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Abstract
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Looking for a meaningful diversity criterion that has a strong correlation with the
ensemble quality is not trivial. Moreover, specifying a suitable level of diversity for a
particular dataset is rather complicated and data-dependent. While most existing
ensemble selection methods that are based on diversity criteria suffer from these
difficulties, we proposed a new ensemble selection method based on quality criterion.
The key idea is to maximize the accuracy of ensemble by using our new quality
criterion and automatically retain a suitable level of diversity in the ensemble by taking
advantage of using different ensemble structures. Our new quality criterion used for
validating a quality of individual ensemble members is based on generalized median
concept. To the best of our knowledge, our work is the first attempt to apply the
generalized median in this context. Extensive experiments on a large image database
have been conducted to evaluate the effectiveness of the proposed generalized
median-based quality measure through our ensemble selection method. Experimental
results demonstrate the merit of our use of generalized median concept and
demonstrate that our quality-based ensemble selection method performs the best in all
cases. Moreover, we also found the usefulness of our generalized median-based quality
measure in application of weighted cluster ensemble. In addition, we also give an
extensive empirical study on the diversity and the quality of ensemble that illustrated the
influence of the two factors and identified their important roles in the ensemble
combination. Observations gained from this study are also fundamental to the design of

our ensemble selection method.

Keywords : Cluster ensemble concept, Cluster ensemble selection, Weighted cluster

ensemble, Image segmentation combination, Generalized median concept
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CHAPTER 1

Introduction

1.1 Statement of the problems

Image segmentation is defined as the meaningful partitioning of images into non-
overlapping homogeneous regions exhibiting similar features or image content. Image
segmentation is a key step towards high level tasks such as image understanding, and
serves in a variety of computer vision applications including object recognition, scene
analysis or image/video indexing. However, despite of decades of intensive research,
image segmentation remains a difficult task. Recently, researchers start to investigate
combination of multiple image segmentations, also known as ‘segmentation ensemble
combination’, in order to improve the stability and accuracy of segmentation results. In
this work we define a ‘segmentation ensemble’ as a collection of different segmentation
results of the same image computed by different segmenters, and define ‘segmentation
ensemble combination’ as a process of combining a segmentation ensemble into a
single segmentation result using a consensus function. The goal of segmentation
ensemble combination is to compute a final segmentation result which is superior to the
initial segmentations in an ensemble. Typically, ensemble combination methods are
comprises of two phases: the ensemble generation and their combination. In this work
we focus on improving the ensemble generation phase, whereas most of the existing
image segmentation combination methods [10,11,12,13,14,15,16,17,18,19,20,21] have
focused on improving the design of consensus functions.

Traditionally, a combination process combines together all of the members in an
ensemble to produce the final combined result. However, this traditional approach have
been questioned by many researchers [] that is it always the best to include all available
solutions in the ensemble in a combination procedure because some of them may be
less accurate and may have adverse effects on the final performance? Since then
several ensemble selection strategies have been proposed. Recent studies [3,5,6,24]
have been shown that by carefully selecting a subset of a large number of solutions,
one can achieve performance similar or even better than using all available solution.

We can roughly classify the strategies used for improving the ensemble performance
into two approaches. The first approach improves the ensemble performance by

selecting a proper subset of partitions from a large ensemble (so called ‘ensemble
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library’), in order to form a smaller ensemble that performs as well as or better than
using all partitions in the collection. This approach is called ‘cluster ensemble selection’.
In contrast, the second approach attempts to utilize all available solutions in an
ensemble, however, with different level of importance by properly assigning varying
weights to different solutions. This kind of approach [7,8,25,26] is called ‘weighted
cluster ensemble’. Recently, the works [1,3,4,6] found that the ‘quality’ of the individual
solutions in an ensemble and the ‘diversity’ among them are the crucial factors for the
success of clustering ensemble combination. Most cluster ensemble selection methods
[1,2,3,5] are designed based on these factors. They attempted to defined selection
criteria that compromise between diversity and accuracy in such a way that a new
ensemble has high diversity, while preserves good quality of ensemble. However,
looking for a suitable diversity measure that has a strong correlation with the ensemble
accuracy is not trivial. Moreover, specifying a preferred level of diversity for a particular
data set is rather complicated and data-dependent [6].

Due to the difficulties in defining a meaningful diversity criterion and a suitable level of
diversity for a particular dataset, we postulate that: Instead of searching for the optimal
diversity criteria that are the best indicators for good ensemble accuracy, it would be
less complicated to explicitly define the selection criteria based on the accuracy of the
individual ensemble members to obtain the high quality ensemble and then, use
different ensemble structures (i.e. the use of different types of segmenters) to diversify
the (high quality) ensemble. The rationales behind our idea of designing quality-based
selection method are that i) the required level of ensemble accuracy is certain (the
highest is the best), while the required level of diversity in an ensemble is not certain for
any circumstance and for any data set; ii) high diversity is not necessarily a prerequisite
for high accuracy, while high accuracy is often required for defining high diversity
criteria. The rationales behind our idea of using different ensemble structures to
diversify the ensemble are that i) we prefer the diversity within the ensemble in a way
that the ensemble has uncorrelation between their errors, so that they will be corrected
by the opinions of the whole ensemble. We conjecture that the diversity provided by
different segmentation heuristics seems to achieve this goal; ii) the diversity provided by
different segmentation heuristics already implicitly determines its own level in a data-
driven manner. The ensemble of the easy-to-cluster dataset should have high
redundancy of the solutions (since the data is easy to cluster), however, it would have

no need of high diversity to compensate the errors between clusterers. In contrast, the



ensemble of the difficult-to-cluster dataset should have high variation of the solutions
(since the data is hard to cluster), and since there are quite errors in their solutions, it
requires high ensemble diversity to compensate their errors. Obviously, by using the
different segmentation heuristics we can achieve a suitable level of diversity for a
particular dataset in a natural way.

Toward this goal, we propose a new (unsupervised) quality measure for validating
the quality of the individual ensemble members based on the generalized median
concept, without the need of ground truth data. To the best of our knowledge, our work
is the first work that uses the generalized median concept in this context. Our
motivations of using generalized median concept for measuring the accuracy of the
individual members in an ensemble are i) the ground truth data are not available for
validating the segmentation results; ii) the ability of the generalized median for capturing
the essential information of a given set of noisy samples of the same object, even in the
presence of outlier objects. Apart from ensemble selection, we also find the usefulness
of our new generalized median-based quality measure in the application of weighted
clustering ensemble. The experimental results demonstrate the effectiveness of our

generalized median-based quality measure in both applications.

1.2 Objectives

1.2.1 To empirical study the impact of two critical factors, namely quality and diversity
of an ensemble, on the final segmentation ensemble performance. Basic results
and observations obtained from this study are fundamental to the design of our
ensemble selection and weighted ensemble methods.

1.2.2 To develop a new ensemble selection method for producing a new ensemble
from a large collection of segmentation solutions in order to achieve better
combination results.

1.2.3 To develop a new weighting scheme for weighting the importance of each

member in an ensemble in order to achieve better combination results.

1.3 Organization

The rest of the report is organized as follows. In the next Chapter the differences
between our work and the previous works are described by a brief discussion of related

literature. Then, the basic concept of ensemble diversity and quality are defined, as well



as, their measures in Chapter 3. We note that the diversity and accuracy measures
defined in this chapter are used for the purpose of ensemble analysis only in. In this
chapter we study the impact of diversity and quality of the segmentation ensemble on
the combination performance using full ensemble. Some basic results fundamental to
the new ensemble selection strategies are given. In Chapter 4 several selection
strategies for improving the design of segmentation ensemble are studied. Extensive
experiments have been conducted to validate the proposed selection methods. In
Chapter 5 the use of the new accuracy measure in the weighted ensemble scheme is

presented. Finally, some discussions conclude the report.



