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ABSTRACT

In the present situation, modern electric power systems comprise large-scale and highly
complex interconnected transmission networks, thus transmission expansion planning (TEP)
is now an important power system optimization problem. Regarding the modern TEP problem
is a complex and mixed integer nonlinear problem where a number of candidate solutions to
be evaluated increases exponentially with system size. An accurate solution of the TEP
problem is very significant in order to plan electric power systems in both an economic and
efficient manner. Therefore, the applied optimization techniques should be sufficiently efficient
when solving such problem. Over several past decades, a large number of computational
techniques were presented for solving this efficiency issue. Such methods include algorithms
inspired by observations of natural phenomena for solving complex combinatorial optimization
problems. These algorithms are successfully applied to a wide variety of electrical power
system optimization problems.

In recent years, a differential evolution algorithm (DEA) methodology has been
attracting significant attention from many researchers as such the procedure has been found
to be effective in solving power system optimization problems, for instance, economic power
dispatch, unit commitment, optimal power flow, including TEP problem as presented in the

author’'s Ph.D. thesis. Although a novel DEA method proposed in the author's Ph.D. thesis



was successfully applied many cases of the TEP problem, it was not yet sufficiently robust
for practical use for industry. Such DEA method has the notable limitation of DEA control
parameter tuning due to a complex interaction of parameters. Therefore, a further
improvement of the conventional DEA method is essentially required before it can be
generally adopted for practical use in industry.

The main goal of this research is to improve the conventional DEA method as
proposed in the previous author's works. An enhanced DEA technique has been directly
applied to a DC power flow based model in order to solve the TEP problem with n-1 security
constraint and system losses considerations. The n-1 security criterion is an essential index
in power system reliability study as it states that the system should be expanded in such a
way that, if a single line or generator is withdrawn, the expanded system should still operate
adequately. Moreover, the TEP with system losses consideration is a significant issue that
should be included in the TEP problem for enhancing the solution accuracy in practical
operation. Therefore, the proposed TEP problem has been investigated in both n-1 security
criterion and system losses considerations in this research. The analyses of an enhanced
DEA optimization procedure have been performed within a mathematical programming
environment of MATLAB and detailed comparisons between the proposed method and other

algorithms are also presented in this final report.

Keywords: Transmission Expansion Planning, Differential Evolution Algorithm, Security

Constraint, Transmission Losses, Power System Optimization
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EXECUTIVE SUMMARY

1. Introduction

Transmission expansion planning (TEP) has always been a rather complicated task
especially for large-scale real-world transmission systems. First of all, electricity demand
changes across both area and time. The change in demand is met by the appropriate
dispatching of generation resources. As an electric power system must obey physical laws,
the effect of any change in one part of network (e.g. changing the load at a node, raising the
output of a generator, switching on/off a transmission line or a transformer) will spread
instantaneously to other parts of the interconnected network, hence altering the loading
conditions on all transmission lines. The ensuing consequences may be more marked on
some transmission lines than others, depending on electrical characteristics of the lines and
interconnection.

The TEP problem involves determining the least investment cost of power system
expansion and technical operating through the timely addition of electric transmission
facilities in order to guarantee that the constraints of the transmission system are satisfied
over the defined planning horizon. Transmission system planners are entrusted with ensuring
the above-stated goals are best met whilst utilizing all available resources. Therefore, a
purpose of transmission planning is to determine the timing and type of new transmission
facilities. The facilities are required in order to provide adequate transmission capacity to
cope with future additional generation and power flow requirements. Transmission plans may
require introduction of higher voltage levels, installation of new transmission elements, and
new substations. Transmission network planners tend to use many techniques to solve such
problem. The planners utilize automatic expansion models to determine an optimum
expansion network by minimizing the mathematical objective function subject to a number of
constraints.

In recent years, a differential evolution algorithm (DEA) method has been attracting
increasing attention for a wide variety of engineering applications including electrical power
system engineering. There have been many researches that applied DEA for solving
electrical power system problems such as power system transfer capability assessment [5],
power system planning [6], economic power dispatch [7-9], distribution network
reconfiguration problem [10], short-term hydrothermal scheduling problem [11], optimal
reactive power flow [12-13], and optimal power flow [14]. Moreover, the conventional DEA

method has been successfully solved static and dynamic transmission expansion planning
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problems by the author in [15] where the DEA method performed superior to conventional
genetic algorithm (CGA) in terms of simple implementation with high quality of solution and
good computation performance. Meanwhile, DEA requires less control parameters while
being independent from initialization. In addition, its convergence is stable as DEA procedure
uses rather greedy selection and less stochastic approach to solve optimization problems
than other CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious
task of the DEA control parameters tuning due to complex relationship among problem’s
parameters. The optimal parameter settings of the DEA method may not be found and the
final results may be trapped in a local minimum.

It is important to note that few algorithms have been practically applied to solve the
TEP problem at present [1]. Although the method proposed in [15] by the author was
successfully solved many cases of TEP problem, it was not yet sufficiently robust for
practical use for industry. The conventional DEA method proposed in [15] has the notable
limitation of DEA control parameter tuning due to a complex interaction of parameters as
above mentioned. Therefore, a further improvement of the novel DEA method is essentially
required before it can be generally adopted for practical use in industry.

The TEP problem as studied in [15] is called a basic planning, in which the security
criterion has not been considered. In other words, the optimal expansion plan is determined
without considering the n-1 contingencies caused by a transmission line or generator outage.
The n-1 security criterion is an important index in power system reliability study as it states
that the system should be expanded in such a way that, if a single line or generator is
withdrawn, the expanded system should still operate adequately. Moreover, the TEP with
system loss consideration is a significant issue that should be included in the planning
problem for enhancing the result accuracy. Therefore, the proposed TEP problem has been
investigated in both n-1 security criterion and system losses considerations in this research

project.

2. Objectives of Research Project

The ultimate goal of undertaken research is to take advantage of computational simulations
more effectively in an overall planning study and consequently determine an appropriate
transmission network expansion plan. The main objectives of this project are:

® To enhance a conventional DEA method for solving a wide variety of mathematical and

real-world optimization problems;
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To apply the proposed technique, self-adaptive DEA method, for solving power system
optimization problems especially the TEP problem with security constraint and system
losses considerations;

To use the obtained results of planning study in order to design future transmission
network and test its performance;

To employ the novel knowledge from this research for application to the author’s
teaching on a course of electric power system analysis and a course of electric power

system operation & design.

3. Contributions of Research Work

The major contributions of this research are development of a conventional DEA method and

investigation of the applicability of an enhanced DEA technique when applied to TEP

problem with security constraint and system losses considerations. In addition, a detailed

comparison of the enhanced DEA method and the conventional DEA procedure used for

solving the TEP problem is presented. The most significant original contributions presented

and investigated in this report are outlined as follows:

Firstly, a novel methodology is proposed in this research where the conventional DEA
procedure is further improved its performance by reducing a tedious task of control
parameters tuning. In order to validate its searching capability and reliability, the
proposed methodology has been tested with some selected mathematical benchmark

test functions before applied to real-world optimization problems.

Regarding the effectiveness of an enhanced DEA method as tested on several
numerical benchmark test functions, the proposed technique is implemented to solve a
real-world optimization problem, which is the TEP problem with losses consideration. For
this planning study, two test networks, Garver’s 6-bus system and IEEE 25-bus system,

have been investigated and presented in this report.

Finally, the research utilizes the proposed effective technique to deal with the TEP
problem with n-1 security criterion consideration, which is more complex and difficult
when compared to the basic TEP problem as shown in [15]. In this work, the TEP
problem considering n-1 contingency constraint has been analyzed and it is an
especially difficult task with regard to large-scale real-world transmission system. The
enhanced DEA method as applied to solve the TEP problem with n-1 contingency
criterion consideration is tested on three transmission systems that are the Garver’s 6-

bus system, IEEE 25-bus system, and Colombian 46-bus system.
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4. Outputs of the Research Project

Arising from the research project, two conference papers were presented and published in
conference proceedings. In addition, a journal paper has been submitted to a selected

international journal. These proposed articles are listed as follows:

4.1 Refereed Journal Paper: Submitted

® T. Sum-Im and W. Ongsakul, “An enhanced differential evolution algorithm application to
transmission network expansion planning with security constraint consideration,” IET

Proc. Gener. Transm. Distrib., (Submitted 2013).

4.2 Refereed International Conference Paper: Published

® T. Sum-Im and W. Ongsakul, “A self-adaptive differential evolution algorithm for
transmission network expansion planning with system losses consideration,” Proc. 2012
IEEE International Conference on Power and Energy (PECON 2012), Kota Kinabalu,
Malaysia, pp. 153-158, 2"-5" Dec. 2012.

4.3 Refereed National Conference Paper: Published

® Thanathip Sum-Im, “An enhanced differential evolution algorithm for transmission
expansion planning with system losses consideration,” Proc. 9" Naresuan and Tao-Ngam

Research Conferences, Phitsanulok, Thailand, pp. 3, 28th-29th Jul. 2013.
5. An Enhanced Differential Evolution Algorithm Method

Regarding a difficult task of the DEA control parameters tuning due to complex relationship
among problem’s parameters has been a drawback of the conventional DEA method.
Therefore, a further improvement of the conventional DEA method is essentially required
before it can be generally adopted for practical use in industry. In this research, the
conventional DEA method has been developed its optimization procedure. A self-adaptive
DEA (SaDEA) technique is proposed and explained in this report. The design of SaDEA
optimization procedure is to develop two DEA control parameters, mutation factor (F) and
crossover probability (CR), which are self-tuning parameters using probability methodology.
This enhanced method is called “Method 2jDE” as found in [34].

As such proposed method, user must define two constant values (T, and T,) that are
the indices of control parameters (F and CR) changing respectively. The user-defined values
T, and T, are usually selected from within the range [0,1] and set as 0.1 in this research for

avoiding local optimum trapping. The control parameters F and CR are updated in their
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setting bounds when the uniformly distributed random numbers within the range (0,1) are

less than T, and T,. The main concept of the self-adaptive DEA optimization process is

Set up all SaDEA control parameters
F™, ™ cR™, cR™, T,, T, N and D)

v

Generate the initial values of SaDEA control

illustrated in figure 1.

parameters (F and CR)

v

Initialize the population P of all individuals

v

Compute and evaluate the fitness of each

individual in population P

v

Apply mutation, crossover and selection

operators to generate new individuals

v

Form new population P of all individuals

Yes Yes
rand; (0,1) < T, ? randz (0,1) < T, ?
4 4
No Update Update
F value CR value

Converged ?

Figure 1 The main flowchart of a self-adaptive DEA optimization process
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6. A Self-Adaptive DEA Method for the TEP Problem with System Losses

Consideration

The SaDEA methodology is proposed to enhance the performance of conventional DEA
method by reducing a tedious task of control parameters tuning. In addition, the SaDEA
technique was successfully adopted to solve an economic dispatch problem in a previous
author’'s work [35]. From the achieved successful results, the SaDEA method is proposed to

solve the TEP problem with transmission system losses consideration in this work.

6.1 The SaDEA Optimization Procedure

An initial population is generated before applying optimization process. For the TEP problem
formulation, each individual vector (X)) contains many integer-valued parameters n, where nj;
represents the number of candidate lines in the possible branch j of the individual i. The

problem decision parameter D is the number of possible branches for expansion.
X =n,...n{9,..n8, i=1. N, (1)

After new individuals are initialized successfully, then the individuals of next iteration
are created by applying mutation, crossover, and selection operators, respectively. The

optimization process is repeated in search of the final solution until maximum number of

max
)

generations (G is reached or other predetermined convergence criterion (€) is satisfied.

6.2 Fitness Function of the TEP Problem Considering Line Losses

In this work, a fitness function F(X) of the TEP problem is assigned according to (2) for each
individual. The fitness function is a combination of an objective function and two penalty
functions. The fithess function is adopted to find the optimal solution, measure the
performance of candidate solutions, and check for violation of the TEP problem constraints.
An individual is the best solution if its fitness value F(X) is highest. The penalty functions are
also included in the fithess function in order to represent violations of both equality and
inequality constraints. For the TEP problem, an equality constraint penalty function (4)
considers the DC power flow node balance constraint and then an inequality constraint
penalty function (5) considers the constraints of power flow limit on each transmission line,
power generation limit, bus voltage phase angle limit, and right-of-way, respectively. The

general fitness function of the TEP problem can be formulated as follows:

1
"7 000 R0 T e () @
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F(X) and O(X) are fitness function and objective function of the TEP problem,
respectively. P{(X) and P,(X) are the equality and inequality constraint penalty functions
respectively. X denotes the individual vector of decision variables. @), and @), are penalty
weighting factors that are set to 0.5 in this work. For the TEP problem, the objective function

and penalty functions are formulated as follows:

NL
O(X)=V(X)= D cjmy +KD IR, 3)
(i,))eQ m=1
nb
k=1

C ifanindividual violates the TEP
P,(X) = inequality constraints. (5)

0 otherwise

where C is an inequality constraint constant that is used when an individual violates
the inequality constraints. In this research, the constant C is set as 0.5 for all cases.
A computer program of the SaDEA method for application to TEP problem with

system losses consideration is designed as illustrated in figure 2.

Figure 2 An example of the SaDEA optimization program for TEP problem with line losses

consideration

15



6.3 Test Systems and Numerical Test Results

In the simulation, the proposed SaDEA procedure has been implemented in MATLAB and
tested its performance on two electrical transmission systems as shown in appendix A.
These two test networks are the Garver’'s 6-bus system and IEEE 25-bus system, which all
significant data are also available in [17] and [27]. In this work, the TEP problem is included
system losses consideration. In addition, the TEP problem has been investigated in two
cases that are with and without power generation resizing considerations. The simulation
results of the proposed SaDEA technique have been compared to conventional genetic
algorithm (CGA), tabu search (TS), artificial neural networks (ANNSs), hybrid artificial

intelligent techniques and summarized in this report.

6.3.1 Garver 6-bus System

The first test system of this simulation is a well-known Garver’s system, which comprises 6
buses, 9 possible branches, and 760 MW of power demand. The electrical system data;
transmission line, load, and generation data are available in [17]. From this test system
configuration, bus-6 is a new generation bus and needs to be connected to the existing
network. A maximum of four parallel lines is permitted in each branch. In this simulation
case, power losses consideration is included in objective function where the loss coefficient,
K, was selected as 1000. A per-unit base in DC-load flow analysis is 100 MVA while the cost
base is 105. The estimated lifetime of transmission lines was assumed to be 25 years and
the cost of one kWh was assumed to be 0.005 monetary units’lkWh found in [31]. The best

solutions of SaDEA method are summarized and compared to other techniques in table 1.

Table 1 Comparison of the Expansion Costs among Various Methods for Garver 6-Bus Test

System
K=1000
Investment Losses cost Saved cost
Types of TEP problem Methods
cost “a” “b”
ANNSs [31] 261 448.83 904.77
TS [31] 291 382.54 971.06
TEP without the resizing GA [3] 291 382.54 971.06
of power generation Hybrid ANN-TS-GA [31] 291 382.54 971.06
SaDEA 291 382.54 971.06
TEP with the resizing of
SaDEA 170 231.66 1,121.94
power generation

16



Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved
cost “b” is calculated as a difference cost between the cost of ohmic power losses before the
expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time
of line) and the power losses cost “a” calculated after the new line additions for the same
period.

For a case study of without power generation resizing consideration, the best solution
of TEP problem considering system losses on Garver’s test system as shown in table 1 was
found by all algorithms except ANNs method. Although the ANNs method obtained the least
investment cost compared to other methods but it had the largest value of power losses cost
after the new line additions. The SaDEA method obtained the investment cost and losses
cost for with power generation resizing case study cheaper than the without power
generation resizing case study. In addition, the SaDEA method had the largest saved cost of
minimizing ohmic power losses during planning horizon in case of with power generation

resizing consideration.

6.3.2 IEEE 25-bus System

The IEEE 25-bus system is selected to test the SaDEA procedure in this work. It consists of
25 buses, 36 possible branches, and 2750 MW of total power demand. The electrical system
data; transmission line, load, and generation data are available in [27] and [31]. In this
simulation case, the objective function includes power losses consideration, in which the loss
coefficient, K, was selected to be 10000. The estimated lifetime of transmission lines was
assumed to be 25 years while the cost of one kWh was assumed to be 0.0112 US$/kWh
[31]. In this case study, a comparison among the proposed method and other techniques
from [31] is included in table 2.

For a case study of without power generation resizing consideration, the best solution
of the TEP problem with system losses consideration was found by SaDEA method and an
investment cost was 160.051 million US$ as shown in table 2. In addition, the SaDEA
method achieved the least value of a power losses cost after the new line additions
compared to other techniques. Comparison between with and without power generation
resizing consideration, the SaDEA method obtained the investment cost and losses cost for
with power generation resizing case study cheaper than the without power generation
resizing case study. Therefore, the SaDEA technique got the largest value of a saved cost of
minimizing ohmic power losses during expansion planning horizon on this test system.

Overall, the best algorithmic procedure for this case is SaDEA method.
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Table 2 Comparison of the Expansion Costs among Various Methods for IEEE 25-Bus Test

System
K=10000
Investment Losses cost Saved cost
Types of TEP problem Methods cost “a” “b”
(million US$) (million US$) (million US$)
ANNSs [31] 224.178 161.995 147.979
TS [31] 180.664 155.264 154.709
TEP without the resizing of GA [31] 162.430 171.947 138.016
power generation Hybrid ANN-TS-GA [31] 168.784 152.320 157.653
SaDEA 160.051 134.251 175.722
TEP with the resizing of
SaDEA 61.802 83.032 226.941
power generation

[TPel]

Note: The losses cost “a” after the new line addition is calculated for 25 years. The
saved cost “b” is calculated as the difference cost between the cost of ohmic power losses
before the expansion of the transmission system (309.973 million US$) based on a 25-year

(life-time of line) and the power losses cost “a” calculated after the new line additions for the

same period.

6.4 Conclusion of a Self-Adaptive DEA Method for the TEP Problem with System Losses
Consideration

In this work, a SaDEA method is applied when solving the TEP problem with system losses
consideration. In addition, the TEP problem is also included both with and without power
generation resizing considerations. Regarding the achieved results on two test networks
illustrate that the SaDEA procedure is an efficient technique for solving the transmission
planning problem. As the numerical test results in table 1 and 2 indicate, the proposed
method obtained the least values of an investment cost and a power losses cost compared
to conventional genetic algorithm, tabu search, artificial neural networks, and hybrid artificial
intelligent techniques on two test systems. In addition, the SaDEA method had the largest
saved cost of ohmic power losses for both test cases as shown in table 1 and table 2. The
most attractive feature of the proposed algorithm is the good computational performance.
The accuracy of the results obtained in the TEP study is in very good agreement with those
obtained by other researchers as found in [31]. Regarding a consequence of these
successful results, the TEP problem considering the n-1 contingencies in single line outage

or single generator outage will be investigated as future work.
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7. An Enhanced DEA method for the TEP Problem with Security Constraint

Consideration

An enhanced DEA method is proposed to solve the TEP problem with security constraint
consideration. The proposed method can be implemented to handle such problem as

following details.

7.1 An Enhanced DEA Optimization Method

After two constant values are set by user, then an initial population is generated before
applying optimization process. In the TEP problem formulation, each individual vector (X))
contains many integer-valued parameters n, where n;; represents the number of candidate
lines in the possible branch j of the individual i. The problem decision parameter D is the

number of possible branches for expansion.

When an initial population of individuals is initialized successfully, then three DEA
operators create the population of next generation P(G+1) by using the current population P(G).
The optimization process is continuously repeated in search of the final solution until the

. . max . .
maximum number of generations (G ) is reached or other predetermined convergence

criterion (€) is satisfied.

7.2 Fitness Function of the TEP Considering Security Constraint

A fitness function of TEP problem is used to search the optimal solution, measure the
performance of candidate solutions, and check for violation of the TEP problem constraints.
The TEP fitness function F(X) is a combination of the objective function and two penalty
functions and can be formulated according to (7) for each individual. An individual is the best
solution if its fitness value F(X) is highest. The penalty functions must be also included in the
fitness function in order to represent violations of both the planning operational constraints
without security (OPC) and the planning security constraint (SCC) of TEP problem.
Regarding the proposed problem, the OPC penalty function (9) investigates all constraints of
TEP problem without security criterion consideration. In addition, the SCC penalty function
(10) investigates all security constraints of TEP problem. The general fitness function of the

TEP problem can be assigned as follows:

1
~O(X)+ @R (X) +a,Py(X)

F(X)
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In (7), F(X) and O(X) represent fitness function and objective function of the TEP problem,

respectively. P;(X) and P,(X) are the constraint penalty functions. X denotes the individual

vector of decision variables. In this work, @), and @), are penalty weighting factors and set to
0.5, respectively. For this TEP problem, the objective function and the constraint penalty

functions are formulated as follows.

O(X)=V(X)= Z Cii M (8)

(i,De

C, ifanindividual violates the OPC of TEP problem.
R(X)= (9)
0 otherwise

C, ifanindividual violates the SCC of TEP problem.
R, (X) = (10)
0 otherwise

where C, and C, are the constraint constants, which are applied to problem when an
individual violates the OPC and SCC of TEP problem, respectively. In this work, both
constants C; and C, are set as 0.5 for all cases.

A computer program of the SaDEA method for application to TEP problem with

security constraint consideration has been designed as shown in figure 3.

Figure 3 Example of the SaDEA optimization program for TEP problem with security

constraint consideration
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7.3 Test Systems and Numerical Test Results

In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and
has been tested its performance on three electrical transmission systems as reported in
appendix A. These three test networks are the Garver’'s 6-bus system, the Brazilian 46-bus
system, and the IEEE 25-bus system and all required data are also available in [17], [25],

and [27], respectively.

