาค่าเหมาะสมที่สุดเชิงการจดัของเชิงซ้อน และจากการศึกษา
พบว่าอลักอรทึมึดงักล่าวประสบความส าเรจ็ในการประยุกต์เพื่อใชแ้ก้ปญัหาการหาค่าเหมาะสมทีสุ่ด
ของระบบไฟฟ้าก าลงัไดเ้ป็นอยา่งด ี

ในช่วงระยะเวลาไม่กี่ปีทีผ่่านมานี้ ทฤษฎดีฟิฟีเรนเชยีลอโีวลูชัน่อลักอรทึมึได้รบัความสนใจ
เพิม่ขึน้จากนักวจิยัเป็นจ านวนมากอนัเนื่องจากพบว่า กระบวนการท างานของอลักอรทึมึนัน้สามารถ
ค้นหาค าตอบได้อย่างมปีระสทิธิผลที่ดมีากส าหรบัการแก้ปญัหาการหาค่าความเหมาะสมที่สุดใน
ระบบไฟฟ้าก าลงั ตวัอย่างปญัหาเช่น การวางแผนจดัสรรส าหรบัการจ่ายโหลดของโรงไฟฟ้าอย่าง
ประหยดั การท ายนูิตคอมมติเม้นของโรงไฟฟ้า การค านวณการไหลของก าลงัไฟฟ้าทีใ่หค้่าเหมาะสม
ทีสุ่ด รวมถงึการวางแผนการขยายสายส่งไฟฟ้าซึง่ไดป้รากฏอยู่ในวทิยานิพนธ์ระดบัปรญิญาเอกของ
ผู้แต่ง ถึงแม้ว่าทฤษฎีดิฟฟีเรนเชียลอีโวลูชัน่อัลกอรึทึมแบบใหม่นี้จะประสบความส าเร็จในการ
แก้ปญัหาการวางแผนการขยายสายส่งไฟฟ้าส าหรบัหลายๆ กรณีศกึษาแล้วนัน้ แต่ด้วยคุณสมบตัิ
ของอลักอรทึมึที่น าเสนอยงัไม่แขง็แรงเพยีงพอส าหรบัการประยุกต์ใชใ้นทางปฏบิตัิกบัอุตสาหกรรม 
เนื่องดว้ยวธิกีารดฟิฟีเรนเชยีลอโีวลูชัน่อลักอรทึมึยงัมขีอ้จ ากดัในเรื่องการปรบัค่าของตวัพารามเิตอร์
ควบคุมซึง่มคีวามสมัพนัธก์นัที่ค่อนขา้งซบัซอ้นและยุ่งยาก ดงันัน้การปรบัปรุงคุณสมบตัขิองอลักอรึ
ทมึจงึเป็นสิง่ทีม่คีวามจ าเป็นอยา่งมากก่อนทีจ่ะน าไปใชง้านจรงิในภาคอุตสาหกรรม 

เป้าหมายหลกัของงานวจิยัชิ้นน้ีคือ การปรบัปรุงคุณสมบตัิการท างานของดิฟฟีเรนเชียล      
อโีวลชูัน่อลักอรทึมึแบบดัง้เดมิดงัแสดงในงานวจิยัของผูแ้ต่งก่อนหน้านี้ ส าหรบัเทคนิคดฟิฟีเรนเชยีล  
อโีวลชูัน่อลักอรทึมึทีไ่ดร้บัการปรบัปรงุแลว้จะถูกน าไปประยกุตใ์ชใ้นการวางแผนการขยายสายส่งโดย
พจิารณาขอ้จ ากดัดา้นความปลอดภยัแบบ n-1 และการสูญเสยีของระบบโดยใชรู้ปแบบจ าลองการ
ไหลของก าลงัไฟฟ้ากระแสตรง การพจิารณาความปลอดภยัแบบ n-1 นัน้เป็นดชันีที่ส าคญัใน
การศกึษาถงึความเชื่อถอืไดข้องระบบไฟฟ้าก าลงัในกรณีทีส่ายส่งหรอืเครื่องก าเนิดไฟฟ้าหายไปจาก
ระบบจ านวน 1 หน่วยแลว้ระบบไฟฟ้านัน้ยงัคงสามารถท างานอยูไ่ด ้ทัง้นี้รวมถงึแผนการขยายสายส่ง
ไฟฟ้าควรมกีารพจิารณาถึงความปลอดภยัของระบบในหวัข้อนี้ด้วย ยิง่ไปกว่านัน้การพจิาณาการ
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สูญเสยีในสายส่งควรได้รบัการพจิารณาและน ามาใช้ศึกษาส าหรบัการวางแผนการขยายสายส่งอีก
ด้วยเพื่อให้ค าตอบที่ได้รบัมามคี่าที่ใกล้เคยีงในทางปฏบิตัิมากขึน้ ในโครงการวจิยันี้การศกึษาและ
วเิคราะห์กระบวนการท างานของวิธดีิฟฟีเรนเชยีลอีโวลูชัน่อัลกอรทึมึที่ได้รบัการปรบัปรุงแล้ว จะ
ด าเนินการโดยใชโ้ปรแกรม MATLAB และการเปรยีบเทยีบผลการทดสอบระหว่างทฤษฎทีีน่ าเสนอ
กบัวธิอีลักอรทึมึอื่นๆ จะถูกแสดงในรายงานวจิยัฉบบัสมบูรณ์นี้ 

ค ำส ำคญั การวางแผนการขยายสายส่งไฟฟ้า ดฟิฟิเรนเชยีลอโีวลูชัน่อลักอรทึมึ ขอ้จ ากดัดา้นความ
ปลอดภยั การสญูเสยีในสายส่งไฟฟ้า การหาค่าเหมาะสมทีสุ่ดในระบบไฟฟ้าก าลงั 
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EXECUTIVE SUMMARY 

1. Introduction 

Transmission expansion planning (TEP) has always been a rather complicated task 
especially for large-scale real-world transmission systems. First of all, electricity demand 
changes across both area and time. The change in demand is met by the appropriate 
dispatching of generation resources. As an electric power system must obey physical laws, 
the effect of any change in one part of network (e.g. changing the load at a node, raising the 
output of a generator, switching on/off a transmission line or a transformer) will spread 
instantaneously to other parts of the interconnected network, hence altering the loading 
conditions on all transmission lines. The ensuing consequences may be more marked on 
some transmission lines than others, depending on electrical characteristics of the lines and 
interconnection. 
 The TEP problem involves determining the least investment cost of power system 
expansion and technical operating through the timely addition of electric transmission 
facilities in order to guarantee that the constraints of the transmission system are satisfied 
over the defined planning horizon. Transmission system planners are entrusted with ensuring 
the above-stated goals are best met whilst utilizing all available resources. Therefore, a 
purpose of transmission planning is to determine the timing and type of new transmission 
facilities. The facilities are required in order to provide adequate transmission capacity to 
cope with future additional generation and power flow requirements. Transmission plans may 
require introduction of higher voltage levels, installation of new transmission elements, and 
new substations. Transmission network planners tend to use many techniques to solve such 
problem. The planners utilize automatic expansion models to determine an optimum 
expansion network by minimizing the mathematical objective function subject to a number of 
constraints. 
 In recent years, a differential evolution algorithm (DEA) method has been attracting 
increasing attention for a wide variety of engineering applications including electrical power 
system engineering. There have been many researches that applied DEA for solving 
electrical power system problems such as power system transfer capability assessment [5], 
power system planning [6], economic power dispatch [7-9], distribution network 
reconfiguration problem [10], short-term hydrothermal scheduling problem [11], optimal 
reactive power flow [12-13], and optimal power flow [14]. Moreover, the conventional DEA 
method has been successfully solved static and dynamic transmission expansion planning 
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problems by the author in [15] where the DEA method performed superior to conventional 
genetic algorithm (CGA) in terms of simple implementation with high quality of solution and 
good computation performance. Meanwhile, DEA requires less control parameters while 
being independent from initialization. In addition, its convergence is stable as DEA procedure 
uses rather greedy selection and less stochastic approach to solve optimization problems 
than other CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious 
task of the DEA control parameters tuning due to complex relationship among problem’s 
parameters. The optimal parameter settings of the DEA method may not be found and the 
final results may be trapped in a local minimum. 
 It is important to note that few algorithms have been practically applied to solve the 
TEP problem at present [1]. Although the method proposed in [15] by the author was 
successfully solved many cases of TEP problem, it was not yet sufficiently robust for 
practical use for industry. The conventional DEA method proposed in [15] has the notable 
limitation of DEA control parameter tuning due to a complex interaction of parameters as 
above mentioned. Therefore, a further improvement of the novel DEA method is essentially 
required before it can be generally adopted for practical use in industry. 
 The TEP problem as studied in [15] is called a basic planning, in which the security 
criterion has not been considered. In other words, the optimal expansion plan is determined 
without considering the n-1 contingencies caused by a transmission line or generator outage. 
The n-1 security criterion is an important index in power system reliability study as it states 
that the system should be expanded in such a way that, if a single line or generator is 
withdrawn, the expanded system should still operate adequately. Moreover, the TEP with 
system loss consideration is a significant issue that should be included in the planning 
problem for enhancing the result accuracy. Therefore, the proposed TEP problem has been 
investigated in both n-1 security criterion and system losses considerations in this research 
project. 

2. Objectives of Research Project 

The ultimate goal of undertaken research is to take advantage of computational simulations 
more effectively in an overall planning study and consequently determine an appropriate 
transmission network expansion plan. The main objectives of this project are: 
 To enhance a conventional DEA method for solving a wide variety of mathematical and 

real-world optimization problems; 
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 To apply the proposed technique, self-adaptive DEA method, for solving power system 
optimization problems especially the TEP problem with security constraint and system 
losses considerations; 

 To use the obtained results of planning study in order to design future transmission 
network and test its performance; 

 To employ the novel knowledge from this research for application to the author’s 
teaching on a course of electric power system analysis and a course of electric power 
system operation & design. 

3. Contributions of Research Work 

The major contributions of this research are development of a conventional DEA method and 
investigation of the applicability of an enhanced DEA technique when applied to TEP 
problem with security constraint and system losses considerations. In addition, a detailed 
comparison of the enhanced DEA method and the conventional DEA procedure used for 
solving the TEP problem is presented. The most significant original contributions presented 
and investigated in this report are outlined as follows: 
 Firstly, a novel methodology is proposed in this research where the conventional DEA 

procedure is further improved its performance by reducing a tedious task of control 
parameters tuning. In order to validate its searching capability and reliability, the 
proposed methodology has been tested with some selected mathematical benchmark 
test functions before applied to real-world optimization problems. 

 Regarding the effectiveness of an enhanced DEA method as tested on several 
numerical benchmark test functions, the proposed technique is implemented to solve a 
real-world optimization problem, which is the TEP problem with losses consideration. For 
this planning study, two test networks, Garver’s 6-bus system and IEEE 25-bus system, 
have been investigated and presented in this report. 

 Finally, the research utilizes the proposed effective technique to deal with the TEP 
problem with n-1 security criterion consideration, which is more complex and difficult 
when compared to the basic TEP problem as shown in [15]. In this work, the TEP 
problem considering n-1 contingency constraint has been analyzed and it is an 
especially difficult task with regard to large-scale real-world transmission system. The 
enhanced DEA method as applied to solve the TEP problem with n-1 contingency 
criterion consideration is tested on three transmission systems that are the Garver’s 6-
bus system, IEEE 25-bus system, and Colombian 46-bus system. 
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4. Outputs of the Research Project  

Arising from the research project, two conference papers were presented and published in 
conference proceedings. In addition, a journal paper has been submitted to a selected 
international journal. These proposed articles are listed as follows:  

4.1 Refereed Journal Paper: Submitted 

 T. Sum-Im and W. Ongsakul, “An enhanced differential evolution algorithm application to 
transmission network expansion planning with security constraint consideration,” IET 
Proc. Gener. Transm. Distrib., (Submitted 2013). 

4.2 Refereed International Conference Paper: Published  

 T. Sum-Im and W. Ongsakul, “A self-adaptive differential evolution algorithm for 
transmission network expansion planning with system losses consideration,” Proc. 2012 
IEEE International Conference on Power and Energy (PECON 2012), Kota Kinabalu, 
Malaysia, pp. 153-158, 2nd-5th Dec. 2012. 

4.3 Refereed National Conference Paper: Published  

 Thanathip Sum-Im, “An enhanced differential evolution algorithm for transmission 
expansion planning with system losses consideration,” Proc. 9th Naresuan and Tao-Ngam 
Research Conferences, Phitsanulok, Thailand, pp. 3, 28th-29th Jul. 2013. 

5. An Enhanced Differential Evolution Algorithm Method 

Regarding a difficult task of the DEA control parameters tuning due to complex relationship 
among problem’s parameters has been a drawback of the conventional DEA method. 
Therefore, a further improvement of the conventional DEA method is essentially required 
before it can be generally adopted for practical use in industry. In this research, the 
conventional DEA method has been developed its optimization procedure. A self-adaptive 
DEA (SaDEA) technique is proposed and explained in this report. The design of SaDEA 
optimization procedure is to develop two DEA control parameters, mutation factor (F) and 
crossover probability (CR), which are self-tuning parameters using probability methodology. 
This enhanced method is called “Method 2jDE” as found in [34]. 
 As such proposed method, user must define two constant values (T1 and T2) that are 
the indices of control parameters (F and CR) changing respectively. The user-defined values 
T1 and T2 are usually selected from within the range [0,1] and set as 0.1 in this research for 
avoiding local optimum trapping. The control parameters F and CR are updated in their 
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setting bounds when the uniformly distributed random numbers within the range (0,1) are 
less than T1 and T2. The main concept of the self-adaptive DEA optimization process is 
illustrated in figure 1. 

Converged ?

End

Yes

No

Set up all SaDEA control parameters 
(Fmin, Fmax, CRmin, CRmax, T1, T2, NP and D)

Start

Generate the initial values of SaDEA control 
parameters (F and CR) 

Initialize the population P of all individuals

Compute and evaluate the fitness of each 
individual in population P 

Apply mutation, crossover and selection 
operators to generate new individuals

Form new population P of all individuals

rand1 (0,1) < T1 ? rand2 (0,1) < T2 ?

Update 
F value

Update 
CR value

Yes

No

Yes

No

 

Figure 1 The main flowchart of a self-adaptive DEA optimization process 
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6. A Self-Adaptive DEA Method for the TEP Problem with System Losses 
Consideration 

The SaDEA methodology is proposed to enhance the performance of conventional DEA 
method by reducing a tedious task of control parameters tuning. In addition, the SaDEA 
technique was successfully adopted to solve an economic dispatch problem in a previous 
author’s work [35]. From the achieved successful results, the SaDEA method is proposed to 
solve the TEP problem with transmission system losses consideration in this work. 

6.1 The SaDEA Optimization Procedure 
An initial population is generated before applying optimization process. For the TEP problem 
formulation, each individual vector (Xi) contains many integer-valued parameters n, where nj,i 
represents the number of candidate lines in the possible branch j of the individual i. The 
problem decision parameter D is the number of possible branches for expansion.  

 
( ) ( )( ) ( )

, ,1,[ ,..., ,..., ], 1,...,
G GG G

i j i pD iiX n n n i N 
                 (1) 

 After new individuals are initialized successfully, then the individuals of next iteration 
are created by applying mutation, crossover, and selection operators, respectively. The 
optimization process is repeated in search of the final solution until maximum number of 
generations (Gmax) is reached or other predetermined convergence criterion () is satisfied. 

6.2 Fitness Function of the TEP Problem Considering Line Losses  
In this work, a fitness function F(X) of the TEP problem is assigned according to (2) for each 
individual. The fitness function is a combination of an objective function and two penalty 
functions. The fitness function is adopted to find the optimal solution, measure the 
performance of candidate solutions, and check for violation of the TEP problem constraints. 
An individual is the best solution if its fitness value F(X) is highest. The penalty functions are 
also included in the fitness function in order to represent violations of both equality and 
inequality constraints. For the TEP problem, an equality constraint penalty function (4) 
considers the DC power flow node balance constraint and then an inequality constraint 
penalty function (5) considers the constraints of power flow limit on each transmission line, 
power generation limit, bus voltage phase angle limit, and right-of-way, respectively. The 
general fitness function of the TEP problem can be formulated as follows: 
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 F(X) and O(X) are fitness function and objective function of the TEP problem, 
respectively. P1(X) and P2(X) are the equality and inequality constraint penalty functions 
respectively. X denotes the individual vector of decision variables. 1 and 2 are penalty 
weighting factors that are set to 0.5 in this work. For the TEP problem, the objective function 
and penalty functions are formulated as follows: 
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0 otherwise
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         (5) 

 where C is an inequality constraint constant that is used when an individual violates 
the inequality constraints. In this research, the constant C is set as 0.5 for all cases. 
 A computer program of the SaDEA method for application to TEP problem with 
system losses consideration is designed as illustrated in figure 2. 

Figure 2 An example of the SaDEA optimization program for TEP problem with line losses 
consideration 
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6.3 Test Systems and Numerical Test Results 
In the simulation, the proposed SaDEA procedure has been implemented in MATLAB and 
tested its performance on two electrical transmission systems as shown in appendix A. 
These two test networks are the Garver’s 6-bus system and IEEE 25-bus system, which all 
significant data are also available in [17] and [27]. In this work, the TEP problem is included 
system losses consideration. In addition, the TEP problem has been investigated in two 
cases that are with and without power generation resizing considerations. The simulation 
results of the proposed SaDEA technique have been compared to conventional genetic 
algorithm (CGA), tabu search (TS), artificial neural networks (ANNs), hybrid artificial 
intelligent techniques and summarized in this report. 

6.3.1 Garver 6-bus System  
The first test system of this simulation is a well-known Garver’s system, which comprises 6 
buses, 9 possible branches, and 760 MW of power demand. The electrical system data; 
transmission line, load, and generation data are available in [17]. From this test system 
configuration, bus-6 is a new generation bus and needs to be connected to the existing 
network. A maximum of four parallel lines is permitted in each branch. In this simulation 
case, power losses consideration is included in objective function where the loss coefficient, 
K, was selected as 1000. A per-unit base in DC-load flow analysis is 100 MVA while the cost 
base is 105. The estimated lifetime of transmission lines was assumed to be 25 years and 
the cost of one kWh was assumed to be 0.005 monetary units/kWh found in [31]. The best 
solutions of SaDEA method are summarized and compared to other techniques in table 1. 

Table 1 Comparison of the Expansion Costs among Various Methods for Garver 6-Bus Test 
System 

 
Types of TEP problem 

K=1000 

Methods 
Investment 

cost 
Losses cost 

“a” 
Saved cost 

“b” 

 
TEP without the resizing 

of power generation 

ANNs [31] 261 448.83 904.77 

TS [31] 291 382.54 971.06 

GA [3] 291 382.54 971.06 

Hybrid ANN-TS-GA [31] 291 382.54 971.06 

SaDEA  291 382.54 971.06 

TEP with the resizing of 
power generation 

SaDEA 170 231.66 1,121.94 
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Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved 
cost “b” is calculated as a difference cost between the cost of ohmic power losses before the 
expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time 
of line) and the power losses cost “a” calculated after the new line additions for the same 
period. 
 For a case study of without power generation resizing consideration, the best solution 
of TEP problem considering system losses on Garver’s test system as shown in table 1 was 
found by all algorithms except ANNs method. Although the ANNs method obtained the least 
investment cost compared to other methods but it had the largest value of power losses cost 
after the new line additions. The SaDEA method obtained the investment cost and losses 
cost for with power generation resizing case study cheaper than the without power 
generation resizing case study. In addition, the SaDEA method had the largest saved cost of 
minimizing ohmic power losses during planning horizon in case of with power generation 
resizing consideration. 

6.3.2 IEEE 25-bus System 
The IEEE 25-bus system is selected to test the SaDEA procedure in this work. It consists of 
25 buses, 36 possible branches, and 2750 MW of total power demand. The electrical system 
data; transmission line, load, and generation data are available in [27] and [31]. In this 
simulation case, the objective function includes power losses consideration, in which the loss 
coefficient, K, was selected to be 10000. The estimated lifetime of transmission lines was 
assumed to be 25 years while the cost of one kWh was assumed to be 0.0112 US$/kWh 
[31]. In this case study, a comparison among the proposed method and other techniques 
from [31] is included in table 2. 
 For a case study of without power generation resizing consideration, the best solution 
of the TEP problem with system losses consideration was found by SaDEA method and an 
investment cost was 160.051 million US$ as shown in table 2. In addition, the SaDEA 
method achieved the least value of a power losses cost after the new line additions 
compared to other techniques. Comparison between with and without power generation 
resizing consideration, the SaDEA method obtained the investment cost and losses cost for 
with power generation resizing case study cheaper than the without power generation 
resizing case study. Therefore, the SaDEA technique got the largest value of a saved cost of 
minimizing ohmic power losses during expansion planning horizon on this test system. 
Overall, the best algorithmic procedure for this case is SaDEA method. 
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Table 2 Comparison of the Expansion Costs among Various Methods for IEEE 25-Bus Test 
System 

  
Types of TEP problem 

K=10000 

Methods 
Investment 

cost 
(million US$) 

Losses cost 
“a” 

(million US$) 

 
Saved cost 

“b” 
(million US$) 

 

 
TEP without the resizing of 

power generation 

ANNs [31] 224.178 161.995 147.979 
TS [31] 180.664 155.264 154.709 

GA [31] 162.430 171.947 138.016 

Hybrid ANN-TS-GA [31] 168.784 152.320 157.653 
SaDEA  160.051 134.251 175.722 

TEP with the resizing of 
power generation 

SaDEA 61.802 83.032 226.941 

 Note: The losses cost “a” after the new line addition is calculated for 25 years. The 
saved cost “b” is calculated as the difference cost between the cost of ohmic power losses 
before the expansion of the transmission system (309.973 million US$) based on a 25-year 
(life-time of line) and the power losses cost “a” calculated after the new line additions for the 
same period. 

6.4 Conclusion of a Self-Adaptive DEA Method for the TEP Problem with System Losses 
Consideration 
In this work, a SaDEA method is applied when solving the TEP problem with system losses 
consideration. In addition, the TEP problem is also included both with and without power 
generation resizing considerations. Regarding the achieved results on two test networks 
illustrate that the SaDEA procedure is an efficient technique for solving the transmission 
planning problem. As the numerical test results in table 1 and 2 indicate, the proposed 
method obtained the least values of an investment cost and a power losses cost compared 
to conventional genetic algorithm, tabu search, artificial neural networks, and hybrid artificial 
intelligent techniques on two test systems. In addition, the SaDEA method had the largest 
saved cost of ohmic power losses for both test cases as shown in table 1 and table 2. The 
most attractive feature of the proposed algorithm is the good computational performance. 
The accuracy of the results obtained in the TEP study is in very good agreement with those 
obtained by other researchers as found in [31]. Regarding a consequence of these 
successful results, the TEP problem considering the n-1 contingencies in single line outage 
or single generator outage will be investigated as future work. 
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7. An Enhanced DEA method for the TEP Problem with Security Constraint 
Consideration 

An enhanced DEA method is proposed to solve the TEP problem with security constraint 
consideration. The proposed method can be implemented to handle such problem as 
following details. 