CHAPTER 2
Related Work

Segmentation ensemble can offer better solutions in terms of robustness [21,22],
accuracy [15,16,18,20] and stability [23]. Many segmentation combination algorithms
have been proposed in order to improve segmentation accuracy over the individual
input segmentations. Several works can be found in both medical image analysis [10,
11] and a general segmentation problem [12, 13, 14, 15, 16, 18, 21]. Many different
approaches for generating segmentation ensembles have been proposed in the
literature. Representative examples include using different subsamples of the original
data [13], using different subsets of the original features [19,20], using different random
parameters such as the number of clusters and random initializations for clustering
[14,15], using the same segmentation algorithm but different parameter values [16] and
using different clustering/segmentation methods [18, 21, 17]. However, all of these
approaches utilize all of the generated ensemble members when combining them into a
final segmentation and the impact of diversity and quality of the individual segmentation
in ensemble on the final ensemble performance has not been studied. The last common
limit of the above approaches is that most of them are defined by equally considering
the various segmentation solutions in the ensemble. This may be a weakness of
utilizing segmentation ensemble. For example, an ensemble may be comprised of very
different quality segmentation solutions. Treating the constituent solutions of an
ensemble equally and combining them into the final segmentation may not be effective.
In this paper we address all of these issues: investigating influence of diversity and
accuracy of ensemble on combination performance, ensemble selection problem and
weighting scheme for segmentation ensemble.

In clustering ensemble, the impact of diversity and quality of the individual clustering
solutions on the final ensemble performance has been studied. Several works have
suggested that the diversity among ensemble members is a key factor for the success
of clustering ensembles. For example, Topchy et al. [4] shows that a consensus solution
is shown to converge to a true underlying clustering solution as the diversity in the
ensemble increases. Fern and Brodley [1] noted that higher diversity among ensemble
members tends to produce higher performance gain. Different from others, Hadjitodorov
et al. [3] shows that in some cases ensembles which exhibited a moderate level of

diversity gave a more accurate clustering. This observation was later supported by the



work of Azimi and Fern [6] that the required level of diversity of ensemble is data-
dependent. Different data sets require different treatment.

The works [1, 2] proposed to involve diversity and quality into ensembles in the
ensemble generation mechanism. Fern and Broadly [1] proposed to introduce high
diversity into the clustering solutions by random projection. The experimental results
show that random projection can produce diverse clustering solutions when the original
dimension is high and the features are not highly redundant. If the features are highly
redundant then many random projections will lead to the same clustering. However
random projection method did not concerns the quality of the individual clustering
solutions. Kuncheva and Hadjitodorov [2] proposed to enforce diversity within the
ensemble by using a variant of the generic ensemble method where the number of
overproduced clusters is chosen randomly for every ensemble member. In contrast to
[1], the accuracy of the ensemble is concerned in this work.

However, the goal of our work is not to optimize the ensemble generation
mechanism. Instead, we studied how to select a proper subset of solutions from a
given large collection of segmentation solutions, in order to form a smaller segmentation
ensemble that performs as well as or better than using all segmentations in the
collection. This problem is referred to as ‘cluster ensemble selection’. Recent studies
have been shown that by carefully selecting a subset of a large number of clusterings,
one can achieve performance similar or even better than using all available clustering.

Hadjitodorov et al. 2005 [3] showed that median diversity selection is better than the
maximum diversity selection by proposing different diversity measures that compromise
between diversity and accuracy. They generated multiple cluster ensembles (with a
small random population), calculated the diversity of each ensemble, rank them based
on their diversity, and select the ensemble corresponding to the median diversity. The
ensemble with median diversity was used to produce the final clustering. In contrast to
our work, we seek to select a small subset from a large given library to form the
ensemble.

Fern and Lin [5] proposed three different selection approaches that jointly consider
quality and diversity of an ensemble. The first method straight-forwardly combines the
quality and diversity into a joint criterion function with weighting factor for controlling how
much emphasis we put on each objective. The second method organizes different
solutions into groups such that similar solutions are grouped together and then selects

one quality solution from each group. The objective is to avoid redundancy of similar



solutions. The last method creates a scatter plot of points, where each point
corresponds to a pair of clustering solutions and is represented by their average quality
and diversity. The convex hull of all points, in which include both the solutions with the
highest quality and the most diverse pair of solutions, is then used to select solutions.

In the work proposed by Azimi and Fern [6], the idea behind their method is that
different data, with varying characteristics, may require different strategies for selection.
Thus they classified data set based on their characteristics into two categories and
treated each category with different strategy of ensemble selection. They first generate
an ensemble containing a diverse set of solutions, and then aggregate them into a
consensus partition using consensus function. However, they do not output the resulting
consensus partition. They use the consensus partition to classify the given data set into
the stable or non-stable category. Based on the categorization of the data set, they
select a special range of ensemble members (e.g. full members or partial members) to
form the final ensemble and produce the final clustering.

Another adaptive approach is proposed by Topchy et al. [24]. This work differs from
previous above works in using different ensemble generation criterion. Instead of
considering diversity, ensemble generation is considered based on a measure of a data
point’s clustering consistency. They proposed an adaptive approach to partition
generation via data resampling. The sampling probability for each data point
dynamically depends on the consistency of its previous assignments in the ensemble.
Unlike the regular bootstrap method frequently used in supervised learning, the adaptive
partition generation mechanism is aimed at reducing the variance of inter-class decision
boundaries. Instead of drawing subsamples uniformly from a given data set, the
adaptive sampling favors points from regions close to the decision boundaries and
unfavors points located far from the boundary regions.

Our work differs from the above works in that we try to maximize accuracy of
individual ensemble member, instead of optimizing the ensemble diversity, and resort
different ensemble structures to increase diversity within the ensembile.

Apart from selecting an ensemble from multiple ensembles or selecting a subset of
partitions from a large clustering library, an alternative strategy to improve the design of
cluster ensemble is by assigning varying weights to different partitions [7,8,25,26]. This
kind of approach is called ‘weighted cluster ensemble’. The work of Li and Ding [8]
proposes an optimization of an objective function which is derived from a specific

formulation of the problem of clustering ensembles based on Non-negative matrix



factorization framework. Gullo et al. [25] defined the weights used in their proposed
weighting schemes as a proportional diversity measure of either individual member of
ensemble or a group of members of ensemble. Ayad and Kamel [26] proposed a graph-
partitioning-based approach and defined the weight of each edge in terms of the size of
the nearest neighbor list shared between the data objects (i.e. nodes). Domeniconi and
Al-Razgan [7] also proposed a graph-partitioning-based approach. Similarity measure,
which is integrated in the edge weights, is defined by the weighted clusters that result
from different runs of the locally adaptive clustering (LAC) algorithm.

A major difference between the above approaches and our weighting approach are
the followings. The work of [8] proposes an optimization of an objective function which
is derived from a specific formulation of the clustering ensembles problem, while our
approach does not focus on any specific formulation of the problem. The work [25,7]
consider a general schemes for weighting clustering ensembles focusing on the notion
of diversity, while we consider general weighting scheme focusing on the notion of

accuracy.



CHAPTER 3
An Empirical Study of Diversity and Quality

This section is devoted to an empirical study of the ‘diversity’ and the ‘quality’ of
ensemble that have been proven to have crucial impact on the performance of final
combination results. We begin by defining the basic concept of ensemble diversity and
quality, as well as, their measures. Then, we conduct extensive empirical study to
investigate the two properties of ensemble. Experimental results and observations
gained from the study are fundamental to the design of our ensemble selection method

presented in Chapter 4.

3.1. Diversity and quality of ensemble: Definition and measure

Diversity and accuracy are the crucial properties of ensemble and have been
shown to influence cluster ensemble performance. In this section we define the
definition of ‘diversity’ and ‘quality’ of an ensemble and their measurement. Note that
diversity/quality measure defined in this section is used for analyzing the characteristics
of ensemble only, not for ensemble selection method. The diversity and accuracy

criteria used for ensemble selection will be described in Chapter 4.

3.1.1. Ensemble diversity measure

Diversity is one of a crucial factor in the ensemble generation mechanism as well
as in the ensemble selection. It is used to quantify how the various clustering solutions
in an ensemble are dissimilar to each other. Since the notion of ensemble diversity is
not clearly defined, a number of different diversity measures have been purposed
[1,3,4,6,8,9]. One of the most commonly used for measuring diversity between partitions
(clusterings) is based on Normalized Mutual Information (NMI). This measure has been
widely used in several researches focusing on clustering ensembles [1,2,4,7,26,27] and
also for image segmentation [28, 22, 16]. For performing ensemble diversity analysis,
we follow the approach proposed by Dietterich [27]. One reason for choosing this
diversity measure is that it does not depend on the ensemble methodology. This
approach was also used for analyzing ensemble diversity in [1]. Given a dataset X of n
objects and a set of m clustering results of X denoted as P = {P1, P>,...,P,}. To
measure diversity within the ensemble according to [27], we first calculate the NMI

between each pair of clustering solutions (P;, P;) as
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Then, the pairwise diversity measure of ensemble is defined as the sum of all pairwise

dissimilarity (1- NMI (P;, P;)) within the ensemble as

Digivise = 2. p o= NMI(BLP) 2

The higher the value, the higher is the diversity. To obtain an overall diversity measure

of the whole ensemble, Densemble, We simply take the average of all Dpairwise-

3.1.2. Ensemble quality measure

We define the accuracy of the individual members in an ensemble as the degree
of match between the produced partition labels and a known partition labels (ground
truth). To obtain a single quality measure for each pair of clustering solutions (P;, P;), in
accordance with [27], we average their NMI values as computed between each of the
two solutions and the class labels from the ground truth dataset (manual labeled

dataset), Pgr, defined as

ACCED o, = (NMI(P,, Psr) + NMI(P,, Per)) /2 ©

pairwise

The higher the value, the higher is the accuracy of a pairwise partition. To obtain an
overall quality measure of the whole ensemble, 4ACCensemble, We simply take the average
of all ACCparwise- We note here that the ensemble accuracy measure defined here is
only used for analyzing the quality of the generated ensemble only. It cannot be used
as the ensemble selection criterion since in practice the ground truth data is not

available.

