

รายงานวิจัยฉบับสมบูรณ์

โครงการสารเก็บประจุไฟฟ้าเคมียิ่งยวดนาโนแมงกานีส ออกไซด์บนวัสดุรองรับคาร์บอนนาโนโฟม

โดย ดร. มนตรี สว่างพฤกษ์

มิถุนายน ๒๕๕๖

รายงานวิจัยฉบับสมบูรณ์

โครงการสารเก็บประจุไฟฟ้าเคมียิ่งยวดนาโนแมงกานีส ออกไซด์บนวัสดุรองรับคาร์บอนนาโนโฟม

ดร. มนตรี สว่างพฤกษ์ ภาควิชาวิศวกรรมเคมี มหาวิทยาลัยเกษตรศาสตร์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

โครงการวิจัยนี้ จะไม่สามารถประสบความสำเร็จได้หากขาดทุนวิจัยจาก สกว.และสกอ. และความ ช่วยเหลือจากบุคคลหลายท่าน

ขอขอบคุณที่ปรึกษาโครงการ ศ. ดร. จำรัส ลิ้มตระกูล ที่กรุณาให้ความรู้ คำปรึกษาและชี้นำแนวทาง ในการดำเนินโครงการวิจัย แนวทางการแก้ปัญหาต่าง ๆ ทั้งทางด้านทฤษฎีและปฏิบัติรวมทั้งแก้ไข โครงการวิจัยฉบับนี้ให้มีความถูกต้องสมบูรณ์มากยิ่งขึ้น

ขอขอบคุณภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ และเจ้าหน้าที่ที่ เกี่ยวข้องทุกคน ที่เอื้อเพื้อสถานที่อำนวยความสะดวกในการทำโครงการวิจัย รวมทั้งให้นักวิจัยใช้เครื่องมือ และอุปกรณ์ต่างๆ ที่เป็นประโยชน์กับการทำโครงการวิจัยในครั้งนี้

ขอขอบคุณศูนย์นาโนเทคโนโลยี คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ที่เอื้อเฟื้อเครื่องมือ วิเคราะห์ขนาดอนุภาคสำหรับวัดขนาดอนุภาคในระดับนาโนเมตร

มนตรี สว่างพฤกษ์

หัวหน้าโครงการ

มิถุนายน 2556

สารบัญ

	หน้า
สารบัญ	ก
สารบัญรูปภาพ	ନ
สารบัญตาราง	J
บทคัดย่อ	จ
Abstract	ช
บทที่ 1 บทนำ	1
1.1 ความสำคัญและที่มาของโครงการ	1
1.2 จุดประสงค์ของโครงการ	2
1.3 ขอบเขตของการวิจัย	2
บทที่ 2 วิธีการทดลอง	4
2.1 สารเคมี และวัสดุ	4
2.2 อุปกรณ์ที่ใช้ในการทดลอง	5
2.3 การตะกอนด้วยไฟฟ้า หรือ เทคนิคอิเล็คโตรเด็พโพซิชัน	6
2.4 การสังเคราะห์แมงกานีส (IV) ออกไซด์ ด้วยเทคนิคทางเคมีโดยปฏิกิริยาออกซิเดชันของ	6
แมงกานีส (II) อะซีเตต	
2.5 การสังเคราะห์แมงกานีสออกไซด์ โดยใช้สารควบคุมโครงสร้างโพลิไวนิลไพโรริโดนและใช้	9
เอทิลีน ไกลคอล เป็นตัวทำละลาย	
2.6 การสังเคราะห์แมงกานีสออกไซด์ โดยใช้สารควบคุมโครงสร้างโพลิไวนิลแอลกอฮอล์ และใช้เอ	10
ทิลีน ไกลคอล เป็นตัวทำละลาย	
2.7 การเตรียมนาโนแมงกานีสออกไซด์ที่ใช้โพลิสไตรีนเป็นแม่แบบ	10
2.8 การตรวจวัดขนาดอนุภาคและค่าการกระจายของตัวอนุภาค ของแมงกานีสออกไซด์ และการ	10
วิเคราะห์เชิงโครงสร้างและสัณฐานวิทยา	
2.9 การประเมิณเชิงเคมีไฟฟ้า	11
บทที่ 3 ผลการทดลอง	12
3.1 สัณฐานวิทยาของพื้นผิวและโครงสร้างของแมงกานีสออกไซด์ที่เตรียมจากเทคนิคอิเล็คโตรเด็พ	12
โพซิชัน	
3.2 แมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคทางเคมี โดยทำการปรับเปลี่ยนปัจจัยต่างๆ	14
3.2.1 ผลของอัตราส่วนระหว่างแมงกานีสอะซิเตตต่อกรดซิตริก	15
3.2.2 ผลของตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์	16
3.2.3 ผลของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้าง	17
3.3 สัณฐานวิทยาและโครงสร้างของอนุภาคนาโนแมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคโพลิออล	18
โดยใช้สารควบคุมโครงสร้างโพลิไวนิลไพโรริโดน และใช้ เอทิลีน ไกลคอล เป็นตัวทำละลาย	
3.4 สัณฐานวิทยาของนาโนแมงกานีสออกไซด์ที่ใช้โพลิสไตรีนเป็นแม่แบบ	19
3.5 การประเมิณเชิงไฟฟ้าเคมี	21

	หน้า
3.5.1 แมงกานีสออกไซด์ที่เตรียมจากเทคนิคอิเล็คโตรเด็พโพซิชัน	21
3.5.2 แมงกานีสออกไซด์ที่เตรียมจากเทคนิคโพลิออลและที่ใช้โพลิสไตรี	23
เป็นแม่แบบ	
บทที่ 4 สรุปผลการทดลอง	27
4.1 นาโนแมงกานีสออกไซด์และวัสดุผสมที่เตรียมด้วยเทคนิคการตกตะกอนด้วยกระแสไฟฟ้า	27
4.2 นาโนแมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคการตกตะกอนด้วยกเทคนิคโพลิออลและใช้โพ	27
ลิสไตรีนเป็นแม่แบบ	
4.3 ข้อเสนอแนะสำหรับงานวิจัยในอนาคต	28
อ้างอิง	28
ภาคผนวก	30

สารบัญรูปภาพ

	หน้า
รูปที่ 1 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของวัสดุผสมโลหะเงินกับ แมงกานีสออกไซด์ เตรียมโดยการใช้ (a) CTAB, (b) SDS, (c) ไม่ใช้สารลดแรงตรึงผิว และ (d) ฟิล์มบริสุทธิ์ของแมงกานีสออกไซด์	13
รูปที่ 2 เอ็กซเรย์สเปกตราของ (a) ${ m MnO_2}$ และ (b) ${ m Ag-doped\ MnO_2}$ และ (c) อีดีเอกซ์ สเปกตรัม ของ ${ m Ag-doped\ MnO_2}$	14
รูปที่ 3 ขนาดอนุภาคแมงกานีสออกไซด์ของสารตัวอย่างลำดับที่ 2 ที่อัตราส่วนระหว่าง แมงกานีสอะซิเตตต่อกรดซิตริกเป็น 5:5 จากกล้องจุลทรรศน์แรงอะตอม	16
รูปที่ 4 (a) รูปถ่ายจากกล้องจุลทรรศน์แบบส่องผ่าน และ (b) เอ็กซเรย์ดิฟเฟกชันสเปกตรัม ของอนุภาคนาโนแมงกานีสออกไซด์	18
รูปที่ 5 ภาพถ่ายจากกล้องจุลทรรศน์แบบส่องกราด (a-c) ผลึกคอลลอยด์แม่แบบของ อนุภาคทรงกลมโพลิสไตรีนที่มีขนาดอนุภาค 200, 400, และ 900 นาโนเมตร ตามลำดับ และ (d-f) ขั้วไฟฟ้าสามมิติของนาโนแมงกานีสออกไซด์ที่ถูกเตรียมจากการใช้แม่แบบ อนุภาคทรงกลมโพลิสไตรีน	20
รูปที่ 6 (a) ไซคลิกโวลเทมโมแกรมของ MnO ₂ และ Ag-doped MnO ₂ บนคาร์บอนนาโนโฟม ใน 0.5 โมลาร์ โซเดียมซัลเฟต ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที (b) ค่าการเก็บ ประจุไฟฟ้าเคมีจำเพาะที่อัตราเร็วในการสแกนต่างๆ	22
รูปที่ 7 (a) ไชคลิกโวลเทมโมแกรมของ Ag/MnO ₂ (CTAB) ที่ สแกนต่างๆ (2-2000 รอบ) และ (b) ค่าการเก็บประจุไฟฟ้าเคมีจำเพาะ ที่สแกนต่างๆ (2-2000 รอบ)	22
รูปที่ 8 กราฟในคิสทของขั้วไฟฟ้าของตัวเก็บประจุไฟฟ้าเคมียิ่งยวดใน 0.5 โมลาร์โซเดียม ซัลเฟต ที่ 5 มิลลิโวลต์ จาก 100 kHz ถึง 1 mHz	23
รูปที่ 9 (a) ไซคลิกโวลเทมโมแกรม (b) กราฟแสดงการบรรจุและคายพลังงาน (c) กราฟ เปรียบเทียบเสถียรภาพของขั้วไฟฟ้าที่ถูกเตรียม และ (d) กราฟไนคิสทของขั้วไฟฟ้าที่ถูก เตรียม	26

สารบัญตาราง

	หน้า
ตารางที่ 1สารเคมีและวัสดุที่ใช้ ความบริสุทธิ์ และแหล่งที่มา	4
ตารางที่ 2 สภาวะในการสังเคราะห์แมงกานีสออกไซด์จากแมงกานีสอะซีเตต	8
ตารางที่ 3 ผลของอัตราส่วนระหว่างแมงกานีสอะซิเตตต่อกรดซิตริก กับขนาดอนุภาคและ	15
ค่าการกระจายตัว	
ตารางที่ 4 ผลของตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์ต่อขนาดอนุภาค และค่าการ	16
กระจายตัว	
ตารางที่ 5 ผลของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้างต่อขนาดอนุภาค และ	17
ค่าการกระจายตัว	

บทคัดย่อ

รหัสโครงการ MRG5480195

ชื่อโครงการ สารเก็บประจุไฟฟ้าเคมียิ่งยวดนาโนแมงกานีสออกไซด์บน

วัสดุรองรับคาร์บอนนาโนโฟม

ชื่อนักวิจัย ดร. มนตรี สว่างพฤกษ์

ภาควิชาวิศวกรรมเคมี มหาวิทยาลัยเกษตรศาสตร์

E-mail Address fengmrs@ku.ac.th

ระยะเวลาโครงการ มิถุนายน 2554 – มิถุนายน 2556

ปัจจุบันโลกกำลังเผชิญปัญหาโลกร้อนและขาดแคลนพลังงาน ดังนั้นประชาคมวิจัยจึงต้องให้ความสำคัญต่อ พลังงานทางเลือก และพลังงานสะอาดเพิ่มมากขึ้น ตัวอย่างเช่น พลังงานแสงอาทิตย์ และพลังงานลม กำลังได้รับความ สนใจอย่างมาก เนื่องจากเป็นพลังงานหมุนเวียนและยั่งยืนอย่างไรก็ตามในการนำพลังงานหมุนเวียนมาใช้ จำเป็นต้องมี ตัวเก็บพลังงานคุณภาพสูง เพื่อเก็บพลังงานไว้ใช้ในช่วงเวลาที่ไม่มีแสงอาทิตย์ และไม่มีลม เป็นต้น ตัวเก็บพลังงาน เช่น แบตเตอรี่และตัวเก็บประจุที่มีคุณภาพสูงมีความสำคัญอย่างยิ่ง ปัจจุบันตัวเก็บพลังงานดังกล่าวยังมีคุณภาพต่ำ ราคาแพง ไม่คงทน ไม่เพียงพอต่อความต้องการ อีกทั้งเก็บพลังงานต่อหน่วยปริมาตรของตัวเก็บพลังงานได้ต่ำ และ อายุการใช้งานสั้นสร้างปัญหาเรื่องขยะที่ทำลายยาก เป็นมลพิษต่อสิ่งแวดล้อม ด้วยข้อจำกัดดังกล่าวจึงทำให้พลังงาน ทางเลือกยังไม่ได้ถูกนำมาใช้มากเท่าที่ควร

วัสดุแมงกานีสออกไซด์ถูกใช้เป็นขั้วไฟฟ้าของแบตเตอรี และกำลังได้รับความสนใจในฐานะขั้วไฟฟ้าของตัวเก็บ ประจุไฟฟ้าเคมียิ่งยวด เพราะมีราคาถูก ใช้เทนรูทีเนียมออกไซด์ที่ปัจจุบันถูกใช้ทำขั้วไฟฟ้าของตัวเก็บประจุไฟฟ้าเคมี ยิ่งยวดแต่มีราค่าค่อนข้างแพง ค่าการเก็บประจุไฟฟ้าเคมีของฟิล์มหนาแมงกานีสออกไซด์ (มากกว่า 100 ไมโครเมตร) จะเก็บประจุไฟฟ้าเคมีได้ค่อนข้างต่ำประมาณ 150-250 ฟารัดต่อกรัม ถือว่าน้อยกว่า 720 ฟารัดต่อกรัมของรูทีเนียม ออกไซด์ เนื่องจากการนำไฟฟ้าของฟิล์มหนาแมงกานีสออกไซด์ค่อนข้างต่ำ ในทางตรงกันข้ามการเก็บประจุไฟฟ้าของ ฟิล์มบางแมงกานีสออกไซด์ (น้อยกว่า 5 ไมโครเมตร) จะมีข้อจำกัดเรื่องเสถียรภาพ

