

รายงานวิจัยฉบับสมบูรณ์

โครงการการคัดแยกไซยาโนแบคทีเรีย และสาหร่ายสีเขียว ที่ผลิตพลาสติกชีวภาพปริมาณสูง

Isolation of cyanobacteria and microalgae with high bioplastic content

โดย อาจารย์ ดร.ธนะกาญจน์ มัญชุพาณี

พฤษภาคม พ.ศ. ๒๕๕๖

สัญญาเลขที่ MRG5480109

รายงานวิจัยฉบับสมบูรณ์

โครงการการคัดแยกไซยาโนแบคทีเรีย และสาหร่ายสีเขียวที่ผลิต พลาสติกชีวภาพปริมาณสูง

Isolation of cyanobacteria and microalgae with high bioplastic content

อาจารย์ ดร.ธนะกาญจน์ มัญชุพาณี ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Project Code: MRG5480109

Project Title: การคัดแยกไซยาโนแบคทีเรียและสาหร่ายสีเขียวที่ผลิตพลาสติกชีวภาพปริมาณสูง

Isolation of cyanobacteria and green algae with high bioplastic content

Investigator: อาจารย์ ดร.ธนะกาญจน์ มัญชุพาณี

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: tanakarn.m@chula.ac.th

Project Period: 2 ਹੈ

บทคัดย่อ

ใกลโคเจน (GI) ใชมัน (LP) และ polyhydroxybutyrate (PHB) เป็นสารที่สะสมคาร์บอนในโพรคาริโอต โดยสารสองชนิดแรก เป็นสารตั้งตันที่มีประสิธิภาพสูงในการผลิตพลังงานชีวภาพ และสารชนิดหลังเป็นพลาสติกที่ย่อยสลายได้ทางชีวภาพที่มี คุณสมบัติดี งานวิจัยนี้มีจุดประสงค์เพื่อเพิ่มการสะสมร่วมของสารทั้งสามชนิดดังกล่าวโดยการปรับสภาวะสรีรวิทยาในเชลล์ใช ยาโนแบคทีเรีย Synechocystis sp. PCC 6803 ซึ่งเป็นสายพันธุ์ที่ใช้ในการศึกษากันอย่างกว้างขวางในห้องทดลอง ในภาวะ autophototrophic growth โดยใช้ CO₂ จากอากาศ Synechocystis มีผลผลิตร่วมของสารทั้งสามชนิดสูงสุดที่ระยะ midstationary growth phase ซึ่งมีค่าเท่ากับ 39.2% ของน้ำหนักเซลล์แห้ง (22.7% GI, 14.1% LP, 2.4% PHB) ในภาวะขาด ในโตรเจนพบว่าเซลล์สามารถเพิ่มผลผลิตร่วมได้ถึง 61.5% (36.8% GI, 11.2% LP, 13.5% PHB) ซึ่งมากกว่าผลผลิตร่วมที่ได้ จากภาวะขาดฟอสฟอรัส ซัลเฟอร์ เหล็ก หรือ แคลเซียม เมื่อควบรวมภาวะขาดในโตรเจนเข้ากับการให้กลูโคส 0.4% (w/w) และการเพิ่มความเข้มแสง พบว่าสามารถเพิ่มผลผลิตร่วมได้ถึง 71.1 % ของชีวมวล (41.3% GI, 16.7% LP, 13.1% PHB) ซึ่ง เป็นที่มีค่าสูงสุดในภาวะที่ให้กลูโคส 0.4% (w/w) โดยไม่มีการขาดธาตุอาหาร ซึ่งมีค่าเท่ากับ 0.72 g.L⁻¹ สำหรับการเลี้ยง 12 วัน เนื่องจากในสภาวะนี้ให้ชีวมวลในปริมาณที่สูงกว่าภาวะอื่น นอกจากนี้ยังสามารถคัดแยกใชยาโนแบคทีเรีย Synechococcus sp. ที่มีผลผลิตร่วมของสารทั้งสามชนิดเท่ากับ 34.2% และสาหร่ายยูคาริโอตสีเขียว Chlorella sp. ที่มี ผลผลิตร่วมของ GI และ LP เท่ากับ 54.6% ของน้ำหนักเซลล์แห้งได้จากแหล่งน้ำจืดในประเทศไทย โครงการนี้ได้เสนอแนวคิด และวิธีการในการเพิ่มผลผลิตร่วมของสารซึวพลังงานและชีววัสดุกล่มหลักในเซลล์จุลซีพลังเคราะห์ด้วยแสง

คำสำคัญ: ไซยาโนแบคทีเรีย สาหร่ายสีเขียว ไกลโคเจน ไขมัน พอลิไฮดรอกซีบิวทิเรท พลาสติกชีวภา

