

รายงานวิจัยฉบับสมบูรณ์

ผลของการให้สารต้านตัวรับเอสโตรเจน (ICI 182 780) โดยตรงที่สมอง ส่วนท้ายของหนูเพศเมียต่อพฤติกรรมการกินอาหาร

น.สพ.คร. สัมพันธ์ ธรรมเจริญ

ภาควิชาสรีรวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

รายงานวิจัยฉบับสมบูรณ์

ผลของการให้สารต้านตัวรับเอสโตรเจน (ICI 182 780) โดยตรงที่สมอง ส่วนท้ายของหนูเพศเมียต่อพฤติกรรมการกินอาหาร

น.สพ.คร. สัมพันธ์ ธรรมเจริญ

ภาควิชาสรีรวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดย จุฬาลงกรณ์มหาวิทยาลัย สำนักงานคณะกรรมการการอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นความเห็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง "ผลของการให้สารต้านตัวรับเอสโตรเจน (ICI 182 780) โดยตรงที่สมอง ส่วนท้ายของหนูเพศเมียต่อพฤติกรรมการกินอาหาร" ได้รับทุนพันฒนาศักยภาพในการทำงานวิจัย ของอาจารย์รุ่นใหม่ ภายใต้การสนับสนุนจาก จุฬาลงกรณ์มหาวิทยาลัย สำนักงานคณะกรรมการ การอุดมศึกษา และสำนักงานกองทุนสนับสนุนการวิจัย ประจำปังบประมาณ 2554 (MRG5480142)

บทคัดย่อ

รหัสโครงการ: MRG5480142

ชื่อโครงการ: ผลของการให้สารต้านตัวรับเอสโตรเจน (ICI 182 780) โดยตรงที่สมองส่วนท้ายของหนูเพศเมียต่อ

พฤติกรรมการกินอาหาร

ชื่อนักวิจัย:นายสัตวแพทย์ สัมพันธ์ ธรรมเจริญ

ภาควิชาสรีรวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail address: sprueksagorn@hotmail.com

ระยะเวลาโครงการ: 15 มิถุนายน 2554 ถึง 14 มิถุนายน 2556 (ขยายเวลา 31 ตุลาคม 2556)

เอสโทรเจน (E_2)ลดการกินอาหารโดยกลไกการกระตุ้นตัวรับเอสโทรเจน (ER) ที่อยู่ภายในสมอง กลุ่มวิจัยของเราได้เสนอผลงานวิจัยที่แสดงให้เห็นว่าการกระตุ้น ER α ที่สมองส่วนท้ายโดยการฝัง E_2 ขนาดน้อยสามารถทำให้การกินอาหารลดลงได้ในหนูเพสเมียที่ถูกตัดรังไข่ได้ เพื่อที่จะทดสอบสมมติฐาน ว่า "สมองส่วนท้ายมีความจำเป็นต่อการออกฤทธิ์ของ E_2 ต่อการกินอาหารในหนูเพสเมีย" ผู้วิจัยวางแผน การทดลองโดยจะทำการฉีดสารเข้าสู่สมองส่วนท้ายโดยตรงด้วยวิธีการสอดท่อผ่านช่องของสมองลำดับที่ 4 (4^{th} icv)

ในลำดับแรกผู้วิจัยได้ทำการทดลองเพื่อแสดงให้เห็นถึงฤทธิ์ของ E,ต่อการกินอาหารในหนูเพศ เมีย ดังนี้ หนูเพศเมียพันธุ์วิสต้าที่มีรังไข่สมบูรณ์มีรูปแบบการกินอาหารที่ลดลงจำเพาะกับระยะวงรอบ การพัฒนาของรังไข่ สำหรับในหนูที่ได้รับการตัดรังไข่ (OVX) พบว่าการเสริมเอสทราไคออล เบนโซเอต (EB) แบบเป็นวงจรทำให้การกินอาหารลดลงอย่างมีนัยสำคัญ ผลการทดลองในขั้นแรกนี้แสดงให้เห็นว่า การให้ \mathbf{E}_2 ในหนู OVX ภายใต้สภาวะการจัดการของเราสามารถเลียนแบบรูปแบบการกินอาหารที่พบใน หนูเพศเมียที่มีรังไข่สมบูรณ์ได้ดังเช่นที่เคยพบมา กลุ่มวิจัยของเราทำการศึกษาในลำดับต่อมาพบว่าการให้ สารต้าน ER (ICI) ในขนาด 4 และ 8 นาโนโมล่า (nM) สามารถลดฤทธิ์ของ EB ต่อการกินอาหารได้ โดย พบว่าการให้ EB ทำให้การกินอาหารลดลงอย่างมีนัยสำคัญในหนกลุ่มที่ได้รับสารควบคมผ่าน 4th icv (1%DMSO) แต่สำหรับหนูกลุ่มที่ได้รับสาร ICI ขนาด 4 และ 8 nM ผ่าน 4th icv ฤทธิ์ของ EB ต่อการกิน อาหารลดลงจะน้อยลง ผลการทดลองที่ได้นี้สนับสนุนผลการทดลองก่อนหน้าที่พบว่าการให้ ICI เข้าสู่ ช่องของสมองทำให้ฤทธิ์ของ EB ต่อการกินอาหารลคลง และที่สำคัญกลุ่มวิจัยได้รายงานผลการทคลองว่า การให้สาร ICI ด้วยวิธีดังกล่าวไม่มีผลกระทบต่อการกินอาหารตลอดระยะเวลา 12 วันของการให้สาร รวมถึงไม่มีผลต่อจำนวน $\mathrm{ER}lpha$ ที่นับได้จากนิวเคลียสของสมองส่วนไฮโปทาลามัส จากผลการทดลอง ทั้งหมด กลุ่มผู้วิจัยสรุปว่า ในหนูเพศเมียการให้สาร ICI ผ่าน 4th icv สามารถลดฤทธิ์ของเอสโทรเจนที่ให้ โดยการฉีดต่อการกินอาหารได้และนำไปสู่การสรุปว่าสมองส่วนท้ายเป็นบริเวณที่มีความจำเป็นต่อการ ออกฤทธิ์ของ \mathbf{E}_{γ} ต่อการกินอาหารในหนูเพศเมีย

คำหลัก: ไอซีไอ อีบี หนูเพศเมีย การกินอาหาร

ABSTACT

Project code: MRG5480142

Project title: The effect of central administration of the estrogen receptor antagonist

(ICI 182 780) to hindbrain of female rats on eating behavior

Investigator: Dr. Sumpun Thammacharoen

Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University.

E-mail address: sprueksagorn@hotmail.com

Project period: 14 June 2011 to 14 June 2013 (extension period to 31 Oct 2013)

Estrogen (E₂) inhibits food intake by activating estrogen receptor (ER) within the brain. We

showed previously that activated hindbrain ERa, by E2 implantation, is sufficient to inhibit eating in

ovariectomized (OVX) rats. To investigate that hindbrain ERa is required for estrogenic control of

eating, hindbrain infusion of ICI directly to the 4th intracerebroventricular (4th icv) was performed in

the current experiment.

We first demonstrated the effect of E₂ on food intake in our condition. Female intact Wistar

rat showed clear typical decreased pattern of eating across the ovarian cycle. Cyclic estradiol benzoate

(EB) treatment in OVX rats decreased food intake significantly. The results revealed that in our

condition exogenous E2 mimic eating pattern in female intact rat as reported previously. We

demonstrated next that the 4th icv infusion of ER antagonist, ICI, at 4nM and 8nM could attenuate the

effect of EB on food intake. There was significant lower daily food intake from EB than from oil

treatment in 1% DMSO 4th icv group. However, the effect of EB on food intake was compromised

from both 4nM and 8nM ICI 4th icv groups. These results support previous report that central infusion

of ICI could attenuate estradiol's anorexigenic effect. Importantly, we demonstrated that across 12 days

of ICI 4th icv ICI hindbrain infusion had no effect on FI. Further, there was no difference in the number

of ERα immunopositive neurons from the selected hypothalamic nuclei. Taken together, we conclude

that the 4th icv with ICI attenuated the exogenous estrogenic effect on food intake in female rat and that

hindbrain appear to be the site required for estrogenic effect of food intake.

Key words: ICI, EB, female rat, food intake

2

EXECUTIVE SUMMARY

1. ความสำคัญและที่มาของปัญหา

พฤติกรรมการกินอาหาร (eating or feeding behavior) ถือเป็นพฤติกรรมพื้นฐานที่จำเป็นสำหรับ การคำรงชีวิตของสิ่งมีชีวิตทุกชนิด พฤติกรรมนี้มีบทบาทในการรักษาสมคุลของพลังงานและการ ้ได้รับสารอาหารที่จำเป็นสำหรับขบวนการทางชีววิถีต่าง ๆ ความสำคัญของการศึกษาพฤติกรรม คังกล่าวได้รับความสนใจอย่างมากเนื่องจากในปัจจุบันพบว่า อุบัติการณ์ของภาวะอ้วน (obesity) ู้ เพิ่มขึ้นอย่างชัดเจน (BRFSS., 2010) ภาวะอ้วนถือเป็นภาวะสมคุลของพลังงานเกินที่มีสาเหตุส่วน หนึ่งเกิดขึ้นจากพฤติกรรมการกินอาหารที่ตอบสนองต่อรูปแบบของสังคมในปัจจุบันที่ต่างจากใน อดีตอย่างมาก และภาวะอ้วนนี้ส่งผลถึงโรคต่างๆ ที่จะเกิดตามมามากมาย เช่น โรคทางเมแทบอลิ ซึม โรคของหลอดเลือดและหัวใจ และโรคเบาหวาน ฯลฯ (Desprées et al., 2008; Flegal et al., 2005; Moller and Kaufman., 2005) พฤติกรรมการกินอาหารที่เบี่ยงเบนยังส่งผลต่อภาวะสมคุลของ พลังงานขาด และเกี่ยวข้องกับโรคทางจิต (psychological diseases) ด้านพฤติกรรมการกิน เช่น anorexia nervosa bulimia nervosa และ binge eating disorder (Geary., 2001; Klein and Walsh., 2004) ข้อเท็จจริงประการหนึ่งสำหรับปัญหาที่เกิดจากพฤติกรรมการกินที่กล่าวมาข้างต้น คือ เพศ หญิงพบอบัติการของโรคทางจิตที่เกี่ยวกับการกินอาหารมากกว่าเพศชาย และเพศหญิงเป็นเพศที่ พบภาวะอ้วนแบบรุนแรง (morbid type obesity) มากกว่าเพศชาย ข้อมูลดังกล่าวข้างต้นชี้ให้เห็นถึง ความต่างของเพศ (gender differences) ที่มีผลต่อพฤติกรรมการกิน และโดยเฉพาะอย่างยิ่งปัญหาที่ เกี่ยวกับพฤติกรรมการกินที่เกิดมากในเพศหญิง (Geary., 2001; Woods et al., 2003) การศึกษา เกี่ยวกับพฤติกรรมการกินในเพศหญิงหรือในสัตว์เพศเมียจึงมีความสำคัญอย่างยิ่ง ขบวนการการแสดงพฤติกรรมนี้ในแง่มุมต่างๆ จะทำให้เราเข้าใจถึงความเป็นไปของการเกิดความ ผิดปกติต่างๆ ได้

พฤติกรรมการกินในสัตว์เพศเมียนั้นมีลักษณะจำเพาะ ที่แตกต่างไปจากในสัตว์เพศผู้ คือ ปริมาณ การกินอาหารต่อวันจะมีความสัมพันธ์กับวงรอบการเป็นสัด โดยการกินอาหารต่อวันจะลดลง ในช่วงระหว่างการตกไข่ (periovulatory phase) พฤติกรรมที่แสดงออกนี้เป็นผลจากระดับของ \mathbf{E}_2 ที่ มีอยู่สูงในช่วงเวลาดังกล่าว (Asarian and Geary, 2006; Butera, 2010) ปรากฏการณ์นี้ได้ถูกศึกษา อย่างมากในหนูเพศเมียซึ่งมีวงรอบการเป็นสัด 4 ถึง 5 วัน ในหนูนั้นจะพบการกินอาหารลดลงใน วันที่หนูเป็นสัด (estrus day) ซึ่งเป็นวันถัดจากที่มีระดับ \mathbf{E}_2 สูงในกระแสเลือด คือ วันก่อนการเป็น สัด (proestrus day) การกินอาหารที่ลดลงนี้เป็นผลเนื่องจาก การลดลงของขนาดมื้ออาหาร (meal size) โดยพบว่ามีการชดเชยของความถี่ของมื้ออาหาร (meal frequency) อยู่ระดับหนึ่ง การกิน อาหารต่อวันจะกลับคืนสู่ระดับปกติเมื่อหนูเข้าสู่ระยะ ไดเอสตรัส (diestrus) สอดคล้องกับการ ลดลงของระดับ \mathbf{E}_2 ในกระแสเลือด (Asarian and Geary, 2002) ผลของ \mathbf{E}_2 ต่อการลดระดับการกิน อาหารในหนูเพศเมียนี้ยังได้รับการยืนยันจากการศึกษาในหนูที่ถูกตัดรังไข่ทิ้ง (ovaliectomized rat)

ซึ่งจะมีระดับ E, อยู่ต่ำมาก ทำให้หนูดังกล่าวเพิ่มระดับการกินอาหารต่อวันสูงขึ้นจนทำให้มีน้ำหนัก ที่มากกว่าหนูปกติ และการให้ฮอร์โมน E₂ ทดแทนสามารถที่จะลดระดับการกินอาหารและคง น้ำหนักไว้ในหนูที่ถูกตัดรังไข่ทิ้งได้ (Asarian and Geary, 2002) การศึกษาหลายชิ้นยังบ่งชี้ว่า ${
m E_2}$ นั้นมีผลต่อพฤติกรรมการกินโดยการออกฤทธิ์ที่สมอง (Asarian and Geary, 2006; Rivera and Eckel, 2010) งานวิจัยในอดีตที่ใช้วิธีการให้ E, ในระดับต่ำไปที่สมองส่วนต่างโดยตรง พบว่า สมอง ส่วนใฮโปทาลามัสหลายจุดน่าจะเป็นตำแหน่งที่ E_2 ออกฤทธิ์ (Palmer and Gray, 1986; Butera and Beikirch, 1989; Dagnault and Richard, 1997) อย่างไรก็ตามการศึกษาหลายชิ้นก็ให้ผลการวิจัยที่ แย้งกันกับงานวิจัยในกลุ่มที่กล่าวว่าสมองส่วนไฮโปทาลามัสเป็นจุดออกฤทธิ์ของ ${f E}_2$ (Hrupka et al., 2002; Gao et al., 2007; Musatov et al., 2006) และในอีกด้านหนึ่งยังพบว่าฤทธิ์ของ ${\bf E}_2$ ต่อ พฤติกรรมการกินอาหารเป็นฤทธิ์ที่เกิดขึ้นจากการที่ ${f E}_{_2}$ ให้ผลควบคุมฮอร์ โมน ซีซีเค (CCK) ซึ่งเป็น ฮอร์โมนที่หลั่งจากทางเดินอาหาร โดยปกติแล้ว CCK จะให้ผลลดการกินอาหารและ ${f E}_{_2}$ จะมีผลทำ ให้ฤทธิ์ของ CCK เพิ่มสูงขึ้น การควบคุมพฤติกรรมการกินอาหารของ $\mathbf{E}_{_2}$ ผ่าน CCK นี้เป็นการ ควบคุมที่เกิดขึ้นที่สมองเป็นหลัก (Eckel and Geary, 2001; Eckel et al., 2002; Asarian and Geary, 2007) โดยที่ฮอร์โมน CCK ออกฤทธิ์ต่อพฤติกรรมการกินที่สมองส่วนเมดัลลา (medulla) เป็นหลัก ทำให้มีการตั้งสมมุติฐานว่า สมองบริเวณเมคัลล่านี้น่าจะเป็นสมองอีกส่วนหนึ่งที่เป็นจุดออกฤทธิ์ ของ $\mathbf{E}_{_{2}}$ งานวิจัยของกระผมได้ชี้ให้เห็นว่า สมองส่วน นิวเคลียส แทรกทัส โซลิทราเรียส (nucleus tractus solitarius, NTS) ซึ่งตั้งอยู่ที่สมองส่วนเมดัลลาเป็นจุดสำคัญที่เซลล์สมองมีตัวรับของเอสโตร เจน (estrogen receptor, ER) และมีความสามารถเพียงพอในการทำให้ \mathbf{E}_2 ออกฤทธิ์ต่อพฤติกรรม การกินอาหารที่สัมพันธ์กับฮอร์โมน CCK (Thammacharoen et al., 2008)