ในงานนี้จึงมีเป้าหมายในการเตรียมวัสดุแมงกานีสออกไซด์ให้สามารถเก็บปะจุไฟฟ้าเคมีมากกว่า 720 ฟารัดต่อ กรัมของรูที่เนียมออกไซด์ โดยใช้เทคนิคการเตรียมด้วยเทคนิคการตกตะกอนด้วยกระแสไฟฟ้าและกระบวนการพอลิ ออล โดยคาร์บอนนาโนโฟม วัสดุที่มีพื้นผิวสูง (600 ตารางเมตรต่อกรัม) ถูกใช้เป็นวัสดุรองรับ ผลการวิจัยพบว่า ขั้วไฟฟ้าของวัสดุผสมระว่างเงินและแมงกานีสออกไซด์ ที่มีสัณฐานวิทยาแบบใบไม้และมีรูพรุนสูงคล้ายโฟมบนวัสดุ รองรับคาร์บอนนาโนโฟมถูกเตรียมจากการใช้เทคนิคการตกตะกอนด้วยกระแสไฟฟ้าโดยใช้สารลดแรงตรึงผิวในฐานะ แม่แบบ โดยสารลดแรงตรึงผิว โซเดียมโดเดซิลซัลเฟต และซีทิลเมทิลแอมโมเนียมโบรไมด์ถูกใช้ทำ ถูกใช้เป็นแม่แบบ ผ่านโครงสร้างไมเซลแบบครึ่งทรงกลมบนผิวของขั้วไฟฟ้า การเติมโลหะเงินไปในโครงสร้างของแมงกานีสออกไซด์ช่วย เพิ่มค่าการนำไฟฟ้าของวัสดุผสม และควบคุมโครงสร้างของวัสดุผสมโดยการใช้สารลดแรงตรึงผิวทำให้ได้สารที่มีรูพรุน ส่งผลให้การเคลื่อนที่ของมวลสารละลลยอิเล็คโตรไลต์ได้รวดเร็วมากขึ้น ค่าการเก็บประจุไฟฟ้าเคมีจำเพาะ ของวัสดุ ผสมที่มีรูพรุนสูงที่ถูกวัดในสารละลาย 0.5 โมลาร์ โซเดียมซัลเฟตที่อัตราเร็วในการสแกน 1 มิลลิโวลต์ต่อวินาที มี ค่าประมาณ 800 ฟารัดต่อกรัม ค่าการเก็บประจุไฟฟ้าเคมีดังกล่าวสูงกว่าวัสดุแมงกานีสออกไซด์ตัง 2.7 เท่า และสูง กว่าวัสดุผสมระหว่างโลหะเงินและแมงกานีสออกไซด์ที่ปราศจากการใช้สารลดแรงตรึงผิวถึง 1.4 เท่า อีกด้านหนึ่ง อนุภาคนาโนของแมงกานีสออกไซด์ ที่มีขนาดเส้นผ่านศูนย์กลาง 1.8 ± 0.2 นาโนเมตรถูกเตรียมตัวยกระบวนการโพลิ ออล อนุภาคนาโนของแมงกานีสออกไซด์ ดังกล่าวถูกนำมาใช้เป็นสารตั้งตันสำหรับการผลิตนาโนแมงกานีสออกไซด์ ดังกล่าวถูกนำมาใช้เป็นสารตั้งตันสำหรับการผลิตนาโนแมงกานีสออกไซด์

สามมิติที่รูพรุนสูงโดยใช้แม่แบบผลึกคอลลอยด์ของอนุภาคทรงกลมโพลิสไตรีน เพื่อทำขั้วไฟฟ้าในอุปกรณ์ตัวเก็บประจุ ไฟฟ้าเคมียิ่งยวด การเก็บประจุไฟฟ้าของแมงกานีสออกไซด์สามมิติที่รูพรุนขนาดเส้นผ่านศูนย์กลาง 200 นาโนเมตร มี การเก็บประจุสูงกว่า แมงกานีสออกไซด์สามมิติที่รูพรุนขนาดเส้นผ่านศูนย์กลาง 400 และ 900 นาโนเมตร 3 และ 2 เท่า ตามลำดับ ค่าการเก็บประจุของนาโนแมงกานีสออกไซด์สามมิติที่มีเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโนเมตร ในสารละลาย 0.5 โมลาร์ โซเดียมซัลเฟตที่อัตราเร็วในการสแกน 2 มิลลิโวลต์ต่อวินาที มีค่าเท่ากับ 765 ฟารัดต้อกรัม

คำหลัก: ตัวเก็บประจุไฟฟ้าเคมียิ่งยวก แมงกานีสออกไซด์ ตัวเก็บพลังงาน

Abstract

Project Code MRG5480195

Project Title Ultrahigh Electrochemical Capacitance of Manganese Oxide

Deposited on Carbon Nanofoam

Investigator Dr. Montree Sawangphruk

Department of Chemical Engineering, Kasetsart University

E-mail Address fengmrs@ku.ac.th

Project Period June 2011-June 2013

Global warming and the shortage of fossil fuels require society to move towards sustainable and renewable energies with low carbon emission. There are increasing interests in renewable energy production from the sun and wind but the big problem in this area is that there is insufficient good electrical energy storage capacity available to store energy for use during hours of darkness and when there is no direct sunlight or there is no wind to power the electrical generators. In order to overcome this problem, high efficiency energy storage receptacles such as batteries and electrochemical capacitors (ECs) are needed. Unlike batteries, ECs can operate at high charge and discharge rates over an almost unlimited number of cycles and enable energy recovery in heavier-duty systems.

Manganese oxides (MnO_2) are an important and well-studied class of electrode materials for batteries, and have more recently been investigated as electrochemical capacitors (ECs) and it is envisaged that MnO_2 will serve as a low-cost replacement for hydrous RuO_2 , the state-of-the-art EC metal oxide. When prepared as micrometer-thick deposits (> 100 μ m) or in composite electrode forms containing carbon and binders, MnO_2 delivers a specific capacitance of ~150-250 F/g, which is competitive with carbon supercapacitors, but falls far short of the 720 F/g obtained with hydrous RuO_2 . The capacitance for thick MnO_2 films or conventional composite electrodes is ultimately limited by the poor electrical conductivity of MnO_2 . In turn, EC device performance using the planar ultrathin configuration is restricted because of low mass loading.

This work therefore aims to produce MnO₂ with ultrahigh capacitance (>720 F/g) at the economical mass loading level (about 0.5 mg/cm²) by using the simple electrodeposition and polyol techniques. Carbon nanofoam (CNF) with very high surface area (600 m²/g) was used as a supporting material. The results showed that Ag-doped MnO₂ pseudocapacitor electrodes with dendrite and foam-like structures were successfully produced using an electrodeposition method employing structure-directing agents i.e. sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) acting through micelle formation at solid-liquid interfaces. Doping silver with MnO₂ enhanced their electronic conductance. Controlling pseudocapacitor electrode morphologies with surfactants accelerated ion transport. The specific capacitance values of the Agdoped MnO₂ films produced with SDS and CTAB, measured in 0.5 M Na₂SO₄ at a scan rate of 1 mV s⁻¹ were about 800 F g⁻¹. These values are about 2.7-fold higher than that of the pure MnO₂ film and about 1.4-fold

higher than that of the Ag-doped MnO_2 film made without using surfactants. On the other hand, MnO_2 nanoparticles (NPs) with 1.8±0.2 nm in diameter were successfully produced using an ethylene glycol. The tiny NPs were used as precursors for producing three-dimensionally ordered macroporous (3DOM) electrodes using a colloidal crystal-templating (CCT) method. The specific capacitances of 3DOM MnO_2 electrodes depend on their pore diameters. The 3DOM electrode with about 200-nm pore diameter provides 3.0-, 2.0-, and 1.3-fold higher specific capacitance than the dense film and the 3DOM electrodes with larger pores, 400 nm and 900 nm, respectively. The ultrahigh specific capacitance of the 200-nm 3DOM electrode is 765 F g⁻¹ measured in 0.5 M Na_2SO_4 at the scan rate of 2 mV s⁻¹.

Keywords: Supercapacitor; Manganese oxide; Energy storage

บทที่ 1

บทน้ำ

1.1 ความสำคัญและที่มาของโครงการ

ปัญหาโลกร้อนและการขาดแคลนน้ำมันจากฟอสซิล ทำให้สังคมหันไปสนใจพลังงานมทางเลือกและ พลังงานหมุนเวียนปราศจากการปลดปล่อยคาร์บอนไดออกไซด์สู่สิ่งแวดล้อม [1] อย่างไรก็ตามเรายังเผชิญ ปัญหาเรื่องการขาดตัวเก็บพลังงานที่มีประสิทธิภาพสูงเพียงพอที่จะเก็บพลังงานไว้ใช้ยามต้องการ เพื่อแก้ไข ปัญหาดังกล่าว ตัวเก็บพลังงานที่มีประสิทธิภาพสูง เช่น แบตเตอรี และ ตัวเก็บประจุไฟฟ้าเคมียิ่งยวด กำลัง เป็นที่สนใจ ตัวเก็บประจุไฟฟ้าเคมียิ่งยวดมีข้อดีในแง่การบรรจุและคายพลังงานได้อย่างรวดเร็วเหนือกว่าแบตเตอรี^[2, 3]

วัสดุแมงกานีสออกไซด์กำลังได้รับความสนใจนำมาทำขั้วไฟฟ้าของตัวเก็บประจุไฟฟ้าเคมียิ่งยวดเพราะมี
คำการเก็บประจุเชิงทฤษฎีสูงถึง 1110 ฟารัดต่อกรัม⁽⁴⁾ อย่างไรก็ตาม คำการเก็บประจุไฟฟ้าเคมีของฟิล์มหนา
ของแมงกานีสออกไซด์ คือหนาประมาณ 100 ไมโครเมตร เก็บประจุไฟฟ้าเคมีได้ค่อนข้างต่ำเนื่องจากการนำ
ไฟฟ้าค่อนข้างต่ำ ในทางตรงกันข้ามการเก็บประจุไฟฟ้าของฟิล์มบางแมงกานีสออกไซด์ คือ บางน้อยกว่า 5
ไมโครเมตร จะมีข้อจำกัดเรื่องเสถียรภาพ^(5, 6) เพื่อแก้ปัญหาดังกล่าวโลหะเงินได้ถูกผสมกับแมงกานีสออกไซด์
เพื่อเพิ่มค่าการนำไฟฟ้า โดยการเติมโลหะเงินประมาณ 50 ไมโครกรัมต่อตารางเซนติเมตรของขั้วไฟฟ้า ด้วย
วิธีการตกตะกอนด้วยไฟฟ้าจะให้ค่าการประจุจำเพาะสูงถึง 770 ฟารัดต่อกรัม วัดที่อัตราเร็วในการสแกน 2
มิลลิโวลด์ต่อวินาที ในสารละลาย 0.5 โมลาร์ของโซเดียมซัลเฟต⁽⁷⁾ โดยก่อนหน้านั้นยังมีการเตรียมโลหะผสม
ระหว่างโลหะเงินและรูทีเนียมออกไซด์ โดยวัสดุผสมดังกล่าวมีค่าการเก็บประจุไฟฟ้าเคมีสูงกว่ารูทีเนียมออกไซด์บริสุทธิ์ (6)

ในงานวิจัยครั้งนี้จึงมีเป้าหมายในการสังเคราะห์นาโนแมงกานีสออกไซด์ในระดับ Economical mass คือ น้ำหนักอย่างน้อย 0.5 mg ต่อ 1 cm² ของวัสดุรองรับคาร์บอนนาโนโฟม คาร์บอนนาโนโฟมถูกค้นพบในปี ค.ศ. 1997 โดย Andrei V. Rode และคณะ แห่งมหาวิทยาลัยแห่งชาติออสเตรเลีย คาร์บอนนาโนโฟมมี โครงสร้างคล้ายโฟม น้ำหนักเบา มีรูพรุนสูง แต่ละ sp² คาร์บอนอะตอมต่อกันแบบห้าเหลี่ยม (Pentagon) และ หกเหลี่ยม (Hexagon) รวมกันเป็นแผ่น ม้วนรวมกันหลายๆ แผ่นกลายเป็นกลุ่มที่มีขนาดประมาณ 6 นาโน เมตร คาร์บอนนาโนโฟมมีพื้นที่ผิวประมาณ 600 m²/g ความหนาแน่น 0.4-0.5 g/cm³ และ ความจุไฟฟ้า 15-

19 F/g โดยการนำคาร์บอนนาโนโฟมมาใช้มักเคลือบคาร์บอนนาโนโฟมบนคาร์บอนไฟเบอร์ รีดขึ้นรูปเป็นกร ดาษ ถูกเรียกว่า คาร์บอนนาโนโฟม เปเปอร์ หรือ คาร์บอนไฟเบอร์ เปเปอร์ ในงานวิจัยนี้ได้สังเคราะห์นาโน แมงกานีสออกไซด์บนคาร์บอนไฟเบอร์ เปเปอร์ ด้วยเทคนิคอิเล็คโตรเด็พโพซิชัน และเทคนิคการพ่นเคลือบ อนุภาคนาโนแมงกานีส (IV) ออกไซด์ที่ถูกเตรียมด้วยเทคนิคทางเคมี (ปฏิกิริยาออกซิเดชันของแมงกานีส (II) อะซีเตต) ที่มีความสามารถในการเก็บประจุต่อน้ำหนักได้สูง โดยถ้าสามารถสังเคราะห์นาโนแมงกานีส ออกไซด์ ให้มีพื้นที่ผิวจำเพาะสูง ค่าการเก็บประจุจำเพาะก็จะเพิ่มสูงตามไปด้วย เนื่องจากปฏิกิริยาไฟฟ้าเคมี และการดูดซับไออนของตัวเก็บประจุจะเกิดขึ้นที่พื้นผิวเท่านั้น

ในงานวิจัยนี้เราได้ยังเพิ่มการเก็บประจุไฟฟ้าเคมียิ่งยวดของโลหะผสมของเงินและแมงกานีสออกไซด์ ด้วยสารลดแรงตรึงผิวโซเดียมโดเดซิลซัลเฟต และ ซีทิลเมทิลแอมโมเนียมโบรไมด์ โดยทำการตกตะกอน ไฟฟ้าของวัสดุผสมดังกล่าวที่น้ำหนักจำเพาะ 0.4-0.5 มิลลิกรัมต่อตารางเซนติเมตร ซึ่งถือว่าเป็นค่าที่คุ้มทุน ทางเศรฐศาสตร์ ^[9, 10] การใช้สารลดแรงตรึงผิวจะควบคุมสัณฐานวิทยาของวัวดุผสมให้มีรูพรุนสูง ร่วมกับการ เพิ่มการนำไฟฟ้าด้วยโลหะเงินจะทำให้ได้ค่าการเก็บประจุจำเพาะสูง

1.2 วัตถุประสงค์ของโครงการ

- 1. สังเคราะห์นาโนแมงกานีสออกไซด์บนคาร์บอนนาโนโฟมด้วยเทคนิคอิเล็คโตรเด็พโพซิชัน และ เทคนิคโพลิกคล
- 2. ศึกษาสภาวะที่เหมาะสมในการสังเคราะห์นาโนแมงกานีสออกไซด์ที่สามารถเก็บประจุไฟฟ้าเคมี ได้สูง (>720 F/g)
- 3. ศึกษาโครงสร้าง microstructure องค์ประกอบทางเคมี และสมบัตเชิงอิเล็คโทรนิกส์ของวัสดุที่ สังเคราะห์ได้
- 4. ศึกษาเปรียบเทียบถึงปัจจัยทางโครงสร้าง microstructure องค์ประกอบทางเคมี และสมบัตเชิง อิเล็คโทรนิกส์ของวัสดุต่อการเก็บประจุไฟฟ้าเคมี

1.3 ขอบเขตของการวิจัย

ในงานวิจัยนี้จะเริ่มจากศึกษาขั้นพื้นฐานเพื่อหาสภาวะที่เหมาะสมในการเตรียมนาโนแมงกานีส ออกไซด์บนวัสดุรองรับคาร์บอนนาโนโฟมได้แก่ การเปลี่ยนแปลงอุณหภูมิ เวลา pH ความเข้มข้นของ สารตั้งต้นและสารควบคุมโครงสร้าง และความต่างศักย์ จากนั้นทำการตรวจวิเคราะห์เชิงโครงสร้างด้วย เทคนิคสเปกโตรสโกรปี และเชิงพื้นผิวด้วยกล้องจุลทรรศน์แบบส่องกราดและส่องผ่าน และท้ายสุด ทดสอบเชิงเปรียบเทียบสารตัวอย่างที่สังเคราะห์ได้ในสภาวะต่างๆ ต่อการเก็บประจุไฟฟ้าเคมีด้วย เทคนิค Cyclic voltammetry และ Electrochemical Impedance Spectroscopy (EIS)

