

บทคัดย่อ

งานวิจัยนี้ได้ศึกษาการสังเคราะห์พอลิอีสเทอร์จาก 1,3-โพренไดออล ที่สามารถย่อยสลายได้ ด้วยวิธีการสังเคราะห์พอลิเมอร์ผ่านกลไกแบบควบแน่นระหว่าง 1,3-โพренไดออล และไดออกซิด ชนิดต่างๆคือ กรดซัคซินิก กรดกลูตامิก และกรดเซบ้าซิด ซึ่งมอนอเมอร์เหล่านี้สามารถผลิตได้จากวัตถุดิบทางธรรมชาติ โดยใช้กรดซิตริกเป็นสารเชื่อมระหว่างเพื่อเป็นการปรับปรุงสมบัติเชิงกล และน้ำหนักโมเลกุลของพอลิอีสเทอร์ โดยทำการศึกษาปัจจัยที่มีผลต่อสมบัติของพอลิอีสเทอร์ที่สังเคราะห์ได้คือ ระยะเวลาในการสังเคราะห์พรีพอลิเมอร์ ชนิดของกรดที่ใช้สังเคราะห์พรีพอลิเมอร์ อุณหภูมิที่ใช้ในการสังเคราะห์พรีพอลิเมอร์ โดยทำการทดสอบสมบัติทางเคมีด้วยอินฟารे�ดสเปกโตรมิเตอร์ เครื่องเอ็นเอมอาร์สเปกโตรมิเตอร์ และเจลเพอร์มีโอชัน-โครมาโตกราฟี ทดสอบสมบัติทางกายภาพด้วยวิธี ทดสอบแรงดึง ทดสอบสมบัติทางความร้อน และทำการทดสอบสมบัติในการย่อยสลายด้วยวิธีไนโตรเจลซิส

จากการศึกษาพบว่าพอลิอีสเทอร์ที่สังเคราะห์ได้มีลักษณะคล้ายยาง และเมื่อสังเคราะห์พรีพอลิเมอร์ เป็นเวลา 18 ชั่วโมง ได้พรีพอลิเมอร์ที่มีความหนืดมากกว่าพรีพอลิเมอร์ที่สังเคราะห์ที่เวลา 12 ชั่วโมง จากการศึกษาผลการทดสอบแรงดึง พบร้าโคงพอลิอีสเทอร์ที่สังเคราะห์จาก 1,3-โพренไดออล-กรดซัคซินิก กับ 1,3-โพренไดออล-กรดกลูตامิก (PSu-PGlu) มีค่าความแข็งแรงจำนวน และ ค่าเปอร์เซ็นต์การยึดตัวสูงกว่าโคงพอลิอีสเทอร์ที่สังเคราะห์จาก 1,3-โพренไดออล-กรดซัคซินิก กับ 1,3-โพренไดออล-กรดเซบ้าซิด (PSu-PSeb) ในขณะที่โคงพอลิอีสเทอร์ 1,3-โพренไดออล-กรดซัคซินิก กับ 1,3-โพренไดออล-กรดกลูตามิก (PSu-PGLu) มีความยึดหยุ่นมากกว่า และทนแรงดึงมากกว่า PSu-PSeb ซึ่งสอดคล้องกับผลของการทดสอบสมบัติทางความร้อน คือค่าอุณหภูมิในการเปลี่ยนสถานะคล้ายแก้วของพอลิอีสเทอร์ PSu-PGlu มีค่าอยู่ในช่วง -9.57 ถึง 2.04 องศาเซลเซียส ส่วนพอลิอีสเทอร์ PSu-PSeb มีค่าอุณหภูมิในการเปลี่ยนสถานะคล้ายแก้วอยู่ในช่วง -26.35 ถึง -17.15 องศาเซลเซียส และเมื่ออุณหภูมิในการสังเคราะห์พรีพอลิเมอร์เพิ่มขึ้นด้วย

คำสำคัญ : 1,3-โพренไดออล / กระบวนการสังเคราะห์พอลิเมอร์แบบควบแน่น / ไดคาร์บอซิลิก-แอกซิด / พลาสติกย่อยสลายได้

Abstract

This research focuses on a series of degradable crosslinked polyester and copolyester synthesized from polycondensation between 1,3-propanediol and various diacids such as succinic acid, glutamic acid and sebacic acid. These monomers became recently interested because of the potential production from renewable resources. The crosslinking agent such as citric acid was employed in curing process in order to improve mechanical properties and molecular weight of the final polyester. The studied factors include the synthesis time, type of monomers and polymerization temperature. Chemical properties of the polymer were then analyzed by Fourier Transfrom Infrared Spectrophotometer (FT-IR), Proton Nuclear Magnetic Resonance Spectroscopy (NMR) and Gel Permeation Chromatography (GPC). Mechanical and thermal properties of the polymers were tested by tensile testing and differential scanning calorimetry (DSC), respectively. Biodegradability of the polymer was studied by hydrolysis. The results show that almost all synthetic polymers are rubber-like when prepolymer synthesis time was 18 hours. The obtained prepolymer is more viscous than that obtained from 12 hour of synthesis time. The results from tensile testing show that the crosslinked copolymers from 1,3-propanediol-succinic acid with 1,3-propanediol-glutamic acid (PSu-PGlu) have higher yield strength and higher percentage of elongation than copolymers from 1,3-propanediol-succinic acid with 1,3-propanediol-Sebacic acid (PSu-PSeb). PSu-PGlu is additionally more flexible and more resistant to applied force, which is in accordance with the result from DSC. The glass transition temperature of the PSu-PGlu polymer is in the range of -9.57 to 2.04 °C and the glass transition temperature of PSu-PSeb polymer is in the range of -26.35 to -17.15 °C which give the conclusion that the molecular weight increase with increasing synthesis temperature.

Keywords : 1,3-propanediol / Biodegradable / Dicaboxylic cid / Polycondensation