Table 3 Results comparison of TEP problem with security constraint consideration

Best cost (x103 Us$)
Methods
Garver 6-bus system | IEEE 25-bus system | Brazilian 46-bus system
SaDEA 180 19,131 168,042
Chu-Beasley GA (CBGA) [36] 180 - 213,000
Ant Colony Search Algorithm (ACSA) [38] 298 248,943
Conventional DEA [38] 298 210,818

The obtained results of TEP problem with security constraint and power generation
resizing considerations are summarized in table 3, where the best investment costs of
expansion corresponding to the proposed SaDEA method are compared to other algorithms.
As indicated by the results in table 3, SaDEA and CBGA methods found the optimal solution
on Gaver 6-bus system. For IEEE 25-bus system and the Brazilian 46-bus system, the

SaDEA method could find the optimal solution as shown the cheapest investment cost.

7.4 Conclusion of an Enhanced DEA method for the TEP Problem with Security
Constraint Consideration

In this work, an enhanced DEA method is proposed to deal with the TEP problem with n-1
security criterion consideration. A single line outage is investigated in such TEP problem for
reliability issue. From obtained results of Garver 6-bus system, IEEE 25-bus system, and the
Brazilian 46-bus system, the SaDEA procedure is an acceptable optimization technique and
minimizes effectively the total investment cost of TEP problem with security constraint
consideration on realistically transmission systems. As the empirical solutions of these test
cases indicate, total investment costs of the SaDEA method are less expensive than other
methods on three test networks. The most attractive feature of the proposed algorithm is
good computational performance and simple implementation. Regarding a consequence of
the successful results, a distribution system planning problem will be investigated as future

work.
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8. Project Conclusions & Future Work

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to
electrical power system optimization problems as its main goal is to achieve an optimal
expansion plan. The planning solution has to meet technical requirements while offering
economical investment. Furthermore, transmission planning should specify new transmission
facilities that must be added to an existing network to ensure adequate operation over a
specified planning horizon.

Over past few decades, a number of optimization methods have been applied to
solve the TEP problem in many issues. These proposed methods are as follows:
mathematical optimization methods (e.g. linear programming, nonlinear programming,
dynamic programming, integer and mixed integer programming, benders decomposition,
branch & bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic
methods (e.g. genetic algorithms, tabu search, simulated annealing, particle swarm,
evolutionary algorithms, differential evolution algorithm, etc.). The details of such methods are
provided in chapter 2 of this report.

A differential evolution algorithm (DEA) is an artificial intelligence technique and it
was firstly presented by R. M. Storn and K. V. Price in 1995. The DEA method becomes a
reliable and versatile function optimizer that is also readily applicable to a wide range of
optimization problems. Although the conventional DEA method has a number of merits as
described in chapter 2, it still has a drawback that is a difficult task of the DEA control
parameters tuning. Regarding such disadvantage of the conventional DEA characteristic, thus
it should be improved the optimization performance in this research. An enhanced DEA
method is a modified version and has been proposed to solve the TEP problem with system
losses and security criterion considerations in this work.

The main contribution of this research is the enhancement of a conventional DEA
method and the application of proposed technique to TEP problem with system losses and
security criterion considerations. First of all, design of a self-adaptive DEA (SaDEA)
procedure is to develop two DEA control parameters, mutation factor (F) and crossover
probability (CR), which are self-tuning parameters using probability methodology. In order to
validate its searching capability and reliability, the enhanced methodology has been tested
with some selected mathematical benchmark functions, namely Sphere, Rosenbrock1,
Absolute, Schwefel, and Rastrigin functions.

Based on the successful results of SaDEA procedure application to selected

mathematical functions, the proposed technique is subsequently implemented to solve static
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TEP problem with system losses consideration, which is a real-world optimization problem,
as shown in chapter 3. In chapter 3, the simulations have two different scenarios of static
TEP problem that are with and without generation resizing considerations. In addition, a
heuristic search method has been adopted in order to deal with static TEP considering DC
based power flow model constraints. The proposed method has been implemented in
Matlab7 and tested on two electrical transmission networks as found in appendix A1-A2. The
obtained results indicate that SaDEA method performs effectively to handle the static TEP
problem considering system losses on Graver 6-bus system and IEEE 25-bus system. The
most attractive feature of the proposed algorithm is the good computational performance.
The accuracy of the results obtained in the TEP study is in very good agreement with
obtained by other researchers as presented in chapter 3. Regarding a consequence of the
successful results, the TEP problem considering n-1 contingencies in single line outage has
been investigated in chapter 4.

Given its effectiveness for solving the TEP problem with system losses consideration,
the proposed methodology is then applied to deal with the TEP problem with n-1 security
criterion consideration, which is more complex and difficult than the previous work. In this
study, such TEP problem based on DC power flow model has been analyzed. The proposed
method application to handle the TEP problem with n-1 security criterion consideration is
tested on three transmission systems that are Graver 6-bus system, IEEE 25-bus system,
and the Colombian 93-bus system, as found in appendix A1-A3. The obtained results of
three networks illustrate that the SaDEA technique is good efficient and effectively minimizes
the total investment cost of TEP problem on such systems.

Overall, the SaDEA procedure performs superior to other classical evolutionary
algorithms (EAs) in terms of simple implementation with high quality of solution. Meanwhile, it
requires less control parameters while being independent from initialization. In addition, its
convergence is stable and robust as SaDEA procedure uses rather greedy selection and less
stochastic approach to solve optimization problems than other classical EAs.

As a consequence of the successful results in this research, the SaDEA method will
be applied to solve a problem of distribution system planning in future work. Moreover, an
economical solution of the TEP problem under the current deregulatory environment remains
a significant issue in electrical power system analysis. Therefore, such topic should be further
investigated in future research. Some issues for market-based transmission expansion
planning, i.e. the losses of social welfare and the expansion flexibility in the system should

be investigated and included in the TEP problem.
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CHAPTER 1
INTRODUCTION

1.1 Background and Problem Statement

In general, electric power transmission lines are constructed to link remote generating power
plants to load centers, thus permitting power plants to be located in regions that are more
economical and environmentally suitable. Regarding systems grew, meshed networks of
transmission lines have emerged, providing alternative paths for electric power flows from
generating sites to load centers that enhance the reliability of continuous supply. In regions
where generation resources or load patterns are imbalanced, transmission interconnection
eases the requirement for additional generation. Additional transmission capability is justified
whenever there is a need to connect cheaper generation to meet growing load demand or
enhance system reliability or both.

Transmission expansion planning (TEP) has always been a rather complicated task
especially for large-scale real-world transmission systems. First of all, electricity demand
changes across both area and time. The change in demand is met by the appropriate
dispatching of generation resources. As an electric power system must obey physical laws,
the effect of any change in one part of network (e.g. changing the load at a node, raising the
output of a generator, switching on/off a transmission line or a transformer) will spread
instantaneously to other parts of the interconnected network, hence altering the loading
conditions on all transmission lines. The ensuing consequences may be more marked on
some transmission lines than others, depending on electrical characteristics of the lines and
interconnection.

The TEP problem involves determining the least investment cost of the power system
expansion and technical operating through the timely addition of electric transmission
facilities in order to guarantee that the constraints of the transmission system are satisfied
over the defined planning horizon. Transmission system planners are entrusted with ensuring
the above-stated goals are best met whilst utilizing all the available resources. Therefore the
purpose of transmission network planning is to determine the timing and type of new
transmission facilities. The facilities are required in order to provide adequate transmission
capacity to cope with future additional generation and power flow requirements. The
transmission plans may require the introduction of higher voltage levels, the installation of
new transmission elements and new substations. Transmission network planners tend to use
many techniques to solve such problem. The planners utilize automatic expansion models to
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determine an optimum expansion network by minimizing the mathematical objective function
subject to a number of constraints.

Normally, the TEP problem can be categorized as static or dynamic according to the
treatment of the study period [1]. In static planning, the planners consider only one planning
horizon and determine the number of suitable lines that should be installed to each branch of
transmission system. Investment is carried out at the beginning of planning horizon time. In
dynamic or multistage planning, the planners consider not only the optimal number and
location of additional lines but also the most appropriate times to carry out such expansion
investments. Therefore the continuing growth of the demand and generation is always
assimilated by the system in an optimized way. The planning horizon is divided into various
stages and the transmission lines must be installed at each stage of the planning horizon.

Many optimization techniques have been employed to solve the TEP problem. These
techniques range from expert engineering judgements to powerful mathematical programming
methods. The engineering judgements depend on human expertise and knowledge of the
system. The most applied approaches in the TEP problem can be classified into three groups
that are mathematical optimization methods (e.g. linear programming, nonlinear
programming, dynamic programming, integer and mixed integer programming, benders
decomposition and branch and bound, etc.), heuristic methods (mostly constructive
heuristics) and meta-heuristic methods (e.g. genetic algorithms, tabu search, simulated
annealing, particle swarm, evolutionary algorithms, differential evolution algorithm, etc.).

Over the past decade, algorithms inspired by the observation of natural phenomena
when solving complex combinatorial problems have been gaining increasing interest because
they perform efficiently for solving the optimization problems [2]. Such algorithms have
successfully applied to a number of power system problems [3-4], for example power system
scheduling, power system planning and power system control.

In recent years, a differential evolution algorithm (DEA) method has been attracting
increasing attention for a wide variety of engineering applications including electrical power
system engineering. There have been many researches that applied DEA for solving
electrical power system problems such as power system transfer capability assessment [5],
power system planning [6], economic power dispatch [7-9], distribution network
reconfiguration problem [10], short-term hydrothermal scheduling problem [11], optimal
reactive power flow [12-13] and optimal power flow [14]. Moreover, the conventional DEA
method has been successfully solved static and dynamic transmission expansion planning
problems by the author in [15] where the DEA method performed superior to conventional

genetic algorithm (CGA) in terms of simple implementation with high quality of solution and
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good computation performance. Meanwhile, DEA requires less control parameters while
being independent from initialization. In addition, its convergence is stable as DEA procedure
uses rather greedy selection and less stochastic approach to solve optimization problems
than other CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious
task of the DEA control parameters tuning due to complex relationship among problem’s
parameters. The optimal parameter settings of the DEA method may not be found and the
final result may be trapped in a local minimum.

It is important to note that few algorithms have been practically applied to solve the
TEP problem at present [1]. Although the method proposed in [15] by the author was
successfully solved many cases of TEP problem, it was not yet sufficiently robust for
practical use for industry. The conventional DEA method proposed in [15] has the notable
limitation of DEA control parameter tuning due to a complex interaction of parameters as
above mentioned. Therefore, a further improvement of the novel DEA method is essentially
required before it can be generally adopted for practical use in industry.

The TEP problem as studied in [15] is called a basic planning, in which the security
criterion has not been considered. In other words, the optimal expansion plan is determined
without considering the n-1 contingencies caused by a transmission line or generator outage.
The n-1 security criterion is an important index in power system reliability study as it states
that the system should be expanded in such a way that, if a single line or generator is
withdrawn, the expanded system should still operate adequately. Moreover, the TEP with
system loss consideration is a significant issue that should be included in the planning
problem for enhancing the result accuracy. Therefore, the proposed TEP problem has been
investigated in both n-1 security criterion and system losses considerations in this research

work.

1.2 Objectives of Research Project

The ultimate goal of undertaken research is to take advantage of computational simulations
more effectively in an overall planning study and consequently determine an appropriate

transmission network expansion plan. The main objectives of this project are:

® To enhance a conventional DEA method for solving a wide variety of mathematical and
real-world optimization problems;

® To apply the proposed technique, a self-adaptive DEA method, for solving power system
optimization problems, especially the TEP problem with security constraint and system

losses considerations;
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® To use the obtained results of planning study in order to design future transmission

network and test its performance;

® To use the novel knowledge from this research for application to the author’s teaching
on a course of electric power system analysis and a course of electric power system

operation & design.

1.3 Scopes of Research Work

® A conventional DEA method is improved its performance and then it is tested with some
selected mathematical benchmark functions before applying real-world optimization
problems.

® An enhanced DEA method is further employed to handle a real-world optimization

problem, which is the TEP using DC power flow-based model.

® Such investigated issue is the TEP problem with system power losses and n-1 security

constraint considerations.

® The efficiency of the proposed method is demonstrated via the analysis of low, medium

and high complexity transmission network test cases.

1.4 Contributions of Research Work

The major contributions of this research are the development of a conventional DEA method
and the investigation of the applicability of an enhanced DEA technique when applied to TEP
problem with security constraint and system losses considerations. In addition, a detailed
comparison of the enhanced DEA method and the conventional DEA procedure used for
solving the TEP problem is presented. The most significant original contributions presented

and investigated in this report are outlined as follows:

® Firstly, a novel methodology is proposed in this research where the conventional DEA
procedure is further improved its performance by reducing a tedious task of control
parameters tuning. In order to validate its searching capability and reliability, the
proposed methodology has been tested with some selected mathematical benchmark

test functions before applied to real-world optimization problems.

® Regarding the effectiveness of an enhanced DEA method as tested on several
numerical benchmark test functions, the proposed technique is successfully implemented

to solve a real-world optimization problem, which is the TEP problem with losses
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consideration. For this study, two test networks, Garver's 6-bus system and IEEE 25-bus

system, have been investigated and explained in this report.

® Finally, this research utilizes the proposed effective technique to deal with the TEP
problem with n-1 security criterion consideration, which is more complex and difficult
when compared to the basic TEP problem as shown in [15]. In this work, the TEP
problem considering n-1 contingency constraint has been analyzed and it is an
especially difficult task with regard to large-scale real-world transmission system. The
enhanced DEA method as applied to solve the TEP problem with n-1 contingency
criterion consideration is tested on three transmission systems that are the Garver’'s 6-

bus system, IEEE 25-bus system, and Colombian 46-bus system.

1.5 Report Outline

® Chapter 1 presents an introduction to the TEP problem with n-1 security criterion and
system losses considerations. In addition, research objectives and contributions of the

proposed DEA method application to TEP problem are included in this chapter.

® Chapter 2 presents an overview of the TEP problem including problem formulation and
literature survey. Moreover, reviews of the DEA methodology and optimization process
are also provided in this chapter.

® Chapter 3 provides implementation and development of the proposed algorithm for
solving the TEP problem with system losses consideration. The experimental results and
comments are discussed in this chapter.

® Chapter 4 presents implementation of the proposed technique for solving the TEP
problem with n-1 security constraint consideration. The numerical test results for realistic
transmission systems and discussions are included in this chapter.

® Chapter 5 presents overall conclusions of this research and the further possible research

directions are also indicated.

® Chapter 6 presents output of this research project. In addition, the proposed articles are

also presented in this chapter.
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CHAPTER 2
FUNDAMENTALS OF TRANSMISSION EXPANSION PLANNING
PROBLEM AND DIFFERENTIAL EVOLUTION ALGORITHM

2.1 Introduction

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to
power system operation and planning, which is a complicated nonlinear constrained
optimization problem. Generally, the main purpose of solving TEP problem is to specify
addition of transmission facilities that provide adequate capacity and in the meantime
maintain operating performance of electric transmission system [16]. To achieve effective
plan, exact location, capacity, timing, and type of new transmission equipment must be
thoroughly determined to meet demand growth, generation addition, and increased power
flow.

To find an optimal solution of TEP over a planning horizon, extensive parameters are
required; such as candidate circuits, electricity demand forecast, generation forecast,
investment constraints, transmission losses data, etc. This would consequently impose more
complexity in solving the TEP problem. Given the above information, in—depth knowledge on
problem formulation and computation techniques for TEP is crucial and therefore, this
chapter aims essentially at presenting fundamental information of these issues.

The organization of this chapter is as follows: section 2.2 presents overview and
formulation of DC power flow model. Section 2.3 presents problem formulation and
mathematical model of the basic TEP problem. Section 2.4 presents overview of the
conventional DEA method and its optimization process. Finally, solution methods for the TEP

problem found in the international technical literature are reviewed in section 2.5.

2.2 DC Power Flow

For a long-term TEP study, some assumptions are invented and proposed for solving such
planning problem, for example, a consideration of the reactive power allocation is neglected
in the first moment of the planning. In this stage, the main concern is to identify the principal
power corridors that probably will become part of the expanded system. There are several
types of the mathematical model employed for representing the transmission network in the
TEP study; AC power flow model, DC power flow model, transportation model, hybrid model,

and disjunctive model as discussed in [17].
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Basically, the DC power flow model is widely adopted to the TEP problem and it is
frequently considered as a reference because in general, networks synthesized by this model
satisfy the basic conditions stated by operation planning studies. The planning results found
in this phase will be further investigated by operation planning tools such as AC power flow
analysis, transient and dynamic stability analysis and short-circuit analysis for obtaining the
accurate result [3].

The formulation of DC power flow is obtained from the modification of a general

representation of AC power flow, which can be illustrated by the following equations.

N
R =i D Vi [Gyc cos(@ - 6) + By sin(8, —6,)] (2.1)
k=1
N
Q = M| Y MIGicsin(d; - 6,) - By cos(d; -6,)] (22)
k=1

where P, and Q, are real and reactive power of bus i/, respectively. |V,. and 9, are

voltage magnitude and voltage phase angle of bus j, respectively. ‘Vk ‘ is voltage magnitude
at bus k. G, and B, are real and imaginary parts of element (i,k) of bus admittance matrix,
respectively. N is total number of buses in the system.
To modify AC power flow model to the DC power flow based model, the following
assumptions are normally considered [18]:
® Bus voltage magnitude at each bus bar is approximate one per unit (‘V, ‘ =1 p.u. forall i
buses);
® Line conductance at each path is neglected (G, = 0), or on the other hand only line
susceptance (B,) is considered in the DC model;
® Some trigonometric terms of AC model in equations (2.1) and (2.2) can be approximated

as following terms: sin (6,- )= 6 - 6, and cos (6, - 0) = 1

Given these assumptions, the AC power flow equation in (2.1) is therefore simplified to

yield the DC power flow equation as follows:
N
F’i=ZBik(9i—6’k) i=1..,N (2.3)
k=1

where B, is the line susceptance between bus /i and k.
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2.3 Basis of Transmission Expansion Planning Problem

In this section, the TEP is formulated as a mathematical problem. The goal of solving such
problem is typically to fulfill the required planning function in terms of investment and
operation restriction. Normally, the TEP problem can be mathematically formulated by
applying DC power flow model, which is a nonlinear mixed-integer problem with high
complexity, especially for large-scale real-world transmission networks. There are several
alternatives to the DC model such as the transportation, hybrid, and disjunctive models.
Detailed reviews of the main mathematical models for the TEP problem were presented in

[17].

2.3.1 The Objective Function
The objective of TEP problem is to minimize total expansion cost while satisfying operational
and economical constraints. In this research, the classical DC power flow model is applied to

solve the TEP problem. Mathematically, the problem can be formulated as follows:

(i,))e

where v, c; and n; represent transmission investment cost, cost of a candidate circuit

for addition to the branch i-j and the number of circuits added to the branch i-j, respectively.

Here CQ is set of all candidate branches for expansion.

2.3.2 Problem Constraints

The objective function (2.4) represents a capital cost of newly installed transmission lines,
which has some restrictions. These constraints must be included into mathematical model to
ensure that the optimal solution satisfies transmission planning requirements. These

constraints are described as follows:

® DC Power Flow Node Balance Constraint

This linear equality constraint represents the conservation of power at each node.
g=d+Bé# (2.5)

where g, d and B are real power generation vector in existing power plants, real load

demand vector in all network nodes, and susceptance matrix of the existing and added lines

in the network, respectively. Here Gis the bus voltage phase angle vector.
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® Power Flow Limit on Transmission Lines Constraint
The following inequality constraint is applied to transmission expansion planning in order to

limit the power flow for each path.
0 max
‘fij‘S (ni +ny) s (2.6)

In DC power flow model, each element of the branch power flow in constraint (2.6)
can be calculated by using equation (2.7):
(% +n.)
fj =———=x(6, - 6;) 2.7)

ij

0
where f. fmax, n, n; and X; represent, respectively, total branch power flow in branch

i i i

i-j, maximum branch power flow in branch i-j, number of circuits added to branch i-j, number

of circuits in original base system, and reactance of the branch i-j. Here 9, and Q is voltage

phase angle of terminal buses i and j respectively.

® Power Generation Limit Constraint
For transmission expansion planning problem, power generation limit must be included into

the problem constraints. This can be mathematically represented as follows:
gimin < gi < girnax (28)

min max . .
where g, g and g.  are real power generation at node /, the lower and upper real

power generation limits at node /, respectively.

® Right-of-way Constraint

It is essential to find an accurate TEP solution, thus planners need to know an exact capacity
of newly required circuits. Therefore this constraint must be considered in such planning
problem. Mathematically, this constraint defines location and maximum number of circuits,

which can be installed in a specified location. It can be represented as follows.
0<n, <ni™ (2.9)

where n; and n,jmax represent the total integer number of circuits added to the branch

i-j and the maximum number of added circuits in the branch i-j respectively.
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® Bus Voltage Phase Angle Limit Constraint
While a DC power flow model is employed to the TEP problem, thus bus voltage magnitude
is not a factor in this analysis. The bus voltage phase angle could be included as a TEP

constraint to be increase an accurate solution in technical issue. The calculated phase angle
|
((9;3) should be less than the predefined maximum phase angle (QI.maX). Such constraint can

be represented as the following mathematical expression.

cal
b5

< ‘gijmax (2.10)
2.4 Basis of Differential Evolution Algorithm Methodology

Evolutionary algorithms (EAs) are heuristic, stochastic optimization techniques based on the
principles of natural evolution theory. The field of investigation, concerning all EAs, is known
as “evolutionary computation”. The origins of evolutionary computation can be traced back to
the late 1950’s and a variety of EAs have been developed independently by a number of
researchers until now. A variety of algorithms have been developed within the field of
evolutionary computation. The most popular algorithms are genetic algorithms (GAs),
evolutionary programming (EP), evolution strategies (ESs), and differential evolution
algorithms (DEA). These approaches attempt to discover the optimal solution of an
optimization problem via a simplified model of evolutionary processes observed in nature and
they are based on concept of a population of individuals that evolve and improve their fitness
through probabilistic operators via processes of recombination, mutation, and selection. The
individuals are evaluated with regard to their fitness and the individuals, with superior fitness,
are selected to compose the population in next generation. After several generations of the
optimization procedure, the fitness of individuals should be improved while current individuals
explore the solution space for the optimal value.

