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ABSTACT

Project code: MRG5480142
Project title: The effect of central administration of the estrogen receptor antagonist
(ICT 182 780) to hindbrain of female rats on eating behavior
Investigator: Dr. Sumpun Thammacharoen

Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University.
E-mail address: sprueksagorn@hotmail.com
Project period: 14 June 2011 to 14 June 2013 (extension period to 31 Oct 2013)

Estrogen (E,) inhibits food intake by activating estrogen receptor (ER) within the brain. We
showed previously that activated hindbrain ERa, by E, implantation, is sufficient to inhibit eating in
ovariectomized (OVX) rats. To investigate that hindbrain ERa is required for estrogenic control of
eating, hindbrain infusion of ICI directly to the 4™ intracerebroventricular (4th icv) was performed in
the current experiment.

We first demonstrated the effect of E, on food intake in our condition. Female intact Wistar
rat showed clear typical decreased pattern of eating across the ovarian cycle. Cyclic estradiol benzoate
(EB) treatment in OVX rats decreased food intake significantly. The results revealed that in our
condition exogenous E, mimic eating pattern in female intact rat as reported previously. We
demonstrated next that the 4™ icv infusion of ER antagonist, ICI, at 4nM and 8nM could attenuate the
effect of EB on food intake. There was significant lower daily food intake from EB than from oil
treatment in 1% DMSO 4" icv group. However, the effect of EB on food intake was compromised
from both 4nM and 8nM ICI 4™ icv groups. These results support previous report that central infusion
of ICI could attenuate estradiol’s anorexigenic effect. Importantly, we demonstrated that across 12 days
of ICI 4™ icv ICI hindbrain infusion had no effect on FI. Further, there was no difference in the number
of ERa immunopositive neurons from the selected hypothalamic nuclei. Taken together, we conclude
that the 4™ icv with ICI attenuated the exogenous estrogenic effect on food intake in female rat and that

hindbrain appear to be the site required for estrogenic effect of food intake.

Key words: ICI, EB, female rat, food intake
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INTRODUCTION

Estrogens (Blaustein, 2008) are one major group of female sex steroid
hormones. The natural forms of estrogens are 17f-estradiol (E;), estrone (E;) and
estriol (E3). E; is considered to be the major estrogen form because of its high level in
the circulation and its potency to activate estrogen receptor (ER) mediated
transcription activity. E, is involved in many physiological functions including, e.g.
development, growth and homeostasis. Besides the main function of E, in
reproductive physiology, a further important action of E, and the major focus of this
work is its role in the control of FI (FI) and body weight (BW) in female animals.
These effects are clinically important because it is well accepted that women are more
prone to developing severe obesity and eating disorders than are men (Geary, 2001;
Klein and Walsh., 2004).

Eating is a complex behavior that is controlled by multiple brain centers. This
behavior in female is in part controlled by E,. Unlike the effect of E; on reproductive
behavior, lodosis (Pfaff, 2005), the effect of E; on FI has not been work out
thoroughly. The effect of E, on FI apparently mediated via ERa in the brain.
However, the mechanisms and the specific site(s) of E, action on eating are still
unclear. Therefore, my current experiments focused on the specific site and the
mechanisms of E; action in the control of eating in female rats. The current report
contains, in the first part, basic information on the mechanisms of how E, to modulate
cellular activities, the mechanisms of peripheral and central controls of eating
behavior and the general knowledge regarding estrogenic control of eating. The
second part contains the current experiments including the detail material & methods,

results and discussion.



Mechanisms of estrogens action

All physiological effects of E, are mediated by ligand-inducible nuclear
transcription factor, ERs. Two ER subtypes, ERa and ERf have been identified and
cloned (Green et al., 1986; Greene et al., 1986; Kuiper et al., 1996). ERs belong to the
steroid/thyroid hormone superfamily of nuclear receptors. These receptors are
composed of three domains including: the NH2-terminal A/B domain; the C domain;
and the carboxyl terminal D/E/F domain (Nilsson et al., 2001). The NH2-terminal
A/B domain encodes a ligand-independent activation function (AF1), a region
involved in transcriptional activation and in protein-protein interactions. The highly
homologous C domain contains the DNA binding domain (DBD) with two zinc finger
structures. This domain has a role in receptor dimerization and target DNA binding.
The carboxyl terminal D/E/F domain contains the E/F ligand-binding domain (LBD),
which harbors the ligand-dependent activation function (AF2). The overall structure
of ER-LBD is composed of 12 helices (H1-H12) and two stranded [-sheets (S1 and
S2). After ligand binding, the position of H12 is the key event that permits
discrimination between estrogen receptor agonist and antagonist (Brzozowski et al.,
1997). The LBD plays an important role in ligand binding, receptor dimerization,
nuclear translocation and target gene transcription activation.

It is well accepted to date that the two basic mechanisms of ER-mediated E;
actions involve genomic and non-genomic effects. Both mechanisms depend on the
binding structure of E, to ER. For the ER dependent gene transcription, the receptor is
localized predominantly in the nucleus, the nuclear ER (nER) (King and Greene.,
1984; Welshons, 1984; Kawata et al., 2001). In addition, the plasma membrane
associated ER (mER) has been shown to mediate the rapid non-genomic actions of

estrogen (Mendelsohn, 2000b; Milner et al., 2005; Pedram et al., 2006; Pietras and



Marquez-Garban, 2007; Ronnekleiv et al., 2007; Song, 2007; Toran-Allerand, 2004;
Vasudevan et al., 2005).

