Abstract

Project Code: MRG5480105

(รหัสโครงการ)

Project Title: Regulatory role and mechanism of nitric oxide on lung cancer cell

aggressiveness

(ชื่อโครงการ) บทบาทและกลไกของในตริกออกไซด์ ในการควบคุมความรุนแรงของ

เซลล์มะเร็งปอด

Investigator: ผู้ช่วยศาสตราจารย์ เภสัชกร ดร.ปิติ จันทร์วรโชติ

(ชื่อนักวิจัย)

E-mail Address: pithi.c@chula.ac.th, pithi chan@yahoo.com

Project Period : 2 ਹੈ

(ระยะเวลาโครงการ)

The effect of extended exposure of the cancer cells to nitric oxide (NO), an endogenous mediator frequently found to be increased in a tumor area is largely unknown. We have reported herein that long-term NO exposure for 7-14 days rendered the lung cancer cells resistant to chemotherapeutic agents namely cisplatin, doxorubicin, and etoposide, and enhanced migratory activity of lung cancer cells. For chemotherapeutic resistance, the underlying mechanism was found to be involved with the adaptive responses of the cells by increasing their survival mechanisms including increase in the levels of caveolin-1 (Cav-1) and anti-apoptotic Bcl-2, and up-regulation of phosphorylated Akt. In addition, the present study found that long-term treatment of NO significantly enhances cell migration in dose- and time-dependent manners. The increased migratory action was associated with the increased levels of caveolin-1 (Cav-1) which in turn phosphorylated focal adhesion kinase (FAK) and ATP-dependent tyrosine kinase (Akt) pathways. These findings reveal the novel role of NO presenting in the cancer environment in attenuating chemotherapeutic susceptibility and increased motility that may be beneficial in contriving strategies to treat the disease.

บทคัดย่อ

บทบาทของในตริกออกไซด์ซึ่งเป็นสารที่พบได้ในสภาวะแวดล้อมของก้อนมะเร็งต่อเซลล์มะเร็ง ปอดนั้นยังไม่เป็นที่ทราบแน่ชัด โครงการวิจัยนี้พบว่าการที่เซลล์มะเร็งได้รับในตริกออกไซด์เป็น ระยะเวลานาน 7 และ 14 วันจะส่งผลให้เซลล์มะเร็งปอดเกิดการดื้อต่อยาต้านมะเร็ง ซิสพลาติน ด็อกโซรูบีซิน และอีโทโพไซด์ได้ และยังส่งเสริมการเคลื่อนที่ของเซลล์อีกด้วย ในด้านการดื้อต่อ ยาต้านมะเร็งนั้นการที่เซลล์มะเร็งได้รับในตริกออกไซด์จะส่งผลให้เซลล์มีการเพิ่มระดับโปรตีน caveolin-1 โปรตีน Bcl-2 และ phosphorylated ATP-dependent tyrosine kinase (Akt) นอกจากนี้งานวิจัยนี้ยังทำให้ทราบว่าการที่เซลล์มะเร็งได้รับในตริกออกไซด์จะส่งผลเพิ่มการ เคลื่อนที่ของเซลล์มะเร็ง ผ่านการเพิ่มระดับ phosphorylated focal adhesion kinase (FAK) และ ATP-dependent tyrosine kinase (Akt) pathway ผลจากงานวิจัยนี้ทำให้ทราบบบทบาท ของในตริกออกไซด์ในการควบคุมการดื้อต่อยาต้านมะเร็งและการเคลื่อนที่ของเซลล์มะเร็งซึ่ง อาจนำไปใช้เพื่อพัฒนาวิธีการรักษาโรคได้