Abstract

Glycogen (GI), lipids (LP) and polyhydroxybutyrate (PHB) are carbon storages in various prokaryotes which the first two storages are efficient substrates for biofuel production, while the later is a potent bio-degradable plastic. This study aims to increase cellular coaccumulations of such three storages by adjusting various physiological conditions in one of the best studied cyanobacteria, Synechocystis sp. PCC 6803. At the normal autophototrophic growth with atmospheric CO₂ concentration, the co-production of the three storages reached the maximum at 39.2% of dry weight (22.7% GI, 14.1% LP and 2.4% PHB) at the midstationary phase of growth. Nitrogen deprivation condition significantly increased the coaccumulation to 61.5% (36.8% GI, 11.2% LP and 13.5% PHB) higher than that caused by a nutrient deprivation of Phosphorus, Sulphur, Iron or Calcium. Combining the Nitrogen deprivation with the 0.4% (w/w) glucose supplementation altogether with optimizing light intensity enhanced the co-production to 71.1 % of biomass (41.3% GI, 16.7% LP and 13.1% PHB), the higher accumulation of the three storages than previous reports in cyanobacteria. However, the maximum productivity of the three storages at 0.72 g.L⁻¹ after 12-day culture was obtained at the condition supplemented with 0.4% (w/w) glucose and without a nutrient deprivation, due to its high biomass yield. In this, the cyanobacterium Synechococcus sp. with the three storage production at 34.2% and the eukaryotic green algae *Chlorella* sp. with the co-accumulation of GI and LP at 54.6% of dry weigh were isolated from Thailand natural resources. This study introduced conceptual and experimental tools to simultaneously enhance co-accumulations of the major bioenergy and biomaterial molecules in photosynthetic microorganisms.

Keywords: cyanobacteria; green algae, glycogen; lipid; polyhydroxybutyrate; bioplastic ไซยาโนแบคทีเรีย สาหร่ายสีเขียว ไกลโคเจน ไขมัน พอลิไฮดรอกซีบิวทิเรท พลาสติกชีวภาพ

OBJECTIVES

- To enhance the co-accumulation of glycogen, lipids and bioplastic polyhydroxybutyrate in the model strain of cyanobacteria, *Synechocystis* sp. PCC 6803
- 2. To isolate cyanobacteria with high cellular contents of glycogen, lipids and bioplastic from Thailand natural resources

MATERIALS AND METHODS

Organism, culture conditions and growth determination

Wild type Synechocystis sp. PCC 6803 (Pasteur Institute, France) and fresh water cyanobacteria and microalgae strains isolated from Thailand were cultured autophototrophically in 250 ml flasks containing 150 ml BG-11 media [21] supplement with 20 mM HEPES-NaOH (pH 7.5). The cultures were shaken at 150 rpm at a continuous illumination of 50 µmol photon.m⁻².s⁻¹ at 28 °C with atmospheric CO₂ concentration (hereafter: the normal photoautotrophic growth condition). Nitrogen depletion was obtained by culturing the cells in the media devoid of NaNO₃ and replacing ferric ammonium citrate and Co(NO₃)₂.6H₂O with equimolar of ferric citrate and CoCl₂.6H₂O. The following nutrient deprivations in the BG11 medium were prepared using an equimolar substitution basis: Phosphorus depletion, replacing K₂HPO₄ by KCl; Sulphur depletion, replacing MgSO₄ and CuSO₄ by MgCl₂ and CuCl₂ respectively; Iron depletion, substituting ferric ammonium citrate by ammonium citrate; Calcium depletion, replacing CaCl₂ by KCl. For heterophototrophic growth, 0.4 % glucose (w/w) was added into the media. Cell growth was monitored by determining dry weight gravitrometrically (0.1 mg resolution). Wet cells were dried at 60 °C until constant weight to prevent lipid loss.

Glycogen analysis

The extraction was carried out by a method of Ernst [11]. Grinded dry cells were resuspended in 300 μ l of 30% (w/v) KOH and were heated at 100 °C for 90 min. The supernatant was collected and ice-cold 900 μ l ethanol were added and placed on

ice for 2 h. Cyanobacterial glycogen was harvested by centrifugation and the pellet was washed twice by 70% and 90% ethanol, respectively and dried at 60 °C. Glycogen was resuspended in 300 µl of 100 mM sodium acetate pH 4.75 and enzymatically hydrolyzed to glucose by the treatment with 0.2 mg amyloglucosidase ml⁻¹ (Sigma) and 0.2 mg amylase ml⁻¹ (Sigma) at 50 °C for 14 h. The reaction was terminated by heating at 100 °C for 10 min and the obtained glucose solution in the supernatant was quantified using glucose oxidase assay (GLUCOSE Liquicolor Kit, Human Gesellschaft fur Biochemica und Diagnostica mbH, Wiesbaden, Germany). A glycogen standard from oyster (Sigma) was also analyzed to correlate glucose concentrations to the initial glycogen concentrations.