For the genomic action, the receptor is dissociated from the chaperone protein,
phosphorylated and dimerized after the binding of the ligand. The ligand-ER complex
stimulates the target gene by either direct or indirect initiation of transcription. The
direct binding of the complex to the estrogen response element (ERE) activates
specific gene transcription. In the indirect activation of transcription, the ligand-ER
complex does not bind directly to DNA, but tethers with another transcriptional
activator to promote gene expression. Many transcriptional factors have been shown
to interact with ER via the indirect mechanism i.e. NFkB (Kalaitzidis et al., 2005),
Spl (Safe, 2001) and AP-1 (Kushner et al., 2000). Moreover, the ER itself can be
activated by mechanisms independent of ligand binding. Many signaling pathways
can modulate ER though phosphorylation via regulators of the phosphorylation state
(PKA or PKC) i.e. extracellular signals (peptides growth factors, cytokines or
neurotransmitters) and cell cycle regulators (Nilson et al., 2001). The DBD, AF1 and
AF2 domains of ERs are all responsible for the activation of transcription via the
genomic action of ER. While DBD specifically binds with ERE (Klinge, 2001), AF1
and AF2 synergistically activate transcription by recruiting the basic transcriptional
machinery and several coregulatory proteins. The coregulator proteins recruited by
AF1 and AF2 can be subdivided into coactivators and corepressors (Hall and
McDonnell, 2005; Perissi and Rosenfeld, 2005). The detailed mechanisms by which
AF1 and AF2 recruit the coregulator proteins and initiate the transcription are
different (Lavery and McEwan, 2005; Pike, 2006; Warnmark et al., 2003). The role
of AF1 and AF2 on ER activated transcription has been revealed by many estrogen

agonists/antagonists and by different cells and promoter contexts. First, different cells
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that were transfected with the same promoter appeared to have different degrees of
transcription after estradiol treatment. Second, different promoters that were
transfected to the same cell also showed differences in transcription activity.
Tamoxifen, acting as an AF2 domain blocker, has an estrogen antagonistic effect on
the gene that requires only the AF2 domain for ER-mediated transcription. In contrast,
tamoxifen has a partial agonist effect on genes where AF2 is not required. In addition,
the AF1 of ERa appears to have stronger activity than ERP (Delaunay et al., 2000;
Tzukerman et al., 1994). Collectively, this information suggest that the genomic
effects of E; and estrogen agonists/antagonists depend partly on the interaction among
AF domains of ER, cell types and promoter contexts of estrogen responsive genes
(Delaunay et al., 2000; McDonnell et al., 1995; Tzukerman et al., 1994).

Another pathway of E, dependent ER actions involves rapid effects that
cannot be attributed to genomic actions. This is the so-called non-genomic pathway.
E, is able to evoke fast responses in many tissues, within seconds to minutes after
ligand binding. Many intracellular signaling cascades have been shown to be
responsible for these rapid effects. These include e.g. the activation of ion channels,
the MAPK pathway, the CREB pathway, the phosphatidylinositol 3-kinase
(PI3K)/Akt pathways; the G-protein coupled receptor (cAMP and intracellular
calcium); and the nitric oxide pathway (Collins and Webb, 1999; Mendelsohn, 2000b;
Pietras and Marquez-Garban, 2007; Ronnekleiv et al., 2007; Vasudevan et al., 2005).
The mERs appear to mediate these rapid effects. These mERs probably share a
common origin with nuclear ERs (Pietras and Marquez-Garban, 2007). Both ERa and
ERp and a novel ER (ERX) have been identified at the membrane (Chambliss et al.,
2002; Kelly and Ronnekleiv, 2008; Milner et al., 2005; Pedram et al., 2006; Pietras

and Marquez-Garban, 2007; Song, 2007; Toran-Alland et al., 2002). It should be

11



noted here that E; can activate intracellular signaling independent of mER. The G
protein coupled receptor 30 (GPR30) was reported to bind E, but the biological
function which is mediated by GPR30 has yet to be investigated (Filardo and Thomas,
2005; Funakoshi et al., 2006; Pedram et al., 2006; Prossnitz et al., 2008; Revankar et
al., 2005). Evidence for an important functional role of the non-genomic ER pathway
has been provided for many different tissues including the reproductive system
(Luconi et al., 2004), cardiovascular system (Fu and Simoncini, 2007; Leung et al.,
2007; Mendelsohn, 2000a; Fu and Simoncini, 2007) and central nervous system
(Behl, 2002; Kelly and Ronnekleiv, 2008; McEwen et al., 2001; Ronnekleiv et al.,
2007). In the brain, the rapid non-genomic ER pathway appears to involve
mechanisms of neuroprotection and aging (Behl, 2002; Garcia-Sugura et al., 2007,
Mendez et al., 2005), reproduction (Vasudevan et al., 2005; Kow and Pfaff, 2004) and
eating behavior (Asarian, 2006; Arbogast, 2007; Dagnault and Richard, 1997; Liang
et al., 2002; Gao et al., 2007). Despite these reports, it is still difficult to dissociate the
role of genomic and non-genomic pathways of E, for a specific behavior or brain
function. The lordosis behavior in female rats is one example of influence by both
pathways (Kow and Pfaff, 2004). It was first suggested that lordosis is a behavior
which requires the genomic action of E, (Parsons et al., 1982). Later, using the BSA
conjugated E, (E;-BSA) which acts only on the membrane and the couple treatments
paradiagm; Kow and Pfaff (2004) demonstrated that the first treatment with E,-BSA
potentiates the second treatment with E, on lodosis score. The result suggested that

rapid non-genomic ER action potentates the genomic ER action of lordosis.

Estrogens and ER ligands have diverse effects in many organs. Besides their

physiological functions, estrogens are also involved in many pathophysiological
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processes, e.g. cancer, osteopenia, menopause syndromes, and brain and
psychological disorders. Based on the variety of ERs dependent mechanisms
reviewed above, it is not surprising that one steroid can influence many different
biological functions and diseases. The simple model that determines the outcome of
action of E; and ERs dependent mechanisms involves three fundamental factors: the
spatio-temporal expression of both ER subtypes (Laflamme et al., 1998; Milner et al.,
2001; Milner et al., 2005; Mitra et al., 2003; Schlenker and Hansen, 2006; Shughrue
et al., 1997; Toran-Alland et al., 2002); the nature of the cell types (the coregulator
molecules and promoter context; Lavery and McEwan, 2005; Pike 2006; Warnmark et
al, 2003); and the type of ligands (E, or SERMs; Osborne et al., 2000). It is therefore
crucial to identify all these factors in order to understand E, effect on behavior, e.g.

