

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาความเป็นพิษในระยะเฉียบพลันของระบบทาง
เดินหายใจในที่มีผลจากการสัมผัสคอลลอยด์อนุภาคนาโนของเงิน
(Acute Pulmonary Toxicity Caused by Exposure to Colloidal Silver
Nanoparticles in Mice)

โดย ผศ.น.สพ.ดร. ธีระยุทธ แก้วอมตวงศ์ และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาความเป็นพิษในระยะเฉียบพลันของระบบทาง เดินหายใจในที่มีผลจากการสัมผัสคอลลอยด์อนุภาคนาโนของเงิน (Acute Pulmonary Toxicity Caused by Exposure to Colloidal Silver Nanoparticles in Mice)

คณะผู้วิจัย

- 1. ผศ.น.สพ.ดร. ธีระยุทธ แก้วอมตวงศ์ ภาควิชาพยาธิวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- 2. รศ.น.สพ.ดร.วิจิตร บรรลุนารา ภาควิชาพยาธิวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- 3. รศ. ดร. สนอง เอกสิทธิ์ ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
- 4. รศ. ชูชาติ ธรรมเจริญ ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย
และจุฬาลงกรณ์มหาวิทยาลัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: MRG5480115

ชื่อโครงการ: การศึกษาความเป็นพิษในระยะเฉียบพลันของระบบทางเดินหายใจในที่มีผลจากการ

สัมผัสคอลลอยด์อนุภาคนาโนของเงิน

ชื่อนักวิจัย และสถาบัน: ผศ.น.สพ.ดร. ธีระยุทธ แก้วอมตวงศ์ ภาควิชาพยาธิวิทยา

คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

อีเมล์: Theerayuth71@hotmail.com

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

เพื่อศึกษาความเป็นพิษต่อระบบทางเดินหายใจในหนูไมซ์ที่มีผลจากการสัมผัสอนุภาคนาโน ของเงิน ได้แบ่งการทดลองออกเป็นสองส่วน ส่วนแรกเป็นการศึกษาถึงผลกระทบของความเข้มข้น ได้ ทำการป้อนอนุภาคนาโนของเงิน ขนาด 0 10 100 1000 หรือ 10,000 ppm โดยการการสอดท่อผ่าน ทางหลอดลม จากนั้นในวันที่ 1 3 7 และ 15 ทำการการุณยฆาตและทำการเก็บตัวอย่างชิ้นเนื้อ เพื่อ ศึกษาทางพยาธิวิทยา ย้อม autometallography และย้อมอิมมูโนฮีสโตเคมี จากผลการศึกษาทางพยาธิ วิทยาพบว่าการได้รับอนุภาคนาโนของเงิน ในระดับ 100 1,000 และ 10,000 ppm ทำให้เกิดการอักเสบ ปานกลางถึงรุนแรง ซึ่งความรุนแรงของรอยโรคแปรผันตามระดับความเข้มข้นของสารที่ได้รับ ผลจาก การย้อมด้วยอิมมูนโนฮิสโตเคมีของ laminin พบความเสียหายของเยื่อรองรับฐานของปอดซึ่งสัมพันธ์ กับรอยโรคปอดที่เกิดขึ้น พบผลบวกในการย้อมอิมมูนโนฮิสโตเคมีของ Interleukin 1- beta (IL-1β) tumor necrotic factor-alpha (TNF-Q) superoxide dismutase (SOD) และ metallothionine (MT) ใน เซลล์ของปอดที่เกี่ยวพันธ์กับบริเวณที่มีรอยโรค การย้อม autometallography พบผลบวกในเซลล์แมค โครฟาจและเซลล์เยื่อบุของปอดที่เก็บกินอนุภาค รวมทั้งเซลล์แมคโครฟาจในต่อมน้ำเหลืองขั้วปอด จาก ผลการทดลองดังกล่าวสรุปได้ว่า การสัมผัสอนุภาคนาโนของเงินทำให้เกิดการอักเสบและความเสียหาย ของปอดในระยะเฉียบพลันได้ โดยความรุนแรงขึ้นกับระดับความเข้มข้นที่สัมผัส พบว่า IL-1 β TNF-α และอนุมูลอิสระมีความเกี่ยวข้องในขบวนการอักเสบและความเสียหายที่เกิดขึ้น และพบว่าการปรากฏ ของโปรตีน metallothionine มีความเกี่ยวข้องกับการสะสมของอนุภาคนาโนของเงิน ในส่วนที่สองได้ ์ ศึกษาถึงผลกระทบของระยะเวลา โดยทำการป้อนอนุภาคนาโนของเงิน ขนาด 100 ppm จากนั้นใน วันที่ 1 3 7 15 และ 30 ทำการการุณยฆาตและทำการเก็บตัวอย่างน้ำล้างปอดและชิ้นเนื้อ จากผล การศึกษา พบว่าการป้อนสารที่ความเข้มข้น100 ppm ทำให้เกิดการอักเสบของปอดในระดับเล็กน้อยถึง ปานกลางในระยะเฉียบพลัน จากนั้นความรุนแรงและการกระจายตัวของรอยโรคลดลงตามลำดับ

คำหลัก :ระยะเฉียบพลัน ความเป็นพิษต่อปอด การหยดสารผ่านหลอดลม อนุภาคนาโนของเงิน หนูไมซ์

Abstract

Project Code: MRG5480115

Project Title: Acute Pulmonary Toxicity Caused by Exposure to Colloidal Silver Nanoparticles

in Mice

Investigator: Theerayuth Kaewamatawong et al. Department of Veterinary Pathology, Faculty

of Veterinary Science, Chulalongkorn University

E-mail Address: Theerayuth71@hotmail.com

Project Period: 2 years

Abstract:

The objective of this study is to investigate biological and pathological events of intratracheally instilled colloidal silver nanoparticles (Ag-NPs) in the lungs of mice in the dose response and time effect manner using bronchoalveolar techniques and histopathological evaluations. In addition, factors that could be important in the induction of pulmonary toxicity will be investigated with the use of immunohistochemistry. To study the dose response, mice were intratracheally instilled with 0, 10, 100, 1000 or 10,000 ppm of Ag-NPs. Histopathology, autometallography (AMG) and immunohistochemistry were determined at 1, 3, 7 and 15 days post-exposure. Instillation of 100, 1,000 and 10,000 ppm Ag-NPs produced moderate to severe pulmonary inflammation and damage in a dose-dependent manner. Concomitant laminin immunohistochemical findings generally correlated to pulmonary lesions. Interleukin 1- beta (IL- 1β), tumor necrotic factor-alpha (TNF- α), superoxide dismutase (SOD) and metallothionine (MT) positive immunostanings were found in various cell types related to inflammatory and particle aggregated areas of treated animals. AMG gains were found in particle laden AMs, alveolar epithelial cells and macrophages in hilar lymph nodes. These results suggest that instillation of AgNPs causes acute lung inflammation and tissue damage in a concentrationdependent manner. IL-1 β and TNF- α may involve in the pathogenesis of the acute lung toxicity. Oxidative stress may underlie the lung tissue injury. Moreover, the expression of MT in tissues responded to AgNPs accumulation. To investigate the time response of AgNPs, mice were instilled with 100 ppm of AgNPs. BALF and histopathological analysis were carried out at 1, 3, 7, 15 and 30 days post-exposure. The histopathological and BALF data showed that 100 ppm AgNPs induced slight to moderate pulmonary inflammation and injury at acute period. However, these changes gradually regressed until the end of the experiment.

Keywords: acute, lung toxicity, intratracheal instillation, colloidal silver nanoparticles, mouse

Executive summary

โครงการนี้เป็นการศึกษาถึงความเป็นพิษในระยะเฉียบพลันและพยาธิกำเนิดของความเป็นพิษ ต่อระบบทางเดินหายใจของคอลลอยด์อนุภาคนาโนของเงินในหนูไมซ์ โดยจะแบ่งการศึกษาออกเป็น 2 ส่วน

ส่วนที่หนึ่งจะเป็นการทดลองศึกษาผลกระทบของความเข้มข้น (Dose response experiment) ของคอลลอยด์อนุภาคนาโนของเงินในปอดหนู โดยในขั้นแรกทำการเตรียมสารคอลลอยด์อนุภาคนาโนของเงิน ด้วยการสังเคราะห์โดยวิธีรีดักชันด้วยสารเคมีและทำการเตรียมความเข้มขันของอนุภาคในขนาดต่างๆตามที่ต้องการ จากนั้นทดลองป้อนสารโดยการสอดท่อทางเข้าทางหลอดลมของหนู โดยทำการป้อนด้วยน้ำกลั่น 50 μ I ในกลุ่มหนูควบคุมปกติ หรือคอลลอยด์อนุภาคนาโนของเงิน ความเข้มขัน 10 100 1,000 และ 10,000 ppm ขนาด 50 μ I ตามลำดับ จากนั้นสังเกตพฤติกรรมและอาการของ สัตว์ทดลองเป็นเวลา 3 วัน พร้อมทั้งชั่งน้ำหนักทุกวันตลอดการทดลอง ทำการการุณฆาตในวันที่ 1 3 7 15 ของการทดลอง เจาะเก็บเลือดเพื่อนำไปตรวจค่าทางพยาธิคลินิก ทำการชันสูตรซากหนูทดลองใน แต่ละกลุ่ม ศึกษารอยโรคทางมหพยาธิวิทยา และทำการเก็บตัวอย่างอวัยวะ เพื่อศึกษารอยโรคทางจุล พยาธิวิทยา

ผลการตรวจอาการแสดงทางคลินิก ไม่พบการแสดงอาการความเป็นพิษใด ๆและไม่พบการตาย ของสัตว์ทดลองทั้งในกลุ่มทดลองและกลุ่มควบคุม จนกระทั่งสิ้นสุดการทดสอบที่ 15 วัน แต่พบว่าใน กลุ่มทดลอง 10,000 ppm พบน้ำหนักตัวของหนูลดลงจนกระทั้งวันที่ 15 เมื่อเทียบกับกลุ่มควบคุม

ผลค่าทางโลหิตวิทยาและค่าเคมีในเลือดพบไม่มีการเปลี่ยนแปลงที่ชัดเจนของหนูในกลุ่มป้อน สารเมื่อเทียบกับกลุ่มควบคุม นอกจากค่าเกล็ดเลือดและเม็ดเลือดขาวของกลุ่มทดลอง 10-10,000 ppm มีค่าเพิ่มขึ้นในวันที่ 1 และ 3 เมื่อเทียบกับกลุ่มควบคุม แต่ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ

ผลทางมหพยาธิวิทยา พบว่าในวันที่ 1 ปอดของกลุ่มที่ให้สาร 1,000 และ 10,000 ppm พบ การกระจายของจุดและปึ้นสีเทาดำของคอลลอยด์อนุภาคนาโนของเงินกระจาย ส่วนในวันที่ 3 7 15 พบการอักเสบของเนื้อปอดเป็นหย่อมกระจายในเนื้อปอด โดยในกลุ่ม 10,000 ppm มีความรุนแรง ของรอยโรคดังกล่าวมากกว่ากลุ่ม 1,000 ppm

ผลการตรวจทางจุลพยาธิวิทยา ในวันที่ 3 ของการทดลอง เนื้อเยื่อปอดของกลุ่มที่ให้สาร 100 1,000 และ 10,000 ppm พบการอักเสบของปอด โดยความรุนแรงของการอักเสบขึ้นกับความเข้มข้นที่ ได้รับเข้าไป (10,000 > 1,000 > 100 ppm) นอกจากนี้ยังพบคอลลอยด์อนุภาคนาโนของเงินกระจาย ทั่วไปในปอด ในเนื้อเยื่อปอดของกลุ่ม 10 ppm พบเพียงการสะสมของคอลลอยด์อนุภาคนาโนของเงิน ในปอด ส่วนอวัยวะอื่นๆไม่พบการเปลี่ยนแปลงที่ผิดปกติใดๆ

ผลจากการย้อมด้วยอิมมูนโนฮิสโตเคมีของลามินีนพบความเสียหายของเยื่อรองรับฐานของปอด ซึ่งสัมพันธ์กับรอยโรคปอดที่เกิดขึ้น พบผลบวกในการย้อมอิมมูนโนฮิสโตเคมีของ IL-1β และ TNF-α ในบริเวณที่มีรอยโรคของปอด จากการศึกษาการปรากฏของ SOD และการแสดงออกของโปรตีน metallothionein พบการติดสีบริเวณเซลล์แมคโครฟาจที่เก็บกินอนุภาคและเซลล์เยื่อบุของปอดใน

บริเวณที่พบรอยโรคของปอดและบริเวณที่มีการสะสมของอนุภาค การย้อม autometallography เพื่อ ศึกษาการสะสมของอนุภาคนาโนของเงิน พบผลบวกในเซลล์แมคโครฟาจและเซลล์เยื่อบุของปอดที่เก็บ กินอนุภาค รวมทั้งในเซลล์แมคโครฟาจในต่อมน้ำเหลืองขั้วปอด

จากการศึกษาในส่วนนี้สรุปได้ว่า การป้อนคอลลอยด์อนุภาคนาโนของเงิน เข้าสู่ปอดในระดับ ความเข้มข้นต่าง ๆในหนูไมซ์ และศึกษาความเป็นพิษในระยะเฉียบพลัน พบว่าการได้รับอนุภาคนาโน ของเงิน ในระดับ 100 1,000 และ 10,000 พีพีเอ็ม ทำให้เกิดการอักเสบและความเสียหายของเนื้อเยื่อ ปอดในระดับปานกลางถึงรุนแรง โดยความรุนแรงของรอยโรคแปรผันตามระดับความเข้มข้นของสารที่ ได้รับ พบอนุมูลอิสระอนุมูลอิสระที่เกิดขึ้นซึ่งอาจจะเป็นผลโดยตรงจากอนุภาคนาโนของเงิน หรือเกิด จากขบวนการอักเสบ อาจจะสาเหตุที่ทำให้เกิดพยาธิสภาพดังกล่าวของปอด โดยมี IL-1 ผิ และ TNF-C เป็น proinflammatory cytokine ที่มีส่วนเกี่ยวข้องกับพยาธิกำเนิด และโปรตีน metallothionein มี บทบาทในการป้องกันความเสียหายของเซลล์จากการสัมผัสอนุภาคนาโนของเงิน จากการใช้เทคนิค การย้อม autometallography สามารถใช้ศึกษาการกระจายตัวของอนุภาคนาโนของเงิน ได้และพบว่า กลไกการขจัดที่สำคัญในการกำจัดอนุภาคนาโนของเงิน ออกจากปอด เป็นการกำจัดผ่านการเก็บกิน ของเซลล์แมคโครฟาจและระบบน้ำเหลืองของร่างกาย

ในส่วนที่สองของโครงการเป็นการการศึกษาผลกระทบของระยะเวลาภายหลังได้รับการสัมผัส อนุภาคนาโนของเงิน ของระบบทางเดินหายใจของหนูไมซ์ (Time effect experiment) ด้วยการสอดท่อ ทางเข้าทางหลอดลมของหนู โดยทำการป้อนด้วยน้ำกลั่น 50 µI ในกลุ่มหนูควบคุมปกติ หรือ สาร คอลลอยด์อนุภาคนาโนของเงิน ความเข้มขัน 100 ppm ขนาด 50 µI จากนั้นสังเกตพฤติกรรมและ อาการของสัตว์ทดลองเป็นเวลา 3 วัน พร้อมทั้งชั่งน้ำหนักทุกวันตลอดการทดลอง ทำการการุณฆาตใน วันที่ 1 3 7 15 30 ของการทดลอง ทำการเก็บตัวอย่างน้ำล้างปอดเพื่อนำไปตรวจคำทางพยาธิคลินิก ทำการชันสูตรซากหนูทดลองในแต่ละกลุ่ม ศึกษารอยโรคทางมหพยาธิวิทยา และทำการเก็บตัวอย่าง อวัยวะ เพื่อศึกษารอยโรคทางจุลพยาธิวิทยา จากผลการศึกษาในครั้งนี้ พบว่าการป้อนสารเข้าสู่ ปอดของหนู ที่ความเข้มขัน100 ppm ทำให้เกิดการอักเสบของปอดในระดับเล็กน้อยถึงปานกลางใน ระยะ 1-3 วันของการทดลอง ในวันที่ 7 15 และ 30 ความรุนแรงและการกระจายตัวของความเสียหาย ลดลงตามลำดับ ในส่วนของผลการวิเคราะห์น้ำล้างปอด พบว่ามีความสอดคล้องกับรอยโรคที่พบจาก การศึกษาทางด้านจุลพยาธิวิทยา สรุปได้ว่า การป้อนคอลลอยด์อนุภาคนาโนของเงิน เข้าสู่ปอดใน ระดับความเข้มขัน100 ppm ในหนูไมซ์ ทำให้เกิดการอักเสบและความเสียหายของเนื้อเยื่อปอดได้ ใน ระยะเฉียบพลัน โดยความรุนแรงและการกระจายตัวของรอยโรคจะลดลงตามลำดับตามเวลาที่ศึกษา

1. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

นวัตกรรมทางด้านนาโนเทคโนโลยี (Nanotechnology) เป็นวิทยาการที่เกี่ยวข้องกับการสร้าง การสังเคราะห์ วัสดุ สสาร อุปกรณ์ หรือผลิตภัณฑ์ ขึ้นจากการเรียงตัวของอนุภาคขนาดเล็กเข้าด้วยกัน ในตำแหน่งที่ต้องการได้อย่างถูกต้องแม่นยำระดับนาโนเมตร (10-9 เมตร หรือหนึ่งส่วนพันล้านเมตร) เรียกว่าอนุภาคนาโน (Nanoparticles) ซึ่งมีขนาดอนุภาคอยู่ในช่วง 1-100 นาโนเมตร ทำให้โครงสร้าง ทางของวัสดุหรือสสารที่ได้มีคุณสมบัติพิเศษ ทั้งทางด้านเคมี ฟิสิกส์และชีวภาพ นาโนเทคโนโลยี ใน ปัจจุบันอนุภาคนาโนเข้ามามีบทบาทในชีวิตประจำวันมากขึ้น เนื่องจากถูกนำมาเป็นส่วนประกอบสำคัญ ในสินค้าอุปโภคและบริโภคหลากหลายชนิด อาทิเช่น เครื่องใช้ไฟฟ้า ภาชนะบรรจุอาหาร ยา เครื่องสำอาง และสีทาบ้าน เป็นต้น ทำให้นาโนเทคโนโลยีมีความสำคัญในแง่การพัฒนาทาง วิทยาศาสตร์และเศรษฐกิจ (Moore, 2006) ในปี ค.ศ. 2004 ผลผลิตที่ผลิตจากวัสดุนาโนมีปริมาณสูงถึง 2,000 ตัน และคาดว่าในปี ค.ศ. 2011-2020 จะมีปริมาณของวัสดุนาโนเพิ่มสูงขึ้นถึง 58,000 ตัน (Maynard et al, 2006) จากกระแสของการพัฒนานาโนเทคโนโลยีมีความก้าวหน้าอย่างรวดเร็วดังกล่าว ทำให้โอกาสที่มนุษย์จะได้รับสัมผัสอนุภาคนาโนก็จะมีมากขึ้นกว่าที่เป็นอยู่ในปัจจุบัน ทั้งจากสินค้าที่มี ส่วนประกอบของอนุภาคนาโนมีการเพิ่มขึ้นอย่างรวดเร็ว ของเสียที่เกิดในกระบวนการผลิต ของเสียที่ เกิดจากการใช้หรืออุบัติเหตุระหว่างกระบวนการผลิตจะถูกปล่อยเข้าสู่สิ่งแวดล้อม (Moore, ในขณะที่การวิจัยและพัฒนาด้านการใช้ประโยชน์จากอนุภาคนาโนมีผลสำเร็จใหม่ ๆเกิดขึ้นตลอดเวลา แต่การศึกษาเกี่ยวกับผลกระทบต่อสิ่งมีชีวิตการแพร่กระจายและการปนเปื้อนของอนุภาคนาโนใน สิ่งแวดล้อมทั้งทางอากาศ ดิน และแหล่งน้ำสาธารณะมาตรการในการควบคุมด้านความปลอดภัยทั้ง ผู้ผลิตและผู้ใช้ยังมีค่อนข้างน้อยมาก (Hussain and Schlager, 2009; Barrena et al., 2009) โดย อนุภาคนาโนอาจจะมีผลทำให้มนุษย์หรือสัตว์จะได้รับอนุภาคนาโนโดยตรง หรือการได้รับทางอ้อมผ่าน ระบบห่วงโซ่อาหาร (Galloway et al., 2004; Livingstone, 2001)

อนุภาคนาโนสามารถเข้าสู่ร่างกายของมนุษย์ได้สามทางหลักๆด้วยกันคือ ทางเดินหายใจ ทาง ผิวหนังและทางเดินอาหาร เมื่อมนุษย์หรือสัตว์หายใจเอาอนุภาคนาโนเข้าสู่ร่างกาย อนุภาคนาโนจะ กระจายและสะสมในส่วนต่างๆของทางเดินหายใจ โดยเฉพาะอย่างยิ่งถุงลมซึ่งเป็นอวัยวะส่วนลึกและ สำคัญที่สุดของระบบทางเดินหายใจ เนื่องจากอนุภาคนาโนมีขนาดเล็กจึงสามารถแพร่กระจายเข้าไปสู่ ถุงลมของปอดได้เป็นอย่างดี บางส่วนของอนุภาคนาโนที่สะสมอยู่ตามส่วนต่างๆของระบบทางเดิน หายใจจะถูกขบวนการป้องกันของร่างกายในทางเดินหายใจ ยกตัวอย่างเช่น ระบบ mucociliary clearance หรือการเก็บกินของเซลล์แมคโครฟาจในปอด กำจัดและขับทิ้งออกจากร่างกาย(Kreyling et al., 2000) แต่ก็มีบางส่วนของอนุภาคนาโนที่สะสมสามารถสัมผัสและแพร่ผ่านเซลล์เยื่อบุของระบบ ทางเดินหายใจเข้าสู่ช่องว่างภายในเนื้อเยื่อ (interstitial area) จากนั้นจึงแพร่ผ่านผนังหลอดเลือดหรือ หลอด น้ำเหลืองเข้าสู่ระบบไหลเวียนของเลือดหรือน้ำเหลืองส่งผลให้เกิดการแพร่กระจายไปยังอวัยวะ ต่างๆทั่วร่างกายได้ (Nemmar et al., 2001; Takenaka et al., 2001; Shimada et al., 2006) นอกจากนี้อนุภาคนาโนที่หายใจเข้าสู่ร่างกายยังสามารถแพร่กระจายผ่านทางระบบประสาทเข้าสู่สมอง ได้ โดยผ่านทางส่วนปลายของระบบเส้นประสาทรับสัมผัส (sensory nerve ending) ของเส้นประสาท