บทที่ 2

วิธีการทดลอง

2.1 สารเคมี และวัสดุ

ชนิดของสารเคมี ความบริสุทธิ์ และแหล่งที่มาแสดงในตารางที่ 1

ตารางที่ 1 สารเคมีและวัสดุที่ใช้ ความบริสุทธิ์ และแหล่งที่มา

สารเคมีและวัสดุ	Chemicals/Materials	แหล่งที่มา
	Managara	00.000/ 4.0000
า. แมงกานสอะอเดด	Manganese(II) acetate	99.99% ACROS
2. กรดซิตริก	Citric acid : C ₆ H ₁₀ O ₈	99.5% Ajax Finechem
3. โพรพิลแอลกอฮอล์	n-Propanol	99.0% Ajax Finechem
4.ซีทิวไตรเอททิวแอมโนเนียม โบร	Cetyltrimethylammonium bromide	00.00/ ADO Obsession la
ไมด์ (ซีแทป)	: CTAB	99.0% APS Chemicals
5. โซเดียม ลอริล ซัลเฟต (เอสดีเอส)	Sodium lauryl sulfate: SDS	99.0% Ajax Finechem
6. โพลิไวนิลไพโรริโดน	Polyvinylpyrrolidone: PVP	99.% Sigma Aldrich
O. EMBERINEMENTERS	M _w 40,000	99.76 Sigina Alunch
7. โพลิไวนิลแอลกอฮอล์	Polyvinyl alcohol : PVA	00 00/ Sigma Aldrich
7. เพลเมหลแอกกออก	M _w 89,000-98,000	99.0% Sigma Aldrich
8. แอมโมเนียมไฮดรอกไซด์	Ammonium hydroxide : NH ₄ OH	99.9% Mallinckrodt
9. เอทิลีน ไกลคอล	Ethylene glycol : C ₂ H ₆ O ₂	99% QRec
10. ผงกราไฟต์	Graphite powder (20-40 micron)	Sigma Aldrich
11. กรดซัลฟูริก	Sulfuric acid : H ₂ SO ₄	99.99% QRec
12. โซเดียมในเตรด	Sodium nitrate : NaNO3	99.9% QRec
13. ไฮโดรเจน เปอร์ออกไซด์	Hydrogenperoxide: H ₃ PO ₄	30% Merck Schuchardt

สารเคมีและวัสดุ	Chemicals/Materials	แหล่งที่มา
14. โซเดียมซัลเฟต	Sodium sulfate : Na ₂ SO ₄	99.5% Cralo erba
15. โพแทสเซ็มเปอร์แมงกาเนต	Potassium Permanganate: KMnO ₄	99% Ajax Finechem
16. กรดไฮโดรคลอริก	Hydrochloric acid : HCl	VolChem
17. ไฮดราซีนไฮเดรต	Hydrazine hydrade : N ₂ H ₄	80% Merck Schuchardt
18. อะซิโตน	Acetone : C ₃ H ₆ O	99.5% QRec
19. โทลูอื่น	Toluene : C ₆ H ₅ CH ₃	99.5% QRec
20. คาร์บอนนาโนโฟม เปเปอร์	Carbon nanofoam paper	Structural Probe, Inc.

2.2 อุปกรณ์ที่ใช้ในการทดลอง

- บีกเกอร์ (Beaker)
- บิวเรต (Burette)
- บีเปต (Pipette)
- ไมโครบีเปต (Micropipette)
- กระดาษวัดค่า pH (pH paper sticks)
- ขวดแก้วเล็ก (Vial)
- ขวดแก้วเก็บสารตัวอย่าง (Cuvette)
- แท่งแม่เหล็กกวนสาร (Magnetic Bar)
- เครื่องชั่งน้ำหนักทศนิยม 3 ตำแหน่ง ยี่ห้อ OHAUS รุ่น RZ-11009-58
- เครื่องกวนสารแบบให้ความร้อน (Hot Plate Stirrer) ยี่ห้อ IKA รุ่น C-MAG HS7
- เครื่องเหวี่ยงสารตกตะกอน (Centrifuge)
- หลอดสำหรับเหวี่ยงสารตกตะกอน
- เครื่องผสมสารด้วยคลื่นความถี่สูง (Ultrasonic Sonicator)
- ตู้อบ (Oven)
- เครื่องพ่นเคลือบ (Spray coating air bud)

2.3 การตะกอนด้วยไฟฟ้า หรือ เทคนิคอิเล็คโตรเด็พโพซิชัน

การตกตะกอนด้วยไฟฟ้าถูกศึกษาภายใต้ระบบที่ประกอบด้วยสามขั้วไฟฟ้า โดขั้วไฟฟ้าคาร์บอนนา โนโฟมขนาดหนึ่งตารางเซนติเมตรถูกใช้ทำขั้วไฟฟ้าทำงาน Ag/AgCI (ในสารละลายอิ่มตัว KCI) ถูกใช้เป็นขั้ว อ้างอิง และลวดพลาทินัมถูกใช้ทำขั้วไฟฟ้าช่วยเหลือ การตกตะกอนด้วยไฟฟ้าของแมงกานีสออกไซด์ เคยถูก เตรียมด้วยวิธีการตกตะกอนด้วยไฟฟ้าแบบคาโทรดิก และในงานวิจัยนี้เราได้พัฒนาเพิ่มเติมดังต่อไปนี้ โดย การตกตะกอนด้วยไฟฟ้าโดยการเหนี่ยวนำกระแสไฟฟ้าภายนอกที่ความหนาแน่นกระแสไฟฟ้าเท่ากับ 1 มิลลิ แอมแปร์ต่อตารางเซนติเมตร เมื่อเปรียบเทียบกับขั้วอ้างอิง Ag/AgCI ในสารละลาย 20 มิลลิโมลาร์ KMnO4 และ 0.5 มิลลิโมลาร์ NaNO3 นาน 30 นาที

การตกตะกอนด้วยไฟฟ้าของโลหะผสมของเงินและแมงกานีสออกไซด์ ในสารละลาย 20 มิลลิโมลาร์ KMnO₄ และ 0.5 มิลลิโมลาร์ NaNO₃ และมีสารละลาย 0-1 มิลลิโมลาร์ของ AgNO₃ ที่อุณหภูมิ 25 °C นาน 30 นาที สารลดแรงตรึงผิวโซเดียมโดเดซิลซัลเฟต (SDS) และ ซีทิลเมทิลแอมโมเนียมโบรไมด์ (CTAB) ที่ ความเข้มขัน 0-1 มิลลิโมลาร์ถูกเติมลงในปฏิกรณ์เพื่อควบคุมสัณฐานวิทยาของฟิล์มผสมระหว่างโลหะเงิน และแมงกานีสออกไซด์ ฟิล์มวัสดุผสมดังกล่าวถุกเผาที่อุณหภูมิ 400 °C นาน 2 ชั่วโมง เพื่อกำจัดสารลดแรง ตรึงผิวและให้ได้ผลึกของวัสดุผสม

2.4 การสังเคราะห์แมงกานีส (IV) ออกไซด์ ด้วยเทคนิคทางเคมีโดยปฏิกิริยาออกซิเดชันของแมงกานีส (II) อะซีเตต

- 2.4.1 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 1 โดยไม่เดิมสารควบคุมโครงสร้าง และไม่ปรับ pH
 - เติมสารละลาย 0.1 โมลาร์ แมงกานีสอะซิเตต และ 0.1 โมลาร์ กรดซิตริก ลงในแต่ละขวด Vial ที่ อัตราส่วนโดยปริมาตร 10:0, 8:2, 6:4, 5:5, 4:6 และ 2:8 มิลลิลิตร
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง
- 2.4.2 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 2 โดยไม่เติมสารควบคุมโครงสร้าง แต่ปรับ pH
 - เติมสารละลาย แมงกานีสอะซิเตตและกรดซิตริก ลงในแต่ละขวด Vial ที่อัตราส่วน 10:0, 8:2, 6:4, 5:5,
 4:6 และ 2:8 มิลลิลิตร
 - ปรับ pH ของสารในแต่ละขวด Vial ให้เท่ากับ 9 ด้วย แอมโมเนียมไฮดรอกไซด์
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง

- 2.4.3 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 3 โดยเติมสารควบคุมโครงสร้าง SDS แต่ไม่ปรับ pH
 - เติมสารละลาย แมงกานีสอะซิเตต และกรดซิตริก ลงในแต่ละขวด Vial ที่อัตราส่วน 10:0, 8:2, 6:4,
 5:5, 4:6 และ 2:8 มิลลิลิตร
 - เติมสารควบคุมโครงสร้าง 20 มิลลิโมลาร์ SDS ปริมาณ 1 มิลลิลิตร ลงในแต่ละขวด Vial
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง
- 2.4.4 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 4 โดยเติมสารควบคุมโครงสร้าง SDS และปรับ pH
 - เติมสารละลาย แมงกานีสอะซิเตต และกรดซิตริก ลงในแต่ละขวด Vial ที่อัตราส่วน 10:0, 8:2, 6:4,
 5:5, 4:6 และ 2:8 มิลลิลิตร
 - เติมสารควบคุมโครงสร้าง ปริมาณ 1 มิลลิลิตร ลงในแต่ละขวด Vial
 - ปรับ pH ของสารในแต่ละขวด Vial ให้เท่ากับ 9 ด้วย แอมโมเนียมไฮดรอกไซด์
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง
- 2.4.5 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 5 โดยเติมสารควบคุมโครงสร้าง CTAB แต่ไม่ปรับ pH
 - เติมสารละลาย แมงกานีสอะซิเตต และกรดซิตริก ลงในแต่ละขวด Vial ที่อัตราส่วน 10:0, 8:2, 6:4,
 5:5, 4:6 และ 2:8 มิลลิลิตร
 - เติมสารควบคุมโครงสร้าง 20 มิลลิโมลาร์ CTAB ปริมาณ 1 มิลลิลิตร ลงในแต่ละขวด Vial
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง
- 2.4.6 เตรียมสารตัวอย่างแมงกานีสออกไซด์ ชุดที่ 6 โดยเติมสารควบคุมโครงสร้าง CTAB และปรับ pH
 - เติมสารละลาย แมงกานีสอะซิเตต และกรดซิตริก ลงในแต่ละขวด Vial ที่อัตราส่วน 10:0, 8:2, 6:4,
 5:5, 4:6 และ 2:8 มิลลิลิตร
 - เติมสารควบคุมโครงสร้าง 20 มิลลิโมลาร์ CTAB ปริมาณ 1 มิลลิลิตร ลงในแต่ละขวด Vial
 - ปรับ pH ของสารในแต่ละขวด Vial ให้เท่ากับ 9 ด้วย แอมโมเนียมไฮดรอกไซด์
 - กวนที่ความเร็ว 100 รอบต่อนาที พร้อมทั้งให้ความร้อนที่ 30 องศาเซลเซียส เป็นเวลา 12 ชั่วโมง

ตารางที่ 2 สภาวะในการสังเคราะห์แมงกานีสออกไซด์จากแมงกานีสอะซีเตต

e . d	อัตราส่วนระหว่าง แมงกานีส	٢ ،	ปรับ pH=9 ด้วย แอมโมเนียม
สารตัวอย่างชุดที่	อะซิเตต กับ กรดซิตริก	สารควบคุมโครงสร้าง	ไฮดรอกไซด์
	10 : 0	×	×
	8 : 2	×	×
1	6 : 4	×	×
·	5 : 5	×	×
	4:6	×	×
	2:8	*	×
	10 : 0	×	✓
	8 : 2	×	✓
2	6 : 4	×	✓
2	5 : 5	×	✓
	4:6	×	✓
	2:8	*	✓
	10 : 0	เอสดีเอส	×
	8 : 2	เอสดีเอส	×
3	6:4	เอสดีเอส	×
3	5 : 5	เอสดีเอส	×
	4:6	เอสดีเอส	×
	2:8	เอสดีเอส	×
	10 : 0	เอสดีเอส	✓
	8:2	เอสดีเอส	✓
4	6 : 4	เอสดีเอส	✓
	5 : 5	เอสดีเอส	✓
	4 : 6	เอสดีเอส	✓

สารตัวอย่างชุดที่	อัตราส่วนระหว่าง แมงกานีส อะซิเตต กับ กรดซิตริก	สารควบคุมโครงสร้าง	ปรับ pH=9 ด้วย แอมโมเนียม ไฮดรอกไซด์
	2:8	เอสดีเอส	✓
	10 : 0	ซึแทป	×
	8:2	ซีแทป	×
	6:4	ซีแทป	×
5	5 : 5	ซีแทป	×
	4:6	ซีแทป	*
	2:8	ซีแทป	×
	10 : 0	ซีแทป	✓
	8 : 2	ซีแทป	✓
	6 : 4	ซีแทป	✓
6	5 : 5	ชีแทป	✓
	4 : 6	ซีแทป	✓
	2:8	ซึแทป	✓

หมายเหตุ ✓ ปรับ pH=9 ด้วย แอมโมเนียมไฮดรอกไซด์ และ ➤ ไม่ได้ใช้สารควบคุมโครงสร้าง และ ไม่ได้ ปรับ pH=9 ด้วย แอมโมเนียมไฮดรอกไซด์

2.5 การสังเคราะห์แมงกานีสออกไซด์ โดยใช้สารควบคุมโครงสร้างโพลิไวนิลไพโรริโดนและใช้ เอทิลีน ไกลคอล เป็นตัวทำละลาย

- เติมสารละลาย เอทิลีนไกลคอล ปริมาณ 10 มิลลิลิตร ลงในขวด Vial
- เติมสารควบคุมโครงสร้าง PVP ที่ความเข้มข้น 0.1 มิลลิโมลลาร์
- นำไปกวนและให้ความร้อนด้วยเครื่อง Hotplate stirrer ที่อุณหภูมิ 160 องศาเซลเซียส เป็นเวลา 30 นาที
- เติมแมงกานีสอะซิเตต ปริมาณ 1, 5, 10 และ 20 มิลลิโมลลาร์

2.6 การสังเคราะห์แมงกานีสออกไซด์ โดยใช้สารควบคุมโครงสร้างโพลิไวนิลแอลกอฮอล์ และใช้เอทิลีน ไกลคอล เป็นตัวทำละลาย

- เต็มสารละลาย เอทิลีนไกลคอล ปริมาณ 10 มิลลิลิตร ลงในขวด Vial
- เติมสารควบคุมโครงสร้าง PVA ที่ความเข้มข้น 0.1 มิลลิโมลลาร์
- นำไปกวนและให้ความร้อนด้วยเครื่อง Hotplate stirrer ที่อุณหภูมิ 160 องศาเซลเซียส เป็นเวลา 30 นาที
- เติมแมงกานีสอะซิเตต ปริมาณ 1, 5, 10 และ 20 มิลลิโมลลาร์