Lipid analysis

Lipids were extracted by two-step method. The first extraction was done as described [25]. Grinded dry cells were resuspended in 5 ml methanol which has been shown to efficiently dissolve *Synechocystis* total lipids [25] but not PHB polymer [27]. Then, the mixtures were vortexed for 24 h at room temperature, filtrated and dried at 50 °C. Next, the second extraction were conducted according to [8]. The extracts were resuspended in 3 ml chloroform: methanol (2:1 v/v), vortexed for 3 h at room temperature, and then 3 ml of 0.88% KCl was mixed to the combined chloroform—methanol solution and centrifuged. An 0.3 ml aliquot of the bottom phase containing lipids was dried at 50 °C and the remaining crude lipid extracts were subjected for total lipid quantification by as described [3]. Lipids were quantitatively oxidized by 2 ml acidic dichromate reagent (2.5 g.l⁻¹ K₂Cr₂O₇ in 36 N H₂SO₄) at 100 °C for 45 min. The oxidized lipids were quantified from the amount of reduced dichromates as determined spectrophotometrically at 350 nm. Palmitic acid (Sigma) was used as a standard for the lipid quantification.

PHB analysis

PHB quantification was done by high-performance liquid chromatography essentially as described [23]. Grinded dry cells were boiled in 1 ml of 95% H₂SO₄ for 1 h to hydrolyze PHB polymer, then 25-fold diluted with 0.014 M H₂SO₄ and filtered. Samples containing the PHB-hydrolyzed product, crotonic acid, were analyzed by HPLC using InertSustain 3-μm *C18* column (GL Sciences, USA). Commercial PHB (Sigma) was analyzed in parallel with the samples as quantification standards. Adipic

acid and crotonic acid (Sigma) were also used as an internal standard and crotonic standard, respectively for the HPLC analysis.

INTRODUCTION

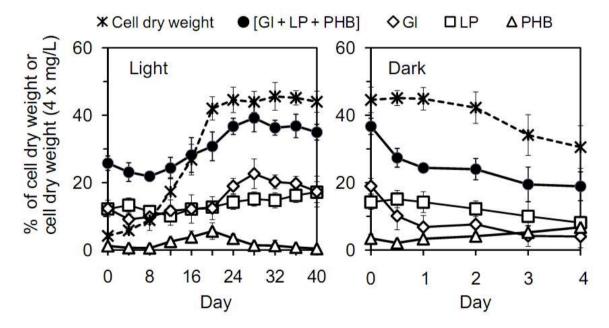
Sustainable production of energy and materials are required to cope with reducing global petroleum reserves. Cyanobacteria are one of potential microorganisms capable of producing renewable bioenergy and environmental-friendly materials. These oxygenic photosynthetic prokaryotes are able to assimilate carbon dioxide green house gas to their metabolisms and synthesize glycogen (GI), a major cellular carbohydrate which is a polymer of glucoses linked through α-1,4- and α-1,6 glycosidic bonds [4,5,9], an efficiently substrate for bioethanol production [14,28]. Cyanobacteria also synthesize lipids (LP), mainly composed of acylglycerols [25,22] which can be readily transformed to biodiesel [15,25]. In addition, some cyabobacteria are able to accumulate polyhydroxybutyrate (PHB), the bio-degradable plastic comprised of 3-hydroxybutyric acid monomers linked through ester bonds [6,17,19,24]. Thus, enhancing the co-accumulation of such carbon storages in cyanobacteria is desirable for biofuel and biopolymer productions.

In the well-studies cyanobacterial model *Synechocystis* sp. PCC 6803 (hereafter *Synechocystis*), cellular GI content under a normal autophototrophic growth was reported in various quantification units ranging from 1 μg.mg chlorophyll [26], 1 mg.g wet cell⁻¹ [30] to 18.5% of dry weight [16]. One study significantly enhanced *Synechocystis* GI accumulation from 1 to 19 mg.g wet cell⁻¹ after adjusting nutrient supplies [30]. Increased *Synechocystis* PHB production from a few percent to 38% of dry weight by adjusting various external factors was also described previously [18,19]. Attempts to increase *Synechocystis* LP is still limited; the content was

reported to ranges from 10% to 15% of dry weight which diacylglycerols are major constituents [25].

Form above information, the studies in determining the GI, LP and PHB contents in cyanobacterial cells grown under distinct physiological conditions are still limited. We asked questions: what are relative amounts of the three carbon storages accumulated in cyanobacteria upon adapting to different nutrients and light intensities and whether optimizing the nutrients and light intensities could simultaneously enhance the co-production of such three carbon storages in cyanobacteria. To address those questions, here we quantified the cellular amount of GI, LP and PHB as in the same quantification unit (% dry weight) in *Synechocystis*. We optimized various nutrient supplies and light intensities with the aim to enhance the co-production of the three carbon storages of *Synechocystis* cells. In addition, we also isolated natural strains from Thailand natural resources and determined for their PHB and lipids accumulation. This study has a goal to maximally utilize cyanobacterial biomass for the productions of renewable energy and biomaterials.

RESULTS


Synechocystis carbon storages under the normal autophototrophic growth

Cells grown in the standard BG11 media with continuous light and atmospheric CO2 concentration (the normal autophototrophic condition, hereafter) were quantified for their glycogen (GI), lipids (LP) and polyhydroxybutyrate (PHB) as percent to cell dry weight, used throughout this study. During the lag to the log phase of growth (day 0-20), *Synechocystis* accumulated both GI and LP as major carbon storages at the comparable amounts in the range of 9.8% to 13.3% (Fig. 1). Then, at the early to the mid stationary phases (day 24-28), GI increased to 22.7%,

while LP remained at about 14 %, indicating that GI is the major carbon storage at this growth period. However, at the late stationary phase (day 32-40), GI reduced to about 17%, comparable to the level of LP accumulation.