สมองเกี่ยวกับการรับกลิ่น (olfactory nerve) และเส้นประสาทสมองคู่ที่ห้า (trigeminal nerve) รวมถึง เครือข่ายปลายประสาทรับความรู้สึกบริเวณหลอดลมและหลอดลมฝอยของปอด (tracheobrochial region) (Gianutsos et al., 1997; Hunter and Dey, 1998; Oberdorster et al., 2004) นอกจากการ เข้าสู่ร่างกายของอนุภาคนาโนทางการหายใจเข้าไปแล้ว อีกทางหนึ่งที่มีความเป็นไปได้ได้แก่ ผ่าน ผิวหนังโดยการสัมผัส ซึ่งมักเกิดกับผิวหนังที่เกิดการโค้งงอ(skin flexing) หรือเกิดการแตก (broken skin) เมื่ออนุภาคนาโนแพร่ผ่านชั้นหนังกำพร้าเข้าสู่ชั้นหนังแท้(dermis) ก็จะถูกเซลล์เดนไดรติด (dendritic cells) และเซลล์แมคโครฟาจเก็บกิน แล้วจึงถูกลำเลียงเข้าสู่ระบบน้ำเหลืองบริเวณข้างเคียง (lymphatic vessels) เพื่อขับทิ้ง(Kim et al., 2004; Oberdorster., 1988) ส่วนการเข้าสู่ร่างกายของ อนุภาคนาโนผ่านทางเดินอาหารจะมีอยู่สองทางคือการรับประทานเข้าไปโดยตรง ทั้งจากอาหาร น้ำ เครื่องสำอางค์และยาที่มีอนุภาคนาโนอยู่ หรือจากขบวนการการขับทิ้งของระบบ mucociliary clearance ในทางเดินหายใจ จากผลการศึกษาพบว่าเมื่ออนุภาคนาโนเข้าสู่ทางเดินอาหารจะถูกขับทิ้ง อย่างรวดเร็วโดยส่วนใหญ่จะถูกขับออกโดยตรงทางอุจจาระ ส่วนที่เหลือจะถูกขับทางปัสสาวะ และ บางส่วนจะเข้าสู่กระแสเลือด (Yamago et al., 1995)

จากการศึกษาความเป็นพิษที่เกิดจากอนุภาคนาโนพบว่า อนุภาคนาโนที่สูดดมเข้าไปทางการ หายใจนั้นมีผลกระทบต่อสุขภาพโดยก่อให้เกิดความเสียหายและเป็นพิษทั้งที่ระบบทางเดินหายใจและ อวัยวะอื่นๆ จากผลการวิจัยทางระบาดวิทยาพบว่าอัตราการป่วยและอัตราการตายของกลุ่มคนที่ไวต่อ การเกิดโรค (susceptible population) มีความสัมพันธ์กับระดับความเข้มข้นของอนุภาคนาโนใน บรรยากาศ โดยอัตราการป่วยและอัตราการตายจากโรคทางเดินหายใจและทางระบบหัวใจของกลุ่มคน ้ ดังกล่าวจะเพิ่มสูงขึ้น เมื่ออยู่ในสิ่งแวดล้อมที่มีการฟุ้งกระจายของอนุภาคนาโน (Pettinen et al., 2001) และจากการทดลองโดยการให้อนุภาคนาโนในอาสาสมัครที่มีสุขภาพดีและอาสาสมัครที่มีปัญหาเกี่ยวกับ ระบบทางเดินหายใจเช่น โรคหอบหืด และโรคทางเดินหายใจเรื้อรัง พบว่าในอาสาสมัครที่มีปัญหา สุขภาพจะมีการสะสมของอนุภาคนาโนได้มากกว่าอาสาสมัครที่มีสุขภาพดี รวมทั้งพบว่าอนุภาคนาโนยัง มีผลกระทบต่อหัวใจ ระบบการแข็งตัวของเลือด และขบวนการอักเสบของร่างกายของตัวอาสาสมัครอีก ด้วย (Brown et al., 2002; Framton et al.,2001) ส่วนตัวอย่างงานวิจัยด้านพิษวิทยาในสัตว์ทดลอง หลายงานวิจัยที่แสดงให้เห็นแล้วว่าอนุภาคนาโนหลายชนิดเช่น ไทเทเนียมไดออกไซด์ โคบอลท์ นิกเกล และซิลิกาชนิดคอลลอยด์ เมื่อเข้าสู่ร่างกายทางการหายใจ จะทำให้เกิดการอักเสบของปอด เกิดการ กระตุ้นทำให้เยื่อบุของปอดเพิ่มจำนวนมากขึ้น เกิดการขัดขวางการทำงานของเซลล์แมคโครฟาจในปอด เพิ่มระดับของสารสื่ออักเสบมากขึ้น ในการทดลองแบบเรื้อรังก็จะพบการเกิดพังผืดที่ปอด และมะเร็ง ของปอด (Donaldson and MacNee, 2001;Warheit, 2004) ส่วนการทดลองในเซลล์เพาะเลี้ยงจะพบ การตอบสนองของเซลล์ต่ออนุภาคนาโนที่ใส่เข้าไปโดยจะพบการเพิ่มขึ้นของสารเหนี่ยวนำ การอักเสบ (proinflammatory cytokines) และ อนุมูลอิสระ (oxidativestress) ส่งผลให้เกิดการเปลี่ยนแปลงการ แสดงออกของจีน(gene expression) และ ขบวนการการส่งสัญญาณภายในเซลล์ (cell signaling pathway) มีผลทำให้เกิดความเสียหายของเซลล์และกระตุ้นการสร้าง inflammatory mediatorsเพิ่มมาก ขึ้น (Li et al., 2003; Donaldson and Stone, 2003)

โลหะหนักซิลเวอร์ (Silver) เกิดขึ้นในสภาพแวดล้อมแบบต่างๆ ส่วนใหญ่เกิดขึ้นในรูปของแร่ที่ เกี่ยวข้องกับธาตุอื่นๆ ซิลเวอร์สามารถยับยั้งการเจริญเติบโตของจุลินทรีย์ เช่น E. coli (Sondi and Salopek-Sondi 2004; Ruparelia et al., 2008; Choia et al., 2008; Rai et al., 2009) โลหะหนักซิล เวอร์สามารถผ่านเข้าสู่ปอด ระบบทางเดินหายใจ เยื่อหุ้มระบบสืบพันธุ์ และผิวหนัง จากการศึกษาของ Takenaka และคณะ พบว่าหลังจากการให้หนูแรทสูดดมเอาอนุภาคของซิลเวอร์เข้าสู่ร่างกาย พบการ กระจายของอนุภาคซิลเวอร์นาโนในกระแสเลือดและพบสะสมของซิลเวอร์นาโนในอวัยวะต่างๆเช่น ปอด ต่อมน้ำเหลืองขั้วปอด ตับ ไต หัวใจและสมอง มีรายงานความเป็นพิษของโลหะหนักซิลเวอร์เมื่อมนุษย์ ได้รับซิลเวอร์ในระยะเวลาที่นาน พบว่าทำให้เกิดโรค Argyria หรือ Argyrosis ลักษณะของโรคคือมีการ เพิ่มเม็ดสี (Pigment) ที่ผิวหนัง เล็บ ตา เยื่อเมือก หรือในอวัยวะภายในต่าง ๆ ซึ่งเกิดจากการสะสมของ ซิลเวอร์ (Luoma, 2008) ในสัตว์น้ำ Morgan และคณะ (1997) พบว่าซิลเวอร์ไอออนขัดขวาง กระบวนการขนส่ง Na และ Cl ที่เหงือกของปลาเรนโบว์เทราซ์ (rainbow trout)

ซิลเวอร์นาโน (Silvernano) เป็นนวัตกรรมใหม่ทางนาโนเทคโนโลยีที่มีความสำคัญต่อการ นำไปใช้ในอนาคต เนื่องจากคุณสมบัติของซิลเวอร์ที่สามารถยับยั้งการเจริญของจุลชีพต่าง ๆ เช่น แบคทีเรียแกรมบวกและแกรมลบหลายชนิด (Luoma, 2008) ซิลเวอร์นาโนจึงเป็นเทคโนโลยีที่ได้รับ ความสนใจเป็นอย่างมากในธุรกิจเกี่ยวกับความสะอาด ผลิตภัณฑ์อุปโภค บริโภคต่าง ๆ จากคุณสมบัติ ยับยั้งการเจริญของจุลชีพของดังกล่าวซิลเวอร์นาโนจึงถูกนำมาดัดแปลงเพื่อใช้ในผลิตภัณฑ์ทางด้าน การแพทย์ เช่น ผ้าพันแผลซิลเวอร์นาโนเพื่อป้องกันการติดเชื้อ รวมทั้งทางด้านเวชสำอางซึ่งพบว่าใน ้ ปัจจุบันมีผลิตภัณฑ์ด้านเวชสำอางที่มีส่วนผสมของซิลเวอร์นาโนออกวางจำหน่ายเป็นจำนวนมาก ทั้งรูป ของเครื่องสำอางบำรุงผิวหรือนำมาใช้ในรูปแบบของสเปรย์สำหรับระงับกลิ่นของร่างกาย ในวงการทาง สัตวแพทย์ก็พบว่ามีการใช้ผลิตภัณฑ์สเปรย์สำหรับระงับกลิ่นลักษณะดังกล่าวในการขจัดกลิ่นทั้งในสุนัข และแมวเป็นจำนวนมากเช่นกัน ดังนั้นความเสี่ยงในการสัมผัสกับอนุภาคซิลเวอร์นาโนทางการหายใจ จากการฟุ้งกระจายของอนุภาคซิลเวอร์นาโนในอากาศและสิ่งแวดล้อมจึงมีโอกาสเพิ่มมากขึ้นใน ชีวิตประจำวัน ซึ่งไม่นับถึงความเสี่ยงจากการสัมผัสโดยตรงของบุคลากรในส่วนของสายงานวิจัยเช่น นักวิทยาศาสตร์ หรือในส่วนของอุตสาหกรรมที่เกี่ยวข้องกับผลิตนาโนเทคโนโลยี เช่น คนงานที่มีโอกาส ในการสัมผัสค่อนข้างสูงมาก การสัมผัสต่ออนุภาคซิลเวอร์นาโนดังกล่าวอาจจะส่งผลกระทบต่อสุขภาพ ของมนุษย์และสัตว์ได้มากน้อยเพียงใดนั้นยังต้องมีการศึกษาทางด้านพิษวิทยา พยาธิกำเนิด และ ผลกระทบที่มีสิ่งมีชีวิต ซึ่งการศึกษาดังกล่าวในปัจจุบันยังไม่ชัดเจนและครอบคลุม

ดังนั้นเพื่อความปลอดภัยทั้งต่อตัวผู้ผลิต ผู้วิจัย ผู้บริโภค และสิ่งแวดล้อม การสร้างมาตรการใน การควบคุมด้านความปลอดภัยให้กับผู้ที่เกี่ยวข้องทั้งหมดรวมทั้งสิ่งแวดล้อมจึงเป็นสิ่งจำเป็นและควร ดำเนินการไปพร้อม ๆกับการพัฒนาทางด้านนาโนเทคโนโลยี งานวิจัยครั้งนี้จึงมีจุดมุ่งหมายเพื่อที่จะ ศึกษาถึงผลกระทบและความเป็นพิษที่อาจจะเกิดขึ้นเมื่อได้สัมผัสกับอนุภาคซิลเวอร์นาโนผ่านระบบ ทางเดินหายใจในสัตว์ทดลอง โดยข้อมูลที่ได้จะเป็นประโยชน์ในการวิจัยทางด้านสาธารณสุขและ ทางด้านสิ่งแวดล้อมต่อไป

เอกสารอ้างอิง

- Barrena, R., Casals, E., Colón, J. and Font, X., Sánchez, A. and Puntes, V. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere. 75: 850–857.
- Brown, J.S., Zeman, K.L. and Bennett, W.D. 2002. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med. 166: 1240-1247.
- Choia, O., Dengb, K.K., Kimc, N.J., Ross Jr.L, Surampallie, R.Y. and Hua, Z. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Rearch. 42: 3066 –3074.
- Donaldson, K. and MacNee, W. 2001. Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int J Hyg Environ Health. 203: 411-415.
- Donaldson, K. and Stone, V. 2003. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann 1st Super Sanita. 39: 405-410.
- Framton, M.W. 2001. Systemic and cardiovascular effects of airway injury and inflammation: Ultrafine particle exposure in humans. Environ Health Perspect. 109: 529-532.
- Galloway, T.S., Brown, R.J., Browne, M.A., Dissanayake, A., Lowe D. and Jones M.B. 2004.

 A multibiomarker approach to environmental assessment. Environ Sci Technol. 38: 1723–1731.
- Gianutsos, G., Morrow, G.R. and Morris, J.B. 1997. Accumulation of manganese in rat brain following intranasal administration. Fundam Appl Toxicol. 37: 102-105.
- Hussin, S.M. and Schlager, J.J. 2009. Toxicologicl highlight safety evluation of silver nanoparticles: Inhalation model for chronic exposure. Toxicological Science. 108(2): 223-224.
- Hunter, D.D. and Dey, R.D. 1998. Identification and neuropeptide content of trigerminal neurons innervating the rat nasal epithelium. Neurosciences. 83:591-599.
- Kim, S., Lim, Y.S., Soltesz, E.G., De Grand, A.M., Lee, J. and Nakayama, A. 2004. Near infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnicol. 22(1): 93-97.
- Kreyling, W.G. and Scheuch, G. 2000. Clearance of particles deposited in the lungs. In: Particle-lung interactions. Marcel Dekker Inc. New York. p.323-376.
- Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C. And Sempf, J. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damge. Environ Health Perspect. 111: 455-460.
- Livingstone, D.R. 2001. Contaminant-stimulated reactive oxygen species production and

- oxidative damage in aquatic organisms. Mar. Pollut. Bull. 42: 656-666.
- Luoma, S. N. 2008. Silver Nanotechnologies and the Environment: Old problems or new challenges?. Project on Emerging Nanotechnologies is Supported. The Pew Charitable Trusts. 66 pp.
- Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K, Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., and Warheit, D.B. 2006. Safe handling of nanotechnology. Nature. 444: 267–269.
- Morgan, I., Henry, R., Wood, C., 1997. The mechanism of acute silver nitrite toxicity in freshwater rainbow trout Oncorhynchus nykiss is inhibition of gill Na+ and Cl_ transport. Aquatic Toxicology 38, 145-163.
- Moore, M.N. 2006. Do nanopartocles present ecotoxicoloicl risks for the health of the aquatic environment? Environ. Int. 32: 967-976.
- Nemmar, A., Vanbiloeh, H., Hoylaerts, H.F., Hoet, P.H., Verbruggen, A. and Nemery, B. 2001.
 Passage of inratrachelly instilled ultrafine particles fom the lung into the systemic circulation in hamster. Am. J. Respir. Crit. Care. Med. 164: 1665-1668.
- Oberdorster, G., Morrow, P.E. and Spurny, K. 1988. Size dependent lymphatic short term clearance of amosite fibers in the lung. Ann Occup Hyg. 32:149-156.
- Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein , R. and Kreling, W. 2004.

 Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 16(6/7): 437-445.
- Pettinen, P., Timonen, K.L., Tittanen, P., Mirme, A. Ruuskanen, J. and Pekkanen, J. 2001.

 Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur Resp J. 17:428-435.
- Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances. 27: 76–83.
- Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P. and Mukherji, S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia. 4: 707–716
- Shimada, A., Kawamura, N., Okajima, M., Kaewamatawong, T., Inoue, H. and Morita, T.2006.

 Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxico Pathol. 34: 949-957.
- Sondi, T., Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negaive bacteria. J. Colloid Interface Sci. 275: 177-182.
- Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A. Heinzman, U., Schramel, P. and Heyder. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health.109: 547-551.

- Warheit, D.B. 2004. Nanoparticles: Health impacts? Material Today: Dupont company, Wilmington,de. 32-35.
- Yamago, S., Tokuyama, H., Nakamura, E., Kikuchi, K., Kananishi, S. and Sueki, K. 1995. In ivo biological behavior of a water miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol. 2: 385-389.

2. วัตถุประสงค์ของโครงการ

- 1.เพื่อศึกษาถึงความเป็นพิษต่อระบบทางเดินหายใจของคอลลอยด์อนุภาคนาโนของเงินใน โดยการสอดท่อเข้าสู่ปอด
- 2.ศึกษาพยาธิกำเนิดของความเป็นพิษต่อระบบทางเดินหายใจของคอลลอยด์อนุภาคนาโนของเงินใน

3. ระเบียบวิธีวิจัย

3.1 <u>สัตว์ทดลอง</u>

หนูไมซ์ (ICR mice) อายุ 7-8 สัปดาห์ เพศผู้ น้ำหนักประมาณ 28-35 กรัม เลี้ยงในกรงๆละ 2 ตัว ในห้องที่ควบคุมอุณหภูมิ 25°C ภายใต้แสงสว่าง-มืด (dark-light cycle) 12 ชม.ต่อวัน และเลี้ยงหนู ด้วยอาหารเม็ด (commercial diet; CP mice feed 082) ให้อาหารและน้ำไม่จำกัดในทุกกลุ่มทดลอง เป็นเวลา 5 วัน เพื่อปรับสภาพร่างกาย (acclimatization) จากนั้นทำการชั่งน้ำหนักเพื่อให้น้ำหนัก เริ่มต้นในแต่ละ replication มีน้ำหนักเฉลี่ยใกล้เคียงกันแล้วจึงเริ่มทำการทดลอง

- 3.2 <u>การเตรียมสารคอลลอยด์อนุภาคนาโนของเงิน</u> (colloidal nanosilver particles)
 - 3.2.1 ทำการสังเคราะห์โดยวิธีรีดักชันด้วยสารเคมี (chemical reduction method)
 - 3.2.2 ทำการรีดิวซ์เกลือของเงินด้วยโซเดียมโบโรไฮไดรด์
 - 3.2.3 ทำให้อนุภาคที่ได้มีขนาดเล็กในสภาวะที่เหมาะสมโดยการหยดจะได้อนุภาคที่มีการ กระจาย ของขนาดอนุภาคที่ต้องการ
 - 3.2.4 เตรียมความเข้มข้นของอนุภาคในขนาดต่างตามที่ต้องการ

3.3 <u>แผนการทดลอง</u>

- 3.3.1 การทดลองศึกษาผลกระทบของความเข้มข้น (Dose response experiment) โดยการแบ่งกลุ่มหนู ทดลองเป็น 6 กลุ่ม ๆละ 5 ตัว ดังนี้
 - กลุ่มที่ 1 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น (distilled water) ซึ่งใช้เป็นตัวทำ ละลาย เข้าสู่ปอด
 - กลุ่มที่ 2 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงิน (colloidal nanosilver particle) ความเข้มข้น 1 ppm ขนาด 50 **µ**I เข้าสู่ปอด
 - กลุ่มที่ 3 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงิน (colloidal nanosilver particle) ความเข้มข้น 10 ppm ขนาด 50 **µ**l เข้าสู่ปอด

- กลุ่มที่ 4 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงิน (colloidal nanosilver particle) ความเข้มข้น 100 ppm ขนาด 50 **µ**l เข้าสู่ปอด
- กลุ่มที่ 5 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงิน (colloidal nanosilver particle) ความเข้มข้น 1,000 ppm ขนาด 50 **µ**I เข้าสู่ปอด
- กลุ่มที่ 6 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงิน (colloidal nanosilver particle) ความเข้มข้น 10,000 ppm ขนาด 50 **µ**l เข้าสู่ปอด

วิธีการสอดท่อผ่านเข้าสู่หลอดลม (Intratracheal instillation) ของหนูทดลอง

- 1. ทำการวางสลบด้วยการฉีด Xylazine ขนาด 3 mg/kg และ Ketamin ขนาด 75 mg/kg เข้าทางช่องท้อง (intraperitoneal injection)
- 2. จากนั้นทำการสอดท่อพลาสติกโค้งขนาดเล็กผ่านทางปากของหนูเข้าสู่หลอดลม
- 3. ค่อย ๆหยดสารขนาดที่ต้องการเข้าสู่หลอดลม
- 4. จับหนูให้อยู่ในท่าตัวตั้งตรงประมาณ 15 นาที จากนั้นจึงนำเข้าไปไว้ในกรงเพื่อรอฟื้นจาก ยาสลบ

การศึกษาทางมหพยาธิวิทยาและพยาธิวิทยาคลินิก

- 1. สังเกตพฤติกรรมและอาการของสัตว์ทดลองเป็นเวลา 1 3 7 15 วัน พร้อมทั้งชั่งน้ำหนักทุก วันตลอดการทดลอง
- 2. ทำการการุณฆาตโดยใช้การดมยาสลบ isoflurane (Baxter, Pearto Rico) เกินขนาด ใน วันที่ 3 ของการทดลอง
- 3. ทำการเจาะเก็บเลือดจากหัวใจ ใส่สารป้องกันการแข็งตัวชนิด Heparin ปั่นแยกซีรัม และ เก็บรักษาสภาพ ในดู้แช่ -20 °C เพื่อนำไปตรวจค่า ตรวจ blood chemical parameters โดย วัดระดับการทำงานของเอนไซม์ตับ ได้แก่ asparate aminotransferase (AST) วัดการ ทำงานของไต จากค่า serum creatinine วัดระดับ cholesterol และ total protein วัดระดับ total white blood cell (WBC), red blood celll (RBC), platelet, total lymphocytes, granulocytesและ monocytes
- 4. ทำการชันสูตรซากหนูทดลองในแต่ละกลุ่ม เพื่อศึกษารอยโรคทางมหพยาธิวิทยา ถ่ายภาพและบันทึกรอยโรคที่สำคัญ
- 5. ทำการเก็บตัวอย่างอวัยวะ ได้แก่ ปอด ต่อมน้ำเหลืองขั้วปอด หัวใจ ตับ และไต แช่ใน ฟอร์มาลิน 10 %