3.2.Influence of Diversity and Quality on Combination Performance

For clustering ensemble approaches, diversity and quality of the individual
clusterings have proven to be key elements in increasing clustering combination
performance as supported by many empirical evidences [1, 3, 4]. In this section we
conducted the empirical study to substantiate this claim and to summarize some

insights gained from the empirical observations. These observations are a basis of the
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design of our ensemble selection method presented in Chapter 4.

We begin our empirical study by describing the segmentation ensemble generation,
then, analyzing the characteristics of the built ensembles, and followed by discussing
the impact of ensemble characteristics on the combination results.

To study the impact of diversity and quality of ensemble on the final combination
performance, we need segmentation ensembles under consideration to have a variety in
characteristics, namely, different level of diversity and quality. Thus, the ensemble
generation mechanism must be carefully designed (will be described in Section 3.2.1).
Moreover, in order to make the study independent from the specific image, we
conducted our experiments on a large and widely used image database from the
Berkeley segmentation dataset [30]. The database comprises of 300 color images of
size 481 x 321, each having multiple manual segmentations, which were only used in
evaluating ensemble accuracy and final combination solutions and not used in any way

during ensemble selection process.

3.2.1. Building segmentation ensembles

To conduct an empirical study of the impact of diversity and quality of ensemble on
the final combination performance properly, we need segmentation ensembles under
consideration to have a variety in characteristics, namely, different level of diversity and
quality. For this purpose, we used four different state-of-the-art image segmentation
algorithms as a baseline segmentation algorithm for generating multiple segmentations
in an ensemble. The four algorithms are the graph-based segmentation algorithm (FH)
developed by Felzenszwalb and Huttenlocher [31], the mean shift-based segmentation
(MS) proposed by Comaniciu and Meer [32], the region growing-based segmentation
algorithm (JSEG) [33], and the (spectral-based) multiscale Normalized Cuts algorithm
(NC) [34]. The choice of the aforementioned segmentation algorithms was due to the
different segmentation criteria they used during their operations. The different
segmentation behaviors of the four segmentation algorithms will yield different
characteristics of the generated ensembles.

To make our study feasible and reasonable for statistical analysis, we conducted
experiments on a large image database from the Berkeley segmentation dataset [30].
The database comprises of 300 color images of size 481 x 321, each having multiple
manual segmentations, which were only used in evaluating ensemble accuracy and final

combination solutions and not used in any way during ensemble selection process.
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For each image in the Berkeley dataset, we used the four baseline segmentation
algorithms, i.e. FH, MS, JSEG, and NC, to generate four sets of ensembles: FH
ensembles, MS ensembles, JSEG ensembles, and NC ensembles, respectively. Each
set contains 300 segmentation ensembles computed from 300 images (one ensemble
per image) in the database. Multiple segmentations in each ensemble are obtained by
varying the parameter values of the same segmentation algorithm in an appropriate
range. The appropriate ranges of parameters are experimentally determined so that the
resulting segmentations would have reasonable or acceptable quality (i.e. not overly
under/over-segmentations). The sampled values of parameters within these ranges are
chosen so as to yield segmentations with perceptible differences. These criteria are
applied for all segmentation algorithms used in the experiments. Appropriate ranges of
algorithm parameters and their sampled values for each segmentation algorithm used in
the experiments are summarized in Table 3.1. The total number of parameter
combinations for each algorithm is equal to 24 combinations, resulting in 24
segmentations per ensemble. It should be noted that our choices of parameter
selections, as well as the baseline segmentation algorithms, used in our experiments
does not intend to optimize segmentation ensembles, but to provide us with a set of

representative segmentation ensembles.

3.2.2. Analysis of diversity and quality of segmentation ensembles

In analyzing the diversity/quality of the generated ensembles we follow the approach
taken by Dietterich [27]. For each set of ensembles (consisting of 300 ensembles), we
graph the diversity versus quality for each pair of segmentations in the ensemble. We
plotted each pair as a point in a two-dimensional space where the x-axis is the diversity
(1-NMI) between the pair (when 1 - NMI between two segmentation solutions is one
the diversity is maximized) and the y-axis is the quality of the pair (when the NMI
between two segmentation solutions is one the accuracy is maximized). A pairwise
diversity between each pair of segmentation solutions is computed by using Eq.(2) and
a pairwise accuracy between each pair of segmentation solutions is computed by using
Eq.(3). Figure 3.1 shows the diversity-quality graph for each of the four ensemble sets.
It is obvious that each of the four ensemble sets shows somewhat different behavior.
NC ensembles have the lowest diversity since the variation of the segmentation
solutions is controlled by the algorithm’s parameter (i.e. a number of regions in a

segmentation solution). Thus, multiple segmentation results in an ensemble just differ in
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the number of regions. The average diversity\accuracy of the whole set of ensembles is
written in the blankets on the graphs (represented by the red mark) on each graph as
well as in the second and third column of Table 3.2. JSEG ensembles have the highest
average diversity and followed by FH, MS ensembles. JSEG ensembles have the
lowest average accuracy and followed by FH and MS ensembles. This pattern is

interesting. The accuracy of the ensemble increases as the diversity of ensemble

decreases.
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Figure 3.1 Diversity-Quality plots. FH ensembles (upper-left), MS ensembles (upper-right), JSEG

ensembles (lower-left) and NC ensembles (lower-right).
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Table 3.1 Parameters of baseline segmentation algorithms.

Algorithm Parameter Values

Parameter Description

FH 0={0.4,0.5,0.6,0.7, 0.8, 0.9}

A parameter of Gaussian filter.

k = {150, 300, 500, 700 }

A parameter of a threshold function, roughly
controls the size of the regions in the resulting
segmentation. Smaller values of k yield smaller

regions and favor over-segmentation.

We fix a minimum size of regions to be
approximately 1% of input image area to avoid

gross oversegmentation.

A spatial bandwidth parameter. The original paper
of this algorithm [23] stated that the algorithm is not
very sensitive to the choice of /i, and suggested to
use /iy = 8 for 256 x 256 images and /i; = 16 for
512 x 512 images.

M = 1500
MS hg = {8,16}
h,={7,11,15}

A color bandwidth parameter.

M = {100, 500, 1000, 1500}

The smallest size (in pixels) of allowed region size.
h, and M control the number of regions in the
segmented image. The more an image deviates
from the assumed piecewise constant model (e.qg.
the heavily texture background), larger values have
to be used for /4, and M to discard the effect of
small local variations in the feature space (e.g. /- =

15, M = 1500).

JSEG I={1,2}

The number of scales desired for the image

g = {150, 300, 450, 600}

A threshold for the color quantization process,
having value in a range 0- 600. It determines the

minimum distance between two quantized colors.

m ={0.2, 0.4, 0.6}

The threshold for region merging, having value in a

range 0-1.0 with default 0.4

NC scale = {0.4, 0.8}

We set a scale of an input image less than one in
order to produce a segmentation result within

reasonable computation time.

nseg =1{4,6, 8, ..., 26}

A number of regions in a segmented image.
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Table 3.2 Average performance overall three test sets (ensemble features).