A DEA method is an evolutionary computation algorithm as it uses real-coded
variables and typically relies on mutation as the search operator. The DEA method was
originally introduced by R. M. Storn and K. V. Price in 1995 [19] and further developed to be
a reliable and versatile function optimizer that is also readily applicable to a wide range of
optimization problems [20]. More recently, the DEA method has evolved to share many
features with conventional genetic algorithm (CGA) [21]. The major similarity between these
two types of algorithm is that they both maintain populations of potential solutions and use a
selection mechanism for choosing the best individuals from the population. The main

differences between the CGA method and the DEA technique were summarized in [22].
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® DEA operates directly on floating point vectors while CGA relies mainly on binary strings;

® CGA relies mainly on recombination to explore the search space, while DEA uses a

special form of mutation as the dominant operator;

® DEA is an abstraction of evolution at individual behavioural level, stressing the
behavioural link between an individual and its offspring, while CGA maintains the genetic

link.

The DEA method has a number of significant advantages when applying to

optimization problems and these merits were discussed by Price in [23].

®  Ability to find the true global minimum regardless of the initial parameter values;
® Fast and simple with regard to application and modification;

® Requires few control parameters;

® Parallel processing nature and fast convergence;

® Capable of providing multiple solutions in a single run;

® [Effective on integer, discrete and mixed parameter optimization;

® Ability to find the optimal solution for a nonlinear constrained optimization problem with

penalty functions.

A DEA is a parallel direct search technique that employs a population P of size N,,
consisted of floating point encoded individuals or candidate solutions (2.11). At every
generation G during the optimization process, the DEA maintains population P of N,

vectors of candidate solutions to the problem at hand.

p© :[fo),...,x;G),...,x,(\i)] (2.11)

Each candidate solution X; is a D-dimensional vector, containing as many real-valued

parameters (2.12) as the problem decision parameters D.

X© =[x, XD, x§, i=1.N (2.12)

p

2.4.1 Initialization Step
In the first step of the DEA procedure, population of candidate solutions must be initialized.
Typically, each decision parameter in every vector of the initial population is assigned a

randomly chosen value from within its corresponding feasible bounds.

x$5=0 = x4 rand [0, 1.(x™ —x[™") (2.13)
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where i =1,...,N,andj=1,...,D. Here le,(Gzo) is an initial value of the /" parameter of the /"
individual vector. xjmln and ijax are the lower and upper bounds of the fh decision parameter,
respectively. Once every vector of the population has been initialized, its corresponding

fitness value is calculated and stored for future reference.

2.4.2 Mutation Step

After the population of candidate solutions is successfully initialized, the next step of DEA
optimization process is carried out by applying three basic genetic operations; mutation,
crossover, and selection. These three operators create the population of next generation
P(G+1) by using current population P(G). At every generation G, each vector in the population
has to serve once as a target vector X,(G), the parameter vector has chosen vector index j,
and it is compared with a mutant vector. The mutation operator generates mutant vectors

(V,.{G)) by perturbing a randomly selected vector (X ,) with the difference of two other randomly

selected vectors (X, and X ,).
VO =XP+F (XS -X), i=L1..N, (2.14)

The vector indices r1, r2 and r3 are randomly selected, in which r1, r2 and r3 € {1,...,N,;}
and M ERFB#i X4, X, and X3 are selected anew for each parent vector. F is a user-
defined constant known as the “scaling mutation factor”, which is typically chosen from within

the range [0,1].

2.4.3 Crossover Step

In this step, a crossover or recombination process is also applied in the DEA procedure
because it helps to increase the diversity among mutant parameter vectors. At the generation
G, crossover operation creates trial vectors (U) by mixing the parameters of the mutant

vectors (V) with the target vectors (X)) according to a selected probability distribution.

vi$ if rand;(0,))<CR or j=s

U =u® = (2.15)

x}f’ otherwise

The crossover constant CR is a user-defined value (known as the “crossover probability”),
which is usually selected from within the range [0,1]. The crossover constant controls the
diversity of the population and aids algorithm to escape from local optima. The “rand;” is a

uniformly distributed random number within the range (0,1) generated anew for each value of

PRl

J. “s” is the trial parameter with randomly chosen index € {1,...,D}, which ensures that the

trial vector gets at least one parameter from the mutant vector.
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2.4.4 Selection Step

Finally, a selection operator is applied in the last stage of the DEA procedure. The selection
operator selects the vectors that are going to compose the population in next generation.
This operator compares the fitness of trial vector and corresponding target vector and then
selects the one that provides the best solution. The fitter of two vectors is allowed to

advance into the next generation according to (2.16).

ul® if fU®)<f(x®
Xi(Gﬂ): 1 ( i ) ( i ) (216)

X(© otherwise

Set up all DEA control parameters

v

Generate the initial population P

of individuals, Gen = 0

v

Compute and evaluate the fitness of each

individual in population P

v

Apply mutation, crossover and selection

operators to generate new individuals
Generation
+ G+1

Form new population P of all individuals

Converged?

No

Figure 2.1 The main flowchart of the conventional DEA optimization process
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The DEA optimization process is repeated continually across generations to improve
the fitness of individuals. The overall optimization process is stopped whenever maximum
number of generations is reached or any other predetermined convergence criterion is
satisfied. The main concept of a conventional DEA optimization process is illustrated in figure

21.

2.5 Review of Solution Methods for Transmission Expansion Planning

Problem

Over the last few decades, there were a number of conventional methods applied to solve
the TEP problem, for instance, linear programming [24], branch and bound [25], dynamic
programming [26], interactive method [27], nonlinear programming [28], mixed integer
programming [29], and etc.

In 1970, Garver proposed a linear programming method to solve the TEP problem
[24]. This original method was applied to long-term planning of electrical power systems and
produced a feasible transmission network with near-minimum circuit miles using as input any
existing network plus a load forecast and generation schedule. Two main steps of the
method, in which the planning problem was formulated as load flow equations and new
circuit selection could be searched based on the system overloads, were described in detail.

An interactive method was applied in order to optimize the TEP problem and reported
in 1984 [27]. The method was based on a single-stage optimization procedure using
sensitivity analysis and the adjoint network approach to transmit power from a new
generating station to a loaded AC system. The non-linear programming technique of gradient
projection followed by a round-off procedure was used for this optimization method.

Recently, many methods based on artificial intelligence (Al) techniques have been
also proposed to solve the TEP problem. These Al techniques include genetic algorithms
(GAs) [30-31], simulated annealing (SA) [32], tabu search (TS) [33], and artificial neural
networks (ANNSs) [31]. In 2002, several types of Al techniques, which are GAs, TS and ANNs
with linear and quadratic programming models, were applied to solve the TEP problem both
with and without system losses consideration by Al-Saba and EI-Amin [31]. The purpose of
the TEP was to minimize the investment costs needed to handle the increased load and the
additional generation requirements in terms of circuit additions and power losses. The TEP
results reported in [31] are used to compare to the obtained results of this research project.

A differential evolution based method for power system planning problem was
presented by Dong et al. [6]. The planning aimed at locating the minimum cost of additional
transmission lines that must be added to satisfy the forecasted load in a power system. The
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planning in [6] considered several objectives including expansion investment cost, the
reliability objective-expected energy not supplied, the social welfare objective-expected
economical losses and the system expansion flexibility objective. Differential evolution could
show its capability on handling integer variables and non-linear constrained multi-objective
optimization problem.

In addition, a conventional differential evolution algorithm was successfully applied to
static and dynamic transmission expansion planning by the author as shown in [15]. There
were ten variations of DEA strategies to be employed for optimization. Overall, the DEA
method performed superior to CGA for finding the optimal solutions and computational times
in all study cases. Unfortunately, the conventional DEA method still has a drawback that is a
tedious task of the DEA control parameters tuning due to complex relationship among
problem’s parameters. Therefore, the further research should be proposed for enhancing the

conventional DEA performance.
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CHAPTER 3
A SELF-ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM
FOR TRANSMISSION EXPANSION PLANNING WITH SYSTEM LOSSES
CONSIDERATION

3.1 Introduction

Although a conventional DEA method has a number of merits as described in chapter 2, it
still has a drawback that is a difficult task of the DEA control parameters tuning. Regarding
such disadvantage of the conventional DEA characteristic, thus it should be enhanced the
optimization performance in this research. A self-adaptive DEA (SaDEA) method is a
modified version and has been proposed to solve the TEP problem with system losses
consideration in this chapter. Several transmission expansion costs; an investment cost, a
power losses cost, and a saved cost of the proposed SaDEA technique are compared to
conventional genetic algorithm, tabu search, artificial neural networks, and hybrid artificial
intelligent techniques reported in [31] on the Garver 6-bus test system and IEEE 25-bus test
system.

The organization of this chapter is as follows: section 3.2 presents a formulation of
TEP problem with system losses consideration. A SaDEA method is an enhanced version of
the conventional DEA method and proposed in section 3.3. Section 3.4 states the
implementation of the SaDEA method to handle the TEP problem with system losses
consideration. Section 3.5 shows significant data of two selected electrical transmission
systems to be tested the proposed algorithm. Meanwhile, the experimental results of these
test systems are also included in the same section. Subsequently, these results are
discussed and further analyzed in section 3.6. Finally, section 3.7 provides summary of this

chapter.

3.2 Primal Transmission Expansion Planning with System Losses

Consideration

A main purpose of solving the TEP problem with system losses consideration is to minimize
the total expansion cost while satisfying technical and economical constraints. In this task, a
classical DC power flow model is adopted to solve the TEP problem [31]. Mathematically, an

objective function of such problem can be formulated as follows:
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NL

Minimize v=" c;n; +K) IZR, (3.1)
(i,j)eQ m=1

where v, ¢; and n, represent transmission expansion cost, cost of a candidate circuit

for addition to the branch i-j, and the number of circuits added to the branch i-j, respectively.
Here () is the set of all candidate branches for expansion. In addition, K is a loss coefficient

(calculated using K=8760X NYEX Ckwh); NYE is an estimated life time of the expansion
network (years); CkWh: is a cost of one kWh (US$/kWh); R _is a resistance of the mth line;
I is the flow on the mth line; and NL is the number of the existing lines.

The first term of objective function represents the capital cost of installed lines and
the second term represents the cost of ohmic power losses after new line additions. The
system power flow and losses are changed due to a result of line additions. The loss
coefficient (K) depends upon number of years of transmission system operation and the kWh
cost. The DC load flow is used in the problem formulation where current (/) is approximately
equal to the power flow and voltage is assumed to be unity at all buses.

The objective function (3.1) of TEP problem with system losses consideration
represents the expansion cost of newly installed transmission lines, which has some
restrictions. These constraints must be included into mathematical model to ensure that the
optimal solution satisfies transmission planning requirements. The TEP problem constraints
are described in subsection 2.3.2 and can be formulated as following equations (2.5)-(2.10)

in chapter 2.
3.3 An Enhanced Differential Evolution Algorithm Method

According to a difficult task of the DEA control parameters tuning due to complex relationship
among problem’s parameters has been a drawback of the conventional DEA method.
Therefore, a further improvement of the conventional DEA method is essentially required
before it can be generally adopted for practical use in industry. In this research, the
conventional DEA method has been developed its optimization procedure. A self-adaptive
DEA technique is proposed and explained in this section. The design of SaDEA optimization
procedure is to develop two DEA control parameters, mutation factor (F) and crossover
probability (CR), which are self-tuning parameters using probability methodology. This
enhanced method is called “Method 2jDE” as found in [34].

As such proposed method, users must define two constant values (T; and T,) that
are the indices of control parameters (F and CR) changing, respectively. The user-defined

values T, and T, are usually selected from within the range [0,1] and they are set as 0.1 in
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this research for avoiding local optimum trapping. The control parameters F and CR are
updated in their setting bounds when the uniformly distributed random numbers within the
range (0,1) are less than T, and T,. The overall procedures of the SaDEA method can be

summarized as follows:

Step 1: Set up all control parameters of the SaDEA method (Fmin, Fmax, CRmin, CRmax, T, Ty,
N, and D);

Step 2: Generate the initial values of the SaDEA control parameters (F and CR) to be
applied to mutation and crossover processes;

Step 3: Initialize the population P of all individuals according to (2.13);

Step 4: Evaluate an initial population as initialized from step 3;

Step 5: Create mutant vectors from the population P using mutation operation;

Step 6: Create trial vectors using crossover operation;

Step 7: Evaluate the trial vectors as created from step 6;

Step 8: Select vector providing the best solution in present generation using selection
operation for next computational generation;

Step 9: Update control parameter F, the F value is essential to update when a random
value rand; (0,1) < Ty;

Step 10: Updating control parameter CR, the CR value is essential to update when a random
value rand, (0,1) < Ty;

Step 11: Repeat the SaDEA optimization process from step 5 until step 10 across
generations to improve the fitness values of candidate solutions;

Step 12: Verification of stop criterion, the overall optimization process is stopped whenever
maximum number of generations is reached or any other predetermined convergence

criterion is satisfied.

The main concept of a self-adaptive DEA optimization process is illustrated in figure 3.1.
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Figure 3.1 The main flowchart of a self-adaptive DEA optimization process
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3.4 Implementation of a Self-Adaptive DEA Method for the TEP Problem with

System Losses Consideration

Regarding a conventional differential evolution algorithm (CDEA) method (described in
chapter 2) has the notable limitation of CDEA control parameter tuning due to a complex
interaction of parameters. The SaDEA procedure is proposed to enhance the performance of
conventional DEA method by reducing a tedious task of control parameters tuning. In
addition, the SaDEA technique was successfully adopted to solve an economic dispatch
problem in the previous author's work [35]. From the achieved successful results, the SaDEA
method is proposed to solve the TEP problem with transmission system losses consideration

in this research work.

3.4.1 The SaDEA Optimization Procedure
In the first step of SaDEA optimization process, users have to define two constant values (T,
and T,) that are the indices of control parameters (F and CR) changing. The user-defined
values T, and T, are usually selected from within the range [0,1] and they are set as 0.1 in
this work for avoiding local optimum trapping. The control parameters F and CR are updated
in their setting bounds when the uniformly distributed random numbers within the range (0,1)
are less than T, and T,.

In the next step, an initial population is generated according to (2.13). For the TEP
problem formulation, each individual vector (X)) contains many integer-valued parameters n,
where n,; represents number of candidate lines in the possible branch j of the individual i.

The problem decision parameter D is number of possible branches for expansion.
X© =[n®,..n®, _n@)], i=1..N, (3.2)

After new individuals are initialized successfully, then they are created by applying
mutation (2.14), crossover (2.15), and selection (2.16) operators, respectively. The

optimization process is repeated in search of the final solution until the maximum number of

generations (Gmax) is reached or other predetermined convergence criterion (€) is satisfied.

3.4.2 Fitness Function of the TEP Problem Considering Line Losses

In this work, a fithess function F(X) of the TEP problem is assigned according to (3.3) for
each individual. The fitness function is a combination of an objective function and two penalty
functions. The fitness function is adopted to find an optimal solution, measure the

performance of candidate solutions, and check for violation of the TEP problem constraints.
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An individual is the best solution if its fitness value F(X) is highest. The penalty functions are
also included in the fitness function in order to represent violations of both equality and
inequality constraints. For the TEP problem, an equality constraint penalty function (3.5)
considers the DC power flow node balance constraint and an inequality constraint penalty
function (3.6) considers the constraints of power flow limit on each transmission line, power
generation limit, bus voltage phase angle limit, and right-of-way, respectively. A general

fitness function of the TEP problem can be formulated as follows:

1
~O(X) + @R (X) + Py (X)

F(X) (3.3)

F(X) and O(X) are fitness function and objective function of the TEP problem,
respectively. P,(X) and P,(X) are the equality and inequality constraint penalty functions,
respectively. X denotes the individual vector of decision variables. @), and ), are penalty
weighting factors that are set to 0.5 in this work. For this TEP problem, the objective function

and penalty functions are formulated as follows.

NL
O(X)=V(X)= > ¢ +KD IZR, (3.4)
(i,))eQ m=1
nb
R(X) = |dy +Bebk — g (3.5)
k=1

C if anindividual violates the TEP
P, (X) = inequality constraints. (3.6)

0 otherwise

where C is an inequality constraint constant that is used when an individual violates

the inequality constraints. In this work, the constant C is set as 0.5 for all cases.

3.4.3 Control Parameters Setting
A proper selection of the SaDEA control parameters is very essential to algorithm
performance and success when searching optimal solution. In this simulation, the setting

ranges of the SaDEA control parameters used in the TEP problem are as follows: F = [0.4,1],

CR =[0.8,1] and N, = [5*D,10*D]. The maximum predetermined convergence criterion (€) is

set to 1x10_4 and the maximum number of generations (Gmax) is set to 1x103.
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3.4.4 Overall Procedures of the SaDEA Optimization Program for TEP Problem

The overall procedures of the SaDEA method for solving the TEP problem can be

summarized as follows:

Step 1: Read all required system data;

Step 2: Set up two constant values T, and T, for simulation;

Step 3: Set iteration G = 0 for an initialization step of the SaDEA procedure;

Step 4: Initialize the SaDEA control parameters F and CR;

Step 5: Initialize the population P of all individuals according to (2.13);

Step 6: Evaluate the fitness function according to (3.3) and then check violations of all
constraints for each individual using (3.5) and (3.6);

Step 7: Rank all individuals according to their fitness;

Step 8: Updating control parameter F, the F value is essential to updated when a random
value rand, (0,1) < Ty;

Step 9: Updating control parameter CR, the CR value is essential to updated when a random
value rand, (0,1) < Ty;

Step 10: Set iteration G = 1 for the next step of the SaDEA optimization process;

Step 11: Apply mutation, crossover, and selection operations to create new individuals;

Step 12: Evaluate the fitness function by using (3.3) and then check violations of all
constraints for each new individual using (3.5) and (3.6);

Step 13: Rank new individuals according to their fitness;

Step 14: Updating F, the F value is updated when a random value rand, (0,1) < Ty;

Step 15: Updating CR, the CR value is updated when random value rand, (0,1) < T;

Step 16: Verification of stop criterion, if |F(X)G- F(X)G'1| >gorGc< Gmax, set G= G+ 1 and
return to step 11 for repeating to search the final solution. Otherwise, stop to
calculate and go to step 17;

Step 17: Compute and display the final solutions, which are an investment cost, a system

losses cost, and a total expansion cost.

A computer program of the SaDEA method application to TEP problem with system
losses consideration has been designed and performed as above procedures. This proposed

computational program is illustrated in figure 3.2.
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Figure 3.2 Example of the SaDEA optimization program for TEP problem with line losses
consideration

3.5 Test Systems and Numerical Test Results

In the simulation, the proposed SaDEA procedure has been implemented in MATLAB and
tested its performance on two electrical transmission systems as shown in appendix A.
These two test networks are Garver's 6-bus system and IEEE 25-bus system, which all
significant data are also available in [17] and [27]. In this work, the TEP problem is analyzed
including system losses consideration. In addition, the TEP problem has been investigated in
two cases that are with and without power generation resizing considerations. In case of with
generation resizing consideration, the generated MW power at each generator varies
between g,.min and g,max, of which the details are explained in section 2.3. For the experiment,
the values of g,.min are set to “0” MW for all generating units in two test systems. Meanwhile,
setting data of g,max are referred to as presented in appendix A. The simulation results of the
proposed SaDEA technique have been compared to conventional genetic algorithm (CGA),
tabu search (TS), artificial neural networks (ANNSs), hybrid artificial intelligent techniques and

summarized in this chapter.

3.5.1 Garver 6-bus System
The first test system of this simulation is a well-known Garver's system, which comprises 6
buses, 9 possible branches, and 760 MW of power demand. The electrical system data;

transmission line, load, and generation data are available in [17]. From this test system
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configuration, bus-6 is a new generation bus and needs to be connected to the existing
network. A maximum of four parallel lines is permitted in each branch. In this simulation
case, the power losses consideration is included in the objective function where the loss
coefficient, K, was selected as 1000. The per-unit base in the DC-load flow analysis is 100
MVA while the cost base is 105. The estimated lifetime of transmission lines was assumed to
be 25 years and the cost of one kWh was assumed to be 0.005 monetary units’/lkWh found in
[31]. Numerical test results of the proposed method are shown in table 3.1-3.2 for each case
and then the best solutions of SaDEA method are summarized and compared to other

techniques in table 3.3.

3.5.1.1 Without Generation Resizing Consideration - Garver’s System
For the Graver's 6-bus test system, the obtained results of TEP problem considering line

losses in case of without generation resizing are presented in table 3.1 and figure 3.3.

Table 3.1 Summary results of Garver 6-bus system without generation resizing case

Results of the TEP with line losses consideration
The SaDEA method
(without power gen resizing)

Best total cost 673.54
Average total cost 686.79
Worst total cost 739.83

% Difference between best and worst 9.84
Standard deviation 27.95

Average CPU time (second) 2.78

Line additions for the best result Nog=4,N35=1,N6=3and nsg=1

The achieved results of this case are discussed as follows:

® |n the first case, the total TEP cost (investment cost + losses cost) of the optimal
solution equals to 673.54 with the following topology: n,5 = 4, n3s = 1, ngg = 3 and
nsg = 1.

® A convergence curve of SaDEA method to obtain the optimal solution is illustrated in
figure 3.3, where the optimal solution was found by SaDEA method at the 12nd
iteration.

® An average computational time of the proposed method is 2.78 second in this test

case.
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Figure 3.3 A convergence curve of SaDEA method for Garver 6-bus system without

generation resizing case

3.5.1.2 With Generation Resizing Consideration - Garver’s System
In the second case, test results of TEP problem on the Graver’'s 6-bus system are shown in

table 3.2 and figure 3.4.

Table 3.2 Summary results of Garver 6-bus system with generation resizing case

Results of the TEP with line losses consideration
The SaDEA method
(with power gen resizing)
Best total cost 401.66
Average total cost 403.32
Worst total cost 413.98
% Difference between best and worst 3.07
Standard deviation 297
Average CPU time (second) 38.94
Line additions for the best result No3=2,N35=2and ngg=3

The obtained results of the TEP with generation resizing case are explained as follows:
® Regarding an optimal solution of the TEP problem with power generation resizing
consideration, the total TEP cost equals to 401.66 at the following topology: n,.5 = 2,
Nnys =2 and ngg = 3.
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® A convergence curve of the SaDEA method to obtain the best solution is illustrated in
figure 3.4. In this case, the optimal solution was found by SaDEA method at the 155th
iteration.