FL
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Food intake control mechanisms

The biological goals of eating behavior are to provide energy and necessary
nutrients to the body. The pattern of eating is generally characterized by distinct meals
or eating bouts that are distributed over the course of a day. Meal pattern varies
between species and also between individuals. Daily FI depends on meal frequency
and meal size. Eating behavior is controlled by two fundamental factors: internal
controls and external stimuli (i.e. pleasure of food, social system, predation,
reproduction etc). The internal control mechanisms of meals can be considered into
four categories. These are signals for the initiation of eating; signals for maintaining
eating during a meal; signals that terminate eating; and signals that maintain the
intermeal interval. Animal starts to eat (meal initiation) when they are hungry. In this
state, animals are more sensitive to a variety of food stimuli including the signals
from the olfactory, visiual and gustatory systems. However, the mechanisms of meal
initiation themselves are still not clear. Eating also occurs even in a state of ample
energy balance and without external cues. Meal initiation has been demonstrated to
correlate with the concentration of metabolites (glucose and fatty acids), metabolic
rate and body temperature (Even and Nicolaidis, 1985; De Vries et al., 1993). At least
in a series of experiments, a premeal reduction of glucose was demonstrated a few
minutes prior to a spontaneous meal (Campfield and Smith, 2003). During a meal
(meal maintenance), the presence of food in the GI tract produces a set of mechanical
and chemical signals. The balance of positive feedback (pleasure) and negative
feedback (satiation) signals determines the size of a meal and the rate of eating. While
pleasure from food facilitates eating, satiation promotes meal termination, thereby
limits meal size. The postprandial feeling and behavior that affects the interval to the

next meal is referred to as satiety.
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One characteristic of eating behavior is that animals, and obviously humans as
well, select foods preferentially when food choices are ample, instead of having the
same menu every day. This suggests that the internal control systems contain not only
homeostatic but also hedonic components (Saper et al., 2002; Berthoud, 2004). Both
mechanisms participate in the decision about what kind and how much food an animal
eats. While homeostatic controls maintain normal energy and nutrient supplies to the
body, hedonic controls of eating have specific characteristics that can overpower the
homeostatic controls and result in eating behavior at any times and even at
excessively high levels.  These internal controls of eating behavior include the
interplay between peripheral sensing and signaling systems (sensory organs,
gastrointestinal tract and adipose tissue), and central integration (the brain). The
hedonic components receive signals mainly via sensory organs, as well as from
previous experiences with food that have been memorized and learned. This
component plays a role in food rewarding aspect (Berridge and Robinson, 2003). In
the homeostatic control of eating, peripheral signals could be classified into “short
and long term control mechanisms”. In the short term control of eating, GI tract
translates the signals (both volume and nutrient) from ingested food into hormonal
(Chaudhri et al., 2006; Cummings and Overduin, 2007) or neuronal signals (Marty et
al., 2007; Thaler and Cumming, 2008). In addition, some nutrients can work directly
as signals to control eating behavior (Levin et al., 2004; Marty et al., 2007). The long-
term control involves somewhat different properties. Adipose tissue and pancreas
(adiposity signals) provide tonic signals for maintaining homeostasis to match the
energy input and expenditure (Woods et al., 2000). Another peripheral signal that
control eating depends on the cyclic pattern reproductive cycle especially in female. It

is well known that female animal eat less during the estrous phase of ovarian cycle
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and this behavior is mediate mainly by E,. The estrogenic effect on FI in female rat is
the main interested of the current work and will be introduced in detail in “Estrogenic

control of food intake”.

Estrogenic control of food intake

Eating behavior shows specific gender-related differences between males and
females. A clear phenotypic difference between intact males and females is that
females show a cyclic pattern of eating while males do not (Asarian and Geary, 2006).
During the peri-ovulatory phase of the estrous cycle, female dog, pig, rat, monkey and
woman decrease their daily intake (Czaja and Goy, 1975; Eckel et al., 2000; Friend,
1971; Gong et al., 1989; Houpt et al., 1979; Lyons et al., 1989). This phenomenon has
been studied most extensively in rats which typically have a four or five day cycle
(Figl). The reduction of FI usually occurs during the night of the estrus. This is
preceded by an increased plasma E, concentration during proestrus (Figl). The
reduction of FI is due to a decrease in meal size with a partially compensatory
increase in meal frequency (Asarian and Geary, 2002). FI then returns to baseline in
the subsequent diestrus. An ovariectomy removes the major source of E, in females.
Ovariectomized (OVX) rats have dramatically decreased levels of plasma E, and
gradually increase daily FI and BW. The increase in daily intake in OVX rats is due to
an increase in meal size while meal frequency decreases (Asarian and Geary, 2002).
Daily FI in OVX rats is generally higher than in intact rats at all stages of the estrus
cycle. This suggests two functional components of E,’s effect on eating. The first is a
tonic inhibition by E,, which is revealed by an increase in the basal level of eating
after OVX. The second is a phasic inhibition by E,, which is the absence of the cyclic

decrease in eating after OVX. Replacement with a physiological dose of estradiol
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benzoate (EB) but not progesterone reverses the effect of OVX on FI and BW in rats.
Administration of EB in the middle of the light phase increased plasma E; in the first
night after injection, which corresponds to the increase of plasma E, during proestrus
in intact rats. Rats eat less in the second night after EB injection, which corresponds
to the decrease in FI during the night of estrus in intact rats (Figure 1, Asarian and
Geary, 2002). The effect of exogenous E, on FI again occurs mainly via a change on
meal size. Meal size is decreased after replacement, while meal frequency usually

partially compensates by increasing (Asarian and Geary, 2002).

Fig 1 Top: Plasma concentration of E, (Left) and daily food intake (right) in female intact rats during
estrus cycle (D1, diestrus1; D2, diestrus2; P, proestrus; E, estrus). Bottom: Plasma E, concentration is
low in OVX rats without EB replacement. Two microgram per rat of EB treatment at mid-light phase
of Day 2 increases plasma E, levels in the first 3 h and a peak during 6-15 h (Left). With EB treatment
as described, daily food intake is decreased on day 4 (Data are adapted from Asarian and Geary, 2002;
used with permission).

17



E, appears to affect FI and BW through the stimulation of ERa rather than
ERB. Firstly, ERa receptor knockout (¢ERKO) mice were higher BW than wild type
whereas BW of ERJ receptor knockout (BERKO) mice did not differ from wild type
(Couse and Korach, 1999). Secondly, E, produced its effects on BW and FI in wild
types and BERKO mice, but had no effects in aERKO mice (Geary et al., 2001;
Geary, 2004). Finally, OVX rats treated with specific ERa but not ER agonists
decreased FI (Roesch, 2006; Santollo et al., 2007; Thammacharoen et al., 2007) and
the same ERa agonist produced no effect on FI in tERKO mice (Thammacharoen et

al., 2009).