Ensemble Average diversity Average accuracy Average accuracy of % Improvement

of ensembles of ensembles combination results of Combination
FH 0.3153 0.5714 0.6179 8.14
MS 0.2781 0.5851 0.6267 7.11
JSEG 0.3362 0.5462 0.6108 11.83
NC 0.2418 0.5580 0.5813 4.18

In comparison between the diversity/quality results and the combination
performance, we used the random walker-based segmentation combination algorithm
proposed in [7] to combine the segmentation ensemble into a final combined
segmentation results. The more details of the algorithm will be described in Section 6.
The average performance of combination results on 300 images for each set of
ensembles is reported in the fourth column of Table 3.2. The performance of the
combination result is computed by using NMI measure defined in Eq. (1) against its
corresponding ground truth provided by the database. The fifth column of Table 3.2
shows the percent of improvement of combination results over the average performance
of the ensembles (shown in the third column of the table).

Based on the experimental results we see evidence that diversity of ensemble
indeed have a strong effect on the ensemble performance. Obviously, we see the
smallest percent of improvement of the combination results delivered by the NC
ensembles, which have significantly low diversity among the other three sets of
ensembles. In contrast, we see the largest percent of improvement of the combination
results delivered by the JSEG ensembles, which have the highest diversity among the
other three. The FH ensembles have higher average diversity than the MS ensembles,
and thus higher percent of improvement is obtained. Therefore, we may say that the
higher the diversity of the ensembles is, the higher percent of improvement the
combination results will gain. However, the percent of improvement is not only one
quantity we want to optimize. Note that although the JSEG ensembles gain the highest
percent of improvement, the MS ensembles gain the highest average accuracy of
combination results. As shown in the third column of Table 3.2 the average accuracy of
JSEG ensembles is significantly lower than the average accuracy of MS ensembles. If
we rank the set of ensembles from achieving the highest average combination results to
the lowest, we got MS ensembles the first and followed by FH, JSEG, and NC

ensembles. Surprisingly, the same order is obtained when ranking the average accuracy
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of ensembles from the largest to lowest ensemble accuracy. It seems that the highest
accuracy of combination results is to some degree limited by the accuracy of ensembile.
At this point we can conclude that for a success of ensemble combination the
ensembles should have high accuracy as a basis for improvement and high diversity for
achieving high percent of improvement.

This conclusion is supported by the plots in Figure 3.2, each plot for each set of
ensembles, FH ensembles (upper-left), MS ensembles (upper-right), JSEG ensembles
(lower-left) and NC ensembles (lower-right). Each plot shows a per-image relationship
among the combination performance (green line with cross marker), the average
accuracy of ensembles (black line), and the average diversity of ensembles (blue line
with dot marker) for the 300 images in the database. In order to make the plot simpler
and easier to observe, we plot the three curves in increasing order of the average
ensemble accuracy values. For all plots it is obvious to see that the curves of the
average ensemble accuracy act as the baseline performance of the combination results.
Then, the degree of improvement is controlled by the average ensemble diversity
curves. The higher the curve, the higher the improvement is gained. This situation is
clearly noticeable in the plot of JSEG ensembles.

To gain further insight into these issues, another graph of the diversity versus
accuracy for each ensemble is plotted in Figure 3.3. Each point in each graph
represents each ensemble in each set, FH ensembles (upper-left), MS ensembles
(upper-right), JSSEG ensembles (lower-left) and NC ensembles (lower-right). The x-axis
is the average diversity of pairwise diversity in the ensemble, while the y-axis is the
average accuracy of individual segmentations in the ensemble. For simplicity in
analysis, we classify the points (ensembles) into four classes with respect to the percent
of improvement of the combination result comparing with the average accuracy of its

corresponding ensemble as shown in Table 3.3

Table 3.3 Four classes of ensembles classified by the percent of improvement of the

combination results.

Class Description Percent of improvement
1 No improvement <o
2 Low improvement [0-5)
3 Medium improvement [5-15)
4 High improvement 215
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Figure 3.2 The relationship (per image) between the performance of combination results (NMI),
the average accuracy of ensemble (NMI) and the average diversity of ensemble (1-NMI) for each set
of ensembles: FH ensembles (upper-left), MS ensembles (upper-right), JSEG ensembles (lower-left)

and NC ensembles (lower-right).

In Figure 3.3 we see that most of the points in the lower-right quadrants (ensembles
with high diversity) of each graph received high combination improvement. However, in
many cases it is possible to gain high improvement without high diversity within the
ensemble. Noticeably, for the MS and JSEG ensembles we see quite a number of
ensembles with moderate diversity (the blue points with star marker lying in the middle
of upper-left and lower-left quadrants of the graph) are able to obtain high improvement
of combination performance. Thus, we can conclude that having high diversity within the
ensembles just help us to have higher chance to obtain high improvement of
combination results, however, it is not always the case that in order to gain high
improvement the ensemble must have high diversity. Thus, this situation indicate that
the level of diversity required by each particular dataset is may depend on either the
characteristics of the input data (image) or the base segmentation algorithms we used
to construct the ensembiles.

The observations we found in the experiments motivate us the design of our quality-
based selection method. We desire our new ensemble to have high accuracy since it

determine the base performance of the combination results, and resort diversity from
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different ensemble construction models since the required level of diversity is data-

dependent.
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CHAPTER 4

Ensemble Selection Methods

Many works in classifier/cluster ensemble have showed that it is possible to select
a small subset of partitions from a large ensemble and achieve better performance than
using the full ensemble. In this section we propose three ensemble selection methods
for selecting a subset of solutions from the whole ensemble to form a new ensemble
that perform better than the whole ensemble. The first two methods based on diversity
and accuracy respectively. We produce the results of these methods for two reasons.
The first reason is to test our hypothesis that using only diversity or accuracy alone
cannot reliably achieve the high improvement of combination results. The second
reason is to validate the effectiveness of our new quality measure. Then, the third

selection method jointly considering diversity and accuracy is presented.

4.1. Selection by diversity

To construct a new ensemble based on diversity we develop a simple greedy algorithm
that explicitly searches for the highest diverse subset from the full ensemble. The choice
of selecting the ensemble members is based on their pairwise diversity as measured by
the pairwise diversity measure defined in Eq.(2). The algorithm starts with a new
ensemble containing the two ensemble members of highest pairwise diversity. The
algorithm iteratively expands a new ensemble by selecting one ensemble member at a
time from the full ensemble to add to a new ensemble such that the new ensemble has
the highest sum of pairwise diversity. The process repeats until we reach the desired

ensemble size.

4.2. Selection by quality

Selection by quality of the individual ensemble members is more problematic than the
above strategy since we need a quantitative measure for validating the quality of each
individual segmentation result. External validity criteria require ground truth or prior
knowledge of the ideal segmentation against which the segmentation result can be
validated, whereas internal validity criteria can be used only if the original features of
the images are available. In this work we introduce the external segmentation validity

criterion without the need of ground truth information. This new segmentation validity
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criterion is based on the generalized median concept.

Median is a general concept of capturing the essential information of a given set of
noisy samples of the same object [29]. The median concept is used to eliminate some
erroneous objects by averaging over all object samples to produces a more reliable
representative of a set of objects. One powerful tool for this purpose is provided by the
generalized median concept. An overview of various instances of generalized median
problems including vector, contours, strings, graphs, clusterings, and image
segmentations is provided in [29]. Due to its high representative of a set of objects and
its robustness in the presence of outlier objects and the lack of ground truth data, we
decide to apply the concept of generalized median to the problem of validating the
quality of ensemble members. In general, generalized median computation is an NP-
complete. Thus, we study an approximate generalized median that has both low-
computational time and space complexity. We use the approximate generalized median
for evaluating the quality of ensemble members by firstly compute an approximate
generalized median of the ensemble, then uses this approximate generalized median as
a ground truth for validating the quality of each ensemble member. Now a traditional
ground truth-based validation approach can be applied.

In the following, we first introduce the concept of generalized median and then
discuss its adaption to solve our problem. Next, the computation of generalized median
segmentation is presented. We extensively evaluate the effectiveness of our generalized
median-based quality measure on a large image database by comparing it with the two
well-known quality measures. Finally, experimental results and some basic discussion

fundamental to the new ensemble selection strategies are given.
4.2.1. Generalized median concept

Let S be a set of objects in some representation space U and a distance function d(p,
q) be a dissimilarity measure between any two objects p, ¢ € U. The essential
information of the given set of objects is captured by the generalized median of S, p[] €

U, that minimizes the sum of distances to all objects from §

p=agmind d(p.q)

qeS

This general concept has been successfully applied to deal with problems in various

contexts such as contours, strings, graphs and clusterings [29].
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4.2.2. Approximate GM-based quality measure

Our motivation of applying the concept of generalized median in validating the individual
ensemble members is its power of inferring a representative sample out of a set of
objects (or ensemble), even in the presence of outlier objects. The generalized median
eliminates some erroneous objects by averaging over all object samples to produces a
more reliable representative of a set of objects. Conceptually, the generalized median of
a given ensemble should have highest quality over each of ensemble members. Thus,
our idea is to use the generalized median of an ensemble as a ground truth for
validating the quality of ensemble members. Now a traditional ground truth-based
validation approach can be used. In this work the similarity measure, NMI, defined in
Eq.(1) is applied. Thus, the closer is the ensemble members to their generalized
median, the higher their quality would be.