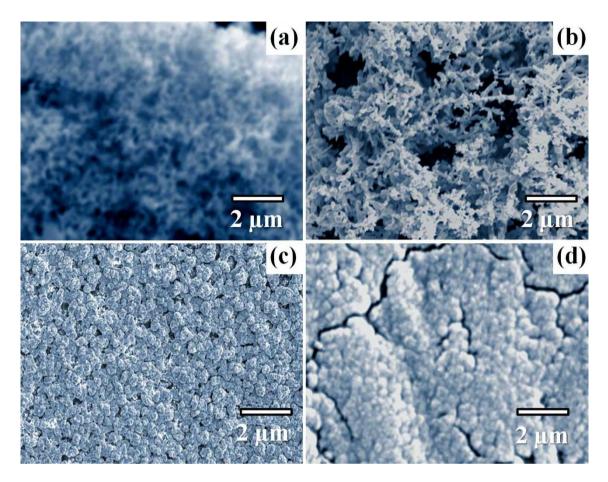
2.7 การเตรียมหาโหแมงกานีสออกไซด์ที่ใช้โพลิสไตรีหเป็นแม่แบบ

- 50 มิลลิลิตร ของเอทิลีนไกลคอล (99.5 % โดยปริมาตร) ถูกให้ความร้อนที่ 160 °C นาน 10 นาทีเพื่อ กำจัดน้ำและทำให้เย็นลงที่อุณหภูมิ 80 °C หลังจากนั้น 0.50 กรัมของพอลิไวนิลไพโรลิโดน (10,000 กรัมต่อโมล) และ 0.25 กรัมของแมงกานีสอะซีเตตเฮกซะไฮเดรตถูกเติมลงในปฏิกรณ์ตามลำดับ คน สารที่ 300 รอบต่อนาที นาน 30 นาที สุดท้ายสารแขวนลอยด์สีแดงถูกทำให้เย็นลงที่อุณหภูมิห้อง (25 °C)
- แมงกานีสออกไซด์สามมิติถูกเตรียมด้วยวิธีแม่แบบคอยลอยด์ กลาสซีคาร์บอนที่ถูกใช้เป็นวัสดุรองรับ
 ขนาด 1 ตารางเซนติเมตรถูกจุ่มลงในสารแขวนลอยด์ของอนุภาคโพลิสไตลีนที่ความเข้มขัน 1
 เปอร์เซนต์โดยน้ำหนักในตัวทำละลายน้ำ และถูกดึงขึ้นด้วยอัตราเร็ว 0.6 เซนติเมตรต่อวินาที หลังจาก
 ทำการเคลือบพอลิสไตรีนบนกลาสซีคาร์บอน แผ่นฟิล์มถูกทำให้แห้งที่อุณภูมิห้อง (25 °C) และถูกใช้
 เป็นแม่แบบสำหรับผลิตขั้วไฟฟ้าแมงกานีสออกไซด์สามมิติ
- 20 ไมโครลิตร ของ สารแขวนลอยด์ของแมงกานีสออกไซด์ ถูกหยดลงบนแม่แบบของแผ่นฟิล์มโพ ลิสไตรีน จากนั้นทำให้แห้งในเตาเผาที่อุณภูมิ 100 °C นาน 30 นาที หลังจากนั้นทำให้ได้ผลึกของ แมงกานีสออกไวซด์โดยการเผาที่อุรหภูมิที่ 500 °C นาน 3 ชั่วโมง สุดท้ายก็จะได้แมงกานีสออกไซด์ สามมิติ

2.8 การตรวจวัดขนาดอนุภาคและค่าการกระจายของตัวอนุภาค ของแมงกานีสออกไซด์ และการ วิเคราะห์เชิงโครงสร้างและสัณฐานวิทยา

การตรวจวัดขนาดอนุภาค และการกระจายตัวอนุภาค จะใช้เครื่อง Dynamics Light Scattering (DLS) และ สัณฐานวิทยาและองค์ประกอบเชิงเคมีของฟิล์มของวัสดุผสมที่เตรียมได้ถูกศึกษาด้วยกล้องจุลทรรสน์อิเล็กตรอน แบบส่องกราดและแบบส่องผ่าน และเทคนิคสเปกโตรสโกรปีของเอ็กซเรย์ ที่ถูกเรียกว่า อีดีเอ็กซ์ และเทคนิค เอกซเรย์ดิฟเฟกชัน เพื่อหาโครงสร้างผลึก

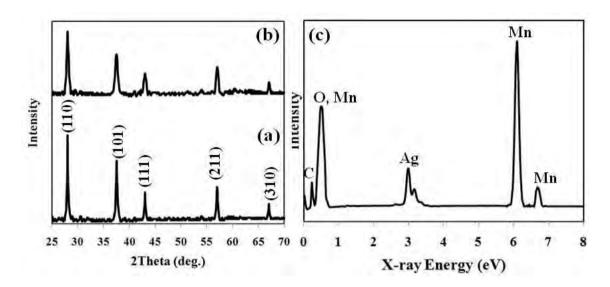
2.9 การประเมิณเชิงเคมีไฟฟ้า


ใชคลิกโวลเทมเมตรี และ อิเล็คโตรเคมิคอล อิมพีแดนซ์ สเปกโตรสโกรปี เพื่อหาค่าการเก็บประจุ ไฟฟ้าเคมีจำเพาะและเสถียรภาพของขั้วไฟฟ้าที่เตรียมได้ ด้วยเครื่องโพเทนทิโอสเตท μ-AUTOLAB II (Eco-Chemie, Utrecht, Netherlands) ที่มีซรอฟแวร์ FRA2 และ GPES ไซคลิกโวลเทมเมตรีสแกนจาก 1-100 มิลลิโวลต์ต่อวินาที อิเล็คโตรเคมิคอล อิมพีแดนซ์ สเปกโตรสโกรปี ถูกศึกษาที่ 5 มิลลิโวลต์เทียบกับ Ag/AgCI ที่ความถี่จาก 100 kHz ถึง 1 mHz โดยสารละลาย 0.5 M ของ โซเดียมซัลเฟตถูกใช้ตลอดการ ทดลองเพื่อหาค่าการเก็บประจุไฟฟ้าเคมีจำเพาะ

บทที่ 3

ผลการทดลองและวิจารณ์ผลการทดลอง

3.1 สัณฐานวิทยาของพื้นผิวและโครงสร้างของแมงกานีสออกไซด์ที่เตรียมจากเทคนิคอิเล็คโตรเด็พโพชิ ชัน


ภาพถ่ายจากกล้องจุลทรรศน์แบบส่องกราด ของวัสดุผสมของโลหะเงินและแมงกานีสออกไซด์ ถูก แสดงในรูปที่ 1 ในกรณีที่ใช้สารลดแรงตรึงผิว ซีแทป อนุภาคนาโนของวัสดุผสมดังกล่าวมีสัณฐานวิทยาคล้าย โฟม มีรูพรุนสูง (รูปที่ 1a) และเมื่อใช้สารลดแรงตรึงผิว เอสดีเอส สัณฐานวิทยาของวัสดุผสมเปียแบบใบไม้ (รูปที่ 1b) ในทางตรงข้ามเมื่อไม่ใช้สารลดแรงตรึงผิว ฟิล์มของสารผสมจะทีบไม่มีรูพรุน (รูปที่ 1c) และฟิล์ม แมงกานีสออกไซด์มีรอยแตก (รูปที่ 1d) เนื่องจากแรงคาปิลลารีระหว่างการทำให้ฟิล์มแห้ง [11, 12] และเมื่อมี โลหะเงินในแผ่นฟิล์มของวัสดุผสมจะไม่มีรอยแตก เช่นเดียวกับการรายงานในงานวิจัยก่อนหน้า [7] เพราะโลหะ เงินจะมีแรงยึดเหนียวที่แข็งแรงเกาะกับขั้วไฟฟ้า [13, 14] เมื่อเดิมสารลดแรงตรึงผิวจะส่งผลต่อการเกิดขึ้นของ อนุภาคนาโนของวัสดุผสมอันเนื่องมาจากการเกิดขึ้นของไมเซลล์ครึ่งวงกลมบนผิวของขั้วไฟฟ้า [15]

ร**ูปที่ 1** ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของวัสดุผสมโลหะเงินกับแมงกานีสออกไซด์ เตรียมโดยการใช้ (a) CTAB, (b) SDS, (c) ไม่ใช้สารลดแรงตรึงผิว และ (d) ฟิล์มบริสุทธิ์ของแมงกานีส ออกไซด์

โครงสร้างและความบริสุทธิ์ของวัสดุถูกวิเคราะห์ด้วยเทคนิคเอกซเรย์ดิฟเฟกชัน สเปกตรัมเอกซ์เรย์ ดิฟเฟกชันในรูปที่ 2a และ b แสดงห้าพีค (110), (101), (111), (211) และ (310) ของ β -MnO2 ซึ่งสอดคล้อง กับงานวิจัยก่อนหน้า ^[16, 17] และสเปกตรัมเอกซ์เรย์ดิฟเฟกซันยังแสดงให้เห็นถึงความบริสุทธิ์สูงของวัสดุผสม ดังกล่าว เพราะพีคค่อนข้างคมชัด ไม่มีพีคของสารปนเปื้อน และที่สำคัญรูปที่ 2b ไม่พบพีคของโลหะเงินเลย ดังนั้นอาจเป็นได้ว่าโลหะเงินแทรกเข้าไปแทนที่แมงกานีสในโครงสร้างผลึกของแมงกานีสออกไซด์ โดยจาก งานวิจัยก่อนหน้าพบว่าสามารถแทนที่แมงกานีสด้วย Na $^{\uparrow}$, K $^{\uparrow}$, Ag $^{\uparrow}$ และ Ca $^{2+[18-20]}$ นอกจากนั้นจากสเปกตรัม ของอีดีเอกซ์พบพีคของโลหะเงิน (รูปที่ 2c) แสดงว่าในงานวิจัยนี้เราสามารถเตรียมโลหะผสมของเงินกับ แมงกานีสออกไซด์ โดยพีคที่ 0.64 keV มาจาก OL $_{\alpha1}$ สองพีคที่ 5.90 และ 6.54 keV มาจาก Mn $K_{\alpha1}$ และ

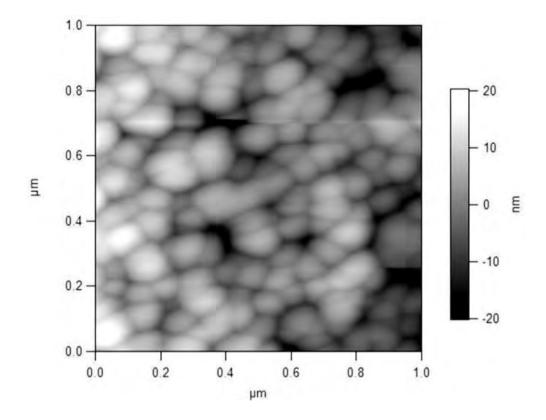
 ${\sf Mn}{\it K}_{eta_1}$ ตามลำดับ สองพีคที่ 3.00 และ 3.16 keV มาจาก ${\sf Ag}{\it L}_{lpha_1}$ และ ${\sf Ag}{\it L}_{eta_1}$ ตามลำดับ ท้ายสุดพีคที่ 0.28 keV มาจาก ${\sf C}{\it K}_{lpha}$ ขอคาร์บอนนาโนโฟม

รูปที่ 2 เอ็กซเรย์สเปกตราของ (a) MnO_2 และ (b) Ag-doped MnO_2 และ (c) อีดีเอกซ์สเปกตรัม ของ Ag-doped MnO_2 .

3.2 แมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคทางเคมี โดยทำการปรับเปลี่ยนปัจจัยต่าง ๆ เช่น

- อัตราส่วนระหว่างแมงกานีสอะซิเตตต่อกรดซิตริก
- ตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์
- ชนิดของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้าง
- อิทธิพลของพอลิเมอร์พอลิไวนิลไพโรลิโดนและพอลิไวนิลแอลกอฮอล์ที่ถูกใช้ในฐานะสาร
 ควบคุมโครงสร้าง

ปัจจัยต่าง ๆข้างต้นอาจจะมีผลต่อขนาด และค่าการกระจายตัวของอนุภาคนาโนของแมงกานีสออกไซด์ ซึ่ง ให้ผลที่แตกต่างกันออกไป


3.2.1 ผลของอัตราส่วนระหว่างแมงกานีสอะซิเตตต่อกรดซิตริก

ตารางที่ 3 ผลของอัตราส่วนระหว่างแมงกานีสอะซิเตตต่อกรดซิตริก กับขนาดอนุภาคและค่าการกระจายตัว

อัตราส่วนแมงกานีสอะซิเตตต่อกรดซิตริก	ขนาดอนุภาค (nm)	ค่าการกระจายตัว (%)
8:2	142	100%
5 : 5	169	100%
4:6	209	71%
2:8	229	96%

จากตารางที่ 3ได้ทำการออกซิไดซ์ Mn²⁺ ของแมงกานีสอะซิเตตด้วยกรดซิตริก เพื่อให้เกิดแมงกานีสออกไซด์ โดยปราศจากการเติมสารควบคุมโครงสร้างและไม่ได้เติมตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์ ซึ่งผลจาก การวัดขนาดอนุภาคและค่าการกระจายตัวแสดงในตารางที่ 3 พบว่า เมื่อลดอัตราส่วนแมงกานีสอะซิเตตต่อ กรดซิตริก มีผลทำให้ขนาดอนุภาคของแมงกานีสออกไซด์ใหญ่ขึ้น และมีค่าการกระจายตัวลดลง เนื่องจาก กรดซิตริกเป็นตัวออกซิไดซ์ที่แรง (Strong oxidizing agent) ทำให้ปฏิกิริยาเกิดขึ้นอย่างรวดเร็ว

นอกจากนั้นเพื่อเป็นการยืนยันว่าผลจากเครื่องวัดขนาดอนุภาค และการกระจายของตัวอนุภาคถูกต้องและ น่าเชื่อถือ เราจึงได้ทำการวัดขนาดอนุภาคด้วยกล้องจุลทรรศน์แรงอะตอมแบบ Non-contact mode ที่ อัตราส่วน 5:5 เพื่อที่จะเป็นการพิสูจน์ว่าขนาดอนุภาคที่วัดได้จากเครื่องวัดขนาดอนุภาค และการกระจาย ของตัวอนุภาคนั้นมีความน่าเชื่อถือ จากรูปที่ 3 ขนาดของอนุภาคแมงกานีสออกไซด์อยู่ประมาณที่ 100-200 นาโนเมตร ซึ่งถือว่าอยู่ในช่วงเดียวกันกับขนาดของอนุภาคจากเครื่องวัดขนาดอนุภาค และการกระจายของ ตัวอนุภาค โดยอาจมีความแตกต่างกันเล็กน้อยตามข้อจำกัดของเทคนิคทั้งสอง