<u>การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยา</u>

- 1. นำตัวอย่างอวัยวะที่ได้ นำมาผ่านขั้นตอนการเตรียมตัวอย่างทางฮิสโตเทคนิค และฝังใน บล็กคพาราฟิน
- 2. นำบล็อคพาราฟินไปตัดให้มีความหนาประมาณ 3 -5 um แล้วนำมาแผ่บนสไลด์แก้ว
- 3. นำสไลด์ที่ตัดได้ไปย้อมสี Hematoxylin & Eosin
- 4. ศึกษารอยโรคทางจุลพยาธิวิทยาด้วยกล้องจุลทรรศน์แสงสว่างธรรมดา

การศึกษาพยาธิกำเนิด และการตอบสนองทางปฏิกิริยาภูมิคุ้มกันด้วยเทคนิคอิมมูโนพยาธิวิทยา

1. นำตัวอย่างอวัยวะเช่น ปอดและต่อมน้ำเหลืองบริเวณขั้วปอดในบล็อกพาราฟิน ตัดให้มีความ หนาประมาณ 3 -5 um เพื่อย้อมแอนติบอดี้ที่ต้องการศึกษา ดังตารางด้านล่าง

Primary antibody	Purpose
1. Laminin	marker of pulmonary basement
	membranes injury
2. Tumor necrotic factor-alpha (TNF- C)	marker of proinflammatory cytokines
	involved in acute inflammation and tissue
	injury
3. Interleukin 1- beta (IL-1β)	marker of proinflammatory cytokines
	involved in acute inflammation and tissue
	injury
4. Cu/Zn Superoxide dismutase (SOD)	marker of primary antioxidant enzymes
5. Metallothionine (MT)	marker of protein that regulate essential
	metals and detoxification of non-essential
	metal ions

ตารางที่ 1 แสดงชนิดของแอนติบอดี้และจุดประสงค์ที่ใช้ในการศึกษา

- 2. หลังจากผ่านขบวนการ deparaffinization
 - 2.1 สำหรับสไลด์ตัวอย่างที่จะย้อม Laminin จะจุ่มสไลด์ในสาร proteinase K เป็นเวลา 30 นาที ที่อุณหภูมิ 39 °C (for detection of laminin)
 - 2.2 สำหรับสไลด์ตัวอย่างที่จะย้อม TNF-α IL-1β Cu/Zn SOD และ MT จะจุ่มสไลด์ในสาร citrate buffer solution pH= 5.4-6.0 ที่ อุณหภูมิ 121 °C โดยการให้ ความร้อนด้วย autoclave เป็นเวลา 20 นาทีและนำสไลด์ดังกล่าว ใส่ใน microwave ที่ 700 W เป็นเวลา 5 นาที
- 3. นำสไลด์จุ่มใน 3% ${
 m H_2O_2}$ ผสม methanol เป็นเวลา 30 นาที ที่อุณหภูมิห้อง
- นำสไลด์จุ่มใน 10% normal goat serum สำหรับการย้อม laminin TNF (and Cu/Zn SOD) แล้วนำเข้าตู้ microwave ที่ 250 w เป็นเวลา 5 นาที ส่วนสไลด์ที่ย้อม IL-1β และ MT ให้จุ่มใน 1% bovine serum albumin เป็นเวลา 30 นาที ที่อุณหภูมิ 37°C
- 5. นำสไลด์มาหยดแอนติบอดี้ที่ 1 ที่จำเพาะ (Primary antibody) เป็นเวลา 12 ชั่วโมง ด้วย ความเข้มข้นดังตารางด้านล่าง

Primary antibody	Dilution	
1. Laminin	1:200	
2. Tumor necrotic factor-alpha	1:15	
3. Interleukin 1- beta	1:200	
4. Cu/Zn Superoxide dismutase	1:200	
5. Metallothionine	1:50	

ตารางที่ 2 แสดงความเข้มข้นของแอนติบอดี้ที่ใช้ในการศึกษา

- 6. นำสไลด์ที่ผ่านการย้อมด้วย Primary antibody มาหยดด้วย แอนติบอดี้ที่ 2 (Secondary antibody) คือ Biotinylated anti-mouse IgG antibody และ EnVision polymer
- 7. จากนั้นนำมาหยดด้วยสารทำให้เกิดสี 3,3'-diaminobenzidine tetrahydrochloride (DAB)
- 8. ทำการย้อมทับด้วยสี Mayer's hematoxylin เป็นเวลา 30 วินาที

การย้อมออโตเมทัลโลกราฟฟี (Autometallography; AMG)

- 1. นำตัวอย่างอวัยวะเช่น ปอดและต่อมน้ำเหลืองบริเวณขั้วปอดในบล็อกพาราฟิน ตัดให้มีความ หนาประมาณ 3 -5 um
- 2. หลังจากผ่านขบวนการ deparaffinization นำสไลด์ตัวอย่างจุ่มในสาร 1% potassium cyanide เป็นเวลา 2 ชั่วโมง จากนั้นล้างด้วยน้ำกลั่น
- 3. นำสไลด์จุ่ม ใน 3% ${
 m H_2O_2}$ ผสม methanol เป็นเวลา 30 นาที ที่อุณหภูมิห้อง
- 4. นำสไลด์จุ่มในสาร physical developer ซึ่งมีส่วนประกอบของ 50% Arabic gum 50% citrate buffer 5.6% hydroquinone และ 17% AgNO $_3$ เป็นเวลา 1 ชั่วโมง ในเครื่อง automatic shaker ที่อุณหภูมิ 26 $^{\circ}$ C
- 5. นำสไลด์มาจุ่มใน 10% sodium thiosulfate และ Farmer's solution ซึ่งมีส่วนประกอบของ 20% sodium thiosulfate และ 7.5% potassium ferric cyanide จนกว่าสไลด์ตัวอย่างจะ สะอาด จากนั้นล้างด้วยน้ำประปา
- 6. ทำการย้อมทับด้วยสี Mayer's hematoxylin เป็นเวลา 30 วินาที
- 3.3.2 การทดลองศึกษาผลกระทบของระยะเวลาภายหลังได้รับการสัมผัส (Time effect experiment) โดยการแบ่งกลุ่มหนูทดลองเป็น 10 กลุ่ม ๆละ 10-12 ตัว ดังนี้
 - กลุ่มที่ 1 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำกา-รุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 1 ของการทดลอง
 - กลุ่มที่ 2 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงินความเข้มขันที่ 100 ppm ขนาด 50 µเ เข้าสู่ปอด แล้วทำการุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 1 ของการ ทดลอง

- กลุ่มที่ 3 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำกา-รุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 3 ของการทดลอง
- กลุ่มที่ 4 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงินความเข้มขันที่ 100 ppm ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำการุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 3 ของการ ทดลอง
- กลุ่มที่ 5 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำกา-รุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 7 ของการทดลอง
- กลุ่มที่ 6 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงินความเข้มข้นที่ 100 ppm ขนาด 50 µเ เข้าสู่ปอด แล้วทำการุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 7 ของการ ทดลอง
- กลุ่มที่ 7 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำกา-รุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 15 ของการทดลอง
- กลุ่มที่ 8 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงินความเข้มขันที่ 100 ppm ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำการุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 15 ของการ ทดลอง
- กลุ่มที่ 9 กลุ่มหนูควบคุมปกติ ได้รับการป้อนด้วยน้ำกลั่น ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำกา-รุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 30 ของการทดลอง
- กลุ่มที่ 10 กลุ่มหนูที่ได้รับการป้อนสารคอลลอยด์อนุภาคนาโนของเงินความเข้มข้นที่ 100 ppm ขนาด 50 **µ**I เข้าสู่ปอด แล้วทำการุณฆาต ศึกษาและเก็บตัวอย่างในวันที่ 30 ของการ ทดลอง

การศึกษาทางมหพยาธิวิทยาและพยาธิวิทยาคลินิก

- 1. สังเกตพฤติกรรมและอาการของสัตว์ทดลองเป็นเวลา 1 3 7 15 และ 30 วัน พร้อมทั้งชั่ง น้ำหนักทุกวันตลอดการทดลอง
- 2. ทำการการุณฆาตโดยใช้การดมยาสลบ isoflurane (Baxter, Pearto Rico) เกินขนาด ใน วันที่ 1 3 7 15 และ 30 ของการทดลอง
- 3. ทำการเก็บตัวอย่างน้ำล้างปอดของหนูทดลองจำนวน 7-9 ตัวในแต่ละกลุ่ม นำน้ำล้างปอดที่ ได้ไปปั่นแยก ส่วนใส (BAL supernatant) และส่วนที่มีเซลล์ (BALF cells) เพื่อทำการศึกษา ต่อไป
- 5. ทำการชันสูตรซากหนูทดลองจำนวน 3 ตัวในแต่ละกลุ่ม เพื่อศึกษารอยโรคทางมหพยาธิ-วิทยา ถ่ายภาพและบันทึกรอยโรคที่สำคัญ พร้อมทั้งทำการเก็บตัวอย่างอวัยวะ ได้แก่ ปอด ต่อมน้ำเหลืองขั้วปอด หัวใจ ตับ และไต แช่ในฟอร์มาลิน 10 %

วิ<u>ธีการเก็บตัวอย่างน้ำล้างปอด</u>

- 1. ทำการการุณฆาตโดยใช้การดมยาสลบ isoflurane (Baxter, Pearto Rico) เกินขนาด
- 2. ทำการเปิดผ่าช่องอกและคอ เลาะเนื้อเยื่อและกล้ามเนื้อบริเวณรอบหลอดลม เพื่อทำการสอด เข็มขนาด 21 เข้าสู่หลอดลม ทำการยึดตัวเข็มกับหลอดลมด้วยด้ายสะอาด
- 3. ดูดน้ำกลั่น Phosphate buffer saline (PBS) 0.01 M ขนาด 1 ซีซี ด้วยไซลิงค์ลัวต่อเข้ากับ เข็มที่ยึดกับหลอดลม ค่อยๆเดิน PBS เข้าสู่ปอด ดูดเข้า-ออก ประมาณ 10 ครั้ง
- 4. ทำการล้างปอดจำนวน 3 ครั้ง แล้วเก็บน้ำที่ล้างปอดดังกล่าวใส่ในหลอดทดลอง แล้วเก็บในที่ เย็น
- 5. น้ำล้างปอดที่ได้ไปปั่นแยก โดยนำส่วนที่มีเซลล์ไปทำการนับจำนวนเซลล์ แยกแยะชนิดของ เซลล์ และนับเซลล์ที่มีชีวิต และน้ำส่วนใสจะนำไปเก็บในตู้แช่ 80 °C เพื่อนำไปตรวจค่า ทางโปรตีน

<u>การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยา</u>

- 1. นำตัวอย่างอวัยวะที่ได้ นำมาผ่านขั้นตอนการเตรียมตัวอย่างทางฮิสโตเทคนิค และฝังใน บล็อคพาราฟิน
- 2. นำบล็อคพาราฟินไปตัดให้มีความหนาประมาณ 3 -5 um แล้วนำมาแผ่บนสไลด์แก้ว
- 3. นำสไลด์ที่ตัดได้ไปย้อมสี Hematoxylin & Eosin
- 4. ศึกษารอยโรคทางจุลพยาธิวิทยาด้วยกล้องจุลทรรศน์แสงสว่างธรรมดา

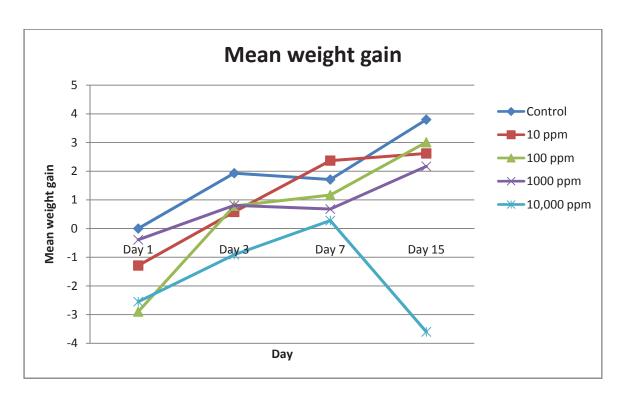
3.4 การเก็บข้อมูลและการวิเคราะห์ข้อมูลทางสถิติ

ข้อมูลจากการศึกษารอยโรคทั้งทางมหพยาธิวิทยา พยาธิวิทยาคลินิกและจุลพยาธิวิทยา มา เปรียบเทียบระดับความรุนแรงระหว่างกลุ่มทดลองและกลุ่มที่ได้รับคอลลอยด์อนุภาคนาโนของเงิน โดย จะถูกประเมินด้วยการใช้สถิติเชิงพรรณนา สำหรับข้อมูลจากการวิเคราะห์น้ำล้างปอด จะแสดงค่าอยู่ใน รูปค่าเฉลี่ยและความคลาดเคลื่อนมาตรฐาน (means ± standard error;SE) จะถูกประเมินด้วยการใช้ สถิติแบบ Student's t-test โดยมีค่า p value น้อยกว่า 0.05 (p< 0.05).

4. ผลการทดลอง

4.1 การทดลองศึกษาผลกระทบของความเข้มข้น (Dose response experiment)

4.1.1 ผลการตรวจอาการแสดงทางคลินิก


ผลการตรวจอาการแสดงทางคลินิกแบบเฉียบพลันภายใน 24 ชม. ด้วยขนาดความเข้มข้นของ สารที่มากที่สุดที่ระดับ 10,000 ppm ค่าความเข้มข้นของสารที่ทำให้สัตว์ตายหรือแสดงความเป็นพิษ 50 เปอร์เซนต์ (Lethal Dose 50; LD50 หรือ Toxic dose 50; TD50) พบว่าไม่มีการตายของสัตว์ทดลอง ทั้งในกลุ่มทดลองและกลุ่มควบคุม อาการที่แสดงภายใน 3 ชั่วโมงแรกพบการตอบสนอง ขนฟูและลด การกินอาหารและน้ำ และไม่พบอาการแสดงที่ผิดปกติหลังจาก 3 ชั่วโมง จนกระทั่งสิ้นสุดการทดสอบที่ 15 วัน

4.1.2 ผลของน้ำหนักตัวที่เพิ่มขึ้น

การป้อนสาร Colloidal nanosilver particle เข้าสู่ปอดของหนูทดลองมีผลต่อการกินน้ำและ อาหารในเวลา 24 ชั่วโมงแรก ทำให้น้ำหนักตัวลดลงกว่าเมื่อเริ่มการทดลอง ทั้งกลุ่มควบคุมและกลุ่ม ทดลอง หลักจากนั้นในวันที่ 3 7 และ15 หนูทดลองมีน้ำหนักตัวเพิ่มขึ้นตามปกติ ยกเว้นในกลุ่มทดลอง 10,000 ppm พบน้ำหนักตัวเฉลี่ยยังลดลงจนกระทั้งวันที่ 15 โดยอาจเนื่องมาจากเกิดพยาธิสภาพที่ปอด อย่างรุนแรงส่งผลต่อสุขภาพและการกินอาหารและน้ำของหนู ดังแสดงในตารางที่ 3 และ รูปที่ 1

Group	Day 1	Day 3	Day 7	Day 15
Control	-1.88	1.93	1.71	3.8
10 ppm	-1.29	0.58	2.37	2.62
100 ppm	-2.89667	0.79	1.17	3.01
1000 ppm	-0.39	0.81	0.68	2.17
10,000 ppm	-2.55	-0.91	0.28	-3.60

ตารางที่ 3 แสดงน้ำหนักตัวเฉลี่ยที่เพิ่มขึ้น (Mea weight gain) ในแต่ละช่วงเวลา

รูปที่ 1 แสดงน้ำหนักตัวเฉลี่ยที่เพิ่มขึ้น (Mean weight gain) ในแต่ละช่วงเวลา

4.1.3 ผลค่าทางโลหิตวิทยาและค่าเคมีในเลือด

ผลการตรวจค่าทางโลหิตวิทยาและค่าเคมีในเลือด (ตารางที่ 4 และ 5) เปรียบเทียบระหว่างกลุ่ม ทดลอง และระหว่างวันที่ทำการทดลอง พบว่าวันที่ 1 และ 3 ค่าเกล็ดเลือดและเม็ดเลือดขาวของกลุ่ม ทดลอง 10-10,000 ppm มีค่าเพิ่มขึ้นเมื่อเทียบกับกลุ่มควบคุม แต่ไม่มีความแตกต่างอย่างมีนัยสำคัญ ทางสถิติ การเพิ่มขึ้นอาจจะเกิดเนื่องจากร่างกายตอบสนองต่อการได้รับ AgNPs เข้าสู่ระบบทางเดิน หายใจ หลังจากนั้นในวันที่ 7 ค่าดังกล่าวได้ลดลงใกล้เคียงกับค่าในกลุ่มควบคุม และลดลงจนอยู่ในระดับ เดียวกับกลุ่มควบคุมในวันที่ 15 ของการทดลอง ดังแสดงในตารางที่ 4

ตารางที่ 4 แสดงค่าทางโลหิตวิทยาของหนูทดลอง Mean ± SE

1 2 2 1)	J					
		RBC (x10 ⁶)	ЧР	Hct	MCV	МСН	МСНС	PLT (x10³)	WBC
	Control	6.5 ± 0.577	11.93 ± 0.77	37 ± 2.08	58 ± 3.5	17.67 ± 0.88	31.34 ± 0.88	750.67 ± 138.36	1433.34 ± 218.58
Day 1	10 ppm	5.43 ± 0.167	9.97 ± 0.357	32 ± 1.16	58.33 ± 0.33	18 ± 0	30.33 ± 0.33	609 ± 33.05	1666.67 ± 145.3
	100 ppm	6.22 ± 0.76	11.68 ± 1.29	33.5 ± 3.48	54 ± 2	19.25 ± 1.11	35.5 ± 0.87	1105.25 ± 148.98	2725 ± 295.45
	1,000 ppm	6.4 ± 0.37	11.85 ± 0.43	34 ± 0.81	53.25 ± 2.49	18.5 ± 1.19	35 ± 0.7	1242.25 ± 243.35	2675 ± 335.09
	10,000 ppm	6.86 ± 0.73	11.5 ± 1.25	33.33 ± 3.17	49 ± 0.57	16 ± 0	33.33 ± 0.66	667.33 ± 121.21	2400 ± 305.5
	Control	6.56 ± 0.73	11.2 ± 0.66	32.66 ± 1.45	49.66 ± 3.71	17 ± 1.52	34 ± 0	866 ± 27.97	1866.66 ± 290.59
Day 3	10 ppm	7.26 ± 0.2	15 ± 0	43.33 ± 0.88	58.66 ± 0.33	20.66 ± 0.33	35 ± 0.57	1452.33 ± 89.34	2766.66 ± 145.29
	100 ppm	6.86 ± 0.38	14.33 ± 0.66	41.66 ± 1.85	60 ± 0.57	20.33 ± 0.33	34 ± 0	1588.66 ± 203.79	2933.33 ± 617.34
	1,000 ppm	6.525 ± 0.56	12.25 ± 1.1	36.25 ± 3.4	55.5 ± 2.95	18.75 ± 0.94	34 ± 0.4	948.5 ± 311.58	2525 ± 630.31
	10,000 ppm	6.23 ± 0.29	12.66 ± 0.33	36.66 ± 1.33	58.66 ± 0.88	20 ± 0.57	34.66 ± 0.66	1419 ± 30.02	3200 ± 346.41
	Control	6.74 ± 0.34	12.25 ± 0.25	37.25 ± 1.97	55.125 ± 3.07	18.45 ± 0.89	33.47 ± 0.88	821.5 ± 196.35	1750 ± 119.02
Day 7	10 ppm	6 ± 0.17	12.66 ± 0.33	36 ± 1.15	58 ± 0.57	20.66 ± 0.33	35.33 ± 0.33	1565 ± 83.72	2066.66 ± 202.75
	100 ppm	6.76 ± 0.12	13.66 ± 0.33	38.33 ± 0.88	56.33 ± 0.33	20 ± 0	36 ± 0	1265 ± 98.89	3100 ± 1059.87
	1,000 ppm	6.84 ± 0.54	13.25 ± 0.75	37 ± 2.04	55 ± 2.12	19.25 ± 0.85	35.5 ± 0.64	1185.75 ± 109.34	2625 ± 75
	10,000 ppm	6.23 ± 0.39	12.33 ± 0.88	35.66 ± 2.18	56.66 ± 0.33	20.33 ± 0.33	36.33 ± 0.33	1141 ± 62.69	3433.33 ± 120.18
	Control	7.94 ± 0.18	13.775 ± 0.42	41.25 ± 1.79	51.75 ± 1.79	17 ± 0.4	32.75 ± 0.62	892.5 ± 123.86	2550 ± 184.84
Day 15	10 ppm	7.53 ± 0.17	13.53 ± 0.44	43.66 ± 1.2	57.66 ± 0.88	17.33 ± 0.33	30.33 ± 0.33	804 ± 77.56	1833.33 ± 284.8
	100 ppm	6.93 ± 0.51	12.83 ± 0.64	40.66 ± 1.45	59 ± 2.51	18 ± 0.57	31 ± 0.57	774 ± 50.89	3366.66 ± 1618.98
	1,000 ppm	7.12 ± 0.21	12.4 ± 0.44	39.25 ± 1.31	54.75 ± 1.49	17 ± 0.4	31 ± 0.57	804 ± 63.72	2625 ± 361.42
	10,000 ppm	7.32 ± 0.23	13.13 ± 0.46	41 ± 1.52	56 ± 0.57	17.66 ± 0.33	31.33 ± 0.33	793.33 ± 24.52	2566.66 ± 333.33

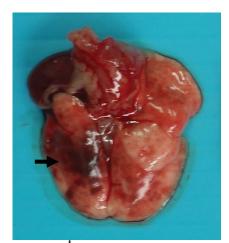
ตารางที่ 5 แสดงค่าเคมีในเลือดของหนูทดลอง