จากผลการทดลองของกระผมที่แสดงให้เห็นว่าฤทธิ์ของ E_2 ต่อการกินอาหารนั้นส่วนหนึ่งมี กลไกการออกฤทธิ์ผ่านตัวรับฮอร์โมนเอสโตรเจนที่ปรากฏอยู่ที่สมองส่วนท้าย ทำให้มีความเข้าใจ เดิมที่เชื่อว่า E_2 จะออกฤทธิ์ต่อพฤติกรรมการกินโดยผ่านบริเวณสมองส่วน ไฮโปรทาลามัส (hypothalamus) เป็นสำคัญ จำเป็นต้องได้รับการทบทวน โดยกระผมเชื่อว่าการออกฤทธิ์ของ E_2 นั้น เกิดขึ้นจากทั้งสองบริเวณโดยที่การเชื่อมโยงระหว่างสมองทั้งสองบริเวณยังคงต้องมีการศึกษาอีก ระดับหนึ่ง นอกจากนั้นยังคงมีสมมุติฐานสำคัญอีกหลายข้อที่จำเป็นต่อการอธิบายองค์ความรู้หลักที่ เกี่ยวกับการออกฤทธิ์ของ E_2 และสมองส่วน NTS ต่อพฤติกรรมกินในหนูเพสเมีย องค์ความรู้เสริม ที่กระผมสนใจเป็นเบื้องต้น คือ การแสดงให้เห็นว่าสมองส่วน NTS นี้มีความจำเป็นต่อการออก ฤทธิ์ของ E_2 และการแสดงออกของพฤติกรรมการกิน และกลไกการออกฤทธิ์ของ E_2 ที่สมองส่วน NTS ในระดับเซลล์ประสาทและระดับโมเลกุลที่มีความสัมพันธ์กับพฤติกรรมการกิน ผลกระทบ (impact) ของการค้นพบดังสมมุติฐานที่ตั้งไว้นอกจากจะสามารถใช้อธิบาของค์ความรู้หลัก (Thammacharoen et al., 2008) ยังใช้เชื่อมโยงให้เห็นถึงความสำคัญของสมองส่วนท้ายในการที่จะ สามารถทำหน้าที่เป็นส่วนบูรณาการ (integration unit) สำหรับข้อมูลต่างๆ และส่งผลต่อการแสดง

พฤติกรรม ซึ่งข้อบ่งชี้นี้เป็นส่วนหนึ่งของความเข้าใจในสรีรวิทยาของระบบประสาทที่สำคัญชิ้น หนึ่ง

2. วัตถุประสงค์

- 2.1 เพื่อแสดงให้เห็นว่าสมองส่วน NTS นี้มีความจำเป็นต่อการออกฤทธิ์ของ \mathbf{E}_2 และการ แสดงออกของพฤติกรรมการกินในหนูเพศเมีย
- 2.2 เพื่อค้นหากลไกการออกฤทธิ์ของ E_2 ที่บริเวณสมองส่วน NTS ต่อพฤติกรรมการกินในหนู เพศเมียในระดับเซลล์ประสาทและระดับโมเลกุล ทั้งในด้านการออกฤทธิ์ที่ผ่านตัวรับเอสโตร เจน และผลการกระตุ้นตัวรับเอสโตรเจนที่มีต่อการสื่อประสาทบริเวณ NTS

3. ระเบียบวิธีวิจัย

แผนการวิจัยเพื่อให้บรรลุวัตถุประสงค์ทั้งสองข้อ มีลำดับดังนี้

- 3.1 เพื่อแสดงให้เห็นถึงฤทธิ์ของ E_2 ต่อการกินอาหารในหนูเพศเมียในสภาวะการเลี้ยงที่จะใช้ สำหรับโครงการ ผู้วิจัยได้วางแผนศึกษาในหนูเพศเมียทั้งที่ไม่ได้ตัดรังไข่ (ซึ่งมีวงจรการ เปลี่ยนแปลงรังไข่สมบูรณ์) และในหนูเพศเมียที่ถูกตัดรังไข่และได้รับการเสริม E_2 จากการฉีด เอสทราไดออล เบนโซเอท (estradiol benzoate, EB)
- 3.2 เพื่อแสดงให้เห็นว่าสมองส่วน NTS มีความจำเป็นต่อการออกฤทธิ์ของฮอร์โมน \mathbf{E}_2 ผู้วิจัย วางแผนที่จะให้สารต้านตัวรับฮอร์โมนเอสโทรเจน (estrogen receptor, ER, antagonist) คือ ICI 182 780 (ICI) หรือสารควบคุม (1%DMSO) เข้าสู่ช่องของสมองลำดับที่ ๔ ($\mathbf{4}^{\text{th}}$ intracerebroventricular, 4th icv) โดยตรงสู่สมองส่วนท้ายผ่านอุปกรณ์ส่งสารด้วยแรงออสโมติก (osmotic pump, 1002OP) การทดลองนี้ทำในหนูเพศเมียที่ทำการตัดรังไข่ทิ้งแล้ว หลังจากผ่าตัดผึ้งท่อเพื่อให้สาร ICI ที่สมอง ส่วนท้ายเป็นผลสำเร็จ หนูชุดดังกล่าวจะถูกทดสอบฤทธิ์ของ \mathbf{E}_2 หรือสารควบคุม (น้ำมันงา) และ บันทึกข้อมูลการกินอาหารและน้ำหนัก
- 3.3 เพื่อศึกษากลใกการออกฤทธิ์ของฮอร์โมน \mathbf{E}_2 ในระดับเซลล์และระดับโมเลกุล เนื่องจาก กลใกการด้านตัวรับของสาร ICI ที่สำคัญกลใกหนึ่งคือ การสนับสนุนการขบวนการทำลาย ER ผู้วิจัยวางแผนที่จะศึกษาการเปลี่ยนแปลงของจำนวน ER ภายในสมองส่วนหน้าและส่วนท้ายหลัง การได้รับสาร ICI เข้าสู่สมองส่วนท้ายโดยตรง การศึกษาในหัวข้อนี้จะทำการเตรียมตัวสัตว์ เหมือนกับในการทดลอง 3.2 เพียงแต่มิได้ทำการทดสอบฤทธิ์ของ \mathbf{E}_2 แต่จะทำการวัดการกินอาหาร และน้ำหนัก พร้อมทั้งทำการุณฆาตและนำชิ้นส่วนสมองมาทำการตรวจนับจำนวน ER ภายใน สมองบริเวณต่างๆ

การวิเคราะห์ข้อมูลที่ได้ทั้งหมดผู้วิจัยจะทำในลักษณะเช่นเคียวกับที่เคยใช้ (Thammacharoen et al., 2008; Thammacharoen et al., 2009) โดยหลักการทั่วไป คือ ข้อมูลของการวิจัยต่างๆ ทั้งหมดจะ รายงานโดยใช้สถิติเชิงพรรณนาเป็น ค่าเฉลี่ยและความคลาดเคลื่อนมาตรฐานของการทดลอง (mean± SEM) การทดสอบสมมุติฐานใดๆ ของการทดลองจะทำโดยการวิเคราะห์ความแปรปรวน

(analysis of variance, ANOVA) ตามด้วยการทดสอบความแตกต่างของผลการทดลองเมื่อข้อมูล ผ่านการวิเคราะห์ความแปรปรวนแล้ว

4. ผลการวิจัยและวิจารณ์

ผลการทดลองในเบื้องต้น ผู้วิจัยสามารถแสดงให้เห็นฤทธิ์ของฮอร์โมน ${f E}_2$ ทั้งที่มีอยู่ในหนูเพศ เมียที่มีรังไข่สมบรณ์และในหนเพศเมียที่ถูกตัดรังไข่และเสริม EB หนเพศเมียที่มีรังไข่สมบรณ์จะ กินอาหารลดลงในช่วงวันที่เป็นสัด และหนูเพศเมียที่ถูกตัดรังไข่จะกินอาหารลดลงหลังการได้รับ EB แล้ว 2 คืน (รูปที่ 3) ผลการทคลองในเบื้องต้นนี้มีความสำคัญมากในอันที่จะเป็นเครื่องยืนยันถึง วิธีการทคลองในสภาวะการเลี้ยงที่ใช้สำหรับโครงการในอนาคตว่าไม่แตกต่างจากที่พบโคยทั่วไป สำหรับการทดลองลำดับที่ 2 นั้นพบว่าการให้สาร ICI โดยตรงเข้าสู่สมองส่วนท้ายผ่าน 4th icv และ 1002OP สามารถต้านทานฤทธิ์ของ EB ต่อการกินอาหารได้ โดยพบว่าในกลุ่มที่ให้ 1%DMSO เข้าสู่ สมองส่วนท้ายโดยตรงนั้นการให้ EB ทำให้การกินอาหารลดลงอย่างมีนัยสำคัญ (รูปที่ 8) ในขณะ ที่กลุ่มที่ได้รับ ICI ทั้งในระดับ 4 และ 8 nM นั้นพบว่าการกินอาหารในหนูกลุ่มที่ได้รับ EB ไม่ แตกต่างจากหนูกลุ่มที่ได้รับน้ำมันงา (รูปที่ 8) ผลการทดลองชี้ให้เห็นว่าการให้ ICI ผ่านเข้าสู่สมอง ส่วนท้ายโดยตรงสามารถต้านฤทธิ์ของ EB ต่อการกินอาหารได้ และหมายความว่าสมองส่วนท้ายมี ความจำเป็นต่อการออกฤทธิ์ของ EB ต่อการกินอาหาร การทดลองในลำดับต่อมาคือการศึกษา เกี่ยวกับผลการให้สาร ICI ด้วยวิธีดังกล่าวต่อการกินอาหารโดยตรงและผลที่เกิดขึ้นกับจำนวน ER ที่จะตรวจสอบที่สมองบริเวณต่างๆ ทั้งจากสมองส่วนท้ายโดยเฉพาะที่บริเวณ นิวเคลียส แทรกทรัส โซลิทาเลียส (nucleus tractus solitaruis, NTS) และที่ใชโปทาลามัสของสมองส่วนหน้า คือที่บริเวณ มีเดียล พรื่ออฟติก นิวเคลียส (medial preoptic nucleus, MPO) บริเวณ อาคูเอท นิวเคลียส (arcuate nucleus, Arc) และบริเวณ เวนโทรมีเดียล นิวเคลียส ของไฮโปทาลามัส (ventronucleus of hypothalamus, VMH) ผลการทดลองพบว่าการให้สาร ICI เข้าสู่สมองส่วนท้ายโดยตรงนั้นไม่มีผล ต่อการกินอาหารตลอด 12 วันของการทดลอง และที่สำคัญพบว่าไม่มีผลต่อจำนวน ER ที่พบภายใน เซลล์ประสาทที่นับได้จากสมองส่วนหน้าทั้ง 3 บริเวณ (รูปที่ 10) ผลการทดลองชี้ให้เห็นการให้ ICI ซึ่งสามารถต้านฤทธิ์ของ EB ต่อการกินอาหารได้นั้นมิได้เกิดขึ้นจากผลของตัวเองแต่อย่างใด ที่ สำคัญเป็นที่ทราบกันอยู่ว่า กลไกการออกฤทธิ์ของ ICI ที่สำคัญกลไกหนึ่งในการต้านฤทธิ์ของ EB คือ การส่งเสริมให้มีการสลาย ER ภายในเซลล์ คังนั้นผลการทคลองที่ไม่พบความแตกต่างของ จำนวน ER จากสมองส่วนหน้าอาจเป็นข้อบ่งชี้ว่า การให้ ICI ด้วยวิธีการดังกล่าวทำให้ ICI ออก ฤทธิ์ต้าน ER จำกัดที่บริเวณสมองส่วนท้าย ซึ่งผลการทดลองดังกล่าวเป็นข้อตอกย้ำถึงบทบาทของ สมองส่วนท้ายต่อกลไกการออกฤทธิ์ของ E, ต่อการกินอาหาร อย่างไรก็ตามผู้วิจัยพบว่าการย้อมสี ที่บริเวณสมองส่วนท้ายนั้นติดสีน้อยมากทำให้ไม่สามารถนับจำนวนได้ทั้งนี้อาจเนื่องจาก ปริมาณ ER ที่แตกต่างกันของสมองบริเวณต่างๆ

