Project Code: MRG5480109

Project Title: การคัดแยกไซยาโนแบคทีเรียและสาหร่ายสีเขียวที่ผลิตพลาสติกชีวภาพปริมาณสูง

Isolation of cyanobacteria and green algae with high bioplastic content

Investigator: อาจารย์ ดร.ธนะกาญจน์ มัญชุพาณี

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: tanakarn.m@chula.ac.th

Project Period: 2 ਹੈ

บทคัดย่อ

ใกลโคเจน (GI) ใชมัน (LP) และ polyhydroxybutyrate (PHB) เป็นสารที่สะสมคาร์บอนในโพรคาริโอต โดยสารสองชนิดแรก เป็นสารตั้งตันที่มีประสิธิภาพสูงในการผลิตพลังงานชีวภาพ และสารชนิดหลังเป็นพลาสติกที่ย่อยสลายได้ทางชีวภาพที่มี คุณสมบัติดี งานวิจัยนี้มีจุดประสงค์เพื่อเพิ่มการสะสมร่วมของสารทั้งสามชนิดดังกล่าวโดยการปรับสภาวะสรีรวิทยาในเชลล์ใช ยาโนแบคทีเรีย Synechocystis sp. PCC 6803 ซึ่งเป็นสายพันธุ์ที่ใช้ในการศึกษากันอย่างกว้างขวางในห้องทดลอง ในภาวะ autophototrophic growth โดยใช้ CO₂ จากอากาศ Synechocystis มีผลผลิตร่วมของสารทั้งสามชนิดสูงสุดที่ระยะ midstationary growth phase ซึ่งมีค่าเท่ากับ 39.2% ของน้ำหนักเซลล์แห้ง (22.7% GI, 14.1% LP, 2.4% PHB) ในภาวะขาด ในโตรเจนพบว่าเซลล์สามารถเพิ่มผลผลิตร่วมได้ถึง 61.5% (36.8% GI, 11.2% LP, 13.5% PHB) ซึ่งมากกว่าผลผลิตร่วมที่ได้ จากภาวะขาดฟอสฟอรัส ซัลเฟอร์ เหล็ก หรือ แคลเซียม เมื่อควบรวมภาวะขาดในโตรเจนเข้ากับการให้กลูโคส 0.4% (w/w) และการเพิ่มความเข้มแสง พบว่าสามารถเพิ่มผลผลิตร่วมได้ถึง 71.1 % ของชีวมวล (41.3% GI, 16.7% LP, 13.1% PHB) ซึ่ง เป็นที่มีค่าสูงสุดในภาวะที่ให้กลูโคส 0.4% (w/w) โดยไม่มีการขาดธาตุอาหาร ซึ่งมีค่าเท่ากับ 0.72 g.L⁻¹ สำหรับการเลี้ยง 12 วัน เนื่องจากในสภาวะนี้ให้ชีวมวลในปริมาณที่สูงกว่าภาวะอื่น นอกจากนี้ยังสามารถคัดแยกใชยาโนแบคทีเรีย Synechococcus sp. ที่มีผลผลิตร่วมของสารทั้งสามชนิดเท่ากับ 34.2% และสาหร่ายยูคาริโอตสีเขียว Chlorella sp. ที่มี ผลผลิตร่วมของ GI และ LP เท่ากับ 54.6% ของน้ำหนักเซลล์แห้งได้จากแหล่งน้ำจืดในประเทศไทย โครงการนี้ได้เสนอแนวคิด และวิธีการในการเพิ่มผลผลิตร่วมของสารซึวพลังงานและชีววัสดุกล่มหลักในเซลล์จุลซีพลังเคราะห์ด้วยแสง

คำสำคัญ: ไซยาโนแบคทีเรีย สาหร่ายสีเขียว ไกลโคเจน ไขมัน พอลิไฮดรอกซีบิวทิเรท พลาสติกชีวภา

Abstract

Glycogen (GI), lipids (LP) and polyhydroxybutyrate (PHB) are carbon storages in various prokaryotes which the first two storages are efficient substrates for biofuel production, while the later is a potent bio-degradable plastic. This study aims to increase cellular coaccumulations of such three storages by adjusting various physiological conditions in one of the best studied cyanobacteria, Synechocystis sp. PCC 6803. At the normal autophototrophic growth with atmospheric CO₂ concentration, the co-production of the three storages reached the maximum at 39.2% of dry weight (22.7% GI, 14.1% LP and 2.4% PHB) at the midstationary phase of growth. Nitrogen deprivation condition significantly increased the coaccumulation to 61.5% (36.8% GI, 11.2% LP and 13.5% PHB) higher than that caused by a nutrient deprivation of Phosphorus, Sulphur, Iron or Calcium. Combining the Nitrogen deprivation with the 0.4% (w/w) glucose supplementation altogether with optimizing light intensity enhanced the co-production to 71.1 % of biomass (41.3% GI, 16.7% LP and 13.1% PHB), the higher accumulation of the three storages than previous reports in cyanobacteria. However, the maximum productivity of the three storages at 0.72 g.L⁻¹ after 12-day culture was obtained at the condition supplemented with 0.4% (w/w) glucose and without a nutrient deprivation, due to its high biomass yield. In this, the cyanobacterium Synechococcus sp. with the three storage production at 34.2% and the eukaryotic green algae Chlorella sp. with the co-accumulation of GI and LP at 54.6% of dry weigh were isolated from Thailand natural resources. This study introduced conceptual and experimental tools to simultaneously enhance co-accumulations of the major bioenergy and biomaterial molecules in photosynthetic microorganisms.

Keywords: cyanobacteria; green algae, glycogen; lipid; polyhydroxybutyrate; bioplastic ไซยาโนแบคทีเรีย สาหร่ายสีเขียว ไกลโคเจน ไขมัน พอลิไฮดรอกซีบิวทิเรท พลาสติกชีวภาพ