7.1 An Enhanced DEA Optimization Method 
After two constant values are set by user, then an initial population is generated before 
applying optimization process. In the TEP problem formulation, each individual vector (Xi) 
contains many integer-valued parameters n, where nj,i represents the number of candidate 
lines in the possible branch j of the individual i. The problem decision parameter D is the 
number of possible branches for expansion.  

 
( ) ( )( ) ( )
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                      (6) 

 When an initial population of individuals is initialized successfully, then three DEA 
operators create the population of next generation P(G+1) by using the current population P(G). 
The optimization process is continuously repeated in search of the final solution until the 
maximum number of generations (Gmax) is reached or other predetermined convergence 
criterion () is satisfied. 

7.2 Fitness Function of the TEP Considering Security Constraint 
A fitness function of TEP problem is used to search the optimal solution, measure the 
performance of candidate solutions, and check for violation of the TEP problem constraints. 
The TEP fitness function F(X) is a combination of the objective function and two penalty 
functions and can be formulated according to (7) for each individual. An individual is the best 
solution if its fitness value F(X) is highest. The penalty functions must be also included in the 
fitness function in order to represent violations of both the planning operational constraints 
without security (OPC) and the planning security constraint (SCC) of TEP problem. 
Regarding the proposed problem, the OPC penalty function (9) investigates all constraints of 
TEP problem without security criterion consideration. In addition, the SCC penalty function 
(10) investigates all security constraints of TEP problem. The general fitness function of the 
TEP problem can be assigned as follows: 
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In (7), F(X) and O(X) represent fitness function and objective function of the TEP problem, 
respectively. P1(X) and P2(X) are the constraint penalty functions. X denotes the individual 
vector of decision variables. In this work, 1 and 2 are penalty weighting factors and set to 
0.5, respectively. For this TEP problem, the objective function and the constraint penalty 
functions are formulated as follows. 
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 where C1 and C2 are the constraint constants, which are applied to problem when an 
individual violates the OPC and SCC of TEP problem, respectively. In this work, both 
constants C1 and C2 are set as 0.5 for all cases. 

 A computer program of the SaDEA method for application to TEP problem with 
security constraint consideration has been designed as shown in figure 3. 

 

 

Figure 3 Example of the SaDEA optimization program for TEP problem with security 
constraint consideration 
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7.3 Test Systems and Numerical Test Results 
In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and 
has been tested its performance on three electrical transmission systems as reported in 
appendix A. These three test networks are the Garver’s 6-bus system, the Brazilian 46-bus 
system, and the IEEE 25-bus system and all required data are also available in [17], [25], 
and [27], respectively.  

Table 3 Results comparison of TEP problem with security constraint consideration 

Methods 
Best cost (x103 US$) 

Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system 

SaDEA 180 19,131 168,042 

Chu-Beasley GA (CBGA) [36] 180 - 213,000 

Ant Colony Search Algorithm (ACSA) [38] 298 248,943 - 

Conventional DEA [38] 298 210,818 - 

 The obtained results of TEP problem with security constraint and power generation 
resizing considerations are summarized in table 3, where the best investment costs of 
expansion corresponding to the proposed SaDEA method are compared to other algorithms. 
As indicated by the results in table 3, SaDEA and CBGA methods found the optimal solution 
on Gaver 6-bus system. For IEEE 25-bus system and the Brazilian 46-bus system, the 
SaDEA method could find the optimal solution as shown the cheapest investment cost. 

7.4 Conclusion of an Enhanced DEA method for the TEP Problem with Security 
Constraint Consideration 
In this work, an enhanced DEA method is proposed to deal with the TEP problem with n-1 
security criterion consideration. A single line outage is investigated in such TEP problem for 
reliability issue. From obtained results of Garver 6-bus system, IEEE 25-bus system, and the 
Brazilian 46-bus system, the SaDEA procedure is an acceptable optimization technique and 
minimizes effectively the total investment cost of TEP problem with security constraint 
consideration on realistically transmission systems. As the empirical solutions of these test 
cases indicate, total investment costs of the SaDEA method are less expensive than other 
methods on three test networks. The most attractive feature of the proposed algorithm is 
good computational performance and simple implementation. Regarding a consequence of 
the successful results, a distribution system planning problem will be investigated as future 
work.  
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8. Project Conclusions & Future Work 

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to 
electrical power system optimization problems as its main goal is to achieve an optimal 
expansion plan. The planning solution has to meet technical requirements while offering 
economical investment. Furthermore, transmission planning should specify new transmission 
facilities that must be added to an existing network to ensure adequate operation over a 
specified planning horizon. 

Over past few decades, a number of optimization methods have been applied to 
solve the TEP problem in many issues. These proposed methods are as follows: 
mathematical optimization methods (e.g. linear programming, nonlinear programming, 
dynamic programming, integer and mixed integer programming, benders decomposition, 
branch & bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic 
methods (e.g. genetic algorithms, tabu search, simulated annealing, particle swarm, 
evolutionary algorithms, differential evolution algorithm, etc.). The details of such methods are 
provided in chapter 2 of this report. 

A differential evolution algorithm (DEA) is an artificial intelligence technique and it 
was firstly presented by R. M. Storn and K. V. Price in 1995. The DEA method becomes a 
reliable and versatile function optimizer that is also readily applicable to a wide range of 
optimization problems. Although the conventional DEA method has a number of merits as 
described in chapter 2, it still has a drawback that is a difficult task of the DEA control 
parameters tuning. Regarding such disadvantage of the conventional DEA characteristic, thus 
it should be improved the optimization performance in this research. An enhanced DEA 
method is a modified version and has been proposed to solve the TEP problem with system 
losses and security criterion considerations in this work. 

The main contribution of this research is the enhancement of a conventional DEA 
method and the application of proposed technique to TEP problem with system losses and 
security criterion considerations. First of all, design of a self-adaptive DEA (SaDEA) 
procedure is to develop two DEA control parameters, mutation factor (F) and crossover 
probability (CR), which are self-tuning parameters using probability methodology. In order to 
validate its searching capability and reliability, the enhanced methodology has been tested 
with some selected mathematical benchmark functions, namely Sphere, Rosenbrock1, 
Absolute, Schwefel, and Rastrigin functions. 

Based on the successful results of SaDEA procedure application to selected 
mathematical functions, the proposed technique is subsequently implemented to solve static 
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TEP problem with system losses consideration, which is a real-world optimization problem, 
as shown in chapter 3. In chapter 3, the simulations have two different scenarios of static 
TEP problem that are with and without generation resizing considerations. In addition, a 
heuristic search method has been adopted in order to deal with static TEP considering DC 
based power flow model constraints. The proposed method has been implemented in 
Matlab7 and tested on two electrical transmission networks as found in appendix A1-A2. The 
obtained results indicate that SaDEA method performs effectively to handle the static TEP 
problem considering system losses on Graver 6-bus system and IEEE 25-bus system. The 
most attractive feature of the proposed algorithm is the good computational performance. 
The accuracy of the results obtained in the TEP study is in very good agreement with 
obtained by other researchers as presented in chapter 3. Regarding a consequence of the 
successful results, the TEP problem considering n-1 contingencies in single line outage has 
been investigated in chapter 4. 

Given its effectiveness for solving the TEP problem with system losses consideration, 
the proposed methodology is then applied to deal with the TEP problem with n-1 security 
criterion consideration, which is more complex and difficult than the previous work. In this 
study, such TEP problem based on DC power flow model has been analyzed. The proposed 
method application to handle the TEP problem with n-1 security criterion consideration is 
tested on three transmission systems that are Graver 6-bus system, IEEE 25-bus system, 
and the Colombian 93-bus system, as found in appendix A1-A3. The obtained results of 
three networks illustrate that the SaDEA technique is good efficient and effectively minimizes 
the total investment cost of TEP problem on such systems. 

Overall, the SaDEA procedure performs superior to other classical evolutionary 
algorithms (EAs) in terms of simple implementation with high quality of solution. Meanwhile, it 
requires less control parameters while being independent from initialization. In addition, its 
convergence is stable and robust as SaDEA procedure uses rather greedy selection and less 
stochastic approach to solve optimization problems than other classical EAs. 

As a consequence of the successful results in this research, the SaDEA method will 
be applied to solve a problem of distribution system planning in future work. Moreover, an 
economical solution of the TEP problem under the current deregulatory environment remains 
a significant issue in electrical power system analysis. Therefore, such topic should be further 
investigated in future research. Some issues for market-based transmission expansion 
planning, i.e. the losses of social welfare and the expansion flexibility in the system should 
be investigated and included in the TEP problem.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Problem Statement 

In general, electric power transmission lines are constructed to link remote generating power 
plants to load centers, thus permitting power plants to be located in regions that are more 
economical and environmentally suitable. Regarding systems grew, meshed networks of 
transmission lines have emerged, providing alternative paths for electric power flows from 
generating sites to load centers that enhance the reliability of continuous supply. In regions 
where generation resources or load patterns are imbalanced, transmission interconnection 
eases the requirement for additional generation. Additional transmission capability is justified 
whenever there is a need to connect cheaper generation to meet growing load demand or 
enhance system reliability or both. 

Transmission expansion planning (TEP) has always been a rather complicated task 
especially for large-scale real-world transmission systems. First of all, electricity demand 
changes across both area and time. The change in demand is met by the appropriate 
dispatching of generation resources. As an electric power system must obey physical laws, 
the effect of any change in one part of network (e.g. changing the load at a node, raising the 
output of a generator, switching on/off a transmission line or a transformer) will spread 
instantaneously to other parts of the interconnected network, hence altering the loading 
conditions on all transmission lines. The ensuing consequences may be more marked on 
some transmission lines than others, depending on electrical characteristics of the lines and 
interconnection. 
 The TEP problem involves determining the least investment cost of the power system 
expansion and technical operating through the timely addition of electric transmission 
facilities in order to guarantee that the constraints of the transmission system are satisfied 
over the defined planning horizon. Transmission system planners are entrusted with ensuring 
the above-stated goals are best met whilst utilizing all the available resources. Therefore the 
purpose of transmission network planning is to determine the timing and type of new 
transmission facilities. The facilities are required in order to provide adequate transmission 
capacity to cope with future additional generation and power flow requirements. The 
transmission plans may require the introduction of higher voltage levels, the installation of 
new transmission elements and new substations. Transmission network planners tend to use 
many techniques to solve such problem. The planners utilize automatic expansion models to 
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determine an optimum expansion network by minimizing the mathematical objective function 
subject to a number of constraints. 
 Normally, the TEP problem can be categorized as static or dynamic according to the 
treatment of the study period [1]. In static planning, the planners consider only one planning 
horizon and determine the number of suitable lines that should be installed to each branch of 
transmission system. Investment is carried out at the beginning of planning horizon time. In 
dynamic or multistage planning, the planners consider not only the optimal number and 
location of additional lines but also the most appropriate times to carry out such expansion 
investments. Therefore the continuing growth of the demand and generation is always 
assimilated by the system in an optimized way. The planning horizon is divided into various 
stages and the transmission lines must be installed at each stage of the planning horizon. 
 Many optimization techniques have been employed to solve the TEP problem. These 
techniques range from expert engineering judgements to powerful mathematical programming 
methods. The engineering judgements depend on human expertise and knowledge of the 
system. The most applied approaches in the TEP problem can be classified into three groups 
that are mathematical optimization methods (e.g. linear programming, nonlinear 
programming, dynamic programming, integer and mixed integer programming, benders 
decomposition and branch and bound, etc.), heuristic methods (mostly constructive 
heuristics) and meta-heuristic methods (e.g. genetic algorithms, tabu search, simulated 
annealing, particle swarm, evolutionary algorithms, differential evolution algorithm, etc.). 
 Over the past decade, algorithms inspired by the observation of natural phenomena 
when solving complex combinatorial problems have been gaining increasing interest because 
they perform efficiently for solving the optimization problems [2]. Such algorithms have 
successfully applied to a number of power system problems [3-4], for example power system 
scheduling, power system planning and power system control. 
 In recent years, a differential evolution algorithm (DEA) method has been attracting 
increasing attention for a wide variety of engineering applications including electrical power 
system engineering. There have been many researches that applied DEA for solving 
electrical power system problems such as power system transfer capability assessment [5], 
power system planning [6], economic power dispatch [7-9], distribution network 
reconfiguration problem [10], short-term hydrothermal scheduling problem [11], optimal 
reactive power flow [12-13] and optimal power flow [14]. Moreover, the conventional DEA 
method has been successfully solved static and dynamic transmission expansion planning 
problems by the author in [15] where the DEA method performed superior to conventional 
genetic algorithm (CGA) in terms of simple implementation with high quality of solution and 
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good computation performance. Meanwhile, DEA requires less control parameters while 
being independent from initialization. In addition, its convergence is stable as DEA procedure 
uses rather greedy selection and less stochastic approach to solve optimization problems 
than other CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious 
task of the DEA control parameters tuning due to complex relationship among problem’s 
parameters. The optimal parameter settings of the DEA method may not be found and the 
final result may be trapped in a local minimum. 
 It is important to note that few algorithms have been practically applied to solve the 
TEP problem at present [1]. Although the method proposed in [15] by the author was 
successfully solved many cases of TEP problem, it was not yet sufficiently robust for 
practical use for industry. The conventional DEA method proposed in [15] has the notable 
limitation of DEA control parameter tuning due to a complex interaction of parameters as 
above mentioned. Therefore, a further improvement of the novel DEA method is essentially 
required before it can be generally adopted for practical use in industry. 
 The TEP problem as studied in [15] is called a basic planning, in which the security 
criterion has not been considered. In other words, the optimal expansion plan is determined 
without considering the n-1 contingencies caused by a transmission line or generator outage. 
The n-1 security criterion is an important index in power system reliability study as it states 
that the system should be expanded in such a way that, if a single line or generator is 
withdrawn, the expanded system should still operate adequately. Moreover, the TEP with 
system loss consideration is a significant issue that should be included in the planning 
problem for enhancing the result accuracy. Therefore, the proposed TEP problem has been 
investigated in both n-1 security criterion and system losses considerations in this research 
work. 

1.2 Objectives of Research Project 

The ultimate goal of undertaken research is to take advantage of computational simulations 
more effectively in an overall planning study and consequently determine an appropriate 
transmission network expansion plan. The main objectives of this project are: 
 To enhance a conventional DEA method for solving a wide variety of mathematical and 

real-world optimization problems; 
 To apply the proposed technique, a self-adaptive DEA method, for solving power system 

optimization problems, especially the TEP problem with security constraint and system 
losses considerations; 
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 To use the obtained results of planning study in order to design future transmission 
network and test its performance; 

 To use the novel knowledge from this research for application to the author’s teaching 
on a course of electric power system analysis and a course of electric power system 
operation & design.    

1.3 Scopes of Research Work 

 A conventional DEA method is improved its performance and then it is tested with some 
selected mathematical benchmark functions before applying real-world optimization 
problems. 

 An enhanced DEA method is further employed to handle a real-world optimization 
problem, which is the TEP using DC power flow-based model.  

 Such investigated issue is the TEP problem with system power losses and n-1 security 
constraint considerations. 

 The efficiency of the proposed method is demonstrated via the analysis of low, medium 
and high complexity transmission network test cases. 

1.4 Contributions of Research Work 

The major contributions of this research are the development of a conventional DEA method 
and the investigation of the applicability of an enhanced DEA technique when applied to TEP 
problem with security constraint and system losses considerations. In addition, a detailed 
comparison of the enhanced DEA method and the conventional DEA procedure used for 
solving the TEP problem is presented. The most significant original contributions presented 
and investigated in this report are outlined as follows: 

 Firstly, a novel methodology is proposed in this research where the conventional DEA 
procedure is further improved its performance by reducing a tedious task of control 
parameters tuning. In order to validate its searching capability and reliability, the 
proposed methodology has been tested with some selected mathematical benchmark 
test functions before applied to real-world optimization problems. 

 Regarding the effectiveness of an enhanced DEA method as tested on several 
numerical benchmark test functions, the proposed technique is successfully implemented 
to solve a real-world optimization problem, which is the TEP problem with losses 
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consideration. For this study, two test networks, Garver’s 6-bus system and IEEE 25-bus 
system, have been investigated and explained in this report. 

 Finally, this research utilizes the proposed effective technique to deal with the TEP 
problem with n-1 security criterion consideration, which is more complex and difficult 
when compared to the basic TEP problem as shown in [15]. In this work, the TEP 
problem considering n-1 contingency constraint has been analyzed and it is an 
especially difficult task with regard to large-scale real-world transmission system. The 
enhanced DEA method as applied to solve the TEP problem with n-1 contingency 
criterion consideration is tested on three transmission systems that are the Garver’s 6-
bus system, IEEE 25-bus system, and Colombian 46-bus system. 

1.5 Report Outline 

 Chapter 1 presents an introduction to the TEP problem with n-1 security criterion and 
system losses considerations. In addition, research objectives and contributions of the 
proposed DEA method application to TEP problem are included in this chapter.   

 Chapter 2 presents an overview of the TEP problem including problem formulation and 
literature survey. Moreover, reviews of the DEA methodology and optimization process 
are also provided in this chapter. 

 Chapter 3 provides implementation and development of the proposed algorithm for 
solving the TEP problem with system losses consideration. The experimental results and 
comments are discussed in this chapter. 

 Chapter 4 presents implementation of the proposed technique for solving the TEP 
problem with n-1 security constraint consideration. The numerical test results for realistic 
transmission systems and discussions are included in this chapter. 

 Chapter 5 presents overall conclusions of this research and the further possible research 
directions are also indicated. 

 Chapter 6 presents output of this research project. In addition, the proposed articles are 
also presented in this chapter. 
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CHAPTER 2 
FUNDAMENTALS OF TRANSMISSION EXPANSION PLANNING 

PROBLEM AND DIFFERENTIAL EVOLUTION ALGORITHM 

2.1 Introduction 

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to 
power system operation and planning, which is a complicated nonlinear constrained 
optimization problem. Generally, the main purpose of solving TEP problem is to specify 
addition of transmission facilities that provide adequate capacity and in the meantime 
maintain operating performance of electric transmission system [16]. To achieve effective 
plan, exact location, capacity, timing, and type of new transmission equipment must be 
thoroughly determined to meet demand growth, generation addition, and increased power 
flow. 

To find an optimal solution of TEP over a planning horizon, extensive parameters are 
required; such as candidate circuits, electricity demand forecast, generation forecast, 
investment constraints, transmission losses data, etc. This would consequently impose more 
complexity in solving the TEP problem. Given the above information, in–depth knowledge on 
problem formulation and computation techniques for TEP is crucial and therefore, this 
chapter aims essentially at presenting fundamental information of these issues. 

The organization of this chapter is as follows: section 2.2 presents overview and 
formulation of DC power flow model. Section 2.3 presents problem formulation and 
mathematical model of the basic TEP problem.  Section 2.4 presents overview of the 
conventional DEA method and its optimization process. Finally, solution methods for the TEP 
problem found in the international technical literature are reviewed in section 2.5. 

2.2 DC Power Flow 

For a long-term TEP study, some assumptions are invented and proposed for solving such 
planning problem, for example, a consideration of the reactive power allocation is neglected 
in the first moment of the planning. In this stage, the main concern is to identify the principal 
power corridors that probably will become part of the expanded system. There are several 
types of the mathematical model employed for representing the transmission network in the 
TEP study; AC power flow model, DC power flow model, transportation model, hybrid model, 
and disjunctive model as discussed in [17]. 
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Basically, the DC power flow model is widely adopted to the TEP problem and it is 
frequently considered as a reference because in general, networks synthesized by this model 
satisfy the basic conditions stated by operation planning studies. The planning results found 
in this phase will be further investigated by operation planning tools such as AC power flow 
analysis, transient and dynamic stability analysis and short-circuit analysis for obtaining the 
accurate result [3]. 

The formulation of DC power flow is obtained from the modification of a general 
representation of AC power flow, which can be illustrated by the following equations. 
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where Pi and Qi are real and reactive power of bus i, respectively. Vi  and i are 
voltage magnitude and voltage phase angle of bus i, respectively. Vk  is voltage magnitude 
at bus k. Gik and Bik are real and imaginary parts of element (i,k) of bus admittance matrix, 
respectively. N is total number of buses in the system. 

To modify AC power flow model to the DC power flow based model, the following 
assumptions are normally considered [18]: 
 Bus voltage magnitude at each bus bar is approximate one per unit (Vi  = 1 p.u. for all i 

buses); 
 Line conductance at each path is neglected (Gik = 0), or on the other hand only line 

susceptance (Bik) is considered in the DC model; 
 Some trigonometric terms of AC model in equations (2.1) and (2.2) can be approximated 

as following terms: sin (i - k)  i - k  and cos (i - k)  1 

Given these assumptions, the AC power flow equation in (2.1) is therefore simplified to 
yield the DC power flow equation as follows: 
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 where Bik is the line susceptance between bus i and k. 
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2.3 Basis of Transmission Expansion Planning Problem  

In this section, the TEP is formulated as a mathematical problem. The goal of solving such 
problem is typically to fulfill the required planning function in terms of investment and 
operation restriction. Normally, the TEP problem can be mathematically formulated by 
applying DC power flow model, which is a nonlinear mixed-integer problem with high 
complexity, especially for large-scale real-world transmission networks. There are several 
alternatives to the DC model such as the transportation, hybrid, and disjunctive models. 
Detailed reviews of the main mathematical models for the TEP problem were presented in 
[17]. 

2.3.1 The Objective Function 
The objective of TEP problem is to minimize total expansion cost while satisfying operational 
and economical constraints. In this research, the classical DC power flow model is applied to 
solve the TEP problem. Mathematically, the problem can be formulated as follows: 
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 where v, cij and nij represent transmission investment cost, cost of a candidate circuit 
for addition to the branch i-j and the number of circuits added to the branch i-j, respectively. 
Here  is set of all candidate branches for expansion. 

2.3.2 Problem Constraints 
The objective function (2.4) represents a capital cost of newly installed transmission lines, 
which has some restrictions. These constraints must be included into mathematical model to 
ensure that the optimal solution satisfies transmission planning requirements. These 
constraints are described as follows: 

 DC Power Flow Node Balance Constraint  
This linear equality constraint represents the conservation of power at each node. 

 g d B                                                                             (2.5) 

 where g, d and B are real power generation vector in existing power plants, real load 
demand vector in all network nodes, and susceptance matrix of the existing and added lines 
in the network, respectively. Here  is the bus voltage phase angle vector. 
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 Power Flow Limit on Transmission Lines Constraint 
The following inequality constraint is applied to transmission expansion planning in order to 
limit the power flow for each path.  

 0 max( )ij ij ij ijf n n f                                                                 (2.6) 

 In DC power flow model, each element of the branch power flow in constraint (2.6) 
can be calculated by using equation (2.7): 
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 where fij, fij
max, nij, nij

0 and xij represent, respectively, total branch power flow in branch 
i-j, maximum branch power flow in branch i-j, number of circuits added to branch i-j, number 
of circuits in original base system, and reactance of the branch i-j. Here i and j is voltage 
phase angle of terminal buses i and j respectively. 

 Power Generation Limit Constraint 
For transmission expansion planning problem, power generation limit must be included into 
the problem constraints. This can be mathematically represented as follows: 

 
min max

i i ig g g                                                             (2.8) 

 where gi, gi
min

 and gi
max are real power generation at node i, the lower and upper real 

power generation limits at node i, respectively. 