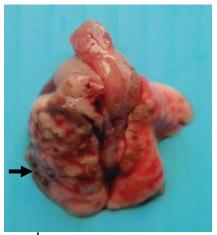
	Group	Creatinine	Cholesterol	SGPT	Total protein
Day 1	Control	0.5 ± 0	103.67 ± 9.02	12 ± 1.528	4.73 ± 0.22
	100 ppm	0.367 ± 0.03	92.67 ± 12.45	12.67± 5.04	3.93 ± 0.33
	10,000 ppm	0.73 ± 0.23	121.67 ± 3.18	25.33 ± 13.35	5.13 ±0.1 2
Day 3	Control	0.8 ± 0.3	120 ± 19.08	12.33 ± 0.88	4.73 ± 0.23
	100 ppm	0.5 ± 0	100.67 ± 0.33	19.33 ± 4.37	4.6 ± 0.058
	10,000 ppm	0.53 ± 0.03	117 ± 5.03	12.67 ± 1.20	4.77 ± 0.12
Day 7	Control	0.53 ± 0.03	108.33 ± 5.84	15 ± 3.6	4.4 ± 0.23
	100 ppm	0.67 0.06	117 ± 8	23.33 ± 10.59	4.67 ± 0.08
	10,000 ppm	0.57 ± 0.03	107.33 ± 4.84	14 ± 2.08	4.53 ± 0.03
Day 15	Control	1 ± 0.26	126.33 ± 2.19	20.67 ± 3.93	5.2 ± 0.25
	100 ppm	0.7 ± 0.15	109.66 ± 4.18	16 ± 1.53	4.6 ± 0.06
	10,000 ppm	0.6 ± 0.06	109.67 ± 10.27	17 ± 7.2	5.27 ± 0.37

4.1.4 ผลทางมหพยาธิวิทยา

ผลการตรวจทางมหพยาธิวิทยาโดยการสังเกตด้วยตาเปล่า พบว่าในวันที่ 1 ปอดของกลุ่มที่ให้สาร 1,000 และ 10,000 ppm พบการกระจายของจุดและปึ้นสีเทาดำของคอลลอยด์อนุภาคนาโนของเงินกระจายอยู่ ในเนื้อปอด ดังแสดงในรูปที่ 2 ส่วนในวันที่ 3 7 15 พบการอักเสบของเนื้อปอดเป็นหย่อมกระจายในเนื้อปอด โดยในกลุ่ม 10,000 ppm จะรุนแรงมากกว่ากลุ่ม 1,000 ppm ดังแสดงในรูปที่ 2.1 – 2.4

รูปที่ 2.1 แสดงการเปลี่ยนแปลงทางมหพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 1 ของการทดลอง


รูปที่ 2.1.1 กลุ่มควบคุม


รูป**ที่ 2.1.2** กลุ่ม 10 ppm

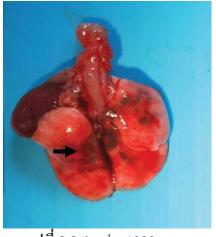
รูปท**ี่ 2.1.3** กลุ่ม 100 ppm

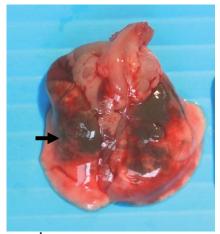
รูปท**ี่ 2.1.4** กลุ่ม 1000 ppm

รูปท**ี่ 2.1.5** กลุ่ม 10, 000 ppm

จากภาพพบว่าในกลุ่ม 10 ppm และ 100 ppm ไม่พบการเปลี่ยนแปลงใด ๆเมื่อเทียบกับกลุ่มควบคุม แต่ในกลุ่ม 1000 และ 10,000 ppm พบจุดและปึ้นสีเทาดำกระจายอยู่ในเนื้อปอด (ลูกศร)

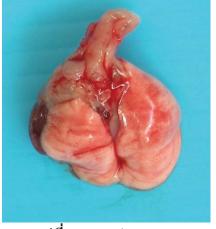
รูปที่ 2.2 แสดงการเปลี่ยนแปลงทางมหพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 3 ของการทดลอง


รูปที่ 2.2.1 กลุ่มควบคุม


ร**ูปที่ 2,2.2** กลุ่ม 10 ppm

รูปท**ี่ 2.2.3** กลุ่ม 100 ppm

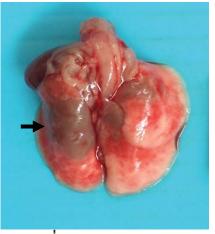
รูปท**ี่ 2.2.4** กลุ่ม 1000 ppm

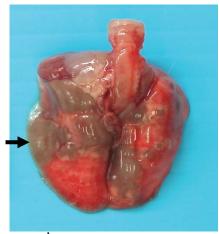


รูป**ที่ 2.2.5** กลุ่ม 10, 000 ppm

จากภาพพบว่าในกลุ่ม 10 ppm และ 100 ppm ไม่พบการเปลี่ยนแปลงใด ๆเมื่อเทียบกับกลุ่มควบคุม แต่ในกลุ่ม 1000 และ 10,000 ppm ยังพบจุดและปึ้นสีเทาดำกระจายอยู่ในเนื้อปอด (ลูกศร)

รูปที่ 2 .3 แสดงการเปลี่ยนแปลงทางมหพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 7 ของการทดลอง



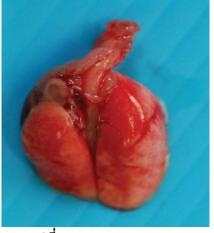

รูป**ที่ 2.3..2** กลุ่ม 10 ppm

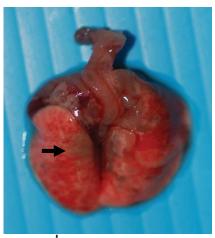
รูปท**ี่ 2.3.3** กลุ่ม 100 ppm

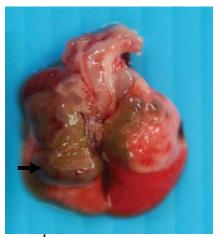
รูปที่ **2.3.4** กลุ่ม 1000 ppm

รูปท**ี่ 2.3 .5** กลุ่ม 10, 000 ppm

จากภาพพบว่าในกลุ่ม 10 ppm และ 100 ppm ไม่พบการเปลี่ยนแปลงใด ๆเมื่อเทียบกับกลุ่มควบคุม แต่ในกลุ่ม 1000 และ 10,000 ppm พบจุดและปึ้นสีเทาดำที่มีความเข้มของสีจางลงเมื่อเทียบกับวันที่ 1 และ 3 กระจายอยู่ในเนื้อปอด (ลูกศร)


รูปที่ 2.4 แสดงการเปลี่ยนแปลงทางมหพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 15 ของการทดลอง


รูปที่ 2.4.1 กลุ่มควบคุม


รูป**ที่ 2.4.2** กลุ่ม 10 ppm

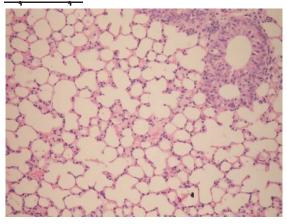
รูปท**ี่ 2.4.3** กลุ่ม 100 ppm

รูปท**ี่ 2.4.4** กลุ่ม 1000 ppm

ร**ูปที่ 2.4.5** กลุ่ม 10, 000 ppm

- จากภาพพบว่าในกลุ่ม 10 ppm และ 100 ppm ไม่พบการเปลี่ยนแปลงใด ๆเมื่อเทียบกับกลุ่มควบคุม แต่ในกลุ่ม 1000 และ 10,000 ppm พบการอักเสบและเนื้อตายกระจายอยู่ในเนื้อปอด(ลูกศร) โดยในกลุ่ม 10,000 ppm จะมีความรุนแรงมากกว่ากลุ่ม 1000 ppm

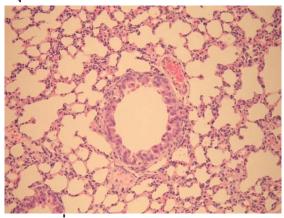
4.1.5 <u>ผลทางจุลพยาธิวิทยา</u>

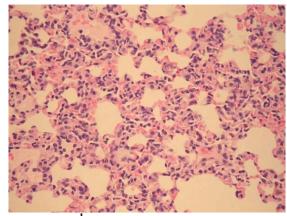

ผลการตรวจทางจุลพยาธิวิทยาโดยการย้อมสี H&E ในทุกวันที่สุ่มตัวอย่าง ในวันที่ 1 ของการทดลอง พบคอลลอยด์อนุภาคนาโนของเงิน ติดสีน้ำตาลเข้ม กระจายทั่วไปในเนื้อปอด และถูกเก็บสะสมในเซลล์แมค โครฟาจ (Macrophage) เซลล์เยื่อบุของถุงลมฝอย (Alveolar epithelium) พบการเพิ่มจำนวนขึ้นของเซลล์ ภายในถุงลมฝอย ในกลุ่มการทดลอง 100 1,000 และ 10,000 ppm พบการสะสมของเซลล์เม็ดเลือดขาวชนิด นิวโทรฟิล (neutrophil) เซลล์แมคโครฟาจที่ถูกกระตุ้น (active alveolar macrophages) และ เซลล์แมคโคร ฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงิน (Ag-NPs laden AMs) ในเนื้อเยื่อปอด โดยความรุนแรงของรอย โรคจะแปรผันตามความเข้มข้นของคอลลอยด์อนุภาคนาโนของเงิน (10,000 > 1,000 > 100) ดังแสดงในรูปที่ 3.1

ในวันที่ 3 ของการทดลอง เนื้อเยื่อปอดของกลุ่มที่ให้สาร 1,000 และ 10,000 ppm พบการอักเสบของ ปอดทั้งในส่วนของถุงลมฝอย (Alveoli) บริเวณรอบหลอดเลือด และหลอดลมฝอย (Bronchioles) พบการเพิ่ม จำนวนขึ้นของเซลล์น้ำเหลืองรอบ ๆ หลอดลมฝอยและรอบหลอดเลือด (Bronchiolar associated lymphoid tissue hyperplasia) ซึ่งรอยโรคดังกล่าวในกลุ่ม 10,000 ppm จะรุนแรงมากกว่ากลุ่ม 1,000 ซึ่งให้ผล สอดคล้องกับค่าเม็ดเลือดขาวที่มีแนวโน้มเพิ่มขึ้น นอกจากนี้ยังพบคอลลอยด์อนุภาคนาโนของเงิน ติดสี น้ำตาลเข้ม กระจายทั่วไปในเนื้อปอด และถูกเก็บสะสมในเซลล์แมคโครฟาจ (Macrophage) เซลล์เยื่อบุของถุง ลมฝอย (Alveolar epithelium) ส่วนในกลุ่มทดลอง 100 ppm พบรอยโรคเช่นเดียวกันแต่มีความรุนแรงใน ระดับปานกลาง สำหรับเนื้อเยื่อปอดของกลุ่ม 10 ppm พบเพียงการสะสมของคอลลอยด์อนุภาคนาโนของเงิน ในเซลล์แมคโครฟาจ (Macrophage) เซลล์เยื่อบุของถุงลมฝอย ซึ่งมีการกระจายน้อยกว่า และภาวะการคั่ง เลือดในระดับปานกลาง ดังแสดงในรูปที่ 3.2

ในวันที่ 7 ของการทดลอง พบการเสียสภาพของโครงสร้างของปอด (loss of lung architecture) การ ตายของเซลล์ การสะสมของเซลล์เม็ดเลือดขาวชนิดนิวโทรฟิลและลิมโฟไซต์ การเพิ่มขนาดและจำนวนของ เซลล์เยื่อบุของถุงลมฝอยชนิดที่ 2 (alveolar type II epithelium) รวมทั้งยังพบการสะสมของคอลลอยด์ อนุภาคนาโนของเงินและถูกเก็บสะสมในเซลล์แมคโครฟาจ กระจายทั่วไปในเนื้อปอดของกลุ่มกรทดลอง 1,000 และ 10,000 ppm ส่วนในกลุ่มทดลอง 100 ppm พบรอยโรคเช่นเดียวกันแต่มีความรุนแรงและการ กระจายตัวน้อยกว่ากลุ่ม 1,000 และ 10,000 ppm ส่วนกลุ่มการทดลอง 10 ppm พบภาวะการคั่งเลือดเพียง เล็กน้อย สำหรับในวันที่ 15 ของการทดลองยังคงพบรอยโรคและความรุนแรงเหมือนที่ปรากฏในวันที่ 7 ดัง แสดงในรูปที่ 3.2

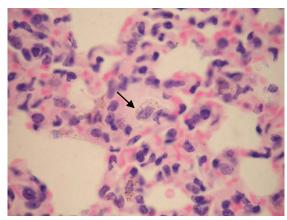
ในส่วนของรอยโรคในต่อมน้ำเหลืองขั้วปอด พบว่าในวันที่ 1 และ 3 จะพบการขยายขนาดของต่อม เล็กน้อย และพบเซลล์แมคโครฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงินและเซลล์เม็ดเลือดขาวชนิดนิวโทร ฟิล สะสมอยู่ในบริเวณ subcapsular และ medullary sinus ในวันที่ 7 ของการทดลองพบเซลล์ของต่อม น้ำเหลืองตายเป็นหย่อม ๆ และพบการแทรกของเซลล์เซลล์เม็ดเลือดขาวชนิดฮิสทิโอไซต์ (histiocyte) และ เซลล์แมคโครฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงิน ส่วนในวันที่ 15 พบรอยโรคลักษณะเดียวกันกับ วันที่ 7 แต่มีความรุนแรงของรอยโรคมากกว่า ดังแสดงในรูปที่ 3.2


รูปที่ 3.1 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 1 ของการทดลอง <u>กลุ่มควบคุม</u>


รูปที่ **3.1.1** (กำลังขยาย 100 เท่า)

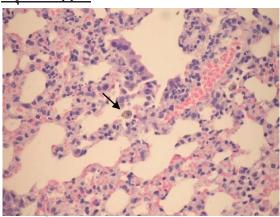
- ไม่พบการเปลี่ยนแปลงใด ๆ

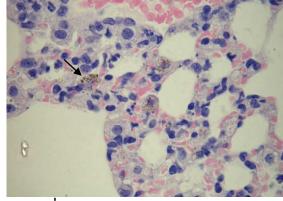
<u>กลุ่ม 10 ppm</u>



รูปที่ 3.1.2 (กำลังขยาย 100 เท่า)

รูปที่ 3.1.3 (กำลังขยาย 400 เท่า)

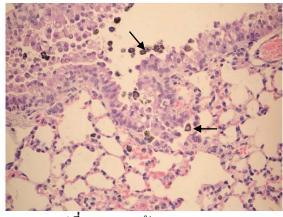

- พบการเพิ่มขึ้นของเซลล์ในชั้นระหว่างผนังถุงลมฝอย (Interstitial areas of alveoli)



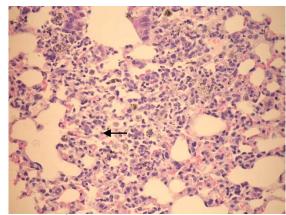
🛮 รูปท**ี่ 3.1.4 (**กำลังขยาย 1000 เท่า)

- พบอนุภาคนาโนของเงินสีน้ำตาลเข้ม ถูกเก็บกินโดยเซลล์แมคโครฟาจ (ลูกศร) และสะสมในเซลล์ เยื่อบุของถุงลมฝอย

<u>กลุ่ม 100 ppm</u>

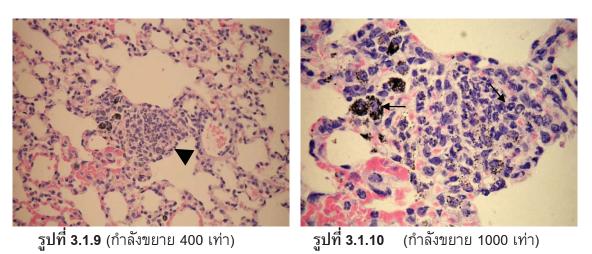


รูปที่ 3.1.5 (กำลังขยาย 400 เท่า)

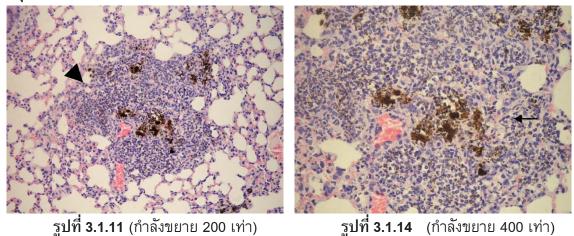

รูปท**ี่3.1.6** (กำลังขยาย 1000 เท่า)

- พบอนุภาคนาโนของเงินสีน้ำตาลเข้ม ถูกเก็บกินโดยเซลล์แมคโครฟาจ (ลูกศร) และสะสมในเซลล์ เยื่อบุของถุงลมฝอย ร่วมกับผนังถุงลมฝอยเกิดการขยายตัว

<u>กลุ่ม 1,000 ppm</u>

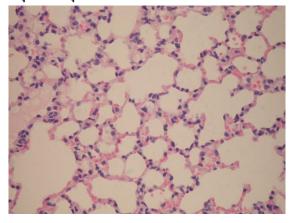


รูปที่ 3.1.7 (กำลังขยาย 400 เท่า)


ร**ูปที่ 3.1.8** (กำลังขยาย 400 เท่า)

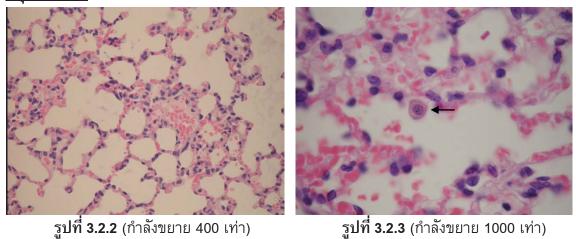
- พบการกระจายของเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงินสีน้ำตาลเข้มทั้งในหลอดลมฝอย (Bronchioles) และถุงลมฝอย (ลูกศร)

- พบการอักเสบของถุงลมฝอยกระจายเป็นหย่อมๆของเนื้อปอด (หัวลูกศร) และพบการสะสมของ อนุภาคนาโนของเงินทั้งในรูปอิสระและถูกเก็บกินในบริเวณที่เกิดการอักเสบ รวมทั้งพบการสะสมของเซลล์ เม็ดเลือดขาวชนิดนิวโทรฟิล (ลูกศร)

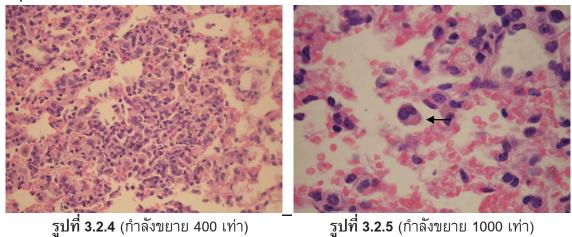

<u>กลุ่ม 10,000 ppm</u>

- พบการอักเสบของถุงลมฝอยกระจายและมีความรุนแรงมากกว่ากลุ่ม 1,000 ppm ทั่วทั้งเนื้อปอด (หัวลูกศร) และพบการสะสมของอนุภาคนาโนของเงินทั้งในรูปอิสระและถูกเก็บกินในบริเวณที่เกิดการอักเสบ รวมทั้งพบการสะสมของเซลล์เม็ดเลือดขาวชนิดนิวโทรฟิล (ลูกศร)

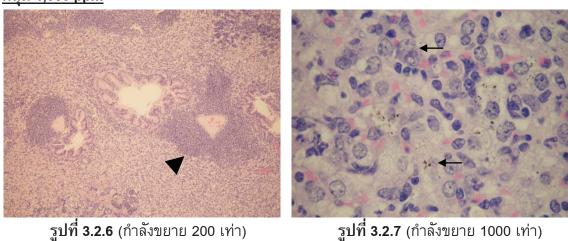
รูปที่ 3.2 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์ ในวันที่ 3 7 15 ของการทดลอง


<u>กลุ่มควบคุม</u>

รูปที่ 3.2.1 (กำลังขยาย 400 เท่า)

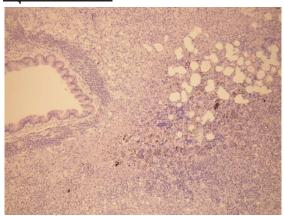

- ไม่พบการเปลี่ยนแปลงใด ๆ

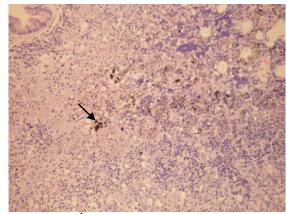
<u>กลุ่ม 10 ppm</u>


- ไม่พบการเปลี่ยนแปลงใด ๆที่เด่นชัด เมื่อเทียบกับกลุ่มควบคุม แต่ยังพบเซลล์แมคโครฟาจที่เก็บกิน อนุภาคนาโนของเงินบ้างเล็กน้อย (ลูกศร)

<u>กลุ่ม 100 ppm</u>

- พบหย่อมของการเพิ่มขึ้นของเซลล์ในถุงลมฝอยเพียงเล็กน้อย และพบเซลล์แมคโครฟาจที่เก็บกิน อนุภาคนาโนของเงินกระจายมากกว่ากลุ่ม 10 ppm (ลูกศร)

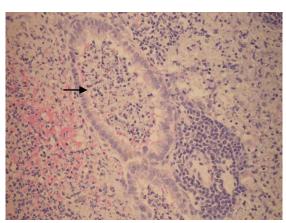

กลุ่ม 1,000 ppm



- พบการอักเสบของถุงลมฝอยกระจายทั่ว ซึ่งมีการตายของถุงลมฝอยเป็นบางหย่อม และมีการเพิ่ม จำนวนขึ้นและขยายขนาดของเนื้อเยื่อต่อมน้ำเหลือง (Lymphoid tissues) รอบ ๆหลอดเลือดและหลอดลมฝอย (หัวลูกศร)

- ในบริเวณที่เกิดอักเสบพบอนุภาคนาโนของเงิน (ลูกศร) ทั้งในรูปอิสระและถูกเก็บกินกระจายทั่ว