For PHB, the content ranges from only 0.4% to 5.6% which the accumulation increased during the log phase and reduced at the stationary phase (Fig. 1). Thus, PHB is a minor carbon storage of *Synechocystis* in all autophototrophic growth phases. When combine the total three storage content, [GI + LP + PHB], it continually increased from the lag to the mid stationary phase (25.8% to 39.2%), and slightly reduced and maintained at ~35% when the cells reached late stationary period.

Fig. 1

Fig. 1. Accumulations of *Synechocystis* carbon storages in the light and in the dark. Cells were cultured in the normal autotrophic condition using the standard BG11 media and continuous 50 μmol photon.m⁻².s⁻¹ (Light). In another experiments, the stationary 24-day old cultures from (Light) were transferred to the darkness (Dark). GI, glycogen; LP, total lipids; PHB, polyhydroxybutyrate. Data are means ± 1SD of at least three independent experiments.

Effects of the darkness

Synechocystis that had been grown in the normal autophototrophic condition were placed into the darkness. Cellular GI rapidly decreased from 19.0% to 10.1% after 12 h, then dropped to 6.8% and 4.0 % after one day and four day in the dark, respectively (Fig. 1). LP also reduced from 14.2 % to 8.1% within four day in the dark. In contrast with GI and LP, PHB was found to increase from 3.5% to 6.8% after four days in the dark. The overall [GI + LP + PHB] content decreased from 36.7% to 24.4% after one day, and slightly fell to 18.9% after four days in the dark.

Effects of light intensities

Synechocystis were grown under different light intensities as follows (the numbers are in μmol photon.m⁻².s⁻¹): 10, low light; 50, moderate-low light; 200, moderate-high light; 500, high light. *Synechocystis* accumulated GI only 8.7% at the low light, but GI significantly increased to 22.6% at the moderate-low light and peaked at 29.6% at the moderate-high light, but reduced to 9.4% at the high light (Fig. 2). In the similar fashion, LP was only 10.6% at the low light and raised to 14.3% - 15.1% at the moderate lights, but reduced to 9.3 % at the high light.

In contrast with GI and LP, PHB levels were found to be consistent at the range of 1.1% - 1.8% at all light intensities. We also found that the total [GI + LP + PHB] content of *Synechocystis* grown at the moderate lights were approximate two-fold higher than those grown at the low light or at the high light (Fig. 2).

Fig. 2

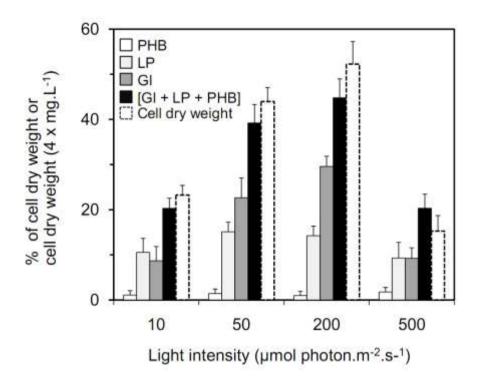
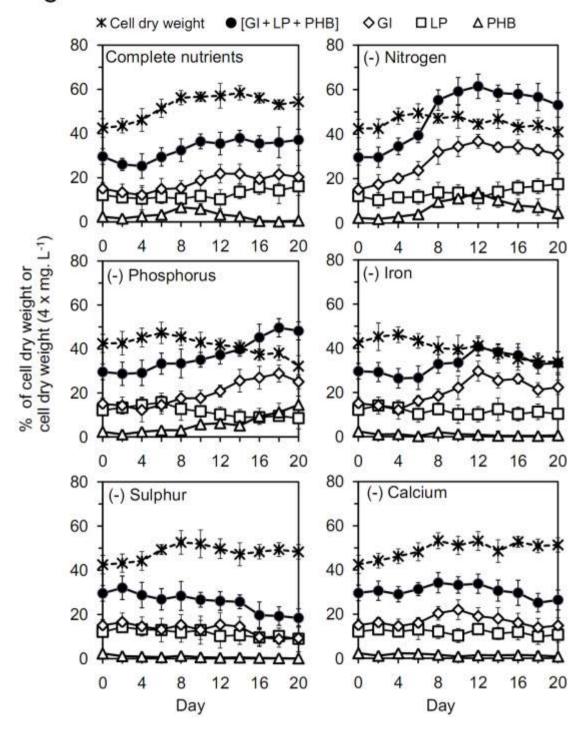


Fig. 2. Effects of light intensities to the carbon storages of *Synechocystis*. Cells were cultured in the standard BG11 media for 28 days under different light intensities: 10, 50, 200 and $500 \mu mol photon.m^{-2}.s^{-1}$, defined as low, moderate-low, moderate-high and high light intensity, respectively. Data are averages \pm 1SD derived from three independent analyses.