® According to obtained results in table 3.2, a performance of SaDEA method is very
robust to find the solution, as suggested by small values of a standard deviation and

percent difference between best and worst results.

® |n this case, an average CPU time of the proposed method is 38.94 second.
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Figure 3.4 A convergence curve of SaDEA method for Garver 6-bus system with

generation resizing case

Table 3.3 Comparison of Expansion Costs among Various Methods for Garver 6-Bus Test

System
K=1000
Investment Losses cost Saved cost
Types of TEP problem Methods
cost “a” l‘b!!
ANNSs [31] 261 448.83 904.77
TS [31] 291 382.54 971.06
TEP without the resizing GA [3] 291 382.54 971.06
of power generation Hybrid ANN-TS-GA [31] 291 382.54 971.06
SaDEA 291 382.54 971.06
TEP with the resizing of
SaDEA 170 231.66 1,121.94
power generation

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved
cost “b” is calculated as a difference cost between the cost of ohmic power losses before the

expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time
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of line) and the power losses cost “a” calculated after the new line additions for the same
period.

For a case study of without power generation resizing consideration, the best solution
of TEP problem considering system losses on Garver's test system as shown in table 3.3
was found by all algorithms except ANNs method. Although the ANNs method obtained the
least investment cost compared to other methods but it had the largest value of power losses
cost after the new line additions. The SaDEA method obtained the investment cost and
losses cost for with power generation resizing case study cheaper than the without power
generation resizing case study. In addition, the SaDEA method had the largest saved cost of
minimizing ohmic power losses during planning horizon in case of with power generation

resizing consideration.

3.5.2 IEEE 25-bus System

The IEEE 25-bus system is selected to test the SaDEA procedure in this work. It consists of
25 buses, 36 possible branches, and 2750 MW of total power demand. The electrical system
data; transmission line, load, and generation data are available in [27] and [31]. A new bus of
this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. A maximum of
four parallel lines is permitted to install in each branch. In this simulation case, the objective
function includes power losses consideration, in which the loss coefficient, K, was selected to
be 10000. The estimated lifetime of the transmission lines was assumed to be 25 years while
the cost of one kWh was assumed to be 0.0112 US$/kWh [31]. In this case study, numerical
test results of the SaDEA method are put in table 3.4-3.6 where the comparisons among the

proposed method and other techniques from [31] are also included in table 3.6.

3.5.2.1 Without Generation Resizing Consideration - IEEE 25-System
According to the TEP problem without generation resizing consideration, the results of testing
the proposed algorithm to IEEE 25-bus system are shown in table 3.4. These results are
discussed as follows:
® |n this case, the best solution of TEP problem without power generation resizing
consideration was found by the SaDEA method and a total TEP cost was 294.302
million US$ as shown in table 3.4, with the addition of the following lines to the base
topology: n7.43= 2, Ng22= 3, N11.14 = 2, MN2.14 = 2, N1223= 3, M348 = 2, Ny30 = 3, N1 =
3, Ne20= 3, Noo21 =1, Ns5= 3 and Nyp5 = 2.
® |n this case, the optimal solution was found by SaDEA method at the 88th iteration

and an average CPU time of the proposed method is 84.58 second.
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Table 3.4 Summary results of IEEE 25-bus system without generation resizing case

Results of the TEP with line losses consideration
The SaDEA method
(without power gen resizing)

Best total cost (million US$) 294.302
Average total cost (million US$) 305.023
Worst total cost (million USS$) 321.104
% Difference between best and worst 9.11
Standard deviation (million US$) 13.840
Average CPU time (second) 84.58

N7.43= 2, Ng.po = 3, Ny1.14= 2, Np1s = 2, Nypp3= 3,
Line additions for the best result _ _ — - —
Ny3.48 = 2, N13.20= 3, Nig1g = 3, Mg20= 3, N1 = 1,

Ns.05 =3 and Nyy.05 = 2

3.5.2.2 With Generation Resizing Consideration - IEEE 25-System
The obtained results of IEEE 25-bus system in case of with power generation resizing

consideration can be shown in table 3.5 including the result discussion as follows:

Table 3.5 Summary results of IEEE 25-bus system with generation resizing case

Results of the TEP with line losses consideration
The SaDEA method
(with power gen resizing)

Best total cost (million US$) 144.834
Average total cost (million US$) 145.1536
Worst total cost (million US$) 146.432
% Difference between best and worst 110
Standard deviation (million US$) 0.673776
Average CPU time (second) 237.29

Line additions for the best result Ms25= 4 Noaa =1, N716= 1, Ng22= 2, Miap5= 1,

Ny3.48 = 3, M3.20= 2, MNggg = 1 @Nd Npg05= 1

® The necessary total expansion cost of the TEP problem with generation resizing
consideration for this test system is 144.834 million US$ and the following lines are
added: Nsp5 =4, Ngos =1, N74g =1, Ngp = 2, Nypp3 =1, Nyzqg = 3, Nyap0 = 2, Ny = 1

and Noyo5= 1.
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® |n this case, the best solution was found by SaDEA method at the 226th iteration and

an average calculation time of the proposed method is 237.29 second.

Table 3.6 Comparison of Expansion Costs among Various Methods for IEEE 25-Bus Test

System
K=10000
Investment Losses cost Saved cost
Types of TEP problem Methods cost “a” “b”
(million US$) (million US$) (million US$)
ANNSs [31] 224178 161.995 147.979
TS [31] 180.664 155.264 154.709
TEP without the resizing of GA [31] 162.430 171.947 138.016
power generation Hybrid ANN-TS-GA [31] 168.784 152.320 157.653
SaDEA 160.051 134.251 175.722
TEP with the resizing of
SaDEA 61.802 83.032 226.941
power generation

[TPel]

Note: The losses cost “a” after the new line addition is calculated for 25 years. The
saved cost “b” is calculated as the difference cost between the cost of ohmic power losses
before the expansion of the transmission system (309.973 million US$) based on a 25-year

(life-time of line) and the power losses cost “a” calculated after the new line additions for the

same period.

For a case study of without power generation resizing consideration, the best solution
of the TEP problem with system losses consideration was found by SaDEA method and an
investment cost was 160.051 million US$ as shown in table 3.6. In addition, the SaDEA
method achieved the least value of a power losses cost after the new line additions
compared to other techniques. Comparison between with and without power generation
resizing consideration, the SaDEA method obtained the investment cost and losses cost for
with power generation resizing case study cheaper than the without power generation
resizing case study. Therefore the SaDEA got the largest value of a saved cost of minimizing
ohmic power losses during expansion planning horizon in this test system. Overall, the best

algorithmic procedure for this case is SaDEA method.
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3.6 Discussion on the Results

All obtained results in table 3.3 and 3.6 clearly indicate that SaDEA method can be efficiently
applied to the TEP problem with line losses consideration. The proposed technique shows
better overall performance especially in robustness than other algorithms in the optimization
of the TEP problem both with and without generation resizing investigations. The proposed
algorithm was tested 50 times to find the best results in each case and the control

parameters were set as explained in section 3.4.3.

3.7 Conclusion

In this chapter, a SaDEA method is applied when solving the TEP problem with system
losses consideration. In addition, the TEP problem is also included both with and without
power generation resizing considerations. Regarding the achieved results on two test
networks illustrate that the SaDEA procedure is an efficient technique for solving the
transmission planning problem. As the numerical test results in table 3.3 and 3.6 indicate, the
proposed method obtained the least values of an investment cost and a power losses cost
compared to the conventional genetic algorithm, the tabu search, the artificial neural
networks, and the hybrid artificial intelligent techniques on two test systems. In addition, the
SaDEA method had the largest saved cost of ohmic power losses for both test cases as
shown in table 3.3 and table 3.6. The most attractive feature of the proposed algorithm is the
good computational performance. The accuracy of the results obtained in the TEP study is in
very good agreement with those obtained by other researchers as found in [31]. Regarding a
consequence of these successful results, the TEP problem considering the n-1 contingencies

in single line outage or single generator outage will be investigated as future work.
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CHAPTER 4
AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM
APPLICATION TO TRANSMISSION EXPANSION PLANNING
WITH SECURITY CONSTRAINT CONSIDERATION

4.1 Introduction

Regarding a previous work in chapter 3, an enhanced DEA methodology, called a self-
adaptive DEA (SaDEA) procedure, is directly applied to DC power flow based model in order
to solve the TEP problem with system losses consideration. The SaDEA method performed
well with regard to both low and medium complex transmission networks as demonstrated on
Garver six-bus system and IEEE 25-bus system, respectively. As a consequence of these
successful results obtained from solving such TEP problem, the SaDEA technique has been
implemented again to deal with a TEP problem with security criterion consideration, which is
more complex and difficult to be solved than basic TEP problem. The TEP problem
considering security constraint is determined not only the optimal number of new
transmission lines and their locations but also the most reliable planning when a single line is
outage. In this research, the effectiveness of the proposed enhancement is initially
demonstrated by the analyses of low, medium, and highly complex transmission test
systems. The analyses are performed within a mathematical programming environment of
MATLAB using both the enhanced DEA and the conventional DEA methods and a detailed
comparison of accuracy and performance is also presented in this chapter.

An outline of this chapter is as follows: Section 4.2 presents formulation of TEP
problem with n-1 security criterion consideration. Section 4.3 explains implementation of
SaDEA procedure for solving the proposed TEP problem, and then all details of the SaDEA
optimization program for approaching this planning problem are also included in the same
section. The significant data of selected test systems are given in section 4.4 and the
achieved experimental results are also reported in this section. Finally, the discussion and

conclusion of test results are given in section 4.5 and 4.6, respectively.
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4.2 Primal Transmission Expansion Planning with Security Constraint

Consideration

The main purpose of solving the TEP problem with n-1 security criterion consideration is to
minimize total expansion cost while satisfying economical, technical, and reliable constraints.
In this work, a classical DC power flow model is adopted to solve the TEP problem with
security constraints consideration as found in [36]. Mathematically, an objective function of

such problem can be formulated as follows:

min V= Z Cijnij (41)
(i,))e0

Subject to

n={n;}eOPC (4.2)

n= {nij} eSCC (4.3)

where () is set of all candidate branches for expansion. The OPC represents the
planning operational constraints without security as explained in subsection 2.3.2 and can be
formulated as following equations (2.5)-(2.10). Moreover, the SCC represents the security
constraints including in the TEP problem. In this chapter, the TEP problem is investigated
that the system operates with security and satisfied n-1 criterion. In this context, the SCC

constraints to the problem with n/ paths to expansion presents the following equations:

® DC Power Flow Node Balance Constraint

This linear equality constraint represents the conservation of power at each node.
g’ =d+[Bo]° (4.4)

where ¢’, d, and B are real power generation vector in existing power plants, real

load demand vector in all network nodes, and susceptance matrix of the existing and added

lines in the network, respectively. Here @is the bus voltage phase angle vector.

® Power Flow Limit on Transmission Lines Constraint
The following inequality constraint is applied to TEP problem with security criterion

consideration in order to limit the power flow for each path.
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\fijp\s(ni‘;mij)fijmax v, j) € 120 and(,j)#p (4.5)
‘fijp‘s(ni?+nij “D ™ for (i, j)=p (4.6)

In DC power flow model, each element of branch power flow in constraints (4.5) and

(4.6) can be calculated using (4.7) and (4.8), respectively:

0
Nij + Nj;
i =Mx(6}p—0f) v(@,j) € 1,2,..,nl; and (i, )= p 4.7)
(nj +ny —1) .
fif =——— y L —x@P-0P) G.))=p (4.8)
ij
where f,/.p, f,./.max, n;, n,/.O and x; represent total branch power flow in branch i,

maximum branch power flow in branch i-j, number of circuits added to branch i-j, number of

circuits in original base system, and reactance of the branch /-, respectively. Here QU and 6/7’

are voltage phase angle of the terminal buses i and j, respectively.

® Power Generation Limit Constraint
In the TEP problem, power generation limit must be included into the problem constraints.

This can be mathematically represented as follows:
o™ <9’ <g™ (4.9)

min max . .
where g,p, g, and g, are real power generation at node /i, the lower and upper real

power generation limits at node i, respectively.

® Right-of-way Constraint
Mathematically, this constraint defines location and maximum number of circuits, which can

be installed in a specified location. It can be represented as follows:
0<n; < ni;“ax (4.10)

where n; and n,jmax represent total integer number of circuits added to the branch i-j

and maximum number of added circuits in the branch i-j, respectively.

® Bus Voltage Phase Angle Limit Constraint
A calculated phase angle (Qjcal) should be less than a predefined maximum phase angle

(Hl.jmax). Such constraint can be represented as the following mathematical expression.
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O

g‘ei;nax (4.11)

® Other TEP Constraint

In this TEP problem, several significant constraints must be included as follows:

(n; +n; —=1)>0 and integer for (i, j) = p (4.12)
n, >0 and integer v(i, j) € 1,2,..,nl; and (i, j) = p (4.13)
f” and 67 unbounded (4.14)
1,))e andp=12,..,nl (4.15)

For this problem formulation, there are n/ sets of operational variables, a set to each

contingency when it is considered all paths p = (ij) € Q.

4.3 Implementation of an Enhanced DEA Method for the TEP Problem with

Security Constraint Consideration

An enhanced DEA method is proposed to solve the TEP problem with security constraint
consideration as formulated in previous section. The proposed method can be implemented

to handle such problem as following details.

4.3.1 An Enhanced DEA Optimization Method
In this research, a design of a SaDEA procedure is to develop two DEA control parameters,
mutation factor (F) and crossover probability (CR), which are self-tuning parameters using
probability methodology. This enhanced method is called “Method 2JDE” as found in [34]. In
the first step of SaDEA optimization process, users must determine two constant values (T,
and T,), which are the indices of control parameters (F and CR) changing. The user-defined
values T, and T, are usually chosen from within the range [0,1] and set as 0.1 in this work
for avoiding local optimum trapping. These control parameters F and CR are updated in their
setting bounds when the uniformly distributed random numbers within the range (0,1) are
less than T, and T,.

After two constant values are set by users, then an initial population is generated
according to (2.13). In the TEP problem formulation, each individual vector (X) contains

I

many integer-valued parameters n, where n;; represents the number of candidate lines in the
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possible branch j of the individual i. The problem decision parameter D is the number of

possible branches for expansion.
x{® =[n{f),...,nﬁ),...,n(DCfi)], i=1..,N, (4.16)

When an initial population of individuals is initialized successfully, then three DEA
operators (2.14)-(2.16) create the population of next generation P(G+1) by using current
population P(G). The optimization process is continuously repeated in search of final solution

until the maximum number of generations (Gmax) is reached or other predetermined

convergence criterion (€) is satisfied.

4.3.2 Fitness Function of the TEP Considering Security Constraint

A fitness function of TEP problem is applied to search the optimal solution, measure the
performance of candidate solutions, and check for violation of the TEP problem constraints.
The TEP fitness function F(X) is a combination of an objective function and two penalty
functions and can be formulated according to (4.17) for each individual. An individual is the
best solution if its fitness value F(X) is highest. The penalty functions must be also included
in the fitness function in order to represent violations of both planning operational constraints
without security (OPC) and the planning security constraints (SCC) of TEP problem.
Regarding the proposed problem, the OPC penalty function (4.19) investigates all constraints
of TEP problem without security criterion consideration. In addition, the SCC penalty function
(4.20) investigates all security constraints of TEP problem. The general fitness function of the

TEP problem can be assigned as follows:

1
~O(X)+ @R (X) +a,Py(X)

F(X) (4.17)

In (4.17), F(X) and O(X) represent fitness function and objective function of the TEP
problem, respectively. P,(X) and P,(X) are the constraint penalty functions. X denotes the
individual vector of decision variables. In this work, (J); and ), are penalty weighting factors
and set to 0.5, respectively. For this TEP problem, the objective function and the constraint
penalty functions are formulated as follows.

O(X)=V(X)= > ¢y (4.18)

(i,))e

C, ifanindividual violates the OPC of TEP problem.
R(X)= (4.19)
0 otherwise
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C, ifanindividual violates the SCC of TEP problem.
P (X)= (4.20)
0 otherwise

where C; and C, are the constraint constants, which are applied to problem when an
individual violates the OPC and SCC of TEP problem, respectively. In this work, both

constants C, and C, are set as 0.5 for all cases.

4.3.3 Control Parameters Setting
The SaDEA optimization performance depends on the suitable values of control parameters.
In this simulation, the setting ranges of SaDEA control parameters used in the TEP problem

are as follows: F = [0.5,1], CR =[0.6,1] and N, = [5*D,10*D]. The maximum predetermined

convergence criterion (€) is set to 1x10-4 and the maximum number of generations (Gmax) is

set to 3x1 03.

4.3.4 Overall Procedures

The overall procedures of the SaDEA method application to TEP problem with n-1 security

criterion consideration can be summarized as follows:

Step 1: Read all required transmission system data;

Step 2: Set up all control parameters of the SaDEA method (Fmin, Fmax, CRmm, CRmaX, T, T,
N, and D),

Step 3: Create the initial values of the SaDEA control parameters (F and CR) to be applied
to mutation and crossover operators;

Step 4: Set initial iteration G = 0 for an initialization step of the SaDEA procedure;

Step 5: Initialize the population P of all individuals according to (2.13);

Step 6: Evaluate the fitness function according to (4.17) and then check violations of all
constraints for each individual using (4.19) and (4.20);

Step 7: Check n-1 security criterion for all constraints (4.4)-(4.15);

Step 8: Rank all individuals according to their fitness;
Step 9: Updating F, the F value is updated when a random value rand, (0,1) < T;;

Step 10: Updating CR, the CR value is updated when a random value rand, (0,1) < Ty;

Step 11: Set iteration G = 1 for the next step of the SaDEA optimization process;

Step 12: Apply mutation, crossover and selection operations to create new individuals;

Step 13: Evaluate the fitness function by using (4.17) and then check violations of all
constraints for each new individual using (4.19) and (4.20);

Step 14: Check n-1 security criterion for all constraints (4.4)-(4.15);
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Step 15: Rank new individuals according to their fitness;

Step 16: Updating F, the F value is updated when a random value rand, (0,1) < T;

Step 17: Updating CR, the CR value is updated when random value rand, (0,1) < Ty;

Step 18: Verification of stop criterion, if |F(X)G- F(X)G'1| >EorG< Gmax, set G= G+ 1and
return to step 12 for repeating to search the final solution. Otherwise, stop to calculate
and go to step 19;

Step 19: Compute and display the final solutions, which are an investment cost and a

convergence curve.

A computer program of the SaDEA method for application to TEP problem with
security constraint consideration has been designed and performed as above procedures.

This proposed computational program is illustrated in figure 4.1.

Figure 4.1 Example of the SaDEA optimization program for TEP problem with security

constraint consideration
4.4 Test Systems and Numerical Test Results

In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and
has been tested its performance on three electrical transmission systems as reported in
appendix A. These three test networks are the Garver's 6-bus system, the Brazilian 46-bus
system, and the IEEE 25-bus system and all required data are also available in [17], [25] and
[27], respectively. In this chapter, the proposed method is applied to handle the TEP problem

considering security constraint that is more difficult for solving than the basic TEP problem.
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Moreover, such TEP problem includes an issue of power generation resizing consideration.
The numerical results of proposed SaDEA technique are compared to conventional
differential evolution algorithm (DEA), ant colony search algorithm (ACSA), Chu-Beasley

genetic algorithm (CBGA) and also summarized in this section.

4.4.1 Garver 6-bus System

In this research, Garver's system is the first test network employed for investigation. It
consists of 6 buses, 9 possible branches, and 760 MW of demand. The electrical system
data; transmission line, load, and generation data are available in [17]. In this test system,
bus-6 is a new generation bus that needs to be connected to the existing network. The
dotted lines represent new possible line additions and solid lines are the existing lines as
shown in figure A1. A maximum of four parallel transmission lines is allowed to install in each
branch.
The achieved results of SaDEA method on the Garver 6-bus system can be tabulated
in table 4.1 including the discussion of these results as follows:
® For the first case, a total expansion cost of the best solution equals to 180,000
US$ with the following topology: n,¢ = 2, n35 = 3, and n,¢ = 2.
® A convergence curve of SaDEA method to obtain the best solution is illustrated in
figure 4.2, where the optimal solution was found by SaDEA method at the 152nd

iteration.

® An average computational time of the proposed method is 64.03 second in this test

case.

Table 4.1 Summary results of Garver 6-bus system

Results of the TEP with security constraint consideration The SaDEA method

Best total cost (x103 US$) 180
Average total cost (x103 US$) 187
Worst total cost (x103 uss$) 210

% Difference between best and worst 16.67

Standard deviation (x10° US$) 11,60

Average CPU time (second) 64.03

Line additions for the best result Nog=2,Nn35=3,and ngg =2
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Figure 4.2 A convergence curve of SaDEA method for Garver 6-bus system

Table 4.2 Summary power flow at each right-of-way of Garver 6-bus system (Before

considering n-1 security criterion)

Line path between buses Power Flow (MW) Max Power Flow (MW)

2-3 82.1675 100
4-6 157.7034 200
2-6 143.2966 200
3-5 225.8325 400
1-4 16.894 80
1-2 19.9385 100
1-5 14.1675 100
2-4 5.4026 100
5-6 0 0

Table 4.3 Summary power flow at each right-of-way of Garver 6-bus system (After

considering n-1 security criterion, when a line between buses 2-3 is outage.)