<u>กลุ่ม 10,000 ppm</u>

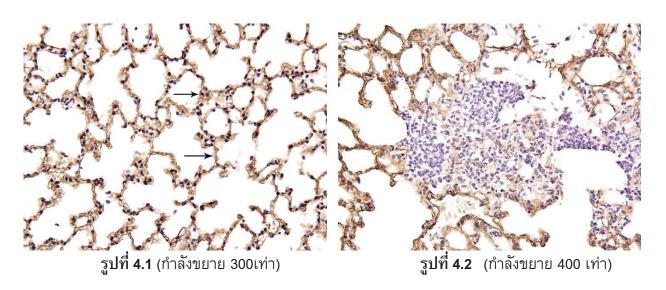


รูปที่ 3.2.8 (กำลังขยาย 200 เท่า)

รูปที่ 3.2.9 (กำลังขยาย 400 เท่า)

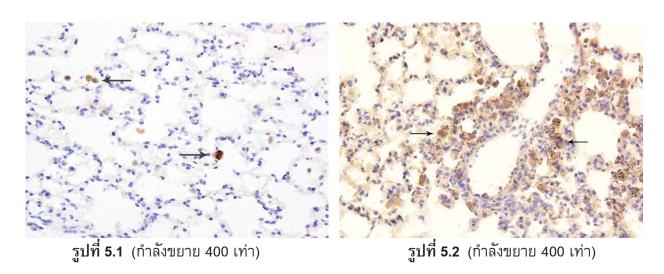
- พบการอักเสบและการตายของถุงลมฝอยกระจายทั่ว และมีการเพิ่มจำนวนขึ้นและขยายขนาดของ เนื้อเยื่อต่อมน้ำเหลืองรอบ ๆหลอดเลือดและหลอดลมฝอย ในบริเวณที่เกิดอักเสบพบอนุภาคนาโนของเงิน (ลูกศร) ทั้งในรูปอิสระและถูกเก็บกินกระจายทั่ว ซึ่งมีความรุนแรงของรอยโรคดังกล่าวมากกว่ากลุ่ม 1,000 ppm

ฐปที่ 3.2.10 (กำลังขยาย 200 เท่า)


- บางบริเวณพบการอุดตันของกลุ่มเซลล์ที่ตายแล้วในหลอดลมฝอย แต่ไม่พบการเปลี่ยนแปลงใด ๆที่ เด่นชัดของเซลล์เยื่อบุหลอดลมฝอย (ลูกศร)

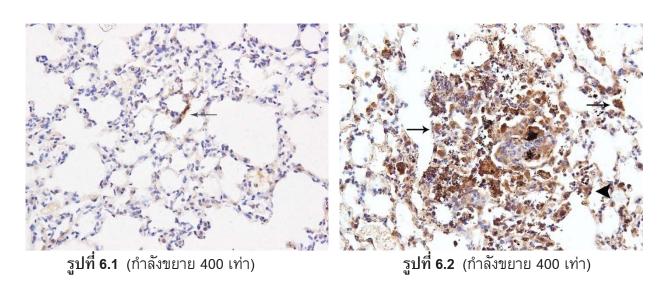
4.1.6 ผลการศึกษาทางอิมมูโนพยาธิวิทยา

- การย้อมอิมมูนโนฮิสโตเคมีของ Laminin

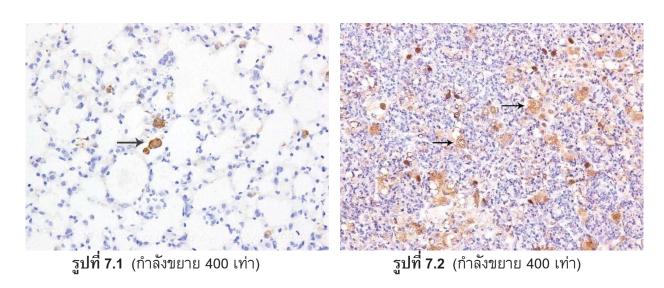

ในกลุ่มควบคุมจะพบผลบวกของการติดสีต่อ Laminin เป็นสีน้ำตาลเข้มบางๆตรงบริเวณ basement membrane (ลูกศร) ของถุงลมฝอย หลอดลมฝอย หลอดลม รอบหลอดเลือดและต่อมของหลอดลม (bronchial gland) ดังแสดงในรูปที่ 4.1 ในส่วนของกลุ่มทดลองจะพบการติดสีไม่สม่ำเสมอหรือไม่ติดสีต่อ Laminin ของ basement membrane ในบริเวณที่มีการอักเสบหรือความเสียหายของปอด รวมทั้งบริเวณที่มีการสะสมของ

อนุภาคนาโนของเงินดังแสดงในรูปที่ 4.2 โดยความรุนแรงและการกระจายของรอยโรคแปรผันกับความเข้มข้น ของอนุภาคนาโนของเงิน และมีลักษณะรอยโรคที่เหมือนกันตั้งแต่วันที่ 1 -15 ของการทดลอง

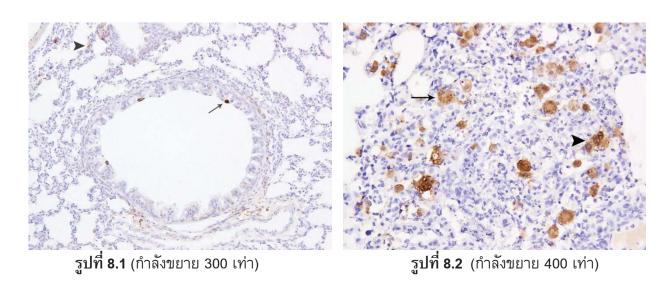
- การย้อมอิมมูนโนฮิสโตเคมีของ IL-1 $oldsymbol{eta}$


ในกลุ่มควบคุมจะพบผลบวกของการติดสีต่อ IL-1 เป็นสีน้ำตาลในไซโทพลาสซึมของเซลล์แมคโคร ฟาจบางเซลล์ (ลูกศร) ดังแสดงในรูปที่ 5.1 ในส่วนของกลุ่มทดลองจะพบการติดสีน้ำตาลเข้ม ส่วนใหญ่ในไซ โทพลาสซึมของเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงินและแมคโครฟาจที่ถูกกระตุ้น (ลูกศร) พบได้ บ้างในเซลล์เยื่อบุของหลอดลม ตั้งแต่วันที่ 1 -15 ของการทดลองดังแสดงในรูปที่ 5.2

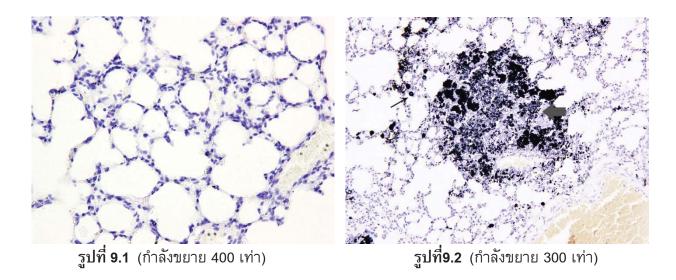
- การย้อมอิมมูนโนฮิสโตเคมีของ TNF-**Q**


ในกลุ่มควบคุมจะพบผลบวกของการติดสีต่อ TNF-O เป็นสีน้ำตาลได้บ้างในไซโทพลาสซึมของเซลล์ เยื่อบุของหลอดลมและถุงลมฝอย(ลูกศร) ดังแสดงในรูปที่ 6.1 ในส่วนของกลุ่มทดลองจะพบการติดสีน้ำตาล เข้มในเซลล์ที่อยู่ในบริเวณที่เกิดการอักเสบและการตาย โดยส่วนใหญ่จะพบในไซโทพลาสซึมของเซลล์แมค

โครฟาจที่เก็บกินอนุภาคนาโนของเงิน(ลูกศร) และแมคโครฟาจที่ถูกกระตุ้น พบได้บ้างในเซลล์เยื่อบุของถุงลม ฝอย (หัวลูกศร) และหลอดลม ตั้งแต่วันที่ 1 -15 ของการทดลองดังแสดงในรูปที่ 6.2


- การย้อมอิมมูนโนฮิสโตเคมีของ SOD

ในกลุ่มควบคุมจะพบผลบวกของการติดสีต่อ SOD เป็นสีน้ำตาลได้บ้างในไซโทพลาสซึมของเซลล์ แมคโครฟาจ (ลูกศร) ดังแสดงในรูปที่ 7.1 ในส่วนของกลุ่มทดลองจะพบการติดสีน้ำตาลเข้มในเซลล์ที่อยู่ใน บริเวณที่เกิดการอักเสบและการตาย โดยส่วนใหญ่จะพบในไซโทพลาสซึมของเซลล์แมคโครฟาจที่เก็บกิน อนุภาคนาโนของเงินและแมคโครฟาจที่ถูกกระตุ้น(ลูกศร) รวมทั้งพบได้ในพบเซลล์เยื่อบุของหลอดลมและพบ ได้บ้างในเซลล์เยื่อบุของหลอดลม ตั้งแต่วันที่ 1 -15 ของการทดลองดังแสดงในรูปที่ 7.2


- การย้อมอิมมูนโนฮิสโตเคมีของ Metallothionine

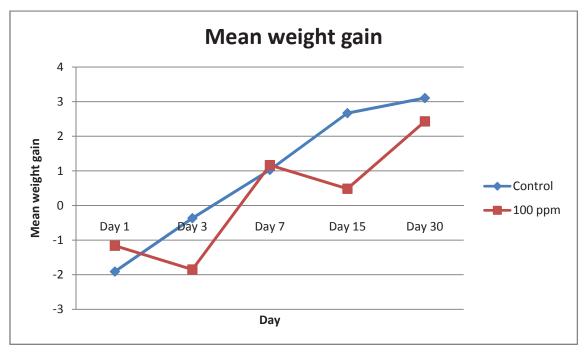
ในกลุ่มควบคุมจะพบผลบวกของการติดสีต่อ Metallothionine เป็นสีน้ำตาลได้บ้างในไซโทพลาสซึม ของเซลล์เซลล์เยื่อบุของหลอดลม(ลูกศร) และถุงลมฝอย(หัวลูกศร) ดังแสดงในรูปที่ 8.1 ในส่วนของกลุ่ม ทดลองจะพบการติดสีน้ำตาลเข้มในเซลล์ที่อยู่ในบริเวณที่เกิดการอักเสบและการตาย โดยส่วนใหญ่จะพบในไซ โทพลาสซึมของเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงิน (ลูกศร) และแมคโครฟาจที่ถูกกระตุ้น (หัว ลูกศร) และพบได้บ้างในเซลล์เยื่อบุของหลอดลมและถุงลมฝอย ตั้งแต่วันที่ 1 -15 ของการทดลองดังแสดงใน รูปที่ 8.2

4.1.7 ผลการศึกษาจากการย้อมออโตเมทัลโลกราฟฟี

ในกลุ่มทดลองพบผลบวกของการย้อมออโตเมทัลโลกราฟฟี ซึ่งจะพบเป็นจุดเม็ดสีดำขนาดเล็กในใช โทพลาสซึมของเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงิน (ลูกศร) และเซลล์เยื่อบุของถุงลมฝอย ในบาง บริเวณจะพบการติดสีของอนุภาคนาโนของเงินที่สะสม (ลูกศรหนา) ในบริเวณที่เกิดการอักเสบดังแสดงในรูปที่ 9.1 โดยการกระจายของรอยโรคแปรผันกับความเข้มข้นของอนุภาคนาโนของเงินที่ได้รับเข้าไป ในส่วนกลุ่ม ควบคุมไม่พบผลบวกของการย้อมออโตเมทัลโลกราฟฟี ดังแสดงในรูปที่ 9.2

4.2 การทดลองศึกษาผลกระทบของระยะเวลาภายหลังได้รับการสัมผัส (Time effect experiment)

4.2.1 ผลการตรวจอาการแสดงทางคลินิก


ผลการตรวจอาการแสดงทางคลินิก พบว่าไม่มีการตายของสัตว์ทดลองทั้งในกลุ่มทดลองและกลุ่ม ควบคุม จากการป้อนสารด้วยขนาดความเข้มขันที่ระดับ 100 ppm และน้ำกลั่น สำหรับอาการแสดงทางคลินิก ที่ตรวจพบ ใน 3 ชั่วโมงแรกพบการตอบสนอง ขนฟูและลดการกินอาหารและน้ำ และไม่พบอาการแสดงที่ ผิดปกติหลังจาก 3 ชั่วโมง จนกระทั่งสิ้นสุดการทดสอบที่ 30 วัน โดยพบอาการที่แสดงดังกล่าวทั้งในกลุ่ม ควบคุมและทดลอง

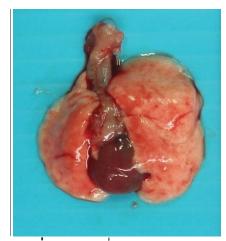
4.2.2 ผลของน้ำหนักตัวที่เพิ่มขึ้น

การป้อนสาร Colloidal nanosilver particle เข้าสู่ปอดของหนูทดลองมีผลต่อการกินน้ำและอาหารใน เวลา 1 ถึง 3 วันแรก ทำให้น้ำหนักตัวลดลงกว่าเมื่อเริ่มการทดลอง ทั้งกลุ่มควบคุมและกลุ่มทดลอง หลัก จากนั้นในวันที่ 7 15 และ 30 หนูทดลองมีน้ำหนักตัวเพิ่มขึ้นตามปกติ ทั้งกลุ่มควบคุมและกลุ่มทดลอง แต่ผล ความแตกต่างของน้ำหนักตัวที่เพิ่มขึ้นของกลุ่มทดลองทที่วันที่ 3 15 และ 30 จะมีค่าต่ำกว่ากลุ่มควบคุม ดัง แสดงในตารางที่ 6 และรูปที่ 10

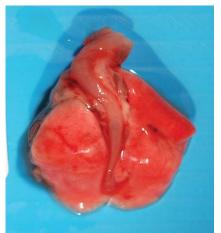
Group	Day 1	Day 3	Day 7	Day 15	Day 30
Control	-1.90	-0.36	1.02	2.66	3.1
100 ppm	-1.16	-1.85	0.48375	0.48	2.43

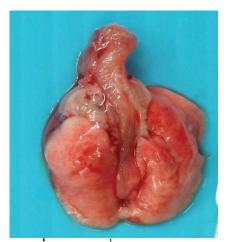
ตารางที่ 6 แสดงน้ำหนักตัวเฉลี่ยที่เพิ่มขึ้น (Mean weight gain) ในแต่ละช่วงเวลา

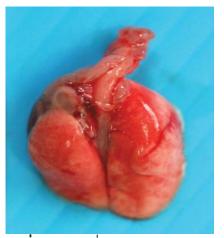
รูปที่ 10 แสดงน้ำหนักตัวเฉลี่ยที่เพิ่มขึ้น (Mean weight gain) ในแต่ละช่วงเวลา

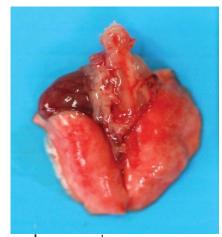

4.2.3 <u>ผลทางมหพยาธิวิทยา</u>

ผลการตรวจทางมหพยาธิวิทยาโดยการสังเกตด้วยตาเปล่า ตั้งแต่วันที่ 1-30 ของการทดลอง พบว่า ในกลุ่มทดลองที่ป้อนด้วยสาร 100 ppm ไม่พบการเปลี่ยนแปลงที่เด่นชัดเมื่อเทียบกับกลุ่มควบคุม ดังแสดงใน รูปที่


รูปที่ 11 แสดงการเปลี่ยนแปลงทางมหพยาธิวิทยาของปอดของหนูไมซ์จากการทดลองตั้งแต่วันที่ 1 - 30 ของการทดลอง


รูปที่ 11.1 กลุ่มควบคุม


รูปที่ 11.2 วันที่ 1 ของการทดลอง

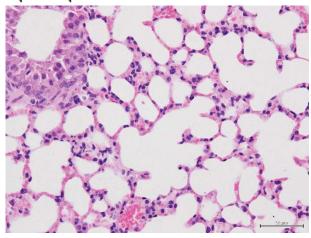

รูปที่ 11.3 วันที่ 3 ของการทดลอง

รูปที่ 11.4 วันที่ 7 ของการทดลอง

รูปที่ 11.6 วันที่ 30 ของการทดลอง

4.2.4 ผลทางจุลพยาธิวิทยา

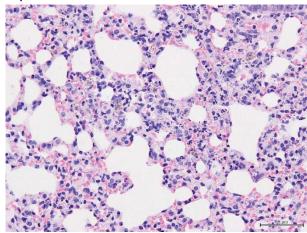
ผลการตรวจทางจุลพยาธิวิทยาโดยการย้อมสี H&E ของกลุ่มการทดลองพบว่า ในวันที่ 1 ของการ ทดลอง จะพบคอลลอยด์อนุภาคนาโนของเงิน ติดสีน้ำตาลเข้ม กระจายในเนื้อปอด และถูกเก็บสะสมในเซลล์ แมคโครฟาจ (Macrophage) เซลล์เยื่อบุของถุงลมฝอย (Alveolar epithelium) พบการเพิ่มจำนวนขึ้นของ เซลล์ภายในถุงลมฝอย ในบางบริเวณของถุงลมฝอย พบการสะสมของเซลล์เม็ดเลือดขาวชนิด นิวโทรฟิล (neutrophil) เซลล์แมคโครฟาจที่ถูกกระตุ้น (active alveolar macrophages) และ เซลล์แมคโครฟาจที่เก็บ กินคอลลอยด์อนุภาคนาโนของเงิน (Ag-NPs laden AMs) รวมตัวกันเป็นกลุ่มล้อมรอบบริเวณที่มีคอลลอยด์ อนุภาคนาโนของเงินในเนื้อเยื่อปอด ดังแสดงในรูปที่ 12


ในวันที่ 3 ของการทดลอง พบการอักเสบของปอดทั้งในส่วนของถุงลมฝอย (Alveoli) บริเวณรอบ หลอดเลือด และหลอดลมฝอย (Bronchioles) พบการเพิ่มจำนวนขึ้นของเซลล์น้ำเหลืองรอบ ๆ หลอดลมฝอย และรอบหลอดเลือด (Bronchiolar associated lymphoid tissue hyperplasia) รวมทั้งยังคงพบคอลลอยด์ อนุภาคนาโนของเงิน ติดสีน้ำตาลเข้ม กระจายทั่วไปในเนื้อปอด และถูกเก็บสะสมในเซลล์แมคโครฟาจ (Macrophage) เซลล์เยื่อบุของถุงลมฝอย (Alveolar epithelium) และภาวะการคั่งเลือด โดยรอยโรคที่พบ ทั้งหมดดังกล่าวอยู่ในระดับปานกลาง ดังแสดงในรูปที่ 13

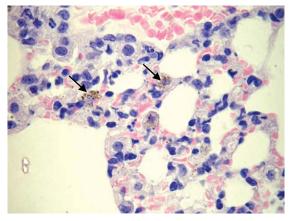
ในวันที่ 7 ของการทดลอง พบการเสียสภาพของโครงสร้างของปอด (loss of lung architecture) การ ตายของเซลล์ การสะสมของเซลล์เม็ดเลือดขาวชนิดนิวโทรฟิลและลิมโฟไซต์ การเพิ่มขนาดและจำนวนของ เซลล์เยื่อบุของถุงลมฝอยชนิดที่ 2 (alveolar type II epithelium) รวมทั้งยังพบการสะสมของคอลลอยด์ อนุภาคนาโนของเงินและถูกเก็บสะสมในเซลล์แมคโครฟาจ โดยการกระจายไม่มากนักในเนื้อเยื่อปอด ดัง แสดงในรูปที่ 14

ในวันที่ 15 ของการทดลองยังคงพบรอยโรคลักษณะเหมือนที่ปรากฏในวันที่ 7 แต่ความรุนแรงและ การกระจายน้อยกว่า ส่วนในวันที่ 30 ของการทดลอง พบการสะสมของเซลล์แมคโครฟาจที่ถูกกระตุ้นและ เซลล์แมคโครฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงินเป็นกลุ่มรอบ ๆส่วนของปอดที่เกิดความเสียหาย แต่ ความรุนแรงของรอยโรคอยู่ในระดับต่ำ การกระจายตัวของรอยโรคน้อย ดังแสดงในรูปที่ 15 ในส่วนของรอยโรคในต่อมน้ำเหลืองขั้วปอด พบว่าในวันที่ 1 และ 3 จะพบการขยายขนาดของต่อม เล็กน้อย และพบเซลล์แมคโครฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงินสะสมอยู่ในบริเวณ subcapsular และ medullary sinus ในวันที่ 7 15 และ 30 ของการทดลองพบการแทรกของเซลล์แมคโครฟาจที่เก็บกิน คอลลอยด์อนุภาคนาโนของเงิน และเซลล์เม็ดเลือดขาวชนิดฮิสทิโอไซต์ (histiocyte)

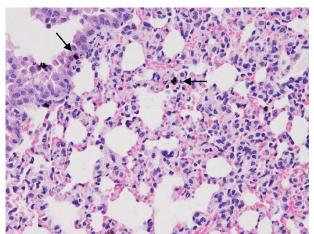
รูปที่ 12 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์จากการทดลองในวันที่ 1


<u>กลุ่มควบคุม</u>

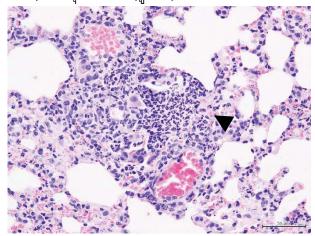
รูปที่ 12.1 (กำลังขยาย 100 เท่า)


- ไม่พบการเปลี่ยนแปลงใด ๆ

<u>กลุ่มการทดลองที่ 100 ppm</u>

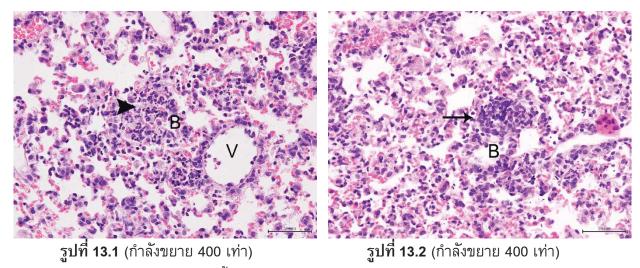

🖣 รูปที่ 12.2 (กำลังขยาย 400 เท่า)