Accumulation of carbon storages upon nutrient depletions

Synechocystis that had been grown at the normal autophototrophic condition (complete nutrients) were harvested and further cultured in the fresh media without one of the following nutrients: Nitrogen (-N); Phosphorus (-P); Iron (-Fe); Sulphur (-S); Calcium (-Ca). The cellular carbon storages under such a deprivation were determined (Fig. 3). When compared with the cells grown under the normal condition, we found that – N drastically enhanced the accumulations of GI (15.1% to 36.8%) and

PHB (2.4% to 13.5%), but did not significantly altered LP content. In addition,—N increased the total [GI+LP+PHB] content up to 61.5 % of biomass, 1.7-fold higher than that content of the normal condition.


– P moderately increased GI (15.1% to 28.9%) and PHB (2.4% to 14.6%). We noted that these increased GI and PHB content caused by –P occurred slower than those caused by – N (Fig. 3). However, –P was found to slightly reduced LP. The overall [GI+LP+PHB] content at –P peaked at 49.7 %, 1.4 fold of that accumulated in the normal condition.

–Fe moderately increased GI (15.1% to 29.7%), but not LP nor PHB. However, the maximum [GI+LP+PHB] content under –Fe was 40.6%, not significantly different from that found in the normal condition. For – S and –Ca, each depletion did not significantly alter the levels of GI and LP, but slightly reduced PHB in *Synechocystis* (Fig. 3).

Carbon storages under heterophototrophic growth combined with nutrient depletion(s) and the elevated light intensity

Synechocystis cells were adapted from the normal autophototrophic to heterophototrophic conditions by transferring the cells to the fresh medium with 0.4% (w/w) glucose addition (+Glu) and the cultures were placed under the moderate-high light intensity at 200 μmol photon.m⁻².s⁻¹ for 12 days. When compared with the normal autophototrophic condition, +Glu treatment slightly raised GI (21.8% to 28.3%), LP (10.2% to 14.2%), but significantly increase PHB content (3.3% to 9.2%) which altogether made up total [GI+LP+PHB] increased from 35.4% to 51.7% (Table 1). +Glu also enhanced the biomass production up to 6.1 folds (228 to 1394 mg.L⁻¹, highest in this work) as well as the [GI+LP+PHB] productivity to 8.9 folds (81 to 722 mg.L⁻¹, highest in this study).

Fig. 3

Fig. 3. Accumulation of *Synechocystis* **carbon storages upon nutrient depletions.** Stationary-growth cells that had been grown in the standard BG11 media with

complete nutrient were transferred to the fresh BG11 or the BG11 without a specific

nutrient (-) as indicated and then grown at 50 μ mol photon.m⁻².s⁻¹. Data are means \pm 1SD of at least three independent experiments.

+Glu in the combination with –N (+Glu –N) sharply increased the levels of GI (21.8% to 41.3%, highest in this work), LP (10.2% to 16.7%) and PHB (3.3% to 13.1%) which made up [GI+LP+PHB] co-accumulation raised from 35.4% to 71.1%, the highest in this study (Table 1). We noted that this (+Glu –N) condition yield more cellular [GI+LP+PHB] co-accumulation than that of +Glu condition by 1.4 fold; however, (+Glu –N) condition yielded only 0.32-fold biomass and 0.46-fold [GI+LP+PHB] productivity when compare to those of +Glu condition.

(+Glu –P) condition sharply increased PHB accumulation (3.3% to 15.1%), but did not considerably altered GI and LP contents. For (+Glu –N –P) condition, it significantly increased PHB accumulation up to 21.8% of dry weight, the highest in this study; however this condition yielded lower levels of GI and LP than those found in (+Glu –N) condition. We also noted that extending the culturing time from 12 to 18 days reduced all storages content in heterophototrophically-grown *Synechocystis* (Table 1), and that glucose additions above or below 0.4 % (w/w) did not yield a higher [GI+LP+PHB] accumulation and productivity than those found in the 0.4% glucose conditions (data not shown).

Table 1.

Co-production of the carbon storages in *Synechocystis* under heterophototrophic condition combined with nutrient depletion and elevated light intensity. Exponential-phase cells under the normal growth condition were collected and further cultured in the indicated condition using the light intensity 200 μmol photon.m⁻².s⁻¹. Data are averages from at least three independent analyses.