While it has been established that the estrogenic inhibition of FI appears to be
an activation of ERa, it remains unclear which downstream genomic or non-genomic
pathways are responsible for eating inhibitory effect. The coupling of plasma E, and
behavior outcome that can be observed in intact rats and in the OVX rats after cyclic
EB replacement suggested that the physiologic effect of E, on eating needs time to
develop. In addition, direct administration of a protein synthesis inhibitor (e.g.
anisomycin) blocked E,’s effect on eating (Butera et al., 1993). This suggested that
the effect is mediated partly via the genomic effect of ER action. Some evidences
however support the role of non-genomic ER action on FI. First, E; administration to
the brain at pharmacological doses decreased FI shortly after treatment (Dagnault and
Richard, 1997; Gao et al., 2007). However, Liang et al. (2002) demonstrated no acute
effect of central administration of E, into brain on eating. Second, the ERa agonist
PPT, injected subcutaneously, produced an inhibitory effect on FI within 4 hours
(Santollo et al., 2007; Thammacharoen et al., 2007). The onset of PPT to decrease FI
was faster than what can be observed after peripheral E, replacement. An example

that has been shown previously about a participation of both genomic and non-
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genomic E, actions is the lordosis behavior in female rats. Lordosis is one of the
sexual behaviors that require genomic action of ER. It has been shown later that a
non-genomic E, action enhances the genomic action of ER on lordosis behavior (Kow
and Pfaff, 2004). Based on the above information, it seems plausible that both
genomic and non-genomic E, actions may contribute to the estrogenic inhibition of
FI. However, further experiments need to be conducted to test directly whether and
how the genomic and non-genomic actions of ER could participate on the estrogenic

inhibition of FI.

Estrogenic inhibition of eating is partly due to a modulation of the peripheral
feedback controls of eating. E, increases the potency of gastrointestinal satiation
hormones like CCK (Geary, 2001) and glucagon (Asarian and Geary, 1999), and
decreases the potency of ghrelin which is a gastric orexigenic hormone (Clegg et al.,
2007). The most extensive studies on the estrogenic modulation of peripheral signals
came from the studies of an E,’s effect to increase CCK satiation (Geary, 2001 and
Asarian and Geary, 2006). Exogenous E, enhanced exogenous CCK’s satiation effect
(Butera et al., 1993; Geary et al., 1994; Linden et al., 1990). Later, it has been shown
that the CCK-1 antagonist (devazepide) increased FI only during the day of estrus in
female rats. This suggests that endogenous CCK action also changes across the estrus
cycle (Eckel and Geary, 1999). In OVX rats, endogenous CCK satiation is also
enhanced by exogenous E, (Asarian and Geary, 1999; Asarian and Geary, 2007). It is
clear from the above information that endogenous and exogenous E, seem to
modulate the satiation effect of both exogenous and endogenous CCK. The estrogenic
inhibition of eating may also be mediated by the interaction with other peripheral
feedback controls of eating, especially adiposity signals. It has been shown that

female rats were more sensitive to leptin than male rats (Clegg et al., 2003). Later, the
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same group demonstrated that E, increased leptin effect in female rat (Clegg et al,
2006). However, some evidences reported the contrary results. First, importantly, it
was also demonstrated contrary that leptin sensitivity does not change in both intact
and OVX rats (Pelleymounter et al., 1999; Chen and Heiman, 2001). Second, plasma
leptin was not changed before the onset of obesity after OVX, and leptin levels did
not change when corrected by fat mass either in OVX or E, replacement
(Pelleymounter et al., 1999). Third, female OVX ob/ob and db/db mice still respond
to E, replacement as in sham control (Gao et al., 2007; Shimomura et al., 2002).
Based on above information, it seems that an interaction of E; and leptin to control FI

and BW needs further investigations with an appropriate experimental design.

E, is generally thought to act in the brain to inhibit feeding (Butera et al.,
1993; Geary et al., 1996; Rivera and Eckel., 2010). Various experiments have shown
that microinjection of E, into various sites of the brain, especially into various
hypothalamic nuclei, decreased FI in rats. E, implantation into the VMH (Wade and
Zucker, 1970; Nunes et al., 1980), the medial preoptica area (MPA) (Dagnault and
Richard, 1997) or the PVN (Palmer and Gray, 1986; Butera and Beikirch, 1989)
reduced FI in rats. However, the exact site(s) where E, mediates its action on FI is still
not clear for because of inconsistent results from above studies. Palmer and Gray
(1986) failed to reproduce the effect on FI of E, implantation into the VMH as
originally reported by Wade and Zucker (1970). Furthermore, Butera and Beikirch
(1989) found that only PVN implantation (not VMH and MPA) of E, reduced 3-d FI
in OVX rats. Further, peripheral E, treatment has been shown to decrease FI and BW
in mice with a specific ER-o knockdown in the VMH, strongly suggesting that the
VMH may not be required for the control of feeding and BW by E, (Musatov et al.,

2006). The role of the PVN has been questioned as well because bilateral PVN
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lesions did not abolish the effect of E, on FI in OVX rats (Dagnault and Richard,
1994). This was corroborated by a study published by Hrupka et al. (2002) suggesting
that the action of E, in the PVN is not sufficient to account for the estrogenic control
of FI. However, information from some of c-Fos studies appears to support that the
PVN region may be one of the potential sites for the estrogenic inhibition of eating. E,
increased c-Fos in different paradigms related to CCK satiation at several brain
regions (Eckel and Geary, 2001; Eckel et al., 2002; Asarian and Geary, 2007). Eating
induced c-Fos was first demonstrated to be enhanced by E, in the NTS, PVN and the
central amygdala (CeA) (Eckel and Geary, 2001). The same c-Fos pattern and sites
could also be observed when rats were treated with exogenous CCK and E; (Eckel et
al., 2002). It was demonstrated later that E, treatment in rats with intraduodenal lipid
infusion (a secretagogue of intestinal CCK) had significant higher c-Fos in caudal
NTS than in control rats; this result could not be observed in PVN (Asarian and
Geary, 2007). The results on c-Fos studies suggest that at the hindbrain NTS may all
involve in E, enhanced CCK’s satiation either from eating and exogenous CCK
models, however only the caudal NTS is the area where E; enhances intraduodenum
lipid induced-cFos. We showed the results suggesting the possibility that NTS is
sufficient for mediating the estrogenic effect on FI (Thammacharoen et al., 2008). We
demonstrated first, that the spreading of E, was very limited and affected only the
dorsal but not to the ventral part of the NTS. Importantly, E, spreading was not
observed in the forebrain either. Second, FI in OVX rats with EB applied to NTS was
lower than in control OVX rats. Third, with the same paradigm we demonstrated that
CCK activated c-Fos only at the NTS but not at any forebrain nuclei and the CCK
induced c-Fos at ctNTS was colocalized with ERa-expressing neurons. These results