5. บทสรุปและทัศนคติ

การวิจัยภายใต้โครงการเรื่อง "ผลของการให้สารต้านตัวรับเอสโตรเจน (ICI 182 780) โดยตรงที่สมอง ส่วนท้ายของหนูเพศเมียต่อพฤติกรรมการกินอาหาร" กลุ่มผู้วิจัยได้ดำเนินการทดลอง 3 การทดลองหลักดัง ได้กล่าวไว้ข้างต้น ผลการทดลองสามารถพิสูจน์ได้ว่าสมองส่วนท้ายมีความจำเป็นต่อกลไกการออกฤทธิ์ของ ฮอร์โมน \mathbf{E}_2 ต่อการกินอาหารในหนูเพศเมีย ซึ่งข้อสรุปดังกล่าวนี้ขยายความเข้าใจเดิมซึ่งกลุ่มผู้วิจัยได้เคย พิสูจน์แล้วว่า สมองส่วนท้ายโดยเฉพาะบริเวณ NTS ซึ่งมีเซลล์ประสาทที่มี ER อยู่เป็นบริเวณที่ \mathbf{E}_2 สามารถ ออกฤทธิ์ต่อการกินอาหารได้ อย่างไรก็ตามกลุ่มผู้วิจัยคิดว่าในด้านกลไกการออกฤทธิ์ของ E, ต่อการกิน อาหารในหนูเพศเมียในแง่ของตำแหน่งที่ฮอร์โมนออกฤทธิ์นั้นสมองทั้งส่วนหน้าและส่วนท้ายน่าจะมี บทบาทร่วมกันทั้งนี้จากเหตุผลสองประการ คือ ในประการแรกการให้สาร ICI เข้าสู่สมองส่วนหน้าผ่านทาง ช่องสมองด้านข้างก็ให้ผลต้านฤทธิ์ของ EB ต่อการกินอาหารได้เช่นกัน และการให้สาร ICI เข้าสู่สมอง โดยตรงทั้งที่สมองส่วนหน้าและส่วนท้ายไม่สามารถต้านฤทธิ์ได้สมบูรณ์ เหตุผลประการที่สองคือที่บริเวณ สมองส่วนหน้าและที่ส่วนท้ายสามารถตรวจพบ ER ได้ กลุ่มผู้วิจัยได้ให้ความสนใจเกี่ยวกับกลไกการออก ฤทธิ์ที่สมองส่วนท้ายเป็นหลักและ ได้มีการตั้งสมมติฐานเบื้องต้นไว้ว่าน่าจะมีความเกี่ยวข้องกับระบบสารสื่อ ประสาทกลูตาเมต (glutaminergic system) และการสื่อประสาทผ่านเซลล์ประสาทในกลุ่ม โปรโอปิโอเมลา โนคอติน (pro-opiomelanocortin neurons) และกลุ่มเซลล์ประสาทที่มีตัวรับสารสื่อประสาทนี้ ในการนี้กลุ่ม ผู้วิจัยได้ทำการทดลองเพื่อพยายามหาระดับของสาร แอลฟ่า เอมเอชเฮช (α-MSH) ที่บริเวณสมองส่วนท้าย เพื่อหาความสัมพันธ์ของสารคังกล่าวต่อกรณีที่สาร ICI สามารถต้านฤทธิ์ของ EB ต่อการกินอาหารได้ อย่างไรก็ตามการทดลองนำร่องในเบื้องต้นพบว่าสาร lpha-MSH ที่หาได้จากสมองส่วนท้ายที่สัมพันธ์กับมื้อ อาหารน้อยมาก ทำให้ไม่สามารถดำเนินการทดลองต่อด้วยวิธีการที่เลือกใช้ (ผลการทดลองมิได้นำเสนอ) ดังนั้นในการศึกษากลไกโดยละเอียดของการออกฤทธิ์ของ E, ต่อการกินอาหารที่สมองส่วนท้ายในแง่ที่ สัมพันธ์กับสารสื่อประสาทข้างต้นจึงจำเป็นต้องมีวิธีการที่ละเอียดเพิ่มมากขึ้น

กลุ่มผู้วิจัยมีความเห็นว่า องค์ความรู้ตามข้อสรุปจากผลการทดลองข้างต้นนอกจากทำให้เกิดความเข้าใจ เกี่ยวกับกลไกการออกฤทธิ์ของฮอร์ โมน \mathbf{E}_2 ต่อการกินอาหารในหนูเพศเมียแล้ว ยังเป็นตัวอย่างของกลไกการ ออกฤทธิ์ของฮอร์ โมน \mathbf{E}_2 ต่อพฤติกรรมที่สมองซึ่งจะไม่ขึ้นกับนิวเคลียสจุดใดจุดหนึ่งเป็นสำคัญ กรณีของ การกินอาหารนี้จะมีกลไกต่างอย่างสิ้นเชิงกับผลของฮอร์ โมน \mathbf{E}_2 ต่อพฤติกรรมการ โก่งตัว (lordosis) ที่พบ ในหนูเพศเมียและเป็นส่วนหนึ่งของพฤติกรรมการสืบพันธุ์ (Pfaff, 2005) ดังนั้นกลุ่มผู้วิจัยจึงเห็นว่า การศึกษากลไกการออกฤทธิ์ของ \mathbf{E}_2 ต่อกการกินอาหารในหนูเพศเมียจะมีประโยชน์ในหลายด้านและทำให้ เป็นแรงจูงใจสำคัญให้การดำเนินงานวิจัยภายใต้โครงเกิดขึ้นต่อไปในอนาคตห

เนื้อหางานวิจัย

INTRODUCTION

Estrogens (Blaustein, 2008) are one major group of female sex steroid hormones. The natural forms of estrogens are 17β -estradiol (E₂), estrone (E₁) and estriol (E₃). E₂ is considered to be the major estrogen form because of its high level in the circulation and its potency to activate estrogen receptor (ER) mediated transcription activity. E₂ is involved in many physiological functions including, e.g. development, growth and homeostasis. Besides the main function of E₂ in reproductive physiology, a further important action of E₂ and the major focus of this work is its role in the control of FI (FI) and body weight (BW) in female animals. These effects are clinically important because it is well accepted that women are more prone to developing severe obesity and eating disorders than are men (Geary, 2001; Klein and Walsh., 2004).

Eating is a complex behavior that is controlled by multiple brain centers. This behavior in female is in part controlled by E_2 . Unlike the effect of E_2 on reproductive behavior, lodosis (Pfaff, 2005), the effect of E_2 on FI has not been work out thoroughly. The effect of E_2 on FI apparently mediated via $ER\alpha$ in the brain. However, the mechanisms and the specific site(s) of E_2 action on eating are still unclear. Therefore, my current experiments focused on the specific site and the mechanisms of E_2 action in the control of eating in female rats. The current report contains, in the first part, basic information on the mechanisms of how E_2 to modulate cellular activities, the mechanisms of peripheral and central controls of eating behavior and the general knowledge regarding estrogenic control of eating. The second part contains the current experiments including the detail material & methods, results and discussion.

Mechanisms of estrogens action

All physiological effects of E2 are mediated by ligand-inducible nuclear transcription factor, ERs. Two ER subtypes, ERα and ERβ have been identified and cloned (Green et al., 1986; Greene et al., 1986; Kuiper et al., 1996). ERs belong to the steroid/thyroid hormone superfamily of nuclear receptors. These receptors are composed of three domains including: the NH2-terminal A/B domain; the C domain; and the carboxyl terminal D/E/F domain (Nilsson et al., 2001). The NH2-terminal A/B domain encodes a ligand-independent activation function (AF1), a region involved in transcriptional activation and in protein-protein interactions. The highly homologous C domain contains the DNA binding domain (DBD) with two zinc finger structures. This domain has a role in receptor dimerization and target DNA binding. The carboxyl terminal D/E/F domain contains the E/F ligand-binding domain (LBD), which harbors the ligand-dependent activation function (AF2). The overall structure of ER-LBD is composed of 12 helices (H1-H12) and two stranded β-sheets (S1 and S2). After ligand binding, the position of H12 is the key event that permits discrimination between estrogen receptor agonist and antagonist (Brzozowski et al., 1997). The LBD plays an important role in ligand binding, receptor dimerization, nuclear translocation and target gene transcription activation.

It is well accepted to date that the two basic mechanisms of ER-mediated E₂ actions involve genomic and non-genomic effects. Both mechanisms depend on the binding structure of E₂ to ER. For the ER dependent gene transcription, the receptor is localized predominantly in the nucleus, the nuclear ER (nER) (King and Greene., 1984; Welshons, 1984; Kawata et al., 2001). In addition, the plasma membrane associated ER (mER) has been shown to mediate the rapid non-genomic actions of estrogen (Mendelsohn, 2000b; Milner et al., 2005; Pedram et al., 2006; Pietras and

Marquez-Garban, 2007; Ronnekleiv et al., 2007; Song, 2007; Toran-Allerand, 2004; Vasudevan et al., 2005).

For the genomic action, the receptor is dissociated from the chaperone protein, phosphorylated and dimerized after the binding of the ligand. The ligand-ER complex stimulates the target gene by either direct or indirect initiation of transcription. The direct binding of the complex to the estrogen response element (ERE) activates specific gene transcription. In the indirect activation of transcription, the ligand-ER complex does not bind directly to DNA, but tethers with another transcriptional activator to promote gene expression. Many transcriptional factors have been shown to interact with ER via the indirect mechanism i.e. NFkB (Kalaitzidis et al., 2005), Sp1 (Safe, 2001) and AP-1 (Kushner et al., 2000). Moreover, the ER itself can be activated by mechanisms independent of ligand binding. Many signaling pathways can modulate ER though phosphorylation via regulators of the phosphorylation state (PKA or PKC) i.e. extracellular signals (peptides growth factors, cytokines or neurotransmitters) and cell cycle regulators (Nilson et al., 2001). The DBD, AF1 and AF2 domains of ERs are all responsible for the activation of transcription via the genomic action of ER. While DBD specifically binds with ERE (Klinge, 2001), AF1 and AF2 synergistically activate transcription by recruiting the basic transcriptional machinery and several coregulatory proteins. The coregulator proteins recruited by AF1 and AF2 can be subdivided into coactivators and corepressors (Hall and McDonnell, 2005; Perissi and Rosenfeld, 2005). The detailed mechanisms by which AF1 and AF2 recruit the coregulator proteins and initiate the transcription are different (Lavery and McEwan, 2005; Pike, 2006; Warnmark et al., 2003). The role of AF1 and AF2 on ER activated transcription has been revealed by many estrogen agonists/antagonists and by different cells and promoter contexts. First, different cells that were transfected with the same promoter appeared to have different degrees of transcription after estradiol treatment. Second, different promoters that were transfected to the same cell also showed differences in transcription activity. Tamoxifen, acting as an AF2 domain blocker, has an estrogen antagonistic effect on the gene that requires only the AF2 domain for ER-mediated transcription. In contrast, tamoxifen has a partial agonist effect on genes where AF2 is not required. In addition, the AF1 of ERα appears to have stronger activity than ERβ (Delaunay et al., 2000; Tzukerman et al., 1994). Collectively, this information suggest that the genomic effects of E₂ and estrogen agonists/antagonists depend partly on the interaction among AF domains of ER, cell types and promoter contexts of estrogen responsive genes (Delaunay et al., 2000; McDonnell et al., 1995; Tzukerman et al., 1994).

Another pathway of E₂ dependent ER actions involves rapid effects that cannot be attributed to genomic actions. This is the so-called non-genomic pathway. E₂ is able to evoke fast responses in many tissues, within seconds to minutes after ligand binding. Many intracellular signaling cascades have been shown to be responsible for these rapid effects. These include e.g. the activation of ion channels, the MAPK pathway; the CREB pathway, the phosphatidylinositol 3-kinase (PI3K)/Akt pathways; the G-protein coupled receptor (cAMP and intracellular calcium); and the nitric oxide pathway (Collins and Webb, 1999; Mendelsohn, 2000b; Pietras and Marquez-Garban, 2007; Ronnekleiv et al., 2007; Vasudevan et al., 2005). The mERs appear to mediate these rapid effects. These mERs probably share a common origin with nuclear ERs (Pietras and Marquez-Garban, 2007). Both ERα and ERβ and a novel ER (ERX) have been identified at the membrane (Chambliss et al., 2002; Kelly and Ronnekleiv, 2008; Milner et al., 2005; Pedram et al., 2006; Pietras and Marquez-Garban, 2007; Song, 2007; Toran-Alland et al., 2002). It should be

noted here that E2 can activate intracellular signaling independent of mER. The G protein coupled receptor 30 (GPR30) was reported to bind E2 but the biological function which is mediated by GPR30 has yet to be investigated (Filardo and Thomas, 2005; Funakoshi et al., 2006; Pedram et al., 2006; Prossnitz et al., 2008; Revankar et al., 2005). Evidence for an important functional role of the non-genomic ER pathway has been provided for many different tissues including the reproductive system (Luconi et al., 2004), cardiovascular system (Fu and Simoncini, 2007; Leung et al., 2007; Mendelsohn, 2000a; Fu and Simoncini, 2007) and central nervous system (Behl, 2002; Kelly and Ronnekleiv, 2008; McEwen et al., 2001; Ronnekleiv et al., 2007). In the brain, the rapid non-genomic ER pathway appears to involve mechanisms of neuroprotection and aging (Behl, 2002; Garcia-Sugura et al., 2007; Mendez et al., 2005), reproduction (Vasudevan et al., 2005; Kow and Pfaff, 2004) and eating behavior (Asarian, 2006; Arbogast, 2007; Dagnault and Richard, 1997; Liang et al., 2002; Gao et al., 2007). Despite these reports, it is still difficult to dissociate the role of genomic and non-genomic pathways of E2 for a specific behavior or brain function. The lordosis behavior in female rats is one example of influence by both pathways (Kow and Pfaff, 2004). It was first suggested that lordosis is a behavior which requires the genomic action of E₂ (Parsons et al., 1982). Later, using the BSA conjugated E₂ (E₂-BSA) which acts only on the membrane and the couple treatments paradiagm; Kow and Pfaff (2004) demonstrated that the first treatment with E₂-BSA potentiates the second treatment with E₂ on lodosis score. The result suggested that rapid non-genomic ER action potentates the genomic ER action of lordosis.

Estrogens and ER ligands have diverse effects in many organs. Besides their physiological functions, estrogens are also involved in many pathophysiological

processes, e.g. cancer, osteopenia, menopause syndromes, and brain and psychological disorders. Based on the variety of ERs dependent mechanisms reviewed above, it is not surprising that one steroid can influence many different biological functions and diseases. The simple model that determines the outcome of action of E₂ and ERs dependent mechanisms involves three fundamental factors: the spatio-temporal expression of both ER subtypes (Laflamme et al., 1998; Milner et al., 2001; Milner et al., 2005; Mitra et al., 2003; Schlenker and Hansen, 2006; Shughrue et al., 1997; Toran-Alland et al., 2002); the nature of the cell types (the coregulator molecules and promoter context; Lavery and McEwan, 2005; Pike 2006; Warnmark et al, 2003); and the type of ligands (E₂ or SERMs; Osborne et al., 2000). It is therefore crucial to identify all these factors in order to understand E₂ effect on behavior, e.g. FI.