ร**ูปที่ 3** ขนาดอนุภาคแมงกานีสออกไซด์ของสารตัวอย่างลำดับที่ 2 ที่อัตราส่วนระหว่างแมงกานีสอะซิเตตต่อ กรดซิตริกเป็น 5:5 จากกล้องจุลทรรศน์แรงอะตอม

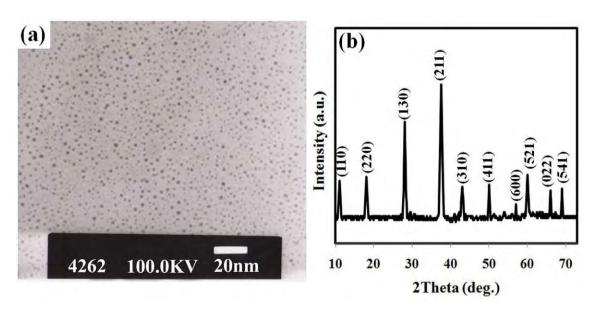
3.2.2 ผลของตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์

ตารางที่ 4 ผลของตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์ต่อขนาดอนุภาค และค่าการกระจายตัว

อัตราส่วนแมงกานีสอะซิเตต	ปรับ pH=9 ด้วยตัวเร่งปฏิกิริยา	ขนาดอนุภาค	ค่าการกระจาย
ต่อ กรดซิตริก	แอมโมเนียมไฮดรอกไซด์	(nm)	ตัว (%)
8:2	✓	292	100%
5:5	✓	135	66%
4:6	✓	137	95%
2:8	✓	120	100%
I			

จากตารางที่ 4 ทำการทดลองเพื่อศึกษาผลของการปรับ pH=9 ด้วยตัวเร่งปฏิกิริยาแอมโมเนียมไฮดรอกไซด์ พบว่า ที่อัตราส่วนแมงกานีสอะซิเตตต่อกรดซิตริกเป็น 10:0 ไม่มีการเติมกรดซิตริก มีผลทำให้ขนาดของ อนุภาคแมงกานีสออกไซด์เท่ากับ16,000 นาโนเมตร มีขนาดอนุภาคใหญ่มาก ทั้งนี้เพราะว่า Mn²+ ของ แมงกานีสอะซิเตตทำปฏิกิริยากับ OH ของแอมโมเนียมไฮดรอกไซด์อย่างรวดเร็วจึงมีอนุภาคขนาดใหญ่ ซึ่ง ในที่นี้แอมโมเนียมไฮดรอกไซด์ไม่ได้ทำหน้าที่เป็นตัวเร่งปฏิกิริยาอย่างเดียวแต่ทำหน้าที่เป็นสารตั้งตันด้วย ในขณะที่เมื่อลดอัตราส่วนของแมงกานีสอะซิเตตต่อกรดซิตริก ทำให้ขนาดอนุภาคของแมงกานีสออกไซด์เล็ก ลงแต่ค่าการกระจายตัวก็ลดลงด้วย

3.2.3 ผลของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้าง

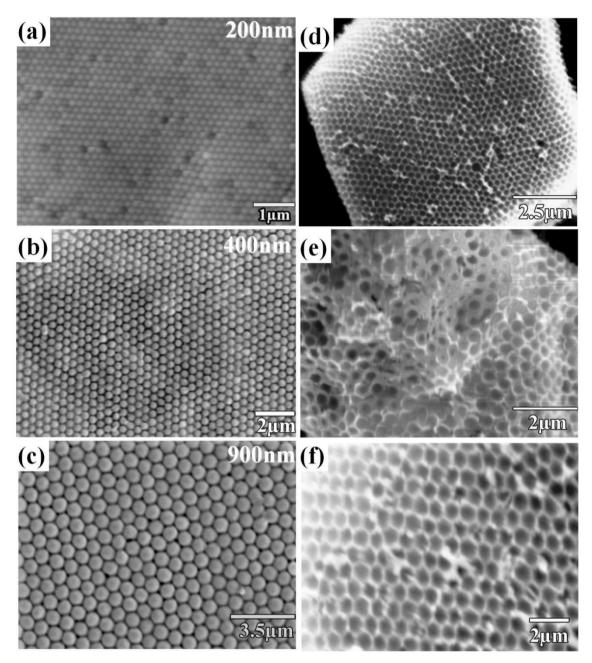

ตารางที่ 5 ผลของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้างต่อขนาดอนุภาค และค่าการกระจายตัว

อัตราส่วนแมงกานีส อะซิเตตต่อกรดซิตริก	สารควบคุม โครงสร้าง	ปรับ pH=9 ด้วยตัวเร่ง ปฏิกิริยาแอมโมเนียมไฮดรอก ไซด์	ขนาดอนุภาค (nm) / ค่า การกระจายตัว (%)
02	SDS	✓	314/98%
8:2	СТАВ	✓	312/83%
6:4	SDS	✓	261/62%
0.4	СТАВ	✓	232/93%
5 : 5	SDS	✓	165/97%
5.5	CTAB	✓	523/48
4:6	SDS	✓	103/77%
4.0	СТАВ	✓	352/66%
2:8	SDS	✓	106/91%
2:0	CTAB	✓	423/100%

จากตารางที่ 5 ทำการทดลองเพื่อศึกษาผลของสารลดแรงตึงผิวที่ถูกใช้เป็นสารควบคุมโครงสร้างพบว่า เมื่อ ลดอัตราส่วนแมงกานีสอะซิเตตต่อกรดซิตริก สารควบคุมโครงสร้างสารลดแรงตึงผิวที่มีประจุลบมีแนวโน้มทำ ให้ขนาดของอนุภาคมีขนาดเล็กลงมากกว่าสารควบคุมโครงสร้างสารลดแรงตึงผิวที่มีประจุบวกที่มีแนวโน้ม ของขนาดอนุภาคที่ใหญ่ขึ้น เนื่องจากสารลดแรงตึงผิวที่มีประจุลบทำหน้าที่เป็น anionic surfactant คล้ายกับ ligand ที่จับกับ Mn²+ เป็น cluster แต่ไม่เพิ่มขนาดของแมงกานีสออกไซด์ แต่สารลดแรงตึงผิวที่มีประจุบวก ทำหน้าที่เป็น cationic surfactant ที่ไม่ชอบจับกับ Mn²+ จึงไม่ส่งผลในเชิงบวกต่อการเกิดขึ้นของอนุภาค แมงกานีสออกไซด์หรือไม่มี confinement effect นั้นเอง

3.3 สัณฐานวิทยาและโครงสร้างของอนุภาคนาโนแมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคโพลิออล โดยใช้ สารควบคุมโครงสร้างโพลิไวนิลไพโรริโดน และใช้ เอทิลีน ไกลคอล เป็นตัวทำละลาย

ภาพถ่ายจากกล้องจุลทรรศน์แบบส่องผ่าน (รุปที่ 4a) แสดงสัณฐานวิทยาของอนุภาคนาโน แมงกานีสออกไซด์ โดยรวมจากสัณฐานวิทยาของอนุภาคนาโนแมงกานีสออกไซด์มีการกระจายตัวค่อนข้าง สูงมีขนาดอนุภาค 1.8±0.2 นาโนเมตร ซึ่งเป็นค่าที่ใกล้เคียงกับ 1.7±0.2 นาโนเมตรที่วัดจากเทคนิคการ กระเจิงแสง อนุภาคนาโนแมงกานีสออกไซด์ที่สังเคราะห์ได้มีอนุภาคเล็กที่สุดเมื่อเทียบกับงานวิจัยก่อนหน้า [21, 22]



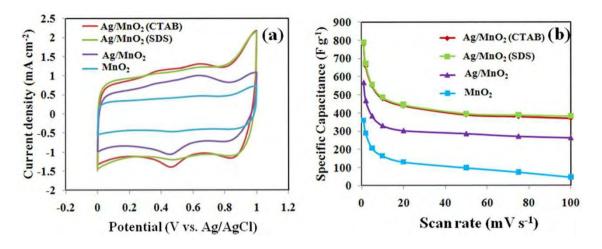
ร**ูปที่ 4** (a) รูปถ่ายจากกล้องจุลทรรศน์แบบส่องผ่าน และ (b) เอ็กซเรย์ดิฟเฟกชันสเปกตรัมของอนุภาคนาโน แมงกานีสออกไซด์

เอ็กซเรย์ดิฟเฟกซันสเปกตรัมของนาโนแมงกานีสออกไซด์ที่ถูกเผาที่ 500 °C นาน 3 ชั่วโมง ที่มุม หักเหสองซีตาร์ จาก 10° ถึง 75° (รูปที่ 4b) ทุกมุมสองซีตาร์ หักเหมาจากโครงสร้างเตตระโกนอลของ อัล ฟาแมงกานีสออกไซด์ (JCPDS 44-0141) โดยจากการคำนวณค่าคงที่แลตติส a=0.9816 นาโนเมตร และ c=0.2854 นาโนเมตรซึ่งเป็นค่าที่ใกล้เคียงกับค่าที่ถูกรายงานก่อนหน้าของอัลฟาแมงกานีสออกไซด์ c=0.2854 นาโนเมตรซึ่งเป็นค่าที่ใกล้เคียงกับค่าที่ถูกรายงานก่อนหน้าของอัลฟาแมงกานีสออกไซด์ c=0.2854

3.4 สัณฐานวิทยาของนาโนแมงกานีสออกไซด์ที่ใช้โพลิสไตรีนเป็นแม่แบบ

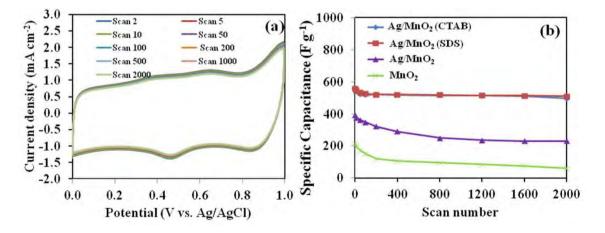
อนุภาคของโพลิสไตรีนทรงกลมที่มีขนาดอนุภาคจาก 200-900 นาโนเมตร มีการจัดเรียงตัวแบบ เอฟซีซี เคลือบอยู่บนวัสดุรองรับกราสซีคาร์บอน (รูปที่ 5a-c) การจัดเรียงตัวที่เป็นระเบียบของอนุภาคทรง กลมโพลิสไตรีนถูกพบเป็นผลึกฟิล์มคล้ายรวงผึ้ง มีช่องว่างอากาศอยู่ระหว่างอนุภาคทรงกลมโพลิสไตรีนและ ถูกใช้เป็นแม่แบบในการเตรียมนาโนแมงกานีสออกไซด์สามมิติ (รูปที่ 5d-f)

ร**ูปที่ 5** ภาพถ่ายจากกล้องจุลทรรศน์แบบส่องกราด (a-c) ผลึกคอลลอยด์แม่แบบของอนุภาคทรงกลมโพลิสไต รีนที่มีขนาดอนุภาค 200, 400, และ 900 นาโนเมตร ตามลำดับ และ (d-f) ขั้วไฟฟ้าสามมิติของนาโน แมงกานีสออกไซด์ที่ถูกเตรียมจากการใช้แม่แบบอนุภาคทรงกลมโพลิสไตรีน

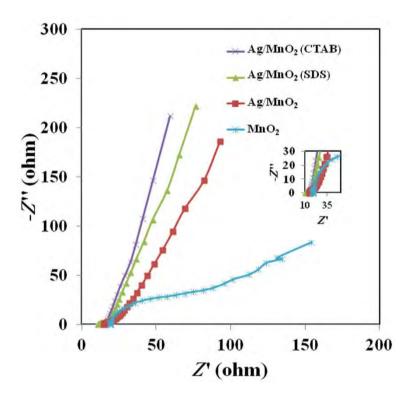

บริเวณสีขาวสว่างในภาพถ่ายจากกล้องจุลทรรศน์แบบส่องกราดแสดงโครงร่างตาข่ายของแมงกานีส ออกไซด์ที่เป็นของแข็ง และบริเวณสีเทาทึบคือบริเวณช่องว่างอากาศที่สามารถให้สารละลายอิเล็คโตรไลต์ แพร่เข้ามาดูดซับเหมาะที่จะใช้เป็นขั้วไฟฟ้าของอุปกรณ์ตัวเก็บประจุไฟฟ้าเคมียิ่งยวด ขนาดเส้นผ่าน ศูนย์กลางของช่องว่างอากาศมีขนาดเล็กกว่าขนาดของอนุภาคทรงกลมของโพลิสไตรีนที่ใช้ ทั้งนี้เป็นเพราะ อิทธิพลของความร้อนที่เกิดจากกระบวนการเผา^[24]

3.5 การประเมิณเชิงไฟฟ้าเคมี

3.5.1 แมงกานีสออกไซด์ที่เตรียมจากเทคนิคอิเล็คโตรเด็พโพซิชัน


ค่าการเก็บประจุไฟฟ้าเคมีจำเพาะที่ถูกวัดด้วยเทคนิคไซคลิกโวลเทมเมตรี ในสารละลาย 0.5 โมลาร์ โซเดียมซัลเฟต จากความต่างศักดิ์ 0 ถึง 1 โวลต์ ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที ไซคลิกโว ลเทมโมแกรมชี้ให้เห็นพฤติกรรมการเก็บประจุไฟฟ้าเคมียิ่งยวด และกลไกการเก็บประจุของประจุบวก เช่น \mathbf{Na}^{\perp} และ \mathbf{H}^{\perp} บนผิวของขั้วไฟฟ้า และยังพบว่ามีปฏิกิริยารีดอกซ์เกิดขึ้นภายในขั้วไฟฟ้าเอง [5] จากการ อินทิเกรตหาพื้นที่ใต้กราฟ สามารถคำนวณหาค่าการเก็บประจุ (C) จากสมการ $\mathbf{C} = \mathbf{I}_{a}/m \mathbf{U}$ เมื่อ \mathbf{I}_{a} คือ กระแสที่ได้จากไซคลิกโวลเทมเมตรี \mathbf{m} คือ มวลของอนุภาคนาโนแมงกานีสออกไซด์สามมิติ และ \mathbf{U}^{\perp} คือ อัตราเร็วในการสแกนความต่างศักดิ์ต่อวินาที จากไซคลิกโวลเทมโมแกรมในรูปที่ 6a เราสามารถคำนวณหาคำการเก็บประจุไฟฟ้าของวัสดุ Ag-doped \mathbf{MnO}_2 ที่ได้จากการใช้ CTAB และ SDS ในฐานะแม่แบบ ถูกเรียก ดังนี้ Ag/MnO $_2$ (CTAB) และ Ag/MnO $_2$ (SDS) ที่อัตราเร็วในการสแกนที่ 5 มิลลโวลต์ต่อวินาที ได้คำการเก็บประจุไฟฟ้าเคมีเท่ากับ 551 และ 557 ฟารัดต่อกรัม ตามลำดับ คำการเก็บประจุนี้มีค่าสูงกว่า Ag/MnO $_2$ และ \mathbf{MnO}_2 ถึง 1.4 และ 2.7 เท่า ตามลำดับ