Line path between buses Power Flow (MW) Max Power Flow (MW)

2-3 0 0

4-6 141.6707 200
2-6 159.3293 200
3-5 308 400
1-4 44.9512 80
1-2 74.0488 100
1-5 68 100
2-4 6.622 100
5-6 0 0
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In tables 4.2 and 4.3, real power flow and maximum real power flow at each right-of-
way are presented. Form obtained results in table 4.2, a line path between buses 2-3 is the
most critical because it has the lowest gap between power flow and maximum power flow
compared to other path on this system. Therefore, real power flow and maximum real power
flow at each path are selected to show in table 4.3, when a line between buses 2-3 is
outage. Regarding results in table 4.3, the power flow are not over the maximum power flow

for each path.

4.4.2 IEEE 25-bus System

The IEEE 25-bus system is tested the performance of SaDEA procedure in this work. For the
second test system, it has 25 buses, 36 possible branches, and 2750 MW of total demand.
The electrical system data; transmission line, load, and generation data are available in [27]
and [31]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or
bus-24. The dotted lines represent new possible line additions and solid lines are the existing
lines as shown in figure A2. A maximum of four parallel lines is permitted to install in each

branch.

Table 4.4 Summary results of IEEE 25-bus system

Results of the TEP with security constraint consideration The SaDEA method
3
Best total cost (x10° US$) 19131
3
Average total cost (x10° US$) 25050
3
Worst total cost (x10” US$) 30020
% Difference between best and worst 56.92
.. 3
Standard deviation (x10° US$) 4060.30
Average CPU time (second) 654.52

Line additions for the best result Mo20= 1. Ns25= 4, No2a = 1, Mg = 1, Nig0 = 1,

Nig-20 =1, and nygp5 =1

The obtained results of SaDEA method on the IEEE 25-bus system can be tabulated

in table 4.4 and the discussion of these results are as follows:

® For the second test system, total expansion cost of the best solution equals to 19.131
million US$ with the following topology: Ns.0 = 1, Ns.o5 = 4, Ngos = 1, Nyz48 = 1, Nyzp0 =

1, Ng20=1, and Ny o5 = 1.

® A convergence curve of SaDEA method to obtain the best solution is illustrated in

63



figure 4.3, where the best solution was found by SaDEA method at the 584th iteration.

® An average computational time of the proposed method is 654.52 second in this test

case.

Figure 4.3 A convergence curve of SaDEA method for IEEE 25-bus system

4.4.3 Brazilian 46-Bus System
The third test network is the Brazilian 46-bus system as depicted in figure A3. The system
comprises 46 buses, 79 circuits, and 6880 MW of total demand. The electrical system data,
which consist of transmission line, load, and generation data including generation resizing
range in MW, are available in [25]. This system represents a good test to the proposed
approach because it is a real-world transmission system. In figure A3, solid lines represent
existing circuits in the base case topology and dotted lines represent the possible addition of
new transmission lines. The addition of parallel transmission lines to existing lines is again
allowed in this case with a limit of 4 lines for each branch.

The obtained results of SaDEA method on the IEEE 46-bus system can be tabulated

in table 4.5 and the discussion of these results are as follows:

® For this test system, total expansion cost of the best solution equals to 168.042
million US$ with the following topology: n,.3= 2, N3ug = 1, Nigo5 = 1, Nogo1= 1, Nyzps =
1, NMo405= 2, Nogp9= 3, Nog3o =1, Nog30= 2, N3y3p= 1 and Nypg3 = 2.

® |n this case, the best solution was found by SaDEA method at the 728th iteration and

an average CPU time of the proposed method is 1962.43 second.
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Table 4.5 Summary results of IEEE 46-bus system

Results of the TEP with security constraint consideration The SaDEA method

Best total cost (x10° US$)

168042

Average total cost (x103 uUs$) 185372
Worst total cost (x103 Us$) 208870

% Difference between best and worst 24.30
Standard deviation (x1O3 US$) 17152
Average CPU time (second) 1962.43

Ny =2, N3ag =1, NMoos = 1, Nygp1 = 1, Mz s =1,

Line additions for the best result Moas = 2, Mosoo = 3, Masao = 1, MNaaao = 2, Narap = 1,

and Nyp.43= 2

Table 4.6 Results comparison of TEP problem with security constraint consideration

Best cost (x10° US$)
Methods
Garver 6-bus system | IEEE 25-bus system | Brazilian 46-bus system
SaDEA 180 19,131 168,042
Chu-Beasley GA (CBGA) [36] 180 - 213,000
Ant Colony Search Algorithm (ACSA) [38] 298 248,943 -
Conventional DEA [38] 298 210,818 -

All obtained results of TEP problem with security constraint and power generation
resizing considerations are summarized in table 4.6, where the best investment costs of
expansion corresponding to the proposed method are compared to other algorithms. As
indicated by the results in table 4.6, SaDEA and CBGA methods found the optimal solution
on Gaver 6-bus system. For IEEE 25-bus system and the Brazilian 46-bus system, the

SaDEA method could find the optimal solution as shown the cheapest investment cost.

4.5 Discussion on the Results

The achieved numerical results clearly indicate that SaDEA method can be efficiently applied
to TEP problem with n-1 security constraint consideration on three test systems. From the
results in table 4.6, SaDEA technique could find the best solution cheaper than other
methods in all cases. The proposed algorithm was tested 30 times to find the best result in

each case and the control parameters were set as suggestion in subsection 4.3.3.
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The performance of SaDEA method depends upon selection of proper control
parameters. In this research, the control parameters of SaDEA procedures (F and CR) were
automatically tuned in their setting bounds. According to experiments, the scaling mutation
factor F is much more sensitive than crossover probability CR. Therefore, CR is more useful

as a fine tuning parameter.

4.6 Conclusion

In this chapter, an enhanced DEA method is proposed to deal with the TEP problem with n-1
security criterion consideration. A single line outage is investigated in such TEP problem for
reliability issue. From obtained results of Garver six-bus system, IEEE 25-bus system, and
the Brazilian 46-bus system, the SaDEA procedure is an acceptable optimization technique
and minimizes effectively the total investment cost of TEP problem with security constraint
consideration on realistically transmission systems. As the empirical solutions of these test
cases indicate, total investment costs of the SaDEA method are less expensive than other
methods on three test networks. The most attractive feature of the proposed algorithm is
good computational performance and simple implementation. Regarding a consequence of
the successful results, a distribution system planning problem will be investigated as future

work.

66



CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Project Conclusions

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to
electrical power system optimization problems as its main goal is to achieve an optimal
expansion plan. The planning solution has to meet technical requirements while offering
economical investment. Furthermore, transmission planning should specify new transmission
facilities that must be added to an existing network to ensure adequate operation over a
specified planning horizon.

Over past few decades, a number of optimization methods have been applied to
solve the TEP problem in many issues. These proposed methods are as follows:
mathematical optimization methods (e.g. linear programming, nonlinear programming,
dynamic programming, integer and mixed integer programming, benders decomposition,
branch & bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic
methods (e.g. genetic algorithms, tabu search, simulated annealing, particle swarm,
evolutionary algorithms, differential evolution algorithm, etc.). The details of such methods are
provided in chapter 2 of this report.

A differential evolution algorithm (DEA) is an artificial intelligence technique and it
was firstly presented by R. M. Storn and K. V. Price in 1995. The DEA method becomes a
reliable and versatile function optimizer that is also readily applicable to a wide range of
optimization problems. In addition, the DEA method has been employed to optimize a wide
variety of problems in electrical power system, for example, economic power dispatch, short-
term scheduling of hydrothermal power system, power system planning, optimal reactive
power flow, etc. In a number of cases, the DEA method has proved to be more accurate,
reliable as it can provide optimum solutions within acceptable computational times.

Although a conventional DEA method has a number of merits as described in chapter
2, it still has a drawback that is a difficult task of the DEA control parameters tuning.
Regarding such disadvantage of the conventional DEA characteristic, thus it should be
improved the optimization performance in this research. An enhanced DEA method is a
modified version and has been proposed to solve the TEP problem with system losses and
security criterion considerations in this work.

The main contribution of this research is the enhancement of a conventional DEA
method and the application of proposed technique to TEP problem with system losses and
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security criterion considerations. First of all, the design of a self-adaptive DEA (SaDEA)
procedure is to develop two DEA control parameters, mutation factor (F) and crossover
probability (CR), which are self-tuning parameters using probability methodology. In order to
validate its searching capability and reliability, the enhanced methodology has been tested
with some selected mathematical benchmark functions, namely Sphere, Rosenbrock1,
Absolute, Schwefel, and Rastrigin functions.

Based on the successful results of SaDEA procedure application to selected
mathematical functions, the proposed technique is subsequently implemented to solve static
TEP problem with system losses consideration, which is a real-world optimization problem,
as shown in chapter 3. In chapter 3, the simulations have two different scenarios of static
TEP problem that are with and without generation resizing considerations. In addition, a
heuristic search method has been adopted in order to deal with static TEP considering DC
based power flow model constraints. The proposed method has been implemented in
Matlab7 and tested on two electrical transmission networks as shown in appendix A1-A2.
The obtained results indicate that SaDEA method performs effectively to handle the static
TEP problem considering system losses on Graver 6-bus system and IEEE 25-bus system.
The most attractive feature of the proposed algorithm is the good computational
performance. The accuracy of the results obtained in the TEP study is in very good
agreement with obtained by other researchers as presented in chapter 3. Regarding a
consequence of the successful results, the TEP problem considering n-1 contingencies in
single line outage has been investigated in chapter 4.

Given its effectiveness for solving the TEP problem with system losses consideration,
the proposed methodology is then applied to deal with the TEP problem with n-1 security
criterion consideration, which is more complex and difficult than the previous work. In this
study, such TEP problem based on DC power flow model has been analyzed. The proposed
method application to handle the TEP problem with n-1 security criterion consideration is
tested on three transmission systems that are Graver 6-bus system, IEEE 25-bus system,
and the Colombian 93-bus system, as shown in appendix A1-A3. From chapter 4, the
obtained results of three networks illustrate that the SaDEA technique is good efficient and
effectively minimizes the total investment cost of TEP problem on such systems.

Overall, the SaDEA procedure performs superior to other classical evolutionary
algorithms (EAs) in terms of simple implementation with high quality of solution. Meanwhile, it
requires less control parameters while being independent from initialization. In addition, its
convergence is stable and robust as SaDEA procedure uses rather greedy selection and less

stochastic approach to solve optimization problems than other classical EAs.
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5.2 Future Work

As a consequence of the successful results in this research, the SaDEA method will be
applied to solve a problem of distribution system planning in future work. Moreover, an
economic solution of the TEP problem under the current deregulatory environment remains a
significant issue in electrical power system analysis. Therefore, such topic should be further
investigated in future research. Some issues for market-based transmission expansion
planning, i.e. the losses of social welfare and the expansion flexibility in the system should

be investigated and included in the modern TEP problem.
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CHAPTER 6

OUTPUTS OF THE RESEARCH PROJECT

6.1 Summary of Research Project Outputs

From this research work, a conventional DEA methodology is enhanced its computational
performance until the optimization procedures are acceptable and reliable. The main goal of
undertaken research is to take advantage of computational simulations more effectively in an
overall planning study and consequently determine an appropriate transmission network
expansion plan. In this research, a self-adaptive DEA (SaDEA) method is applied to solve a
wide variety of mathematical and real-world optimization problems, especially transmission
planning considering line losses and n-1 security criterion. Regarding the obtained results,
the SaDEA method is an optimization technique for application to handle such problems. In
addition, these successful results of planning study will be used in order to design future
transmission network of Thailand. The novel knowledge from this research, the author has
employed to his teaching on a course of electric power system analysis and a course of
electric power system operation & design. Several topics, which are an artificial intelligence
(Al) application to power system optimization problems, power system planning, and etc., are
included in the author’s lecture notes.

The significant outputs of this project, three articles were submitted for publication. In
December 2012, the first article namely “A self-adaptive differential evolution algorithm for
transmission network expansion planning with system losses consideration” was published
and presented at the 2012 IEEE International Conference on Power and Energy (PECON
2012), Kota Kinabalu, Malaysia. At the conference, the author had opportunity to share novel
knowledge with other researchers from many countries. During May until June 2013, the
second article namely “An enhanced differential evolution algorithm application to
transmission network expansion planning with security constraint consideration” was
prepared and submitted to a journal of IET Proceeding Generating Transmission Distribution,
United Kingdom. In this paper, all obtained results of SaDEA method applied to TEP
considering n-1 security criterion has been presented and discussed on three test systems.
The reliability of system operation is considered when the transmission plan is employed to
future expansion. In addition, the third article namely “An enhanced differential evolution

algorithm for transmission expansion planning with system losses consideration” was
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published and presented at the 9th Naresuan and Tao-Ngam Research Conferences,
Phitsanulok, Thailand in July 2013.

From these successful works, the proposed methodology application to solve the
transmission planning and other power system optimization problems will be presented as an
invited paper to electrical engineers and researchers at the 2014 International Electrical

Engineering Congress (/EECON 2014), Pattaya City, on 19th -2‘ISt March 2014.
6.2 List of Publications

Arising from this research project, two conference papers were presented and published in
conference proceedings. In addition, a journal paper has been submitted in a selected

international journal. The papers are listed as follows:

6.2.1 Refereed Journal Paper: Submitted

® T. Sum-Im and W. Ongsakul, “An enhanced differential evolution algorithm application to
transmission network expansion planning with security constraint consideration,” IET

Proc. Gener. Transm. Distrib., Current Impact Factor 1.414 (Submitted 2013).

6.2.2 Refereed International Conference Paper: Published

® T. Sum-Im and W. Ongsakul, “A self-adaptive differential evolution algorithm for
transmission network expansion planning with system losses consideration,” Proc. 2012
IEEE International Conference on Power and Energy (PECON 2012), Kota Kinabalu,
Malaysia, pp. 153-158, 2"-5" Dec. 2012.

6.2.3 Refereed National Conference Paper: Published

® Thanathip Sum-Im, “An enhanced differential evolution algorithm for transmission
expansion planning with system losses consideration,” Proc. 9" Naresuan and Tao-Ngam

Research Conferences, Phitsanulok, Thailand, pp. 3, 28”]-29th Jul. 2013.
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APPENDIX A
TEST SYSTEMS DATA

A-1 Garver 6-Bus System

Table A1.1 Generation and load data for Garver 6-bus system

Generation, MW Generation, MW
Bus No. Load, MW Bus No. Load, MW
Maximum Level Maximum Level
1 150 50 80 4 0 0 160
2 0 0 240 5 0 0 240
3 360 165 40 6 600 545 0

Table A1.2 Branch data for Garver 6-bus system

From-To ”,-/-0 Reactance x;, p.u. fijmax, MW Cost, ><103 USs$
1-2 1 0.4 100 40
1-4 1 0.6 80 60
1-5 1 0.2 100 20
2-3 1 0.2 100 20
2-4 1 0.4 100 40
2-6 0 0.3 100 30
3-5 1 0.2 100 20
4-6 0 0.3 100 30
5-6 0 0.61 78 61
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A-2 |IEEE 25-Bus System

Table A2.1 Generation and load data for IEEE 25-bus system

Generation, MW Generation, MW
Bus No. Load, MW Bus No. Load, MW
Maximum Level Maximum Level

1 660 530 0 14 215 43 317
2 0 0 128 15 0 0 0
3 0 0 181 16 0 0 0
4 0 0 74 17 192 40 108
5 0 0 71 18 0 0 175
6 0 0 71 19 192 40 97
7 595 594 265 20 0 0 195
8 0 0 194 21 0 0 136
9 400 400 333 22 155 155 100
10 300 300 0 23 0 0 180
11 400 400 0 24 300 60 125
12 0 0 0 25 660 330 0
13 0 0 0
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Table A2.2 Branch data for IEEE 25-bus system

From-To nij0 Reactance x;, p.u. ﬁjmax, MW Cost, ><103 US$
1-2 1 0.0108 800 3760
1-7 1 0.0865 65 27808

1-13 1 0.0966 100 30968
2-3 1 0.0198 500 7109
3-22 1 0.0231 200 8187
4-18 1 0.1037 1000 4907
4-19 1 0.1267 250 5973
5-17 1 0.0854 800 3987
5-20 1 0.0883 940 4171
5-25 0 0.0902 220 1731
6-18 1 0.1651 440 7776
6-20 1 0.1651 280 7776
6-24 1 0.0614 1080 2944
7-13 1 0.0476 250 16627
7-16 1 0.0476 90 16627
8-16 1 0.0418 490 14792
8-22 1 0.0389 65 13760
9-11 1 0.0129 260 4587
9-15 1 0.0144 250 5112
10-11 1 0.0678 800 21909
10-15 1 0.1053 250 33920
11-14 1 0.0245 700 8507
12-14 1 0.0519 100 16915
12-23 1 0.0839 70 675
13-18 1 0.0839 100 675
13-20 1 0.0839 250 675
14-22 1 0.0173 200 5963
15-22 1 0.0259 360 9243
16-18 1 0.0839 250 675
16-20 1 0.0839 564 675
17-19 1 0.0139 400 493
17-23 1 0.2112 350 8880
18-23 1 0.1190 150 5605
19-21 1 0.1920 110 9045
20-21 1 0.0605 180 2245
24-25 0 0.1805 220 3067
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A-3 Brazilian 46-Bus System

Table A3.1 Generation and load data for Brazilian 46-bus system

Generation, MW

Generation, MW

Bus No. Load, MW Bus No. Load, MW
Maximum Level Maximum Level

1 0 0 0 24 0 0 478.2
2 0 0 4431 25 0 0 0

3 0 0 0 26 0 0 231.9
4 0 0 300.7 27 220 54 0

5 0 0 238 28 800 730 0

6 0 0 0 29 0 0 0

7 0 0 0 30 0 0 0

8 0 0 72.2 31 700 310 0

9 0 0 0 32 500 450 0
10 0 0 0 33 0 0 2291
11 0 0 0 34 748 221 0
12 0 0 511.9 35 0 0 216
13 0 0 185.8 36 0 0 90.1
14 1257 944 0 37 300 212 0
15 0 0 0 38 0 0 216
16 2000 1366 0 39 600 221 0
17 1050 1000 0 40 0 0 262.1
18 0 0 0 41 0 0 0
19 1670 773 0 42 0 0 1607.9
20 0 0 1091.2 43 0 0 0
21 0 0 0 44 0 0 79.1
22 0 0 81.9 45 0 0 86.7
23 0 0 458.1 46 700 599 0
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Table A3.2 Branch data for Brazilian 46-bus system

o Reactance f”max, Cost, X1 0’ 0 Reactance f; e Cost, X1 0’
From-To n; From-To n;
X p.U. MW us$ X P.U. MW us$
1-2 2 0.1065 270 7076 20-21 1 0.0125 600 8178
1-7 1 0.0616 270 4349 20-23 2 0.0932 270 6268
2-3 0 0.0125 600 8178 21-25 0 0.0174 2000 21121
2-4 0 0.0882 270 5965 22-26 1 0.0790 270 5409
2-5 2 0.0324 270 2581 23-24 2 0.0774 270 5308
3-46 0 0.0203 1800 24319 24-25 0 0.0125 600 8178
4-5 2 0.0566 270 4046 24-33 1 0.1448 240 9399
4-9 1 0.0924 270 6217 24-34 1 0.1647 220 10611
4-11 0 0.2246 240 14247 25-32 0 0.0319 1400 37109
5-6 0 0.0125 600 8178 26-27 2 0.0832 270 5662
5-8 1 0.1132 270 7480 26-29 0 0.0541 270 3894
5-9 1 0.1173 270 7732 27-29 0 0.0998 270 6672
5-11 0 0.0915 270 6167 27-36 1 0.0915 270 6167
6-46 0 0.0128 2000 16005 27-38 2 0.2080 200 13237
7-8 1 0.1023 270 6823 28-30 0 0.0058 2000 8331
8-13 1 0.1348 240 8793 28-31 0 0.0053 2000 7819
9-10 0 0.0125 600 8178 28-41 0 0.0339 1300 39283
9-14 2 0.1756 220 11267 28-43 0 0.0406 1200 46701
10-46 0 0.0081 2000 10889 29-30 0 0.0125 600 8178
11-46 0 0.0125 600 8178 31-32 0 0.0046 2000 7052
12-14 2 0.0740 270 5106 31-41 0 0.0278 1500 32632
13-18 1 0.1805 220 11570 32-41 0 0.0309 1400 35957
13-20 1 0.1073 270 7126 32-43 1 0.0309 1400 35957
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Table A3.2 Branch data for Brazilian 46-bus system (Contd.)

max

Reactance £ Cost, X10° Reactance f; Cost,
From-To n; From-To  n, ,
X, P.U. MW us$ X;, P-U. MW X10 US$

14-15 0 0.0374 270 2884 33-34 1 0.1265 270 8288
14-18 2 0.1514 240 9803 34-35 2 0.0491 270 3591
14-22 1 0.0840 270 5712 35-38 1 0.1980 200 12631
14-26 1 0.1614 220 10409 36-37 1 0.1057 270 7025
15-16 0 0.0125 600 8178 37-39 1 0.0283 270 2329
16-17 1 0.0078 2000 10505 37-40 1 0.1281 270 8389
16-28 0 0.0222 1800 26365 37-42 1 0.2105 200 13388
16-32 0 0.0311 1400 36213 38-42 3 0.0907 270 6116
16-46 1 0.0203 1800 24319 39-42 3 0.2030 200 12934
17-19 1 0.0061 2000 8715 40-41 0 0.0125 600 8178
17-32 0 0.0232 1700 27516 40-42 1 0.0932 270 6268
18-19 1 0.0125 600 8178 40-45 0 0.2205 180 13994
18-20 1 0.1997 200 12732 41-43 0 0.0139 2000 17284
19-21 1 0.0278 1500 32632 42-43 1 0.0125 600 8178
19-25 0 0.0325 1400 37748 42-44 1 0.1206 270 7934
19-32 1 0.0195 1800 23423 44-45 1 0.1864 200 11924
19-46 1 0.0222 1800 26365
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Figure A3 Brazilian 46-Bus System
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A Self-Adaptive Differential Evolution Algorithm for
Transmission Network Expansion Planning with
System Losses Consideration

Thanathip Sum-Im

Department of Electrical Engineering,
Faculty of Engineering, Srinakharinwirot University,
Nakhon Nayok 26120, Thailand
e-mail: thanath@swu.ac.th

Abstract—In this paper, a self-adaptive differential evolution
algorithm (SaDEA) is applied directly to the DC power flow
based model in order to efficiently solve transmission network
expansion planning (TNEP) problem. The purpose of TNEP is to
minimize the transmission investment cost associated with the
technical operation and economical constraints. The TNEP
problem is a large-scale, complex and nonlinear combinatorial
problem of mixed integer nature where the number of candidate
solutions to be evaluated increases exponentially with system size.
In addition, the TNEP problem with system losses consideration
is also investigated in this paper. The efficiency of the proposed
method is initially demonstrated via the analysis of low and
medium complexity transmission network test cases. A detailed
comparative study among conventional genetic algorithm (CGA),
tabu search (TS), artificial neural networks (ANNSs), hybrid
artificial intelligent techniques and the proposed method is
presented. From the obtained experimental results, the proposed
technique provides the accurate solution, the feature of robust
computation, the simple implementation and the satisfactory
computational time.