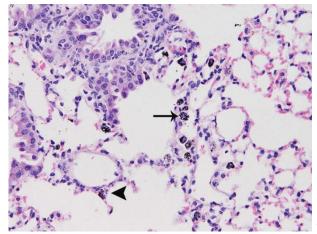
- พบการเพิ่มขึ้นของเซลล์ในชั้นระหว่างผนังถุงลมฝอย (Interstitial areas of alveoli)


🌠 รู**ปที่ 12.3** (กำลังขยาย 1000 เท่า)

- พบอนุภาคนาโนของเงินสีน้ำตาลเข้ม ถูกเก็บกินโดยเซลล์แมคโครฟาจ (ลูกศร) และสะสมในเซลล์ เยื่อบุของถุงลมฝอย ร่วมกับผนังถุงลมฝอยเกิดการขยายตัว

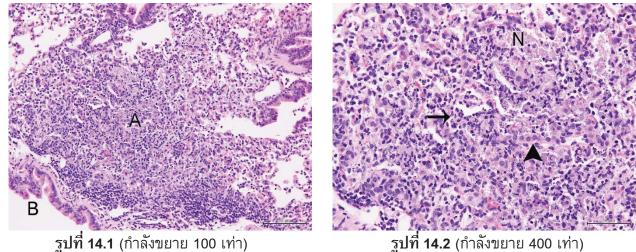
รูปที่ 12.4 (กำลังขยาย 400 เท่า)


- พบการกระจายของเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงินสีน้ำตาลเข้มทั้งในหลอดลมฝอย (Bronchioles) และถุงลมฝอย (ลูกศร)

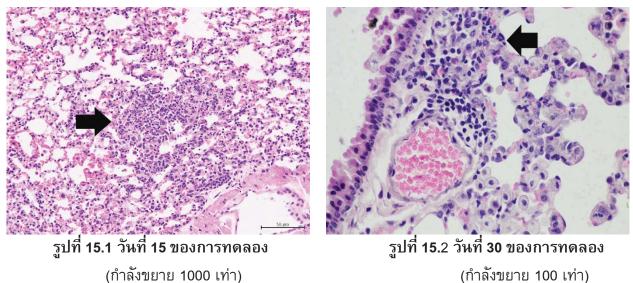

🗿 รูปที่ 12.5 (กำลังขยาย 400 เท่า)

- พบการอักเสบของถุงลมฝอยกระจายเป็นหย่อม ๆของเนื้อปอด และพบการสะสมของอนุภาคนาโน ของเงินทั้งในรูปอิสระและถูกเก็บกินในบริเวณที่เกิดการอักเสบ รวมทั้งพบการสะสมของเซลล์เม็ดเลือดขาว ชนิดนิวโทรฟิล (หัวลูกศร)

รูปที่ 13 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์จากการทดลองในวันที่ 3


- พบการอักเสบของปอดทั้งในส่วนของถุงลมฝอย (หัวลูกศร) บริเวณรอบหลอดเลือด (V) และ หลอดลมฝอย (B) พบการเพิ่มจำนวนขึ้น(ลูกศร) ของเซลล์น้ำเหลืองรอบๆ หลอดลมฝอย(B) และรอบหลอด เลือด

รูปที่ 13.3 (กำลังขยาย 200 เท่า)


- พบคอลลอยด์อนุภาคนาโนของเงิน ติดสีน้ำตาลเข้ม กระจายทั่วไปในเนื้อปอด และถูกเก็บสะสมใน เซลล์แมคโครฟาจ (ลูกศร) เซลล์เยื่อบุของถุงลมฝอย (หัวลูกศร)

รูปที่ 14 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์จากการทดลอง ในวันที่ 7

- พบการเสียสภาพของโครงสร้างของปอด การตายของเซลล์ (N) การสะสมของเซลล์เม็ดเลือดขาว ชนิดนิวโทรฟิลและลิมโฟไซต์ (ลูกศร) การเพิ่มขนาดและจำนวนของเซลล์เยื่อบุของถุงลมฝอยชนิดที่ 2 (หัว ลูกศร) ; A= alveolar area, B= Bronchiole

รูปที่ 15 แสดงการเปลี่ยนแปลงทางจุลพยาธิวิทยาของปอดของหนูไมซ์จากการทดลอง ในวันที่ 15

- ในวันที่ 15 ของการทดลองยังคงพบรอยโรคลักษณะเหมือนที่ปรากฏในวันที่ 7 แต่ความรุนแรงและ การกระจายน้อยกว่า (ลูกศร) ส่วนในวันที่ 30 ของการทดลอง พบการสะสมของเซลล์แมคโครฟาจที่ถูกกระตุ้น เซลล์แมคโครฟาจที่เก็บกินคอลลอยด์อนุภาคนาโนของเงินเป็นกลุ่มรอบ ๆส่วนของปอดที่เกิดความเสียหาย รวมทั้งมีการสะสมของเซลล์เม็ดเลือดขาวชนิดลิมโฟไซต์ (ลูกศร)

4.2.5 <u>ผลการวิเคราะห์น้ำล้างปอด</u> (Bronchoalveolar lavage fluid analysis)

จากผลการนับจำนวนเซลล์ทั้งหมด (Total cells) พบไม่มีความแตกต่างของจำนวนเซลล์ระหว่างกลุ่ม ควบคุมและกลุ่มทดลองตลอดการทดลอง ผลการนับเซลล์ที่มีชีวิต (Viable cells) พบไม่มีความแตกต่างของ จำนวนเซลล์ระหว่างกลุ่มควบคุมและกลุ่มทดลองตลอดการทดลอง ส่วนการนับจำนวนเซลล์ตาย (Death cells) พบว่าในวันที่ 1 และ 3 ของการทดลอง พบการเพิ่มขึ้นอย่างมีนัยยสำคัญทางสถิติของกลุ่มทดลองเมื่อเทียบ กับกลุ่มควบคุม สำหรับผลของการนับจำนวนของเซลล์จากการแยกแยะชนิดของเซลล์พบว่าจำนวนเซลล์แมค โคฟาจในปอดไม่มีความแตกต่างระหว่างกลุ่มควบคุมและกลุ่มทดลองตลอดการทดลอง แต่พบจำนวนเซลล์ นิวโทรฟิลมีการเพิ่มจำนวนขึ้นในวันที่ 3 ของการทดลองอย่างมีนัยยสำคัญทางสถิติของกลุ่มทดลองเมื่อเทียบ กับกลุ่มควบคุม ส่วนจำนวนเซลล์ลิมโฟไซต์มีการเพิ่มขึ้นอย่างมีนัยยสำคัญทางสถิติของกลุ่มทดลองเมื่อเทียบ กับกลุ่มควบคุม ในวันที่ 7 และ 15 ของการทดลอง ส่วนค่าความเขัมขันของโปรตีนในน้ำล้างปอด (total protein) พบว่าในวันที่ 3 ของการทดลอง พบการเพิ่มขึ้นอย่างมีนัยยสำคัญทางสถิติของกลุ่มทดลองเมื่อเทียบ กับกลุ่มควบคุม ส่วนในวันที่ 1 7 15 และ 30 ของการทดลองมีแนวโน้วเพิ่มขึ้นในกลุ่มกลุ่มทดลองเมื่อเทียบกับกลุ่มควบคุม แต่ไม่มีนัยยสำคัญทางสถิติ ตามข้อมูลในตารางที่ 7

ตารางที่ 7 แสดงค่าเฉลี่ยของการเปลี่ยนแปลงของพารามิเตอร์ต่าง ๆใหน้ำล้างปอดของหนูจากกลุ่มควบคุมและกลุ่มทดลอง ใหช่วงเวลาตั้งแต่วันที่ 1 ถึง

	30 ของกา	30 ของการทดลอง (Mean ± SE; n = 7-9)	± SE; n = 7-9)					
Days	Groups	Total cells	Viable cells	Death cells	Macrophages	Neutrophils	Lymphocytes	Total protein
		(×10 ⁵)	(×10 ⁵)	(×10 ⁵)	(×10 ⁵)	(×10 ⁵)	(×10 ⁵)	(mg/dl)
_	Control	1.99 ± 0.10	1.94± 0.11	0.05 ± 0.01	1.99 ± 0.10	0 + 0	0 + 0	23.42 ± 5.09
	AgNPs	1.93 ± 0.17	1.77±0.16	0.16 ± 0.02*	1.93 ± 0.17	0 ∓ 0	0 + 0	31.77 ± 4.36
က	Control	1.65 ± 0.18	1.61 ± 0.17	0.04 ± 0.01	1.64 ± 0.18	0 = 0	0.005 ± 0.004	12.42 ± 3.7
	AgNPs	2.06 ± 0.17	1.90 ± 0.16	$0.14 \pm 0.03*$	2.05 ± 0.17	0.01 ± 0.004*	0.004 ± 0.003	24.88 ± 3.93*
7	Control	2.38 ± 0.25	2.11 ± 0.22	0.27 ± 0.05	2.37 ± 0.24	0 ∓ 0	0.014 ± 0.005	25.42 ± 3.04
	AgNPs	2.00 ± 0.16	1.83 ± 0.16	0.17 ± 0.03	1.89 ± 0.17	0 + 0	0.114 ± 0.008*	29 ± 2.22
15	Control	2.09 ± 0.23	1.98 ± 0.19	0.11 ± 0.03	2.06 ± 0.22	0 ∓ 0	0.022 ± 0.007	20 ± 1.57
	AgNPs	2.10 ± 0.19	1.94 ± 0.16	0.16 ± 0.02	2.00 ± 0.20	0 + 0	0.096 ± 0.024*	26.55 ± 4.24
30	Control	1.82 ± 0.13	1.73 ± 0.11	0.09 ± 0.02	1.81 ± 0.12	0 + 0	0.009 ± 0.006	11.42 ± 2.5
	AgNPs	2.15 ± 0.12*	2.02 ± 0.13	0.12 ± 0.02	2.12 ± 0.12	0 = 0	0.029 ± 0.012	16 ± 4.78

* Significantly different from the control group; ρ < 0.05; AgNPs : Silver Nanoparticles

สรุปและวิจารณ์ผลการทดลอง และข้อเสนอแนะสำหรับงานวิจัยในอนาคต การศึกษาผลกระทบของความเข้มข้น (Dose response)

จากผลการทดลองของการศึกษาผลกระทบของความเข้มข้น (Dose response) จากการสัมผัส อนุภาคนาโนของเงิน ระดับความเข้มข้นต่าง ๆในระยะเฉียบพลันในหนูไมซ์ที่ได้รับการสอดท่อผ่านทาง หลอดลมแล้วหยดอนุภาคนาโนของเงิน ขนาด 0 10 100 1000 หรือ 10,000 ppm พบว่าการได้รับ อนุภาคนาโนของเงิน ในระดับ 100 1,000 และ 10,000 ppm ทำให้เกิดการอักเสบปานกลางถึงรุนแรง แบบมีเนื้อตายของหลอดลมและถุงลมฝอยของปอด และพบการเพิ่มจำนวนและขยายขนาดของเซลล์เยื่อ บุถุงลมฝอย ซึ่งความรุนแรงของรอยโรคแปรผันตามระดับความเข้มข้นของสารที่ได้รับ ผลจากการย้อม ด้วยอิมมูนโนฮิสโตเคมีของ laminin พบความเสียหายของเยื่อรองรับฐานของปอดซึ่งสัมพันธ์กับรอยโรค ปอดที่เกิดขึ้น พบผลบวกในการย้อมอิมมูนโนฮิสโตเคมีของ IL-1β และ TNF-α ในบริเวณที่มีรอยโรค ของปอด จากการศึกษาการปรากฏของ superoxide dismutase และการแสดงออกของโปรตีน methallothionein พบการติดสีบริเวณเซลล์แมคโครฟาจที่เก็บกินอนุภาคและเซลล์เยื่อบุของปอดใน บริเวณที่พบรอยโรคของปอดและบริเวณที่มีการสะสมของอนุภาค การย้อม autometallography เพื่อ ศึกษาการสะสมของอนุภาคนาโนของเงิน พบผลบวกในเซลล์แมคโครฟาจและเซลล์เยื่อบุของปอดที่เก็บ กินอนุภาค รวมทั้งในเซลล์แมคโครฟาจในต่อมน้ำเหลืองขั้วปอด

ในการศึกษาความเป็นพิษต่อระบบทางเดินหายใจของอนุภาคนาโนของเงิน ในสัตว์ทดลอง มีการ ทำงานวิจัยไม่มากนัก พบมีการศึกษาโดยการให้หนูแรทหายใจเอาอนุภาคนาโนของเงิน ความเข้มข้น 1 ppm ในระยะกึ่งเฉียบพลันพบว่าไม่ทำให้เกิดพยาธิสภาพใด ๆต่อเนื้อเยื่อปอดของสัตว์ทดลอง (Stebounova et al., 2011) ซึ่งเป็นผลที่ตรงกับการทดลองขั้นต้นของการทดลองในโครงการนี้ที่ป้อน อนุภาคนาโนของเงิน ความเข้มข้น 1 ppm โดยการหยดเข้าสู่หลอดลม ซึ่งไม่ปรากฏพยาธิสภาพของ เนื้อเยื่อปอดหรืออวัยวะอื่นๆในระยะกึ่งเฉียบพลัน

การย้อมด้วยอิมมูนโนฮิสโตเคมีของ laminin ซึ่งเป็นไกลโคโปรตีนที่เป็นองค์ประกอบของเยื่อ รองรับฐาน(basement membrane) ของปอด มีรายงานการใช้ laminin เป็นตัวบ่งชี้ของความเสียหายของ เยื่อรองรับฐานของปอด เนื่องจากการปรากฏอยู่ทั่วไปในถุงลมฝอย(Aumailley and Smyte, 1998) ผลกระทบของอนุภาคนาโนต่อเยื่อรองรับฐานของปอดมีการศึกษาพบว่า อนุภาคนาโนสามารถทำให้เกิด ความเสียหายของเยื่อรองรับฐานของปอด (Kaewamatawong et al., 2005; Shimada et al., 2006) ใน ส่วนของผลการศึกษาของโครงการนี้ พบว่าอนุภาคนาโนของเงิน มีผลทำให้เกิดความเสียหายของเยื่อ รองรับฐานของปอดได้โดยตรง ซึ่งความเสียหายดังกล่าวอาจจะส่งผลกระทบถึงความสมดุลของการสร้าง และการสลายของ extracellular matrix (ECM) ของปอด ซึ่งมีความเป็นไปได้ที่จะทำให้เกิดการสะสมของ เซลล์เนื้อเยื่อเกี่ยวพัน (fibrocyte) จนเกิดพังผืดของเนื้อเยื่อปอดได้ในระยะเรื้อรัง (Dunsmore and Rannels, 1996) ดังนั้นจึงควรมีการศึกษาเพิ่มเติมในส่วนของการสะสมของเซลล์เนื้อเยื่อเกี่ยวพันและ ประเมินความเสียหายในระยะเรื้อรังของการสัมผัสอนุภาคนาโนของเงิน ทางระบบทางเดินหายใจต่อไป

การศึกษาพยาธิกำเนิดของการอักเสบซึ่งเกิดจากการสัมผัสอนุภาคนาโนของเงิน ที่มีต่อเนื้อเยื่อ ปอด IL-1β และ TNF-α นับว่าเป็น proinflammatory cytokine ที่สำคัญในขนวนการอักเสบในระยะ เฉียบพลัน โดยไซโตไคน์ทั้งสองชนิดนี้จะทำงานประสานกันในการควบคุมการปรากฏของโปรตีนและ โมเลกุลที่เกี่ยวข้องในการเกิดโรคทั้งในคนและสัตว์ (Kolb et al., 2001) รวมทั้งการเกิดการอักเสบอักเสบ แบบเฉียบพลันของปอด (Mukhopadhyay et al., 2006) ในส่วนของอนุภาคนาโนมีรายงานพบว่าอนุภาค นาโนสามารถกระตุ้นให้เซลล์ที่ได้รับผลกระทบจากการสัมผัสอนุภาคให้หลั่งไซโตไคน์ทั้งสองชนิดนี้ได้ (Pryhuber et al., 2003) สำหรับการทดลองในโครงการนี้ พบการแสดงผลบวกในการย้อม IL-1β และ TNF-α ในเซลล์ที่เกี่ยวข้องกับการอักเสบและการสะสมของอนุภาคนาโนของเงิน เป็นการบ่งชี้ว่า ไซโต ไคน์ทั้งสองชนิดนี้ มีบทบาทเกี่ยวข้องในพยาธิกำเนิดของการอักเสบแบบเฉียบพลันของเนื้อเยื่อปอดจาก การสัมผัสกับอนุภาคนาโนของเงิน

จากผลการศึกษาทั้งในสัตว์ทดลองและเซลล์เพาะเลี้ยง พบว่าอนุภาคนาโนสามารถสร้างอนุมูล อิสระซึ่งมีผลต่อเซลล์และเนื้อเยื่อที่สัมผัสได้ (Dick et al., 2003;Donaldson and Stone, Kaewamatawong et al., 2006; Choi et al., 2010; Miura and Shinohara, 2009) ในการต่อต้านอนุมูล อิสนะที่เกิดขึ้น เซลล์ของร่างกายจะมีการสร้างเอนไซม์ที่มาต่อต้านอนุมูลอิสระดังกล่าว โดย Superoxide dismutase นับเป็นเอนไซม์ที่สำคัญที่มีผลในการต่อต้านอนุมูลอิสระชนิด superoxide anion hydrogen peroxide ซึ่งการพบการปรากฏของเอนไซม์ดังกล่าวจะเป็นตัวบ่งถึงการเกิดอนุมูลอิสระได้ เช่นเดียวกัน จากการศึกษาในเซลล์เพาะเลี้ยง Dey และคณะ (2008) ได้รายงานถึงความสัมพันธ์ระหว่าง อนุมูลอิสระและ Superoxide dismutase โดยพบว่า อนุภาคนา-โนอลูมินากระตุ้นทำให้เกิดการเพิ่มขึ้น ของ manganese superoxide dismutase ในเซลล์เพาะเลี้ยงเยื่อบุผิวหนังของหนู นอกจากนี้ Arora และ คณะ (2008) ได้รายงานการลดลงของระดับ superoxide dismutase และ glutathione มีผลสอดคล้องกับ การเพิ่มขึ้นของการสร้างอนุมูล ภายหลังจากการสัมผัสกับอนุภาคนาโนของเงิน ของเซลล์เพาะเลี้ยงชนิด human fibrosarcoma (HT-1080) และ human skin/carcinoma (A431) สำหรับผลการทดลองใน โครงการนี้พบผลบวกต่อการย้อมอิมมูโนฮิสโตเคมีของ superoxide dismutase ซึ่งแสดงว่ามีการสะสม ของอนุมูลอิสระ ในเซลล์แมคโครฟาจที่เก็บกินอนุภาคนาโนของเงิน และแมคโครฟาจที่ถูกกระตุ้น ซึ่ง เกี่ยวข้องกับบริเวณที่เกิดการอักเสบและบริเวณที่มีการสะสมของอนุภาคนาโนของเงิน สรุปได้ว่าอนุมูล อิสระที่เกิดขึ้นอาจจะเป็นผลโดยตรงจากอนุภาคนาโนของเงิน ที่สร้างขึ้น หรืออาจจะเกิดจากขบวนการ อักเสบที่เกิดในปอดได้ ดังนั้นควรมีการศึกษาเพิ่มเติมเพื่อแยกแยะสาเหตุที่สำคัญที่ทำให้เกิดการสร้าง อนุมูลอิสระที่เกิดจากการสัมผัสอนุภาคนาโนของเงิน

Metallothionein เป็นเมทัลโลโปรตีนที่มีความสำคัญในการรักษาสมดุลและการกำจัดโลหะหนักของสิ่งมีชีวิต การปรากฏของโปรตีน metallothionein ที่มีผลจากการสัมผัสโลหะหนักมีการรายงานในคน สัตว์และสิ่งมีชีวิตหลายชนิด (Alvarado et al., 2006; Kaewamatawong et al., 2012) ในการศึกษาของ โครงการนี้พบการปรากฏของโปรตีน metallothionein ในเซลล์แมคโครฟาจและเซลล์เยื่อบุของถุงลมฝอย ที่มีความเกี่ยวข้องกับการสัมผัสอนุภาคนาโนของเงิน แสดงถึง metallothionein มีบทบาทในการป้องกัน ความเสียหายของเซลล์จากการสัมผัสอนุภาคนาโนของเงิน

ในการศึกษาการกระจายตัวของอนุภาคนาโนของเงิน จากการหายใจ Takenaka และคณะ (2001) พบการสะสมของอนุภาคนาโนของเงิน ส่วนใหญ่ในปอด ต่อมน้ำเหลืองข้างเคียง และพบได้น้อย

ในอวัยวะอื่นๆ ในการศึกษาในโครงการนี้ พบการสะสมของอนุภาคนาโนของเงิน โดยพบในเซลล์แมค โครฟาจในปอดและต่อมน้ำเหลืองข้างเคียง รวมทั้งเซลล์เยื่อบุของถุงลมฝอย จากผลการศึกษาดังกล่าว อาจจะอนุมานได้ว่า กลไกที่สำคัญในการกำจัดอนุภาคนาโนของเงิน ออกจากปอด เป็นการกำจัดผ่านการ เก็บกินของเซลล์แมคโครฟาจและระบบน้ำเหลืองของร่างกาย ส่วนในการสะสมในเยื่อบุของถุงลมฝอยที่ พบ อาจจะเป็นตัวบ่งถึงกลไกในการกำจัดอนุภาคดังกล่าวอีกทางหนึ่งโดยผ่านทางระบบไหลเวียนเลือด ของถุงลมฝอยได้ และอาจจะเป็นหนทางหนึ่งที่อนุภาคนาโนของเงิน สามารถเข้าสู่ระบบไหลเวียนเลือด ของร่างกายได้ ซึ่งอาจจะไปมีผลสะสมและมีอันตรายต่ออวัยวะอื่นๆทั่วร่างกายได้ ดังนั้นควรมีการศึกษา เพิ่มเติมโดยการวัดระดับของอนุภาคนาโนของเงิน ในอวัยวะต่างๆภายในร่างกาย เพื่อเป็นการพิสูจน์ ยืนยันการกระจายตัวของอนุภาคนาโนของเงิน เมื่อเข้าสู่ร่างกาย