In general, the generalized median computation in several cases is an NP-complete
[29]. Fortunately, we have an approximate method for computing a generalized median
segmentation used in this context. In our previous work [16] we proposed segmentation
combination algorithm where initial segmentations in an ensemble can have arbitrary
number of regions, and the algorithm can automatically determine the number of
regions (K) in the final combined result. To decide K, the algorithm computes a series
of combination segmentations with different K € [Kmax, Kmin]. The quality of combination
results was evaluated in terms of consistency with the input ensemble following the
concept of mutual information (as defined in Eq.(1)) to quantify the statistical information
shared between two segmentations in the sense that a good combination should share
as much information as possible with the given N Segmentations in the ensemble.
Given a segmentation ensemble 4 = {S1, ..., Sy} of N segmentations and a set of
combination solutions, ST ={ S[y, ..., Sy}, where SL covers all possible K & [Kmin,
Kmax] segmentations. Our optimality criterion-based on NMI is proposed to implicitly
determine the optimal K by selecting the optimal combination segmentation S[] as the

one with maximal average mutual information among all individual segmentation S; in S

S = argmax ANMI(S, S)
S
and

- 1 & R
ANMI(S, S) = NZNM](S, S,)
g=1
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If we replace S[| by a universe U of all possible segmentations of an image, then S
would represent the optimal segmentation in accordance with the generalized median
concept of the input ensemble [35]. Therefore, our approach can be regarded as an
approximation of generalized median segmentation by investigating the subspace of U
consisting of the combination segmentations for all possible K & [Kmin, Kmax] 0nly. In
this work, we use this optimal combination segmentation approach as an approximation
of generalized median segmentation computation and define the approximate GM-based
quality of each individual segmentation in the ensemble S; as the amount of mutual
information share between §; and the approximation of generalized median

segmentation STJ:
GM _NMI(S,) = NMI(S,S,) (4)

It is interesting to note that this approximate generalized median approach does not
restrict to the context of image segmentation. It can be applied to cluster ensemble

problem in general context.

context of image segmentation. It can be applied to cluster ensemble problem in
general context.

4.2.3. Performance evaluation

We evaluate the ability of our approximate GM-based quality measure by comparing its
performance with the two well-known quality measures, namely, the internal quality
measure based on NMI (SNMI) [26] and the minimum description length-based quality

measure (MDL) [36].

SNMiI-based accuracy measure: SNMI| is an internal quality measure based on NMI
first introduced by Strehl and Ghosh for designing consensus functions [26]. Given an
ensemble E of r clustering solutions denoted by E = {Cy,..., C,}, Strehl and Ghosh

suggested that a good consensus clustering should maximize the following criterion:

SNMI(C,E) = Z NMI(C,C,) (5)
i=1

Intuitively, if a clustering C maximizing SNMI, it maximizes the information shared
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among the clusterings in the ensemble, thus a clustering C Can be considered to best
capture the information contained in the ensemble. The NMI value is maximized to be
one if two clusterings define the same partition of the data. In contrast, if two

clusterings define completely independent partitions, the NMI value is O.

This objective function was later used by Fern and Lin [5] to measure the quality of
each clustering solution in the ensemble and refer this objective function as the sum of
NMI (SNMI). They proceed to apply SNMI to measure the quality of each clustering
solution in the ensemble as following: Given a large library of clustering solutions L =
{C4,..., C} to select from, they use SNMI(C;, L) to measure the quality of each
clustering solution C;, in the sense that how well a particular clustering agrees with the

general trend contained in L. The higher the value, the higher is the quality.

MDL-based quality measure: A more sophisticates approach is based on the minimum
description length (MDL) principle. The MDL principle is a method for inductive
inference that provides a generic solution to the model selection problem originally
proposed by Rissanen [37]. The MDL was first used for the problem of image
segmentation by Leclerc [38] and followed by several works such as [36, 39]. The
difference between them lies in the term they used to encode the image data (e.g.
texture information, region boundary information, color information). MDL-based
objective function we used in the experiments is introduced by Rao et.al [36] for the
image segmentation problem because of its performance and computational efficiency.
Rao et.al used the MDL principle to encode both the texture and boundary information
of a natural image and defined the optimal segmentation of an image as the one that
minimizes its total coding length. In our case, we used this objective function to
measure the quality of individual segmentations in an ensemble. The shorter the total
coding length, the better the quality. For more detail of this algorithm we refer the

reader to [36]

The differences between the three quality measures are the followings: i) Only MDL
approach the performance does not depend on the quality of the input ensemble; and ii)
MDL-based approach is a problem-specific method and can be used only if the original
features of the clustered members are available, while the GM and SNMI approaches

can be applied in general context.

A library of segmentation results: we used segmentation ensemble produced in
Chapter 4 as a segmentation library to select from, namely FH ensembles, MS
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ensembles and JSEG ensembles. We did not use NC ensembles in this experiment (as
well as in the following experiments) because it has very low diversity and the nature of
its segmentation results (only differ in the number of regions) is not suitable for

combination approach.

Performance evaluation: The performance of the three quality measure for selecting
high quality ensemble members is shown in Figure 4.1, each pair for each set of
ensembles. Their performances are compared in term of diversity and accuracy of the
selected segmentations. The first plot of each pair shows the average accuracy of the
selected segmentations over all 300 images. The performance curve is plot starting
from selecting one segmentation until the full ensemble (24 segmentations) is reached.
It is expected that the performance curve decreases as the number of selected
segmentations increases. The second plot of each pair shows the average pairwise
diversity of the selected segmentations over all 300 images. It is expected that the
diversity curve increases as the number of selected segmentations increases. The
experimental results show that MDL-based measure has the lowest performance for
selecting high quality segmentations for all sets of ensembles, except for the first nine
segmentation selections of FH ensembles. SNMI performs the best for FH ensemble
and performs comparable to approximate GM for MS and JSEG ensembles. The
segmentations selected by SNMI and approximate GM have similar diversity, while the
segmentations selected by MDL have the highest diversity for all cases. This is not
surprising since we expect the ensembles with high quality to have high redundancy in

the chosen segmentations.
4.2.4. Quality-based selection algorithm

Given a large ensemble of segmentation solutions L, the selection algorithm simply
ranks all segmentation solutions in L based on their qualities as measured by one of
the quality measures defined above and selects the k-highest quality segmentations to

form a new ensemble, where £ is the desired ensemble size.
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Figure 4.1. The performance of the three quality measures of selecting the high quality members

from an ensemble compared in term of diversity and accuracy of the selected segmentations: FH
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4.2.5. Experimental results

In this section, we examine the performance of the ensembles produced by the above
defined selection criteria and compare them with the performances of the full ensemble
approach. The experiments are conducted using two ensemble sizes, namely 6 and 12
segmentations per ensemble (A full ensemble consists of 24 segmentations.). The
average diversity/accuracy of ensembles produced by the three quality-based selection
methods are shown in Figure 4.1, and the average diversity/accuracy of ensembles
produced by the diversity-based selection method are shown in Table 4.1. The average
accuracy of ensembles produced by the diversity-based selection method is relatively
low. The diversity-based method tends to favor low quality segmentations to high quality
segmentation. This is due to the low quality segmentations generally have high variation
in their errors and thus, the diversity among them is much higher than the diversity

among the high quality segmentations.

Table 4.1. The average diversity/accuracy of ensembles built by the diversity-based selection

method
Ensemble FH ensembles MS ensembles JSEG ensembles
Ensemble size 6 12 6 12 6 12
Avg. ensemble diversity 0.5413 0.5524 0.5572 0.5653 0.4864 0.5117
Avg. ensemble accuracy 0.4005 0.3627 0.3539 0.3208 0.4639 0.4047
FH ensembles M3 ensembles JSEG ensembles
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Figure 4.2. The combination performance of the four ensemble selection methods: FH ensembles

(left), MS ensembles (middle) and JSEG ensembles (right).
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The plots in Figure 4.2 show the average performance of each selection method over
all 300 images. The 24 segmentations per ensembles (the last point of each curve) in
each plot is the performance of the full ensemble approach. We plot it in the graph just

for comparison purpose.