Keywords-Transmission network expansion planning; self-
adaptive differential evolution algorithm; transmission line losses

L INTRODUCTION

In general, the main purpose of solving the transmission
network expansion planning (TNEP) problem is to specify
addition of transmission facilities that provide adequate
capacity and in the mean time maintain operating performance
of electric transmission system [1]. To achieve effective plan,
exact location, capacity, timing and type of new transmission
equipment must be thoroughly determined to meet demand
growth, generation addition and increased power flow.
However, cost-effective TNEP becomes one of the major
challenges in power system optimization due to the nature of
the problem that is complex, large-scale, difficult and
nonlinear. Meanwhile, mixed integer nature of TNEP results in
an exponentially increased number of possible solutions when
system size is enlarged.

Normally, TNEP can be categorized as static or dynamic
according to the treatment of the study period [2]. In static
planning; the planner considers only one planning horizon and
determines the number of suitable circuits that should be
installed to each branch of the transmission system. Investment
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is carried out at the beginning of the planning horizon time. In
dynamic or multistage planning; the planner considers not only
the optimal number and location of added lines and type of
investments but also the most appropriate times to carry out
such expansion investments. Therefore the continuing growth
of the demand and generation is always assimilated by the
system in an optimized way. The planning horizon is divided
into various stages and the transmission lines must be installed
at each stage of the planning horizon.

Over the last few decades, a number of optimization
methods have been applied when solving the TNEP problem.
In 1970, Garver proposed a linear programming method to
solve the TNEP problem [3]. This original method was applied
to long-term planning of electrical power systems and
produced a feasible transmission network with near-minimum
circuit miles using as input any existing network plus a load
forecast and generation schedule. Two main steps of the
method, in which the planning problem was formulated as load
flow estimation and new circuit selection could be searched
based on the system overloads, were presented in [3].

In addition to mathematical optimization methods, heuristic
and meta-heuristic methods become the current alternative to
solve the TNEP problem. These heuristic and meta-heuristic
techniques are efficient algorithms to optimize the transmission
planning problem. There have been many applications of
heuristic and meta-heuristic optimization methods to solve the
TNEP problem, for example heuristic algorithms [1], tabu
search [4], simulated annealing [5], genetic algorithms [6-8],
artificial neural networks [9], hybrid artificial intelligent
techniques [9] and differential evolution algorithm [10].

Recently, a differential evolution algorithm (DEA) method
has been attracting increasing attention for a wide variety of
science and engineering applications including electrical power
system problems. There have been many researches that
applied DEA for solving power system optimization problems,
for instance, power system planning [11], short-term
hydrothermal scheduling problem [12], optimal reactive power
flow [13-14], optimal power flow [15], transmission expansion
planning, [10], economic dispatch [16], etc. The DEA method
was successfully employed to solve both static and dynamic
transmission expansion planning problems by the author in
[10] where the DEA method performed superior to a
conventional genetic algorithm (CGA) in terms of simple
implementation with high quality of solution and good



computational performance. In addition, a self-adaptive
differential evolution algorithm (SaDEA) method was modified
and also applied for solving the economic dispatch problem
considering transmission losses by the author in [16]. The
results obtained on the IEEE 30-bus system illustrated that the
SaDEA procedure is an efficient technique when solving the
economic dispatch problem. Considering such advantages with
regard to SaDEA performance, the authors propose the SaDEA
method to solve the TNEP problem with system losses
consideration in this paper. The various transmission expansion
costs; an investment cost, a power losses cost and a saved cost
of the proposed SaDEA technique are compared to CGA, tabu
search, artificial neural networks and hybrid artificial
intelligent techniques reported in [9] on the Garver 6-bus
system and IEEE 25-bus system.

IL.

In general, the TNEP problem can be mathematically
formulated by applying DC power flow model, which is a
nonlinear mixed-integer problem with high complexity,
especially for large-scale real-world transmission networks.
There are several alternatives to the DC model such as the
transportation, hybrid and disjunctive models. Detailed
reviews of the main mathematical models for the TNEP
problem were presented in [17].

THE TNEP PROBLEM FORMULATION

A. The Objective Function

The goal of TNEP problem with system losses
consideration is to minimize the total expansion cost while
satisfying technical and economical constraints. In this paper,
a classical DC power flow model is employed to solve the
TNEP problem [9]. Mathematically, the problem can be
formulated as follows:

NL

Minimize v= Z cijnij+KZI,f,Rm
(i.))eQ
where v, c; and n; represent, respectively, transmission
expansion cost, cost of a candidate circuit for addition to the
branch i-j and the number of circuits added to the branch i-j.
Here Q is the set of all candidate branches for expansion. In
addition, K is a loss coefficient (calculated using
K=8760x NYEx Ckwh); NYE is an estimated life time of the
expansion network (years); CkWh: is a cost of one kWh
(US$/kWh); R,, is a resistance of the mth line; 7,, is the flow on

the mth line; and NL is the number of the existing lines.

The first term of an objective function represents the
capital cost of the installed lines and the second term
represents the cost of ohmic power losses after the new line
additions. The system power flow and losses are changed due
to a result of line additions. The loss coefficient (K) depends
upon the number of years of transmission system operation
and the kWh cost. The DC load flow is used in the problem
formulation where the current (/) is approximately equal to the
power flow and voltage is assumed to be unity at all buses.

(1

m=1

B. Problem Constraints

The objective function (1) represents the expansion cost of
the newly installed transmission lines, which has some
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restrictions. These constraints must be included into
mathematical model to ensure that the optimal solution
satisfies  transmission planning requirements. These
constraints are described and formulated as following (2)-(7).

DC Power Flow Node Balance Constraint
This linear equality constraint represents the conservation
of power at each node.
g=d+ B0 )

where g, d and B are real power generation vector in
existing power plants, real load demand vector in all network
nodes, and susceptance matrix of the existing and added lines
in the network, respectively. Here @ is the bus voltage phase
angle vector.

Power Flow Limit on Transmission Lines Constraint
The following inequality constraint is applied to TNEP
problem in order to limit the power flow for each path.

0
[y < 5 +y)

i}nax 3)
In DC power flow model, each element of the branch
power flow in constraint (3) can be calculated by using

equation (4):
(1

"‘”gf)

x(6,-6)) @

Jij :

where fj, f;™, ny, n;’ and x; represent, respectively, total
branch power flow in branch i-j, maximum branch power flow
in branch i-j, number of circuits added to branch i-j, number of
circuits in original base system and reactance of the branch i-;.
Here 6 and @, are voltage phase angle of the terminal buses i

and j respectively.

Power Generation Limit Constraint
In TNEP problem, power generation limit must be
included into the problem constraints. This can be
mathematically represented as follows:

min

g <g<g™ ()

where g;, g™"and g™ are real power generation at node i,

the lower and upper real power generation limits at node i
respectively.

o Right-of-way Constraint

It is important to an accurate TNEP solution that planner
needs to know the exact capacity of the newly required
circuits. Therefore this constraint must be included into the
consideration of planning problem. Mathematically, this
constraint defines the new circuit location and the maximum
number of circuits that can be installed in a specified location.
It can be represented as follows.

0<n, <n™

ax

(6)

where n; and n;™ represent the total integer number of
circuits added to the branch i-j and the maximum number of
added circuits in the branch i-j, respectively.



e Bus Voltage Phase Angle Limit Constraint

The voltage phase angle is also included as a TNEP
constraint and a calculated phase angle (6,°") should be less
than a predefined maximum phase angle (6;™). This can be
represented as the following mathematical expression.
o5 | <o

(7

III. BASIS OF DIFFERENTIAL EVOLUTION ALGORITHM

METHODOLOGY

A differential evolution algorithm (DEA) is an
evolutionary computation method as it uses real-coded
variables and typically relies on mutation as the search
operator. The DEA method was originally introduced by R.
Storn and K. Price in 1995 [18] and further developed to be a
reliable and versatile function optimizer that is also readily
applicable to a wide range of optimization problems [19].
More recently the DEA method has evolved to share many
features with CGA [20]. The major similarity between these
two types of algorithm is that they both maintain populations
of potential solutions and use a selection mechanism for
choosing the best individuals from the population. The main
differences between the CGA method and the DEA technique
were summarized in [21].

A DEA is a parallel direct search technique that employs a
population P of size Np, consisted of floating point encoded
individuals or candidate solutions (8). At every generation G
during the optimization process, the DEA maintains
population P of Np vectors of candidate solutions to the
problem at hand.

PO =[X(D XD XD ®)

Each candidate solution X; is a D-dimensional vector,
containing as many real-valued parameters (9) as the problem
decision parameters D.

XO =D O

Li v Xji o

(G)

s Xp i i=1,...

1, N

p

€))

A. Initialization Step

In the first step of the DEA procedure, the population of
candidate solutions must be initialized. Typically, each
decision parameter in every vector of the initial population is

assigned a randomly chosen value from within its
corresponding feasible bounds.
G=0 i i
xﬁ-,i ) = X +rand  [0,1].(x7 —x7™) (10)
where i = 1,...,Np and j = 1,...,D. xjv,«(GZO) are the initial

value of the j parameter of the i individual vector. xjmin and
x™ are the lower and upper bounds of the ;" decision
parameter, respectively. Once every vector of the population
has been initialized, its corresponding fitness value is

calculated and stored for future reference.

B. Mutation Step

After the population of candidate solutions is successfully
initialized, the next step of DEA optimization process is
carried out by applying three basic genetic operations;
mutation, crossover and selection. These three operators create
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the population of next generation P9 by using the current
population P At every generation G, each vector in the
population has to serve once as a target vector X,©, the
parameter vector has chosen vector index i, and it is compared
with a mutant vector. The mutation operator generates mutant
vectors (V) by perturbing a randomly selected vector (X;;)
with the difference of two other randomly selected vectors (X,
and X3).

Ve = x© +F(X,(.ZG) _ng")), i=1..,N, (11)

Vector indices 71, 72 and 3 are randomly selected, which
rl, 72 and 3 € {1,....Np} and r1 # r2# r3 #i. X,1, X, and X3
are selected anew for each parent vector. F is a user-defined
constant known as the “scaling mutation factor”, which is
typically chosen from within the range [0,17].

C. Crossover Step

In this step, a crossover or recombination process is also
applied in the DEA procedure because it helps to increase the
diversity among the mutant parameter vectors. At the
generation G, the crossover operation creates trial vectors (U;)
by mixing the parameters of the mutant vectors (V;) with the
target vectors (X;) according to a selected probability
distribution.

P

U@ =4 = i if randj(o’l)SCR or j=s
i =Uy =

(12)

xﬁ) otherwise

The crossover constant CR is a user-defined value (known
as the “crossover probability”), which is usually selected from
within the range [0,1]. The crossover constant controls the
diversity of the population and aids the algorithm to escape
from local optima. The “rand” is a uniformly distributed
random number within the range (0,1) generated anew for each
value of j. “s” is the trial parameter with randomly chosen
index € {1,...,D}, which ensures that the trial vector gets at
least one parameter from the mutant vector.

D. Selection Step

Finally, the selection operator is applied in the last stage of
the DEA procedure. The selection operator selects the vectors
that are going to compose the population in the next
generation. This operator compares the fitness of the trial
vector and the corresponding target vector and selects the one
that provides the best solution. The fitter of the two vectors is
then allowed to advance into the next generation according to

(13).
U

i

o _ if f(U)<fX[) (13)

X9 otherwise

The DEA optimization process is repeated across
generations to improve the fitness of individuals. The overall
optimization process is stopped whenever maximum number of
generations is reached or any other predetermined convergence
criterion is satisfied.



IV. IMPLEMENTATION OF SADEA METHOD FOR TNEP

PROBLEM WITH SYSTEM LOSSES CONSIDERATION

Regarding a conventional differential evolution algorithm
(CDEA) method (described in the previous section) has the
notable limitation of CDEA control parameter tuning due to a
complex interaction of parameters. The SaDEA procedure is
proposed to enhance the performance of CDEA method by
reducing a tedious task of control parameters tuning. In
addition, the SaDEA technique was successfully adopted to
solve an economic dispatch problem in the previous author’s
work [16]. From the achieved successful results, the SaDEA
method is proposed to solve the TNEP problem with
transmission system losses consideration in this paper.

A. The SaDEA Optimization Procedure

In the first step of SaDEA optimization procedure, the user
has to define two constant values (7} and 7,) that are the
indices of control parameters (F and CR) changing. The user-
defined values T; and 7, are usually selected from within the
range [0,1] and they are set as 0.1 in this work for avoiding
local optimum trapping. The control parameters ' and CR are
updated in their setting bounds when the uniformly distributed
random numbers within the range (0,1) are less than 77 and 7.

In the next step, an initial population is generated
according to (10). For the TNEP problem formulation, each
individual vector (X;) contains many integer-valued
parameters n, where n;; represents the number of candidate
lines in the possible branch j of the individual i. The problem
decision parameter D is the number of possible branches for
expansion.

(G) (&) (@)
RPN g )

X =[n 1, i=L..,N

L (14

After new individuals are initialized successfully then they
are created by applying mutation (11), crossover (12) and
selection (13) operators. The optimization process is repeated
in search of the final solution until the maximum number of
generations (G™) is reached or other predetermined

convergence criterion () is satisfied.

B. Fitness Function of TNEP Problem

In this work, a fitness function F(X) of the TNEP problem
is assigned according to (15) for each individual. The fitness
function is a combination of an objective function and two
penalty functions. The fitness function is adopted to find the
optimal solution, measure the performance of candidate
solutions and check for violation of the TNEP problem
constraints. An individual is the best solution if its fitness
value F(X) is highest. The penalty functions are also included
in the fitness function in order to represent violations of both
equality and inequality constraints. For the TNEP problem, an
equality constraint penalty function (17) considers the DC
power flow node balance constraint and an inequality
constraint penalty function (18) considers the constraints of
power flow limit on each transmission line, power generation
limit, bus voltage phase angle limit and right-of-way,
respectively. The general fitness function of the TNEP
problem can be formulated as follows:
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1

F = ) T BN + B ()

(15)

F(X) and O(X) are a fitness function and an objective
function of the TNEP problem, respectively. P(X) and P,(X)
are the equality and inequality constraint penalty functions
respectively. X denotes the individual vector of decision
variables. @ and @, are penalty weighting factors that are set
to 0.5 in this paper. For the TNEP problem, the objective
function and penalty functions are formulated as follows.

NL
O(X)=V(X)= Z ¢y +KZI;RM (16)
(i,))eQ m=1
nb
R(X)=Y | +B6; — g (17)
k=1
C if an individual violates the TNEP
P(X)= inequality constraints. (18)

0 otherwise

where C is an inequality constraint constant that is used
when an individual violates the inequality constraints. In this
work, the constant C is set as 0.5 for all cases.

C. Control Parameters Setting

A proper selection of the SaDEA control parameters is
very significant for the algorithm performance and success
when searching optimal solution. In this simulation, the setting
ranges of the SaDEA control parameters used in the TNEP
problem are as follows: F = [0.4,1], CR [0.8,1] and
Np = [5*D,10*D]. The maximum predetermined convergence
criterion (g) is set to 10* and the maximum number of
generations (G™) is set to 10°.

D. Overall Procedures

The overall procedures of the SaDEA method for solving
the TNEP problem can be summarized as follows:

Step 1: Read all required system data;

Step 2: Set up two constant values 7} and 7, for simulation;

Step 3: Set iteration G = 0 for an initialization step of the
SaDEA procedure;

Step 4: Initialize the SaDEA control parameters F and CR;

Step 5: Initialize the population P of all individuals according
to (10);

Step 6: Evaluate the fitness function according to (15) and
then check violations of all constraints for each
individual using (17) and (18);

Step 7: Rank all individuals according to their fitness;

Step 8: Updating F, the F value is updated when a random
value rand, (0,1) < Ty;

Step 9: Updating CR, the CR value is updated when a random
value rand, (0,1) < T»;

Step 10: Set iteration G = 1 for the next step of the SaDEA
optimization process;



Step 11: Apply mutation, crossover and selection operations
to create new individuals;

Evaluate the fitness function by using (15) and then
check violations of all constraints for each new
individual using (17) and (18);

Step 13: Rank new individuals according to their fitness;

Step 14: Updating F, the F value is updated when a random
value rand, (0,1) < T};

Updating CR, the CR value is updated when random
value rand, (0,1) < Tp;

Verification of stop criterion, if |F(X)G— Fx)“! |>¢
or G < G™, set G=G + 1 and return to step 11 for
repeating to search the final solution. Otherwise, stop
to calculate and go to step 17;

Compute and display the final solutions, which are
an investment cost, a system losses cost and a total
expansion cost.

Step 12:

Step 15:

Step 16:

Step 17:

V.

In the simulation, the proposed SaDEA procedure is
implemented in MATLAB and tested its performance on two
electrical transmission systems reported in [17] and [22].
These two test networks are the Garver’s 6-bus system and
IEEE 25-bus system, which all significant data are also
available in [17] and [22]. In this work, the TNEP problem is
investigated including system losses consideration. The
simulation results of the proposed SaDEA technique have
been compared to conventional genetic algorithm (CGA), tabu
search (TS), artificial neural networks (ANNs), hybrid
artificial intelligent techniques and summarized in this paper.

TEST SYSTEMS AND NUMERICAL RESULTS

Garver 6-bus System

In this paper, the first test system is a well-known Garver’s
system, which comprises 6 buses, 9 possible branches and 760
MW of demand. The electrical system data; transmission line,
load and generation data are available in [17]. In this test
system, bus 6 is a new generation bus and needs to be
connected to the existing network. A maximum of four
parallel lines is permitted in each branch. In this simulation
case, the power losses consideration is included in the
objective function where the loss coefficient, K, was selected
as 1000. The per-unit base in the DC-load flow analysis is 100
MVA while the cost base is 10°. The estimated lifetime of the
transmission lines was assumed to be 25 years and the cost of
one kWh was assumed to be 0.005 monetary units/kWh as
found in [9].

Regarding the results of Garver’s test system as shown in
table 1, the best solution of the TNEP problem with system
losses consideration was found by all algorithms except ANNs
method with the following topology: n,s =4, n3.s = 1, ngs =3
and ns¢ = 1. Although the ANNs method obtained the least
investment cost compared to other methods but it had the
largest value of power losses cost after the new line additions.
In addition, the ANNs method had the smallest saved cost of
minimizing ohmic power losses during planning horizon. The
convergence curve of SaDEA technique to obtain the best
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solution is illustrated in Fig. 1, where the best solution was
found at the 12nd generation.

TABLE I. COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS
METHODS FOR GARVER 6-BUS TEST SYSTEM

K=1000
Methods Invisotsr:lent Los?‘eas”cost SaV:lc)l”cost
ANNs [9] 261 448.83 904.77
TS [9] 291 382.54 971.06
GA [9] 291 382.54 971.06
Hybrid ANN-TS-GA [9] 291 382.54 971.06
SaDEA 291 382.54 971.06

Note: The losses cost “a” after the new line addition is calculated for 25
years. The saved cost “b” is calculated as a difference cost between the cost of
ohmic power losses before the expansion of the transmission network (1353.6
monetary units) based on a 25-year (life-time of line) and the power losses

cost “a” calculated after the new line additions for the same period.

Figure 1. A convergence curve of SaDEA method for Garver 6-bus system

IEEE 25-bus System

The IEEE 25-bus system is selected for testing the SaDEA
procedure in this work. It consists of 25 buses, 36 possible
branches and 2750 MW of total demand. The electrical system
data; transmission line, load and generation data are available
in [9] and [22]. A new bus of this system is bus 25 that is
prepared for connecting to bus 5 and/or bus 24. A maximum
of four parallel lines is permitted to install in each branch. In
this simulation case, the objective function includes the power
losses consideration, in which the loss coefficient, K, was
selected to be 10000. The estimated lifetime of the
transmission lines was assumed to be 25 years while the cost
of one kWh was assumed to be 0.0112 US$/kWh [9].

In this test case, the best solution of the TNEP problem
with system losses consideration was found by SaDEA
method and an investment cost was 160.051 million US$ as
shown in table 2, with the addition of the following lines to the
base tOpOlOgyZ n73= 2, ng.oy= 3, ni-14a= 2, Ni2.14= 2, N3 = 3,
M13.18= 2, N30 = 3, Mi618= 3, Mi620= 3, Mag21 = 1, mss=3 and
Nysns = 2. In addition, the SaDEA method achieved the least



value of a power losses cost after the new line additions
compared to other techniques. Therefore the SaDEA had the
largest value of a saved cost of minimizing ohmic power
losses during expansion planning horizon in this case. Overall,
the best algorithmic procedure for this case is SaDEA method.

TABLE II. COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS
METHODS FOR IEEE 25-BUS TEST SYSTEM

K=10000
Invisotsr:lent Losses cost Saved cost
RIEthogs (million 5 f‘a” q ‘.‘b”
US$) (million US$) | (million US$)

ANNs [9] 224.178 161.995 147.979
TS [9] 180.664 155.264 154.709
GA [9] 162.430 171.947 138.016
Hybrid ANN-TS-GA [9] 168.784 152.320 157.653
SaDEA 160.051 134.251 175.722

Note: The losses cost “a” after the new line addition is calculated for 25
years. The saved cost “b” is calculated as the difference cost between the cost
of ohmic power losses before the expansion of the transmission system
(309.973 million US$) based on a 25-year (life-time of line) and the power
losses cost “a” calculated after the new line additions for the same period.