 Right-of-way Constraint 
It is essential to find an accurate TEP solution, thus planners need to know an exact capacity 
of newly required circuits. Therefore this constraint must be considered in such planning 
problem. Mathematically, this constraint defines location and maximum number of circuits, 
which can be installed in a specified location. It can be represented as follows. 

 max0 ij ijn n                                                      (2.9)   

 where nij and nij
max

  represent the total integer number of circuits added to the branch 
i-j and the maximum number of added circuits in the branch i-j respectively.  
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 Bus Voltage Phase Angle Limit Constraint 
While a DC power flow model is employed to the TEP problem, thus bus voltage magnitude 
is not a factor in this analysis. The bus voltage phase angle could be included as a TEP 
constraint to be increase an accurate solution in technical issue. The calculated phase angle 
(ij

cal) should be less than the predefined maximum phase angle (ij
max). Such constraint can 

be represented as the following mathematical expression. 

 
cal max
ij ij                                                                                          (2.10)   

2.4 Basis of Differential Evolution Algorithm Methodology 

Evolutionary algorithms (EAs) are heuristic, stochastic optimization techniques based on the 
principles of natural evolution theory. The field of investigation, concerning all EAs, is known 
as “evolutionary computation”. The origins of evolutionary computation can be traced back to 
the late 1950’s and a variety of EAs have been developed independently by a number of 
researchers until now. A variety of algorithms have been developed within the field of 
evolutionary computation. The most popular algorithms are genetic algorithms (GAs), 
evolutionary programming (EP), evolution strategies (ESs), and differential evolution 
algorithms (DEA). These approaches attempt to discover the optimal solution of an 
optimization problem via a simplified model of evolutionary processes observed in nature and 
they are based on concept of a population of individuals that evolve and improve their fitness 
through probabilistic operators via processes of recombination, mutation, and selection. The 
individuals are evaluated with regard to their fitness and the individuals, with superior fitness, 
are selected to compose the population in next generation. After several generations of the 
optimization procedure, the fitness of individuals should be improved while current individuals 
explore the solution space for the optimal value. 
 A DEA method is an evolutionary computation algorithm as it uses real-coded 
variables and typically relies on mutation as the search operator. The DEA method was 
originally introduced by R. M. Storn and K. V. Price in 1995 [19] and further developed to be 
a reliable and versatile function optimizer that is also readily applicable to a wide range of 
optimization problems [20]. More recently, the DEA method has evolved to share many 
features with conventional genetic algorithm (CGA) [21]. The major similarity between these 
two types of algorithm is that they both maintain populations of potential solutions and use a 
selection mechanism for choosing the best individuals from the population. The main 
differences between the CGA method and the DEA technique were summarized in [22]. 
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 DEA operates directly on floating point vectors while CGA relies mainly on binary strings; 
 CGA relies mainly on recombination to explore the search space, while DEA uses a 

special form of mutation as the dominant operator; 
 DEA is an abstraction of evolution at individual behavioural level, stressing the 

behavioural link between an individual and its offspring, while CGA maintains the genetic 
link. 

 The DEA method has a number of significant advantages when applying to 
optimization problems and these merits were discussed by Price in [23].  

 Ability to find the true global minimum regardless of the initial parameter values; 
 Fast and simple with regard to application and modification; 
 Requires few control parameters; 
 Parallel processing nature and fast convergence; 
 Capable of providing multiple solutions in a single run; 
 Effective on integer, discrete and mixed parameter optimization; 
 Ability to find the optimal solution for a nonlinear constrained optimization problem with 

penalty functions. 

 A DEA is a parallel direct search technique that employs a population P of size NP, 
consisted of floating point encoded individuals or candidate solutions (2.11). At every 
generation G during the optimization process, the DEA maintains population P(G) of NP 
vectors of candidate solutions to the problem at hand. 
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 Each candidate solution Xi is a D-dimensional vector, containing as many real-valued 
parameters (2.12) as the problem decision parameters D. 
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2.4.1 Initialization Step 
In the first step of the DEA procedure, population of candidate solutions must be initialized. 
Typically, each decision parameter in every vector of the initial population is assigned a 
randomly chosen value from within its corresponding feasible bounds.  

 
( 0) min max min
, rand [0,1].( )G

j i j j j jx x x x                     (2.13) 



  35 
 

where i = 1,…,NP and j = 1,…,D. Here xj,i
(G=0) is an initial value of the jth parameter of the ith 

individual vector. xj
min and xj

max are the lower and upper bounds of the jth decision parameter, 
respectively. Once every vector of the population has been initialized, its corresponding 
fitness value is calculated and stored for future reference. 

2.4.2 Mutation Step 
After the population of candidate solutions is successfully initialized, the next step of DEA 
optimization process is carried out by applying three basic genetic operations; mutation, 
crossover, and selection. These three operators create the population of next generation 
P(G+1) by using current population P(G). At every generation G, each vector in the population 
has to serve once as a target vector Xi

(G), the parameter vector has chosen vector index i, 
and it is compared with a mutant vector. The mutation operator generates mutant vectors 
(Vi

(G)) by perturbing a randomly selected vector (Xr1) with the difference of two other randomly 
selected vectors (Xr2 and Xr3). 

  ( ) ( ) ( ) ( )
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The vector indices r1, r2 and r3 are randomly selected, in which r1, r2 and r3  {1,…,NP} 
and r1 ≠ r2 ≠ r3 ≠ i. Xr1, Xr2 and Xr3 are selected anew for each parent vector. F is a user-
defined constant known as the “scaling mutation factor”, which is typically chosen from within 
the range [0,1+]. 

2.4.3 Crossover Step 
In this step, a crossover or recombination process is also applied in the DEA procedure 
because it helps to increase the diversity among mutant parameter vectors. At the generation 
G, crossover operation creates trial vectors (Ui) by mixing the parameters of the mutant 
vectors (Vi) with the target vectors (Xi) according to a selected probability distribution.  
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The crossover constant CR is a user-defined value (known as the “crossover probability”), 
which is usually selected from within the range [0,1]. The crossover constant controls the 
diversity of the population and aids algorithm to escape from local optima. The “randj” is a 
uniformly distributed random number within the range (0,1) generated anew for each value of 
j. “s” is the trial parameter with randomly chosen index  {1,…,D}, which ensures that the 
trial vector gets at least one parameter from the mutant vector.  
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2.4.4 Selection Step 
Finally, a selection operator is applied in the last stage of the DEA procedure. The selection 
operator selects the vectors that are going to compose the population in next generation. 
This operator compares the fitness of trial vector and corresponding target vector and then 
selects the one that provides the best solution. The fitter of two vectors is allowed to 
advance into the next generation according to (2.16). 
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Figure 2.1 The main flowchart of the conventional DEA optimization process 
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 The DEA optimization process is repeated continually across generations to improve 
the fitness of individuals. The overall optimization process is stopped whenever maximum 
number of generations is reached or any other predetermined convergence criterion is 
satisfied. The main concept of a conventional DEA optimization process is illustrated in figure 
2.1. 

2.5 Review of Solution Methods for Transmission Expansion Planning 
Problem 

Over the last few decades, there were a number of conventional methods applied to solve 
the TEP problem, for instance, linear programming [24], branch and bound [25], dynamic 
programming [26], interactive method [27], nonlinear programming [28], mixed integer 
programming [29], and etc.  
 In 1970, Garver proposed a linear programming method to solve the TEP problem 
[24]. This original method was applied to long-term planning of electrical power systems and 
produced a feasible transmission network with near-minimum circuit miles using as input any 
existing network plus a load forecast and generation schedule. Two main steps of the 
method, in which the planning problem was formulated as load flow equations and new 
circuit selection could be searched based on the system overloads, were described in detail.  
 An interactive method was applied in order to optimize the TEP problem and reported 
in 1984 [27]. The method was based on a single-stage optimization procedure using 
sensitivity analysis and the adjoint network approach to transmit power from a new 
generating station to a loaded AC system. The non-linear programming technique of gradient 
projection followed by a round-off procedure was used for this optimization method.  
 Recently, many methods based on artificial intelligence (AI) techniques have been 
also proposed to solve the TEP problem. These AI techniques include genetic algorithms 
(GAs) [30-31], simulated annealing (SA) [32], tabu search (TS) [33], and artificial neural 
networks (ANNs) [31]. In 2002, several types of AI techniques, which are GAs, TS and ANNs 
with linear and quadratic programming models, were applied to solve the TEP problem both 
with and without system losses consideration by Al-Saba and El-Amin [31]. The purpose of 
the TEP was to minimize the investment costs needed to handle the increased load and the 
additional generation requirements in terms of circuit additions and power losses. The TEP 
results reported in [31] are used to compare to the obtained results of this research project. 
 A differential evolution based method for power system planning problem was 
presented by Dong et al. [6]. The planning aimed at locating the minimum cost of additional 
transmission lines that must be added to satisfy the forecasted load in a power system. The 
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planning in [6] considered several objectives including expansion investment cost, the 
reliability objective-expected energy not supplied, the social welfare objective-expected 
economical losses and the system expansion flexibility objective. Differential evolution could 
show its capability on handling integer variables and non-linear constrained multi-objective 
optimization problem. 
 In addition, a conventional differential evolution algorithm was successfully applied to 
static and dynamic transmission expansion planning by the author as shown in [15]. There 
were ten variations of DEA strategies to be employed for optimization. Overall, the DEA 
method performed superior to CGA for finding the optimal solutions and computational times 
in all study cases. Unfortunately, the conventional DEA method still has a drawback that is a 
tedious task of the DEA control parameters tuning due to complex relationship among 
problem’s parameters. Therefore, the further research should be proposed for enhancing the 
conventional DEA performance.  
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CHAPTER 3  
A SELF-ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM  

FOR TRANSMISSION EXPANSION PLANNING WITH SYSTEM LOSSES 
CONSIDERATION 

3.1 Introduction 

Although a conventional DEA method has a number of merits as described in chapter 2, it 
still has a drawback that is a difficult task of the DEA control parameters tuning. Regarding 
such disadvantage of the conventional DEA characteristic, thus it should be enhanced the 
optimization performance in this research. A self-adaptive DEA (SaDEA) method is a 
modified version and has been proposed to solve the TEP problem with system losses 
consideration in this chapter. Several transmission expansion costs; an investment cost, a 
power losses cost, and a saved cost of the proposed SaDEA technique are compared to 
conventional genetic algorithm, tabu search, artificial neural networks, and hybrid artificial 
intelligent techniques reported in [31] on the Garver 6-bus test system and IEEE 25-bus test 
system. 
 The organization of this chapter is as follows: section 3.2 presents a formulation of 
TEP problem with system losses consideration. A SaDEA method is an enhanced version of 
the conventional DEA method and proposed in section 3.3. Section 3.4 states the 
implementation of the SaDEA method to handle the TEP problem with system losses 
consideration. Section 3.5 shows significant data of two selected electrical transmission 
systems to be tested the proposed algorithm. Meanwhile, the experimental results of these 
test systems are also included in the same section. Subsequently, these results are 
discussed and further analyzed in section 3.6. Finally, section 3.7 provides summary of this 
chapter. 

3.2 Primal Transmission Expansion Planning with System Losses 
Consideration 

A main purpose of solving the TEP problem with system losses consideration is to minimize 
the total expansion cost while satisfying technical and economical constraints. In this task, a 
classical DC power flow model is adopted to solve the TEP problem [31]. Mathematically, an 
objective function of such problem can be formulated as follows:  
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 where v, cij and nij represent transmission expansion cost, cost of a candidate circuit 
for addition to the branch i-j, and the number of circuits added to the branch i-j, respectively. 
Here  is the set of all candidate branches for expansion. In addition, K is a loss coefficient 
(calculated using K=8760/NYE/Ckwh); NYE is an estimated life time of the expansion 
network (years); CkWh: is a cost of one kWh (US$/kWh); Rm is a resistance of the mth line; 
Im is the flow on the mth line; and NL is the number of the existing lines. 
 The first term of objective function represents the capital cost of installed lines and 
the second term represents the cost of ohmic power losses after new line additions. The 
system power flow and losses are changed due to a result of line additions. The loss 
coefficient (K) depends upon number of years of transmission system operation and the kWh 
cost. The DC load flow is used in the problem formulation where current (I) is approximately 
equal to the power flow and voltage is assumed to be unity at all buses. 
 The objective function (3.1) of TEP problem with system losses consideration 
represents the expansion cost of newly installed transmission lines, which has some 
restrictions. These constraints must be included into mathematical model to ensure that the 
optimal solution satisfies transmission planning requirements. The TEP problem constraints 
are described in subsection 2.3.2 and can be formulated as following equations (2.5)-(2.10) 
in chapter 2. 

3.3 An Enhanced Differential Evolution Algorithm Method 

According to a difficult task of the DEA control parameters tuning due to complex relationship 
among problem’s parameters has been a drawback of the conventional DEA method. 
Therefore, a further improvement of the conventional DEA method is essentially required 
before it can be generally adopted for practical use in industry. In this research, the 
conventional DEA method has been developed its optimization procedure. A self-adaptive 
DEA technique is proposed and explained in this section. The design of SaDEA optimization 
procedure is to develop two DEA control parameters, mutation factor (F) and crossover 
probability (CR), which are self-tuning parameters using probability methodology. This 
enhanced method is called “Method 2jDE” as found in [34]. 
 As such proposed method, users must define two constant values (T1 and T2) that 
are the indices of control parameters (F and CR) changing, respectively. The user-defined 
values T1 and T2 are usually selected from within the range [0,1] and they are set as 0.1 in 
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this research for avoiding local optimum trapping. The control parameters F and CR are 
updated in their setting bounds when the uniformly distributed random numbers within the 
range (0,1) are less than T1 and T2. The overall procedures of the SaDEA method can be 
summarized as follows: 

Step 1: Set up all control parameters of the SaDEA method (Fmin, Fmax, CRmin, CRmax, T1, T2, 
NP and D); 

Step 2: Generate the initial values of the SaDEA control parameters (F and CR) to be 
applied to mutation and crossover processes; 

Step 3: Initialize the population P of all individuals according  to (2.13); 
Step 4: Evaluate an initial population as initialized from step 3;  
Step 5: Create mutant vectors from the population P using mutation operation; 
Step 6: Create trial vectors using crossover operation;  
Step 7: Evaluate the trial vectors as created from step 6; 
Step 8: Select vector providing the best solution in present generation using selection 

operation for next computational generation;  
Step 9: Update control parameter F, the F value is essential to update when a random 
 value rand1 (0,1) < T1; 
Step 10: Updating control parameter CR, the CR value is essential to update when a random 

value rand2 (0,1) < T2; 
Step 11: Repeat the SaDEA optimization process from step 5 until step 10 across 

generations to improve the fitness values of candidate solutions; 
Step 12: Verification of stop criterion, the overall optimization process is stopped whenever 

maximum number of generations is reached or any other predetermined convergence 
criterion is satisfied. 

The main concept of a self-adaptive DEA optimization process is illustrated in figure 3.1. 
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Set up all SaDEA control parameters 
(Fmin, Fmax, CRmin, CRmax, T1, T2, NP and D)
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Yes

No

Yes
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Figure 3.1 The main flowchart of a self-adaptive DEA optimization process 
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3.4 Implementation of a Self-Adaptive DEA Method for the TEP Problem with 
System Losses Consideration 

Regarding a conventional differential evolution algorithm (CDEA) method (described in 
chapter 2) has the notable limitation of CDEA control parameter tuning due to a complex 
interaction of parameters. The SaDEA procedure is proposed to enhance the performance of 
conventional DEA method by reducing a tedious task of control parameters tuning. In 
addition, the SaDEA technique was successfully adopted to solve an economic dispatch 
problem in the previous author’s work [35]. From the achieved successful results, the SaDEA 
method is proposed to solve the TEP problem with transmission system losses consideration 
in this research work. 

3.4.1 The SaDEA Optimization Procedure 
In the first step of SaDEA optimization process, users have to define two constant values (T1 
and T2) that are the indices of control parameters (F and CR) changing. The user-defined 
values T1 and T2 are usually selected from within the range [0,1] and they are set as 0.1 in 
this work for avoiding local optimum trapping. The control parameters F and CR are updated 
in their setting bounds when the uniformly distributed random numbers within the range (0,1) 
are less than T1 and T2. 
 In the next step, an initial population is generated according to (2.13). For the TEP 
problem formulation, each individual vector (Xi) contains many integer-valued parameters n, 
where nj,i represents number of candidate lines in the possible branch j of the individual i. 
The problem decision parameter D is number of possible branches for expansion.  

 
( ) ( )( ) ( )

, ,1,[ ,..., ,..., ], 1,...,
G GG G

i j i pD iiX n n n i N 
                 (3.2) 

 After new individuals are initialized successfully, then they are created by applying 
mutation (2.14), crossover (2.15), and selection (2.16) operators, respectively. The 
optimization process is repeated in search of the final solution until the maximum number of 
generations (Gmax) is reached or other predetermined convergence criterion () is satisfied. 

3.4.2 Fitness Function of the TEP Problem Considering Line Losses  
In this work, a fitness function F(X) of the TEP problem is assigned according to (3.3) for 
each individual. The fitness function is a combination of an objective function and two penalty 
functions. The fitness function is adopted to find an optimal solution, measure the 
performance of candidate solutions, and check for violation of the TEP problem constraints. 
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An individual is the best solution if its fitness value F(X) is highest. The penalty functions are 
also included in the fitness function in order to represent violations of both equality and 
inequality constraints. For the TEP problem, an equality constraint penalty function (3.5) 
considers the DC power flow node balance constraint and an inequality constraint penalty 
function (3.6) considers the constraints of power flow limit on each transmission line, power 
generation limit, bus voltage phase angle limit, and right-of-way, respectively. A general 
fitness function of the TEP problem can be formulated as follows: 

 1 1 2 2

1
( )

( ) ( ) ( )
F X

O X P X P X 


 
                      (3.3) 

 F(X) and O(X) are fitness function and objective function of the TEP problem, 
respectively. P1(X) and P2(X) are the equality and inequality constraint penalty functions, 
respectively. X denotes the individual vector of decision variables. 1 and 2 are penalty 
weighting factors that are set to 0.5 in this work. For this TEP problem, the objective function 
and penalty functions are formulated as follows. 
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       (3.6) 

 where C is an inequality constraint constant that is used when an individual violates 
the inequality constraints. In this work, the constant C is set as 0.5 for all cases. 

3.4.3 Control Parameters Setting  
A proper selection of the SaDEA control parameters is very essential to algorithm 
performance and success when searching optimal solution. In this simulation, the setting 
ranges of the SaDEA control parameters used in the TEP problem are as follows: F = [0.4,1], 
CR  =  [0.8,1] and NP = [5*D,10*D]. The maximum predetermined convergence criterion () is 
set to 1x10-4 and the maximum number of generations (Gmax) is set to 1x103. 
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3.4.4 Overall Procedures of the SaDEA Optimization Program for TEP Problem 
The overall procedures of the SaDEA method for solving the TEP problem can be 
summarized as follows: 

Step 1: Read all required system data; 
Step 2: Set up two constant values T1 and T2 for simulation; 
Step 3: Set iteration G = 0 for an initialization step of the SaDEA procedure; 
Step 4: Initialize the SaDEA control parameters F and CR;  
Step 5: Initialize the population P of all individuals according  to (2.13); 
Step 6: Evaluate the fitness function according to (3.3) and then check violations of all 
 constraints for each individual using (3.5) and (3.6); 
Step 7: Rank all individuals according to their fitness; 
Step 8: Updating control parameter F, the F value is essential to updated when a random 
 value rand1 (0,1) < T1; 
Step 9: Updating control parameter CR, the CR value is essential to updated when a random 
 value rand2 (0,1) < T2; 
Step 10: Set iteration G = 1 for the next step of the SaDEA optimization process; 
Step 11: Apply mutation, crossover, and selection operations to create new individuals; 
Step 12: Evaluate the fitness function by using (3.3) and then check violations of all 
 constraints for each new individual using (3.5) and (3.6); 
Step 13: Rank new individuals according to their fitness; 
Step 14: Updating F, the F value is updated when a random  value rand1 (0,1) < T1; 
Step 15: Updating CR, the CR value is updated when random value rand2 (0,1) < T2; 
Step 16: Verification of stop criterion, if F(X)G- F(X)G-1 >  or G < Gmax, set G = G + 1 and 
 return to step 11 for repeating to search the final solution. Otherwise, stop to 
 calculate and go to step 17; 
Step 17: Compute and display the final solutions, which are an investment cost, a system 
 losses cost, and a total expansion cost. 

 A computer program of the SaDEA method application to TEP problem with system 
losses consideration has been designed and performed as above procedures. This proposed 
computational program is illustrated in figure 3.2. 
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Figure 3.2 Example of the SaDEA optimization program for TEP problem with line losses 
consideration 

3.5 Test Systems and Numerical Test Results 

In the simulation, the proposed SaDEA procedure has been implemented in MATLAB and 
tested its performance on two electrical transmission systems as shown in appendix A. 
These two test networks are Garver’s 6-bus system and IEEE 25-bus system, which all 
significant data are also available in [17] and [27]. In this work, the TEP problem is analyzed 
including system losses consideration. In addition, the TEP problem has been investigated in 
two cases that are with and without power generation resizing considerations. In case of with 
generation resizing consideration, the generated MW power at each generator varies 
between gi

min and gi
max, of which the details are explained in section 2.3. For the experiment, 

the values of gi
min are set to “0” MW for all generating units in two test systems. Meanwhile, 

setting data of gi
max are referred to as presented in appendix A. The simulation results of the 

proposed SaDEA technique have been compared to conventional genetic algorithm (CGA), 
tabu search (TS), artificial neural networks (ANNs), hybrid artificial intelligent techniques and 
summarized in this chapter. 

3.5.1 Garver 6-bus System  
The first test system of this simulation is a well-known Garver’s system, which comprises 6 
buses, 9 possible branches, and 760 MW of power demand. The electrical system data; 
transmission line, load, and generation data are available in [17]. From this test system 
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configuration, bus-6 is a new generation bus and needs to be connected to the existing 
network. A maximum of four parallel lines is permitted in each branch. In this simulation 
case, the power losses consideration is included in the objective function where the loss 
coefficient, K, was selected as 1000. The per-unit base in the DC-load flow analysis is 100 
MVA while the cost base is 105. The estimated lifetime of transmission lines was assumed to 
be 25 years and the cost of one kWh was assumed to be 0.005 monetary units/kWh found in 
[31]. Numerical test results of the proposed method are shown in table 3.1-3.2 for each case 
and then the best solutions of SaDEA method are summarized and compared to other 
techniques in table 3.3. 

3.5.1.1 Without Generation Resizing Consideration - Garver’s System 
For the Graver’s 6-bus test system, the obtained results of TEP problem considering line 
losses in case of without generation resizing are presented in table 3.1 and figure 3.3.  

Table 3.1 Summary results of Garver 6-bus system without generation resizing case 

Results of the TEP with line losses consideration 

(without power gen resizing) 
The SaDEA method 

Best total cost 673.54 

Average total cost 686.79 

Worst total cost 739.83 

% Difference between best and worst 9.84 

Standard deviation 27.95 

Average CPU time (second) 2.78 

Line additions for the best result n2-6 = 4, n3-5 = 1, n4-6 = 3 and n5-6 = 1 

The achieved results of this case are discussed as follows: 
 In the first case, the total TEP cost (investment cost + losses cost) of the optimal 

solution equals to 673.54 with the following topology: n2-6 = 4, n3-5 = 1, n4-6 = 3 and 
n5-6 = 1.  