12-day cultured cells					18-day cultured cells							
	% of dry weight			Cell dry	[GI+LP+PHB]	% of dry weight				Cell dry	[GI+LP+PHB]	
Conditions ^a	PHB	LP	GI	[GI+LP+PHB]	weight (mg.L ⁻¹)	productivity (mg.L ⁻¹)	PHB	LP	GI	[GI+LP+PHB]	weight (mg.L ⁻¹)	productivity (mg.L ⁻¹)
Control	3.3 ± 1.4	10.2 ± 3.4	21.8 ± 4.2	2 35.4 ± 5.1	228.5 ± 30.5	81.0 ± 0.03	0.2 ± 0.1	14.2 ± 3.9	21.5 ± 4.2	36.0 ± 4.9	212.4 ± 24.2	76.5 ± 8.2
+Glu	9.2 ± 2.6	14.2 ± 3.4	28.3 ± 3.1	51.7 ± 6.7	1394.2 ± 115.7	722.1 ± 0.07	5.3 ± 1.5	12.1 ± 2.1	30.2 ± 3.7	47.6 ± 6.2	1492.5 ± 98.7	711.6 ± 65.4
+Glu -N	13.1 ± 2.2	16.7 ± 3.1	41.3 ± 4.2	2 71.1 ± 5.4	448.5 ± 44.2	332.4 ± 0.08	8.6 ± 1.7	10.8 ± 2.6	34.1 ± 4.2	53.6 ± 6.5	420.9 ± 25.2	226.0 ± 23.7
+Glu -P	15.1 ± 2.5	10.2 ± 1.7	25.1 ± 3.5	5 50.4 ± 4.3	367.3 ± 36.3	185.4 ± 0.04	9.1 ± 2.3	8.9 ± 2.2	27.1 ± 3.6	45.2 ± 3.3	305.4 ± 21.8	138.1 ± 14.2
+Glu -N -P	21.8 ± 3.0	10.8 ± 2.0	30.7 ± 3.1	63.4 ± 6.2	333.4 ± 45.6	211.5 ± 0.05	10.2 ± 2.1	9.8 ± 1.3	27.8 ± 2.1	47.9 ± 5.4	278.5 ± 19.5	133.4 ± 12.6

^a Control, the standard BG11 media; +Glu, the BG11 with 0.4% (w/v) glucose supplementation; -N, Nitrogen depletion; -P, Phosphorus depletion.

Isolation of cyanobacteria with high GI and LP content from Thailand natural resources

In this work, we isolated cyanobacteria and eukaryotic green algae from fresh water resources in Thailand. From 122 isolated we screened for their LP and PHB contents using Nile Red fluorescence staining method. The potential strains were analyzed for their GI, LP and PHB accumulation. We obtained two cyanobactrial strains that can produce such three carbon storages and they were morphologically identified as *Synechococcus sp. and Nostoc sp.* which the later species yielded the co-accumulation at 34.3% (15.2 GI, 9.6 LP and 9.4% PHB) (Table 2 and 4).

We also obtained three eukaryotic green algae for high LP accumulation as observed by Nile Red fluorescence microscopy (Table 3). However such strains did not produce PHB. We analyzed one isolated green algae, *Chlorella sp.* and found the co-accumulation at 54.6% (12.1% GI, 42.5% LP, 0.0% PHB) (Table 4).

Table 2. Thai-isolate cyanobacteria capable of accumulating PHB and LP.Nile Red fluorescence dye binds both LP and PHB and illuminated golden color while cellular chlorophyll eluminated red color under fluorescence microscope.

Isolate no.	Cyanobacteria	Non staining	Nile red staining
TM1 TM2 TM3	Synechococcus sp. (< 3 μm)	0000	
TM9	Nostoc sp. (> 20 μm)		

Table 3. Thai-isolate eukaryotic green algae with high LP content but not producing PHB. Nile Red dye illuminated as golden while chlorophyll appears as red under fluorescence microscope.

Isolate no.	Eukaryotic green algae	Non - staining	Nile red staining
TM4, TM5, TM6	Chlorella sp. (3-5 μm)		
TM7	Ankistrodesmus sp. (5-10 μm)		1750 L 95
TM8	Nitzschia sp. (10-20 μm)		To America

Table 4. Carbon storages in Thai-isolated cyanobacteria and green algae.

Cells were grown under the autotrophic growth with nitrogen deprivation under the light intensity 50 μ mol photon.m⁻².s ⁻¹. Data are averages from three independent analyses.

Strains	Characteristics	Content (% dry weight)					
		GI	LP	PHB	GI+LP+PHB		
Synechococcus sp.	Unicellular Cyanobacteria	2.1 ± 0.9	8.7 ± 2.4	3.2 ± 1.1	14.0 ± 4.1		
Nostoc sp.	Filamentous Cyanobacteria	15.2 ± 3.5	9.6 ± 3.3	9.4 ± 3.0	34.2 ±10.2		
Chlorella sp.,	Unicellular Green Algae	12.1 ± 4.6	42.5 ± 10.1	None detectable	54.6 ± 12.3		

DISCUSSIONS

We found that both GI and LP are the major carbon storages of *Synechocystis* in all autophototrophic growth phases with the only exception that during the early to the mid stationary phases, GI accumulation increased and became the main cellular carbon storage (Fig. 1). *Synechocystis* PHB content were found to be subtle in all autophototrophic growth. In the autophototrophic condition with –N, -P or -Fe, as well as at in the all heterophototrophic growths determined in this study, GI was the major carbon storage, while LP and PHB were the minors (Fig. 3 and Table 1). These results implied the role of GI as the major carbon storage of *Synechocystis* in adapting to the stationary phase of autophototrophic growth, heterophototrophic growth and the –N, -P or -Fe conditions.