Food intake control mechanisms

The biological goals of eating behavior are to provide energy and necessary nutrients to the body. The pattern of eating is generally characterized by distinct meals or eating bouts that are distributed over the course of a day. Meal pattern varies between species and also between individuals. Daily FI depends on meal frequency and meal size. Eating behavior is controlled by two fundamental factors: internal controls and external stimuli (i.e. pleasure of food, social system, predation, reproduction etc). The internal control mechanisms of meals can be considered into four categories. These are signals for the initiation of eating; signals for maintaining eating during a meal; signals that terminate eating; and signals that maintain the intermeal interval. Animal starts to eat (meal initiation) when they are hungry. In this state, animals are more sensitive to a variety of food stimuli including the signals from the olfactory, visital and gustatory systems. However, the mechanisms of meal initiation themselves are still not clear. Eating also occurs even in a state of ample energy balance and without external cues. Meal initiation has been demonstrated to correlate with the concentration of metabolites (glucose and fatty acids), metabolic rate and body temperature (Even and Nicolaidis, 1985; De Vries et al., 1993). At least in a series of experiments, a premeal reduction of glucose was demonstrated a few minutes prior to a spontaneous meal (Campfield and Smith, 2003). During a meal (meal maintenance), the presence of food in the GI tract produces a set of mechanical and chemical signals. The balance of positive feedback (pleasure) and negative feedback (satiation) signals determines the size of a meal and the rate of eating. While pleasure from food facilitates eating, satiation promotes meal termination, thereby limits meal size. The postprandial feeling and behavior that affects the interval to the next meal is referred to as satiety.

One characteristic of eating behavior is that animals, and obviously humans as well, select foods preferentially when food choices are ample, instead of having the same menu every day. This suggests that the internal control systems contain not only homeostatic but also hedonic components (Saper et al., 2002; Berthoud, 2004). Both mechanisms participate in the decision about what kind and how much food an animal eats. While homeostatic controls maintain normal energy and nutrient supplies to the body, hedonic controls of eating have specific characteristics that can overpower the homeostatic controls and result in eating behavior at any times and even at excessively high levels. These internal controls of eating behavior include the interplay between peripheral sensing and signaling systems (sensory organs, gastrointestinal tract and adipose tissue), and central integration (the brain). The hedonic components receive signals mainly via sensory organs, as well as from previous experiences with food that have been memorized and learned. This component plays a role in food rewarding aspect (Berridge and Robinson, 2003). In the homeostatic control of eating, peripheral signals could be classified into "short and long term control mechanisms". In the short term control of eating, GI tract translates the signals (both volume and nutrient) from ingested food into hormonal (Chaudhri et al., 2006; Cummings and Overduin, 2007) or neuronal signals (Marty et al., 2007; Thaler and Cumming, 2008). In addition, some nutrients can work directly as signals to control eating behavior (Levin et al., 2004; Marty et al., 2007). The longterm control involves somewhat different properties. Adipose tissue and pancreas (adiposity signals) provide tonic signals for maintaining homeostasis to match the energy input and expenditure (Woods et al., 2000). Another peripheral signal that control eating depends on the cyclic pattern reproductive cycle especially in female. It is well known that female animal eat less during the estrous phase of ovarian cycle

and this behavior is mediate mainly by E₂. The estrogenic effect on FI in female rat is the main interested of the current work and will be introduced in detail in "Estrogenic control of food intake".

Estrogenic control of food intake

Eating behavior shows specific gender-related differences between males and females. A clear phenotypic difference between intact males and females is that females show a cyclic pattern of eating while males do not (Asarian and Geary, 2006). During the peri-ovulatory phase of the estrous cycle, female dog, pig, rat, monkey and woman decrease their daily intake (Czaja and Goy, 1975; Eckel et al., 2000; Friend, 1971; Gong et al., 1989; Houpt et al., 1979; Lyons et al., 1989). This phenomenon has been studied most extensively in rats which typically have a four or five day cycle (Fig1). The reduction of FI usually occurs during the night of the estrus. This is preceded by an increased plasma E₂ concentration during proestrus (Fig1). The reduction of FI is due to a decrease in meal size with a partially compensatory increase in meal frequency (Asarian and Geary, 2002). FI then returns to baseline in the subsequent diestrus. An ovariectomy removes the major source of E₂ in females. Ovariectomized (OVX) rats have dramatically decreased levels of plasma E2 and gradually increase daily FI and BW. The increase in daily intake in OVX rats is due to an increase in meal size while meal frequency decreases (Asarian and Geary, 2002). Daily FI in OVX rats is generally higher than in intact rats at all stages of the estrus cycle. This suggests two functional components of E₂'s effect on eating. The first is a tonic inhibition by E2, which is revealed by an increase in the basal level of eating after OVX. The second is a phasic inhibition by E₂, which is the absence of the cyclic decrease in eating after OVX. Replacement with a physiological dose of estradiol

benzoate (EB) but not progesterone reverses the effect of OVX on FI and BW in rats. Administration of EB in the middle of the light phase increased plasma E₂ in the first night after injection, which corresponds to the increase of plasma E₂ during proestrus in intact rats. Rats eat less in the second night after EB injection, which corresponds to the decrease in FI during the night of estrus in intact rats (Figure 1, Asarian and Geary, 2002). The effect of exogenous E₂ on FI again occurs mainly via a change on meal size. Meal size is decreased after replacement, while meal frequency usually partially compensates by increasing (Asarian and Geary, 2002).

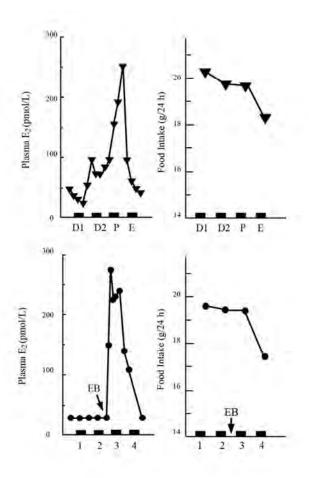


Fig 1 Top: Plasma concentration of E_2 (Left) and daily food intake (right) in female intact rats during estrus cycle (D1, diestrus1; D2, diestrus2; P, proestrus; E, estrus). Bottom: Plasma E_2 concentration is low in OVX rats without EB replacement. Two microgram per rat of EB treatment at mid-light phase of Day 2 increases plasma E_2 levels in the first 3 h and a peak during 6-15 h (Left). With EB treatment as described, daily food intake is decreased on day 4 (Data are adapted from Asarian and Geary, 2002; used with permission).

 E_2 appears to affect FI and BW through the stimulation of ERα rather than ERβ. Firstly, ERα receptor knockout (αERKO) mice were higher BW than wild type whereas BW of ERβ receptor knockout (βERKO) mice did not differ from wild type (Couse and Korach, 1999). Secondly, E_2 produced its effects on BW and FI in wild types and βERKO mice, but had no effects in αERKO mice (Geary et al., 2001; Geary, 2004). Finally, OVX rats treated with specific ERα but not ERβ agonists decreased FI (Roesch, 2006; Santollo et al., 2007; Thammacharoen et al., 2007) and the same ERα agonist produced no effect on FI in αERKO mice (Thammacharoen et al., 2009).

While it has been established that the estrogenic inhibition of FI appears to be an activation of ERa, it remains unclear which downstream genomic or non-genomic pathways are responsible for eating inhibitory effect. The coupling of plasma E2 and behavior outcome that can be observed in intact rats and in the OVX rats after cyclic EB replacement suggested that the physiologic effect of E₂ on eating needs time to develop. In addition, direct administration of a protein synthesis inhibitor (e.g. anisomycin) blocked E2's effect on eating (Butera et al., 1993). This suggested that the effect is mediated partly via the genomic effect of ER action. Some evidences however support the role of non-genomic ER action on FI. First, E₂ administration to the brain at pharmacological doses decreased FI shortly after treatment (Dagnault and Richard, 1997; Gao et al., 2007). However, Liang et al. (2002) demonstrated no acute effect of central administration of E₂ into brain on eating. Second, the ERα agonist PPT, injected subcutaneously, produced an inhibitory effect on FI within 4 hours (Santollo et al., 2007; Thammacharoen et al., 2007). The onset of PPT to decrease FI was faster than what can be observed after peripheral E₂ replacement. An example that has been shown previously about a participation of both genomic and nongenomic E₂ actions is the lordosis behavior in female rats. Lordosis is one of the sexual behaviors that require genomic action of ER. It has been shown later that a non-genomic E₂ action enhances the genomic action of ER on lordosis behavior (Kow and Pfaff, 2004). Based on the above information, it seems plausible that both genomic and non-genomic E₂ actions may contribute to the estrogenic inhibition of FI. However, further experiments need to be conducted to test directly whether and how the genomic and non-genomic actions of ER could participate on the estrogenic inhibition of FI.

Estrogenic inhibition of eating is partly due to a modulation of the peripheral feedback controls of eating. E2 increases the potency of gastrointestinal satiation hormones like CCK (Geary, 2001) and glucagon (Asarian and Geary, 1999), and decreases the potency of ghrelin which is a gastric orexigenic hormone (Clegg et al., 2007). The most extensive studies on the estrogenic modulation of peripheral signals came from the studies of an E2's effect to increase CCK satiation (Geary, 2001 and Asarian and Geary, 2006). Exogenous E₂ enhanced exogenous CCK's satiation effect (Butera et al., 1993; Geary et al., 1994; Linden et al., 1990). Later, it has been shown that the CCK-1 antagonist (devazepide) increased FI only during the day of estrus in female rats. This suggests that endogenous CCK action also changes across the estrus cycle (Eckel and Geary, 1999). In OVX rats, endogenous CCK satiation is also enhanced by exogenous E₂ (Asarian and Geary, 1999; Asarian and Geary, 2007). It is clear from the above information that endogenous and exogenous E2 seem to modulate the satiation effect of both exogenous and endogenous CCK. The estrogenic inhibition of eating may also be mediated by the interaction with other peripheral feedback controls of eating, especially adiposity signals. It has been shown that female rats were more sensitive to leptin than male rats (Clegg et al., 2003). Later, the

same group demonstrated that E_2 increased leptin effect in female rat (Clegg et al, 2006). However, some evidences reported the contrary results. First, importantly, it was also demonstrated contrary that leptin sensitivity does not change in both intact and OVX rats (Pelleymounter et al., 1999; Chen and Heiman, 2001). Second, plasma leptin was not changed before the onset of obesity after OVX, and leptin levels did not change when corrected by fat mass either in OVX or E_2 replacement (Pelleymounter et al., 1999). Third, female OVX ob/ob and db/db mice still respond to E_2 replacement as in sham control (Gao et al., 2007; Shimomura et al., 2002). Based on above information, it seems that an interaction of E_2 and leptin to control FI and BW needs further investigations with an appropriate experimental design.

 E_2 is generally thought to act in the brain to inhibit feeding (Butera et al., 1993; Geary et al., 1996; Rivera and Eckel., 2010). Various experiments have shown that microinjection of E_2 into various sites of the brain, especially into various hypothalamic nuclei, decreased FI in rats. E_2 implantation into the VMH (Wade and Zucker, 1970; Nunes et al., 1980), the medial preoptica area (MPA) (Dagnault and Richard, 1997) or the PVN (Palmer and Gray, 1986; Butera and Beikirch, 1989) reduced FI in rats. However, the exact site(s) where E_2 mediates its action on FI is still not clear for because of inconsistent results from above studies. Palmer and Gray (1986) failed to reproduce the effect on FI of E_2 implantation into the VMH as originally reported by Wade and Zucker (1970). Furthermore, Butera and Beikirch (1989) found that only PVN implantation (not VMH and MPA) of E_2 reduced 3-d FI in OVX rats. Further, peripheral E_2 treatment has been shown to decrease FI and BW in mice with a specific ER- α knockdown in the VMH, strongly suggesting that the VMH may not be required for the control of feeding and BW by E_2 (Musatov et al., 2006). The role of the PVN has been questioned as well because bilateral PVN

lesions did not abolish the effect of E2 on FI in OVX rats (Dagnault and Richard, 1994). This was corroborated by a study published by Hrupka et al. (2002) suggesting that the action of E₂ in the PVN is not sufficient to account for the estrogenic control of FI. However, information from some of c-Fos studies appears to support that the PVN region may be one of the potential sites for the estrogenic inhibition of eating. E₂ increased c-Fos in different paradigms related to CCK satiation at several brain regions (Eckel and Geary, 2001; Eckel et al., 2002; Asarian and Geary, 2007). Eating induced c-Fos was first demonstrated to be enhanced by E2 in the NTS, PVN and the central amygdala (CeA) (Eckel and Geary, 2001). The same c-Fos pattern and sites could also be observed when rats were treated with exogenous CCK and E2 (Eckel et al., 2002). It was demonstrated later that E₂ treatment in rats with intraduodenal lipid infusion (a secretagogue of intestinal CCK) had significant higher c-Fos in caudal NTS than in control rats; this result could not be observed in PVN (Asarian and Geary, 2007). The results on c-Fos studies suggest that at the hindbrain NTS may all involve in E₂ enhanced CCK's satiation either from eating and exogenous CCK models, however only the caudal NTS is the area where E2 enhances intraduodenum lipid induced-cFos. We showed the results suggesting the possibility that NTS is sufficient for mediating the estrogenic effect on FI (Thammacharoen et al., 2008). We demonstrated first, that the spreading of E2 was very limited and affected only the dorsal but not to the ventral part of the NTS. Importantly, E₂ spreading was not observed in the forebrain either. Second, FI in OVX rats with EB applied to NTS was lower than in control OVX rats. Third, with the same paradigm we demonstrated that CCK activated c-Fos only at the NTS but not at any forebrain nuclei and the CCK induced c-Fos at cNTS was colocalized with ERα-expressing neurons. These results suggested that E₂ acts on ERα-expressing neurons at the NTS, especially at its caudal

part. In light of our previous finding we investigated the mechanism of E_2 regarding to the brain site where E_2 influences eating behavior. Our hypothesis is that the hindbrain is required for E_2 effect on FI in female rat.

MATERIALS & METHODS

Animals and housing condition

Female Wistar rats (National laboratory animal care, Mahidol University) weighing around 250-300 g were housed individually in hanging cages with stainless steel wire-mesh floors (33X18X20 cm) in a room maintained at 22±2 °C with 12:12 light: dark cycle (light on 00h). All rats had ad libitum to pelleted standard chow (#082, Perfect Companion Group Ltd., Samutrprakarn, Thailand) and tap water. Rats were adapted to the housing condition for at least 1 week before starting experiment. Daily FI (± 0.1 g corrected for spillage) and BW (± 1 g) were measured throughout the experimental period. All procedures were performed according to the ethical principles and guidelines for the use of animals for scientific purposes from the National research council of Thailand and were approved by the animal used committee, Faculty of Veterinary Science, Chulalongkorn University.

Ovariectomy

In the current project, intact female rats were ovariectomized at different time point depending on the experiment. Rats were anesthetized with isoflurane (2.5-3%, Minrad, Inc, USA) and bilaterally ovariectomized using an intraabdominal approach (Thammacharoen et al., 2008). Immediately after surgery, rat was subcutaneously injected with enrofloxacin (2.5-5.0 mg/kg iv; Bayer Korea Ltd., Korea) for antibiotic prophylaxis. Ibuprofen (Reckitt Benckiser, Inc., UK) was given once orally (15 mg/kg po) and via drinking water at the concentration of 12 mg/100ml for 4 days to minimize post-surgical pain.