suggested that E, acts on ERa-expressing neurons at the NTS, especially at its caudal
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part. In light of our previous finding we investigated the mechanism of E, regarding
to the brain site where E2 influences eating behavior. Our hypothesis is that the

hindbrain is required for E, effect on FI in female rat.
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MATERIALS & METHODS
Animals and housing condition

Female Wistar rats (National laboratory animal care, Mahidol University)
weighing around 250-300 g were housed individually in hanging cages with stainless
steel wire-mesh floors (33X18X20 cm) in a room maintained at 22+2 °C with 12:12
light: dark cycle (light on 00h). All rats had ad libitum to pelleted standard chow
(#082, Perfect Companion Group Ltd., Samutrprakarn, Thailand) and tap water. Rats
were adapted to the housing condition for at least 1 week before starting experiment.
Daily FI (£ 0.1 g corrected for spillage) and BW (£ 1 g) were measured throughout
the experimental period. All procedures were performed according to the ethical
principles and guidelines for the use of animals for scientific purposes from the
National research council of Thailand and and were approved by the animal used

committee, Faculty of Veterinary Science, Chulalongkorn University.

Ovariectomy

In the current project, intact female rats were ovariectomized at different time
point depending on the experiment. Rats were anesthetized with isoflurane (2.5-3%,
Minrad, Inc, USA) and bilaterally ovariectomized using an intraabdominal approach
(Thammacharoen et al., 2008). Immediately after surgery, rat was subcutaneously
injected with enrofloxacin (2.5-5.0 mg/kg iv; Bayer Korea Ltd., Korea) for antibiotic
prophylaxis. Ibuprofen (Reckitt Benckiser, Inc., UK) was given once orally (15 mg/kg
po) and via drinking water at the concentration of 12 mg/100ml for 4 days to

minimize post-surgical pain.
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The fourth ventricle cannulation, infusion and verification

The fourth ventricle intracerebroventricular cannulation (the 4™ icv) was
operated to study the hindbrain infusion of ICI on FI effect of exogenous estradiol
(experiment 2 & 3). Seven days after OVX, rats were anesthetized with
intraperitoneally pentobarbital sodium (50 mg/kg ip, Nembutal®, Ceva Santa Animal,
France). A guide cannula (22 G, PlasticsOne, Roanoke, VA, USA) was stereotaxically
positioned into the fourth ventricle. The cannula tip was placed 3.5 mm posterior to
the interaural line, 1.4 mm lateral to midline and 6.2 mm ventral to the skull surface
(Blevins et al., 2004). The cannula was fixed to the skull with stainless steel mounting
screw and dental cement. The guided cannula was attached to the osmotic pump
(Alzet Model 1002, reservoir volume 100 ul). After surgery, rat was received
antibiotic and analgesic as described previous. FI (+ 0.1 g, corrected for spillage) and
BW (= 1 g) were measured daily throughout the experimental period.

At the end of experiment, all rats were killed by intravenously injection with
the high dose of pentobarbital sodium (65 mg/kg ip, Nembutal®, Ceva Santa Animal,
France). To verify the cannula placement in the second experiment, 5 pl of Evans
blue was slowly injected through the ICV cannula. After the cannula was carefully
removed, the brain was isolated and frozen. The frozen brain was sectioned to

confirm cannula tip and dye diffusion.

Perfusion & THC

In the third experiment, the expression of ERa was investigated after
hindbrain infusion of ICI and control. At a day before the end of OP infusion period
(day 13), rat was deeply anesthetized with sodium pentobarbital intraperitoneally and

transcardially perfused with ice-cold phosphate buffer [PB, 0.1 M (pH 7.4)] followed
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by 4% paraformaldehyde in 0.1 m PB. The brains were removed, postfixed at 4 °C in
the paraformaldehyde perfusion solution for 2 h and in 20% sucrose in 0.1 M PB for 2
d. Brain were cut into 40 pm sections on a cryostat (Leica CM1800, ). Sets of each
fifth hindbrain [~17 to 11 mm posterior to bregma (Paxions and Watson., 1998)] and
forebrain [ ~ 0.9 to 3.6 mm posterior to bregma (Paxions and Watson., 1998)]
sections were stored in cryoprotectant solution (a 4:3:3 mixture of 0.1 m PB, ethylene
glycol, and glycerol; Sigma) at -20 °C.

Immunohistochemistry staining of ERa from the brain section was performed
using our previous protocol with minor modification (Thammacharoen et al., 2008).
Briefly, brain sections were immersed in glass jar filled with 10 mM citric acid buffer
and heated at high power of microwave oven (Sharp R209) with an operating
frequency of 2450 MHz and 800 W power output. The antigen retrieving process was
repeated 3 times for 5 minutes each. Following the heating session, the sections were
kept cool down and processes for ERa IHC as described. Brain sections were washed
3 times with 0.1 M PB and incubated for 10 min each in 0.5% H>O, solutions. After 3
times washed with 0.1 M PB, the blocking and detecting process were done with 1 h
incubation in 1% normal goat serum in 0.1 m PB 0.3% Triton X-100, and then 48 hr
with rabbit polyclonal ERa antibody (c1355, 1:10,000; Upstate Biotechnology, Lake
Placid, NY). Sections were then washed and incubated with biotinylated antirabbit
goat antibody (1:200; BA1000, Vector laboratory, CA) and avidin-biotin complex
(1:400; PK-6100, Vector laboratory, CA), for 1 h each. ABC-ERa complex was
visualized with DAB peroxidase complex reaction (SK-4105, Vector laboratory, CA).
Finally, sections were mounted on gelatinized microscope slides, coverslipped, dried,
and digitally imaged. The numbers of ERa positive neurons were counted within the

following areas of interest using templates based on the atlas of Paxinos and Watson
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(1998): NTS (NTS subregion nomenclature is our own (Thammacharoen et al., 2008);
locations are millimeters caudal to bregma), caudal NTS (cNTS: about 14.1-14.4
mm); subpostremal NTS (spNTS; about 13.7-14.0 mm); POA (0.4 mm posterior to
bregma), Arc (2.3 mm posterior to bregma) and VMH (2.3 mm posterior to bregma).
Cells were considered ERa positive if their nuclei contained punctate brown-black
immunolabeling and were counted using constant minimum and maximum OD and

object size criteria, which were validated with visual counts.