VL

In this paper, a SaDEA methodology has been applied
when solving TNEP problem with system losses
consideration. Regarding the achieved results on the two test
networks illustrate that the SaDEA procedure is an efficient
technique for solving the transmission planning problem. As
the numerical test results in table 2 indicate, the proposed
method obtained the least values of an investment cost and a
power losses cost compared to the conventional genetic
algorithm, the tabu search, the artificial neural networks and
the hybrid artificial intelligent techniques on the IEEE 25-bus
system. In addition, the SaDEA method had the largest saved
cost of ohmic power losses for both test cases as shown in
table 1 and table 2. The most attractive feature of the proposed
algorithm is the good computational performance. The
accuracy of the results obtained in the TNEP study is in very
good agreement with those obtained by other researchers as
found in [9]. Regarding a consequence of these successful
results, the TNEP problem considering the n-1 contingencies
in single line outage or single generator outage will be
investigated as future work.

CONCLUSIONS
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Abstract

Cost-effective transmission expansion planning (TEP) is a major challenge with regard to electric power system optimization problems. The
TEP addresses the problem of determining the optimal number of lines that should be added to an existing network in order to supply the
forecasted load as economically as possible subject to the prevailing operational constraints. In this paper, an enhanced differential evolution
algorithm (DEA) is applied directly to the DC power flow based model in order to solve the TEP problem with system losses consideration. In
addition, such problem is also investigated both with and without the resizing of power generation. The effectiveness of the proposed
enhancement is initially demonstrated via analysis of low and medium complexity transmission test systems. A detailed comparative study
among conventional genetic algorithm (CGA), tabu search (TS), artificial neural networks (ANNSs), hybrid artificial intelligent techniques and
the proposed method is presented. Regarding the obtained experimental results, the proposed technique provides the accurate solution, the
simple implementation and the satisfactory computational time.

Keywords: Transmission expansion planning; power system optimization; differential evolution algorithm; transmission line losses

. INTRODUCTION

The main goal of solving a transmission expansion planning (TEP) problem is to determine the optimal expansion plan of the
electrical power system [1]. Furthermore, transmission planning should specify new transmission facilities that must be added to an
existing network to ensure adequate operation over a specified planning horizon. Usually, the TEP can be categorized as static or
dynamic planning according to the treatment of the study period [2]. In static planning; the planner considers only single planning
horizon and determines the number of suitable circuits that should be installed to each branch of the transmission system.
Investment is carried out at the beginning of the planning horizon time. On the other hand, in dynamic planning; the planner
considers not only the optimal number and location of added lines but also the most appropriate times to carry out such expansion
investments. Therefore the continuing growth of the demand and generation is always assimilated by the system in an optimized
way. The planning horizon is divided into multistage and the new lines must be installed at each stage of the planning horizon.

Over the last few decades, a number of optimization techniques have been applied when solving the TEP problem. In 2002, Al-
Saba and EI-Amin proposed the application of artificial intelligent (Al) tools that comprised genetic algorithm, tabu search and
artificial neural networks (ANNSs) with linear and quadratic programming models for solving TEP problem with line losses
consideration as shown in [3]. The effectiveness of these Al methods in dealing with small-scale and large-scale transmission
systems was tested through their applications to the Graver 6-bus system, the IEEE 24-bus system and the Saudi Arabian network.
The planning work [3] aimed to obtain the optimal design using a fast automatic decision-maker. An intelligent tool started from a
random state and it proceeded to allocate the calculated cost recursively until the stage of the negotiation point was reached.

In the last few years, a differential evolution algorithm (DEA) has been employed to handle a wide range of electric power
system optimization problems such as power system planning [4], short-term scheduling of hydrothermal power system [5],
optimal reactive power flow [6-7], optimal power flow [8], economic power dispatch [9] and transmission expansion planning [10].
In a number of case studies, the DEA has proved to be more accurate and can provide the accurate solution within an acceptable
computation time. In 2009, the author applied a novel DEA method for solving TEP problem in both static and dynamic planning
cases as shown in [10] where the DEA method performed superior to a conventional genetic algorithm (CGA) in terms of simple
implementation with high quality of solution and good computational performance. Although the proposed DEA method [10] was
successfully applied many cases of the TEP problem, it was not yet sufficiently robust for practical use for industry. Such DEA
method has the notable limitation of DEA control parameter tuning due to a complex interaction of parameters. Therefore, a further
improvement of the novel DEA method is essentially required before it can be generally adopted for practical use in industry. An
enhanced differential evolution algorithm method is modified and then applied to handle the TEP problem with system losses
consideration in this research. The various transmission expansion costs; an investment cost, a power losses cost and a saved cost of
the proposed enhanced DEA method are compared to CGA, tabu search, artificial neural networks and hybrid artificial intelligent
techniques reported in [3] on the Garver 6-bus system and IEEE 25-bus system.

Il.  THE TEP PROBLEM FORMULATION

In general, the TEP problem is mathematically formulated using DC power flow model. The used model is a nonlinear mixed-
integer problem with high complexity, especially for large-scale real-world transmission systems. Regarding the TEP model,



there are several alternatives to the DC model, for example the transportation, hybrid and disjunctive models. Detailed reviews of
the main mathematical models applied to the TEP problem were presented in [11].

A. The Objective Function

The objective of TEP problem is to minimize the total transmission expansion cost while satisfying technical and economical
constraints. In this research, a classical DC power flow model has been applied to solve the TEP problem with transmission
system losses consideration as reported in [3]. Mathematically, the proposed problem can be formulated as follows:

NL
Minimize v= z cijnij+KZ:I§1Rrn ()
(i D0 L

where v, ¢ and n;; represent the transmission expansion cost, the cost of a candidate circuit for addition to branch i-j and the
number of circuits added to branch i-j, respectively. Here Q is the set of all candidate branches for expansion. In addition, K is a
loss coefficient (calculated using K=8760x NYEx Ckwh); NYE is an estimated life time of the expansion network (years); CKWh:
is a cost of one kWh (US$/kWh); Ry, is a resistance of the mth line; 1, is the flow on the mth line; and NL is the number of the
existing lines. In the first term of an objective function, the capital cost of the added lines is represented and the second term
represents the cost of ohmic power losses after the new line additions. The system power flow and losses are changed due to a
result of line additions. The loss coefficient (K) depends upon the number of years of transmission system operation and the kwWh
cost. The used DC load flow model in the problem formulation, a current (1) is approximately equal to the power flow and voltage
is assumed to be unity at all buses.

B. Problem Constraints

The objective function (1) represents the capital cost of newly installed transmission lines and the cost of ohmic power losses
while it has some technical restrictions. The problem’s constraints must be included into mathematical model to ensure that the
optimal solution satisfies the TEP requirements. These problem’s constraints are described and formulated as following (2)-(7).

e DC Power Flow Node Balance Constraint
This linear equality constraint represents the conservation of power at each node and can be formulated as in (2).
g=d+Béo ¥}
where g, d and B are real power generation vector in existing power plants, real load demand vector in all network nodes, and
susceptance matrix of the existing and added lines in the network, respectively. Here @is the bus voltage phase angle vector.

o Power Flow Limit on Transmission Lines Constraint
The following inequality constraint is applied to TEP problem in order to check the limit power flow for each path.

\ fij\ <(n +my) ™ ©)
In DC power flow model, each element of the branch power flow in constraint (3) can be calculated by using (4):
n +n
f. =MX(@—91) 4)

ij

ij
where fi, f;™, nj;, nijo and x;; represent, respectively, total branch power flow in branch i-j, maximum branch power flow in
branch i-j, number of circuits added to branch i-j, number of circuits in original base system and reactance of the branch i-j. Here

6 and g are voltage phase angle of the terminal buses i and j respectively.

e Power Generation Limit Constraint
For the TEP problem with power generation resizing consideration, a power generation limit must be included into the
problem constraints. This can be mathematically represented as follows:
g™ <g <g™ (5)
where g;, g™" and g™ are real power generation at node i, the lower and upper real power generation limits at node i,
respectively.

¢ Right-of-way Constraint

It is essential to obtain the accurate TEP solution, thus planner needs to know an exact capacity of newly required circuits.
Therefore a right-of-way constraint is also included into such problem. Mathematically, this constraint defines new circuit
location and maximum number of circuit that can be installed in a specified location. It can be represented as follows.

0<n; <nf™ (6)



where nj;and n;™ represent the total integer number of circuits added to the branch i-j and the maximum number of added

circuits in the branch i-j, respectively.

e Bus Voltage Phase Angle Limit Constraint
A voltage phase angle should be included as a TEP constraint and a calculated phase angle (9.,-“') must be less than a
predefined maximum phase angle (;"*). This constraint can be represented as the following mathematical expression.

eij_:al < eljnax (7)

I1l.  BASIS OF DIFFERENTIAL EVOLUTION ALGORITHM METHODOLOGY

A differential evolution algorithm (DEA) is a novel evolutionary algorithm as it employs real-coded variables and typically relies
on mutation as the search operator. More recently the DEA has evolved to share many features with a conventional genetic
algorithm (CGA) as found in [12]. Regarding the major similarity between these two types of algorithm, they both maintain
populations of potential solutions and use a selection mechanism for choosing the best individuals from the population. The
features of DEA method are different from CGA in several aspects [13].

The DEA method is a parallel direct search technique that employs a population P of size Np, consisted of floating point
encoded individuals or candidate solutions (8). At every generation G during the optimization process, the DEA maintains
population P®® of Ny vectors of candidate solutions to the problem at hand.

P =[X{®,.., x{®,., X{?] (®)

Each candidate solution X; is a D-dimensional vector, containing as many real-valued parameters (9) as the problem decision
parameters D.

X© =[x, xD, L x, i=1..N, (9)

A. Initialization Step

In the first step of DEA procedure, the population of candidate solutions must be initialized. Typically, each decision parameter in
every vector of the initial population is assigned a randomly chosen value from within its corresponding feasible bounds.
x$S=0 = X"+ rand [0,1].(x]™ - x™) (10)
wherei=1,....Npand j = 1,...,.D. x;;% is an initial value of the j" parameter of the i" individual vector. x™" and ™ are the
lower and upper bounds of the j™ decision parameter, respectively. Once every vector of the population has been initialized, its
corresponding fitness value is calculated and stored for future reference.

B. Mutation Step

After the population of candidate solutions is successfully initialized in the first step of DEA procedure, thus the next step is
carried out by applying three basic genetic operations that are mutation, crossover and selection. Several such DEA operators
generate the population of next generation P by using the current population P®). At every generation G, each vector in the
population must serve once as a target vector X;® and the parameter vector has selected vector index i. The chosen target vector is
compared with a mutant vector in the next step. The mutation operator creates mutant vectors (Vi?)) by perturbing a randomly
selected vector (X,1) with the difference of two other randomly selected vectors (X, and X;s3).

V@ =X +F(XS -XE), i=1..N, (11)

Vector indices rl, r2 and r3 are randomly selected, which r1, r2 and r3 € {1,...,Np} and rl # r2# r3 #i. Xy, X, and X,z are
selected anew for each parent vector. F is a user-defined constant known as the “scaling mutation factor”, which is typically
chosen from within the range [0,17].

C. Crossover Step

In this step, the DEA procedure employs a crossover or recombination process to increase the diversity among the mutant
parameter vectors. At the generation G, the crossover operation creates trial vectors (U;) by mixing the parameters of the mutant
vectors (V;) with the target vectors (X;) according to a selected probability distribution.

©G) ) < j=
U© _ y© — v;; if rand;(0,1)<CR or j=s (12)

i i

x{$ otherwise

The crossover constant CR is a user-defined value (known as the “crossover probability”), which is usually selected from within

the range [0,1]. The crossover constant controls the diversity of the population and aids the algorithm to escape from local optima.
The “rand;” is a uniformly distributed random number within the range (0,1) generated anew for each value of j. “s” is the trial



parameter with randomly chosen index € {1,...,D}, which ensures that the trial vector gets at least one parameter from the mutant
vector.

D. Selection Step

Finally, a selection operator is adopted in the last stage of the DEA procedure. The selection operator picks the vector that is
going to compose the population in the next generation. This operator compares the fitness values between the trial vector and the
corresponding target vector, and then it selects the one providing the best solution. The fitter of the two vectors is then permitted
to advance into the next generation according to (13).

U©® if fU©O)<f(X©) (13)

X® otherwise

The DEA optimization process is repeated continuously across generations to improve the fitness of individuals. The overall
optimization process is stopped whenever maximum number of generations is reached or any other predetermined convergence
criterion is satisfied.

X i(G +1)

IV. [IMPLEMENTATION OF AN ENHANCED DEA METHOD FOR TEP PROBLEM WITH SYSTEM LOSSES CONSIDERATION

Although a conventional DEA method has a number of merits as described in section 111, it still has a drawback that is a difficult
task of the DEA control parameters tuning. Regarding such disadvantage of the conventional DEA characteristic, thus it should be
improved the optimization performance in this research. An enhanced DEA method is a modified version and has been proposed
to solve the TEP problem with system losses consideration in this paper.

A. An Enhanced DEA Optimization Method

In this research, the design of a self-adaptive DEA (SaDEA) procedure is to develop two DEA control parameters, mutation factor
(F) and crossover probability (CR), which are self-tuning parameters using probability methodology. This enhanced method is
called “Method 2jDE” as found in [14]. In the first step of SaDEA optimization process, user must determine two constant values
(T, and T,), which are the indices of control parameters (F and CR) changing. The user-defined values T, and T, are usually
chosen from within the range [0,1] and set as 0.1 in this work for avoiding local optimum trapping. These control parameters F
and CR are updated in their setting bounds when the uniformly distributed random numbers within the range (0,1) are less than T,
and T,.

After two constant values are set by user, then an initial population is generated according to (10). In the TEP problem
formulation, each individual vector (X;) contains many integer-valued parameters n, where n;; represents the number of candidate
lines in the possible branch j of the individual i. The problem decision parameter D is the number of possible branches for
expansion.

X ~[n©,...n®

@ ..n§N, i=1..N

. (14)

When an initial population of individuals is initialized successfully, then three DEA operators (11)-(13) create the population
of next generation P by using the current population P®. The optimization process is continuously repeated in search of the
final solution until the maximum number of generations (G™) is reached or other predetermined convergence criterion (g) is
satisfied.

The SaDEA optimization performance depends on the suitable values of control parameters. In this simulation, the setting
ranges of the SaDEA control parameters used in the TEP problem are as follows: F = [0.4,1], CR =[0.8,1] and Np = [5*D,10*D].
The maximum predetermined convergence criterion (g) is set to 10™ and the maximum number of generations (G™) is set to 10°.

B. The TEP Fitness Function

A fitness function of TEP problem is used to search the optimal solution, measure the performance of candidate solutions and
check for violation of the TEP problem constraints. The TEP fitness function F(X) is a combination of an objective function and
two penalty functions and can be formulated according to (15) for each individual. An individual is the best solution if its fitness
value F(X) is highest. The penalty functions must be also included in the fitness function in order to represent violations of both
equality and inequality constraints of TEP problem. Regarding the proposed problem, an equality constraint penalty function (17)
considers the DC power flow node balance constraint and an inequality constraint penalty function (18) considers the constraints
of power flow limit on each transmission line, power generation limit, bus voltage phase angle limit and right-of-way,

respectively. The general fitness function of the TEP problem can be assigned as follows:
F(X)= - (15)
O(X) + @R (X) + @, (X)




In (15), F(X) and O(X) represent a fitness function and an objective function of the TEP problem, respectively. P,(X) and
P»(X) are the equality and inequality constraint penalty functions respectively. X denotes the individual vector of decision
variables. In this work, o and w, are penalty weighting factors and set to 0.5, respectively. For the TEP problem, the objective
function and penalty functions are formulated as follows.

NL
O(X)=V(X)= Z cijnij+KZ|§Rm (16)
(i,j)eQ m=1
nb
R(X) =) [d +Bf — 9] (17)
k=1

C ifanindividual violates the TEP
R,(X) = inequality constraints. (18)

0 otherwise

where C is an inequality constraint constant that is used when an individual violates the inequality constraints. In this work,
the constant C is set as 0.5 for all cases.

C. Overall Procedures

The overall procedures of the SaDEA method application to the TEP problem with line losses consideration can be

summarized as follows:

Step 1: Read all required transmission system data; _ _

Step 2: Set up all control parameters of the SaDEA method (F™", F™, CR™, CR™, T4, T,, Np and D);

Step 3: Create the initial values of the SaDEA control parameters (F and CR) to be applied to mutation and crossover operators;

Step 4: Set initial iteration G = 0 for an initialization step of the SaDEA procedure;

Step 5: Initialize the population P of all individuals according to (10);

Step 6: Evaluate the fitness function according to (15) and then check violations of all constraints for each individual using (17)
and (18);

Step 7: Rank all individuals according to their fitness;

Step 8: Updating F, the F value is updated when a random value rand; (0,1) < Ty;

Step 9: Updating CR, the CR value is updated when a random value rand, (0,1) < T;

Step 10: Set iteration G = 1 for the next step of the SaDEA optimization process;

Step 11: Apply mutation, crossover and selection operations to create new individuals;

Step 12: Evaluate the fitness function by using (15) and then check violations of all constraints for each new individual using (17)
and (18);

Step 13: Rank new individuals according to their fitness;

Step 14: Updating F, the F value is updated when a random value rand; (0,1) < Ty;

Step 15: Updating CR, the CR value is updated when random value rand, (0,1) < T,;

Step 16: Verification of stop criterion, if [F(X)®- F(X)®| > & or G < G™*, set G = G + 1 and return to step 11 for repeating to
search the final solution. Otherwise, stop to calculate and go to step 17;

Step 17: Compute and display the final solutions, which are an investment cost, a system losses cost and a total expansion cost.

V. TEST SYSTEMS AND NUMERICAL RESULTS

In the simulation, the proposed enhanced DEA procedure is implemented in MATLAB and tested its performance on two
electrical transmission systems reported in [11] and [15]. These two test networks are the Garver’s 6-bus system and IEEE 25-bus
system, which all significant data are also available in [11] and [15]. For this research, the TEP problem with system losses
consideration is investigated both with and without the resizing of power generation. The numerical results of the proposed
SaDEA technique have been compared to conventional genetic algorithm (CGA), tabu search (TS), artificial neural networks
(ANNS), hybrid artificial intelligent techniques and summarized in this section.

A. Garver 6-bus System

In this paper, a well-known Garver’s system is the first test network employed for investigation. It consists of 6 buses, 9 possible
branches and 760 MW of demand. The electrical system data; transmission line, load and generation data are available in [11]. A
maximum of four parallel lines is permitted in each branch. In this simulation case, the power losses consideration is included in
the objective function where the loss coefficient (K) is selected as 1000. The per-unit base in the DC-load flow analysis is 100



MVA while the cost base is 10°. The estimated lifetime of the transmission lines is assumed to be 25 years and the cost of one
kWh is assumed to be 0.005 monetary units/kWh as found in [3].

TABLE I. COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS METHODS FOR GARVER 6-BUS TEST SYSTEM
K=1000
Types of TEP problem Methods Investment | Losses cost Saved cost
cost “a” “b”
ANNSs [3] 261 448.83 904.77
TS [3] 291 382.54 971.06
TEP without the resizing GA[3] 291 382.54 971.06
of power generation -
Hybrid ANN-TS-GA [3] 291 382.54 971.06
SaDEA [16] 291 382.54 971.06
TEP with the resizing of SaDEA 170 231.66 1,121.94
power generation

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved cost “b” is calculated as a difference cost between the cost of ohmic
power losses before the expansion of the transmission network (1353.6 monetary units) based on a 25-year (life-time of line) and the power losses cost “a”
calculated after the new line additions for the same period.

For a case study of without power generation resizing consideration, the best solution of TEP problem considering
transmission system losses on Garver’s test system as shown in table 1 was found by all algorithms except ANNs method with the
following topology: n,s = 4, n3s = 1, nge = 3 and nsg = 1. Although the ANNs method obtained the least investment cost
compared to other methods but it had the largest value of power losses cost after the new line additions. The SaDEA method
obtained the investment cost and losses cost for with power generation resizing case study cheaper than the without power
generation resizing case study. In addition, the SaDEA method had the largest saved cost of minimizing ohmic power losses
during planning horizon in case of with power generation resizing consideration.

B. IEEE 25-bus System

The IEEE 25-bus system is conduced to test the performance of SaDEA procedure in this paper. For the second test system, it has
25 buses, 36 possible branches and 2750 MW of total demand. The electrical system data; transmission line, load and generation
data are available in [3] and [15]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. A
maximum of four parallel lines is permitted to install in each branch. In this simulation case, the objective function includes the
power losses consideration, in which the loss coefficient (K) is selected to be 10000. The estimated lifetime of the transmission
lines is assumed to be 25 years while the cost of one kWh is assumed to be 0.0112 US$/kWh [3].

TABLE Il. COMPARISON OF THE EXPANSION COSTS AMONG VARIOUS METHODS FOR IEEE 25-BUS TEST SYSTEM
K=10000
Investment
Losses cost Saved cost
Types of TEP problem Methods ( C(I)ISt “q” “p»
million - -
Uss) (million US$) | (million US$)
ANNSs [3] 224.178 161.995 147.979
TS[3] 180.664 155.264 154.709
TEP without the resizing GA[3] 162.430 171.947 138.016
of power generation -
Hybrid ANN-TS-GA[3] | 168.784 152.320 157.653
SaDEA [16] 160.051 134.251 175.722
TEP with the resizing of SaDEA 62.477 83.032 226.941
power generation

Note: The losses cost “a” after the new line addition is calculated for 25 years. The saved cost “b” is calculated as the difference cost between the cost of
ohmic power losses before the expansion of the transmission system (309.973 million US$) based on a 25-year (life-time of line) and the power losses cost “a”
calculated after the new line additions for the same period.