จากการทดลองด้วยเทคนิคไซคลิกโวลเทมเมตรีที่อัตราเร็วในการสแกนจาก 1-100 มิลลิโวลต์ต่อ วินาที และค่าการเก็บประจุมีค่าลดลงเมื่ออัตราเร็วในการสแกนเพิ่มมากขึ้น (รูปที่ 6b) ทั้งนี้เนื่องจากการ เคลื่อนที่มวลของ Na⁺ และ H⁺ เข้าไปในขั้วไฟฟ้า ที่อัตราเร็วในการสแกนสูงๆ Na⁺ และ H⁺จะแพร่เข้าไปที่ผิว ด้านนอกของขั้วไฟฟ้าเท่านั้น ขณะที่อัตราเร็วในการสแกนต่ำๆ ประจุบวกดังกล่าวมีเวลาแพร่เข้าไปได้ในรู พรุนของขั้วไฟฟ้า


ร**ูปที่ 6** (a) ไซคลิกโวลเทมโมแกรมของ MnO_2 และ Ag-doped MnO_2 บนคาร์บอนนาโนโฟม ใน 0.5 โมลาร์ โซเดียมซัลเฟต ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที (b) ค่าการเก็บประจุไฟฟ้าเคมีจำเพาะที่ อัตราเร็วในการสแกนต่างๆ

เสถียรภาพของขั้วไฟฟ้าที่เดรียมได้เมื่อผ่านการสแกน 2000 รอบ รูปที่ 7a แสดงไซคลิกโวลเทมโม แกรมของ Ag/MnO2 (CTAB) ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที จากศักย์ไฟฟ้า 0-1 โวลต์ใน สารละลาย 0.5 โมลาร์ โซเดียมซัลเฟต ค่าการเก็บประจุหลังจากทดสอบ 2000 รอบ ลดลงเพียง 1.4% เมื่อ เทียบกับการทดสอบครั้งที่ 2 (552 ฟารัดต่อกรัม) ชี้ให้เห็นเสถียรภาพสูงของ Ag/MnO2 (CTAB) รูปที่ 7b เปรียบทียบค่าการเก็บประจุไฟฟ้าเคมีของขั้วไฟฟ้าทั้งหมดที่เตรียมได้ พบว่า Ag/MnO2 (SDS) มีค่าการเก็บ ประจุไม่ต่างจาก Ag/MnO2 (CTAB) แต่ค่าการเก็บประจุของ Ag/MnO2 มีค่าน้อยกว่า Ag/MnO2 (CTAB) ประมาณ 1.5 เท่าตลอดทุกอัตราเร็วในการสแกน แต่อย่างไรก็ตามค่าการเก็บประจุของ Ag/MnO2 ยังมีค่าสูง กว่า MnO_2 ถึงสามเท่า สอดคล้องกับงานวิจัยก่อนหน้า (7)

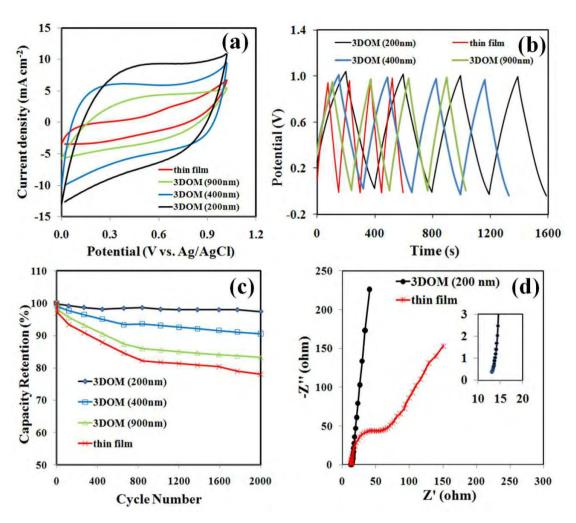
ร**ูปที่ 7** (a) ไซคลิกโวลเทมโมแกรมของ Ag/MnO₂ (CTAB) ที่ สแกนต่างๆ (2-2000 รอบ) และ (b) ค่าการเก็บ ประจุไฟฟ้าเคมีจำเพาะ ที่สแกนต่างๆ (2-2000 รอบ)

กราฟในคิสทในรูปที่ 8 แสดงครึ่งวงกลมที่ความถี่สูง หรือส่วนล่างของกราฟ เพราะว่าความต้านทาน ของการเคลื่อนที่ประจุ และการถ่ายเทมวลสารค่อนข้างช้าโดยสังเกตุจากสวนบนของกราฟหรือที่ความถี่ต่ำ ค่าความต้านทานการถ่ายโอนประจุของ Ag/MnO2(SDS) \approx Ag/MnO2(CTAB) < Ag/MnO2 < MnO2 ถ้าค่า ความต้านทานการถ่ายโอนประจุต่ำ นั้นแสดงว่าขั้วไฟฟ้านั้นจะเก็บประจุไฟฟ้าเคมีได้สูง ^[26] ความชันของ กราฟในคิสทที่ความถี่ต่ำ เนื่องจากความต้านทานของ Warburg ส่งผลให้การแพร่หรือถ่ายเทมวลสาร ค่อนข้างช้า และเมื่อเปรียบเทียบขั้วไฟฟ้าชนิดต่างๆ พบว่าการผสมโลหะเงินเข้าไปในแมงกานีสออกไซด์ ทำ ให้ค่าการเก็บประจุไฟฟ้าสูงถึง เนื่องจากค่าการนำไฟฟ้าของฟิล์มของวัสดุผสมสูงขึ้นกว่าแมงกานีสออกไซด์ บริสุทธิ์ $^{[27,28]}$

ร**ูปที่ 8** กราฟในคิสทของขั้วไฟฟ้าของตัวเก็บประจุไฟฟ้าเคมียิ่งยวดใน 0.5 โมลาร์โซเดียมซัลเฟต ที่ 5 มิลลิ โวลต์ จาก 100 kHz ถึง 1 mHz

3.5.2 แมงกานีสออกไซด์ที่เตรียมจากเทคนิคโพลิออลและที่ใช้โพลิสไตรีนเป็นแม่แบบ

เนื่องจากแมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคทางเคมี หรือ ปฏิกิริยาออกซิเดชันของแมงกานีสอะ ซีเตตด้วยกรดซิตริกมีขนาดอนุภาคใหญ่กว่า 100 นาโนเมตรให้ค่าการเก็บประจุต่ำกว่า 100 ฟารัดต่อกรัม ดังนั้นในรายงานฉบับนี้จึงสนใจเฉพาะแมงกานีสออกไซด์ที่เตรียมจากเทคนิคโพลิออลและที่ใช้โพลิสไตรีนเป็น แม่แบบ


ลักษณะของไซคลิกโวลเทมโมแกรมของขั้วไฟฟ้าสามมิติในรูปที่ 9a ถูกวิเคราะห์ในสารละลาย 0.5 โมลาร์โซเดียมซัลเฟต ที่ความต่างศักย์จาก 0 ถึง 1 โวลต์ที่อัตราเร็วในการสแกน 50 มิลลิโวลต์ต่อวินาที ซึ่งมี ลักษณะรูปร่างคล้ายกล่องสี่เหลี่ยมพื้นผ้า ชี้ให้เห็นพฤติกรรมการเก็บประจุไฟฟาเคมียิ่งยวดของขั้วไฟฟ้า และ จากการอินทีเกรตหาพื้นที่ใต้กราฟ สามารถคำนวณหาค่าการเก็บประจุ (C) จากสมการ $C=I_c/mU$ เมื่อ I_{cv} คือกระแสที่ได้จากไซคลิกโวลเทมเมตรี m คือ มวลของอนุภาคนาโนแมงกานีสออกไซด์สามมิติ และ v คือ ้อัตราเร็วในการสแกนความต่างศักย์ต่อวินาที่ จากการคำนวณดังกล่าวพบว่าอนุภาคนาโนแมงกานีสออกไซด์ สามมิติที่มีเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโนเมตร มีค่าการเก็บประจุไฟฟ้าเคมี 390 ฟา รัดต่อกรัม ซึ่งมีค่ามากกว่าค่าการเก็บประจุไฟฟ้าเคมีของอนุภาคนาโนแมงกานีสออกไซด์สามมิติที่มีเส้นผ่าน ศูนย์กลางของช่องว่างอากาศขนาด 400 และ 900 นาโนเมตร และแผ่นฟิล์มทึบไม่มีรูพรูน คิดเป็น 3.4, 2.0, และ1.3 เท่า ตามลำดับ ค่าการเก็บประจุไฟฟ้าเคมีดังกล่าวมีค่าสูงกว่า 313 ฟารัดต่อกรัมซึ่งเป็นค่าการเก็บ ประจุของ อัลฟาแมงกานีสออกไซด์ที่เคลือบอยู่บน คาร์บอนไฟเบอร์¹²⁹ และเพื่อการเปรียบเทียบ ค่าการเก็บ ประจุของอนุภาคนาโนแมงกานีสออกไซด์สามมิติที่มีเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโน เมตร ที่อัตราเร็วในการสแกน 2 มิลลิโวลต์ต่อวินาที มีค่าเท่ากับ 765 ฟารัดต้อกรัม ซึ่งถือว่าเป็นค่าที่สูง ใกล้เคียงกับ 770 ฟารัดต่อกรัมของวัสดุผสมระหว่างโลหะเงินกับแมงกานีสออกไซด์^[7] ค่าการเก็บประจุไฟฟ้า เคมียิ่งยวดที่มีค่าสูงของอนุภาคนาโนแมงกานีสออกไซด์สามมิติเพราะว่าการจัดว่างตัวเป็นแนวที่เป็นระเบียบ ของแมงกานีสออกไซด์สามมิติบนขั้วไฟฟ้าส่งผลต่อการแพร่ของสารละลลายอิเล็กโตรไลต์ เช่น โซเดียม ไอออน และ โปรตรอน ได้รวดเร็ว^[27] ทั้งนี้กลไกการเก็บประจุไฟฟ้าเคมีของแมงกานีสออกไซด์คือการเก็บ ประจุไฟฟ้าเคมีบนพื้นผิว ดังนั้นวัสดุที่มีรุพรุนสูงจะมีพื้นที่ผิวสำหรับการดูดซับของสารอิเล็กโตรไลต์สูงด้วย

รูป 96 แสดงการบรรจุและคายพลังงงานของขั้วไฟฟ้าสามมิติพบว่ากราฟจากการบรรจุและคาย พลังงานมีลักษณะเป็นเส้นตรงบ่งบอกถึงการบรรจุและคายพลังงานที่ดี รวดเร็วและมีเสถียรภาพสูง เดือนสารละลายโซเดียมซัลเฟต สามารถทำงานได้ดีที่ความต่างศักย์จาก 0 ถึง 1.0 โวลต์ ซึ่งเป็นค่าที่เป็นไปในทาง เดียวกับค่าความต่างศักย์ที่พบในไซคลิกโวลเทมเมตรี (รูปที่ 9a) ค่าการเก็บประจุของขั้วไฟฟ้าสามารถ คำนวณได้จากกราฟการบรรจุและคายพลังงานดังกล่าวโดยใช้สมการ $C=It\Delta Vm$ เมื่อ ΔV คือ ความต่างศักย์ ทำงาน (โวลต์) t คือ เวลาในการคายพลังงาน (วินาที) และ t คือ กระแสไฟฟ้าที่ให้เข้าไปในระหว่างการบรรจุ

พลังงาน (แอมแปร์) ค่าการเก็บประจุจากการคำนวณดังกล่าวของขั้วไฟฟ้าแมงกานีสออกไซด์สามมิติที่มีเส้น ผ่านศูนย์กลางขนาด 200 นาโนเมตร ที่ทำการทดสอบที่ความหนาแน่นกระแสไฟฟ้าที่ให้ขั้วไฟฟ้าเท่ากับ 2.5 แอมแปร์ต่อกรัม จากการทดสอบในรอบที่สอง พบว่ามีค่าเท่ากับ 518 ฟารัดต่อกรัม ซึ่งเป็นค่าที่สอดคล้องจาก การคำนวณจากไซคลิกโวลเทมเมตรี ที่มีค่า 515 ฟารัดต่อกรัม ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที โดยมีค่ากระแสไฟฟ้าที่ได้เท่ากับ 1.02 มิลลิแอมแปร์ต่อตารางเซนติเมตรของขั้วไฟฟ้า และค่าจากการเก็บ ประจุไฟฟ้าเคมีดังกล่างมีค่าสูงกว่า 2.9-, 1.8-, และ 1.4-เท่า เมื่อเทียบกับฟิล์มทึบ ฟิล์มสามมิติที่มีขนาดเส้น ผ่านศูนย์กลางของช่องว่างอากาศขนาด 400 และ 900 นาโนเมตร ตามลำดับ

ค่าความเสถียรเชิงไฟฟ้าเคมีของขั้วฟ้าที่ถูกเตรียมถูกวิเคราะห์โดยวิธีการบรรจุและคายพลังงาน ที่ ความหนาแน่นกระแสไฟฟ้าที่ให้ขั้วไฟฟ้าเท่ากับ 2.5 แอมแปร์ต่อกรัม (รูปที่ 9c) สำหรับขั้วไฟฟ้าแมงกานีส ออกไซด์สามมิติที่มีขนาดเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโนเมตร มีค่าการเก็บประจุฟ้า เคมีที่ 2000 แตกต่างเพียง 2 % เมื่อเทียบกับค่าการเก็บประจุไฟฟ้าเคมีของการบรรจุและคายพลังงานรอบ แรก ขณะขั้วไฟฟ้าแมงกานีสออกไซด์สามมิติที่มีขนาดเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 400 และ 900 นาโนเมตร และขั้วไฟฟ้าที่ไม่มีรูพรุน มีค่าเสถียรภาพในการเก็บประจุไฟฟ้าเคมีต่ำกว่าขั้วไฟฟ้า แมงกานีสออกไซด์สามมิติที่มีขนาดเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโนเมตร 8, 15, และ 20 % ตามลำดับ

กราฟไนคิสทของขั้วไฟฟ้าที่ถูกเตรียมในสารละลาย 0.5 โมลาร์ของสารละลาย โซเดียมซัลเฟต ด้วย การให้ความต่างศักย์ไฟฟ้ากระแสสลับ 40 มิลลิโวลต์ ที่ความถี่จาก 100 กิโลเฮริตซ์ ถึง 1 มิลลิเฮริตซ์ (รูปที่ 9d) ข้อมูลแต่ละจุดของกราฟไนคิสทที่ความถี่ต่างๆ โดยข้อมูลส่วนล่างของกราฟมีความถี่สูงกกว่าข้อมูล ส่วนบนของกราฟ ลักษณะกราฟของขั้วไฟฟ้าแมงกานีสออกไซด์สามมิติที่มีขนาดเส้นผ่านศูนย์กลางของ ช่องว่างอากาศขนาด 200 นาโนเมตรมีค่าใกล้เคียงกับขั้วไฟฟ้าในอุดมคติของตัวเก็บประจุไฟฟ้าเคมียิ่งยวด คือมีค่าเป็นเส้นตรงขนานแกนวาย ขณะที่กราฟรูปครึ่งวงกลมถูกสังเกตุเห็นสำหรับขั้วไฟฟ้าของฟิล์มทึบ บ่ง บอกถึงค่าความต้านทานการถ่ายโอนประจุค่อนข้างสูง [31] ที่ความถี่ต่ำหรือสวนบนของกราฟแสดงให้เห็นว่า ขั้วไฟฟ้าสามมิติมีค่าความต้านทานการแพร่ของสารละลายอิเล็กโตรไลต์ต่ำกว่าขั้วไฟฟ้าของฟิล์มทึบ [27, 32]