 A convergence curve of SaDEA method to obtain the optimal solution is illustrated in 
figure 3.3, where the optimal solution was found by SaDEA method at the 12nd 
iteration. 

 An average computational time of the proposed method is 2.78 second in this test 
case.  
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Figure 3.3 A convergence curve of SaDEA method for Garver 6-bus system without 
generation resizing case  

3.5.1.2 With Generation Resizing Consideration - Garver’s System 
In the second case, test results of TEP problem on the Graver’s 6-bus system are shown in 
table 3.2 and figure 3.4.  

Table 3.2 Summary results of Garver 6-bus system with generation resizing case 

Results of the TEP with line losses consideration 

(with power gen resizing) 
The SaDEA method 

Best total cost 401.66 

Average total cost 403.32 

Worst total cost 413.98 

% Difference between best and worst 3.07 

Standard deviation 2.27 

Average CPU time (second) 38.94 

Line additions for the best result n2-3 = 2, n3-5 = 2 and n4-6 = 3 

The obtained results of the TEP with generation resizing case are explained as follows: 
 Regarding an optimal solution of the TEP problem with power generation resizing 

consideration, the total TEP cost equals to 401.66 at the following topology: n2-3 = 2, 
n3-5 = 2 and n4-6 = 3. 
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 A convergence curve of the SaDEA method to obtain the best solution is illustrated in 
figure 3.4. In this case, the optimal solution was found by SaDEA method at the 155th 
iteration.  

 According to obtained results in table 3.2, a performance of SaDEA method is very 
robust to find the solution, as suggested by small values of a standard deviation and 
percent difference between best and worst results.  

 In this case, an average CPU time of the proposed method is 38.94 second.  

  

Figure 3.4 A convergence curve of SaDEA method for Garver 6-bus system with 
generation resizing case  

Table 3.3 Comparison of Expansion Costs among Various Methods for Garver 6-Bus Test 
System 

 
Types of TEP problem 

K=1000 

Methods 
Investment 

cost 
Losses cost 

“a” 
Saved cost 

“b” 

 
TEP without the resizing 

of power generation 

ANNs [31] 261 448.83 904.77 

TS [31] 291 382.54 971.06 

GA [3] 291 382.54 971.06 

Hybrid ANN-TS-GA [31] 291 382.54 971.06 

SaDEA  291 382.54 971.06 

TEP with the resizing of 
power generation 

SaDEA 170 231.66 1,121.94 

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved 
cost “b” is calculated as a difference cost between the cost of ohmic power losses before the 
expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time 
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of line) and the power losses cost “a” calculated after the new line additions for the same 
period. 
 For a case study of without power generation resizing consideration, the best solution 
of TEP problem considering system losses on Garver’s test system as shown in table 3.3 
was found by all algorithms except ANNs method. Although the ANNs method obtained the 
least investment cost compared to other methods but it had the largest value of power losses 
cost after the new line additions. The SaDEA method obtained the investment cost and 
losses cost for with power generation resizing case study cheaper than the without power 
generation resizing case study. In addition, the SaDEA method had the largest saved cost of 
minimizing ohmic power losses during planning horizon in case of with power generation 
resizing consideration. 

3.5.2 IEEE 25-bus System 
The IEEE 25-bus system is selected to test the SaDEA procedure in this work. It consists of 
25 buses, 36 possible branches, and 2750 MW of total power demand. The electrical system 
data; transmission line, load, and generation data are available in [27] and [31]. A new bus of 
this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. A maximum of 
four parallel lines is permitted to install in each branch. In this simulation case, the objective 
function includes power losses consideration, in which the loss coefficient, K, was selected to 
be 10000. The estimated lifetime of the transmission lines was assumed to be 25 years while 
the cost of one kWh was assumed to be 0.0112 US$/kWh [31]. In this case study, numerical 
test results of the SaDEA method are put in table 3.4-3.6 where the comparisons among the 
proposed method and other techniques from [31] are also included in table 3.6. 

3.5.2.1 Without Generation Resizing Consideration - IEEE 25-System 
According to the TEP problem without generation resizing consideration, the results of testing 
the proposed algorithm to IEEE 25-bus system are shown in table 3.4. These results are 
discussed as follows: 

 In this case, the best solution of TEP problem without power generation resizing 
consideration was found by the SaDEA method and a total TEP cost was 294.302 
million US$ as shown in table 3.4, with the addition of the following lines to the base 
topology: n7-13 = 2, n8-22 = 3, n11-14 = 2, n12-14 = 2, n12-23 = 3, n13-18 = 2, n13-20 = 3, n16-18 = 
3, n16-20 = 3,  n20-21 = 1, n5-25 = 3 and n24-25 = 2. 

 In this case, the optimal solution was found by SaDEA method at the 88th iteration 
and an average CPU time of the proposed method is 84.58 second.  
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Table 3.4 Summary results of IEEE 25-bus system without generation resizing case 

Results of the TEP with line losses consideration 

(without power gen resizing) 
The SaDEA method 

Best total cost (million US$) 294.302 

Average total cost (million US$) 305.023 

Worst total cost (million US$)  321.104 

% Difference between best and worst 9.11 

Standard deviation (million US$) 13.840 

Average CPU time (second) 84.58 

Line additions for the best result  
n7-13 = 2, n8-22 = 3, n11-14 = 2, n12-14 = 2, n12-23 = 3, 

n13-18 = 2, n13-20 = 3, n16-18 = 3, n16-20 = 3,  n20-21 = 1, 
n5-25 = 3 and n24-25 = 2 

3.5.2.2 With Generation Resizing Consideration - IEEE 25-System 
The obtained results of IEEE 25-bus system in case of with power generation resizing 
consideration can be shown in table 3.5 including the result discussion as follows: 

Table 3.5 Summary results of IEEE 25-bus system with generation resizing case 

Results of the TEP with line losses consideration 

(with power gen resizing) 
The SaDEA method 

Best total cost (million US$) 144.834 

Average total cost (million US$) 145.1536 

Worst total cost (million US$) 146.432 

% Difference between best and worst 1.10 

Standard deviation (million US$)  0.673776  

Average CPU time (second) 237.29 

Line additions for the best result n5-25 = 4, n6-24 = 1, n7-16 = 1, n8-22 = 2, n12-23 = 1,  
n13-18 = 3, n13-20 = 2, n16-18 = 1 and n24-25 = 1 

 The necessary total expansion cost of the TEP problem with generation resizing 
consideration for this test system is 144.834 million US$ and the following lines are 
added: n5-25 = 4, n6-24 = 1, n7-16 = 1, n8-22 = 2, n12-23 = 1, n13-18 = 3, n13-20 = 2, n16-18 = 1 
and n24-25 = 1.  
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 In this case, the best solution was found by SaDEA method at the 226th iteration and 
an average calculation time of the proposed method is 237.29 second. 

Table 3.6 Comparison of Expansion Costs among Various Methods for IEEE 25-Bus Test 
System 

  
Types of TEP problem 

K=10000 

Methods 
Investment 

cost 
(million US$) 

Losses cost 
“a” 

(million US$) 

 
Saved cost 

“b” 
(million US$) 

 

 
TEP without the resizing of 

power generation 

ANNs [31] 224.178 161.995 147.979 
TS [31] 180.664 155.264 154.709 

GA [31] 162.430 171.947 138.016 

Hybrid ANN-TS-GA [31] 168.784 152.320 157.653 
SaDEA  160.051 134.251 175.722 

TEP with the resizing of 
power generation 

SaDEA 61.802 83.032 226.941 

 Note: The losses cost “a” after the new line addition is calculated for 25 years. The 
saved cost “b” is calculated as the difference cost between the cost of ohmic power losses 
before the expansion of the transmission system (309.973 million US$) based on a 25-year 
(life-time of line) and the power losses cost “a” calculated after the new line additions for the 
same period. 

 For a case study of without power generation resizing consideration, the best solution 
of the TEP problem with system losses consideration was found by SaDEA method and an 
investment cost was 160.051 million US$ as shown in table 3.6. In addition, the SaDEA 
method achieved the least value of a power losses cost after the new line additions 
compared to other techniques. Comparison between with and without power generation 
resizing consideration, the SaDEA method obtained the investment cost and losses cost for 
with power generation resizing case study cheaper than the without power generation 
resizing case study. Therefore the SaDEA got the largest value of a saved cost of minimizing 
ohmic power losses during expansion planning horizon in this test system. Overall, the best 
algorithmic procedure for this case is SaDEA method. 
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3.6 Discussion on the Results 

All obtained results in table 3.3 and 3.6 clearly indicate that SaDEA method can be efficiently 
applied to the TEP problem with line losses consideration. The proposed technique shows 
better overall performance especially in robustness than other algorithms in the optimization 
of the TEP problem both with and without generation resizing investigations. The proposed 
algorithm was tested 50 times to find the best results in each case and the control 
parameters were set as explained in section 3.4.3. 

3.7 Conclusion 

In this chapter, a SaDEA method is applied when solving the TEP problem with system 
losses consideration. In addition, the TEP problem is also included both with and without 
power generation resizing considerations. Regarding the achieved results on two test 
networks illustrate that the SaDEA procedure is an efficient technique for solving the 
transmission planning problem. As the numerical test results in table 3.3 and 3.6 indicate, the 
proposed method obtained the least values of an investment cost and a power losses cost 
compared to the conventional genetic algorithm, the tabu search, the artificial neural 
networks, and the hybrid artificial intelligent techniques on two test systems. In addition, the 
SaDEA method had the largest saved cost of ohmic power losses for both test cases as 
shown in table 3.3 and table 3.6. The most attractive feature of the proposed algorithm is the 
good computational performance. The accuracy of the results obtained in the TEP study is in 
very good agreement with those obtained by other researchers as found in [31]. Regarding a 
consequence of these successful results, the TEP problem considering the n-1 contingencies 
in single line outage or single generator outage will be investigated as future work. 
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CHAPTER 4  
AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM 

APPLICATION TO TRANSMISSION EXPANSION PLANNING  
WITH SECURITY CONSTRAINT CONSIDERATION 

4.1 Introduction 

Regarding a previous work in chapter 3, an enhanced DEA methodology, called a self-
adaptive DEA (SaDEA) procedure, is directly applied to DC power flow based model in order 
to solve the TEP problem with system losses consideration. The SaDEA method performed 
well with regard to both low and medium complex transmission networks as demonstrated on 
Garver six-bus system and IEEE 25-bus system, respectively. As a consequence of these 
successful results obtained from solving such TEP problem, the SaDEA technique has been 
implemented again to deal with a TEP problem with security criterion consideration, which is 
more complex and difficult to be solved than basic TEP problem. The TEP problem 
considering security constraint is determined not only the optimal number of new 
transmission lines and their locations but also the most reliable planning when a single line is 
outage. In this research, the effectiveness of the proposed enhancement is initially 
demonstrated by the analyses of low, medium, and highly complex transmission test 
systems. The analyses are performed within a mathematical programming environment of 
MATLAB using both the enhanced DEA and the conventional DEA methods and a detailed 
comparison of accuracy and performance is also presented in this chapter. 

An outline of this chapter is as follows: Section 4.2 presents formulation of TEP 
problem with n-1 security criterion consideration. Section 4.3 explains implementation of 
SaDEA procedure for solving the proposed TEP problem, and then all details of the SaDEA 
optimization program for approaching this planning problem are also included in the same 
section. The significant data of selected test systems are given in section 4.4 and the 
achieved experimental results are also reported in this section. Finally, the discussion and 
conclusion of test results are given in section 4.5 and 4.6, respectively. 
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4.2 Primal Transmission Expansion Planning with Security Constraint 
Consideration 

The main purpose of solving the TEP problem with n-1 security criterion consideration is to 
minimize total expansion cost while satisfying economical, technical, and reliable constraints. 
In this work, a classical DC power flow model is adopted to solve the TEP problem with 
security constraints consideration as found in [36]. Mathematically, an objective function of 
such problem can be formulated as follows: 

( , )

min ij ij

i j

v c n



                         (4.1) 

Subject to 

  OPCijn n                (4.2) 

  SCCijn n                 (4.3) 

where  is set of all candidate branches for expansion. The OPC represents the 
planning operational constraints without security as explained in subsection 2.3.2 and can be 
formulated as following equations (2.5)-(2.10). Moreover, the SCC represents the security 
constraints including in the TEP problem. In this chapter, the TEP problem is investigated 
that the system operates with security and satisfied n-1 criterion. In this context, the SCC 
constraints to the problem with nl paths to expansion presents the following equations: 

 DC Power Flow Node Balance Constraint  
This linear equality constraint represents the conservation of power at each node. 

 [ ]p pg d B                                                                             (4.4) 

 where gp, d, and B are real power generation vector in existing power plants, real 
load demand vector in all network nodes, and susceptance matrix of the existing and added 
lines in the network, respectively. Here  is the bus voltage phase angle vector. 

 Power Flow Limit on Transmission Lines Constraint 
The following inequality constraint is applied to TEP problem with security criterion 
consideration in order to limit the power flow for each path.  
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 0 max( ) ( , )  1,2,..., ; and ( , )p
ij ij ij ijf n n f i j nl i j p                                (4.5) 

 
0 max( 1) for ( , ) = p

ij ij ij ijf n n f i j p                       (4.6) 

 In DC power flow model, each element of branch power flow in constraints (4.5) and 
(4.6) can be calculated using (4.7) and (4.8), respectively: 

 
0( )

( ) ( , )  1,2,..., ; and ( , )
ij ijp p p

ij i j
ij

n n
f i j nl i j p

x
 


                       (4.7) 

 

0( 1)
( ) ( , ) = 

ij ijp p p
ij i j

ij

n n
f i j p

x
 

 
                               (4.8) 

 where fij
p, fij

max, nij, nij
0 and xij represent total branch power flow in branch i-j, 

maximum branch power flow in branch i-j, number of circuits added to branch i-j, number of 
circuits in original base system, and reactance of the branch i-j, respectively. Here i

p and j
p 

are voltage phase angle of the terminal buses i and j, respectively. 

 Power Generation Limit Constraint 
In the TEP problem, power generation limit must be included into the problem constraints. 
This can be mathematically represented as follows: 

 
min maxp

i i ig g g                                                             (4.9) 

 where gi
p, gi

min
 and gi

max are real power generation at node i, the lower and upper real 
power generation limits at node i, respectively. 

 Right-of-way Constraint 
Mathematically, this constraint defines location and maximum number of circuits, which can 
be installed in a specified location. It can be represented as follows: 

 max0 ij ijn n                                                     (4.10)   

 where nij and nij
max

  represent total integer number of circuits added to the branch i-j 
and maximum number of added circuits in the branch i-j, respectively.  

 Bus Voltage Phase Angle Limit Constraint 

A calculated phase angle (ij
cal) should be less than a predefined maximum phase angle 

(ij
max). Such constraint can be represented as the following mathematical expression. 
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cal max
ij ij                                                                                (4.11) 

 Other TEP Constraint 
In this TEP problem, several significant constraints must be included as follows: 

 0( 1) 0 and integer for ( , ) = ij ijn n i j p                   (4.12)   

 0 and integer ( , )  1,2,..., ; and ( , )ijn i j nl i j p            (4.13)   

 
p

j and unboundedp

ijf                                      (4.14)   

 ( , ) and 1,2,...,i j p nl                                      (4.15) 

 For this problem formulation, there are nl sets of operational variables, a set to each 
contingency when it is considered all paths p = (i,j)  . 

4.3 Implementation of an Enhanced DEA Method for the TEP Problem with 
Security Constraint Consideration 

An enhanced DEA method is proposed to solve the TEP problem with security constraint 
consideration as formulated in previous section. The proposed method can be implemented 
to handle such problem as following details. 

4.3.1 An Enhanced DEA Optimization Method 
In this research, a design of a SaDEA procedure is to develop two DEA control parameters, 
mutation factor (F) and crossover probability (CR), which are self-tuning parameters using 
probability methodology. This enhanced method is called “Method 2jDE” as found in [34]. In 
the first step of SaDEA optimization process, users must determine two constant values (T1 
and T2), which are the indices of control parameters (F and CR) changing. The user-defined 
values T1 and T2 are usually chosen from within the range [0,1] and set as 0.1 in this work 
for avoiding local optimum trapping. These control parameters F and CR are updated in their 
setting bounds when the uniformly distributed random numbers within the range (0,1) are 
less than T1 and T2.  

After two constant values are set by users, then an initial population is generated 
according to (2.13). In the TEP problem formulation, each individual vector (Xi) contains 
many integer-valued parameters n, where nj,i represents the number of candidate lines in the 
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possible branch j of the individual i. The problem decision parameter D is the number of 
possible branches for expansion.  

 
( ) ( )( ) ( )

, ,1,[ ,..., ,..., ], 1,...,
G GG G

i j i pD iiX n n n i N                     (4.16) 

When an initial population of individuals is initialized successfully, then three DEA 
operators (2.14)-(2.16) create the population of next generation P(G+1) by using current 
population P(G). The optimization process is continuously repeated in search of final solution 
until the maximum number of generations (Gmax) is reached or other predetermined 
convergence criterion () is satisfied. 

4.3.2 Fitness Function of the TEP Considering Security Constraint 
A fitness function of TEP problem is applied to search the optimal solution, measure the 
performance of candidate solutions, and check for violation of the TEP problem constraints. 
The TEP fitness function F(X) is a combination of an objective function and two penalty 
functions and can be formulated according to (4.17) for each individual. An individual is the 
best solution if its fitness value F(X) is highest. The penalty functions must be also included 
in the fitness function in order to represent violations of both planning operational constraints 
without security (OPC) and the planning security constraints (SCC) of TEP problem. 
Regarding the proposed problem, the OPC penalty function (4.19) investigates all constraints 
of TEP problem without security criterion consideration. In addition, the SCC penalty function 
(4.20) investigates all security constraints of TEP problem. The general fitness function of the 
TEP problem can be assigned as follows: 

 1 1 2 2

1
( )

( ) ( ) ( )
F X

O X P X P X 


 
                    (4.17) 

In (4.17), F(X) and O(X) represent fitness function and objective function of the TEP 
problem, respectively. P1(X) and P2(X) are the constraint penalty functions. X denotes the 
individual vector of decision variables. In this work, 1 and 2 are penalty weighting factors 
and set to 0.5, respectively. For this TEP problem, the objective function and the constraint 
penalty functions are formulated as follows. 

 ( , )

( ) ( ) ij ij

i j

O X V X c n



  
                             

(4.18) 

 

1

1

if an individual violates the OPC of TEP problem. 
( )

0 otherwise

C
P X




 



                             (4.19) 
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2

2

if an individual violates the SCC of TEP problem. 
( )

0 otherwise

C
P X




 

                              

(4.20) 

where C1 and C2 are the constraint constants, which are applied to problem when an 
individual violates the OPC and SCC of TEP problem, respectively. In this work, both 
constants C1 and C2 are set as 0.5 for all cases. 

4.3.3 Control Parameters Setting  
The SaDEA optimization performance depends on the suitable values of control parameters. 
In this simulation, the setting ranges of SaDEA control parameters used in the TEP problem 
are as follows: F = [0.5,1], CR  =  [0.6,1] and NP = [5*D,10*D]. The maximum predetermined 
convergence criterion () is set to 1x10-4 and the maximum number of generations (Gmax) is 
set to 3x103. 

4.3.4 Overall Procedures 
The overall procedures of the SaDEA method application to TEP problem with n-1 security 
criterion consideration can be summarized as follows: 
Step 1: Read all required transmission system data; 
Step 2: Set up all control parameters of the SaDEA method (Fmin, Fmax, CRmin, CRmax, T1, T2, 

NP and D); 
Step 3: Create the initial values of the SaDEA control parameters (F and CR) to be applied 

to mutation and crossover operators; 
Step 4: Set initial iteration G = 0 for an initialization step of the SaDEA procedure; 
Step 5: Initialize the population P of all individuals according to (2.13); 
Step 6: Evaluate the fitness function according to (4.17) and then check violations of all 

constraints for each individual using (4.19) and (4.20); 
Step 7: Check n-1 security criterion for all constraints (4.4)-(4.15); 
Step 8: Rank all individuals according to their fitness; 
Step 9: Updating F, the F value is updated when a random value rand1 (0,1) < T1; 
Step 10: Updating CR, the CR value is updated when a random value rand2 (0,1) < T2; 
Step 11: Set iteration G = 1 for the next step of the SaDEA optimization process; 
Step 12: Apply mutation, crossover and selection operations to create new individuals; 
Step 13: Evaluate the fitness function by using (4.17) and then check violations of all 

constraints for each new individual using (4.19) and (4.20); 
Step 14: Check n-1 security criterion for all constraints (4.4)-(4.15);   
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Step 15: Rank new individuals according to their fitness; 
Step 16: Updating F, the F value is updated when a random value rand1 (0,1) < T1; 
Step 17: Updating CR, the CR value is updated when random value rand2 (0,1) < T2; 
Step 18: Verification of stop criterion, if F(X)G- F(X)G-1 >  or G < Gmax, set G = G + 1 and 

return to step 12 for repeating to search the final solution. Otherwise, stop to calculate 
and go to step 19; 

Step 19: Compute and display the final solutions, which are an investment cost and a 
convergence curve. 

 A computer program of the SaDEA method for application to TEP problem with 
security constraint consideration has been designed and performed as above procedures. 
This proposed computational program is illustrated in figure 4.1. 

 

Figure 4.1 Example of the SaDEA optimization program for TEP problem with security 
constraint consideration 

4.4 Test Systems and Numerical Test Results 

In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and 
has been tested its performance on three electrical transmission systems as reported in 
appendix A. These three test networks are the Garver’s 6-bus system, the Brazilian 46-bus 
system, and the IEEE 25-bus system and all required data are also available in [17], [25] and 
[27], respectively. In this chapter, the proposed method is applied to handle the TEP problem 
considering security constraint that is more difficult for solving than the basic TEP problem. 
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Moreover, such TEP problem includes an issue of power generation resizing consideration. 
The numerical results of proposed SaDEA technique are compared to conventional 
differential evolution algorithm (DEA), ant colony search algorithm (ACSA), Chu-Beasley 
genetic algorithm (CBGA) and also summarized in this section. 

4.4.1 Garver 6-bus System  

In this research, Garver’s system is the first test network employed for investigation. It 
consists of 6 buses, 9 possible branches, and 760 MW of demand. The electrical system 
data; transmission line, load, and generation data are available in [17]. In this test system, 
bus-6 is a new generation bus that needs to be connected to the existing network. The 
dotted lines represent new possible line additions and solid lines are the existing lines as 
shown in figure A1. A maximum of four parallel transmission lines is allowed to install in each 
branch.  
 The achieved results of SaDEA method on the Garver 6-bus system can be tabulated 
in table 4.1 including the discussion of these results as follows:  

 For the first case, a total expansion cost of the best solution equals to 180,000 
US$ with the following topology: n2-6 = 2, n3-5 = 3, and n4-6 = 2.  

 A convergence curve of SaDEA method to obtain the best solution is illustrated in 
figure 4.2, where the optimal solution was found by SaDEA method at the 152nd 
iteration. 