For a case study of without power generation resizing consideration, the best solution of the TEP problem considering line
losses consideration was found by SaDEA method and an investment cost was 160.051 million US$ as shown in table 2, with the
addition of the fOIIOWing lines to the base tOpOIOgy: N743= 2, Ng2o =3, N11-14= 2, N1o.14= 2, Ny223= 3, N13.18= 2, N13.20= 3, Nig18= 3,
Nig20= 3, Nao21= 1, Nso5 = 3 and Nyy 5= 2. In addition, the SaDEA method achieved the least value of a power losses cost after
the new line additions compared to other techniques. Comparison of two case studies, the SaDEA method obtained the investment
cost and losses cost for with power generation resizing case cheaper than the without power generation resizing case. Therefore
the SaDEA method got the largest value of a saved cost of minimizing ohmic power losses during expansion planning horizon in
this test system. Overall, the best algorithmic procedure for this test case is SaDEA method.

VI. CONCLUSIONS

In this paper, an enhanced DEA methodology, called a self-adaptive DEA (SaDEA) procedure, has been applied when solving
TEP problem considering transmission system losses. In addition, the resizing of power generation consideration is also included
in such problem. According to all obtained results on two test systems illustrate that the SaDEA procedure is an efficient
technique for solving the TEP problem. As the numerical test results in table 2 indicate, the proposed method found the least
values of an investment cost and a power losses cost compared to the conventional genetic algorithm, the tabu search, the
artificial neural networks and the hybrid artificial intelligent techniques on the IEEE 25-bus system for both with and without
power generation resizing case studies. In addition, the SaDEA method had the largest saved cost of ohmic power losses for both
test cases as shown in table 1 and table 2. In the simulation, the most attractive feature of the proposed algorithm is the good
computational performance. The accuracy of the results obtained in the TEP study is in very good agreement with those obtained
by other researchers as found in [3]. Regarding a consequence of these successful results, the TEP problem considering the n-1
contingencies in single line outage or single generator outage will be investigated as future work.
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Abstract: In this article, an enhanced differential evolution algorithm (DEA) is applied directly to the DC power flow based
model in order to efficiently handle a problem of transmission network expansion planning (TNEP) with n-1 security
criterion consideration. The proposed methodology is adopted to minimise a transmission investment cost associated with
economical, operational, and reliable constraints. Mathematically, long-term transmission planning using the DC model is a
mixed integer nonlinear programming problem, which is a difficult task for solving in real-world transmission systems. In
addition, the TNEP problem is also investigated both with and without the resizing of power generation in this work. The
efficiency of the proposed technique is initially demonstrated via the analysis of low and medium complexity transmission
system test cases. In this work, the analyses are performed within a mathematical programming environment of MATLAB
and a detailed comparative study among conventional DEA technique, ant colony search algorithm (ACSA), Chu-Beasley
genetic algorithm (CBGA), and the proposed method is presented. As numerical results, the proposed algorithm provides
accurate solution, feature of robust computation, simple implementation, and satisfactory computational time.

1. Introduction

In general, cost-effective transmission network expansion planning (TNEP) is a major challenge with regard to electrical
power system optimisation problems as its main goal is to achieve optimal expansion plan. The planning solution has to meet

technical requirements while offering economical investment. Furthermore, good transmission expansion plan should specify



new transmission facilities that must be installed in existing network to ensure adequate operation over a specified planning

horizon [1].

Over past few decades, a number of optimisation techniques have been applied to deal with the TNEP problem in

many issues. These proposed methods are as follows: mathematical optimization methods (e.g. linear programming,

nonlinear programming, dynamic programming, integer and mixed integer programming, benders decomposition, branch &

bound, etc.), heuristic methods (mostly constructive heuristics), and meta-heuristic methods (e.g. genetic algorithms, tabu

search, simulated annealing, particle swarm, evolutionary algorithms, differential evolution algorithm, etc.).

In recent years, a differential evolution algorithm (DEA) has been attracting increasing attention for a wide variety

of engineering applications including electrical power system optimisation problems. A large number of researches, applying

DEA for solving the electrical power system optimisation problems, for instance, power system planning [2], economic

power dispatch [3-5], distribution network reconfiguration problem [6], short-term hydrothermal scheduling problem [7],

optimal reactive power flow [8-9], and optimal power flow [10]. In addition, the DEA method was successfully solved both

static and dynamic TNEP problems by the author in [11], where the DEA method performed superior to conventional genetic

algorithm (CGA) in terms of simple implementation with high quality of solution and good computation performance.

Meanwhile, DEA requires less control parameters while being independent from initialization. Moreover, its convergence is

stable as DEA procedure uses rather greedy selection and less stochastic approach to solve optimization problems than other

CGA. Unfortunately, there remains a drawback of DEA procedure that is a tedious task of the DEA control parameters tuning

due to complex relationship among problem’s parameters. The optimal parameter settings of DEA method may not be found

and the final results may be trapped in a local minimum.

It is important to note that few algorithms have been practically applied to solve the TNEP problem as reported in

[12]. Although the proposed DEA method [11] was successfully solved many cases of TNEP problem, it was not yet

sufficiently robust for practical use in industry. The DEA method has the notable limitation of control parameter tuning due

to a complex interaction of parameters as above mentioned. Therefore, a further improvement of the DEA method is

essentially required before it can be generally adopted for practical use in industry.



The proposed problem as studied in [11] is a basic transmission planning, in which the security criterion has not
been considered. In other words, the optimal expansion plan is determined without considering n-1 contingencies caused by a
transmission line or generator outage. The n-1 security criterion is an essential index in power system reliability study as it
states that the system should be expanded in such a way that, if a single line or generator is withdrawn, the expanded system
should still operate adequately. Therefore, an enhanced DEA method has been proposed for solving the TNEP problem with
n-1 security criterion consideration in this research. The total investment costs and computational times of the DEA approach
are compared to other optimisation techniques on Garver 6-bus system, IEEE 25-bus system, and Brazilian 46-bus system.
2. Transmission network expansion planning problem formulation
In this section, the TNEP is formulated as a mathematical problem. A main goal of solving such problem is typically to fulfill
the required planning function in terms of investment and operation restrictions. Normally, the TNEP problem can be
mathematically formulated by applying a classical DC power flow model, which is a nonlinear mixed-integer problem with
high complexity, especially for large-scale real-world transmission networks. There are several alternatives to DC model such
as transportation, hybrid, and disjunctive models. Detailed reviews of the main mathematical models for TNEP problem were
found in [13].
2.1 The TNEP problem without security constraints consideration
2.1.1 The objective function

The objective of TNEP problem



2.1.2 Problem constraints
The objective function (1) represents a capital cost of newly installed transmission lines, which has some restrictions. These
constraints must be included into mathematical model to ensure that the optimal solution satisfies transmission planning
requirements. These constraints are described as follows:
DC power flow node balance constraint
This linear equality constraint represents the conservation of power at each node.
g d B )
where g, d and B are real power generation vector in existing power plants, real load demand vector in all network
nodes, and susceptance matrix of existing and added lines in network, respectively. Here is bus voltage phase angle vector.
Power flow limit on transmission lines constraint

The following inequality constraint is applied to transmission planning in order to limit the power flow for each path.

| fij| (”i? n;j) fijmax



Right-of-way constraint
It is essential to find an accurate TNEP solution, thus planners need to know an exact capacity of newly required circuits.
Therefore this constraint must be considered in such planning problem. Mathematically, the constraint defines location and
maximum number of circuits, which can be installed in a specified location. It can be represented as following equation.

ij ij (6)

where nj;and n™ represent the total integer number of circuits added to the branch i-j and the maximum number of
added circuits in the branch i-j respectively.

Bus voltage phase angle limit constraint
While the DC power flow model is employed to TNEP problem, bus voltage magnitude is not a factor in this analysis.
Therefore, bus voltage phase angle could be included as a TNEP constraint to be increase an accurate solution in technical
issue. A calculated phase angle ( ijca') should be less than the predefined maximum phase angle ( ;™). Such constraint can

be represented as the following mathematical expression.

cal
ij

‘max

ij ()
2.2 The TNEP problem with security constraints consideration

A main purpose of solving the TNEP problem with n-1 security criterion consideration is to minimise total expansion cost
while satisfying economical, technical, and reliable constraints. In this work, the DC power flow model is adopted to handle
the TNEP problem with security constraints consideration as found in [14]. Mathematically, an objective function of such

problem can be formulated as follows:

min v Cij Nj (8)
()

Subject to

n n; OPC 9)

n n; SCC (10)

where is set of all candidate branches for expansion. OPC represents the planning operational constraints without



security as explained in subsection 2.1.2 and can be formulated as following equations (2)-(7). Moreover, SCC represents the

security constraints including in TNEP problem. In this work, the TNEP problem is investigated that the system operates with

security and satisfied n-1 criterion. In this context, the SCC constraints to the problem with nl paths to expansion presents the

following equations:

g d [B]° (11)
7] @ ) E G 120l and () p (12)
6] @ my DA™ for(i)=p 13)

In DC power flow model, each element of the branch power flow in constraints (12) and (13) can be calculated

using (14) and (15), respectively:

(nj ) . .
f,? inj (P P G 12..n and(,j) p (14)
(g n; D -
fi % () @p=p (15)
ij
gimin gip gimax (16)
0 n; n™ (17)
i(j:al ‘ iEnax (18)
(n; ni 1) 0 andinteger for (i, j)=p (19)
n, 0 andinteger (i,j) 1,2,...nl; and(i,j) p (20)
f? and [ unbounded (21)
@, D andp 12,..,nl (22)

In this problem formulation, there are nl sets of operational variables, a set to each contingency when it is

considered all paths p = (i,j)

3. An enhanced differential evolution algorithm method

Regarding a difficult task of DEA control parameters tuning due to complex relationship among problem’s parameters has

been a drawback of the conventional DEA method as shown in the previous author’s work [11], where found the explanation



of all basis of DEA optimisation processes. Therefore, further improvement of the conventional DEA method is essentially
required before it can be generally adopted for practical use in industry. In this paper, a conventional DEA method has been
developed its optimisation procedure. A self-adaptive DEA (SaDEA) technique is proposed and described in this section. The
design of SaDEA optimization procedure is to develop two DEA control parameters, mutation factor (F) and crossover
probability (CR), which are self-tuning parameters using probability methodology. This enhanced method is called “Method
2jDE” as found in [15].

As such proposed method, users must define two constant values (T; and T,) that are the indices of control
parameters (F and CR) changing, respectively. The user-defined values T, and T, are usually selected from within the range
[0,1] and they are set as 0.1 in this research for avoiding local optimum trapping. The control parameters F and CR are
updated in their setting bounds when the uniformly distributed random numbers within the range (0,1) are less than T, and T».
The main concept of a self-adaptive DEA optimization process is illustrated in figure 1.

4. Implementation of an enhanced DEA method for TNEP problem with security constraints consideration
An enhanced DEA method is proposed to solve the TNEP problem with n-1 security criterion consideration as formulated in
previous section. The proposed method can be implemented to handle such problem as following details.

After two constant values (T, and T,) are set by users, then an initial population of SaDEA method is created for
next optimisation processes. In the TNEP problem formulation, each individual vector (X;) contains many integer-valued
parameters n, where n;; represents the number of candidate lines in the possible branch j of the individual i. The problem
decision parameter D is the number of possible branches for expansion.

KO D, 1 1 (23)

P
When an initial population of individuals is initialised successfully, then three significant DEA operators, which are

&1 by using current

mutation, crossover, and selection as described in [11], create new population of next generation P
population P©. The optimisation process is continuously repeated in search of final solution until the maximum number of

generations (G™) is reached or other predetermined convergence criterion ( ) is satisfied.



4.1 Fitness function of the TNEP considering security constraints

A fitness function of TNEP problem is applied to search optimal solution, measure performance of candidate solutions, and
check for violation of the planning problem constraints. The TNEP fitness function F(X) is a combination of an objective
function and two penalty functions and can be formulated according to (24) for each individual. An individual is the best
solution if its fitness value F(X) is highest. The penalty functions must be also included in the fitness function in order to
represent violations of both planning operational constraints without security (OPC) and the planning security constraints
(SCC) of TNEP problem. Regarding the proposed problem, the OPC penalty function (26) investigates all constraints of
TNEP problem without security criterion consideration. In addition, the SCC penalty function (27) investigates all security

constraints of TNEP problem. The general fitness function of the TNEP problem can be assigned as follows:

1
000 R R .

In (24), F(X) and O(X) represent fitness function and objective function of the TNEP problem, respectively. P;(X)

and P,(X) are the constraint penalty functions. X denotes the individual vector of decision variables. In this work, ;and

are penalty weighting factors and set to 0.5, respectively. For this TNEP problem, the objective function and the constraint

penalty functions are formulated as follows.

O(X) V(X) c
(i,)

i (25)

C, ifanindividual violates the OPC of TEP problem.
R(X) (26)
0 otherwise

C, ifanindividual violates the SCC of TEP problem.
P,(X) )

0 otherwise

where C; and C, are the constraint constants, which are applied to problem when an individual violates the OPC and

SCC of TNEP problem, respectively. In this work, both constants C; and C, are set as 0.5 for all cases.



4.2 Control parameters setting
The SaDEA optimisation performance depends upon the proper values of control parameters. In this simulation, the setting

ranges of SaDEA control parameters used in TNEP problem are as follows: F = [0.5,1], CR
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Step 14: Check n-1 security criterion for all constraints (11)-(22);
Step 15: Rank new individuals according to their fitness;
Step 16: Updating F, the F value is updated when a random value rand; (0,1) Ty;
Step 17: Updating CR, the CR value is updated when random value rand, (0,1) To;
Step 18: Verification of stop criterion, if F(X)®- F(X)®* > or G < G™ set G = G + 1 and return to step 12 for repeating to
search the final solution. Otherwise, stop to calculate and go to step 19;

Step 19: Compute and display the final solutions, which are investment cost and convergence curve.

A computer program of the SaDEA method application to TNEP problem with security constraints consideration has
been designed and performed as above procedures. The proposed computational program is illustrated in figure 2.
5. Test systems and numerical results
In the simulation, an enhanced DEA procedure is implemented in MATLAB and tested its performance on three electrical
transmission systems as shown in [11]. These three test networks are Garver’s 6-bus system, IEEE 25-bus system, and the
Brazilian 46-bus system and all required data are also available in [13], [16] and [17], respectively. In this work, the proposed
algorithm is applied to handle the TNEP problem considering security constraints that are more difficult for solving than the
basic TEP problem found in [11]. Moreover, such TNEP problem includes an issue of power generation resizing

consideration. The numerical results of proposed SaDEA technique are compared to conventional DEA method,



1
The achieved results of SaDEA method on the Garver 6-bus system can be tabulated in table 1 including the
discussion of these results as follows:
For the first test case, total expansion cost of the best solution equals to 180,000 US$ with the following topology:
Nyg =2, N5 =3, and Nag = 2.
A convergence curve of SaDEA method to obtain the best solution is illustrated in figure 3, where the optimal
solution was found by SaDEA method at the 152" iteration.

An average computational time of the proposed method is 64.03 second in this test case.

Table 1: Summary results of Garver 6-bus system

Results of the TNEP with security constraints consideration The SaDEA method

Best total cost (x10° US$) 180
Average total cost (x10° US$) 187
Worst total cost (x10° US$) 210
% Difference between best and worst 16.67
Standard deviation (x10° US$) 11.60
Average CPU time (second) 64.03

Line additions for the best result Na =2, Nas = 3, and Ny = 2

Table 2: Comparisons between real power flow and maximum real power flow at each right-of-way on Garver 6-bus

system (Before applying -1 security criterion consideration)

Line path between buses Power Flow (MW) Max Power Flow (MW)

2-3 82.1675 100
4-6 157.7034 200
2-6 143.2966 200
3-5 225.8325 400
1-4 16.894 80
1-2 19.9385 100
1-5 14.1675 100
2-4 5.4026 100
5-6 0 0

As results in tables 2 and 3, comparisons between real power flow and maximum real power flow at each right-of-

way are presented. Form obtained results in table 2, a transmission path between buses 2-3 is the most critical because it has
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the lowest gap between the real power flow and the maximum power flow compared to other paths on this system. Therefore,

the real power flow and the maximum real power flow at each path are selected to show in table 3, when a line between

buses 2-3 is outage. Regarding results in table3, the real power flow are not over the maximum real power flow for each path.

Table 3: Comparisons between real power flow and maximum real power flow at each right-of-way on Garver 6-bus

system (After applying -1 security criterion consideration, when a line between buses 2-3 is outage)

Line path between buses Power Flow (MW) Max Power Flow (MW)

2-3 0 0

4-6 141.6707 200
2-6 159.3293 200
3-5 308 400
1-4 44,9512 80
1-2 74.0488 100
1-5 68 100
2-4 6.622 100
5-6 0 0

5.2 IEEE 25-bus system

The IEEE 25-bus system is also tested the performance of SaDEA procedure in this work. For the second test system, it has
25 buses, 36 possible branches, and 2750 MW of total demand. The significant electrical system data are available in [16]
and [18]. A new bus of this system is bus-25 that is prepared for connecting to bus-5 and/or bus-24. The dotted lines represent
new possible line additions and solid lines are the existing lines as shown in [11]. A maximum of four parallel lines is
permitted to install in each branch.

The obtained results of SaDEA method on the IEEE 25-bus system can be tabulated in table 4 and the discussion of
these results are as follows:

For the second test system, total expansion cost of the best solution equals to 19.131 million US$ with the following

topology: Ns.20=1, Ns.p5= 4, Ng.24= 1, N1338= 1, N13.20= 1, N1g20= 1, and Npg5= 1.

A convergence curve of SaDEA method to obtain the best solution is illustrated in figure 4, where the best solution

was found by SaDEA method at the 584" iteration.

An average computational time of the proposed method is 654.52 second in this test case.
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Table 4: Summary results of IEEE 25-bus system

Results of the TNEP with security constraints consideration The SaDEA method

Best total cost (x10° US$) 19131

Average total cost (x10° US$) 25050

Worst total cost (x10° US$) 30020

% Difference between best and worst 56.92

Standard deviation (x10° US$) 4060.30

Average CPU time (second) 654.52
Line additions for the best result Ns20= 1, Ns.s =4, Ne2a = 1, MNiz18= 1, N1a20= 1,

Nig-20= 1, and Npss=1

5.3 Brazilian 46-bus system

The third test network is the Brazilian 46-bus system as found in [11] and [17]. The system comprises 46 buses, 79 circuits,
and 6880 MW of total demand. The transmission line, load demand, and generation data including generation resizing range
in MW are available in [17]. This system represents a good test to the proposed approach because it is a real-world
transmission system. The addition of parallel transmission lines to existing lines is permitted in this case with a limit of four
lines for each branch.

Table 5: Summary results of IEEE 46-bus system

Results of the TNEP with security constraints consideration The SaDEA method

Best total cost (x10° US$) 168042

Average total cost (x10° US$) 185372

Worst total cost (x10° US$) 208870
% Difference between best and worst 24.30
Standard deviation (x10° US$) 17152

Average CPU time (second) 1962.43

. » N23=2, N346= 1, Nio2s= 1, N20.21= 1, Npz24= 1,
Line additions for the best result Noa-25= 2, Nag29= 3, Nogao= 1, Nog.30= 2, Na1.32= 1,
and Ngp.43=2

The obtained results of SaDEA method on the IEEE 46-bus system can be tabulated in table 5 and the discussion of

the results are as follows:
For this test case, total expansion cost of the best solution is 168.042 million US$ with following topology: n,3 = 2,

N3a6= 1, N1g.o5 = 1, Noo.21= 1, Nogpa = 1, Noaos = 2, N a9 = 3, Nog30 = 1, Nog.30 = 2, Nargo = 1 and Nupaz = 2.
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In this case, the best solution was found by SaDEA method at the 728" iteration and an average CPU time of the

proposed method is 1962.43 second.
5.4 Discussion on the results
All obtained results of TNEP problem with security constraints and power generation resizing considerations are summarized
in table 6, where the best investment costs of expansion corresponding to the proposed method are compared to other
algorithms. As indicated by the results in table 6, the SaDEA and CBGA methods found the optimal solution on Gaver 6-bus
system. For IEEE 25-bus system and the Brazilian 46-bus system, the SaDEA method could find the optimal solution as
shown the cheapest investment cost.

The achieved numerical results clearly indicate that SaDEA method can be efficiently applied to TNEP problem
with n-1 security constraint consideration on three test systems. From the results in table 6, SaDEA technique could find the
best solution cheaper than other methods in all cases. The proposed algorithm was tested 30 times to find the best result in

each case and the suitable setting ranges of SaDEA control parameters were suggested in section 4.3.

Table 6: Results comparison of TNEP problem with security constraints consideration

Best cost (x10° US$)
Methods
Garver 6-bus system IEEE 25-bus system Brazilian 46-bus system
SaDEA 180 19,131 168,042
Chu-Beasley GA (CBGA) [14] 180 - 213,000
Ant Colony Search Algorithm (ACSA) [19] 298 248,943 -
Conventional DEA Method [19] 298 210,818 -

6. Conclusions and further work

In this paper, an enhanced DEA methodology is proposed to deal with the TNEP problem with n-1 security criterion

consideration. For this study, a single line outage is investigated in such TNEP problem for reliability issue. From obtained

results of Garver 6-bus system, IEEE 25-bus system, and the Brazilian 46-bus system, the SaDEA procedure is an acceptable

optimization technique and minimizes effectively the total investment cost of TNEP problem with security constraints

consideration on realistically transmission systems. As the empirical solutions of these test cases indicate, total investment
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costs of the SaDEA method are less expensive than other methods on three test networks. The most attractive feature of the

proposed algorithm is good computational performance and simple implementation. Regarding a consequence of the

successful results, a distribution system planning problem will be investigated as future work.
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9. Figures

Converged ?

Fig. 1 The main flowchart of a self-adaptive DEA optimization process

Fig 2 Example of a SaDEA optimization program for TNEP problem with security constraints consideration
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Fig. 3 A convergence curve of SaDEA method for Garver 6-bus system

Fig. 4 A convergence curve of SaDEA method for IEEE 25-bus system
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