As we expected ensembles produced by the diversity-based selection method perform
the worst in all cases. This is not surprising. If we compare this situation to the case of
analyzing classifier combinations in supervised learning, where the output of a clustering
algorithm is modeled without referring to any property of the algorithm, the segmentation
generated by an algorithm is interpreted as a noisy version of the ground truth
segmentation. The segmentations in the ensemble produced by the diversity-based
selection method would be significantly noisier than the segmentations in the ensemble
produced by the quality-based selection methods. Consequently, the chance of the
combination algorithm to discover the true underlying segmentation is low. This situation
suggests that the ensemble diversity will play an important role in the ensemble
combination provided that the quality of the individual segmentations in the ensemble

should be good.

Among the three quality-based selection methods, the MDL-based can obtain the
highest combination performance for FH and JSEG ensembles. Especially for the FH
ensembles, MDL-based selection method outperforms the full ensemble approach. The
performance of approximate GM-based is superior to the performance of SNMI-based

for all cases, except for FH ensembles. The experimental results suggest that:

® Using quality or diversity alone may not consistently achieve improved
combination performance. As we have seen, none of the simple selection
approaches outperforms the full ensemble, except for the case of MDL-based

method on FH ensemble.

® |n order to gain high improvement of combination performance, the diversity
among ensemble members is not necessarily high. For example, the
performance of approximate GM-based selection method is superior to the
performance of diversity-based method for MS ensembles of size 12, and is
comparable to the performance of diversity-based method for JSEG

ensembles, even though the ensembles provided by approximate GM-based
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selection method have the average diversity significantly lower than the

ensembles provided by diversity-based method.

® |f we are interested in building a new ensemble based on quality-based
selection method, in order to reliably select a good subset of solutions, we
need to look for a way to diversify the ensemble. It is obvious that the
diversity obtained from different parameter settings of the same segmentation
algorithm is not sufficient to boost the combination performance, since high
quality segmentation results of the same segmentation algorithm exhibit highly
redundancy to each other. Thus, our task is to find a way to diversify the high

quality ensembles, particularly, without degrading the ensemble accuracy.

4.3. Hybrid ensemble structures

Different segmentation algorithms generally produce different segmentation results of
the same input image, especially on complex images such as natural images. The
difference is greatly due to the way the segmentation algorithms emphasize one or
more of their desired properties of segmentation results and the way they balance and
compromise one desired property against another, hence, resulting in a variation in
segmentation results. Figure 4.3 illustrates three sets of different segmentation results
produced by FH, MS and JSEG algorithms. Each row shows the three best
segmentation results of a given image for each of segmentation algorithms. The three
best segmentation results is selected from 24 segmentation results (according to 24
parameter settings defined in the previous section) by using our approximate GM-based
quality measure. The first observation is that the segmentation results produced by
different algorithms exhibit different natures, while the segmentation results produced by
the same segmentation algorithm exhibit similar natures. Consequently, it seems difficult
to achieve a high diverse ensemble with high accuracy by using a single segmentation
algorithm. The second observation is that the variation in the segmentation solutions
received from different algorithms is due to the different bias or criteria that they used
during their functioning. Thus, different algorithms would discover very different
structures in a given set of data. Moreover, the errors made by them have low
correlation to each other. This is exactly the property of segmentations ensemble we

are looking for: we prefer the individual members of the ensemble to have high accuracy,
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while preserve high diversity among them in such a way that they have low correlation
between their errors, so that they will be corrected by the opinions of the whole ensemble.
For this purpose we may apply various segmentation methods (each perhaps run with
multiple parameter sets) in order to build a new segmentation ensemble. Thus, we

proposed to build a new ensemble in the following steps.

® \We used multiple segmentation algorithms to segment an input image.

® For each segmentation algorithm, multiple segmentation results of the same
input image are produced by varying the parameter settings of the algorithm.
The reason of producing multiple segmentation results using different
parameter settings is that typically it is not easy to know the optimal
parameter setting for one particular image in advance. Hence, in order to have
a chance to receive good segmentation results, we have to produce quite a
number of the segmentation results for selection in the next step.
® \We select the k-best segmentation results from each segmentation ensemble
produced by each segmentation algorithm by using one of the segmentation
validity measures defined above.
® Form a new segmentation ensemble by including all selected segmentation
results.
By doing this way we do not have to tradeoff the quality of the individual segmentations
in an ensemble for the diversity like other previous works [3,5]. By using multiple

ensemble structures, we are able to gain additional diversity within the loss of the best

ensemble quality.

29



NMI = 0.5421 NMI = 0.571
(a) FH algorithm

- e T T i B —

NMI = 0.6323
(b) MS algorithm

. et LT

NMI = 0.6238 NMI = 0.6118 NMI = 0.5729
(c) JSEG algorithm

Figure 4.3 lllustrate behaviors of three different segmentation results produced by three image
segmentation algorithms. Each row shows the three best segmentation results of a given image for

each of FH, MS and JSEG algorithms.

4.3.1. Experiments

In this experiment, we use three segmentation ensembles, namely FH, MS and JSEG
ensembles, produced in Section 4.2 as the library of segmentation solutions to select
from. Each ensemble comprises of 24 segmentation results produced by 24 parameter
settings of each baseline segmentation algorithm. The three quality measures, namely
approximate GM-based, SNMI-based and MDL-based, will be applied for building hybrid
ensembles. In addition, in order to indicate that the performance improvement we
achieve is not due to chance, the performance of the three quality measures will be

compared with a random selection strategy (will be referred to as RND-based). In a
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random selection strategy we simply randomly select k segmentation results from each
set of ensembles to form a new segmentation ensemble. We evaluate our hybrid
ensemble approach in two experiment scenarios. In the first scenario ensembles are
constructed by including segmentation results selected from two different ensemble
structures and will be referred to as 2-Hybrid ensembles, which are FH+MS, FH+JSEG,
and MS+JSEG ensembles. Similarly, the second scenario constructs ensembles by
selection segmentation solutions from three different ensemble structures and will be
referred to as 3-Hybrid ensembles, which is FH+MS+JSEG ensemble. The experiments

conducted on all 300 images in the database.

4.3.2. Diversity and accuracy of the ensembles

The experiments are conducted using three different ensemble sizes, namely 6, 12 and
24 segmentations per ensemble. For the 2-Hybrid ensembles we select 3, 6, and 12
best segmentations from two different segmentation ensemble libraries for building a
new ensemble of size 6, 12 and 24 respectively. For the 3-Hybrid ensembles we select
2, 4 and 8 best segmentations from all of the three different segmentation ensemble
libraries for building a new ensemble of size 6, 12, and 24 respectively. In order to
produce unbiased results for the random selection strategy, for each image we built two
sets of ensembles independently by randomly selecting from the full ensembles. We run
the experiments on both ensembles, and then report the average results of the both
runs. Thus, the accuracy and diversity values of the RND ensembles shown in the
Figure 4.4 are the average of the accuracy and diversity values of the two random
ensembles. In addition, for random selection approach, we conduct the experiments

only for the ensemble of size 24 for both 2-Hybrid and 3-Hybrid.

The average accuracy and diversity of the four hybrid ensembles, FH+MS, FH+JSEG,
MS+JSEG, and FH+MS+JSEG ensembles, using five ensemble selection methods are
shown in the first row to the last row in Figure 4.4, respectively. The accuracy and
diversity values plotted in the graphs are the average values over all 300 images in the
database. The first plot of each pair shows the average quality of the ensembles when
the ensemble size is 6, 12 and 24 (full ensemble), while the second plot of each pair
shows the average pairwise diversity of the ensembles when the ensemble size is 6, 12
and 24 (full ensemble). The diversity-based selection method produces hybrid ensemble
with the lowest accuracy and highest diversity, whereas the RND-based selection

strategy produces ensembles with the moderate accuracy and diversity. The three
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quality-based selection methods (i.e. GM, SNMI and MDL) produce hybrid ensemble
with similar quality, while the MDL-based yields higher diversity levels. These patterns
are what we expected to see. They are consistent with the experimental results
conducted in Section 3.2 in which the behaviors of each quality-based selection
methods were studied. Obviously, by using hybrid ensemble structures we are able to

gain more diverse ensembles with the very less loss of ensemble accuracy.