The fourth ventricle cannulation, infusion and verification

The fourth ventricle intracerebroventricular cannulation (the 4th icv) was operated to study the hindbrain infusion of ICI on FI effect of exogenous estradiol (experiment 2 & 3). Seven days after OVX, rats were anesthetized with intraperitoneally pentobarbital sodium (50 mg/kg ip, Nembutal®, Ceva Santa Animal, France). A guide cannula (22 G, PlasticsOne, Roanoke, VA, USA) was stereotaxically positioned into the fourth ventricle. The cannula tip was placed 3.5 mm posterior to the interaural line, 1.4 mm lateral to midline and 6.2 mm ventral to the skull surface (Blevins et al., 2004). The cannula was fixed to the skull with stainless steel mounting screw and dental cement. The guided cannula was attached to the osmotic pump (Alzet Model 1002, reservoir volume 100 µl). After surgery, rat was received antibiotic and analgesic as described previous. FI (± 0.1 g, corrected for spillage) and BW (± 1 g) were measured daily throughout the experimental period.

At the end of experiment, all rats were killed by intravenously injection with the high dose of pentobarbital sodium (65 mg/kg ip, Nembutal[®], Ceva Santa Animal, France). To verify the cannula placement in the second experiment, 5 µl of Evans blue was slowly injected through the ICV cannula. After the cannula was carefully removed, the brain was isolated and frozen. The frozen brain was sectioned to confirm cannula tip and dye diffusion.

Perfusion & IHC

In the third experiment, the expression of ER α was investigated after hindbrain infusion of ICI and control. At a day before the end of OP infusion period (day 13), rat was deeply anesthetized with sodium pentobarbital intraperitoneally and transcardially perfused with ice-cold phosphate buffer [PB, 0.1 M (pH 7.4)] followed

by 4% paraformaldehyde in 0.1 m PB. The brains were removed, postfixed at 4 °C in the paraformaldehyde perfusion solution for 2 h and in 20% sucrose in 0.1 M PB for 2 d. Brain were cut into 40 μ m sections on a cryostat (Leica CM1800,). Sets of each fifth hindbrain [~17 to 11 mm posterior to bregma (Paxions and Watson., 1998)] and forebrain [~0.9 to 3.6 mm posterior to bregma (Paxions and Watson., 1998)] sections were stored in cryoprotectant solution (a 4:3:3 mixture of 0.1 m PB, ethylene glycol, and glycerol; Sigma) at -20 °C.

Immunohistochemistry staining of ERα from the brain section was performed using our previous protocol with minor modification (Thammacharoen et al., 2008). Briefly, brain sections were immersed in glass jar filled with 10 mM citric acid buffer and heated at high power of microwave oven (Sharp R209) with an operating frequency of 2450 MHz and 800 W power output. The antigen retrieving process was repeated 3 times for 5 minutes each. Following the heating session, the sections were kept cool down and processes for ERα IHC as described. Brain sections were washed 3 times with 0.1 M PB and incubated for 10 min each in 0.5% H₂O₂ solutions. After 3 times washed with 0.1 M PB, the blocking and detecting process were done with 1 h incubation in 1% normal goat serum in 0.1 m PB 0.3% Triton X-100, and then 48 hr with rabbit polyclonal ERα antibody (c1355, 1:10,000; Upstate Biotechnology, Lake Placid, NY). Sections were then washed and incubated with biotinylated antirabbit goat antibody (1:200; BA1000, Vector laboratory, CA) and avidin-biotin complex (1:400; PK-6100, Vector laboratory, CA), for 1 h each. ABC-ERα complex was visualized with DAB peroxidase complex reaction (SK-4105, Vector laboratory, CA). Finally, sections were mounted on gelatinized microscope slides, coverslipped, dried, and digitally imaged. The numbers of ERa positive neurons were counted within the following areas of interest using templates based on the atlas of Paxinos and Watson (1998): NTS (NTS subregion nomenclature is our own (Thammacharoen et al., 2008); locations are millimeters caudal to bregma), caudal NTS (cNTS: about 14.1–14.4 mm); subpostremal NTS (spNTS; about 13.7–14.0 mm); POA (0.4 mm posterior to bregma), Arc (2.3 mm posterior to bregma) and VMH (2.3 mm posterior to bregma). Cells were considered ERα positive if their nuclei contained punctate brown-black immunolabeling and were counted using constant minimum and maximum OD and object size criteria, which were validated with visual counts.

Experiment 1: The cyclic pattern and the effect of EB on food intake and body weight in female rat

The first experiment was performed to show the cyclic pattern of FI and BW in intact female rat and the effect of exogenous EB (Sigma-Aldrich, Co. USA) in OVX rat. After 1 week of adaptation to the housing condition and management, the ovarian cycle was monitored as well as FI and BW measurement. Days of the ovarian cycle were identified using vaginal cytology (VC) with the standard identification criteria as previous described (Asarian & Geary., 2002). Daily vaginal mucosal samples were obtained about 1 h prior the onset of dark phase. A cotton swab moisted with warm saline was inserted gently to the vaginal cavity. The sample was transferred to the slide and examined under the light microscope (Olympus). Cycle day lebels (D1, diestrus 1; D2, diestrus 2; P, proestrus; and E, estrus) were assigned to the 24-h period ending at the time of VC evaluation. Either 4-day or 5-days cycles were detected from all rats used in the current experiment, however, only 4-day cycle data was used to demonstrate the FI pattern from intact female rats.

After 2-3 ovarian cycles were recorded, all rats were ovariectomized as described previous. The effect of exogenous estradiol on FI and BW was investigated

1 week after OVX. According to the 4-day of ovarian cycle, the day of EB injection $(2\mu g/\text{ rat subcutaneously every fourth day at midlight phase})$ was marked as day 2 of treatment cycle and corresponded to D2 in intact rat. Plasma E_2 was rapid increased within 3 hr (peak at 6 hr), maintain until 15 hr and gradually decreased during the next day (the first dark and light day; day 3 of treatment cycle). This pattern of plasma E_2 was comparable with the pattern from P in intact female rat. FI, however, was not changed during this period. From the second dark and light day (day 4 of treatment cycle), FI was decreased similar to the pattern observed from E in intact female rat. All rats were observed for FI and BW for 4 cycles of EB treatment.

Experiment 2: The fourth ventricle continuous infusion of ICI attenuated estrogenic control of food intake

The second experiment was performed to investigate the effect of hindbrain $ER\alpha$ blockage on the E_2 effect of FI via the 4^{th} icv ICI infusion over a period of 14 days as depicted in Fig 2. OVX rat (n = 10 per group) was cannulated directly to the 4^{th} ventricle and connected with the OP contained either ICI, at the concentration 4 and 8 nM, or vehicle (1% DMSO in normal saline). This yielded 3 treatment groups; control, 4 nM ICI and 8 nM ICI. Rats were allowed 4 days to recover from surgery. At the mid light phase of day 6 postsurgery, half the rats from each group was injected subcutaneously with 2 μ g EB, another half was injected with sesame oil as vehicle control. Injections were reversed on day 12 postsurgery. With this withinsubject design, each group received single injection of EB. FI & BW were monitored throughout the experimental period.

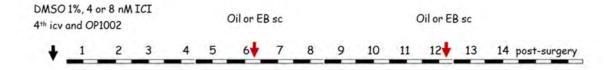


Fig 2 Experimental days (dark/light phase=black/white bars) after 4th icv and osmotic pump infusion (black arrow). Rats in each group received oil or EB injection on day 6 and 12 (red arrows). FI and BW were monitored throughout the experimental period. With this method, the expected days of estrus were day 8 and 14.

Experiment 3: The fourth ventricle continuous infusion of ICI and brain $ER\alpha$ expression

If hindbrain ICI infusion could block or attenuate E_2 effect of FI, the third experiment was designed to study the potential mechanism by which ICI attenuated E_2 effect of FI. In this experiment, OVX rats (n=10 per group) were divided into 8 nM ICI or 1%DMSO 4th icv infusion as described in experiment 2. FI and BW were measured until a day before the end of experiment (14 days). As described previous, all rats were deeply anesthetized and perfused at day 13 post-surgery. Brain was collected and processed for ER α immunohistochemistry.

Statistical analysis

Data from the experiment that contain either multiple time points or 2 factors were analyzed using one way or two way analysis of variance (ANOVA) followed by Bonferroni posttest. Data of two experimental groups were compared with student t test. Significant main effects were followed up with pair wise comparisons using Bonferroni posttest. All data were presented as mean \pm SEM.

RESULTS

Experiment 1: The cyclic pattern and the effect of estradiol benzoate on food intake and body weight in female rat

Daily FI from both intact female and EB treated OVX Wistar rats revealed the estrogenic effect of eating behavior (Fig 3a). During estrous cycle, intact female Wistar rats showed significant decreased pattern of daily FI ($F_{3,63}$ = 6.72, P<0.05). In OVX rats, estradiol treatment also decreased FI significantly ($F_{3,57}$ = 9.67, P<0.05). The difference of FI between diestrus day 1 (D1) and estrous day (E) in the intact rat and between day 1 and day 4 of EB treatment days was apparently no significant (t_{40} = 0.65, P>0.05, Fig 3b). In addition, BW from both intact and OVX rat were increased significantly during the observation period (Fig4, $F_{3,63}$ = 33.26 and $F_{3,57}$ = 14.52, P<0.05, respectively).

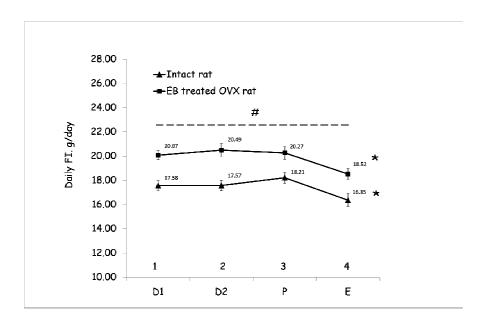


Fig 3a Daily FI from cyclic intact rat (triangle) and EB treated OVX rat (square). * Significant lower FI at E or day 4 than at day 1/2 or D1/D2, # Significant lower FI form cyclic intact rat than from EB treated OVX rat, P<0.05.

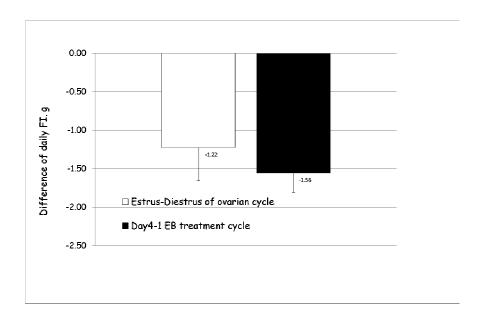


Fig 3b The comparable effects of endogenous E_2 in intact rat (white bar) and exogenous E_2 in OVX rat (black bar) on FI.

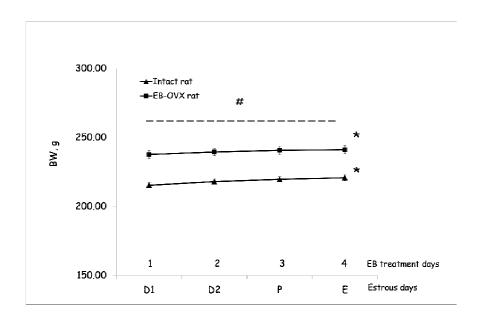


Fig 4 Body weight from cyclic intact rat (triangle) and EB treated OVX rat (square). *
Significant lower FI at E or day 4 than at day 1/2 or D1/D2, # Significant lower FI form cyclic intact rat than from EB treated OVX rat, P<0.05.

Experiment 2: The fourth ventricle continuous infusion of ICI attenuated estrogenic control of food intake

Continuous administration of ER α antagonist (ICI) into hindbrain via the 4th ventricle cannulation revealed that both 4 and 8 nM ICI could attenuate the exogenous estradiol effect of FI. In 1%DMSO hindbrain infusion groups, there was clear effect of estradiol on daily FI pattern (Fig 5a, F_{3,48}= 3.54, P<0.05). However, daily FI patterns from 4 nM ICI hindbrain infusion were not different comparing between oil and EB treatment throughout the observation periods (Fig 6a, F_{3,54}= 0.37, P>0.05). The similar patterns of FI was seen when both oil and EB treated rats were infused with 8 nM ICI (Fig 7a, F_{3,54}= 1.17, P>0.05). On day 4 of the EB treatment regimen (Fig8), there was significant effect of EB on FI from DMSO hindbrain infusion groups (t_{17} = 3.34, P<0.05). However there were no effect of EB on daily FI from both 4 and 8 nM ICI hindbrain infusion doses (t_{19} = 2.04 and 1.49, P>0.05).

BW (Fig 5b, 6b and 7b) from all 3 groups of hindbrain infusion increased significantly through the experimental period (DMSO/F_{3,48}= 2.97, 4nM/F_{3,54}= 4.60, 8nM/F_{3,54}= 8.54; P>0.05). However, increased BW in the current experiment mainly came from oil treatment groups. This is because, BW from all 3 hindbrain infusion group increased significantly in oil treatment groups (DMSO/F_{3,24}= 13.34, 4nM/F_{3,27}= 3.51, 8nM/F_{3,27}= 5.41; P<0.05). Further, EB treatment could restore BW in DMSO and 4 nM hindbrain infusion (F_{3,24}= 0.73, F_{3,27}= 1.68; P>0.05, respectively), but not in 8 nM hindbrain infusion (F_{3,27}= 3.54; P<0.05).

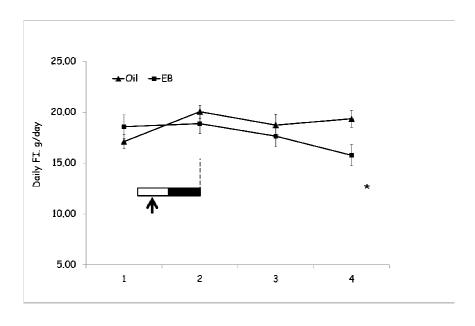


Fig 5 In 1% DMSO hindbrain infusion group, (a, upper) daily FI from oil treatment group (triangle) was comparable during 4 days experiment. However, FI from EB treatment group (square) decreased gradually during 4 days experiment. At day 4, FI from EB group was lower than form control group. (b, lower) BW from both oil and EB treatment group increased significantly during 4 days experiment. Daily FI from each experimental day is the cumulative amount of FI from dark and light period (dark and white bars). The injection of oil or EB was done at mid-light phase of day 2 (arrow). * Significant different FI, P<0.05. # BW was increased significantly in oil treatment group across the experiment period, P<0.05.