จากการศึกษาในส่วนนี้สรุปได้ว่า การป้อนคอลลอยด์อนุภาคนาโนของเงิน เข้าสู่ปอดในระดับ ความเข้มข้นต่างๆในหนูไมซ์ และศึกษาความเป็นพิษในระยะเฉียบพลัน พบว่าการได้รับอนุภาคนาโน ของเงิน ในระดับ 100 1,000 และ 10,000 พีพีเอ็ม ทำให้เกิดการอักเสบและความเสียหายของเนื้อเยื่อ ปอดในระดับปานกลางถึงรุนแรง โดยความรุนแรงของรอยโรคแปรผันตามระดับความเข้มข้นของสารที่ ได้รับ พบอนุมูลอิสระอนุมูลอิสระที่เกิดขึ้นซึ่งอาจจะเป็นผลโดยตรงจากอนุภาคนาโนของเงิน หรือเกิดจาก ขบวนการอักเสบ อาจจะสาเหตุที่ทำให้เกิดพยาธิสภาพดังกล่าวของปอด โดยมี IL-1β และ TNF-α เป็น proinflammatory cytokine ที่มีส่วนเกี่ยวข้องกับพยาธิกำเนิด และโปรตีน metallothionein มีบทบาทใน การป้องกันความเสียหายของเซลล์จากการสัมผัสอนุภาคนาโนของเงิน จากการใช้เทคนิคการย้อม autometallography สามารถใช้ศึกษาการกระจายตัวของอนุภาคนาโนของเงิน ได้ และพบว่ากลไกการ ขจัดที่สำคัญในการกำจัดอนุภาคนาโนของเงิน ออกจากปอด เป็นการกำจัดผ่านการเก็บกินของเซลล์แมค โครฟาจและระบบน้ำเหลืองของร่างกาย

5.2 การศึกษาผลกระทบของระยะเวลาภายหลังได้รับการสัมผัส (Time effect experiment)

ในการศึกษาผลกระทบของระยะเวลาภายหลังได้รับการสัมผัสอนุภาคนาโนของเงิน ของระบบ ทางเดินหายใจของหนูเม้าส์ ทางผู้วิจัยได้เลือกความเข้มขันที่เหมาะสมจากการทดลองที่ 5.1 คือ ความ เข้มขันที่ 100 ppm เนื่องจากเป็นความเข้มขันที่ไม่ทำให้เกิดความเสียหายของปอดมากเกินไป จากผล การศึกษาในครั้งนี้ พบว่าการป้อนสารเข้าสู่ปอดของหนู ที่ความเข้มขัน100 ppm ทำให้เกิดการอักเสบของ ปอดในระดับเล็กน้อยถึงปานกลางในระยะ 1-3 วันของการทดลอง ในวันที่ 7 15 และ 30 ความรุนแรงและ การกระจายตัวของความเสียหายลดลงตามลำดับ ในส่วนของผลการวิเคราะห์น้ำล้างปอด พบว่ามีความ สอดคล้องกับรอยโรคที่พบจากการศึกษาทางด้านจุลพยาธิวิทยา

ดังนั้นจากการศึกษาในส่วนนี้สรุปได้ว่า การรป้อนคอลลอยด์อนุภาคนาโนของเงิน เข้าสู่ปอดใน ระดับความเข้มขัน100 ppm ในหนูไมซ์ ทำให้เกิดการอักเสบและความเสียหายของเนื้อเยื่อปอดได้ ใน ระยะเฉียบพลัน โดยความรุนแรงและการกระจายตัวของรอยโรคจะลดลงตามลำดับเวลาที่ศึกษา

6. เอกสารอ้างอิง

- Alvarado AE, Quesada I, Hylland K, Marigomez L and Soto M 2006. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (*Scopthalmus maximus*) exposed to Cd, Cu, Zn and after a depuration treatment. Aqual Toxicol. 77: 64-77.
- Arora S, Jain J, Rajwade JM and Paknikar KM 2008. Cellular responses induced by silver nanoparticles: *in vitro* studies. Toxicol Lett. 179: 93-100.
- Aumailley M and Smyte N 1998. The role of laminins in basement membrane function. J Anat. 193: 1-21.
- Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J and Ryu DY 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult Zebrafish.

 Aguat Toxicol. 100: 151-159.
- Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA, Dhar SK, Yang H, Chen Y and Clair DK 2008. Interactions between SIRT1 and AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al₂O₃) nanoparticles. Carcinogenesis. 29: 1920–1929.
- Dick CAJ, Brown D M, Donaldson K and Stone V 2003. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particles types. Inhal Toxicol. 15: 39-52.
- Donaldson K and Stone V 2003. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann 1st Super Sanita. 39: 405-410.
- Dunsmore S and Rannels D 1996. Extracellular matrix biology in the lung. Am J Physiol. 270: 3–27.
- Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T and Shimada A 2005.

 Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol. 33: 743–749.
- Kaewamatawong T, Shimada A, Okajima M, Inoue H, Morita T, Inoue K and Takano H 2006. Acute and subacute pulmonary to xicity of low dose of ultrafine colloidal silica particles inmice after intratracheal instillation. Tox Pathol. 34: 958-965.
- Kaewamatawong T, Rattanapinyopituk K, Ponpornpisit A, Pirarat N, Ruangwises S and Rungsipipat A 2012. Short-term exposure of Nile Tilapia (*Oreochromis niloticus*) to mercury: Histopathological changes, mercury bioaccumulation, and protective role of metallothioneins in different exposure routes. Toxicol Pathol . 1st Published online 21 August 2012 DOI: 10.1177/0192623312457269.

- Kolb M, Margetts PJ, Anthony DC, Pitossi F and Gauldie J 2001. Transient expression of IL-1 beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 107:1529–1536.
- Miura N and Shinohara Y 2009. Cytotoxic effect and apoptosis induction by silver nanoparticles in Hela cells. Biochem Biophys Res Commun. 390: 733-737.
- Mukhopadhyay S, Hoidal JR and Mukherjee TK 2006. Role of TNF alpha in pulmonary pathophysiology. Respir Res. 7:125
- Pryhuber G, Huyck H, Baggs R, Oberdorster G and Finkelstein J 2003. Induction of chemokines by low-dose intratracheal silica is reduced in TNFR I (p55) null mice. Toxicol Sci. 72: 150–57.
- Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H and Morita T 2006.

 Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol. 34: 949–57.
- Stebounova LV, Adamcakova-Dodd A, Kim JS, Heaweon, PH, O'Shaughnessy PT, Grassian VH and Thorne PS 2011. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 8: 1-12.
- Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P and Heyder J 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats.

 Environ Health Perspect. 109:547–551.

7. Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- 7.1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
- 7.1.1. Theerayuth Kaewamatawong Wijit Banlunara Pattwat Maneewattanapinyo Chuchaat Thammacharoen and Sanong Ekgasit. Acute Pulmonary Toxicity Caused by Single Intratracheal Instillation of Various Doses of Colloidal Silver Nanoparticles in Mice: Pathological Changes, Particle Bioaccumulation and Metallothionien Responses

 (Manuscript was submitted to The Thai Journal of Veterinary Medicine; IF<1)

ภาคผนวก

Title page

Tiltle: Acute Pulmonary Toxicity Caused by Single Intratracheal Instillation

of Various Doses of Colloidal Silver Nanoparticles in Mice:

Pathological Changes, Particle Bioaccumulation and Metallothionien

Responses

Authors: Theerayuth Kaewamatawong ^{1)*}, Wijit Banlunara ¹⁾, Pattwat

Maneewattanapinyo ²⁾ Chuchaat Thammacharoen ²⁾ and Sanong Ekgasit ²⁾

Page: 17 / Figure 11:

Address: 1) Department of Veterinary Pathology, Chulalongkorn University, Bangkok,

10330 Thailand

²⁾ Sensor Research Unit, Department of Chemistry, Faculty of Science,

Chulalongkorn University, Bangkok 10330, Thailand

* Corresponding Author: Dr. Theerayuth Kaewamatawong

Department of Veterinary Pathology, Chulalongkorn University, Bangkok, 10330

Thailand. Fax and Tel: 02-2189623

E-mail: theerayuth71@hotmail.com

(Manuscript was submitted to The Thai Journal of Veterinary Medicine)

ABSTRACT

To study acute lung toxicity of various doses of colloidal silver nanoparticles (Ag-NPs),

mice were intratracheally instilled with 0, 10, 100, 1000 or 10,000 ppm of Ag-NPs.

Histopathology, autometallography (AMG) and immunohistochemistry were determined at

1, 3, 7 and 15 days post-exposure. Instillation of 100, 1,000 and 10,000 ppm Ag-NPs

produced moderate to severe necrotizing bronchitis and alveolitis with hypertrophy and

hyperplasia of alveolar epithelial cells. The severity of the pulmonary inflammation and

damage increased in dose-dependent manner. Concomitant laminin a

immunohistochemical findings generally correlated to pulmonary lesions. Interleukin 1-

beta (IL-1β) and tumor necrotic factor-alpha (TNF-α) positive immunostanings were found

in the inflammatory lesions in lungs of treated animals. Superoxide dismutase (SOD) and

metallothionine (MT) expression occurred in particle laden AMs and lung epithelial cells,

which correlated to inflammatory sites and particle aggregated areas. AMG gains were

found in particle laden AMs, alveolar epithelial cells and macrophages in hilar lymph

nodes. These findings suggest that instillation of AgNPs causes acute lung inflammation

and tissue damage in a concentration-dependent manner. IL-1β and TNF-α may involve in

the pathogenesis of the acute lung toxicity. Oxidative stress may underlie the lung tissue

injury. Moreover, Moreover, the expression of MT in tissues responded to AgNPs

accumulation.

Keywords: acute, lung toxicity, intratracheal instillation, colloidal silver nanoparticles,

mouse

52

บทคัดย่อ

การศึกษาความเป็นพิษทางด้านพยาธิวิทยา การสะสมของอนุภาค และการตอบสนองของโปรตีนเมทัลโล ใชโอนีนในระบบทางเดินหายใจของหนูไมซ์ที่มีผลจากการสัมผัสอนุภาคนาโนของเงินระดับความเข้มข้น ต่างๆในระยะเฉียบพลัน

ชีระยุทธ แก้วอมตวงศ์ ^{1*} วิจิตร บรรลุนารา¹ ภัททวัฒน์ มณีวัฒนภิญ โญ² ชูชาติ ธรรมเจริญ² สนอง เอกสิทธิ์²

1 ภาควิชาพยาธิวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปทุมวัน กรุงเทพฯ 10330

้ หน่วยปฏิบัติการวิจัยอุปกรณ์รับรู้ ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปทุมวัน กรุงเทพฯ 10330

เพื่อศึกษาความเป็นพิษต่อระบบทางเดินหายใจในหนูไมซ์ที่มีผลจากการสัมผัสอนุภาคนาโนของ
เงิน ระดับความเข้มข้นต่างๆในระยะเฉียบพลัน หนูได้รับการสอดท่อผ่านทางหลอดลมแล้วหยดอนุภาค
นาโนของเงิน ขนาด 0 10 100 1000 หรือ 10,000 พีพีเอิ่ม จากนั้นในวันที่ 1 3 7 และ 15 ทำการการุณยฆาต
และทำการเก็บตัวอย่างชิ้นเนื้อ เพื่อศึกษาทางพยาธิวิทยา ย้อมออโตเมทัลโลกราฟฟีและย้อมอิมมูโนฮีสโต
เคมี จากผลการศึกษาทางพยาธิวิทยาพบว่าการได้รับอนุภาคนาโนของเงิน ในระดับ 100 1,000 และ
10,000 พีพีเอิ่ม ทำให้เกิดการอักเสบปานกลางถึงรุนแรงแบบมีเนื้อตายของหลอดลมและถุงลมฝอยของ
ปอด และพบการเพิ่มจำนวนและขยายขนาดของเซลล์เยื่อบุถูงลมฝอย ซึ่งความรุนแรงของรอยโรคแปรผัน

ตามระดับความเข้มข้นของสารที่ได้รับ ผลจากการย้อมด้วยอิมมูน โนฮิส โตเคมีของลามินีนพบความ เสียหายของเยื่อรองรับฐานของปอดซึ่งสัมพันธ์กับรอยโรคปอดที่เกิดขึ้น พบผลบวกในการย้อมอิมมูนโน ฮิสโตเคมีของอินเตอร์ถิวคิน-1 เบต้า และทูเมอร์ เนคโครซิส แฟคเตอร์-อัลฟาในบริเวณที่มีรอยโรคของ ปอด จากการศึกษาการปรากฏของซุปเปอร์ออกไซด์ดิสมิวเตสและการแสดงออกของโปรตีนเมทัลโลไธ โอนีน พบการติดสืบริเวณเซลล์แมคโครฟาจที่เก็บกินอนุภาคและเซลล์เยื่อบุของปอดในบริเวณที่พบรอย โรคของปอดและบริเวณที่มีการสะสมของอนุภาค การย้อมออโตเมทัลโลกราฟฟีเพื่อศึกษาการสะสม ของอนุภาคนา ในของเงิน พบผลบวกในเซลล์แมคโครฟาจและเซลล์เยื่อบุของปอดที่เก็บกินอนุภาค รวมทั้งในเซลล์แมคโครฟาจในต่อมน้ำเหลืองขั้วปอด จากผลการทดลองทั้งหมดสรุปได้ว่า การสัมผัส อนุภาคนาโนของเงิน สามารถทำให้เกิดการอักเสบและความเสียหายของปอดได้ โดยความรุนแรงขึ้นกับ ระดับความเข้มข้นที่สัมผัส จากการศึกษาพยาธิกำเนิดพบว่า อินเตอร์ลิวคิน-1 เบต้า ทูเมอร์ เนคโครซิส แฟคเตอร์-อัลฟา และอนุมูลอิสระมีความเกี่ยวข้องในขบวนการอักเสบและความเสียหายที่เกิดขึ้น และ พบว่าการปรากฏของโปรตีนเมทัลโลไซโอนีนซมีความเกี่ยวข้องกับการสะสมของอนุภาคนาโนของเงิน คำสำคัญ: ระยะเฉียบพลัน ความเป็นพิษต่อปอด การหยดสารผ่านหลอดลม อนุภาคนาโนของเงิน

หนูไมซ์

INTRODUCTION

Nanoparticles have been used widely in variety of research and industrial fields in recent decades. Rapid development of many novel applications and daily consumer products from the nanotechnology engineering give a lot of concern to the health and safety of these materials. Although the applications and benefits of these engineered nanomaterials are extensively and currently being widely used in modern technology, there is a lack of information concerning the human health and environmental implications of occupational exposure during the manufacturing and handling process (Thomas and Sayre, 2005).

Silver nanoparticles (Ag-NPs) have been known to have inhibitory and bactericidal effects as well as the effective in retarding the growth of mold, harmful spores and germs. Ag-NPs are used and applied in a wide range of applications, especially in health applications and textile industry (Chen and Schluesener, 2008). Despite the varied uses of these Ag-NPs in many commercial products that launched into the market recently, there are limited data on the consequences of health and environmental effects of Ag-NPs.

In vitro studies reveal the cytotoxic effects of Ag-NPs including reduce cell viability, damage cell membrane and interrupt the biological effects of the cells. These toxic effects were related to the generation of reactive oxygen species that affected on the mitochondrial function (Medina et al., 2007). There were few studies of *in vivo* pulmonary toxicity of Ag-NPs. These reports demonstrated the distribution of Ag-NPs in the lung and systemic organs (Takenaka et al., 2001). For pathological effects, there were no significant health impacts for the acute inhalation exposure to Ag-NPs. However, subacute exposure to Ag-NPs showed slightly pulmonary inflammation and cytotoxicity (Stebounova et al., 2011). The underlying causes and pathogenesis of Ag-NPs toxicity is still largely unclear.

Metallothionein (MT), a low molecular weight and cystein-rich protein, can regulate essential metals such as Zn and played an important role in detoxification of non-essential metal ions such as Ag, Cd, Pb and Hg (Nordberg and Nordberg, 2009). The protective role

of MT to silver nanomaterials is still unknown. There is no any report of MT expression in the *in vivo* study caused by exposure to Ag-NPs.

To study the deposition of our Ag-NPs, autometallography (AMG) was performed. Several toxicity studies of heavy metal used AMG technique to detect small amount of the metal in the cells of various kinds of animals (Danscher and Stoltenberg, 2006). In this study, we tried to uses this technique to detect in situ AgNPs in lung and lymph node parenchyma. The purpose of this study is to elucidate the potential toxic effects associated with single intratracheal instillation of Ag-NPs using mouse model for pulmonary histopathological changes during acute stage. Moreover, the pathogenesis of pulmonary toxicity of Ag-NPs and the protective role of metallothionein were elucidated using immunohistochemistry. Also, the distribution and accumulation of Ag-NPs were investigated by histochemical autometallography.

MATERIALS AND METHODS

Experimental animal

7-8 week olds male ICR mice were purchased from National Laboratory Animal Centre, Mahidol University, Thailand. The animals were kept in an animal facility that control the light/dark cycle under 12:12 hr, temperature of 25 ± 1 °C and relative humidity of $55 \pm 10\%$. The mice were fed with mouse chow and given filtered tap water ad libitum throughout the experiment. All protocols of animal experiments were proofed by the ethics committee of Chulalongkorn University Animal Care and Use Committee (CU-ACUC).

Particles

Colloidal silver nanoparticles were received from Sensor Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand. The preparation protocol of AgNPs was described in our previous study (Maneewattanapinyo et al., 2011). Briefly, a 0.094 M aqueous solution of silver nitrate (AgNO₃; Merck) was added dropwise

to an aqueous solution of 0.07 M sodium borohydride (NaBH₄; Merck) under a vigorous stirring. The soluble starch (Merck) was used as stabilizer and solvent in the mixing processes. The purification of the AgNPs was precipitated using the centrifugation. The percentage purity of the AgNPs measured by the macro- and microelectrode was 99.96%. The Ag ions concentration in Ag-NPs was less than 0.04%. The Ag-NPs had a spherical configuration with a relatively uniform size distribution averaging approximately 10-20 nm. To obtain various concentrations of AgNPs, Ag-NPs were suspended in distilled water prior to use.

Experimental design

60 Male ICR mice were single intratracheally instilled with 50 μl aqueous suspensions of 10, 100, 1000 or 10,000 ppm of Ag-NPs suspensions. The control groups of mice were instilled with 50 μl of distilled water. At 1, 3, 7 and 15 days after instillation, the animals in each group were sacrificed. Lungs and hilar lymph nodes were collected in 10% buffered neutral formalin for routine histopathological evaluations and immunohistochemistry.

Immunohistochemistry protocol

Tissue samples from lungs and lymph nodes of control and treated animals were immunostain to detect laminin, TNF- α , IL-1 β , Cu/Zn SOD, and MT. After deparaffinization, the sections were treated with proteinase K for 30 min at 39 °C (for detection of laminin) or with citrate buffer solution (pH= 5.4-6.0; for detection of TNF- α , IL-1 β , Cu/Zn SOD and MT) for 20 min at 121 °C by autoclave and microwave heat at 700 W for 5 min in the process of antigen retrieval. The sections were incubated with 3% H₂O₂ in methanol to quench endogenous peroxidase for 30 min at room temperature. The slides were then blocked with 10% normal goat serum (laminin, TNF- α and Cu/Zn SOD) for 5 min in microwave oven 250 w or 1% bovine serum albumin (IL-1 β and MT) for 30 min at 37°C. Thereafter, the sections were incubated overnight at 4 °C with primary antibodies (anti-laminin; Dako, Glostrup, Denmark, 1:200 dilution; anti-TNF- α , Monosan, Uden, the

Netherlands, 1:15 dilution; anti– IL-1β, Santa Cruz Biotechnology, Santa Cruz, CA, 1:200 dilution; anti-Cu/Zn SOD, Stressgen Bioreagents, Victoria, Canada, 1:200 dilution; and anti-MT, Dako[®], Glostrup, 1:50 dilution). The negative control sections were incubated with phosphate buffered saline. The biotinylated anti-mouse IgG antibody and EnVision polymer (Dako EnVisionTM detection system, Dako[®], Denmark) was reacted to sections as a secondary antibody. The brown staining with the substrate 3,3'-diaminobenzidine tetrahydrochloride (DAB) was determined as the positive result and the sections were counterstained with Mayer's hematoxylin for 30 sec.

Autometallography staining

Various tissue samples from the control and treated mice were investigated for the presence of Ag-NPs distribution and accumulation. After deparaffinization, the sections were incubated with 1% potassium cyanide for 2 hr to eliminate other metal residues and then rinsed well with tap water and distilled water (DW). For silver amplification, the physical developer (50% Arabic gum, 50% citrate buffer, 5.6% hydroquinone and 17% AgNO₃) was applied to the sections 1 hr in automatic shaker at 26 °C. Thereafter, the sections were reacted with 10% sodium thiosulfate and Farmer's solution (20% sodium thiosulfate and 7.5% potassium ferric cyanide) to eliminate silver residues. The sections were rinsed in tap water and counterstained with Mayer's hematoxylin. The positive reactions resulted in yellow-brown to black silver grains.

RESULTS

Clinical and gross findings

In control, 10 and 100 ppm of Ag-NPs treated animals, there were no exposure–related clinical signs in any observation time. Some mice in 1,000 and 10,000 ppm treated animals showed a sign of dyspnea shortly after instillation. However, this sign was recovered after

6 hr post-exposure. Grossly, instillation of 10 and 100 ppm Ag-NPs treated animals caused mild congestion and edema in lung compared to the control groups. In both 1,000 and 10,000 ppm Ag-NPs treated animals, tiny pin-head sized to patchy black brown foci scattered in lung lobes throughout the experiment (Fig. 1). The degree of lesions described above in 10,000 ppm treated groups was more severe than 1,000 ppm treated groups.