Experiment 1: The cyclic pattern and the effect of EB on food intake and body
weight in female rat

The first experiment was performed to show the cyclic pattern of FI and BW
in intact female rat and the effect of exogenous EB (Sigma-Aldrich, Co. USA) in
OVX rat. After 1 week of adaptation to the housing condition and management, the
ovarian cycle was monitored as well as FI and BW measurement. Days of the ovarian
cycle were identified using vaginal cytology (VC) with the standard identification
criteria as previous described (Asarian & Geary., 2002). Daily vaginal mucosal
samples were obtained about 1 h prior the onset of dark phase. A cotton swab moisted
with warm saline was inserted gently to the vaginal cavity. The sample was
transferred to the slide and examined under the light microscope (Olympus). Cycle
day lebels (D1, diestrus 1; D2, diestrus 2; P, proestrus; and E, estrus) were assigned to
the 24-h period ending at the time of VC evaluation. Either 4-day or 5-days cycles
were detected from all rats used in the current experiment, however, only 4-day cycle
data was used to demonstrate the FI pattern from intact female rats.

After 2-3 ovarian cycles were recorded, all rats were ovariectomized as

described previous. The effect of exogenous estradiol on FI and BW was investigated

26



1 week after OVX. According to the 4-day of ovarian cycle, the day of EB injection
(2pg/ rat subcutaneously every fourth day at midlight phase) was marked as day 2 of
treatment cycle and corresponded to D2 in intact rat. Plasma E, was rapid increased
within 3 hr (peak at 6 hr), maintain until 15 hr and gradually decreased during the
next day (the first dark and light day; day 3 of treatment cycle). This pattern of plasma
E2 was comparable with the pattern from P in intact female rat. FI, however, was not
changed during this period. From the second dark and light day (day 4 of treatment
cycle), FI was decreased similar to the pattern observed from E in intact female rat.

All rats were observed for FI and BW for 4 cycles of EB treatment.

Experiment 2: The fourth ventricle continuous infusion of ICI attenuated
estrogenic control of food intake

The second experiment was performed to investigate the effect of hindbrain
ERa blockage on the E, effect of FI via the 4™ icv ICI infusion over a period of 14
days as depicted in Fig 2. OVX rat (n = 10 per group) was cannulated directly to the
4™ ventricle and connected with the OP contained either ICI, at the concentration 4
and 8 nM, or vehicle (1% DMSO in normal saline). This yielded 3 treatment groups;
control, 4 nM ICI and 8 nM ICI. Rats were allowed 4 days to recover from surgery.
At the mid light phase of day 6 postsurgery, half the rats from each group was
injected subcutaneously with 2 pg EB, another half was injected with sesame oil as
vehicle control. Injections were reversed on day 12 postsurgery. With this within-
subject design, each group received single injection of EB. FI & BW were monitored

throughout the experimental period.
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Fig 2 Experimental days (dark/light phase=black/white bars) after 4™ icv and osmotic pump infusion
(black arrow). Rats in each group received oil or EB injection on day 6 and 12 (red arrows). FI and BW
were monitored throughout the experimental period. With this method, the expected days of estrus
were day 8 and 14.

Experiment 3: The fourth ventricle continuous infusion of ICI and brain ERa
expression

If hindbrain ICI infusion could block or attenuate E, effect of FI, the third
experiment was designed to study the potential mechanism by which ICI attenuated
E, effect of FI. In this experiment, OVX rats (n=10 per group) were divided into 8 nM
ICI or 1%DMSO 4™ icv infusion as described in experiment 2. FI and BW were
measured until a day before the end of experiment (14 days). As described previous,
all rats were deeply anesthetized and perfused at day 13 post-surgery. Brain was

collected and processed for ERo. immunohistochemistry.

Statistical analysis

Data from the experiment that contain either multiple time points or 2 factors
were analyzed using one way or two way analysis of variance (ANOVA) followed by
Bonferroni posttest. Data of two experimental groups were compared with student t
test. Significant main effects were followed up with pair wise comparisons using

Bonferroni posttest. All data were presented as mean = SEM.

28



RESULTS
Experiment 1: The cyclic pattern and the effect of estradiol benzoate on food

intake and body weight in female rat

Daily FI from both intact female and EB treated OVX Wistar rats revealed the
estrogenic effect of eating behavior (Fig 3a). During estrous cycle, intact female
Wistar rats showed significant decreased pattern of daily FI (F3 3= 6.72, P<0.05). In
OVX rats, estradiol treatment also decreased FI significantly (F3s7;= 9.67, P<0.05).
The difference of FI between diestrus day 1 (D1) and estrous day (E) in the intact rat
and between day 1 and day 4 of EB treatment days was apparently no significant (t4
= 0.65, P>0.05, Fig 3b). In addition, BW from both intact and OVX rat were
increased significantly during the observation period (Fig4, F; 3= 33.26 and Fss57=

14.52, P<0.05, respectively).
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Fig 3a Daily FI from cyclic intact rat (triangle) and EB treated OVX rat (square). * Significant lower FI
at E or day 4 than at day 1/2 or D1/D2, # Significant lower FI form cyclic intact rat than from EB
treated OVX rat, P<0.05.
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Experiment 2: The fourth ventricle continuous infusion of ICI attenuated
estrogenic control of food intake

Continuous administration of ERa antagonist (ICI) into hindbrain via the 4™
ventricle cannulation revealed that both 4 and 8 nM ICI could attenuate the exogenous
estradiol effect of FI. In 1%DMSO hindbrain infusion groups, there was clear effect
of estradiol on daily FI pattern (Fig 5a, Fs4s= 3.54, P<0.05). However, daily FI
patterns from 4 nM ICI hindbrain infusion were not different comparing between oil
and EB treatment throughout the observation periods (Fig 6a, Fsss= 0.37, P>0.05).
The similar patterns of FI was seen when both oil and EB treated rats were infused
with 8 nM ICI (Fig 7a, Fss4= 1.17, P>0.05). On day 4 of the EB treatment regimen
(Fig8), there was significant effect of EB on FI from DMSO hindbrain infusion
groups (t;7= 3.34, P<0.05). However there were no effect of EB on daily FI from both
4 and 8 nM ICI hindbrain infusion doses (t;o=2.04 and 1.49, P>0.05).