It has been known that Nitrogen- or Phosphorus-limiting conditions increase accumulations of GI [1,12,29] or PHB [17-19,24] in various cyanobacterial species. Enhanced both GI and PHB contents by limited nitrogen supply was previously reported in cyanobacterium *Asthrospira maxima* which the GI content was estimated by phenol/sulfuric acid method to ranges from 60% to 70 %, and PHB was found to not exceed 0.7% of dry weight [20]. Another attempt to optimize co-production of the three carbon storages by increased CO₂ concentration was recently reported in the thermophilic cyanobacterium *Thermosynechococcus elongates* which the total accumulation was 50% of dry weight (22% GI, 15% PHB and 3 % LP) [10]. In this present study, we found that the autophototrophic –N condition with atmospheric CO₂ concentration, can increased the co-accumulation to 61.5 % (36.8% GI, 13.5% PHB and 17.5% LP, Fig 3) in *Synechocystis*. Further combined –N with +Glu and the elevated-light intensity synergistically enhanced the *Synechocystis* co-productions to 71% of biomass (41.3% GI, 13.1% PHB and 16.7% LP), the highest in this study in

term of % cell dry weight (Table 1). However, when consider the productivity of [GI+LP+PHB], +Glu condition yielded the maximum productivity at 722 mg.L⁻¹, about 2.2 and 6.6 folds higher than those found in (+Glu –N) and -N conditions, respectively, due to the superior biomass yield obtained under +Glu condition (Table 1 and Fig. 3). We also found that–S, -Fe or -Ca did not significantly increase the co-production of such three carbon storages.

In this study, we obtained the maximum PHB accumulations in *Synechocystis* at 21.8% under (+Glu -N -P) condition (Table 1). We noted that, significant cyanobacterial PHB content at 45% of dry weight was demonstrated previously in *Nostoc muscorum* grown under glucose and acetate addition, combined with elevated CO₂ concentration and limited K₂HPO₄ supply [24]. For LP, no significantly enhanced production was described in cyanobacteria; the LP content determined in various strains was found to ranges from 1% to the maximum at 20% of dry weight [2,7,13]. In this work, increased *Synechocystis* LP from ~10% to 16.7%-17.5% were obtained in both autophototrophic and heterophototrophic growths (Fig. 1, Fig. 3 and Table 1). Although the majority of *Synechocystis* LP is diacylglycerols as characterized previously [25], we noted that the LP contents reported in this study must be carefully interpreted as total lipids since we quantified LP by the dichromate method that reacts to various types of lipid molecules [3].

We also found that the optimized light intensities for the co-production of the three storages were at the moderate levels which yielded the co-accumulation bout two-fold higher than those found at the low and the high light level (Fig 2). This results is correlated to the previous study that 2.5-fold increased GI content in *A. platensis* was achieved at elevated light intensities [1].

In this study we also obtained two Thai-isolated species of cyanobacteria: *Synechococcus sp.* and *Nostoc sp.* capable of co-producing GI, LP and PHB; however the co-production was reached to only 34.2% under –N condition (Table 4). Three lipid-accumulating species of eukaryotic green algae from Thailand were obtained. One of them, *Chlorella sp.* accumulating up to 42.5% of cellular LP and 12.1 % GI, but did not produce PHB at –N condition (Table 4).

CONCLUSION

This work demonstrated enhanced co-accumulations of the two potent biofuel substrates: glycogen and lipid, as well as the biodegradable-plastic PHB in cyanobacteria which the total cellular co-accumulation reached 71% of biomass and the productivity was up to 722 mg.L⁻¹ at the 12-day culture period. Further enhancing the product productivity as well as utilizating the left over proteins, pigments and biomass which the later could be used in gasification/pyrolysis for fuel production, would create a mean for maximal utilization of cyanobacterial and microalgal bioresources.

REFERENCES

- 1. Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211-215. doi:10.1016/j.biortech.2012.01.004S0960-8524(12)00010-7 [pii]
- 2. Al-Hasan R, Ali M, Radwan S (1989) Effects of light and dark incubation on the lipid and fatty acid composition of marine cyanobacteria. J Gen Microbiol 135:865-872
- 3. Amenta JS (1964) A Rapid Chemical Method for Quantification of Lipids Separated by Thin-Layer Chromatography. J Lipid Res 5:270-272
- 4. Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62 (6):1775-1801. doi:10.1093/jxb/erq411erq411 [pii]