 An average computational time of the proposed method is 64.03 second in this test 
case.  

Table 4.1 Summary results of Garver 6-bus system  

Results of the TEP with security constraint consideration The SaDEA method 

Best total cost (x103 US$) 180 

Average total cost (x103 US$) 187 

Worst total cost (x103 US$)  210 

% Difference between best and worst 16.67 

Standard deviation (x103 US$)  11.60 

Average CPU time (second) 64.03 

Line additions for the best result n2-6 = 2, n3-5 = 3, and n4-6 = 2 
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Figure 4.2 A convergence curve of SaDEA method for Garver 6-bus system  

Table 4.2 Summary power flow at each right-of-way of Garver 6-bus system (Before 
considering n-1 security criterion) 

Line path between buses Power Flow (MW) Max Power Flow (MW) 
2-3 82.1675 100 
4-6 157.7034 200 
2-6 143.2966 200 
3-5 225.8325 400 
1-4 16.894 80 
1-2 19.9385 100 
1-5 14.1675 100 
2-4 5.4026 100 
5-6 0 0 

Table 4.3 Summary power flow at each right-of-way of Garver 6-bus system (After 
considering n-1 security criterion, when a line between buses 2-3 is outage.) 

Line path between buses Power Flow (MW) Max Power Flow (MW) 
2-3 0 0 
4-6 141.6707 200 
2-6 159.3293 200 
3-5 308 400 
1-4 44.9512 80 
1-2 74.0488 100 
1-5 68 100 
2-4 6.622 100 
5-6 0 0 
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 In tables 4.2 and 4.3, real power flow and maximum real power flow at each right-of-
way are presented. Form obtained results in table 4.2, a line path between buses 2-3 is the 
most critical because it has the lowest gap between power flow and maximum power flow 
compared to other path on this system. Therefore, real power flow and maximum real power 
flow at each path are selected to show in table 4.3, when a line between buses 2-3 is 
outage. Regarding results in table 4.3, the power flow are not over the maximum power flow 
for each path. 

4.4.2 IEEE 25-bus System 

The IEEE 25-bus system is tested the performance of SaDEA procedure in this work. For the 
second test system, it has 25 buses, 36 possible branches, and 2750 MW of total demand. 
The electrical system data; transmission line, load, and generation data are available in [27] 
and [31]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or 
bus-24. The dotted lines represent new possible line additions and solid lines are the existing 
lines as shown in figure A2. A maximum of four parallel lines is permitted to install in each 
branch.  

Table 4.4 Summary results of IEEE 25-bus system  

Results of the TEP with security constraint consideration The SaDEA method 

Best total cost (x103 US$) 19131 

Average total cost (x103 US$) 25050 

Worst total cost (x103 US$)  30020 

% Difference between best and worst 56.92 

Standard deviation (x103 US$)  4060.30 

Average CPU time (second) 654.52 

Line additions for the best result n5-20 = 1, n5-25 = 4, n6-24 = 1, n13-18 = 1, n13-20 = 1,   
n16-20 = 1, and n24-25 = 1  

 The obtained results of SaDEA method on the IEEE 25-bus system can be tabulated 
in table 4.4 and the discussion of these results are as follows:  

 For the second test system, total expansion cost of the best solution equals to 19.131 
million US$ with the following topology: n5-20 = 1, n5-25 = 4, n6-24 = 1, n13-18 = 1, n13-20 = 
1, n16-20 = 1, and n24-25 = 1. 

 A convergence curve of SaDEA method to obtain the best solution is illustrated in 
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figure 4.3, where the best solution was found by SaDEA method at the 584th iteration. 
 An average computational time of the proposed method is 654.52 second in this test 

case.  

 

Figure 4.3 A convergence curve of SaDEA method for IEEE 25-bus system  

4.4.3 Brazilian 46-Bus System 
The third test network is the Brazilian 46-bus system as depicted in figure A3. The system 
comprises 46 buses, 79 circuits, and 6880 MW of total demand. The electrical system data, 
which consist of transmission line, load, and generation data including generation resizing 
range in MW, are available in [25]. This system represents a good test to the proposed 
approach because it is a real-world transmission system. In figure A3, solid lines represent 
existing circuits in the base case topology and dotted lines represent the possible addition of 
new transmission lines. The addition of parallel transmission lines to existing lines is again 
allowed in this case with a limit of 4 lines for each branch.  
 The obtained results of SaDEA method on the IEEE 46-bus system can be tabulated 
in table 4.5 and the discussion of these results are as follows:  

 For this test system, total expansion cost of the best solution equals to 168.042 
million US$ with the following topology: n2-3 = 2, n3-46 = 1, n19-25 = 1, n20-21= 1, n23-24 = 
1, n24-25 = 2, n26-29 = 3, n28-30 = 1, n29-30 = 2, n31-32 = 1 and n42-43 = 2. 

 In this case, the best solution was found by SaDEA method at the 728th iteration and 
an average CPU time of the proposed method is 1962.43 second. 
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Table 4.5 Summary results of IEEE 46-bus system  

Results of the TEP with security constraint consideration The SaDEA method 

Best total cost (x103 US$) 168042 

Average total cost (x103 US$) 185372 

Worst total cost (x103 US$)  208870 

% Difference between best and worst 24.30 

Standard deviation (x103 US$)  17152 

Average CPU time (second) 1962.43 

Line additions for the best result 
n2-3 = 2, n3-46 = 1, n19-25 = 1, n20-21 = 1, n23-24 = 1,   

n24-25 = 2, n26-29 = 3, n28-30 = 1, n29-30 = 2, n31-32 = 1,  
and n42-43 = 2 

 

Table 4.6 Results comparison of TEP problem with security constraint consideration 

Methods 
Best cost (x103 US$) 

Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system 

SaDEA 180  19,131  168,042 

Chu-Beasley GA (CBGA) [36] 180 - 213,000 

Ant Colony Search Algorithm (ACSA) [38] 298 248,943 - 

Conventional DEA [38] 298 210,818 - 

 All obtained results of TEP problem with security constraint and power generation 
resizing considerations are summarized in table 4.6, where the best investment costs of 
expansion corresponding to the proposed method are compared to other algorithms. As 
indicated by the results in table 4.6, SaDEA and CBGA methods found the optimal solution 
on Gaver 6-bus system. For IEEE 25-bus system and the Brazilian 46-bus system, the 
SaDEA method could find the optimal solution as shown the cheapest investment cost. 

4.5 Discussion on the Results 
The achieved numerical results clearly indicate that SaDEA method can be efficiently applied 
to TEP problem with n-1 security constraint consideration on three test systems. From the 
results in table 4.6, SaDEA technique could find the best solution cheaper than other 
methods in all cases. The proposed algorithm was tested 30 times to find the best result in 
each case and the control parameters were set as suggestion in subsection 4.3.3.  
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The performance of SaDEA method depends upon selection of proper control 
parameters. In this research, the control parameters of SaDEA procedures (F and CR) were 
automatically tuned in their setting bounds. According to experiments, the scaling mutation 
factor F is much more sensitive than crossover probability CR. Therefore, CR is more useful 
as a fine tuning parameter.  

4.6 Conclusion 

In this chapter, an enhanced DEA method is proposed to deal with the TEP problem with n-1 
security criterion consideration. A single line outage is investigated in such TEP problem for 
reliability issue. From obtained results of Garver six-bus system, IEEE 25-bus system, and 
the Brazilian 46-bus system, the SaDEA procedure is an acceptable optimization technique 
and minimizes effectively the total investment cost of TEP problem with security constraint 
consideration on realistically transmission systems. As the empirical solutions of these test 
cases indicate, total investment costs of the SaDEA method are less expensive than other 
methods on three test networks. The most attractive feature of the proposed algorithm is 
good computational performance and simple implementation. Regarding a consequence of 
the successful results, a distribution system planning problem will be investigated as future 
work. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Project Conclusions 

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to 
electrical power system optimization problems as its main goal is to achieve an optimal 
expansion plan. The planning solution has to meet technical requirements while offering 
economical investment. Furthermore, transmission planning should specify new transmission 
facilities that must be added to an existing network to ensure adequate operation over a 
specified planning horizon. 

Over past few decades, a number of optimization methods have been applied to 
solve the TEP problem in many issues. These proposed methods are as follows: 
mathematical optimization methods (e.g. linear programming, nonlinear programming, 
dynamic programming, integer and mixed integer programming, benders decomposition, 
branch & bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic 
methods (e.g. genetic algorithms, tabu search, simulated annealing, particle swarm, 
evolutionary algorithms, differential evolution algorithm, etc.). The details of such methods are 
provided in chapter 2 of this report. 

A differential evolution algorithm (DEA) is an artificial intelligence technique and it 
was firstly presented by R. M. Storn and K. V. Price in 1995. The DEA method becomes a 
reliable and versatile function optimizer that is also readily applicable to a wide range of 
optimization problems. In addition, the DEA method has been employed to optimize a wide 
variety of problems in electrical power system, for example, economic power dispatch, short-
term scheduling of hydrothermal power system, power system planning, optimal reactive 
power flow, etc. In a number of cases, the DEA method has proved to be more accurate, 
reliable as it can provide optimum solutions within acceptable computational times. 

Although a conventional DEA method has a number of merits as described in chapter 
2, it still has a drawback that is a difficult task of the DEA control parameters tuning. 
Regarding such disadvantage of the conventional DEA characteristic, thus it should be 
improved the optimization performance in this research. An enhanced DEA method is a 
modified version and has been proposed to solve the TEP problem with system losses and 
security criterion considerations in this work. 

The main contribution of this research is the enhancement of a conventional DEA 
method and the application of proposed technique to TEP problem with system losses and 
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security criterion considerations. First of all, the design of a self-adaptive DEA (SaDEA) 
procedure is to develop two DEA control parameters, mutation factor (F) and crossover 
probability (CR), which are self-tuning parameters using probability methodology. In order to 
validate its searching capability and reliability, the enhanced methodology has been tested 
with some selected mathematical benchmark functions, namely Sphere, Rosenbrock1, 
Absolute, Schwefel, and Rastrigin functions. 

Based on the successful results of SaDEA procedure application to selected 
mathematical functions, the proposed technique is subsequently implemented to solve static 
TEP problem with system losses consideration, which is a real-world optimization problem, 
as shown in chapter 3. In chapter 3, the simulations have two different scenarios of static 
TEP problem that are with and without generation resizing considerations. In addition, a 
heuristic search method has been adopted in order to deal with static TEP considering DC 
based power flow model constraints. The proposed method has been implemented in 
Matlab7 and tested on two electrical transmission networks as shown in appendix A1-A2. 
The obtained results indicate that SaDEA method performs effectively to handle the static 
TEP problem considering system losses on Graver 6-bus system and IEEE 25-bus system. 
The most attractive feature of the proposed algorithm is the good computational 
performance. The accuracy of the results obtained in the TEP study is in very good 
agreement with obtained by other researchers as presented in chapter 3. Regarding a 
consequence of the successful results, the TEP problem considering n-1 contingencies in 
single line outage has been investigated in chapter 4. 

Given its effectiveness for solving the TEP problem with system losses consideration, 
the proposed methodology is then applied to deal with the TEP problem with n-1 security 
criterion consideration, which is more complex and difficult than the previous work. In this 
study, such TEP problem based on DC power flow model has been analyzed. The proposed 
method application to handle the TEP problem with n-1 security criterion consideration is 
tested on three transmission systems that are Graver 6-bus system, IEEE 25-bus system, 
and the Colombian 93-bus system, as shown in appendix A1-A3. From chapter 4, the 
obtained results of three networks illustrate that the SaDEA technique is good efficient and 
effectively minimizes the total investment cost of TEP problem on such systems. 

Overall, the SaDEA procedure performs superior to other classical evolutionary 
algorithms (EAs) in terms of simple implementation with high quality of solution. Meanwhile, it 
requires less control parameters while being independent from initialization. In addition, its 
convergence is stable and robust as SaDEA procedure uses rather greedy selection and less 
stochastic approach to solve optimization problems than other classical EAs.  
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5.2 Future Work 

As a consequence of the successful results in this research, the SaDEA method will be 
applied to solve a problem of distribution system planning in future work. Moreover, an 
economic solution of the TEP problem under the current deregulatory environment remains a 
significant issue in electrical power system analysis. Therefore, such topic should be further 
investigated in future research. Some issues for market-based transmission expansion 
planning, i.e. the losses of social welfare and the expansion flexibility in the system should 
be investigated and included in the modern TEP problem. 
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CHAPTER 6 

OUTPUTS OF THE RESEARCH PROJECT 

6.1 Summary of Research Project Outputs 

From this research work, a conventional DEA methodology is enhanced its computational 
performance until the optimization procedures are acceptable and reliable. The main goal of 
undertaken research is to take advantage of computational simulations more effectively in an 
overall planning study and consequently determine an appropriate transmission network 
expansion plan. In this research, a self-adaptive DEA (SaDEA) method is applied to solve a 
wide variety of mathematical and real-world optimization problems, especially transmission 
planning considering line losses and n-1 security criterion. Regarding the obtained results, 
the SaDEA method is an optimization technique for application to handle such problems. In 
addition, these successful results of planning study will be used in order to design future 
transmission network of Thailand. The novel knowledge from this research, the author has 
employed to his teaching on a course of electric power system analysis and a course of 
electric power system operation & design. Several topics, which are an artificial intelligence 
(AI) application to power system optimization problems, power system planning, and etc., are 
included in the author’s lecture notes.     

The significant outputs of this project, three articles were submitted for publication. In 
December 2012, the first article namely “A self-adaptive differential evolution algorithm for 
transmission network expansion planning with system losses consideration” was published 
and presented at the 2012 IEEE International Conference on Power and Energy (PECON 
2012), Kota Kinabalu, Malaysia. At the conference, the author had opportunity to share novel 
knowledge with other researchers from many countries. During May until June 2013, the 
second article namely “An enhanced differential evolution algorithm application to 
transmission network expansion planning with security constraint consideration” was 
prepared and submitted to a journal of IET Proceeding Generating Transmission Distribution, 
United Kingdom. In this paper, all obtained results of SaDEA method applied to TEP 
considering n-1 security criterion has been presented and discussed on three test systems. 
The reliability of system operation is considered when the transmission plan is employed to 
future expansion. In addition, the third article namely “An enhanced differential evolution 
algorithm for transmission expansion planning with system losses consideration” was 
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published and presented at the 9th Naresuan and Tao-Ngam Research Conferences, 
Phitsanulok, Thailand in July 2013. 

From these successful works, the proposed methodology application to solve the 
transmission planning and other power system optimization problems will be presented as an 
invited paper to electrical engineers and researchers at the 2014 International Electrical 
Engineering Congress (iEECON 2014), Pattaya City, on 19th -21st March 2014. 

6.2 List of Publications  

Arising from this research project, two conference papers were presented and published in 
conference proceedings. In addition, a journal paper has been submitted in a selected 
international journal. The papers are listed as follows:  

6.2.1 Refereed Journal Paper: Submitted 

 T. Sum-Im and W. Ongsakul, “An enhanced differential evolution algorithm application to 
transmission network expansion planning with security constraint consideration,” IET 
Proc. Gener. Transm. Distrib., Current Impact Factor 1.414 (Submitted 2013). 

6.2.2 Refereed International Conference Paper: Published  

 T. Sum-Im and W. Ongsakul, “A self-adaptive differential evolution algorithm for 
transmission network expansion planning with system losses consideration,” Proc. 2012 
IEEE International Conference on Power and Energy (PECON 2012), Kota Kinabalu, 
Malaysia, pp. 153-158, 2nd-5th Dec. 2012. 

6.2.3 Refereed National Conference Paper: Published  

 Thanathip Sum-Im, “An enhanced differential evolution algorithm for transmission 
expansion planning with system losses consideration,” Proc. 9th Naresuan and Tao-Ngam 
Research Conferences, Phitsanulok, Thailand, pp. 3, 28th-29th Jul. 2013. 
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APPENDIX A  
TEST SYSTEMS DATA 

 

A-1 Garver 6-Bus System 

Table A1.1 Generation and load data for Garver 6-bus system 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 
Maximum Level Maximum Level 

1 150 50 80 4 0 0 160 

2 0 0 240 5 0 0 240 

3 360 165 40 6 600 545 0 

 

Table A1.2 Branch data for Garver 6-bus system 

From-To nij
0 Reactance xij, p.u. fij

max, MW Cost, 103 US$ 

1-2 1 0.4 100 40 

1-4 1 0.6 80 60 

1-5 1 0.2 100 20 

2-3 1 0.2 100 20 

2-4 1 0.4 100 40 

2-6 0 0.3 100 30 

3-5 1 0.2 100 20 

4-6 0 0.3 100 30 

5-6 0 0.61 78 61 
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Figure A1 Garver 6-Bus System 
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A-2 IEEE 25-Bus System 

Table A2.1 Generation and load data for IEEE 25-bus system 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 
Maximum Level Maximum Level 

1 660 530 0 14 215 43 317 

2 0 0 128 15 0 0 0 

3 0 0 181 16 0 0 0 

4 0 0 74 17 192 40 108 

5 0 0 71 18 0 0 175 

6 0 0 71 19 192 40 97 

7 595 594 265 20 0 0 195 

8 0 0 194 21 0 0 136 

9 400 400 333 22 155 155 100 

10 300 300 0 23 0 0 180 

11 400 400 0 24 300 60 125 

12 0 0 0 25 660 330 0 

13 0 0 0     

 

 

 

 

 

 

 

 

 

 



  79 
 

Table A2.2 Branch data for IEEE 25-bus system 

From-To nij
0 Reactance xij, p.u. fij

max, MW Cost, 103 US$ 

1-2 1 0.0108 800 3760 

1-7 1 0.0865 65 27808 

1-13 1 0.0966 100 30968 

2-3 1 0.0198 500 7109 

3-22 1 0.0231 200 8187 

4-18 1 0.1037 1000 4907 

4-19 1 0.1267 250 5973 

5-17 1 0.0854 800 3987 

5-20 1 0.0883 940 4171 

5-25 0 0.0902 220 1731 

6-18 1 0.1651 440 7776 

6-20 1 0.1651 280 7776 

6-24 1 0.0614 1080 2944 

7-13 1 0.0476 250 16627 

7-16 1 0.0476 90 16627 

8-16 1 0.0418 490 14792 

8-22 1 0.0389 65 13760 

9-11 1 0.0129 260 4587 

9-15 1 0.0144 250 5112 

10-11 1 0.0678 800 21909 

10-15 1 0.1053 250 33920 

11-14 1 0.0245 700 8507 

12-14 1 0.0519 100 16915 

12-23 1 0.0839 70 675 

13-18 1 0.0839 100 675 

13-20 1 0.0839 250 675 

14-22 1 0.0173 200 5963 

15-22 1 0.0259 360 9243 

16-18 1 0.0839 250 675 

16-20 1 0.0839 564 675 

17-19 1 0.0139 400 493 

17-23 1 0.2112 350 8880 

18-23 1 0.1190 150 5605 

19-21 1 0.1920 110 9045 

20-21 1 0.0605 180 2245 

24-25 0 0.1805 220 3067 
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Figure A2 IEEE 25-Bus System 
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A-3 Brazilian 46-Bus System 

Table A3.1 Generation and load data for Brazilian 46-bus system 

Bus No. 
Generation, MW 

Load, MW Bus No. 
Generation, MW 

Load, MW 
Maximum Level Maximum Level 

1 0 0 0 24 0 0 478.2 

2 0 0 443.1 25 0 0 0 

3 0 0 0 26 0 0 231.9 

4 0 0 300.7 27 220 54 0 

5 0 0 238 28 800 730 0 

6 0 0 0 29 0 0 0 

7 0 0 0 30 0 0 0 

8 0 0 72.2 31 700 310 0 

9 0 0 0 32 500 450 0 

10 0 0 0 33 0 0 229.1 

11 0 0 0 34 748 221 0 

12 0 0 511.9 35 0 0 216 

13 0 0 185.8 36 0 0 90.1 

14 1257 944 0 37 300 212 0 

15 0 0 0 38 0 0 216 

16 2000 1366 0 39 600 221 0 

17 1050 1000 0 40 0 0 262.1 

18 0 0 0 41 0 0 0 

19 1670 773 0 42 0 0 1607.9 

20 0 0 1091.2 43 0 0 0 

21 0 0 0 44 0 0 79.1 

22 0 0 81.9 45 0 0 86.7 

23 0 0 458.1 46 700 599 0 
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Table A3.2 Branch data for Brazilian 46-bus system 

 

From-To nij
0 

Reactance 

xij, p.u. 

fij
max, 

MW 
Cost,103 

US$ 
From-To nij

0 
Reactance 

xij, p.u. 

fij
max, 

MW 
Cost, 103 

US$ 

1-2 2 0.1065 270 7076 20-21 1 0.0125 600 8178 

1-7 1 0.0616 270 4349 20-23 2 0.0932 270 6268 

2-3 0 0.0125 600 8178 21-25 0 0.0174 2000 21121 

2-4 0 0.0882 270 5965 22-26 1 0.0790 270 5409 

2-5 2 0.0324 270 2581 23-24 2 0.0774 270 5308 

3-46 0 0.0203 1800 24319 24-25 0 0.0125 600 8178 

4-5 2 0.0566 270 4046 24-33 1 0.1448 240 9399 

4-9 1 0.0924 270 6217 24-34 1 0.1647 220 10611 

4-11 0 0.2246 240 14247 25-32 0 0.0319 1400 37109 

5-6 0 0.0125 600 8178 26-27 2 0.0832 270 5662 

5-8 1 0.1132 270 7480 26-29 0 0.0541 270 3894 

5-9 1 0.1173 270 7732 27-29 0 0.0998 270 6672 

5-11 0 0.0915 270 6167 27-36 1 0.0915 270 6167 

6-46 0 0.0128 2000 16005 27-38 2 0.2080 200 13237 

7-8 1 0.1023 270 6823 28-30 0 0.0058 2000 8331 

8-13 1 0.1348 240 8793 28-31 0 0.0053 2000 7819 

9-10 0 0.0125 600 8178 28-41 0 0.0339 1300 39283 

9-14 2 0.1756 220 11267 28-43 0 0.0406 1200 46701 

10-46 0 0.0081 2000 10889 29-30 0 0.0125 600 8178 

11-46 0 0.0125 600 8178 31-32 0 0.0046 2000 7052 

12-14 2 0.0740 270 5106 31-41 0 0.0278 1500 32632 

13-18 1 0.1805 220 11570 32-41 0 0.0309 1400 35957 

13-20 1 0.1073 270 7126 32-43 1 0.0309 1400 35957 
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Table A3.2 Branch data for Brazilian 46-bus system (Contd.) 