Histopathology

At 1 day after instillation, accumulation of free aggregated particles was found in the alveoli and bronchiolar lumens of all treated groups. Some of aggregated particles were present within alveolar macrophages, and occasionally present within alveolar epithelial cells with increasing number of cells in alveolar wall (Fig. 2A). The animal instilled with 1,000 and 10,000 ppm Ag-NPs treated groups had severe accumulation of neutrophils, active alveolar macrophages (AMs) and Ag-NPs laden AMs in aggregated areas (Fig. 2B). At 3 days after instillation, the lungs from 1,000 and 10,000 ppm Ag-NPs treated groups revealed severe multifocal alveolitis characterized by accumulation of numerous active AMs, particle-laden AMs, neutrophils with some necrotic cells. Hypertrophy and hyperplasia of alveolar type II epithelial cells were also noted in the affected areas (Fig. 2C). In 100 ppm Ag-NPs treated groups showed similar lesions but less severe pulmonary lesions. Moderate congestion with particle laden AMs and alveolar epithelium was seen in the lungs from 10 ppm Ag-NPs treated groups. By 7 days after instillation of Ag-NPs, severe loss of lung architecture, cellular necrosis, neutrophil infiltration, alveolar type II hypertrophy and hyperplasia were noted in the lungs from 1,000 and 10,000 ppm Ag-NPs treated groups. Aggregated particles and particle laden AMs were also seen in some areas of lung parenchyma. In 100 ppm Ag-NPs treated groups induced similar histopathological patterns, but the lesions were milder and occupied a small area of the lung specimens. Mild congestion was observed in the lungs from 10 ppm Ag-NPs treated groups. Changes in the lungs of mice killed at 15 days post-exposure were distributed to the similar appearances and severity of lung lesions that were observed in 7 days post-exposure. The lesions of adjacent lymph nodes were also elucidated. The hilar lymph nodes of treated animals of 1 and 3 days post-exposure were slightly enlarged with mild to moderate particle laden macrophages and neutrophil infiltration in subcapsular and medullary sinus. At 7 days post-exposure, multifocal necrosis of lymphoid cells and mild to moderate histiocytic infiltration were noted with mild to moderate particle laden macrophage infiltration. The lungs from 15 days post-exposure groups showed similar but greater severe lesions than those in 7 days post-exposure groups.

Immunohistological evaluation

Laminin: Thin lines of intense brown positive laminin stains were observed along the basement membranes of alveolar septa, bronchus, bronchioles, blood vessels and bronchial glands in control mice (Fig. 3A). Lung tissues from Ag-NPs treated mice showed extensive patchy areas of nonstain or weak positive reaction and discontinuous pattern of the alveolar basement membranes in site of the inflammatory foci (Fig. 3B). The interruption and weak positive immunoreactivity was also seen in the alveoli enclosing to the AgNPs aggregation or particle laden AMs accumulation. The severity and distribution of the lesions were dose dependent manner and showed no different pattern during the exposure dates.

IL-1\beta: The positive staining of IL-1 β was occasionally observed in some alveolar macrophages in control group. However, IL-1 β immunostaining was strongly positive expression mainly in the cytoplasm of particle laden AMs, active AMs, and occasionally in bronchiolar epithelium of lungs from mice exposed to AgNPs at 1 to 15 days post-exposure (Fig. 4).

TNF-a: In control lungs, the immunohistochemical staining of TNF- α was barely detectable in both airway epithelium and lung parenchyma. By contrast, in the AgNPs-treated mice at 1 - 15 days post exposure, positive staining for TNF-a appeared in a large number of cells associated with pulmonary inflammation. TNF- α was expressed mainly in

the cytoplasm of particle laden AMs, active AMs, and occasionally in bronchiolar epithelium that associated with inflammatory nodules and necrotic areas (Fig. 5).

SOD: Immunohistochemical expression of *SOD* was seen in small number of AMs in control animals. After 1-15 days, SOD immunohistochemical staining was observed chiefly in particle laden and activated AMs, and moderately in bronchiolar epithelial cells that associated with the inflammatory sites and particle aggregated areas but minimally in alveolar epithelial cells (Fig. 6).

Metallothionine: In the AgNps -treated mice at 1 to 15 days post exposure, positive staining for MT appeared in a large number of cells associated with aggregated nodules and areas that enclose to particle laden AMs. MT was expressed mainly in the cytoplasm of particle laden and active AMs with occasional detectable in bronchiolar and alveolar epithelial cells (Fig. 7). By contrast, the immunohistochemical staining of MT was barely detectable in the cytoplasm of airway epithelium in control animals.

Autometallography: The deposition of AgNPs characterized by black positive silver grains were observed in the cytoplasm of particle laden AMs and alveolar epithelium (Fig. 8). The large number of positive cells and clump of free black grains appeared in the area of inflammatory nodules. Degrees and distribution of AgNPs positive staining showed a trend toward increasing in a dose-dependent manner, but not different among the exposure days. On the other hand, no evidence of positive silver grains was found in the lungs from the control groups.

DISCUSSION

The purpose of this study was to determine the pathological effects of intratracheally instilled various dose of AgNPs on the lungs of mice in terms of dose response during the acute stage. Possible mechanisms for the pulmonary injury involving inflammatory changes and tissue damage were discussed. In addition, the distribution of the AgNPs in

lung tissues and the protective role of MT were also elucidated. In present study, instillation of colloidal AgNPs could cause acute inflammatory reactions in the respiratory system as observed from 24 hours through 30 days post- exposure. The severity of the pulmonary inflammation and damage increased in a dose-dependent manner. The instillation of 1,000 or 10,000 ppm of AgNPs induced severe necrotizing bronchitis and alveolitis characterized by infiltration of macrophages and neutrophils around the aggregated particles or particle laden AMs with the scatter necrotic cells. Hypertrophy and hyperplasia of alveolar epithelial type II was also noted in the injury areas. The pulmonary injury was moderate in 100 ppm of AgNPs groups and minimal in 10 ppm AgNPs groups. All pulmonary lesions showed equally intensity in all observation times.

There were few reports in the literature on pulmonary studies of nanosilver toxicity in *in vivo* model. Subacute inhalation study of 1 ppm commercial AgNPs revealed no pathologic changes including alveolitis, perivasculitis, lymphoid agglomerates, epithelial damage, granulomas, giant cells or fibrosis (Stebounova et al., 2011). In our pilot study, we also found that the single instillation of 1 ppm AgNPs revealed no significant pathological lesions in all observation times.

Laminin, a noncollagenous glycoprotein (MW = 900000), is an intrinsic component of all basement membranes that plays a central role in the formation, the architecture, and the stability of basement membranes as well as control of cellular interactions. It can be used as a marker of pulmonary basement membranes injury, because it is present along the alveoli throughout the lung (Aumailley and Smyte, 1998). The adverse effects of nanoparticles to the pulmonary basement membranes have been reported in nanotoxicity murine models (Kaewamatawong et al., 2005; Shimada et al., 2006). In mice exposed to AgNPs in this study, we showed the direct effects of AgNPs to the basement membranes as evident of weak and discontinuous positive stainings of laminins along the alveoli that enclosed to the aggregation of AgNPs. The disturbance of the equilibrium between the

synthesis and degradation changes of pulmonary extracellular matrix (ECM) including laminin may result in pulmonary fibrosis (Dunsmore and Rannels, 1996). The accelerated degradation of the ECM as present in the weakened positive immunolabeling for laminin in the acute inflammatory lesions may develop into fibrosis in the chronic stages.

IL-1 β and TNF- α , major proinflammatory cytokines involved in acute inflammation and tissue injury, often act synergistically on a complex regulation on the signaling molecules or protein expression in animal or human diseases (Kolb et al., 2001). Several studies have described the important role of IL-1 β and TNF- α in acute lung injury (Mukhopadhyay et al., 2006). Many kinds of nanoparticles can induce the production of both of these cytokines that are responsible for the induction and modulation of chemokines in the lungs (Pryhuber et al., 2003). In current study, IL-1 β and TNF- α were shown to be present in the inflammatory lesions in treated mice lungs suggested that these cytokines may be involved in the pathogenesis the acute lung toxicity induced by AgNPs.

Nanoparticles have been reported to cause oxidative stress as a result of generation of reactive oxygen species (ROS) in a number of *in vivo* and *in vitro* studies (Dick et al., 2003; Donaldson and Stone, 2003; Kaewamatawong et al., 2006). *In vivo* study of nanosilver also revealed the cytotoxicity of the particles that related to the generation of reactive oxygen species (Choi et al., 2010; Miura and Shinohara, 2009). To protect from the oxidative harmful reaction, cells have developed the free-radical scavenging process by various kinds of antioxidant enzymes including superoxide dismutase (SOD), catalase and glutathione peroxidase. Superoxide dismutase (SOD) are primary antioxidant enzymes scavenged the ROS by catalyzing the dismutation reaction of the superoxide anion to hydrogen peroxide. Several in vitro nanotoxicity studies have been revealed the association between the free-radical generation and SOD scavenging activity. Dey and colleagues (2008) demonstrated the increases manganese superoxide dismutase (MnSOD) protein levels induced by nanosized alumina in mouse skin epithelial cells. Decreasing in

SOD and glutathione (GSH) level that associated to generation of peroxy radicals after AgNPs exposure to human fibrosarcoma (HT-1080) and human skin/carcinoma (A431) cells have been reported (Arora et al., 2008). In our study, the results of the positive Cu/Zn SOD immunoreactivity mainly in particle laden and activated AMs associated with the inflammatory sites and some free particle aggregated areas indicate a pulmonary response to oxidant stress generated by AgNPs in either direct effect of particles themselves or indirect effect of inflammatory reaction.

Several laboratory and field studies noted that metallothionein played an important role in heavy metal homeostasis and detoxification in animals. Expression of MT in tissues responded heavy metal exposure has been reported in various kinds of organisms and animals (Alvarado et al., 2006; Kaewamatawong et al., 2012). In vitro cytotoxicity study of astrocytes exposure to AgNPs showed the upregulation of MT via activation of the metal regulatory transcription factor 1 (MTF-1) (Luther et al., 2012). The certain mechanisms associated with the MT responses to AgNPs exposure remains unclear. Silver (Ag) can directly stimulate the production of MT via the initiation of thionien in the cells (Kim et al., 2009). In another mechanism, enhance of MT induction is associated with their antioxidant role that response to an increase in oxyradicals (Haq et al., 2003). In the present study, MT immuno-expression was detected in macrophages or airway epithelium that associated with AgNPs aggregated nodules and areas enclosing to particle laden AMs. We, therefore, suggest that MT might have a protective role to AgNPs at acute stage. The underlying mechanism of the induction of MT caused by exposure to AgNPs should be elucidated. In several inhalation studies demonstrated the translocation of AgNPs by inductively coupled plasma mass spectrometry (ICPMS) analysis. The silver was detected mainly in the lungs and adjacent lymph nodes, but minimally in the olfactory bulb, liver, kidney, spleen, brain, heart and blood (Takenaka et al., 2001). In our study, we used AMG histochemical techniques to demonstrate the in situ deposition and distribution of AgNPs in

the lungs and hilar lymph nodes. To our knowledge, this was the 1st report to use this kind of technique to detect the nano metal particles. The positive AMG gains were found markedly in the cytoplasm of particle laden AMs as well as macrophages in the adjacent lymph nodes, and occasionally in alveolar epithelial cells. These results indicated that the major clearance mechanism of instilled AgNPs might be via phagocytosis by alveolar macrophages and lymphatic circulation. Moreover, the evidence of AgNPs entering the alveolar epithelium might be another clearance path and also be possible way to gain access to the blood circulation.

In summary, this study demonstrated the pulmonary pathological responses after intratracheal instillation of various doses of AgNPs in mice during the acute stage. AgNPs produced the severity of pulmonary lesions of treated animals in a concentration-dependent manner. IL-1β and TNF-α were proinflammatory cytokines involved in the pathogenesis of the acute lung toxicity induced by AgNPs. We also found pulmonary response to oxidative stress in AgNPs treated animals, which may be one of underlying causes of the lung tissue injury. Furthermore, our current study found that AgNPs can induce the expression of MT that might be one of the protective mechanisms of lung against nanoparticles.

ACKNOWLEDGMENTS

This work was supported by a grant from The National Research Council of Thailand, 2008 and Thailand Research Fund (MRG 5480115).

REFERENCES

- Alvarado AE, Quesada I, Hylland K, Marigomez L and Soto M 2006. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (*Scopthalmus maximus*) exposed to Cd, Cu, Zn and after a depuration treatment. Aqual Toxicol. 77: 64-77.
- Arora S, Jain J, Rajwade JM and Paknikar KM 2008. Cellular responses induced by silver nanoparticles: *in vitro* studies. Toxicol Lett. 179: 93-100.
- Aumailley M and Smyte N 1998. The role of laminins in basement membrane function. J Anat. 193: 1-21.
- Chen X and Schluesener HJ 2008. Nanosilver: A nanoproduct in medical application.

 Toxicol Lett. 176: 1-12.
- Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J and Ryu DY 2010.

 Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult Zebrafish. Aquat Toxicol. 100: 151-159.
- Danscher G and Stoltenberg M 2006. Autometallography (AMG) silver enchancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Progr Histochem Cytochem. 41:57-139.
- Dey S, Bakthavatchalu V, Tseng MT, Wu P, Florence RL, Grulke EA, Yokel RA,

 Dhar SK, Yang H, Chen Y and Clair DK 2008. Interactions between SIRT1 and

 AP-1 reveal a mechanistic insight into the growth promoting properties of alumina (Al₂O₃) nanoparticles. Carcinogenesis. 29: 1920–1929.
- Dick CAJ, Brown D M, Donaldson K and Stone V 2003. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particles types. Inhal Toxicol. 15: 39-52.

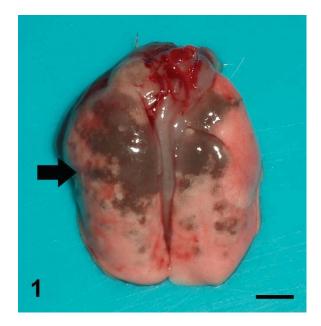
- Donaldson K and Stone V 2003. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann 1st Super Sanita. 39: 405-410.
- Dunsmore S and Rannels D 1996. Extracellular matrix biology in the lung. Am J Physiol. 270: 3–27.
- Haq F, Mahoney M, Koropatnick J 2003. Signaling events for metallothionein induction. Mutat Res. 533: 211–226.
- Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T and Shimada A 2005. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicol Pathol. 33: 743–749.
- Kaewamatawong T, Shimada A, Okajima M, Inoue H, Morita T, Inoue K and Takano H 2006. Acute and subacute pulmonary to xicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Tox Pathol. 34: 958-965.
- Kaewamatawong T, Rattanapinyopituk K, Ponpornpisit A, Pirarat N, Ruangwises S and Rungsipipat A 2012. Short-term exposure of Nile Tilapia (*Oreochromis niloticus*) to mercury: Histopathological changes, mercury bioaccumulation, and protective role of metallothioneins in different exposure routes. Toxicol Pathol . 1st Published online 21 August 2012 DOI: 10.1177/0192623312457269.
- Kim S, Choi JE, Choi J, Chung K, Park K, Yi J and Ryu D 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitro. 23:1076– 1084.
- Kolb M, Margetts PJ, Anthony DC, Pitossi F and Gauldie J 2001. Transient expression of IL-1 beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 107:1529–1536.
- Luther EM, Schmidt MM, Diendorf J, Epple M and Dringen R 2012. Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochem Res. 37: 1639-1648.

- Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S and

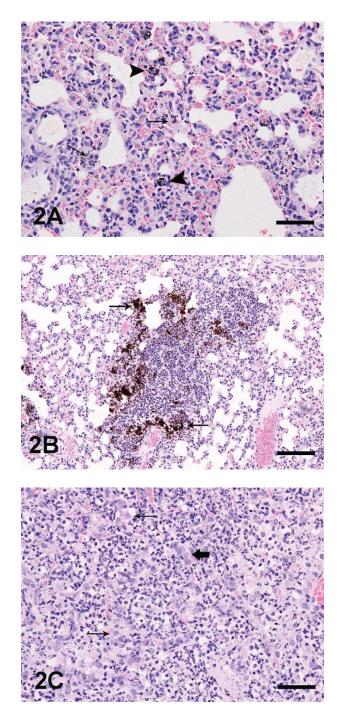
 Kaewamatawong T 2011. An Evaluation of Acute Toxicity of Colloidal Silver

 Nanoparticles. J Vet Med Sci. 73: 1417- 1423.
- Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI and Radomski MW 2007.

 Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol.


 150:552–558.
- Miura N and Shinohara Y 2009. Cytotoxic effect and apoptosis induction by silver nanoparticles in Hela cells. Biochem Biophys Res Commun. 390: 733-737.
- Mukhopadhyay S, Hoidal JR and Mukherjee TK 2006. Role of TNF alpha in pulmonary pathophysiology. Respir Res. 7:125
- Nordberg M and Nordberg GF 2009. Metallothioneins: Historical development and overview. Met Ions Life Sci. 5: 1–29.
- Pryhuber G, Huyck H, Baggs R, Oberdorster G and Finkelstein J 2003. Induction of chemokines by low-dose intratracheal silica is reduced in TNFR I (p55) null mice.

 Toxicol Sci. 72: 150–57.
- Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H and Morita T 2006. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicol Pathol. 34: 949–57.
- Stebounova LV, Adamcakova-Dodd A, Kim JS, Heaweon, PH, O'Shaughnessy PT, Grassian VH and Thorne PS 2011. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 8: 1-12.
- Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P and Heyder J 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 109:547–551.


Thomas K and Sayre P 2005. Research strategies for safety evaluation of nanomaterials,

Part 1: Evaluating the human health implications of exposure to nanoscale materials. Tox Sci. 87: 316-321.

FIGURES

Fig. 1. Lung from 10,000 ppm Ag-NPs treated animals at 1 day post-exposure shows patchy black brown foci (Bold arrow) scattered in lung lobes. (Bar = 1 cm)

Fig. 2. Lung sections from various doses of AgNPs treated groups at various time points, H&E stain. (A) the distributions of DEPs in AMs (arrowheads) and alveolar epithelium (arrowhs); 1,000 ppm treated group at 1 day post-exposure, Bar = 600 μm. (B) Influx of neutrophils and accumulation of particle laden AMs in AgNPs (arrowheads) aggregated areas; 10,000 ppm treated group at 1 day post-exposure, Bar = 250 μm. (C) Focal necrotizing alveolitis with hyperplasia of alveolar type II epithelial cells; 10,000 ppm treated group at 3 day post-exposure, Bar = 700 μm.

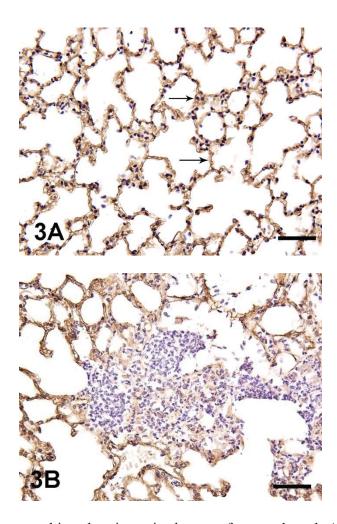
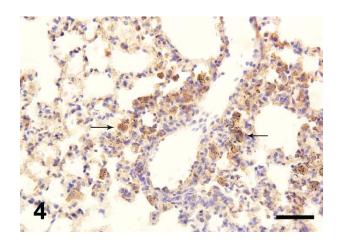
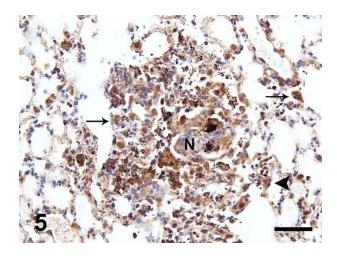




Fig. 3. Laminin immunohistochemistry in lungs of control and AgNPs-treated mice sacrificed at 3days post-exposure. (A) Brown thin string-like positive staining along alveolar basement membranes (arrows) in control animals, Bar = $300 \mu m$ (B) Weak and discontinuous positive patterns of alveolar basement membrane at the focal alveolitis in AgNPs-treated mice, Bar = $600 \mu m$.

Fig. 4. Intense brown positive immunostaining of IL1- β appears in a large number of particle laden AMs (arrows) in lungs of 10,000 ppm group killed at day 7 post-exposure, Bar = 600 μm.

Fig. 5. Prominent brown positive immunostaining of TNF-a is found mainly in partcle laden AMs (arrows) and occasionally in bronchiolar epithelial cell (arrowheads) associated with inflammatory nodules (N) in lungs of 10,000 ppm group killed at day 3 post- exposure, Bar = $600 \mu m$.

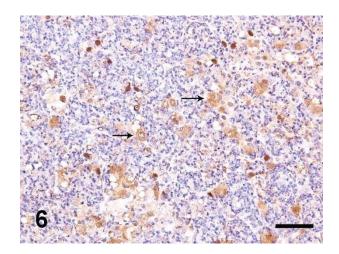
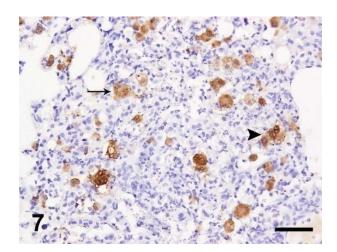
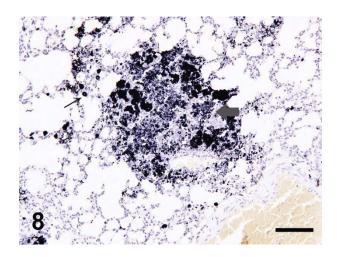




Fig. 6. The intense positive labeling of SOD is expressed in the cytoplasm particle laden AMs (arrows) located at inflammatory nodules in lung of 1,000 ppm group killed at day 15 post-exposure, Bar = 700μ .

Fig. 7. Immunohistochemical localization of MT in lungs of 1,000 ppm group sacrificed at 7 days post-exposure, brown positive staining was observed in particle laden AMs (arrows) and active AMs (arrowheads), Bar = 600.

Fig. 8. The black positive silver grains in lungs of 10,000 ppm group sacrificed at 1 day post- exposure were observed in the cytoplasm of particle laden AMs (arrow) and clump of AgNPs appeared in the area of inflammatory nodules (Bold arrow), Bar = 600.