BW (Fig 5b, 6b and 7b) from all 3 groups of hindbrain infusion increased
significantly through the experimental period (DMSO/F; 43= 2.97, 4nM/F;s4= 4.60,
8nM/F3 s4= 8.54; P>0.05). However, increased BW in the current experiment mainly
came from oil treatment groups. This is because, BW from all 3 hindbrain infusion
group increased significantly in oil treatment groups (DMSO/F;.4= 13.34,
4nM/F3 27= 3.51, 8nM/F3 7= 5.41; P<0.05). Further, EB treatment could restore BW
in DMSO and 4 nM hindbrain infusion (Fs2s= 0.73, F;37= 1.68; P>0.05,

respectively), but not in 8 nM hindbrain infusion (F;27= 3.54; P<0.05).
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Fig 5 In 1% DMSO hindbrain infusion group, (a, upper) daily FI from oil treatment group (triangle)
was comparable during 4 days experiment. However, FI from EB treatment group (square) decreased
gradually during 4 days experiment. At day 4, FI from EB group was lower than form control group.
(b, lower) BW from both oil and EB treatment group increased significantly during 4 days experiment.
Daily FI from each experimental day is the cumulative amount of FI from dark and light period (dark
and white bars). The injection of oil or EB was done at mid-light phase of day 2 (arrow). * Significant
different FI , P<0.05. # BW was increased significantly in oil treatment group across the experiment

period, P<0.05.
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Fig 6 In 4 nM ICI hindbrain infusion group, (a, upper) daily FI from both oil (triangle) and EB (square)
treatment groups was comparable. In addition, FI from EB treatment group slightly decreased across 4
days experiment; however, this was not significant. At day 4, FI from EB group was not significant
different from control group. (b, lower) BW from both oil and EB treatment group increased
significantly during 4 days experiment. Daily FI from each experimental day is the cumulative amount
of FI from dark and light period (dark and white bars). The injection of oil or EB was done at mid-light

phase of day 2 (arrow). # BW was increased significantly in oil treatment group across the experiment

period, P<0.05.
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Fig 7 In 8 nM ICI hindbrain infusion group, (a, upper) daily FI from both oil (triangle) and EB (square)
treatment groups was comparable. In addition, FI from EB treatment group slightly decreased across 4
days experiment; however, this was not significant. At day 4, FI from EB group was not significant
different from control group. (b, lower) BW from both oil and EB treatment group increased
significantly during 4 days experiment. Daily FI from each experimental day is the cumulative amount
of FI from dark and light period (dark and white bars). The injection of oil or EB was done at mid-light
phase of day 2 (arrow). # BW was increased significantly across the experiment period in both oil and

EB treatment groups, P<0.05.
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Fig 8 Daily FI at day 4 of experimental period from 1%DMSO, 4 nM and 8 nM hindbrain infusion
groups treated with either oil or EB. There was significantly lower of FI in EB than in oil group in 1%

DMSO hindbrain infusion. * Significant different FI , P<0.05.

Experiment 3 The fourth ventricle continuous infusion of ICI and brain ERa
expression

This experiment revealed a potential mechanism by which ICI attenuated E,
effect of FI. Fist, hindbrain infusion of ICI alone had no effect of both FI (Fig 9a) and
BW (Fig 9b). Daily FI was decreased significantly on the day after surgery (Fi2216 =
23.36; P<0.05). Importantly, FI from both groups were similar to the level before
surgery by day 3 after surgery (to = 0.15 and 0.86; P<0.05). Moreover, daily FI from
both 1%DMSO and 8 nM ICI hindbrain infusion groups were not significantly
different throughout the experiment period (F;216 = 0.95; P>0.05). BW from both
1%DMSO and 8 nM ICI hindbrain infusion groups were not significantly different
from each group (Fi 198 = 0.93; P>0.05) but increased throughout the experimental

period (F11,198 =47.23; P<0.05).
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Second, results from ERo IHC revealed that 8 nM ICI hindbrain infusion had
no effect on the number of ERa positive neurons from forebrain sites (Fig 10)
including PAO (Fig 10a, to = 0.92; P>0.05), VMH (Fig 10b, tg = 0.09; P>0.05) and
Arc (Fig 10c, tg = 1.10; P>0.05). Unfortunately, the same ERa IHC could not detect

ERa positive neurons from hindbrain.
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Fig 9 ICI hindbrain infusion didn’t affect FI and BW in OVX rat. (a, upper) Daily FI throughout 12
days of 4™ icv period. The effect of surgery was mark during 2 days after 4™ icv. However, there was
no different of FI between groups. (b, lower) BW recorded in the same day as FI. There was significant
increase in BW over time but not between groups. * Significant different FI from presurgical day ,

P<0.05. # Significant increase in BW , P<(0.05.
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Fig 10 ICI hindbrain infusion didn’t affect the number of ERa immunopositive cells at the selected
hypothalamic forebrain: (a, upper) Medial preoptic nucleus (PAO), (b, center) Ventromedial

hypothalamic nucleus (VMH) and (c, lower) Arcuate nucleus of hypothalamus (Arc).
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DISCUSSION

Estrogens inhibit eating in female animals by activating ER in the brain. Both
hypothalamic forebrain and the nucleus tractus solitarius of hindbrain appear to be the
sites mediated this phenomena. The current experiment revealed that hindbrain
infusion of the pure estrogen receptor antagonist, ICI, could attenuate E, effect on FI.
Further, ICI hindbrain infusion didn’t affect the number of ERa positive neuron form
forebrain nuclei. The results suggested that ICI apparently attenuated E2 effect on FI
in hindbrain and that hindbrain nucleus is in part required for this action.