- 5. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207-233. doi:10.1146/annurev.arplant.54.031902.134927
- 6. Bhati R, Samantaray S, Sharma L, Mallick N (2010) Poly-beta-hydroxybutyrate accumulation in cyanobacteria under photoautotrophy. Biotechnol J 5 (11):1181-1185. doi:10.1002/biot.201000252
- 7. Bruno L, Di Pippo F, Antonaroli S, Gismondi A, Valentini C, Albertano P (2012) Characterization of biofilm-forming cyanobacteria for biomass and lipid production. J Appl Microbiol 113 (5):1052-1064. doi:10.1111/j.1365-2672.2012.05416.x
- 8. Christie W (1973) Lipid analysis: isolation, separation, identification and structural analysis of lipids Pergamon, Oxford
- 9. Deschamps P, Haferkamp I, d'Hulst C, Neuhaus HE, Ball SG (2008) The relocation of starch metabolism to chloroplasts: when, why and how. Trends Plant Sci 13 (11):574-582. doi:10.1016/j.tplants.2008.08.009S1360-1385(08)00226-4 [pii]
- 10. Eberly JO, Ely RL (2012) Photosynthetic accumulation of carbon storage compounds under CO(2) enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus. J Ind Microbiol Biotechnol 39 (6):843-850. doi:10.1007/s10295-012-1092-2
- 11. Ernst A, Kirschenlohr H, Diez J, Böger P (1984) Glycogen content and nitrogenase activity in Anabaena variabilis. Arch Microbiol 140:120-125
- Grossman R, Schaefer M, Chiang G, Collier J (2004) The responses of cyanobacteria to environmental conditions: light and nutrients. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, vol 1. Springer Netherlands, pp 641-675
- 13. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54 (4):621-639. doi:10.1111/j.1365-313X.2008.03492.xTPJ3492 [pii]
- 14. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102 (1):186-193. doi:10.1016/j.biortech.2010.06.139S0960-8524(10)01142-9 [pii]
- 15. Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162 (1):50-56. doi:10.1016/j.jbiotec.2012.03.005S0168-1656(12)00172-1 [pii]
- Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 218 (1):71-77. doi:S037810970201145X [pii]
- 17. Miyake M, Erata M, Asada Y (1996) A thermophilic cyanobacterium, Synechococcus sp. MA19, capable of accumulating poly-beta-hydroxybutyrate. J Ferment Bioeng 82:512–514
- 18. Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-beta-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97 (11):1296-1301. doi:S0960-8524(05)00287-7 [pii]10.1016/j.biortech.2005.05.013
- 19. Panda B, Mallick N (2007) Enhanced poly-beta-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett Appl Microbiol 44 (2):194-198. doi:LAM2048 [pii]10.1111/j.1472-765X.2006.02048.x
- 20. Philippis R, Sili C, Vincenzni M (1992) Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. J Gen Microbiol 138:1623-1628

- 21. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J Gen Microbiol 111:1-61
- 22. Sallal A, Nimer N, Radwan S (1990) Lipid and fatty acid composition of freshwater cyanobacteria. J Gen MIcrobiol 136 n:2043-2048
- 23. Schlebusch M, Forchhammer K (2010) Requirement of the nitrogen starvation-induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 76 (18):6101-6107. doi:10.1128/AEM.00484-10AEM.00484-10 [pii]
- 24. Sharma L, Kumar Singh A, Panda B, Mallick N (2007) Process optimization for poly-beta-hydroxybutyrate production in a nitrogen fixing cyanobacterium, Nostoc muscorum using response surface methodology. Bioresour Technol 98 (5):987-993. doi:S0960-8524(06)00186-6 [pii]10.1016/j.biortech.2006.04.016
- 25. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102 (2):1697-1703. doi:10.1016/j.biortech.2010.08.007S0960-8524(10)01342-8 [pii]
- 26. Singh AK, Sherman LA (2005) Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J Bacteriol 187 (7):2368-2376. doi:187/7/2368 [pii]10.1128/JB.187.7.2368-2376.2005
- 27. Terada M, Marchessault RH (1999) Determination of solubility parameters for poly(3-hydroxyalkanoates). Int J Biol Macromol 25 (1-3):207-215. doi:S0141-8130(99)00036-7 [pii]
- 28. Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae.
- 29. Xu Y, Tiago Guerra L, Li Z, Ludwig M, Charles Dismukes G, Bryant DA (2012) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metab Eng 16C:56-67. doi:S1096-7176(12)00130-9 [pii]10.1016/j.ymben.2012.12.002
- 30. Yoo SH, Keppel C, Spalding M, Jane JL (2007) Effects of growth condition on the structure of glycogen produced in cyanobacterium Synechocystis sp PCC6803. International Journal of Biological Macromolecules 40 (5):498-504. doi:DOI 10.1016/j.ijbiomac.2006.11.009

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
 ยังไม่ได้ตีพิมพ์ ผู้วิจัยได้เขียน Manuscript เสร็จแล้วและกำลังอยู่ระหว่างการ
 revise กับ mentor เพื่อจะ submit เพื่อตีพิมพ์ในวารสารนานาชาติ ISI กลุ่ม
 Biotechnology (IF. ประมาณ 1-2) ภายในหนึ่งเดือนจากนี้
- การนำผลงานวิจัยไปใช้ประโยชน์
 ยังไม่มี
- 3. การเสนอผลงานในที่ประชุมวิชาการ
 - 3.1 การเสนอผลงานแบบ poster ในหัวข้อ Biohydrogen and Bioplastic

 Production from Cyanobacteria in Thailand ในการประชุมวิชาการ
 ระดับนานาชาติ EBEC: European Biofuels Exhibition & Conference, 5-8 November, 2011, LONDON, UK
 - 3.2 การเสนอผลงานแบบบรรยายในหัวข้อ Microalgae as Cell Factories to

 Produce Oil & Bioplastic ในการประชุมวิชาการประชุมวิชาการสาหร่าย
 และแพลงก์ตอนแห่งชาติครั้งที่ 6 วันที่ 28-30 มีนาคม 2556 จังหวัดเชียงใหม่