 

 

 

 

 

 

 

 

From-To nij
0 

Reactance 

xij, p.u. 

fij
max, 

MW 

Cost, 103 

US$ 
From-To nij

0 
Reactance 

xij, p.u. 

fij
max, 

MW 

Cost, 

103 US$ 

14-15 0 0.0374 270 2884 33-34 1 0.1265 270 8288 

14-18 2 0.1514 240 9803 34-35 2 0.0491 270 3591 

14-22 1 0.0840 270 5712 35-38 1 0.1980 200 12631 

14-26 1 0.1614 220 10409 36-37 1 0.1057 270 7025 

15-16 0 0.0125 600 8178 37-39 1 0.0283 270 2329 

16-17 1 0.0078 2000 10505 37-40 1 0.1281 270 8389 

16-28 0 0.0222 1800 26365 37-42 1 0.2105 200 13388 

16-32 0 0.0311 1400 36213 38-42 3 0.0907 270 6116 

16-46 1 0.0203 1800 24319 39-42 3 0.2030 200 12934 

17-19 1 0.0061 2000 8715 40-41 0 0.0125 600 8178 

17-32 0 0.0232 1700 27516 40-42 1 0.0932 270 6268 

18-19 1 0.0125 600 8178 40-45 0 0.2205 180 13994 

18-20 1 0.1997 200 12732 41-43 0 0.0139 2000 17284 

19-21 1 0.0278 1500 32632 42-43 1 0.0125 600 8178 

19-25 0 0.0325 1400 37748 42-44 1 0.1206 270 7934 

19-32 1 0.0195 1800 23423 44-45 1 0.1864 200 11924 

19-46 1 0.0222 1800 26365      
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Figure A3 Brazilian 46-Bus System 
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Abstract—In this paper, a self-adaptive differential evolution 

algorithm (SaDEA) is applied directly to the DC power flow 

based model in order to efficiently solve transmission network 

expansion planning (TNEP) problem. The purpose of TNEP is to 

minimize the transmission investment cost associated with the 

technical operation and economical constraints. The TNEP 

problem is a large-scale, complex and nonlinear combinatorial 

problem of mixed integer nature where the number of candidate 

solutions to be evaluated increases exponentially with system size. 

In addition, the TNEP problem with system losses consideration 

is also investigated in this paper. The efficiency of the proposed 

method is initially demonstrated via the analysis of low and 

medium complexity transmission network test cases. A detailed 

comparative study among conventional genetic algorithm (CGA), 

tabu search (TS), artificial neural networks (ANNs), hybrid 

artificial intelligent techniques and the proposed method is 

presented. From the obtained experimental results, the proposed 

technique provides the accurate solution, the feature of robust 

computation, the simple implementation and the satisfactory 

computational time. 

Keywords-Transmission network expansion planning; self-

adaptive differential evolution algorithm; transmission line losses 

I.  INTRODUCTION 

In general, the main purpose of solving the transmission 
network expansion planning (TNEP) problem is to specify 
addition of transmission facilities that provide adequate 
capacity and in the mean time maintain operating performance 
of electric transmission system [1]. To achieve effective plan, 
exact location, capacity, timing and type of new transmission 
equipment must be thoroughly determined to meet demand 
growth, generation addition and increased power flow. 
However, cost-effective TNEP becomes one of the major 
challenges in power system optimization due to the nature of 
the problem that is complex, large-scale, difficult and 
nonlinear. Meanwhile, mixed integer nature of TNEP results in 
an exponentially increased number of possible solutions when 
system size is enlarged. 

Normally, TNEP can be categorized as static or dynamic 
according to the treatment of the study period [2]. In static 
planning; the planner considers only one planning horizon and 
determines the number of suitable circuits that should be 
installed to each branch of the transmission system. Investment 

is carried out at the beginning of the planning horizon time. In 
dynamic or multistage planning; the planner considers not only 
the optimal number and location of added lines and type of 
investments but also the most appropriate times to carry out 
such expansion investments. Therefore the continuing growth 
of the demand and generation is always assimilated by the 
system in an optimized way. The planning horizon is divided 
into various stages and the transmission lines must be installed 
at each stage of the planning horizon. 

Over the last few decades, a number of optimization 
methods have been applied when solving the TNEP problem. 
In 1970, Garver proposed a linear programming method to 
solve the TNEP problem [3]. This original method was applied 
to long-term planning of electrical power systems and 
produced a feasible transmission network with near-minimum 
circuit miles using as input any existing network plus a load 
forecast and generation schedule. Two main steps of the 
method, in which the planning problem was formulated as load 
flow estimation and new circuit selection could be searched 
based on the system overloads, were presented in [3].  

In addition to mathematical optimization methods, heuristic 
and meta-heuristic methods become the current alternative to 
solve the TNEP problem. These heuristic and meta-heuristic 
techniques are efficient algorithms to optimize the transmission 
planning problem. There have been many applications of 
heuristic and meta-heuristic optimization methods to solve the 
TNEP problem, for example heuristic algorithms [1], tabu 
search [4], simulated annealing [5], genetic algorithms [6-8], 
artificial neural networks [9], hybrid artificial intelligent 
techniques [9] and differential evolution algorithm [10]. 

Recently, a differential evolution algorithm (DEA) method 
has been attracting increasing attention for a wide variety of 
science and engineering applications including electrical power 
system problems. There have been many researches that 
applied DEA for solving power system optimization problems, 
for instance, power system planning [11], short-term 
hydrothermal scheduling problem [12], optimal reactive power 
flow [13-14], optimal power flow [15], transmission expansion 
planning, [10], economic dispatch [16], etc. The DEA method 
was successfully employed to solve both static and dynamic 
transmission expansion planning problems by the author in 
[10] where the DEA method performed superior to a 
conventional genetic algorithm (CGA) in terms of simple 
implementation with high quality of solution and good 
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computational performance. In addition, a self-adaptive 
differential evolution algorithm (SaDEA) method was modified 
and also applied for solving the economic dispatch problem 
considering transmission losses by the author in [16]. The 
results obtained on the IEEE 30-bus system illustrated that the 
SaDEA procedure is an efficient technique when solving the 
economic dispatch problem. Considering such advantages with 
regard to SaDEA performance, the authors propose the SaDEA 
method to solve the TNEP problem with system losses 
consideration in this paper. The various transmission expansion 
costs; an investment cost, a power losses cost and a saved cost 
of the proposed SaDEA technique are compared to CGA, tabu 
search, artificial neural networks and hybrid artificial 
intelligent techniques reported in [9] on the Garver 6-bus 
system and IEEE 25-bus system. 

II. THE TNEP PROBLEM FORMULATION 

In general, the TNEP problem can be mathematically 

formulated by applying DC power flow model, which is a 

nonlinear mixed-integer problem with high complexity, 

especially for large-scale real-world transmission networks. 

There are several alternatives to the DC model such as the 

transportation, hybrid and disjunctive models. Detailed 

reviews of the main mathematical models for the TNEP 

problem were presented in [17].  

A. The Objective Function 

The goal of TNEP problem with system losses 

consideration is to minimize the total expansion cost while 

satisfying technical and economical constraints. In this paper, 

a classical DC power flow model is employed to solve the 

TNEP problem [9]. Mathematically, the problem can be 

formulated as follows:  

    2

( , ) 1

Minimize

NL

ij ij m m

i j m

v c n K I R

 

              (1) 

where v, cij and nij represent, respectively, transmission 

expansion cost, cost of a candidate circuit for addition to the 

branch i-j and the number of circuits added to the branch i-j. 

Here  is the set of all candidate branches for expansion. In 

addition, K is a loss coefficient (calculated using 

K=8760/NYE/Ckwh); NYE is an estimated life time of the 

expansion network (years); CkWh: is a cost of one kWh 

(US$/kWh); Rm is a resistance of the mth line; Im is the flow on 

the mth line; and NL is the number of the existing lines. 

The first term of an objective function represents the 

capital cost of the installed lines and the second term 

represents the cost of ohmic power losses after the new line 

additions. The system power flow and losses are changed due 

to a result of line additions. The loss coefficient (K) depends 

upon the number of years of transmission system operation 

and the kWh cost. The DC load flow is used in the problem 

formulation where the current (I) is approximately equal to the 

power flow and voltage is assumed to be unity at all buses.  

B. Problem Constraints 

The objective function (1) represents the expansion cost of 

the newly installed transmission lines, which has some 

restrictions. These constraints must be included into 

mathematical model to ensure that the optimal solution 

satisfies transmission planning requirements. These 

constraints are described and formulated as following (2)-(7). 

 DC Power Flow Node Balance Constraint  

This linear equality constraint represents the conservation 

of power at each node. 

 
g d B 

                       
(2) 

where g, d and B are real power generation vector in 

existing power plants, real load demand vector in all network 

nodes, and susceptance matrix of the existing and added lines 

in the network, respectively. Here  is the bus voltage phase 

angle vector. 

 Power Flow Limit on Transmission Lines Constraint 

The following inequality constraint is applied to TNEP 

problem in order to limit the power flow for each path. 

 

0 max( )ij ij ij ijf n n f 
  

            (3) 

In DC power flow model, each element of the branch 

power flow in constraint (3) can be calculated by using 

equation (4): 
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where fij, fij
max

, nij, nij
0
 and xij represent, respectively, total 

branch power flow in branch i-j, maximum branch power flow 

in branch i-j, number of circuits added to branch i-j, number of 

circuits in original base system and reactance of the branch i-j. 

Here i and j are voltage phase angle of the terminal buses i 

and j respectively. 

 Power Generation Limit Constraint 

In TNEP problem, power generation limit must be 

included into the problem constraints. This can be 

mathematically represented as follows: 

 
min max

i i ig g g 
                      

(5) 

where gi, gi
min

 and gi
max

 are real power generation at node i, 

the lower and upper real power generation limits at node i, 

respectively. 

 Right-of-way Constraint 

It is important to an accurate TNEP solution that planner 

needs to know the exact capacity of the newly required 

circuits. Therefore this constraint must be included into the 

consideration of planning problem. Mathematically, this 

constraint defines the new circuit location and the maximum 

number of circuits that can be installed in a specified location. 

It can be represented as follows. 

 
max0 ij ijn n 

             
(6)  

where nij and nij
max

  represent the total integer number of 

circuits added to the branch i-j and the maximum number of 

added circuits in the branch i-j, respectively.  
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 Bus Voltage Phase Angle Limit Constraint 

The voltage phase angle is also included as a TNEP 

constraint and a calculated phase angle (ij
cal

) should be less 

than a predefined maximum phase angle (ij
max

). This can be 

represented as the following mathematical expression. 

 

cal max
ij ij 

             
(7)    

III. BASIS OF DIFFERENTIAL EVOLUTION ALGORITHM 

METHODOLOGY 

A differential evolution algorithm (DEA) is an 

evolutionary computation method as it uses real-coded 

variables and typically relies on mutation as the search 

operator. The DEA method was originally introduced by R. 

Storn and K. Price in 1995 [18] and further developed to be a 

reliable and versatile function optimizer that is also readily 

applicable to a wide range of optimization problems [19]. 

More recently the DEA method has evolved to share many 

features with CGA [20]. The major similarity between these 

two types of algorithm is that they both maintain populations 

of potential solutions and use a selection mechanism for 

choosing the best individuals from the population. The main 

differences between the CGA method and the DEA technique 

were summarized in [21]. 

A DEA is a parallel direct search technique that employs a 

population P of size NP, consisted of floating point encoded 

individuals or candidate solutions (8). At every generation G 

during the optimization process, the DEA maintains 

population P
(G)

 of NP vectors of candidate solutions to the 

problem at hand. 

 

( ) ( )( ) ( )
1[ ,..., ,..., ]

P

G GG G
i N

P X X X                    (8) 

Each candidate solution Xi is a D-dimensional vector, 

containing as many real-valued parameters (9) as the problem 

decision parameters D. 

 

( ) ( )( ) ( )
, ,1,[ ,..., ,..., ], 1,...,

G GG G
i j i pD iiX x x x i N       (9) 

A. Initialization Step 

In the first step of the DEA procedure, the population of 

candidate solutions must be initialized. Typically, each 

decision parameter in every vector of the initial population is 

assigned a randomly chosen value from within its 

corresponding feasible bounds.  

 

( 0) min max min
, rand [0,1].( )G

j i j j j jx x x x            (10) 

where i = 1,…,NP and j = 1,…,D. xj,i
(G=0)

 are the initial 

value of the j
th

 parameter of the i
th

 individual vector. xj
min

 and 

xj
max

 are the lower and upper bounds of the j
th

 decision 

parameter, respectively. Once every vector of the population 

has been initialized, its corresponding fitness value is 

calculated and stored for future reference.  

B. Mutation Step 

After the population of candidate solutions is successfully 

initialized, the next step of DEA optimization process is 

carried out by applying three basic genetic operations; 

mutation, crossover and selection. These three operators create 

the population of next generation P
(G+1)

 by using the current 

population P
(G)

. At every generation G, each vector in the 

population has to serve once as a target vector Xi
(G)

, the 

parameter vector has chosen vector index i, and it is compared 

with a mutant vector. The mutation operator generates mutant 

vectors (Vi
(G)

) by perturbing a randomly selected vector (Xr1) 

with the difference of two other randomly selected vectors (Xr2 

and Xr3). 
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(11) 

Vector indices r1, r2 and r3 are randomly selected, which 

r1, r2 and r3  {1,…,NP} and r1 ≠ r2≠ r3 ≠ i. Xr1, Xr2 and Xr3 

are selected anew for each parent vector. F is a user-defined 

constant known as the “scaling mutation factor”, which is 

typically chosen from within the range [0,1
+
].  

C.  Crossover Step 

In this step, a crossover or recombination process is also 

applied in the DEA procedure because it helps to increase the 

diversity among the mutant parameter vectors. At the 

generation G, the crossover operation creates trial vectors (Ui) 

by mixing the parameters of the mutant vectors (Vi) with the 

target vectors (Xi) according to a selected probability 

distribution.  

( )

,( ) ( )

,

( )

,
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
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        (12) 

The crossover constant CR is a user-defined value (known 
as the “crossover probability”), which is usually selected from 
within the range [0,1]. The crossover constant controls the 
diversity of the population and aids the algorithm to escape 
from local optima. The “randj” is a uniformly distributed 
random number within the range (0,1) generated anew for each 
value of j. “s” is the trial parameter with randomly chosen 

index  {1,…,D}, which ensures that the trial vector gets at 
least one parameter from the mutant vector.  

D.  Selection Step 

Finally, the selection operator is applied in the last stage of 

the DEA procedure. The selection operator selects the vectors 

that are going to compose the population in the next 

generation. This operator compares the fitness of the trial 

vector and the corresponding target vector and selects the one 

that provides the best solution. The fitter of the two vectors is 

then allowed to advance into the next generation according to 

(13). 
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        (13) 

The DEA optimization process is repeated across 
generations to improve the fitness of individuals. The overall 
optimization process is stopped whenever maximum number of 
generations is reached or any other predetermined convergence 
criterion is satisfied.  
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IV. IMPLEMENTATION OF SADEA METHOD FOR TNEP 

PROBLEM WITH SYSTEM LOSSES CONSIDERATION 

Regarding a conventional differential evolution algorithm 

(CDEA) method (described in the previous section) has the 

notable limitation of CDEA control parameter tuning due to a 

complex interaction of parameters. The SaDEA procedure is 

proposed to enhance the performance of CDEA method by 

reducing a tedious task of control parameters tuning. In 

addition, the SaDEA technique was successfully adopted to 

solve an economic dispatch problem in the previous author’s 

work [16]. From the achieved successful results, the SaDEA 

method is proposed to solve the TNEP problem with 

transmission system losses consideration in this paper.  

A.  The SaDEA Optimization Procedure 

In the first step of SaDEA optimization procedure, the user 

has to define two constant values (T1 and T2) that are the 

indices of control parameters (F and CR) changing. The user-

defined values T1 and T2 are usually selected from within the 

range [0,1] and they are set as 0.1 in this work for avoiding 

local optimum trapping. The control parameters F and CR are 

updated in their setting bounds when the uniformly distributed 

random numbers within the range (0,1) are less than T1 and T2. 

In the next step, an initial population is generated 

according to (10). For the TNEP problem formulation, each 

individual vector (Xi) contains many integer-valued 

parameters n, where nj,i represents the number of candidate 

lines in the possible branch j of the individual i. The problem 

decision parameter D is the number of possible branches for 

expansion.  
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After new individuals are initialized successfully then they 

are created by applying mutation (11), crossover (12) and 

selection (13) operators. The optimization process is repeated 

in search of the final solution until the maximum number of 

generations (G
max

) is reached or other predetermined 

convergence criterion () is satisfied. 

B. Fitness Function of TNEP Problem 

In this work, a fitness function F(X) of the TNEP problem 

is assigned according to (15) for each individual. The fitness 

function is a combination of an objective function and two 

penalty functions. The fitness function is adopted to find the 

optimal solution, measure the performance of candidate 

solutions and check for violation of the TNEP problem 

constraints. An individual is the best solution if its fitness 

value F(X) is highest. The penalty functions are also included 

in the fitness function in order to represent violations of both 

equality and inequality constraints. For the TNEP problem, an 

equality constraint penalty function (17) considers the DC 

power flow node balance constraint and an inequality 

constraint penalty function (18) considers the constraints of 

power flow limit on each transmission line, power generation 

limit, bus voltage phase angle limit and right-of-way, 

respectively. The general fitness function of the TNEP 

problem can be formulated as follows: 

 1 1 2 2

1
( )

( ) ( ) ( )
F X

O X P X P X 


 
           (15) 

F(X) and O(X) are a fitness function and an objective 

function of the TNEP problem, respectively. P1(X) and P2(X) 

are the equality and inequality constraint penalty functions 

respectively. X denotes the individual vector of decision 

variables. 1 and 2 are penalty weighting factors that are set 

to 0.5 in this paper. For the TNEP problem, the objective 

function and penalty functions are formulated as follows. 
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where C is an inequality constraint constant that is used 

when an individual violates the inequality constraints. In this 

work, the constant C is set as 0.5 for all cases. 

C.  Control Parameters Setting  

A proper selection of the SaDEA control parameters is 

very significant for the algorithm performance and success 

when searching optimal solution. In this simulation, the setting 

ranges of the SaDEA control parameters used in the TNEP 

problem are as follows: F = [0.4,1], CR = [0.8,1] and            

NP = [5*D,10*D]. The maximum predetermined convergence 

criterion () is set to 10
-4

 and the maximum number of 

generations (G
max

) is set to 10
3
. 

D. Overall Procedures 

The overall procedures of the SaDEA method for solving 

the TNEP problem can be summarized as follows: 

Step 1: Read all required system data; 

Step 2: Set up two constant values T1 and T2 for simulation; 

Step 3: Set iteration G = 0 for an initialization step of the   

 SaDEA procedure; 

Step 4: Initialize the SaDEA control parameters F and CR;  

Step 5: Initialize the population P of all individuals according 

 to (10); 

Step 6: Evaluate the fitness function according to (15) and 

 then check violations of all constraints for each 

 individual using (17) and (18); 

Step 7: Rank all individuals according to their fitness; 

Step 8: Updating F, the F value is updated when a random 

 value rand1 (0,1)  T1; 

Step 9: Updating CR, the CR value is updated when a random 

 value rand2 (0,1)  T2; 

Step 10: Set iteration G = 1 for the next step of the SaDEA 

 optimization process; 
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Step 11: Apply mutation, crossover and selection operations  

 to create new individuals; 

Step 12: Evaluate the fitness function by using (15) and then 

 check violations of all constraints for each new 

 individual using (17) and (18); 

Step 13: Rank new individuals according to their fitness; 

Step 14: Updating F, the F value is updated when a random 

 value rand1 (0,1)  T1; 

Step 15: Updating CR, the CR value is updated when random 

 value rand2 (0,1)  T2; 

Step 16: Verification of stop criterion, if F(X)
G
- F(X)

G-1
 >  

 or G < G
max

, set G = G + 1 and return to step 11 for 

 repeating to search the final solution. Otherwise, stop 

 to calculate and go to step 17; 

Step 17: Compute and display the final solutions, which are  

 an investment cost, a system losses cost and a total 

 expansion cost. 

V. TEST SYSTEMS AND NUMERICAL RESULTS 

     In the simulation, the proposed SaDEA procedure is 

implemented in MATLAB and tested its performance on two 

electrical transmission systems reported in [17] and [22]. 

These two test networks are the Garver’s 6-bus system and 

IEEE 25-bus system, which all significant data are also 

available in [17] and [22]. In this work, the TNEP problem is 

investigated including system losses consideration. The 

simulation results of the proposed SaDEA technique have 

been compared to conventional genetic algorithm (CGA), tabu 

search (TS), artificial neural networks (ANNs), hybrid 

artificial intelligent techniques and summarized in this paper. 

Garver 6-bus System  

In this paper, the first test system is a well-known Garver’s 

system, which comprises 6 buses, 9 possible branches and 760 

MW of demand. The electrical system data; transmission line, 

load and generation data are available in [17]. In this test 

system, bus 6 is a new generation bus and needs to be 

connected to the existing network. A maximum of four 

parallel lines is permitted in each branch. In this simulation 

case, the power losses consideration is included in the 

objective function where the loss coefficient, K, was selected 

as 1000. The per-unit base in the DC-load flow analysis is 100 

MVA while the cost base is 10
5
. The estimated lifetime of the 

transmission lines was assumed to be 25 years and the cost of 

one kWh was assumed to be 0.005 monetary units/kWh as 

found in [9]. 

Regarding the results of Garver’s test system as shown in 

table 1, the best solution of the TNEP problem with system 

losses consideration was found by all algorithms except ANNs 

method with the following topology: n2-6 = 4, n3-5 = 1, n4-6 = 3 

and n5-6 = 1. Although the ANNs method obtained the least 

investment cost compared to other methods but it had the 

largest value of power losses cost after the new line additions. 

In addition, the ANNs method had the smallest saved cost of 

minimizing ohmic power losses during planning horizon. The 

convergence curve of SaDEA technique to obtain the best 

solution is illustrated in Fig. 1, where the best solution was 

found at the 12nd generation. 

TABLE I.   COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS 

METHODS FOR GARVER 6-BUS TEST SYSTEM 

K=1000 

Methods 
Investment 

cost 

Losses cost 

“a” 

Saved cost 

“b” 

ANNs [9] 261 448.83 904.77 

TS [9] 291 382.54 971.06 

GA [9] 291 382.54 971.06 

Hybrid ANN-TS-GA [9] 291 382.54  971.06 

SaDEA 291 382.54 971.06 

 

Note: The losses cost “a” after the new line addition is calculated for 25 

years. The saved cost “b” is calculated as a difference cost between the cost of 
ohmic power losses before the expansion of the transmission network (1353.6 

monetary units) based on a 25-year (life-time of line) and the power losses 

cost “a” calculated after the new line additions for the same period. 

 
Figure 1. A convergence curve of SaDEA method for Garver 6-bus system  

IEEE 25-bus System 

The IEEE 25-bus system is selected for testing the SaDEA 

procedure in this work. It consists of 25 buses, 36 possible 

branches and 2750 MW of total demand. The electrical system 

data; transmission line, load and generation data are available 

in [9] and [22]. A new bus of this system is bus 25 that is 

prepared for connecting to bus 5 and/or bus 24. A maximum 

of four parallel lines is permitted to install in each branch. In 

this simulation case, the objective function includes the power 

losses consideration, in which the loss coefficient, K, was 

selected to be 10000. The estimated lifetime of the 

transmission lines was assumed to be 25 years while the cost 

of one kWh was assumed to be 0.0112 US$/kWh [9]. 