In the current experiment, we first showed the pattern of FI in ovarian intact
female and exogenous E, supplemented OVX Wistar rats. In intact rat, we
demonstrated that across the ovarian cycle there was a decrease in pattern of FI that
has been reported previously (Asarian and Geary., 2002; Blaustein and Wade., 1976).
We showed further that in OVX rat the cyclic injection of E, mimic eating pattern of
intact female rat. Importantly, the effect from both endogenous E, fluctuation and
exogenous E; supplementation was comparable. The results emphasized that with our
condition we could replicate the physiological model of cyclic supplementation of E,
on FI in OVX rat (Asarian and Geary., 2002). We then used this method as standard
model to investigate the site and mechanism of E, effect on FI in the current
experiment.

Several previous reports indicated that in female rat E, acts centrally in the
brain to decrease FI. Administration of small E; to many hypothalamic nuclei of
forebrain revealed the potential site(s) of E, on FI effect (Wade and Zucker, 1970;
Nunes et al., 1980; Dagnault and Richard, 1997; Palmar and Gray, 1986; Butera and
Beikirch, 1989; Hrupka et al., 2002; Santollo et al., 2011). However, it is unlikely that

only hypothalamic nuclei are involved for estrogenic effect of FI. This is because
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several investigations studied the effect of E; on CCK and feeding induced c-Fos
suggested the participation of hindbrain on this action (Eckel and Geary, 2001; Eckel
et al.,, 2002; Asarian and Geary, 2007). In addition, we showed directly that the
activation of ERa at caudal NTS decreased FI (Thammacharoen et al., 2008).
Therefore we think that the hindbrain NTS appeared to participate for this
phenomenon as well. In the current experiment, we showed that ICI infusion to
hindbrain could attenuate, but not complete block, the effect of E, on FI. This was
consistent with the previous experiment that revealed the necessary of brain ER for FI
effect of E;. On those experiment the infusion of ICI directly to the lateral ventricle
have been demonstrate to attenuate E, effect on FI as well (Rivera and Eckel., 2010).
Further, we showed in the same experimental paradigm that hindbrain ICI infusion
itself had no effect on FI across 12 days of infusion duration. Taken together we
conclude that both lateral and 4™ ventricle infusion of 4 nM ICI could attenuate E,
effect on FI in OVX female rat. At this point, the current experiment does not disclose
whether hindbrain ER require for E, effect on FI.

A long hydrophobic side chain of pure ER antagonist, ICI, has been shown to
play the major role on the ER antagonist mechanisms (Osborne et al., 2000). The
antiestrogenic action of ICI was different from other groups of the selective estrogen
receptor modulator (SERM). Besides AF1 and AF2 ER transactivation blocking and
dimerization impairment, ICI inhibit estrogenic action most importantly by promote
ER degradation (Dauvois et al., 1992; Htun et al., 1999; Long and Nephew, 2000).
Because most of the studies that investigate the mechanisms of ICI antagonist came
from the experiment performed in cell culture condition, it is still difficult to conclude
the detail mechanisms that ICI could block or attenuate any E2 effect in vivo. One of

the in vivo antagonist mechanism came from the measurement of [*H] labeled E; in
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brain and uterus after ICI injection in Syrian hamster and rat. The results clearly
demonstrated that ICI could decrease cell nuclear binding of [*H] labeled E, up to
90% in rat and 50% in Syrian hamster (Wade et al., 1993a; Wade et al., 1993b). In the
brain, the fluctuation of ER immunopositive neurons has been demonstrated across
ovarian cycle in female rats (Shughrue et al., 1998; Child et al., 2001; Helena et al.,
2006; MendozaGarces et al., 2011;). If ER degradation is one important mechanism
of antiestrogenic effect of ICI, we would like to investigate the effect of ICI hindbrain
infusion on the number of ER immunopositive neurons in vivo in our experimental
condition. As expected we demonstrated that ERa immunopositive neurons from the
forebrain hypothalamic nuclei (POA, VMH and Arc) were comparable between
control and ICI hindbrain infusion at day 13 of ICI hindbrain infusion. Unfortunately,
we could not see any ER immunopositive neurons with the same IHC technique from
hindbrain NTS. The result suggested that infusion of ICI directly to hindbrain did not
affect the number of ER from selected hypothalamic nuclei of forebrain. Whether
hindbrain infusion of hindbrain could modify ER positive neurons from hindbrain
NTS remain to be investigated.

Our current results are relevant to the identification of brain site(s) where E,
decreases FI in female rate. We showed previously that the hindbrain NTS is
sufficient for estrogenic control of FI in female rat (Thammacharoen et al., 2008).
The attenuation effect of hindbrain ICI infusion on estrogenic effect of FI suggested
that an anorexigenic effect of E, depends in part on the activation of ERa in the

hindbrain.
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Hindbrain infusion of estrogen receptor antagonist attenuated
estradiol effect on food intake in ovariectomized (OVX) rat
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Abstract

Estrogen (E,) inhibits food intake by activating estrogen receptor within the brain. We
showed that activated hindbrain ERa, by E, implantation, is sufficient to inhibit eating
in OVX rats. To investigate that hindbrain ERa is required for estrogenic control of
eating, ICI infusion to the 4™ intracerebroventricular (4th icv) was performed to test
the inhibition effect of estrogen on food intake.

We first demonstrated the effect of E, on food intake in our condition. Female intact
Wistar rat showed clear typical pattern of eating across the ovarian cycle. Estradiol
benzoate (EB) treatment in OVX rats decreased food intake significantly. The results
revealed that exogenous E, mimic eating pattern as in female intact rat. We
demonstrated next that the 4™ icv infusion of 4nM and 8nM ICI could attenuate the
effect of EB on food intake. On day 4 of the EB treatment regimen, there was
significant lower daily food intake from EB than from oil treatment in DMSO 4™ ICV
group. However, the effect of EB on food intake was compromised from both 4nM
and 8nM ICI groups. These results support previous report that central infusion of ICI
could attenuate estradiol’s anorexigenic effect. Importantly, the current results also
suggested that hindbrain appear to be the site required for estrogenic effect of food
intake. In conclusion, the hindbrain infusion of ICI attenuated the exogenous

estrogenic effect on food intake in female rat.

Keywords: ICI, female rat, food intake
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