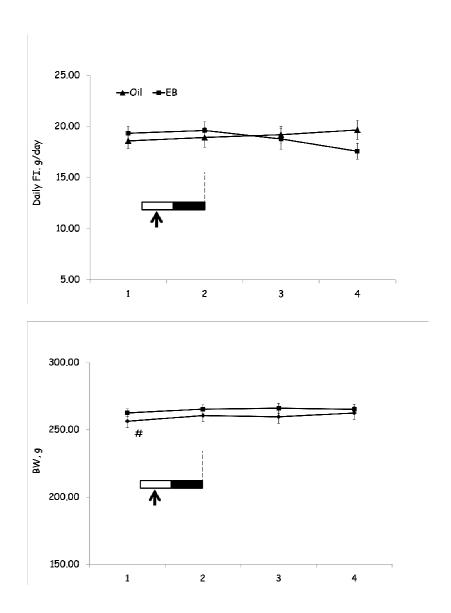


Fig 6 In 4 nM ICI hindbrain infusion group, (a, upper) daily FI from both oil (triangle) and EB (square) treatment groups was comparable. In addition, FI from EB treatment group slightly decreased across 4 days experiment; however, this was not significant. At day 4, FI from EB group was not significant different from control group. (b, lower) BW from both oil and EB treatment group increased significantly during 4 days experiment. Daily FI from each experimental day is the cumulative amount of FI from dark and light period (dark and white bars). The injection of oil or EB was done at mid-light phase of day 2 (arrow). # BW was increased significantly in oil treatment group across the experiment period, P<0.05.

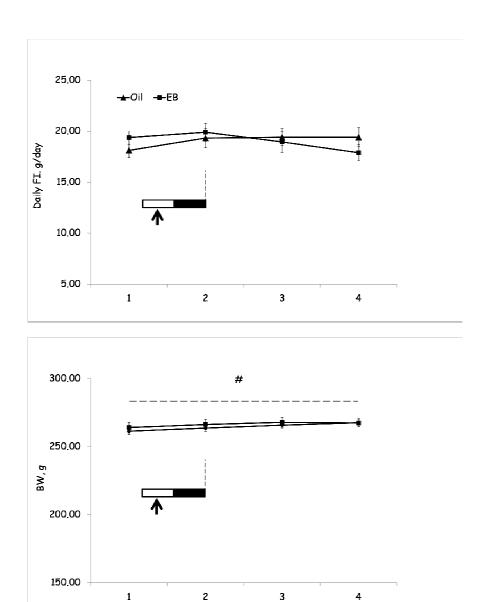


Fig 7 In 8 nM ICI hindbrain infusion group, (a, upper) daily FI from both oil (triangle) and EB (square) treatment groups was comparable. In addition, FI from EB treatment group slightly decreased across 4 days experiment; however, this was not significant. At day 4, FI from EB group was not significant different from control group. (b, lower) BW from both oil and EB treatment group increased significantly during 4 days experiment. Daily FI from each experimental day is the cumulative amount of FI from dark and light period (dark and white bars). The injection of oil or EB was done at mid-light phase of day 2 (arrow). # BW was increased significantly across the experiment period in both oil and EB treatment groups, P<0.05.

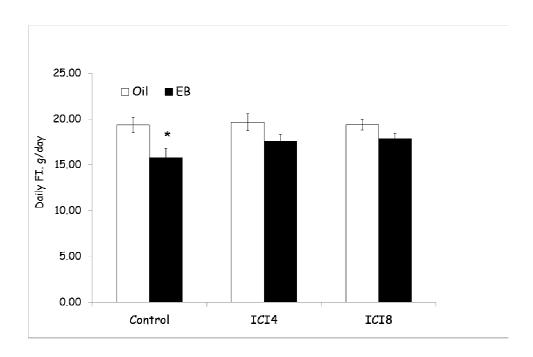
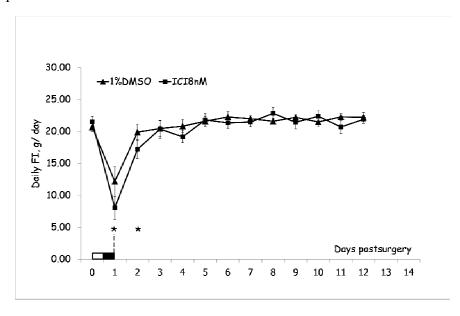



Fig 8 Daily FI at day 4 of experimental period from 1%DMSO, 4 nM and 8 nM hindbrain infusion groups treated with either oil or EB. There was significantly lower of FI in EB than in oil group in 1% DMSO hindbrain infusion. * Significant different FI, P<0.05.

Experiment 3 The fourth ventricle continuous infusion of ICI and brain $\text{ER}\alpha$ expression

This experiment revealed a potential mechanism by which ICI attenuated E_2 effect of FI. Fist, hindbrain infusion of ICI alone had no effect of both FI (Fig 9a) and BW (Fig 9b). Daily FI was decreased significantly on the day after surgery ($F_{12,216}$ = 23.36; P<0.05). Importantly, FI from both groups were similar to the level before surgery by day 3 after surgery (t_9 = 0.15 and 0.86; P<0.05). Moreover, daily FI from both 1%DMSO and 8 nM ICI hindbrain infusion groups were not significantly different throughout the experiment period ($F_{1,216}$ = 0.95; P>0.05). BW from both 1%DMSO and 8 nM ICI hindbrain infusion groups were not significantly different from each group ($F_{1,198}$ = 0.93; P>0.05) but increased throughout the experimental period ($F_{11,198}$ = 47.23; P<0.05).

Second, results from ER α IHC revealed that 8 nM ICI hindbrain infusion had no effect on the number of ER α positive neurons from forebrain sites (Fig 10) including PAO (Fig 10a, $t_9 = 0.92$; P>0.05), VMH (Fig 10b, $t_8 = 0.09$; P>0.05) and Arc (Fig 10c, $t_8 = 1.10$; P>0.05). Unfortunately, the same ER α IHC could not detect ER α positive neurons from hindbrain.

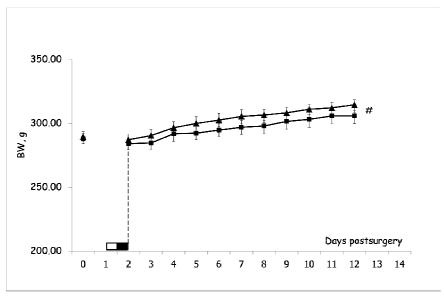


Fig 9 ICI hindbrain infusion didn't affect FI and BW in OVX rat. (a, upper) Daily FI throughout 12 days of 4^{th} icv period. The effect of surgery was mark during 2 days after 4^{th} icv. However, there was no different of FI between groups. (b, lower) BW recorded in the same day as FI. There was significant increase in BW over time but not between groups. * Significant different FI from presurgical day , P<0.05. # Significant increase in BW , P<0.05.

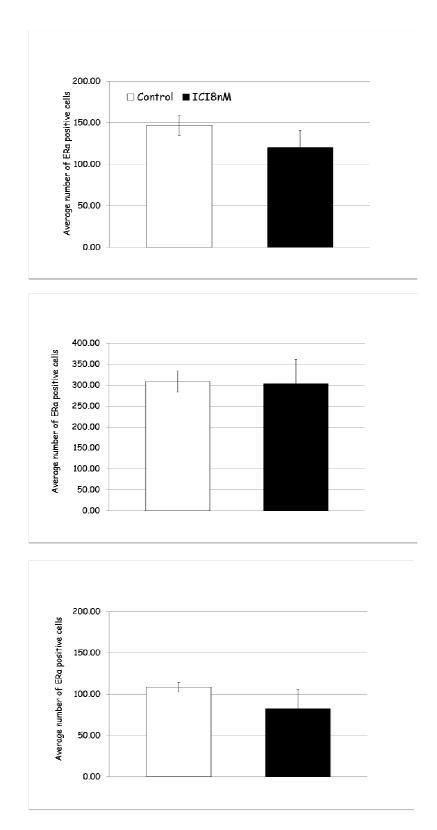


Fig 10 ICI hindbrain infusion didn't affect the number of $ER\alpha$ immunopositive cells at the selected hypothalamic forebrain: (a, upper) Medial preoptic nucleus (PAO), (b, center) Ventromedial hypothalamic nucleus (VMH) and (c, lower) Arcuate nucleus of hypothalamus (Arc).

DISCUSSION

Estrogens inhibit eating in female animals by activating ER in the brain. Both hypothalamic forebrain and the nucleus tractus solitarius of hindbrain appear to be the sites mediated this phenomena. The current experiment revealed that hindbrain infusion of the pure estrogen receptor antagonist, ICI, could attenuate E_2 effect on FI. Further, ICI hindbrain infusion didn't affect the number of ER α positive neuron form forebrain nuclei. The results suggested that ICI apparently attenuated E2 effect on FI in hindbrain and that hindbrain nucleus is in part required for this action.

In the current experiment, we first showed the pattern of FI in ovarian intact female and exogenous E_2 supplemented OVX Wistar rats. In intact rat, we demonstrated that across the ovarian cycle there was a decrease in pattern of FI that has been reported previously (Asarian and Geary., 2002; Blaustein and Wade., 1976). We showed further that in OVX rat the cyclic injection of E_2 mimic eating pattern of intact female rat. Importantly, the effect from both endogenous E_2 fluctuation and exogenous E_2 supplementation was comparable. The results emphasized that with our condition we could replicate the physiological model of cyclic supplementation of E_2 on FI in OVX rat (Asarian and Geary., 2002). We then used this method as standard model to investigate the site and mechanism of E_2 effect on FI in the current experiment.

Several previous reports indicated that in female rat E₂ acts centrally in the brain to decrease FI. Administration of small E₂ to many hypothalamic nuclei of forebrain revealed the potential site(s) of E₂ on FI effect (Wade and Zucker, 1970; Nunes et al., 1980; Dagnault and Richard, 1997; Palmar and Gray, 1986; Butera and Beikirch, 1989; Hrupka et al., 2002; Santollo et al., 2011). However, it is unlikely that only hypothalamic nuclei are involved for estrogenic effect of FI. This is because

several investigations studied the effect of E_2 on CCK and feeding induced c-Fos suggested the participation of hindbrain on this action (Eckel and Geary, 2001; Eckel et al., 2002; Asarian and Geary, 2007). In addition, we showed directly that the activation of $ER\alpha$ at caudal NTS decreased FI (Thammacharoen et al., 2008). Therefore we think that the hindbrain NTS appeared to participate for this phenomenon as well. In the current experiment, we showed that ICI infusion to hindbrain could attenuate, but not complete block, the effect of E_2 on FI. This was consistent with the previous experiment that revealed the necessary of brain ER for FI effect of E_2 . On those experiment the infusion of ICI directly to the lateral ventricle have been demonstrate to attenuate E_2 effect on FI as well (Rivera and Eckel., 2010). Further, we showed in the same experimental paradigm that hindbrain ICI infusion itself had no effect on FI across 12 days of infusion duration. Taken together we conclude that both lateral and 4^{th} ventricle infusion of 4 nM ICI could attenuate E_2 effect on FI in OVX female rat. At this point, the current experiment does not disclose whether hindbrain ER require for E_2 effect on FI.

A long hydrophobic side chain of pure ER antagonist, ICI, has been shown to play the major role on the ER antagonist mechanisms (Osborne et al., 2000). The antiestrogenic action of ICI was different from other groups of the selective estrogen receptor modulator (SERM). Besides AF1 and AF2 ER transactivation blocking and dimerization impairment, ICI inhibit estrogenic action most importantly by promote ER degradation (Dauvois et al., 1992; Htun et al., 1999; Long and Nephew, 2006). Because most of the studies that investigate the mechanisms of ICI antagonist came from the experiment performed in cell culture condition, it is still difficult to conclude the detail mechanisms that ICI could block or attenuate any E2 effect in vivo. One of the in vivo antagonist mechanism came from the measurement of [³H] labeled E₂ in

brain and uterus after ICI injection in Syrian hamster and rat. The results clearly demonstrated that ICI could decrease cell nuclear binding of [3H] labeled E2 up to 90% in rat and 50% in Syrian hamster (Wade et al., 1993a; Wade et al., 1993b). In the brain, the fluctuation of ER immunopositive neurons has been demonstrated across ovarian cycle in female rats (Shughrue et al., 1998; Child et al., 2001; Helena et al., 2006; MendozaGarces et al., 2011;). If ER degradation is one important mechanism of antiestrogenic effect of ICI, we would like to investigate the effect of ICI hindbrain infusion on the number of ER immunopositive neurons in vivo in our experimental condition. As expected we demonstrated that ERa immunopositive neurons from the forebrain hypothalamic nuclei (POA, VMH and Arc) were comparable between control and ICI hindbrain infusion at day 13 of ICI hindbrain infusion. Unfortunately, we could not see any ER immunopositive neurons with the same IHC technique from hindbrain NTS. The result suggested that infusion of ICI directly to hindbrain did not affect the number of ER from selected hypothalamic nuclei of forebrain. Whether hindbrain infusion of hindbrain could modify ER positive neurons from hindbrain NTS remain to be investigated.

Our current results are relevant to the identification of brain site(s) where E_2 decreases FI in female rate. We showed previously that the hindbrain NTS is sufficient for estrogenic control of FI in female rat (Thammacharoen et al., 2008). The attenuation effect of hindbrain ICI infusion on estrogenic effect of FI suggested that an anorexigenic effect of E_2 depends in part on the activation of $ER\alpha$ in the hindbrain.

REFERENCES:

- Arbogast LA. 2008. Estrogen genomic and membrane actions at an intersection.

 Trends Endocrinol Metab. 19(1). 1-2.
- Asarian L. 2006. Membrane estrogen receptors and energy homeostasis. The Journal of Neuroscience. 26(44). 11255-11256.
- Asarian L and Geary N. 1999. Cyclic estradiol treatment phasically potentiates endogenous cholecystokinin's satiating action in ovariectomized rats. Peptides. 20. 445-450.
- Asarian L and Geary N. 2002. Cyclic estradiol treatment normalized body weight and restores physiological patterns of spontaneous feeding and sexual receptivity. Horm Behav. 42. 461-471.
- Asarian L and Geary N. 2006. Modulation of appetite by gonadal steroid hormones. Phil. Trans. R. Soc. B. 361. 1251-1263.
- Asarian L and Geary N. 2007. Estradiol Enhances Cholecystokinin-Dependent Lipid-Induced Satiation and Activates Estrogen Receptor-{alpha}-Expressing Cells in the Nucleus Tractus Solitarius of Ovariectomized Rats. Endocrinology. 148(12). 5656-566.
- BRFSS (Behavior risk factors surveillance system). 2010. <u>US Obesity trends: trends</u> by states 1985-2009.
- Behl C. 2002. Oestrogen as a neuroprotective hormone. Nat Rev Neurosci. 3(6). 433-442.
- Berridge KC and Robinson TE. 2003. Parsing reward. Trends Neurosci. 26(9). 507-513.