4.4. Experimental results

The random walker-based segmentation combination algorithm [16] is performed on
each set of hybrid ensembles. The average combination performance over all 300
images for each set of hybrid ensembles is reported in Table 4.2 (for 2-Hybrid
ensembles) and 4.3 (for 3-Hybrid ensembles). The highest performance of each hybrid
ensemble is shown in bold. The experimental results demonstrate the great benefit we
obtained from using different ensemble structures. All hybrid ensembles remarkably
outperform single-structured ensembles (their performance illustrated in Figure 4.2) for
all cases and are able to significantly boost the performance of combination results,
even when the ensemble size is small (i.e. 6 segmentations per ensemble). As we have
seen in Figure 4.2, even for the worst case (ensembles produced by the diversity-based
selection method), we can achieve significantly improvement. As we expected the three
quality-based selection methods outperform the diversity-based and random-based

selection methods.

It is also interesting to see that the ensembles provided by diversity-based selection
method perform worse than the ensembles produced by random selection method for all
cases, even though the diversity of diversity-based ensembles is much higher than the
diversity of random-based ensembles. This may because the diversity-based ensembles
have significantly lower average performance than the random-based ensembles. This
situation denotes the important role of the quality of ensemble. The two patterns
suggest that a compromise between the diversity and accuracy, namely having fare
moderate diversity and accuracy (the random-based ensembles), is better than having

high diversity but low in quality.
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Figure 4.4 The average accuracy and diversity of the four hybrid ensembles, (a) FH+MS, (b)
FH+JSEG, (c) MS+JSEG, and (d) FH+MS+JSEG ensembles, using five ensemble selection

methods.
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Table 4.2. The average combination performance over all 300 images for the 2-Hybrid ensembles

produced by each of the five ensemble selection methods.

Ensemble FH+MS ensembles FH+JSEG ensembles MS+JSEG ensemble

Ensemble size 3+3 6+6  12+12 3+3 6+6 12+12 3+3 6+6 12+12

Diversity-based selection  0.6243 0.6314 0.6336 0.6154 0.6259 0.6304 0.6161 0.6202 0.6277

GM-based selection 0.6314 0.6360 0.6379 0.6242 0.6271 0.6343 0.6250 0.6281 0.6301
SNMI-based selection 0.6349 0.6401 0.6438 0.6269 0.6298 0.6341 0.6238 0.6277 0.6299
MDL-based selection 0.6416 0.6465 0.6461 0.6323 0.6366 0.6383 0.6238 0.6333 0.6391
RND-based selection - - 0.6370 - - 0.6350 - - 0.6300

Table 4.3. The average combination performance over all 300 images for the 3-Hybrid ensemble

produced by each of the five ensemble selection methods.

Ensemble FH+MS+JSEG ensembles

Ensemble size 2+2+2 4+4+4 8+8+8
Diversity-based selection 0.6223 0.6299 0.6321
GM-based selection 0.6396 0.6400 0.6428
SNMi-based selection 0.6412 0.6421 0.6451
MDL-based selection 0.6448 0.6490 0.6534
RND-based selection - - 0.6374

As expected, apart from a diversity-based selection method, a random selection
method performs the worst for all cases. Moreover, its performance is unimproved. It did
not show any improvement when increasing the number of segmentation algorithms
from the 2-Hybrid ensembles to the 3-Hybrid ensembles. This may be because the
ensembles produced by random selection method consist of both high-performing and
low-performing segmentation results. Intuitively, combining good and bad segmentations
together will not have the expected result. Pruning the low-performing segmentations
while maintaining a suitable ensemble diversity is obviously a better recipe for a

successful ensemble.
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As shown in Figure 4.1, the MDL-based selection method seems to build the
ensembles that compromise between the accuracy and the diversity fare better than the
other two quality-selection methods. Namely, MDL-based ensembles have insignificantly
lower quality but significantly higher diversity than GM-based and SNMI-based
ensembles. As a result, MDL-based ensembles perform the best in ensemble
combination in most cases. One possible explanation is that segmentation solutions in
GM-based and SNMI-based ensembles may have too high redundancy. Accordingly,
they are not diverse enough to compensate their errors in a combination process.

It is expected that the performance of ensemble combination improves when improves
the diversity of ensemble. However, it is important to note that if we keep increasing the
ensemble size by using the segmentation solutions selected from the same ensemble
structure until the full ensemble is reached, the combination performance will keep
growing at first and then when the accuracy of the ensemble decreases to some
specific points, the combination performance will keep decreasing. In contrast, if we
increase the ensemble size by including the segmentation solutions selected from a
different ensemble structure, we can expect to gain more improvement as the number
of ensemble size increases. This is because when the ensemble size increases, the
diversity of ensemble increases, but the accuracy of ensemble does not significantly
decreases (and perhaps increases if the new coming segmentation solution has higher
quality than the existing ones). Our claim is supported by our experimental results. We
gain more improvement when involving more segmentation algorithms in an ensemble
(i.e. from the 2-Hybrid ensembles to the 3-Hybrid ensemble).

Figure 4.5 shows the improvement of combination results in comparison with the
average performance of the input ensemble, each pair of the plots for each hybrid
ensemble, FH+MS, FH+JSEG, MS+JSEG and FH+MS+JSEG ensembles, from top to
bottom respectively. The first plot of each pair shows the average performance of
ensembles produced by each of ensemble selection methods over all 300 images, while
the second plot of each pair shows the average performance of combination results for
each ensemble over all 300 images. All plots have the same range of y-axis, so that the
performance curves in each plot can be easily compared side by side. Interestingly, we
observe that even though the ensembles produced by the diversity-based selection
method achieve the highest percent of improvement, the average combination
performances of all quality-based selection methods are superior to the average

combination performances of diversity-based selection method. These conflict behaviors
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imply that the diversity of ensemble plays an important role in the first case (i.e. high
percent of improvement), while the quality of ensemble plays an important role in the
latter case (i.e. high combination performance). Generally, we prefer the best final
combination result to the best percent of improvement. We conclude here that when the
quality of the individual segmentations in the ensemble is relatively good, the high
diversity within the ensemble is less required in order to achieve the best combination

performance.
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Figure 4.5 Comparisons between the performance of combination results and the performance of the

input ensemble, (a) FH + MS ensembiles, (b) FH + JSEG ensembles, (c) MS + JSEG ensembles
and (d) FH + MS + JSEG ensembles.
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CHAPTER 5
Quality-Based Weighed Segmentation Ensemble

The second approach for improving the performance of segmentation ensembles is a
weighted ensemble method. Contrary to an ensemble selection method, this approach
attempts to utilize all of ensemble members, however, with different level of importance
by properly assigning varying weights to different ensemble members. In this work we
proposed to use the individual quality of the ensemble members as weights. The
weights are used to discriminate the importance among the segmentation solutions in
an ensemble, so that the high quality segmentations play more important role in
ensemble combination than the low quality segmentations. Contrary to our ensemble
selection approach that prunes all low quality segmentation solutions from participating
in a combination process, the rationale behind our idea of this approach is that the
ensemble members with low quality might be of useful in some ways.

In this section we present another use of our approximate GM-based quality measure
in an application of weighted segmentation ensemble. We first define our weighting
scheme and describe how to adapt our approximate GM-based quality measure in this
scheme, and then describe how to integrate our weighting scheme into the

segmentation combination algorithm, finally report the experimental results.

5.1. Segmentation ensembles weighting scheme

The weights are simply defined by using segmentation quality measure to assess the
quality of individual segmentations in an ensemble. Given a segmentation ensemble 4 =
{S1, ..., Sn}, we compute a vector of weight W = {wy, ..., wy} using the three
segmentation measures, approximate GM-based, SNMiI-based and MDL-based
measures defined in Chapter 4, and refer them as approximate GM weighting, SNMI

weighting and MDL weighting.

Approximate GM Weighting Scheme: We first applied our approximate GM-based
quality measure defined by Eq. (4) to assess the quality of each individual segmentation
in the ensemble in order to obtain the quality values of each individual segmentations,
0 ={q, ..., gn}. Since high NMI values indicate high segmentation quality, we can
directly define the weights being proportional to these values. Before applying the

quality values as weights, the original quality values need to be normalized in such a
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way that sum of them is equal to one. In this work we simply divided each quantity by

the sum of all N values.
N
Wi ZQi/qu‘ (6)
i=1

SNMI Weighting Scheme: This scheme proceeds the similar way as the previous one.
Instead of using approximate GM-based measure, this scheme uses SNMI-based
quality measure defined by Eq. (5). Similarly, before applying the quality values as
weights, the original quality values need to be normalized in such a way that sum of

them is equal to one as defined in Eq. (6).