In this test case, the best solution of the TNEP problem 

with system losses consideration was found by SaDEA 

method and an investment cost was 160.051 million US$ as 

shown in table 2, with the addition of the following lines to the 

base topology: n7-13 = 2, n8-22 = 3, n11-14 = 2, n12-14 = 2, n12-23 = 3, 

n13-18 = 2, n13-20 = 3, n16-18 = 3, n16-20 = 3,  n20-21 = 1, n5-25 = 3 and 

n24-25 = 2. In addition, the SaDEA method achieved the least 
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value of a power losses cost after the new line additions 

compared to other techniques. Therefore the SaDEA had the 

largest value of a saved cost of minimizing ohmic power 

losses during expansion planning horizon in this case. Overall, 

the best algorithmic procedure for this case is SaDEA method. 

TABLE II.   COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS 

METHODS FOR IEEE 25-BUS TEST SYSTEM 

K=10000 

Methods 

Investment 

cost 

(million 

US$) 

Losses cost 

“a”  

(million US$)  

 

Saved cost  

“b” 

 (million US$) 

 

ANNs [9] 224.178 161.995 147.979 

TS [9] 180.664 155.264 154.709 

GA [9] 162.430 171.947 138.016 

Hybrid ANN-TS-GA [9] 168.784 152.320 157.653 

SaDEA 160.051 134.251 175.722 

 

Note: The losses cost “a” after the new line addition is calculated for 25 

years. The saved cost “b” is calculated as the difference cost between the cost 
of ohmic power losses before the expansion of the transmission system 

(309.973 million US$) based on a 25-year (life-time of line) and the power 

losses cost “a” calculated after the new line additions for the same period. 

VI. CONCLUSIONS 

In this paper, a SaDEA methodology has been applied 

when solving TNEP problem with system losses 

consideration. Regarding the achieved results on the two test 

networks illustrate that the SaDEA procedure is an efficient 

technique for solving the transmission planning problem. As 

the numerical test results in table 2 indicate, the proposed 

method obtained the least values of an investment cost and a 

power losses cost compared to the conventional genetic 

algorithm, the tabu search, the artificial neural networks and 

the hybrid artificial intelligent techniques on the IEEE 25-bus 

system. In addition, the SaDEA method had the largest saved 

cost of ohmic power losses for both test cases as shown in 

table 1 and table 2. The most attractive feature of the proposed 

algorithm is the good computational performance. The 

accuracy of the results obtained in the TNEP study is in very 

good agreement with those obtained by other researchers as 

found in [9]. Regarding a consequence of these successful 

results, the TNEP problem considering the n-1 contingencies 

in single line outage or single generator outage will be 

investigated as future work. 
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Abstract 

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to electric power system optimization problems. The 

TEP addresses the problem of determining the optimal number of lines that should be added to an existing network in order to supply the 

forecasted load as economically as possible subject to the prevailing operational constraints. In this paper, an enhanced differential evolution 

algorithm (DEA) is applied directly to the DC power flow based model in order to solve the TEP problem with system losses consideration. In 

addition, such problem is also investigated both with and without the resizing of power generation. The effectiveness of the proposed 

enhancement is initially demonstrated via analysis of low and medium complexity transmission test systems. A detailed comparative study 

among conventional genetic algorithm (CGA), tabu search (TS), artificial neural networks (ANNs), hybrid artificial intelligent techniques and 

the proposed method is presented. Regarding the obtained experimental results, the proposed technique provides the accurate solution, the 

simple implementation and the satisfactory computational time. 

Keywords: Transmission expansion planning; power system optimization; differential evolution algorithm; transmission line losses 

I.  INTRODUCTION 

The main goal of solving a transmission expansion planning (TEP) problem is to determine the optimal expansion plan of the 
electrical power system [1]. Furthermore, transmission planning should specify new transmission facilities that must be added to an 
existing network to ensure adequate operation over a specified planning horizon. Usually, the TEP can be categorized as static or 
dynamic planning according to the treatment of the study period [2]. In static planning; the planner considers only single planning 
horizon and determines the number of suitable circuits that should be installed to each branch of the transmission system. 
Investment is carried out at the beginning of the planning horizon time. On the other hand, in dynamic planning; the planner 
considers not only the optimal number and location of added lines but also the most appropriate times to carry out such expansion 
investments. Therefore the continuing growth of the demand and generation is always assimilated by the system in an optimized 
way. The planning horizon is divided into multistage and the new lines must be installed at each stage of the planning horizon. 

Over the last few decades, a number of optimization techniques have been applied when solving the TEP problem. In 2002, Al-
Saba and El-Amin proposed the application of artificial intelligent (AI) tools that comprised genetic algorithm, tabu search and 
artificial neural networks (ANNs) with linear and quadratic programming models for solving TEP problem with line losses 
consideration as shown in [3]. The effectiveness of these AI methods in dealing with small-scale and large-scale transmission 
systems was tested through their applications to the Graver 6-bus system, the IEEE 24-bus system and the Saudi Arabian network. 
The planning work [3] aimed to obtain the optimal design using a fast automatic decision-maker. An intelligent tool started from a 
random state and it proceeded to allocate the calculated cost recursively until the stage of the negotiation point was reached.  

In the last few years, a differential evolution algorithm (DEA) has been employed to handle a wide range of electric power 
system optimization problems such as power system planning [4], short-term scheduling of hydrothermal power system [5], 
optimal reactive power flow [6-7], optimal power flow [8], economic power dispatch [9] and transmission expansion planning [10]. 
In a number of case studies, the DEA has proved to be more accurate and can provide the accurate solution within an acceptable 
computation time. In 2009, the author applied a novel DEA method for solving TEP problem in both static and dynamic planning 
cases as shown in [10] where the DEA method performed superior to a conventional genetic algorithm (CGA) in terms of simple 
implementation with high quality of solution and good computational performance. Although the proposed DEA method [10] was 
successfully applied many cases of the TEP problem, it was not yet sufficiently robust for practical use for industry. Such DEA 
method has the notable limitation of DEA control parameter tuning due to a complex interaction of parameters. Therefore, a further 
improvement of the novel DEA method is essentially required before it can be generally adopted for practical use in industry. An 
enhanced differential evolution algorithm method is modified and then applied to handle the TEP problem with system losses 
consideration in this research. The various transmission expansion costs; an investment cost, a power losses cost and a saved cost of 
the proposed enhanced DEA method are compared to CGA, tabu search, artificial neural networks and hybrid artificial intelligent 
techniques reported in [3] on the Garver 6-bus system and IEEE 25-bus system. 

II. THE TEP PROBLEM FORMULATION 

In general, the TEP problem is mathematically formulated using DC power flow model. The used model is a nonlinear mixed-

integer problem with high complexity, especially for large-scale real-world transmission systems. Regarding the TEP model, 



there are several alternatives to the DC model, for example the transportation, hybrid and disjunctive models. Detailed reviews of 

the main mathematical models applied to the TEP problem were presented in [11]. 

A. The Objective Function 

The objective of TEP problem is to minimize the total transmission expansion cost while satisfying technical and economical 

constraints. In this research, a classical DC power flow model has been applied to solve the TEP problem with transmission 

system losses consideration as reported in [3]. Mathematically, the proposed problem can be formulated as follows: 
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where v, cij and nij represent the transmission expansion cost, the cost of a candidate circuit for addition to branch i-j and the 

number of circuits added to branch i-j, respectively. Here  is the set of all candidate branches for expansion. In addition, K is a 

loss coefficient (calculated using K=8760/NYE/Ckwh); NYE is an estimated life time of the expansion network (years); CkWh: 

is a cost of one kWh (US$/kWh); Rm is a resistance of the mth line; Im is the flow on the mth line; and NL is the number of the 

existing lines. In the first term of an objective function, the capital cost of the added lines is represented and the second term 

represents the cost of ohmic power losses after the new line additions. The system power flow and losses are changed due to a 

result of line additions. The loss coefficient (K) depends upon the number of years of transmission system operation and the kWh 

cost. The used DC load flow model in the problem formulation, a current (I) is approximately equal to the power flow and voltage 

is assumed to be unity at all buses.  

B. Problem Constraints 

The objective function (1) represents the capital cost of newly installed transmission lines and the cost of ohmic power losses 

while it has some technical restrictions. The problem’s constraints must be included into mathematical model to ensure that the 

optimal solution satisfies the TEP requirements. These problem’s constraints are described and formulated as following (2)-(7). 

 DC Power Flow Node Balance Constraint  

This linear equality constraint represents the conservation of power at each node and can be formulated as in (2). 

 
g d B 

                        
(2) 

where g, d and B are real power generation vector in existing power plants, real load demand vector in all network nodes, and 

susceptance matrix of the existing and added lines in the network, respectively. Here  is the bus voltage phase angle vector. 

 Power Flow Limit on Transmission Lines Constraint 

The following inequality constraint is applied to TEP problem in order to check the limit power flow for each path. 
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In DC power flow model, each element of the branch power flow in constraint (3) can be calculated by using (4): 
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where fij, fij
max

, nij, nij
0
 and xij represent, respectively, total branch power flow in branch i-j, maximum branch power flow in 

branch i-j, number of circuits added to branch i-j, number of circuits in original base system and reactance of the branch i-j. Here 

i and j are voltage phase angle of the terminal buses i and j respectively. 

 Power Generation Limit Constraint 

For the TEP problem with power generation resizing consideration, a power generation limit must be included into the 

problem constraints. This can be mathematically represented as follows: 

 
min max

i i ig g g 
                      

(5) 

where gi, gi
min

 and gi
max

 are real power generation at node i, the lower and upper real power generation limits at node i, 

respectively. 

 Right-of-way Constraint 

It is essential to obtain the accurate TEP solution, thus planner needs to know an exact capacity of newly required circuits. 

Therefore a right-of-way constraint is also included into such problem. Mathematically, this constraint defines new circuit 

location and maximum number of circuit that can be installed in a specified location. It can be represented as follows. 

 
max0 ij ijn n 

             
(6)  



where nij and nij
max

  represent the total integer number of circuits added to the branch i-j and the maximum number of added 

circuits in the branch i-j, respectively.  

 Bus Voltage Phase Angle Limit Constraint 

A voltage phase angle should be included as a TEP constraint and a calculated phase angle (ij
cal

) must be less than a 

predefined maximum phase angle (ij
max

). This constraint can be represented as the following mathematical expression. 
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III. BASIS OF DIFFERENTIAL EVOLUTION ALGORITHM METHODOLOGY 

A differential evolution algorithm (DEA) is a novel evolutionary algorithm as it employs real-coded variables and typically relies 

on mutation as the search operator. More recently the DEA has evolved to share many features with a conventional genetic 

algorithm (CGA) as found in [12]. Regarding the major similarity between these two types of algorithm, they both maintain 

populations of potential solutions and use a selection mechanism for choosing the best individuals from the population. The 

features of DEA method are different from CGA in several aspects [13]. 

The DEA method is a parallel direct search technique that employs a population P of size NP, consisted of floating point 

encoded individuals or candidate solutions (8). At every generation G during the optimization process, the DEA maintains 

population P
(G)

 of NP vectors of candidate solutions to the problem at hand. 
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Each candidate solution Xi is a D-dimensional vector, containing as many real-valued parameters (9) as the problem decision 

parameters D. 
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A. Initialization Step 

In the first step of DEA procedure, the population of candidate solutions must be initialized. Typically, each decision parameter in 

every vector of the initial population is assigned a randomly chosen value from within its corresponding feasible bounds.  
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where i = 1,…,NP and j = 1,…,D. xj,i
(G=0)

 is an initial value of the j
th

 parameter of the i
th

 individual vector. xj
min

 and xj
max

 are the 

lower and upper bounds of the j
th

 decision parameter, respectively. Once every vector of the population has been initialized, its 

corresponding fitness value is calculated and stored for future reference.  

B. Mutation Step 

After the population of candidate solutions is successfully initialized in the first step of DEA procedure, thus the next step is 

carried out by applying three basic genetic operations that are mutation, crossover and selection. Several such DEA operators 

generate the population of next generation P
(G+1)

 by using the current population P
(G)

. At every generation G, each vector in the 

population must serve once as a target vector Xi
(G)

 and the parameter vector has selected vector index i. The chosen target vector is 

compared with a mutant vector in the next step. The mutation operator creates mutant vectors (Vi
(G)

) by perturbing a randomly 

selected vector (Xr1) with the difference of two other randomly selected vectors (Xr2 and Xr3). 
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Vector indices r1, r2 and r3 are randomly selected, which r1, r2 and r3  {1,…,NP} and r1 ≠ r2≠ r3 ≠ i. Xr1, Xr2 and Xr3 are 

selected anew for each parent vector. F is a user-defined constant known as the “scaling mutation factor”, which is typically 

chosen from within the range [0,1
+
].  

C.  Crossover Step 

In this step, the DEA procedure employs a crossover or recombination process to increase the diversity among the mutant 

parameter vectors. At the generation G, the crossover operation creates trial vectors (Ui) by mixing the parameters of the mutant 

vectors (Vi) with the target vectors (Xi) according to a selected probability distribution.  
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        (12) 

The crossover constant CR is a user-defined value (known as the “crossover probability”), which is usually selected from within 
the range [0,1]. The crossover constant controls the diversity of the population and aids the algorithm to escape from local optima. 
The “randj” is a uniformly distributed random number within the range (0,1) generated anew for each value of j. “s” is the trial 



parameter with randomly chosen index  {1,…,D}, which ensures that the trial vector gets at least one parameter from the mutant 
vector.  

D.  Selection Step 

Finally, a selection operator is adopted in the last stage of the DEA procedure. The selection operator picks the vector that is 

going to compose the population in the next generation. This operator compares the fitness values between the trial vector and the 

corresponding target vector, and then it selects the one providing the best solution. The fitter of the two vectors is then permitted 

to advance into the next generation according to (13). 
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The DEA optimization process is repeated continuously across generations to improve the fitness of individuals. The overall 
optimization process is stopped whenever maximum number of generations is reached or any other predetermined convergence 
criterion is satisfied.  

IV. IMPLEMENTATION OF AN ENHANCED DEA METHOD FOR TEP PROBLEM WITH SYSTEM LOSSES CONSIDERATION 

Although a conventional DEA method has a number of merits as described in section III, it still has a drawback that is a difficult 

task of the DEA control parameters tuning. Regarding such disadvantage of the conventional DEA characteristic, thus it should be 

improved the optimization performance in this research. An enhanced DEA method is a modified version and has been proposed 

to solve the TEP problem with system losses consideration in this paper.  

A.  An Enhanced DEA Optimization Method 

In this research, the design of a self-adaptive DEA (SaDEA) procedure is to develop two DEA control parameters, mutation factor 

(F) and crossover probability (CR), which are self-tuning parameters using probability methodology. This enhanced method is 

called “Method 2jDE” as found in [14]. In the first step of SaDEA optimization process, user must determine two constant values 

(T1 and T2), which are the indices of control parameters (F and CR) changing. The user-defined values T1 and T2 are usually 

chosen from within the range [0,1] and set as 0.1 in this work for avoiding local optimum trapping. These control parameters F 

and CR are updated in their setting bounds when the uniformly distributed random numbers within the range (0,1) are less than T1 

and T2. 

After two constant values are set by user, then an initial population is generated according to (10). In the TEP problem 

formulation, each individual vector (Xi) contains many integer-valued parameters n, where nj,i represents the number of candidate 

lines in the possible branch j of the individual i. The problem decision parameter D is the number of possible branches for 

expansion.  
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When an initial population of individuals is initialized successfully, then three DEA operators (11)-(13) create the population 

of next generation P
(G+1)

 by using the current population P
(G)

. The optimization process is continuously repeated in search of the 

final solution until the maximum number of generations (G
max

) is reached or other predetermined convergence criterion () is 

satisfied. 

The SaDEA optimization performance depends on the suitable values of control parameters. In this simulation, the setting 

ranges of the SaDEA control parameters used in the TEP problem are as follows: F = [0.4,1], CR = [0.8,1] and NP = [5*D,10*D]. 

The maximum predetermined convergence criterion () is set to 10
-4

 and the maximum number of generations (G
max

) is set to 10
3
. 

B. The TEP Fitness Function 

A fitness function of TEP problem is used to search the optimal solution, measure the performance of candidate solutions and 

check for violation of the TEP problem constraints. The TEP fitness function F(X) is a combination of an objective function and 

two penalty functions and can be formulated according to (15) for each individual. An individual is the best solution if its fitness 

value F(X) is highest. The penalty functions must be also included in the fitness function in order to represent violations of both 

equality and inequality constraints of TEP problem. Regarding the proposed problem, an equality constraint penalty function (17) 

considers the DC power flow node balance constraint and an inequality constraint penalty function (18) considers the constraints 

of power flow limit on each transmission line, power generation limit, bus voltage phase angle limit and right-of-way, 

respectively. The general fitness function of the TEP problem can be assigned as follows: 
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In (15), F(X) and O(X) represent a fitness function and an objective function of the TEP problem, respectively. P1(X) and 

P2(X) are the equality and inequality constraint penalty functions respectively. X denotes the individual vector of decision 

variables. In this work, 1 and 2 are penalty weighting factors and set to 0.5, respectively. For the TEP problem, the objective 

function and penalty functions are formulated as follows. 
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where C is an inequality constraint constant that is used when an individual violates the inequality constraints. In this work, 

the constant C is set as 0.5 for all cases. 

C. Overall Procedures 

The overall procedures of the SaDEA method application to the TEP problem with line losses consideration can be 

summarized as follows: 

Step 1: Read all required transmission system data; 

Step 2: Set up all control parameters of the SaDEA method (F
min

, F
max

, CR
min

, CR
max

, T1, T2, NP and D); 

Step 3: Create the initial values of the SaDEA control parameters (F and CR) to be applied to mutation and crossover operators; 

Step 4: Set initial iteration G = 0 for an initialization step of the SaDEA procedure; 

Step 5: Initialize the population P of all individuals according to (10); 

Step 6: Evaluate the fitness function according to (15) and then check violations of all constraints for each individual using (17) 

and (18); 

Step 7: Rank all individuals according to their fitness; 

Step 8: Updating F, the F value is updated when a random value rand1 (0,1)  T1; 

Step 9: Updating CR, the CR value is updated when a random value rand2 (0,1)  T2; 

Step 10: Set iteration G = 1 for the next step of the SaDEA optimization process; 

Step 11: Apply mutation, crossover and selection operations to create new individuals; 

Step 12: Evaluate the fitness function by using (15) and then check violations of all constraints for each new individual using (17) 

and (18); 

Step 13: Rank new individuals according to their fitness; 

Step 14: Updating F, the F value is updated when a random value rand1 (0,1)  T1; 

Step 15: Updating CR, the CR value is updated when random value rand2 (0,1)  T2; 

Step 16: Verification of stop criterion, if F(X)
G
- F(X)

G-1
 >  or G < G

max
, set G = G + 1 and return to step 11 for repeating to 

search the final solution. Otherwise, stop to calculate and go to step 17; 

Step 17: Compute and display the final solutions, which are an investment cost, a system losses cost and a total expansion cost. 

V. TEST SYSTEMS AND NUMERICAL RESULTS 

In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and tested its performance on two 

electrical transmission systems reported in [11] and [15]. These two test networks are the Garver’s 6-bus system and IEEE 25-bus 

system, which all significant data are also available in [11] and [15]. For this research, the TEP problem with system losses 

consideration is investigated both with and without the resizing of power generation. The numerical results of the proposed 

SaDEA technique have been compared to conventional genetic algorithm (CGA), tabu search (TS), artificial neural networks 

(ANNs), hybrid artificial intelligent techniques and summarized in this section. 

A. Garver 6-bus System  

In this paper, a well-known Garver’s system is the first test network employed for investigation. It consists of 6 buses, 9 possible 

branches and 760 MW of demand. The electrical system data; transmission line, load and generation data are available in [11]. A 

maximum of four parallel lines is permitted in each branch. In this simulation case, the power losses consideration is included in 

the objective function where the loss coefficient (K) is selected as 1000. The per-unit base in the DC-load flow analysis is 100 



MVA while the cost base is 10
5
. The estimated lifetime of the transmission lines is assumed to be 25 years and the cost of one 

kWh is assumed to be 0.005 monetary units/kWh as found in [3]. 

TABLE I.   COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS METHODS FOR GARVER 6-BUS TEST SYSTEM 

 

Types of TEP problem 

K=1000 

Methods 
Investment 

cost 

Losses cost 

“a” 

Saved cost 

“b” 

 

TEP without the resizing 
of power generation 

ANNs [3] 261 448.83 904.77 

TS [3] 291 382.54 971.06 

GA [3] 291 382.54 971.06 

Hybrid ANN-TS-GA [3] 291 382.54 971.06 

SaDEA [16] 291 382.54 971.06 

TEP with the resizing of 

power generation 
SaDEA 170 231.66 1,121.94 

 

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved cost “b” is calculated as a difference cost between the cost of ohmic 

power losses before the expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time of line) and the power losses cost “a” 
calculated after the new line additions for the same period. 

For a case study of without power generation resizing consideration, the best solution of TEP problem considering 

transmission system losses on Garver’s test system as shown in table 1 was found by all algorithms except ANNs method with the 

following topology: n2-6 = 4, n3-5 = 1, n4-6 = 3 and n5-6 = 1. Although the ANNs method obtained the least investment cost 

compared to other methods but it had the largest value of power losses cost after the new line additions. The SaDEA method 

obtained the investment cost and losses cost for with power generation resizing case study cheaper than the without power 

generation resizing case study. In addition, the SaDEA method had the largest saved cost of minimizing ohmic power losses 

during planning horizon in case of with power generation resizing consideration. 

B. IEEE 25-bus System 

The IEEE 25-bus system is conduced to test the performance of SaDEA procedure in this paper. For the second test system, it has 

25 buses, 36 possible branches and 2750 MW of total demand. The electrical system data; transmission line, load and generation 

data are available in [3] and [15]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. A 

maximum of four parallel lines is permitted to install in each branch. In this simulation case, the objective function includes the 

power losses consideration, in which the loss coefficient (K) is selected to be 10000. The estimated lifetime of the transmission 

lines is assumed to be 25 years while the cost of one kWh is assumed to be 0.0112 US$/kWh [3]. 

TABLE II.   COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS METHODS FOR IEEE 25-BUS TEST SYSTEM 

 

Types of TEP problem 

K=10000 

Methods 

Investment 

cost 

(million 

US$) 

Losses cost 

“a” 

(million US$) 

 

Saved cost 

“b” 

(million US$) 

 

 

TEP without the resizing 

of power generation 

ANNs [3] 224.178 161.995 147.979 

TS [3] 180.664 155.264 154.709 

GA [3] 162.430 171.947 138.016 

Hybrid ANN-TS-GA [3] 168.784 152.320 157.653 

SaDEA [16] 160.051 134.251 175.722 

TEP with the resizing of 
power generation 

SaDEA 62.477 83.032 226.941 

 

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved cost “b” is calculated as the difference cost between the cost of 

ohmic power losses before the expansion of the transmission system (309.973 million US$) based on a 25-year (life-time of line) and the power losses cost “a” 
calculated after the new line additions for the same period. 