- Berthoud HR. 2004. Mind versus metabolism in the control of food intake and energy balance. Physiology & Behavior. 81. 781-793.
- Blaustein JD. 2008. An estrogen by any other name. Endocrinology. 149(6). 2697-2698.
- Blaustein JD and Wade G. 1976. Ovarian influences on the meal patterns of female rats. Physiology &Behavior. 17. 201-208.
- Blevins JE, Schwartz MW, Baskin DG. 2004. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol. 287(1). R87-96.
- Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA and Carlquist M. 1997. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 389(6652). 753-758.
- Butera PC. 2010. Estradiol and control of food intake. Physiol and Behavior. 99(2). 175-180.
- Butera PC and Beikirch RJ. 1989. Central implants of dilute estradiol: independent effects on ingestive and reporductive behaviors of ovariectomized rats. Brain Res. 491. 266-273.
- Butera PC, Campbell RB and Bradway DM. 1993. Antagonism of estrogenic effects on feeding behavior by central implants of anisomycin. Brain research. 624. 354-356.
- Campfield LA and Smith FJ. 2003. Blood glucose dynamics and control of meal initiation: A pattern detection and recognition theory. Physiol rev. 83. 25-58.

- Chambliss KL, Yuhanna IS, Anderson RG, Mendelsohn ME and Shaul PW. 2002. ERbeta has nongenomic action in caveolae. Mol Endocrinol. 16(5). 938-946.
- Chaudri O, Small C and Bloom S. 2006. Gastrointestinal hormones regulating appetite. Phil Trans of The Royal Soc B. 361(1471). 1187-1209.
- Chen Y and Heiman ML. 2001. Increased weight gain after ovariectomy is not a consequence of leptin resistance. Am J Physiol Endocrinol Metab. 280(2). E315-E322.
- Childs GV, Unabia G, Komak S. 2001. Differential expression of estradiol receptors alpha and beta by gonadotropes during the estrous cycle. J Histochem Cytochem. 49(5). 665-666.
- Clegg DJ, Riedy CA, Blake Smith KA, Benoit SC and Woods SC. 2003. Differential sensitivity to central leptin and insulin in male and female rats. Diabetes. 52. 682-687.
- Clegg DJ, Brown LM, Woods SC and Benoit SC. 2006. Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes. 55. 978-987.
- Clegg DJ, Brown LM, Zigman JM, Kemp CJ, Strader AD, Benoit SC, Woods SC, Mangiaracina M and Geary N. 2007. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes. 56(4). 1051-1058.
- Collins P and Webb C. 1999. Estrogen hits the surface. Nat Med. 5(10). 1130-1131.
- Couse JF and Korach K. 1999. Estrogen receptors null mice: What have we learned and where will they lead us? Endocrine rev. 20(3). 358-417.
- Cummings DE and Overduin J. 2007. Gastrointestinal regulation of food intake. J Clin Invest. 117(1). 13-23.
- Czaja JA and Goy RW. 1975. Ovarian hormones and food intake in female guinea pigs and rhesus monkeys. Horm Behav. 6(4). 329-349.

- Dagnault A and Richard D. 1994. Lesion of hypothalamic paraventricular nuclei do not prevent the effect of estrogen on energy and fat balance. Am J Physiol. 267. E32-E38.
- Dagnault A and Richard D. 1997. Involvement of the medial preoptic area in the anorectic action of estrogen. Am J Physiol. 272. R311-317.
- Dauvois S, Danielian PS, White R, Parker MG. 1992. Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. Proc Natl Acad Sci U S A. 89(9). 4037-4041.
- De Vries J, Strubbe JH, Wildering WC, Gorter JA and Prins AJ. 1993. Patterns of body temperature during feeding in rats under varying ambient temperatures. Physiology & Behavior. 53(2). 229-235.
- Delaunay F, Pettersson K, Tujague M and Gustafsson JA. 2000. Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol Pharmacol. 58(3). 584-590.
- Després JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, Rodés-Cabau J, Bertrand OF, Poirier P. 2008. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 28(6). 1039-1049.
- Eckel LA and Geary N. 1999. Endogenous cholecystokinin's satiating action increase during estrus in female rats. Peptides. 20. 451-456.
- Eckel LA and Geary N. 2001. Estrogen treatment increase feeding-induced c-Fos expression in the brain of ovariectomized rats. Am J Physiol. 281. R738-R746.
- Eckel LA, Houpt TA and Geary N. 2000. Spontaneous meal patterns in female rats with and without access to running wheels. Physiology &Behavior. 70. 397-405.

- Eckel LA, Houpt TA, and Geary N. 2002. Estradiol replacement increases CCK-induced c-Fos expression in the brains of ovariectomized rats. Am J Physiol. 283. R1378-R1385.
- Even P and Nicolaidis S. 1985. Spontaneous and 2DG induced metabolic changes and feeding: the ischymetric hypothesis. Brain Res Bull. 15(4). 429-35.
- Filardo EJ and Thomas P. 2005. GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release. Trends Endocrinol Metab. 16(8). 362-367.
- Flegal KM, Graubard BI, Williamson DF, Gail MH. 2005. Excess deaths associated with underweight, overweight, and obesity. JAMA. 293(15). 1861-1867.
- Friend DW. 1971. Self-selection of feeds and water by swine during pregnancy and lactation. J Anim Sci. 32(4). 658-666.
- Fu XD and Simoncini T. 2007. Non-genomic sex steroid actions in the vascular system. Semin Reprod Med. 25(3).178-186.
- Funakoshi T, Yanai A, Shinoda K, Kawano MM and Mizukami Y. 2006. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem Biophys Res Commun. 346(3). 904-910.
- Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran-Allerand D, Priest CA, Roberts JL, Gao X-B, Mobbs C, Shulman GI, Diano S and Horvath TL. 2007. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nature Medicine. 13. (1). 89-94.
- Garcia-Segura LM, Diz-Chaves Y, Perez-Martin M and Darnaudéry M. 2007.

 Estradiol, insulin-like growth factor-I and brain aging.

 Psychoneuroendocrinology. Suppl 1.S57-61.
- Geary N. 2001. Estrogen, CCK, and satiation. Peptides. 22. 1251-1263.

- Geary N. 2004. The estrogenic inhibition of eating, In: Handbook of behavioural neurobiology, 2nd edit volume 14, Stricker EM and Woods SC, editors. NY: Kluwer academic. 307-345.
- Geary N, Trace D, McEwen B and Smith GP. 1994. Cyclic estradiol replacement increases the satiety effect of CCK-8 in ovariectomized rats. Physiology & Behavior. 56(2). 281-289.
- Geary N, Smith GP and Corp ES. 1996. The increased satiating potency of CCK-8 by estradiol is not mediated by upregulation of NTS CCK receptors. Brain Research. 179. 179-186.
- Geary N, Asarian L, Korach KS, Pfaff DW and Ogawa S. 2001. Deficits in E2-dependent control of feeding, weight gain, and cholecystokinin satiation in ER-alpha null mice. Endocrinology. 142(11). 4751-4757.
- Gong EJ, Garrel D and Calloway DH. 1989. Menstrual cycle and voluntary food intake. Am J Clin Nutr. 49(2). 252-258.
- Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P and Chambon P. 1986.

 Human oestrogen receptor cDNA: sequence, expression and homology to v-erbA. Nature. 320(6058). 134-139.
- Greene GL, Gilna P, Waterfield M, Baker A, Hort Y and Shine J. 1986. Sequence and expression of human estrogen receptor complementary DNA. Science. 231(4742). 1150-1154.
- Hall JM and McDonnell DP. 2005. Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv. 5(6). 343-357.
- Helena CV, de Oliveira Poletini M, Sanvitto GL, Hayashi S, Franci CR, Anselmo-Franci JA. 2000. Changes in alpha-estradiol receptor and progesterone receptor

- expression in the locus coeruleus and preoptic area throughout the rat estrous cycle. J Endocrinol. 188(2). 155-165.
- Houpt KA, Coren B, Hintz HF and Hilderbrant JE. 1979. Effect of sex and reproductive status on sucrose preference, food intake, and body weight of dogs. J Am Vet Med Assoc. 174(10). 1083-1085.
- Hrupka BJ, Smith GP and Geary N. 2002. Hypothalamic implants of dilute estrogen fail to reduce feeding in ovariectomized rats. Physiology &Behavior. 77. 233-241.
- Htun H, Holth LT, Walker D, Davie JR, Hager GL. 1999. Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell. 10(2). 471-486.
- Kalaitzidis D and Gilmore TD.2005. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol. Metab. 16(2). 46-52.
- Kawata M, Matsuda K, Nishi M, Ogawa H and Ochiai I. 2001. Intracellular dynamics of steroid hormone receptor. Neurosci Res. 40(3). 197-203.
- Kelly MJ and Rønnekleiv OK. 2008. Membrane-initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol. 290(1-2). 14-23.
- King WJ and Greene GL. 1984. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature. 307(5953). 745-747.
- Klein DA and Walsh BT. 2004. Eating disorders: clinical features and pathophysiology. Physiol & Behavior. 81(2). 359-374.
- Klinge CM. 2001. Estrogen receptor interaction with estrogen response elements. Nucleic acids Research. 29(14). 2905-2919.

- Kow LM and Pfaff DW. 2004. The membrane actions of estrogens can potentiate their lordosis behavior-facilitating genomic actions. Proc Natl Acad Sci U S A. 101(33). 12354-12357.
- Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA. 1996. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 93(12). 5925-5930.
- Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM and Webb P. 2000. Estrogen receptor pathways to AP-1. J. Steroid Biochem. Mol. Biol. 74(5). 311-317.
- Laflamme N, Nappi RE, Drolet G, Labrie C and Rivest S. 1998. Expression and neuropeptidergic characterization of estrogen receptors (Eralpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol. 36(3). 357-378.
- Lavery DN and McEwan IJ. 2005. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations. Biochem. J. 391(Pt 3). 449-464.
- Leung SW, Teoh H, Keung W and Man RY. 2007. Non-genomic vascular actions of female sex hormones: physiological implications and signalling pathways. Clin Exp Pharmacol Physiol. 34(8). 822-826.
- Levin BE, Routh VH, Kang L, Sanders NM and Dunn-Meynell AA. 2004. Neuronal glucosensing: what do we know after 50 years? Diabetes. 53(10). 2521-2528.
- Liang Y-Q, Akishita M, Kim S, Ako J, Hashimoto M, Iijima K, Ohike Y, Watanabe T, Sudoh N, Toba K, Yoshizumi M and Ouchi Y. 2002. Estrogen receptor β is involved in the anorectic action of estrogen. Int J of Obesity. 26. 1103-1109.

- Linden A, Uvnas-Moberg K, Forsberg G, Bednar I and Sodersten P. 1990.

 Involvement of cholecystokinin in food intake: III. Oestradiol potentiates the inhibitory effect of cholecystokinin octapeptide on food intake in ovariectomized rats. Journal of Neuroendocrinology. 2. 797-801.
- Long X, Nephew KP. 2006. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem. 281(14). 9607-9615.
- Luconi M, Francavilla F, Porazzi I, Macerola B, Forti G and Baldi E. 2004. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 69(8-9). 553-559.
- Lyons PM, Truswell AS, Mira M, Vizzard J and Abraham SF. 1989. Reduction of food intake in the ovulatory phase of the menstrual cycle. Am J Clin Nutr. 49(6). 1164-1168.
- Marty N, Dallaporta M and Thorens B. 2007. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda). 22. 241-251.
- McDonnell DP, Clemm DL, Hermann T, Goldman ME and Pike JW. 1995. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol Endocrinol. 9(6). 659-669.
- McEwan BS, Akama K, Alves S, Brake WG, Bulloch K, Lee S, Li C, Yuen G and Milner TA. 2001. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proc Natl Acad Sci U S A. 98(13). 7093-7100.
- Mendelsohn ME. 2000a. Mechanisms of estrogen action in the cardiovascular system.

 J Steroid Biochem Mol Biol. 74(5). 337-343.

- Mendelsohn ME. 2000b. Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? Circ Res. 87(11). 956-960.
- Mendez P, Azcoitia I and Garcia-Segura LM. 2005. Interdependence of oestrogen and insulin-like growth factor-I in the brain: potential for analysing neuroprotective mechanisms. J Endocrinol. 185(1). 11-17.
- Mendoza-Garcés L, Mendoza-Rodríguez CA, Jiménez-Trejo F, Picazo O, Rodríguez MC, Cerbón M. 2011. Differential expression of estrogen receptors in two hippocampal regions during the estrous cycle of the rat. Anat Rec (Hoboken). 294(11). 1913-1919.
- Milner TA, McEwen BS, Hayashi S, Li CJ, Reagan LP and Alves SE. 2001.

 Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. J Comp Neurol. 429(3). 355-371.
- Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S and Alves SE.2005. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol. 491(2). 81-95.
- Mitra SW, Hoskin E, Yudlovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS and Alves SE. 2003. Immunolocalization of estrogen receptor β in the mouse brain: comparison with estrogen receptor α. Endocrinology. 144(5). 2055-2067.
- Moller DE and Kaufman KD. 2005. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 56. 45-62.
- Musatov S, Chen W, Pfaff DW, Kaplitt MG and Ogawa S. 2006. RNAi-mediated silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus

- abolishes female sexual behaviors. Proc Natl Acad Sci U S A. 103(27). 10456-10460.
- Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M and Gustafsson JA. 2001. Mechanisms of estrogen action. Physiol Rev. 81(4). 1535-1565.
- Nunez AA, Gray JM and Wade GN. 1980. Food intake and adipose tissue lipoprotein lipase activity after hypothalamic estradiol benzoate implants in rats. Physiology & Behavior. 25, 595-598.
- Osborne CK, Zhao H, Fuqua SA. 2000. Selective estrogen receptor modulators: structure, function, and clinical use. J Clin Oncol. 18(17). 3172-3186.
- Palmaer K and Gray JM. 1986. Central vs. peripheral effects of estradiol on food intake and lipoprotein lipase activity in ovariectomized rats. Physiology & Behavior. 37. 187-189.
- Parsons B, Rainbow TC, Pfaff DW and McEwen BS. 1982. Hypothalamic protein synthesis essential for the activation of the lordosis reflex in the female rat. Endocrinology. 110(2). 620-624.
- Paxinos and Watson. 1998. The rat brain in stereotaxic coordination, 4th edition.

 Academic Press In, USA. 474PP.
- Pedram A, Razandi M and Levin ER. 2006. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol. 20(9). 1996-2009.
- Pelleymounter MA, Beker MB and McCaleb M. 1999. Does estradiol mediate leptin's effect on adiposity and body weight? Am. J. Physiol. 276. E955-E963.
- Perissi V and Rosenfeld MG. 2005. Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol. 6(7). 542-554.

- Pfaff D. 2005. Hormone-driven mechanisms in the central nervous system facilitate the analysis of mammalian behaviours. J Endocrinol. 184(3). 447-453.
- Pietras RJ and Márquez-Garbán DC. 2007. Membrane-associated estrogen receptor signaling pathways in human cancers. Clin Cancer Res. 13(16). 4672-6.
- Pike AC. 2006. Lessons learnt from structural studies of the oestrogen receptor. Best Pract Res Clin Endocrinol Metab. 20(1).1-14.
- Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA and Hathaway HJ. 2008.

 Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 70. 165-90.
- Revankar CM, Cimino DF, Sklar LA, Arterburn JB and Prossnitz ER. 2005. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 307(5715). 1625-1630.
- Rivera HM and Eckel LA. 2010. Activation of central, but not peripheral, estrogen receptor is necessary for estradiol's anorexigenic effect in ovariectomized rats. Endocrinology. 151 (12). 5680-5688.
- Roesch DM. 2006. Effects of selective estrogen receptor agonists on food intake and body weight gain in rats. Physiology & Behavior. 87. 39-44.
- Ronnekleiv OK, Malyala A and Kelly MJ. 2007. Membrane-initiated signaling of estrogen in the brain. Semin Reprod Med. 25(3). 165-177.
- Safe S. 2001. Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm. 62. 231-52.
- Santollo J, Wiley MD and Eckel LA. 2007. Acute activation of ER{alpha} decreases food intake, meal size, and body weight in ovariectomized rats. Am J Physiol Regul Integr Comp Physiol. 293(6). R2194- R2201.

- Santollo J, Torregrossa AM, Eckel LA. 2011. Estradiol acts in the medial preoptic area, arcuate nucleus, and dorsal raphe nucleus to reduce food intake in ovariectomized rats. Horm Behav. 60(1). 86-93.
- Saper CB, Chou TC and Elmquist JK. 2002. The need to feed: homeostatic and hedonic control of eating. Neuron. 36(2). 199-211.
- Schlenker EH and Hansen SN. 2006. Sex-specific densities of estrogen receptors alpha and beta in the subnuclei of the nucleus tractus solitarius, hypoglossal nucleus and dorsal vagal motor nucleus weanling rats. Brain Res.1123(1).89-100.
- Shimomura K, Shimizu H, Tsuchiya T, Abe Y, Uehara Y and Mori M. 2002. Is leptin a key factor which develops obesity by ovariectomy? Endocr J. 49(4). 417-423.
- Shughrue PJ, Lane MV and Merchenthaler I. 1997. Comparative distribution of estrogen receptor- α and $-\beta$ mRNA in the rat central nervous system. The J. of Comp Neuro. 388. 507-525.
- Shughrue PJ, Scrimo PJ, Merchenthaler I. 1998. Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain. Endocrinology. 139(12). 5267-5270.
- Song RX. 2007. Membrane-initiated steroid signaling action of estrogen and breast cancer. Semin Reprod Med. 25(3). 187-197.
- Thaler JP and Cummings DE. 2008. Metabolism: food alert. Nature. 452(7190). 941-942.
- Thammacharoen S, T A Lutz, N Geary and L Asarian. 2007. Anomalously rapid effect of the estrogen receptor-α agonist PPT on food intake in ovariectomized rats. Appetite. 49 (1). 334.

- Thammacharoen S, T A Lutz, N Geary and L Asarian. 2008. Hindbrain administration of estradiol inhibit feeding and activate ERα-expressing cells in the NTS of ovariectomized rats. Endocrinology. Endocrinology. 149(4). 1609-1617.
- Thammacharoen S, T A Lutz, N Geary and L Asarian. 2009. Divergent effects of estradiol and the estrogen receptor-α agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain research. 1268. 88-96.
- Toran-Allerand CD. 2004. A plethora of estrogen receptors in the brain: where will it end? Endocrinology. 145(3). 1069-1074.
- Toran-Allerand CD, Guan X, MacLusky NJ, Horvath TL, Diano S, Singh M, Connolly ES Jr, Nethrapalli IS and Tinnikov AA. 2002. ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. J Neurosci. 22(19). 8391-8401.
- Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW and McDonnell DP. 1994. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol. 8(1). 21-30.
- Vasudevan N, Kow LM and Pfaff D. 2005. Integration of steroid hormone initiated membrane action to genomic function in the brain. Steroids. 70(5-7). 388-396.
- Wade GN and Zucker I. 1970. Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants. J Comp Physiol Psychol. 72(2). 328-336.
- Wade GN, Blaustein JD, Gray JM, Meredith JM. 1993a. ICI 182,780: a pure antiestrogen that affects behaviors and energy balance in rats without acting in

- the brain. Am J Physiol. (Regulatory Integrative Comp. Physiol.) 265. R1392-R1398.
- Wade GN, Powers JB, Blaustein JD, Green DE. 1993b. ICI 182,780 antagonizes the effects of estradiol on estrous behavior and energy balance in Syrian hamsters. Am J Physiol. 265(6 Pt 2). R1399-R1403.
- Warnmark A, Treuter E, Wright AP and Gustafsson JA. 2003. Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol. 17(10).1901-1909.
- Welshons WV, Lieberman ME and Gorski J. 1984. Nuclear localization of unoccupied oestrogen receptors. Nature. 307(5953). 747-749.
- Woods SC, Schwartz MW, Baskin DG and Seeley RJ. 2000. Food intake and the regulation of body weight. Annu Rev Psychol. 51. 255-277.
- Woods SC, Gotoh K and Clegg DJ. 2003. Gender differences in the control of energy homeostasis. Exp Biol Med. 228. 1175-1180.

Output ที่ได้จากโครงการ

ผลการทคลองที่เสนอในรายงานฉบับสมบูรณ์นี้ส่วนหนึ่งได้ถูกนำเสนอแล้วในการประชุม
"นักวิจัยใหม่พบเมธิวิจัยอาวุโส สกว." ครั้งที่ 13 ประจำปี 2556 ในรูปแบบโปสเตอร์ (P-BIO-I25)
ดังรายละเอียดบทคัดย่อและโปสเตอร์ที่นำเสนอในภาคผนวก และผู้วิจัยอยู่ระหว่างการดำเนินการ
จัดทำต้นฉบับสำหรับการส่งให้แก่วารสารเพื่อการพิจารณาตีพิมพ์

ภาคผนวก

Hindbrain infusion of estrogen receptor antagonist attenuated estradiol effect on food intake in ovariectomized (OVX) rat

Thammacharoen S^{1*}, Suwanapaporn P¹, Kitchanukitwattana P¹ and Chaiyabutr N^{1,2}

¹ Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand

² Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok 10330, Thailand.

Abstract

Estrogen (E₂) inhibits food intake by activating estrogen receptor within the brain. We

showed that activated hindbrain $ER\alpha$, by E_2 implantation, is sufficient to inhibit eating

in OVX rats. To investigate that hindbrain ERa is required for estrogenic control of

eating, ICI infusion to the 4th intracerebroventricular (4th icv) was performed to test

the inhibition effect of estrogen on food intake.

We first demonstrated the effect of E₂ on food intake in our condition. Female intact

Wistar rat showed clear typical pattern of eating across the ovarian cycle. Estradiol

benzoate (EB) treatment in OVX rats decreased food intake significantly. The results

revealed that exogenous E₂ mimic eating pattern as in female intact rat. We

demonstrated next that the 4th icv infusion of 4nM and 8nM ICI could attenuate the

effect of EB on food intake. On day 4 of the EB treatment regimen, there was

significant lower daily food intake from EB than from oil treatment in DMSO 4^{th} ICV

group. However, the effect of EB on food intake was compromised from both 4nM

and 8nM ICI groups. These results support previous report that central infusion of ICI

could attenuate estradiol's anorexigenic effect. Importantly, the current results also

suggested that hindbrain appear to be the site required for estrogenic effect of food

intake. In conclusion, the hindbrain infusion of ICI attenuated the exogenous

estrogenic effect on food intake in female rat.

Keywords: ICI, female rat, food intake

*Corresponding author

Tel.: 02-2189740; Fax: 02-2251209

E-mail: sprueksagorn@hotmail.com

58

Hindbrain infusion of Estrogen receptor antagonist attenuated estrogenic effect on food intake in ovariectomized rats.

S Thammacharoen*, P Suwanapaporn, P Kitchanukitwattana and N Chaiyabutr Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University

INTRODUCTION

Estradiol (E2) inhibits food intake by activating estrogen receptor within the brain. In female rat and other species, daily food intake (FI) decreases during the peri-ovulatory phase of the ovarian cycle. Disruption of the ovarian cycle by ovariectomy increases FI and body weight (BW). Exogenous E2 is sufficient to restore normal eating behavior and BW after ovariectomy.

We showed that caudal nucleus of tractus solitarius (cNTS) is one of the important brain site for the estrogenic effect on eating behavior (1). In addition, infusion of estrogen receptor antagonist (ICI 182780, ICI) into the lateral ventricle has been shown to inhibit the effect of E2 on FI (2). In light of our results, ICI infusion directly to hindbrain via the 4th intracerebroventricular (4th icv) was performed to test the inhibition effect of E. on FI and its potential mechanism.

AIM OF THE PRESENT STUDY

To investigate whether the ERa of hindbrain required for the esstrogenic effect of FI.

MATERIALS AND METHODS

The first experiment aimed to replicate the effect of E₂ on FI in our condition. Intext female wister rats were observed for the pattern of FI during evenion cycle. Normal 4 days cycle (diestrus IAZ = DIADZ, proestrus = P and estrus = E) was selected for this experiment. After the success of 2-3 cycle records, the proestrus = P and estrus = E) was selected for this experiment. After the success of 2-3 cycle records, the effect of expensus E, on FT and 8W (entradial heraposts, EE, 2 u)/ords z, or it the mid light phase) was investigated in ovariectmized (OVX) rat. According to the 4-day of ovarian cycle, the day of EB injection corresponded to b2 and defined as day 2 of treatment nFT effect was demonstrated in the second night after treatment and defined as day 6 of treatment or estrus day in intact rat (3).

The second experiment was performed to test that hindbroin infusion of ICI could block E_L effect on FI. OVX rat (m10 per groups) was infused with ICI (4 or 8 nM) or vehicle (IX DMSO) directly via 4^M icv connected with sometic pump (Alzet. DP1002). The pump was designed to deliver the solution across 14 days with the flow rate of 0.25 µI/hr. At the midlight phase of day 6 post-surgery, each of infusion groups was instant and the Equal that Equal the Equal that the second control that the Equal that I access the expension of the Part of the Midlian groups was instant with the Equal that the Equal that I access the expension of the II access (EE). The MSW was the property of the MSW and the Equal that the Equal that the Equal that I access the expension of the II access (EE). The MSW was the manufactured with the Equal that the Equal that

injected with either Ez or vehicle. Injections were reversed at day 12 post-surgery (Fig1). FI and BW were nitored throughout the experimental period.

Fig. 1. Experimental days (dark/light phosonblock/white bors) after A^{a} (c) and onnotic jump influsion (black ornew). Rate each group recoved all or CB injection on day 6 and 12 (red wrons); F3 and BW were constructed throughout the experimental jets days have been all the days of extrast service days 8 and 14.

Because hindbrain ICI infusion could attenuated E, effect on FI in the second experiment and because one of the major mechanisms that ICI could block estradial effect is to promote ER degradation, we then studied of the major mechanisms that ICT could block estradiol effect is to promote ER degradation, we then studied the potential mechanisms of hindbrain ICT infusion to antogonist E_{ℓ} effect. This experiment was perform using 2 groups of OVX rat (8 nM and vehicle 4^{m} icv) as described previous. FI and BW were monitored 13 do post-surgery. At day 13 post-surgery, all rats were deeply anesthetized and perfused with 4% paraformoldehyde. After perfusion, brain was collected and processed for hind and fore brain ERa immunohistochemistry (IHC) evaluation.

RESULTS

The first experiment revealed the effect of endogenous and exogenous Es on FI in female rat. During ovarian cycle, intact female rats showed significant decreased pattern of FI (Fig2a). In OVX rat, EB treatment also decreased FI significantly (Fig2a). The difference of FI between D1 and E in the intact rat and between day 1 and day 4 of EB treatment days was not significantly different (Fig2b). The results suggested that in our condition the treatment regimen of exogenous E2 could mimic the pattern of FI during ovarian cycle of intact rat.

In the second experiment, continuous administration of ER antagonist directly into hindbrain via the 4th icy revealed that both 4 and 8 nM ICI could attenuate E2 effect of FI. In 1%DMSO hindbrain infusion group, FI from EB treated group was significant lower than from oil treated group (Fig3). However, FI from both 4 and 8 nM ICI hindbrain infusion groups were not significantly different between oil and EB treatment (Fig3).

The last experiment revealed potential mechanism that ICI hindbrain infusion could attenuate $\rm E_2$ effect on FI. First, thirteen days infusion of 8 nM ICI to hindbrain had no effect of daily FI (Fig 4). Second, there were no significant different in the number of ERa positive cells at different area in the forebrain (Fig 5). However, the same IHC technique could not identify ERa positive cell from hindbrain.

RESULTS b 24.00 22.00 38,00 -150 15,00 Links 62

Fig 2 (a) Daily FI from cyclic intact nat and E8 treated OVX nat (b) The effect of endagenous and exagenous E- on FI ver FI at E or day 4 than at day 1/2 or D1/D2, P-0.05

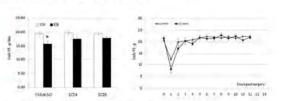


Fig 3 Daily FI from day 4 of EB treatment days between oil (white bor) and EB (black bor) treated groups. Three groups of hindbrain infusion were control (1% DMSO) and 4 nM (ICI4) and 8 nM (ICIB)

Fig 4 Daily FI during 13 days of 11/kDMSO and 8nM ICT hindbroin infusion. Rat from both group had comparable of daily FI before surgical implentation of cannula (day 0). The surgical offect on FI was marked at day 1, However, FI from both group were recovered and had comparable level at day 3 and 4.

Fig. 5. Average numbers of ERs positive sells at different area in the forebrain. Medial prooptic nucleus (MPO), Arciate nucleus of hypothelamus. (VMH)

DISCUSSION

We have showed previously that hindbrain is a sufficient site for the estrogenic control of FI in female rat (1). In this experiment, we showed the potential effect of hindbrain infusion of estrogens antagonist to block estrogenic effect on FI. Continuous ICI hindbrain infusion (both 4 and 8 nM) appeared to attenuate estrogenic effect on FI. Importantly, infusion of 8nM ICI alone had no effect of FI across the experimental period The results extend the previous finding that ICI infusion to the lateral ventricle could attenuate estradiol's anorexigenic effect (2). Further, the effect of ICI hindbrain infusion apparently limited to its effect on hindbrain ERa. If forebrain ERa is the main target neurons that mediate estradiol's anorexigenic effect, we should see the significant effect of EB treatment on FI in both vehicle and ICI hindbrain infusion. This is because there were no different of ERa positive cell from forebrain nuclei from both vehicle and ICI hindbrain infusion. Unfortunately, we couldn't demonstrated ERa positive cell from hindbrain with the same IHC technique. Whether ICI attenuated E_2 by increased degradation of hindbrain ERa remains to be investigated.

In conclusion, we demonstrated previously that hindbrain is sufficient for estrogenic control of FI. The current results suggested that hindbrain is in part required for estrogenic control of eating in female rat.