MDL Weighting Scheme: The MDL-based quality measure defined in Chapter 4 is a
dissimilarity measure. Its values do not lie in a range [0, 1]. Thus, we firstly need to
normalize the original values into a range [0, 1]. Then, transform the dissimilarity
measure into similarity measure by minus the normalized values by one. Finally, the
new normalized similarity values are normalized so that sum of them is equal to one

(using Eq. (6)) before applying them as the weights.

5.2.Integrating weighting scheme in segmentation ensemble combination

We describe how our random walker-based image segmentation algorithm can be
easily reformulated to include a weighting scheme for the segmentations in the
ensemble that participate to a combination process. Firstly, we will briefly describe the
random walker-based image segmentation algorithm and then describe how to integrate
the weighting scheme into it.

The basis of the random walker-based image segmentation combination algorithm
[16] is the random walker algorithm for image segmentation [40]. Given a small number
of K seeds (groups of pixels with user-defined labels), the random walker algorithm for
image segmentation [40] labels unseeded pixels by resolving the probability that a
random walker starting from each unseeded pixel will first reach each of the seeds. A
final segmentation is derived by selecting for each unseeded pixel the most probable
seed destination for the random walker. The algorithm can produce a segmentation of
high quality provided suitable seeds are placed manually. Wattuya et.al [16] adapted
this algorithm for image segmentation combination by automatically placing the seed
regions using the information provided by the input segmentation ensemble. Given such

seed regions we then face with the same situation as image segmentation with
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manually specified seeds and can thus apply the random walker algorithm [40] to
achieve a high quality combined segmentation.

The segmentation combination algorithm can be divided into three components: 1)
Generating a graph to work with, 2) extracting seed regions, and 3) computing a final
combined segmentation result using the random walker algorithm. We can easily
integrate the weighting scheme into the first component of the algorithm. In the graph
generation step an undirected graph G = (V, E, a), where each pixel x; has a
corresponding node v; € V, is formed. Each edge e; € E has a weight a;; indicating
similarity between the neighboring pixels v; and v; (in 4-neighborhood). The weight a;; of
edge ¢;; is defined as a Gaussian weighting function of a coassociation value between

two neighboring pixels x; and x; as:

_pa i
A=)

aijze

where n;; is the number of times a pair of pixels x; and x; is assigned to the same region
among the N initial segmentations. Low edge weights indicate high probabilities of
region boundary evidence between two neighboring pixels and avoid a random walker

crossing these boundaries.

We apply the weighting scheme into the term of coassociation value (i.e. n;;) as

N
_ (k)
n; = Zwknl-j
k=1

where nlg-k) is equal to one if a pair of pixels x; and x; is assigned to the same region in
the segmentation solution produced by the kth segmenter and is equal to zero
otherwise. In this sense our weight wy can be considered as a confidence level of the
kth segmenter to decide whether the pair of pixels x; and x; should belong to the same
region or not. The higher the value of wy indicates the higher confidence of the kth
segmenter to produce the segmentation result. Thus, it is intuitive to weigh the high
quality segmentation results with higher weights than the low quality segmentation

results.
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5.3. Experimental results

Our approximate GM weighting scheme is validated on FH, MS, JSEG and
FH+MS+JSEG ensembles in comparison with SNMI and MDL weighting scheme. The
random walker-based segmentation combination algorithm equipped with each
weighting scheme is performed on FH, MS, JSEG and FH+MS+JSEG ensembles of all
300 images in the database. The average combination performance over all 300 images
when applying each of the weighting schemes for each ensemble set is reported in
Table 5.1. The highest performance of each ensemble set is shown in bold. In order to
demonstrate the improvement of combination performance when using the weighting
scheme, the combination performances without employing weighting schemes are

shown in the last row of the table.

The experimental results show that using the proposed weighting schemes we are
able to produce final segmentation results that are as good as or better than the final
segmentation results combined without weighting scheme. However, in comparison with
quality-based hybrid-ensemble selection approach, weighting schemes do not have high
beneficial impact the combination performance as in the first approach. The
approximate GM weighting scheme slightly outperform the other weighting scheme on
the most cases, especially for FH ensembles. MDL-based and SNMiI-based quality
measures seem not successfully applied in a weighted ensemble framework. For the
case of MDL-based, the ability of validating the quality of segmentations of MDL is
relatively low in comparison with approximate GM and SNMI (as shown in Figure 4.1).
Consequently, MDL may not correctly give priority to high quality segmentations in a

combination process. For the case of SNMI weighting scheme is quite surprising since

Table 5.1. The average combination performance over all 300 images when applying three weighting

schemes.
Weighting scheme  FH ensembles MS ensembles  JSEG ensembles FH+MS+JSEG
ensembles (8+8+8)
GM 0.6207 0.6288 0.6105 0.6566
SNMI 0.6180 0.6265 0.6091 0.6563
MDL 0.6186 0.6285 0.6096 0.6562
Without weighting 0.6179 0.6267 0.6108 0.6534
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the ability of validating the quality of segmentations of SNMI is quite similar to
approximate GM. To further investigate we found that SNMI values can be effectively
used to discriminate between good and bad segmentation results, however, the
differences of SNMI values between good and bad segmentation results are relatively
small. Consequently, when applying SNMI values as the weights, they cannot effectively
emphasize good and bad segmentations in a combination process. In contrast,
approximate GM can successfully apply in a weighted ensemble framework because
their GM_NMI values between good and bad segmentation results are relatively large.
Hence, they can effectively emphasize good and bad segmentations in a combination

process.
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CHAPTER 6

Conclusion

We conducted extensive empirical study to investigate the two properties of
ensemble that crucial impact the performance of final combination results. Observations
gained from the study are fundamental to the design of our ensemble selection method.
In this study we have shown that finding a way to achieve high percent of improvement
of the combination results over the initial segmentations is not as hard as finding a way
to achieve the best possible combination results. The key requirement for achieving
high percent of improvement is just building an ensemble with suitable level of diversity.
However, this is not the case for achieving the best possible combination results. Thus,
we proposed a new ensemble selection method which is based on quality of the
ensemble. The key idea of our method is to maximize the quality of a new ensembile,
while retain a suitable degree of diversity within an ensemble. In order to generate a
new ensemble with maximum accuracy, a novel quality validating measure based on
the generalized median concept was proposed. To the best of our knowledge, our work
is the first attempt to apply the generalized median concept to this context which
introduces a new application of generalized median. However, the major disadvantage
of building very high quality ensemble is a very low diversity within the ensemble which
certainly has adverse effect on the combination results. Hence, we circumvent this
weakness by diversifying our ensemble by using different ensemble generation models.
By this way we are able to gain a suitable degree of diversity without the loss of quality.
Extensive experiments on a large image database have been conducted to evaluate the
effectiveness of our proposed method. Experimental results demonstrate that our
quality-based hybrid ensemble method performs the best in all cases. Finally, we have
presented another use of our approximate GM-based quality measure in an application
of weighted segmentation ensemble. Experimental results show that our approximate
GM-based quality measure can successfully apply in an application of weighted

segmentation ensemble as well.

We conclude here with the major contributions of this work: i) we illustrated the
influence of the quality and diversity of individual ensemble members on the
combination performance with empirical results and identified their important roles in the
ensemble combination; ii) we present a new ensemble selection method based on

quality of ensemble and different ensemble structures, and demonstrate its
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effectiveness for producing high quality combination results; iii) we introduced a novel
use of generalized median concept to validate the quality of individual ensemble
members and demonstrate its effectiveness in applications of ensemble selection and

weighted ensemble.
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Case-Based Reasoning in Model Order Selection for Image Segmentation
Ensemble, Proceedings in The 26th Annual Conference of Japanese Society

for Artificial Intelligence, Yamaguchi city, Japan, June 12-15, 2012

Abstract

The desired number of clusters in clustering problem is generally not
known in advance. In this work, we propose to use case-based reasoning as
a novel problem solving technique for automatic model order selection with
application to image segmentation ensemble. Soft computing technique is
integrated in our case-based reasoning to handle ambiguity and uncertainty
in image data. Given the fact that we do not know the optimal number of
regions for a particular image in advance, the comparative performance of
our approach is remarkable and reveals its potential in dealing with the
difficult model order selection without ground truth. Moreover, our approach
can be easily integrated into a general class of image segmentation system
that prevents a segmentation algorithm from exhaustively searching for
optimal segmentations. Extensive experiments on 300 images have been
conducted and our preliminary results show the effectiveness of our

approach.
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