For a case study of without power generation resizing consideration, the best solution of the TEP problem considering line 

losses consideration was found by SaDEA method and an investment cost was 160.051 million US$ as shown in table 2, with the 

addition of the following lines to the base topology: n7-13 = 2, n8-22 = 3, n11-14 = 2, n12-14 = 2, n12-23 = 3, n13-18 = 2, n13-20 = 3, n16-18 = 3, 

n16-20 = 3,  n20-21 = 1, n5-25 = 3 and n24-25 = 2. In addition, the SaDEA method achieved the least value of a power losses cost after 

the new line additions compared to other techniques. Comparison of two case studies, the SaDEA method obtained the investment 

cost and losses cost for with power generation resizing case cheaper than the without power generation resizing case. Therefore 

the SaDEA method got the largest value of a saved cost of minimizing ohmic power losses during expansion planning horizon in 

this test system. Overall, the best algorithmic procedure for this test case is SaDEA method. 

VI. CONCLUSIONS 

In this paper, an enhanced DEA methodology, called a self-adaptive DEA (SaDEA) procedure, has been applied when solving 

TEP problem considering transmission system losses. In addition, the resizing of power generation consideration is also included 

in such problem. According to all obtained results on two test systems illustrate that the SaDEA procedure is an efficient 

technique for solving the TEP problem. As the numerical test results in table 2 indicate, the proposed method found the least 

values of an investment cost and a power losses cost compared to the conventional genetic algorithm, the tabu search, the 

artificial neural networks and the hybrid artificial intelligent techniques on the IEEE 25-bus system for both with and without 

power generation resizing case studies. In addition, the SaDEA method had the largest saved cost of ohmic power losses for both 

test cases as shown in table 1 and table 2. In the simulation, the most attractive feature of the proposed algorithm is the good 

computational performance. The accuracy of the results obtained in the TEP study is in very good agreement with those obtained 

by other researchers as found in [3]. Regarding a consequence of these successful results, the TEP problem considering the n-1 

contingencies in single line outage or single generator outage will be investigated as future work. 
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Abstract: In this article, an enhanced differential evolution algorithm (DEA) is applied directly to the DC power flow based 

model in order to efficiently handle a problem of transmission network expansion planning (TNEP) with n-1 security 

criterion consideration. The proposed methodology is adopted to minimise a transmission investment cost associated with 

economical, operational, and reliable constraints. Mathematically, long-term transmission planning using the DC model is a 

mixed integer nonlinear programming problem, which is a difficult task for solving in real-world transmission systems. In 

addition, the TNEP problem is also investigated both with and without the resizing of power generation in this work. The 

efficiency of the proposed technique is initially demonstrated via the analysis of low and medium complexity transmission 

system test cases. In this work, the analyses are performed within a mathematical programming environment of MATLAB 

and a detailed comparative study among conventional DEA technique, ant colony search algorithm (ACSA), Chu-Beasley 

genetic algorithm (CBGA), and the proposed method is presented. As numerical results, the proposed algorithm provides 

accurate solution, feature of robust computation, simple implementation, and satisfactory computational time. 

1. Introduction 

In general, cost-effective transmission network expansion planning (TNEP) is a major challenge with regard to electrical 

power system optimisation problems as its main goal is to achieve optimal expansion plan. The planning solution has to meet 

technical requirements while offering economical investment. Furthermore, good transmission expansion plan should specify 
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new transmission facilities that must be installed in existing network to ensure adequate operation over a specified planning 

horizon [1].  

Over past few decades, a number of optimisation techniques have been applied to deal with the TNEP problem in 

many issues. These proposed methods are as follows: mathematical optimization methods (e.g. linear programming, 

nonlinear programming, dynamic programming, integer and mixed integer programming, benders decomposition, branch & 

bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic methods (e.g. genetic algorithms, tabu 

search, simulated annealing, particle swarm, evolutionary algorithms, differential evolution algorithm, etc.).  

In recent years, a differential evolution algorithm (DEA) has been attracting increasing attention for a wide variety 

of engineering applications including electrical power system optimisation problems. A large number of researches, applying 

DEA for solving the electrical power system optimisation problems, for instance, power system planning [2], economic 

power dispatch [3-5], distribution network reconfiguration problem [6], short-term hydrothermal scheduling problem [7], 

optimal reactive power flow [8-9], and optimal power flow [10]. In addition, the DEA method was successfully solved both 

static and dynamic TNEP problems by the author in [11], where the DEA method performed superior to conventional genetic 

algorithm (CGA) in terms of simple implementation with high quality of solution and good computation performance. 

Meanwhile, DEA requires less control parameters while being independent from initialization. Moreover, its convergence is 

stable as DEA procedure uses rather greedy selection and less stochastic approach to solve optimization problems than other 

CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious task of the DEA control parameters tuning 

due to complex relationship among problem’s parameters. The optimal parameter settings of DEA method may not be found 

and the final results may be trapped in a local minimum. 

It is important to note that few algorithms have been practically applied to solve the TNEP problem as reported in 

[12]. Although the proposed DEA method [11] was successfully solved many cases of TNEP problem, it was not yet 

sufficiently robust for practical use in industry. The DEA method has the notable limitation of control parameter tuning due 

to a complex interaction of parameters as above mentioned. Therefore, a further improvement of the DEA method is 

essentially required before it can be generally adopted for practical use in industry.  
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The proposed problem as studied in [11] is a basic transmission planning, in which the security criterion has not 

been considered. In other words, the optimal expansion plan is determined without considering n-1 contingencies caused by a 

transmission line or generator outage. The n-1 security criterion is an essential index in power system reliability study as it 

states that the system should be expanded in such a way that, if a single line or generator is withdrawn, the expanded system 

should still operate adequately. Therefore, an enhanced DEA method has been proposed for solving the TNEP problem with 

n-1 security criterion consideration in this research. The total investment costs and computational times of the DEA approach 

are compared to other optimisation techniques on Garver 6-bus system, IEEE 25-bus system, and Brazilian 46-bus system. 

2. Transmission network expansion planning problem formulation  

In this section, the TNEP is formulated as a mathematical problem. A main goal of solving such problem is typically to fulfill 

the required planning function in terms of investment and operation restrictions. Normally, the TNEP problem can be 

mathematically formulated by applying a classical DC power flow model, which is a nonlinear mixed-integer problem with 

high complexity, especially for large-scale real-world transmission networks. There are several alternatives to DC model such 

as transportation, hybrid, and disjunctive models. Detailed reviews of the main mathematical models for TNEP problem were 

found in [13]. 

2.1 The TNEP problem without security constraints consideration 

2.1.1 The objective function 

The objective of TNEP problem
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2.1.2 Problem constraints 

The objective function (1) represents a capital cost of newly installed transmission lines, which has some restrictions. These 

constraints must be included into mathematical model to ensure that the optimal solution satisfies transmission planning 

requirements. These constraints are described as follows: 

DC power flow node balance constraint  

This linear equality constraint represents the conservation of power at each node. 

 g d B                                                                                                       (2) 

where g, d and B are real power generation vector in existing power plants, real load demand vector in all network 

nodes, and susceptance matrix of existing and added lines in network, respectively. Here  is bus voltage phase angle vector. 

Power flow limit on transmission lines constraint 

The following inequality constraint is applied to transmission planning in order to limit the power flow for each path.  

 
0 max( )ij ij ij ijf n n f   
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Right-of-way constraint 

It is essential to find an accurate TNEP solution, thus planners need to know an exact capacity of newly required circuits. 

Therefore this constraint must be considered in such planning problem. Mathematically, the constraint defines location and 

maximum number of circuits, which can be installed in a specified location. It can be represented as following equation. 

 
max0 ij ijn n                                                                                                      (6)   

 where nij and nij
max

  represent the total integer number of circuits added to the branch i-j and the maximum number of 

added circuits in the branch i-j respectively.  

Bus voltage phase angle limit constraint 

While the DC power flow model is employed to TNEP problem, bus voltage magnitude is not a factor in this analysis. 

Therefore, bus voltage phase angle could be included as a TNEP constraint to be increase an accurate solution in technical 

issue. A calculated phase angle ( ij
cal) should be less than the predefined maximum phase angle ( ij

max). Such constraint can 

be represented as the following mathematical expression. 

 
cal max
ij ij                                                                                                        (7) 

2.2 The TNEP problem with security constraints consideration 

A main purpose of solving the TNEP problem with n-1 security criterion consideration is to minimise total expansion cost 

while satisfying economical, technical, and reliable constraints. In this work, the DC power flow model is adopted to handle 

the TNEP problem with security constraints consideration as found in [14]. Mathematically, an objective function of such 

problem can be formulated as follows: 

( , )

min ij ij
i j

v c n                                                            (8) 

Subject to 

OPCijn n                                               (9) 

SCCijn n                                              (10) 

where  is set of all candidate branches for expansion. OPC represents the planning operational constraints without 
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security as explained in subsection 2.1.2 and can be formulated as following equations (2)-(7). Moreover, SCC represents the 

security constraints including in TNEP problem. In this work, the TNEP problem is investigated that the system operates with 

security and satisfied n-1 criterion. In this context, the SCC constraints to the problem with nl paths to expansion presents the 

following equations: 

 [ ]p pg d B                                                                                                                                 (11) 

 
0 max( ) ( , )  1,2,..., ; and ( , )p

ij ij ij ijf n n f i j nl i j p             (12) 

 
0 max( 1) for ( , ) = p

ij ij ij ijf n n f i j p                                                   (13) 

 In DC power flow model, each element of the branch power flow in constraints (12) and (13) can be calculated 

using (14) and (15), respectively: 

 

0( )
( ) ( , )  1,2,..., ; and ( , )ij ijp p p

ij i j
ij

n n
f i j nl i j p

x
                                                   (14) 

 

0( 1)
( ) ( , ) = ij ijp p p

ij i j
ij

n n
f i j p

x
                                                                        (15) 

 min maxp
i i ig g g                                                                                                           (16) 

 max0 ij ijn n                                                                                                    (17)   

 cal max
ij ij                                                                                                                                                             (18) 

 
0( 1) 0 and integer for ( , ) = ij ijn n i j p                                                 (19)   

 
0 and integer ( , )  1,2,..., ; and ( , )ijn i j nl i j p                                         (20)   

 
p
j and unboundedp

ijf                                                                              (21)   

 
( , ) and 1,2,...,i j p nl                                                                              (22) 

 In this problem formulation, there are nl sets of operational variables, a set to each contingency when it is 

considered all paths p = (i,j)  . 

3. An enhanced differential evolution algorithm method 

Regarding a difficult task of DEA control parameters tuning due to complex relationship among problem’s parameters has 

been a drawback of the conventional DEA method as shown in the previous author’s work [11], where found the explanation 
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of all basis of DEA optimisation processes. Therefore, further improvement of the conventional DEA method is essentially 

required before it can be generally adopted for practical use in industry. In this paper, a conventional DEA method has been 

developed its optimisation procedure. A self-adaptive DEA (SaDEA) technique is proposed and described in this section. The 

design of SaDEA optimization procedure is to develop two DEA control parameters, mutation factor (F) and crossover 

probability (CR), which are self-tuning parameters using probability methodology. This enhanced method is called “Method 

2jDE” as found in [15]. 

 As such proposed method, users must define two constant values (T1 and T2) that are the indices of control 

parameters (F and CR) changing, respectively. The user-defined values T1 and T2 are usually selected from within the range 

[0,1] and they are set as 0.1 in this research for avoiding local optimum trapping. The control parameters F and CR are 

updated in their setting bounds when the uniformly distributed random numbers within the range (0,1) are less than T1 and T2.  

The main concept of a self-adaptive DEA optimization process is illustrated in figure 1. 

4. Implementation of an enhanced DEA method for TNEP problem with security constraints consideration 

An enhanced DEA method is proposed to solve the TNEP problem with n-1 security criterion consideration as formulated in 

previous section. The proposed method can be implemented to handle such problem as following details. 

After two constant values (T1 and T2) are set by users, then an initial population of SaDEA method is created for 

next optimisation processes. In the TNEP problem formulation, each individual vector (Xi) contains many integer-valued 

parameters n, where nj,i represents the number of candidate lines in the possible branch j of the individual i. The problem 

decision parameter D is the number of possible branches for expansion.   

 
( ) ( )( ) ( )

, ,1,[ ,..., ,..., ], 1,...,G GG G
i j i pD iiX n n n i N

                                                   
(23) 

When an initial population of individuals is initialised successfully, then three significant DEA operators, which are 

mutation, crossover, and selection as described in [11], create new population of next generation P(G+1) by using current 

population P(G). The optimisation process is continuously repeated in search of final solution until the maximum number of 

generations (Gmax) is reached or other predetermined convergence criterion ( ) is satisfied. 
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4.1 Fitness function of the TNEP considering security constraints 

A fitness function of TNEP problem is applied to search optimal solution, measure performance of candidate solutions, and 

check for violation of the planning problem constraints. The TNEP fitness function F(X) is a combination of an objective 

function and two penalty functions and can be formulated according to (24) for each individual. An individual is the best 

solution if its fitness value F(X) is highest. The penalty functions must be also included in the fitness function in order to 

represent violations of both planning operational constraints without security (OPC) and the planning security constraints 

(SCC) of TNEP problem. Regarding the proposed problem, the OPC penalty function (26) investigates all constraints of 

TNEP problem without security criterion consideration. In addition, the SCC penalty function (27) investigates all security 

constraints of TNEP problem. The general fitness function of the TNEP problem can be assigned as follows: 

 1 1 2 2

1
( )

( ) ( ) ( )
F X

O X P X P X
                             (24) 

In (24), F(X) and O(X) represent fitness function and objective function of the TNEP problem, respectively. P1(X) 

and P2(X) are the constraint penalty functions. X denotes the individual vector of decision variables. In this work, 1 and 2 

are penalty weighting factors and set to 0.5, respectively. For this TNEP problem, the objective function and the constraint 

penalty functions are formulated as follows. 

 ( , )

( ) ( ) ij ij
i j

O X V X c n

                             

          (25) 

 

1
1

if an individual violates the OPC of TEP problem. 
( )

0 otherwise

C
P X                                        (26) 

 

2
2

if an individual violates the SCC of TEP problem. 
( )

0 otherwise

C
P X

                             

                        (27) 

where C1 and C2 are the constraint constants, which are applied to problem when an individual violates the OPC and 

SCC of TNEP problem, respectively. In this work, both constants C1 and C2 are set as 0.5 for all cases. 
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4.2 Control parameters setting  

The SaDEA optimisation performance depends upon the proper values of control parameters. In this simulation, the setting 

ranges of SaDEA control parameters used in TNEP problem are as follows: F = [0.5,1], CR
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Step 14: Check n-1 security criterion for all constraints (11)-(22);   

Step 15: Rank new individuals according to their fitness; 

Step 16: Updating F, the F value is updated when a random value rand1 (0,1)  T1; 

Step 17: Updating CR, the CR value is updated when random value rand2 (0,1)  T2; 

Step 18: Verification of stop criterion, if F(X)G- F(X)G-1  >  or G < Gmax, set G = G + 1 and return to step 12 for repeating to 

search the final solution. Otherwise, stop to calculate and go to step 19; 

Step 19: Compute and display the final solutions, which are investment cost and convergence curve. 

 A computer program of the SaDEA method application to TNEP problem with security constraints consideration has 

been designed and performed as above procedures. The proposed computational program is illustrated in figure 2. 

5. Test systems and numerical results 

In the simulation, an enhanced DEA procedure is implemented in MATLAB and tested its performance on three electrical 

transmission systems as shown in [11]. These three test networks are Garver’s 6-bus system, IEEE 25-bus system, and the 

Brazilian 46-bus system and all required data are also available in [13], [16] and [17], respectively. In this work, the proposed 

algorithm is applied to handle the TNEP problem considering security constraints that are more difficult for solving than the 

basic TEP problem found in [11]. Moreover, such TNEP problem includes an issue of power generation resizing 

consideration. The numerical results of proposed SaDEA technique are compared to conventional DEA method,
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 The achieved results of SaDEA method on the Garver 6-bus system can be tabulated in table 1 including the 

discussion of these results as follows:  

For the first test case, total expansion cost of the best solution equals to 180,000 US$ with the following topology: 

n2-6 = 2, n3-5 = 3, and n4-6 = 2.  

A convergence curve of SaDEA method to obtain the best solution is illustrated in figure 3, where the optimal 

solution was found by SaDEA method at the 152nd iteration. 

An average computational time of the proposed method is 64.03 second in this test case.  

Table 1: Summary results of Garver 6-bus system  

Results of the TNEP with security constraints consideration The SaDEA method 

Best total cost (x103 US$) 180 

Average total cost (x103 US$) 187 

Worst total cost (x103 US$)  210 

% Difference between best and worst 16.67 

Standard deviation (x103 US$)  11.60 

Average CPU time (second) 64.03 

Line additions for the best result n2-6 = 2, n3-5 = 3, and n4-6 = 2 

Table 2: Comparisons between real power flow and maximum real power flow at each right-of-way on Garver 6-bus 

system (Before applying -1 security criterion consideration) 

Line path between buses Power Flow (MW) Max Power Flow (MW) 

2-3 82.1675 100 

4-6 157.7034 200 

2-6 143.2966 200 

3-5 225.8325 400 

1-4 16.894 80 

1-2 19.9385 100 

1-5 14.1675 100 

2-4 5.4026 100 

5-6 0 0 

 As results in tables 2 and 3, comparisons between real power flow and maximum real power flow at each right-of-

way are presented. Form obtained results in table 2, a transmission path between buses 2-3 is the most critical because it has 
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the lowest gap between the real power flow and the maximum power flow compared to other paths on this system. Therefore, 

the real power flow and the maximum real power flow at each path are selected to show in table 3, when a line between 

buses 2-3 is outage. Regarding results in table3, the real power flow are not over the maximum real power flow for each path. 

Table 3: Comparisons between real power flow and maximum real power flow at each right-of-way on Garver 6-bus 

system (After applying -1 security criterion consideration, when a line between buses 2-3 is outage) 

Line path between buses Power Flow (MW) Max Power Flow (MW) 

2-3 0 0 

4-6 141.6707 200 

2-6 159.3293 200 

3-5 308 400 

1-4 44.9512 80 

1-2 74.0488 100 

1-5 68 100 

2-4 6.622 100 

5-6 0 0 

5.2 IEEE 25-bus system 

The IEEE 25-bus system is also tested the performance of SaDEA procedure in this work. For the second test system, it has 

25 buses, 36 possible branches, and 2750 MW of total demand. The significant electrical system data are available in [16] 

and [18]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. The dotted lines represent 

new possible line additions and solid lines are the existing lines as shown in [11]. A maximum of four parallel lines is 

permitted to install in each branch. 

 The obtained results of SaDEA method on the IEEE 25-bus system can be tabulated in table 4 and the discussion of 

these results are as follows:  

For the second test system, total expansion cost of the best solution equals to 19.131 million US$ with the following 

topology: n5-20 = 1, n5-25 = 4, n6-24 = 1, n13-18 = 1, n13-20 = 1, n16-20 = 1, and n24-25 = 1. 

A convergence curve of SaDEA method to obtain the best solution is illustrated in figure 4, where the best solution 

was found by SaDEA method at the 584th iteration. 

An average computational time of the proposed method is 654.52 second in this test case. 
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Table 4: Summary results of IEEE 25-bus system  

Results of the TNEP with security constraints consideration The SaDEA method 

Best total cost (x103 US$) 19131 

Average total cost (x103 US$) 25050 

Worst total cost (x103 US$)  30020 

% Difference between best and worst 56.92 

Standard deviation (x103 US$)  4060.30 

Average CPU time (second) 654.52 

Line additions for the best result n5-20 = 1, n5-25 = 4, n6-24 = 1, n13-18 = 1, n13-20 = 1,   
n16-20 = 1, and n24-25 = 1  

5.3 Brazilian 46-bus system 

The third test network is the Brazilian 46-bus system as found in [11] and [17]. The system comprises 46 buses, 79 circuits, 

and 6880 MW of total demand. The transmission line, load demand, and generation data including generation resizing range 

in MW are available in [17]. This system represents a good test to the proposed approach because it is a real-world 

transmission system. The addition of parallel transmission lines to existing lines is permitted in this case with a limit of four 

lines for each branch.  

Table 5: Summary results of IEEE 46-bus system  

Results of the TNEP with security constraints consideration The SaDEA method 

Best total cost (x103 US$) 168042 

Average total cost (x103 US$) 185372 

Worst total cost (x103 US$)  208870 

% Difference between best and worst 24.30 

Standard deviation (x103 US$)  17152 

Average CPU time (second) 1962.43 

Line additions for the best result 
n2-3 = 2, n3-46 = 1, n19-25 = 1, n20-21 = 1, n23-24 = 1,   

n24-25 = 2, n26-29 = 3, n28-30 = 1, n29-30 = 2, n31-32 = 1,  
and n42-43 = 2 

 The obtained results of SaDEA method on the IEEE 46-bus system can be tabulated in table 5 and the discussion of 

the results are as follows:  

For this test case, total expansion cost of the best solution is 168.042 million US$ with following topology: n2-3 = 2, 

n3-46 = 1, n19-25 = 1, n20-21= 1, n23-24 = 1, n24-25 = 2, n26-29 = 3, n28-30 = 1, n29-30 = 2, n31-32 = 1 and n42-43 = 2. 
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In this case, the best solution was found by SaDEA method at the 728th iteration and an average CPU time of the 

proposed method is 1962.43 second. 

5.4 Discussion on the results 

All obtained results of TNEP problem with security constraints and power generation resizing considerations are summarized 

in table 6, where the best investment costs of expansion corresponding to the proposed method are compared to other 

algorithms. As indicated by the results in table 6, the SaDEA and CBGA methods found the optimal solution on Gaver 6-bus 

system. For IEEE 25-bus system and the Brazilian 46-bus system, the SaDEA method could find the optimal solution as 

shown the cheapest investment cost. 

The achieved numerical results clearly indicate that SaDEA method can be efficiently applied to TNEP problem 

with n-1 security constraint consideration on three test systems. From the results in table 6, SaDEA technique could find the 

best solution cheaper than other methods in all cases. The proposed algorithm was tested 30 times to find the best result in 

each case and the suitable setting ranges of SaDEA control parameters were suggested in section 4.3. 

Table 6: Results comparison of TNEP problem with security constraints consideration 

Methods 

Best cost (x103 US$) 

Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system 

SaDEA 180  19,131  168,042 

Chu-Beasley GA (CBGA) [14] 180 - 213,000 

Ant Colony Search Algorithm (ACSA) [19] 298 248,943 - 

Conventional DEA Method [19] 298 210,818 - 

6. Conclusions and further work 

In this paper, an enhanced DEA methodology is proposed to deal with the TNEP problem with n-1 security criterion 

consideration. For this study, a single line outage is investigated in such TNEP problem for reliability issue. From obtained 

results of Garver 6-bus system, IEEE 25-bus system, and the Brazilian 46-bus system, the SaDEA procedure is an acceptable 

optimization technique and minimizes effectively the total investment cost of TNEP problem with security constraints 

consideration on realistically transmission systems. As the empirical solutions of these test cases indicate, total investment 
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costs of the SaDEA method are less expensive than other methods on three test networks. The most attractive feature of the 

proposed algorithm is good computational performance and simple implementation. Regarding a consequence of the 

successful results, a distribution system planning problem will be investigated as future work. 
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9. Figures 

Converged ?

End

Fig. 1 The main flowchart of a self-adaptive DEA optimization process 

 

Fig 2 Example of a SaDEA optimization program for TNEP problem with security constraints consideration
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Fig. 3 A convergence curve of SaDEA method for Garver 6-bus system  

 

Fig. 4 A convergence curve of SaDEA method for IEEE 25-bus system  
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