ร**ูปที่ 9** (a) ไซคลิกโวลเทมโมแกรม (b) กราฟแสดงการบรรจุและคายพลังงาน (c) กราฟเปรียบเทียบ เสถียรภาพของขั้วไฟฟ้าที่ถูกเตรียม และ (d) กราฟในคิสทของขั้วไฟฟ้าที่ถูกเตรียม

บทที่ 4

สรุปผลการทดลองและข้อเสนอแนะสำหรับงานวิจัยในอนาคต

4.1 นาโนแมงกานีสออกไซด์และวัสดุผสมที่เตรียมด้วยเทคนิคการตกตะกอนด้วยกระแสไฟฟ้า

ขั้วไฟฟ้าของวัสดุผสมระว่างเงินและแมงกานีสออกไซด์ ที่มีสัณฐานวิทยาแบบใบไม้และมีรูพรุนสูง คล้ายโฟมถูกเตรียมจากการใช้เทคนิคการตกตะกอนด้วยกระแสไฟฟ้าโดยใช้สารลดแรงตรึงผิวในฐานะ แม่แบบ โดยสารลดแรงตรึงผิว โซเดียมโดเดซิลซัลเฟต และซีทิลเมทิลแอมโมเนียมโบรไมด์ถูกใช้ทำ ถุกใช้ เป็นแม่แบบผ่านโครงสร้างไมเซลแบบครึ่งทรงกลมบนผิวของขั้วไฟฟ้า การเดิมโลหะเงินไปในโครงสร้างของ แมงกานีสออกไซด์ช่วยเพิ่มค่าการนำไฟฟ้าของวัสดุผสม และควบคุมโครงสร้างของวัสดุผสมโดยการใช้สาร ลดแรงตรึงผิวทำให้ใต้สารที่มีรูพรุน ส่งผลให้การเคลื่อนที่ของมวลสารละลลายอิเล็คโตรไลต์ได้รวดเร็วมากขึ้น ค่าการเก็บประจุไฟฟ้าเคมีจำเพาะ ของวัสดุผสมที่มีรูพรุนสูงที่ถูกวัดในสารละลาย 0.5 โมลาร์ โซเดียมซัลเฟต ที่อัตราเร็วในการสแกน 5 มิลลิโวลต์ต่อวินาที มีค่าเท่ากับ 551 และ 557 ฟารัดต่อกรัม สำหรับสารลดแรงตรึง ผิวโซเดียมโดเดซิลซัลเฟต และซีทิลเมทิลแอมโมเนียมโบรไมด์ ตามลำดับ และที่อัตราเร็วในการสแกน 1 มิลลิโวลต์ต่อวินาที ตัวเก็บประจุไฟฟ้าเคมีดังกล่าวสามารถเก็บประจุได้ประมาณ 800 ฟารัดต่อกรัม ค่าการเก็บ ประจุไฟฟ้าเคมีดังกล่าวสูงกว่าวัสดุแมงกานีสออกไซด์ถึง 2.7 เท่า และสูงกว่าวัสดุผสมระหว่างโลหะเงินและ แมงกานีสออกไซด์ที่ปราศจากการใช้สารลดแรงตรึงผิวถึง 1.4 เท่า

4.2 นาโนแมงกานีสออกไซด์ที่เตรียมด้วยเทคนิคการตกตะกอนด้วยกเทคนิคโพลิออลและใช้โพลิสไต รีนเป็นแม่แบบ

ขั้วไฟฟ้าแมงกานีสออกไซด์สามมิติที่มีขนาดเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200, 400, และ 900 นาโนเมตร ถูกเตรียมจากอนุภาคนาโนแมงกานีสออกไซด์ขนาด 1.8±0.2 นาโนเมตร ร่วมกับการใช้ แม่แบบผลึกคอลลอยด์ของอนุภาคทรงกลมโพลิสไตรีน ขั้วไฟฟ้าสามมิติที่มีขนาดเส้นผ่านศูนย์กลางของ ช่องว่างอากาศขนาด 200 นาโนเมตร สามารถเก็บประจุไฟฟ้าเคมีได้สูงกว่าขั้วไฟฟ้าสามมิติที่มีขนาดเส้นผ่าน ศูนย์กลางของช่องว่างอากาศขนาด 400 และ 900 นาโนเมตร และฟิล์มทึบ ถึง 3.0, 2.0, และ1.3 เท่า ตามลำดับ ทั้งนี้เป็นผลจากอิทธิพลการเคลื่อนที่ของมวลสารละลายอิเล็กโตรไลต์ที่เร็วในช่องว่างอากาศขนาด

200 นาโนเมตร นอกจากนั้นขั้วไฟฟ้าสามมิติที่มีขนาดเส้นผ่านศูนย์กลางของช่องว่างอากาศขนาด 200 นาโน เมตรมีเสถียรภาพในการบรรจุและคายพลังงานสูง 98% เมื่อผ่านการทดสอบ 2000 รอบ ขณะที่ฟิล์มทึบมี ความเสถียรภาพค่อนข้างต่ำ เพียง 78 % ท้ายสุดค่าการเก็บประจุไฟฟ้าเคมีที่สูงของขั้วไฟฟ้าสามมิติดังกล่าว อาจนำไปสู่การใช้เป็นขั้วไฟฟ้าของอุปกรณ์ไฟฟ้าเคมียิ่งยวดในอนาคต

จากการเปรียบเทียบทั้งสองเทคนิคพบว่าค่าการเก็บประจุของอนุภาคนาโนแมงกานีสออกไซด์ที่มี โลหะเงินเงิน ถูกเตรียมด้วยวิธีการตกตะกอนสะสมด้วยกระแสไฟฟ้า โดยใช้สารควบคุมโครงสร้าง โซเดียมโด เดซิลซัลเฟต หรือ ซีทิลเมทิลแอมโมเนียมโบรไมด์ มีค่าประมาณ 800 ฟารัดต้อกรัม ทดสอบการเก็บประจุ ใน สารละลาย 0.5 โมลาร์ โซเดียมซัลเฟตที่อัตราเร็วในการสแกน 1 มิลลิโวลต์ต่อวินาที ซึ่งถือเป็นค่าการเก็บ ประจุที่ค่อนข้างสูง เนื่องจากการเคลื่อนที่มวลของ Na⁺ และ H⁺ เข้าไปในขั้วไฟฟ้าที่มีรูพรุนได้ดี และที่ อัตราเร็วในการสแกนต่ำๆ ประจุบวกดังกล่าวมีเวลาแพร่เข้าไปได้ในรูพรุนของขั้วไฟฟ้าส่งผลให้ค่าการเก็บ ประจุไฟฟ้าเคมีที่สูง

4.3 ข้อเสนอแนะสำหรับงานวิจัยในอนาคต

โดยปกติฟิล์มบางแมงกานีสออกไซด์ที่มีความหนาในระดับไมโครเมตรจะสามารถเก็บประจุไฟฟ้า เคมีได้ต่ำ เนื่องจากการนำไฟฟ้าต่ำ และฟิล์มบางมากกว่านั้น เช่น ระดับนาโนเมตรจะไม่เสถียรเนื่องจากมี ปริมาณแมงกานีสออกไซด์น้อย งานวิจัยในอนาคตควรเตรียมวัสดุผสมระว่างแมงกานีสออกไซด์กับวัสดุกรา ฟืน เป็นตัน เพื่อเพิ่มการนำไฟฟ้าให้แมงกานีสออกไซด์ อีกทั้งงานวิจัยในอนาคตจะเน้นการประดิษฐ์อุปกรณ์ ตัวเก็บประจุไฟฟ้าเคมียิ่งยวด

อ้างอิง

- [1] P. Simon, Y. Gogotsi, *Nature Materials* **2008**, 7, 845.
- [2] G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2013, 2, 213.
- [3] G. S. Gund, D. P. Dubal, B. H. Patil, S. S. Shinde, C. D. Lokhande, *Electrochimica Acta* 2013, 92, 205.
- [4] M. S. Wu, Z. S. Guo, J. J. Jow, *Journal of Physical Chemistry C* **2010**, *114*, 21861.
- [5] M. Toupin, T. Brousse, D. Belanger, Chemistry of Materials 2004, 16, 3184.
- [6] S. C. Pang, M. A. Anderson, T. W. Chapman, *Journal of the Electrochemical Society* **2000**, 147, 444.
- [7] Y. Wang, I. Zhitomirsky, *Materials Letters* **2011**, *65*, 1759.

- [8] H.-J. Ahn, Y.-E. Sung, W. B. Kim, T.-Y. Seong, *Electrochemical and Solid-State Letters* **2008**, *11*, A112.
- [9] S. Devaraj, N. Munichandraiah, *Electrochemical and Solid State Letters* **2005**, 8, A373.
- [10] J. K. Chang, W. T. Tsai, Journal of the Electrochemical Society 2003, 150, A1333.
- [11] G. Gauthier, V. Lazarus, L. Pauchard, *Langmuir* **2007**, 23, 4715.
- [12] E. R. Dufresne, E. I. Corwin, N. A. Greenblatt, J. Ashmore, D. Y. Wang, A. D. Dinsmore, J. X. Cheng, X. S. Xie, J. W. Hutchinson, D. A. Weitz, *Physical Review Letters* **2003**, *91*.
- [13] B. Babakhani, D. G. Ivey, Journal of Power Sources 2011, 196, 10762.
- [14] J. N. Broughton, M. J. Brett, *Electrochimica Acta* 2005, 50, 4814.
- [15] M. Ghaemi, L. Khosravi-Fard, J. Neshati, Journal of Power Sources 2005, 141, 340.
- [16] Z. Yang, C. Zhou, W. Zhang, H. Li, M. Chen, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2010**, *356*, 134.
- [17] Y. Jia, J. Xu, L. Zhou, H. Liu, Y. Hu, *Materials Letters* **2008**, *62*, 1336.
- [18] H. M. Abuzeid, A. M. Hashem, N. Narayanan, H. Ehrenberg, C. M. Julien, *Solid State Ionics* **2011**, *182*, 108.
- [19] R. Hu, Y. Cheng, L. Xie, D. Wang, Chinese Journal of Catalysis 2007, 28, 463.
- [20] R. K. Kunkalekar, A. V. Salker, Catalysis Communications 2010, 12, 193.
- [21] N. D. Kim, H. J. Yun, I. Kyu Song, J. Yi, Scripta Materialia 2011, 65, 448.
- [22] Y. Zhang, G.-y. Li, Y. Lv, L.-z. Wang, A.-q. Zhang, Y.-h. Song, B.-l. Huang, *International Journal of Hydrogen Energy* **2011**, *36*, 11760.
- [23] Y. Y. Yang, L. F. Xiao, Y. Q. Zhao, F. Y. Wang, *International Journal of Electrochemical Science* **2008**, *3*, 67.
- [24] D. Wang, R. A. Caruso, F. Caruso, Chemistry of Materials 2001, 13, 364.
- [25] M. Sawangphruk, S. Pinitsoontorn, J. Limtrakul, *Journal of Solid State Electrochemistry* **2012**, *16*, 2623.
- [26] P. Justin, S. K. Meher, G. R. Rao, *The Journal of Physical Chemistry C* **2010**, *114*, 5203.
- [27] H. Zhang, X. Yu, P. V. Braun, Nature Nanotechnology 2011, 6, 277.
- [28] Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen, Y. S. Chen, *Journal of Physical Chemistry C* **2009**, *113*, 13103.
- [29] J. Liu, J. Essner, J. Li, Chemistry of Materials 2010, 22, 5022.
- [30] D. Qu, Journal of Power Sources 2002, 109, 403.
- [31] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, *Journal of Physical Chemistry C* 2009, *113*, 13103.
- [32] M. Nakayama, T. Kanaya, R. Inoue, Electrochemistry Communications 2007, 9, 1154.

ภาคผนวก

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ (ระบุชื่อผู้แต่ง ชื่อเรื่อง ชื่อวารสาร ปี เล่มที่ เลขที่ และหน้า)
 หรือผลงานตามที่คาดไว้ในสัญญาโครงการ

ผลงานตามที่คาดไว้ในสัญญาโครงการ

ชื่อเรื่อง: Electrodeposited Manganese Oxide on Carbon Nanofoam with Ultrahigh
Capacitance

วารสาร: Journal of Power Sources (Impact Factor= 3.792)

ชื่อเรื่อง: Ultrahigh Electrochemical Capacitance of Manganese Oxide Nanostructures: Shape and Size Dependence

วารสาร: Journal of Physical Chemistry C (Impact Factor= 4.224)

ผลงานที่ทำได้จริง

- Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Krittayavathananon, A.; Luanwuthi, S.; Limtrakul, J., High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. *Carbon* 2013, 60, 109–116. (*Impact factor = 5.378*)
- Sawangphruk, M.; Krittayavathananon, A.; Chinwipas, N., Ultraporous palladium on flexible graphene-coated carbon fiber paper as high-performance electro-catalysts for the electro-oxidation of ethanol. *J. Mater. Chem. A* 2013, 1, 1030-1034.
 (Impact factor = 5.97)
- Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Sangsri, T.; Siwayaprahm, P.,
 Synthesis and antifungal activity of reduced graphene oxide nanosheets. *Carbon* 2012, 50, 5156-5161. (*Impact factor = 5.378*)

- Sawangphruk, M.; Sanguansak, Y.; Suktha, P.; Klunbud, P., Facile Synthesis of Highly Dispersed Silica-Silver Core-Shell Nanospheres for Enzymeless Hydrogen Peroxide Detection. *Electrochem. Solid State Lett.* 2012, 15, F5-F7. (Impact factor = 1.995)
- Sawangphruk, M.; Pinitsoontorn, S.; Limtrakul, J., Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. *J. Solid State Electrochem.* 2012, 16, 2623-2629. (Impact factor = 2.131)
- Sawangphruk, M.; Limtrakul, J., Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes.
 Mater. Lett. 2012, 68, 230-233. (Impact factor = 2.307)
- Sawangphruk, M.; Kaewsongpol, T., Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films.
 Mater. Lett. 2012, 87, 142-145. (Impact factor = 2.307)
- Suktha, P.; Lekpet, K.; Siwayaprahm, P.; Sawangphruk, M., Enhanced mechanical properties and bactericidal activity of polypropylene nanocomposite with dualfunction silicasilver core-shell nanoparticles. *J. App. Polym. Sci.* 2013, 128, 4339-4345. (Impact factor = 1.289)

การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ (มีการนำไปผลิต/ขาย/ก่อให้เกิดรายได้ หรือมีการนำไปประยุกต์ใช้โดยภาค ธุรกิจ/บุคคลทั่วไป)

ไม่มี

- เชิงนโยบาย (มีการกำหนดนโยบายอิงงานวิจัย/เกิดมาตรการใหม่/เปลี่ยนแปลงระเบียบ ข้อบังคับหรือวิธีทำงาน)

ไม่มี

- เชิงสาธารณะ (มีเครือข่ายความร่วมมือ/สร้างกระแสความสนใจในวงกว้าง)

ไม่มี

- เชิงวิชาการ (มีการพัฒนาการเรียนการสอน/สร้างนักวิจัยใหม่)
 - นำเอาความรู้ไปพัฒนาการเรียนการสอนในรายวิชา Nanomaterial Technology
 ภาควิชาวิศวกรรมเคมี มหาวิทยาลัยเกษตรศาสตร์ และผลิตนิสิตปริญญาโท 2
 คน
- 3. อื่นๆ (เช่น ผลงานตีพิมพ์ในวารสารวิชาการในประเทศ การเสนอผลงานในที่ประชุมวิชาการ หนังสือ การจดสิทธิบัตร)
 - ✓ ได้ถูกเชิญไปพูด (Invited speaker) เรื่อง Syntheses and characterizations of nanomaterials for electrochemical energy storage devices ในงานประชุม วิชาการ Pure and Applied Chemistry International Conference 2013 (23/1/2556) จัดขึ้นที่จังหวัดชลบุรี

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Direct electrodeposition and superior pseudocapacitive property of ultrahigh porous silver-incorporated polyaniline films

Montree Sawangphruk a,b,*, Tanon Kaewsongpol a

- ^a National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- b Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

ARTICLE INFO

Article history: Received 1 June 2012 Accepted 26 July 2012 Available online 4 August 2012

Keywords:
Polyaniline
Nanocomposite
Electrodeposition
Supercapacitor
Pseudocapacitor
Energy storage

ABSTRACT

A silver-incorporated polyaniline (Ag/PANI) pseudocapacitor electrode was produced using a facile electrodeposition method. By applying a static potential of 0.4 V vs. Ag/AgCl through a glassy carbon electrode in the electroplating solution of 0.2 M aniline in 0.2 M H₂SO₄ containing 0.5 mM AgNO₃ for 5 min, the Ag/PANI composite with ultrahigh porosity was obtained. Silver plays two significant roles for enhancing pseudocapacitance of the Ag/PANI composite: good electrical conductivity and fast ion transportation. The Ag/PANI composite exhibits high specific capacitance of 420 F g^{-1} measured in 0.5 M Na₂SO₄ at a scan rate of 10 mV s⁻¹, which is about 2-fold higher than that of pure PANI. For the cycle stability, 94% of the original capacitance of Ag/PANI is retained after 2000 cycles, indicating excellent cycle stability while pure PANI has only 58% retention of its original capacitance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Supercapacitors are of interest for portable electronic devices and hybrid electric vehicles since they exhibit high power density, fast charge-discharge rate and high stability [1]. Two storage mechanisms of the supercapacitors are based on electrochemical double layer capacitance (EDLC) at the solid-liquid interface and pseudocapacitance. Pseudocapacitors or redox supercapacitors have fast Faradaic charge-transfer at the electrode materials in addition to EDLC. Pseudocapacitive materials consist of metal oxides (e.g., RuO₂, NiO, and MnO₂) and conducting polymers (e.g., PANI, polypyrrole, polythiophene, and PEDOT) [2]. Among various pseudocapacitive materials, PANI is recognized as one of the most promising pseudocapacitive materials suitable for the next generation of supercapacitors since it has high theoretical pseudocapacitance, low cost, controllable electrical conductivity, high energy density, environmental friendliness and facile synthesis [3].

However, the specific capacitance of PANI with dense morphology is still limited by low ionic transport through its film while the stability of thin film (a few micrometers in thickness) of

E-mail address: fengmrs@ku.ac.th (M. Sawangphruk).

PANI is somewhat poor [4]. The conductivity of pure PANI is rather low $(2\,\mathrm{S\,cm^{-1}})$ [5] when compared with polypyrrole $(55\text{-}100\,\mathrm{S\,cm^{-1}})$ [6], polythiophene $(300\text{-}400\,\mathrm{S\,cm^{-1}})$ [7], and PEDOT $(300\text{-}500\,\mathrm{S\,cm^{-1}})$ [7] leading to low charge transfer in PANI pseudocapacitors. Notably, Ag has been recently incorporated to MnO₂ [8,9] and RuO₂ [10] for enhancing their electrical conductivity leading to ultrahigh pseudocapacitance. In the present work, we have incorporated Ag to the PANI film by using a one-step electrodeposition method. Ag/PANI composite with good electrical conductivity and high porosity exhibits ultrahigh pseudocapacitance and excellent cycle stability.

2. Experimental

PANI and Ag/PANI materials were coated onto glassy carbon electrodes using the electrodeposition method. Three electrodes containing a working glassy carbon electrode (1 cm²), a platinum wire counter electrode, and a Ag/AgCl reference electrode, were immersed in the aqueous solution containing 0.2 M aniline and 0–1.5 mM AgNO₃ in 0.2 M H₂SO₄. The electrodeposition potential and time were fixed at 0.4 V vs. Ag/AgCl and 5 min, respectively since these conditions can provide the pseudocapacitive films with 0.4 mg cm⁻², which was recognized as an economical mass scale [11,12].

Pseudocapacitive property of as-prepared electrodes was examined in $0.5\,\mathrm{M}$ $\mathrm{Na_2SO_4}$ using cyclic voltammetry, charge–discharge, and electrochemical impedance spectroscopy. The morphology and

^{*} Corresponding author at: National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand. Tel.: +66 2 942 8555; fax: +66 2 561 4621.

elemental analyses of the as-prepared materials were characterized through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX).

3. Results and discussion

Morphological and elemental analyses: Fig. 1 shows the typical morphology of PANI and Ag/PANI films. PANI clusters found on the glassy carbon electrode were from an agglomeration of small PANI particles (see Fig. 1a). The surface of PANI film is rather rough since the electropolymerization of PANI from aniline monomer is a multi-level growth process [4]. Whilst, Ag/PANI composite in Fig. 1(b) has higher porosity and uniformity with the hollow fibers packed tightly onto the surface of the electrode leading to large surface area. For the electrodeposition mechanism of Ag/PANI, it possibly starts with the formation of [Ag-aniline] + complex ions, which undergo polymerization involving both complex ions and pristine aniline monomer [13]. The average diameter of PANI fibers seen in the Ag/PANI composite is ca. 50 nm. The porous characteristic of Ag/PANI might be advantageous for short ionic diffusion of electrolytes leading to ultrahigh capacitance. The EDX spectrum of the PANI in Fig. 1(c) consists of a very strong peak at 0.27 keV associated with CK_{α} and a smaller peak at 0.40 keV due to the carbon and nitrogen atoms of PANI, respectively. The EDX spectrum of the Ag/PANI film in Fig. 1(d) shows a peak of carbon at 0.28 keV, a peak of nitrogen at 0.40 keV, two predominant peaks at 3.00 and 3.16 keV from $AgL_{\alpha 1}$ and $AgL_{\beta 1}$, respectively due to the Ag atoms [14] of Ag/PANI composite.

Electrochemistry evaluation: CV measurements of as-prepared electrodes were evaluated in 0.5 M Na₂SO₄ at potential intervals from -0.2 to 0.8 V vs. Ag/AgCl at the scan rate of 10 mV s⁻¹ (see Fig. 2a). It can be observed that Ag/PANI film has the same pattern characteristic of PANI. Two redox couples appear at 0.38 V and 0.62 V vs. Ag/AgCl. These redox processes have been assigned to the interconversion between the different oxidation states of PANI [15]. The first redox process consisting of an oxidation peak at 0.38 V and a reduction peak at 0.10 V vs. Ag/AgCl is associated

with the interconversion between leucoemeraldine ($[C_6H_4-NH]_n$), and emeraldine $([C_6H_4-NH-C_6H_4-NH-]_n \cdot [C_6H_4-N=C_6H_4=$ $N]_n$). The second redox process with an oxidation peak at 0.62 V and a reduction peak at 0.42 V vs. Ag/AgCl is due to the interconversion between emeraldine to pernigraniline ([C₆H₄- $N = C_6H_4 = N]_n$). Incorporation of Ag metal to the PANI film, by adding 0.5 mM AgNO₃ to the electroplating solution (0.2 M aniline in 0.2 M H₂SO₄), shows a significant improvement in capacitive current, about 2 times when compared with pure PANI. This enhancement is possibly due to ultrahigh porosity and good electrical conductivity of Ag/PANI, which are convenient for insertion/extraction of Na⁺ and H⁺ into/from Ag/PANI electrode leading to fast ion transportation [16,17]. On the other hand, CV of Ag NPs coated on the GC electrode shows very low capacitive current since Ag metal is conductive, behaving like an electrical conductor rather than a capacitor. By integrating the cathodic current for all potentials and subtracting the capacitive current contributed by the glassy carbon substrate, a value of the pseudocapacitive current (I_{cv}) contributed by PANI and Ag/PANI films can be calculated. Using this value along with the mass of deposition (m) and the scan rate (v), the specific capacitance (C)can be obtained according to the equation $C = I_{cv}/mv$. C values of the Ag/PANI obtained at different concentrations of AgNO₃ (0.1-1.5 mM) were determined and shown in Fig. 2(b). The appropriate concentration of AgNO₃ is 0.5 mM (see Fig. 2b) providing the maximum C value of 420 F g⁻¹ measured in 0.5 M Na_2SO_4 at 10 mV s⁻¹. Meanwhile, C values of PANI and Ag/PANI films at different scan rates were also investigated (Fig. 2c). C values of both PANI and Ag/PANI decreased exponentially as a function of scan rate indicating that electrolytes (i.e., Na⁺ and H⁺) can only reach the outer surface of the electrodes at high scan rates. Clearly, C values of Ag/PANI are 2-time higher than those of pure PANI for all scan rates ranging from 1 to 200 mV s $^{-1}$. Ultrahigh C value (about 910 F g $^{-1}$) of Ag/PANI could be achieved at 1 mV s $^{-1}$.

The galvanostatic charge–discharge curves of pure PANI and Ag/PANI films at a current density of 2.5 A g⁻¹ are shown in Fig. 3(a). The charge curves are almost linear and symmetrical to their discharge counterparts, indicating good electrochemical

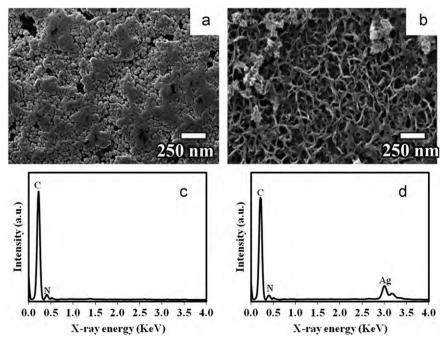


Fig. 1. SEM images of (a) PANI and (b) Ag/PANI as well as EDX spectra of (c) PANI and (d) Ag/PANI.

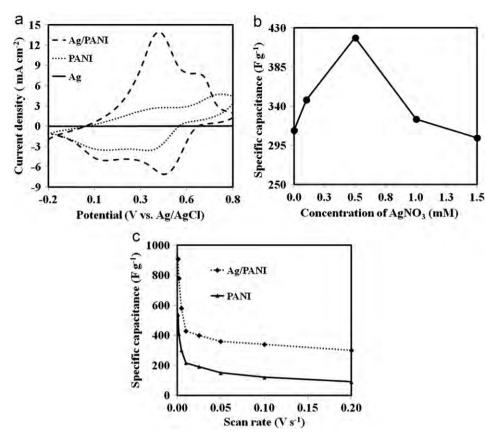


Fig. 2. (a) Cyclic voltammograms of Ag, PANI and Ag/PANI in 0.5 M Na_2SO_4 at 10 mV s⁻¹, (b) specific capacitances of Ag/PANI at different concentrations of AgNO₃ added to the electroplating solutions, and (c) specific capacitances of PANI and Ag/PANI in 0.5 M Na_2SO_4 at different scan rates.

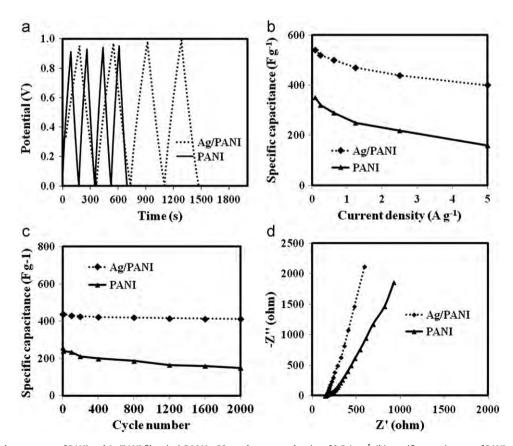


Fig. 3. (a) Charge–discharge curves of PANI and Ag/PANI films in 0.5 M Na₂SO₄ at the current density of 2.5 A g $^{-1}$, (b) specific capacitances of PANI and Ag/PANI at different current densities, (c) specific capacitances of PANI and Ag/PANI at different cycle numbers, and (d) Nyquit plots of PANI and Ag/PANI measured in 0.5 M Na₂SO₄ over the frequency range from 100 kHz to 1 mHz.

performance of the PANI and Ag/PANI films. The C value of the electrode can be calculated using the following equation; $C = It/(\Delta Vm)$ where I is a discharge current (A), t is the time of discharge (s), ΔV is the voltage difference between the upper and lower potential limits, and m is the mass of the active electrode material. According to the above equation, the C value of Ag/PANI composite is ca. 430 F g $^{-1}$ which is about 2-fold higher than that of the pure PANI. This result is in good agreement with the C value determined from the CV. The C values of Ag/PANI are about 2-fold higher than those of the pure PANI for all applied current densities ranging from 0.1 to 5.0 A g $^{-1}$.

The electrochemical stability of as-prepared PANI and Ag/PANI electrodes was investigated by charge/discharge testing for 2000 cycles at the current density of $2.5~A~g^{-1}$. Over 94% of the original capacitance of Ag/PANI was retained after 2000 cycles, indicating a good cycle ability while that of pure PANI is only 58% retention of its original capacitance (see Fig. 3c). The retention cycle stability of Ag/PANI composite is also higher (84%) than that of MnO₂/PANI composite [1].

Electrochemical impedance spectroscopy was eventually used to study ion transportation inside macropores of Ag/PANI film. Fig. 3(d) shows Nyquist plots of PANI and Ag/PANI electrodes for which each data point of the plots is at a different applied frequency. The lower left portion of the curves is related to the higher frequency while the higher portion is corresponding to the lower frequency. The Nyquist plot of the Ag/PANI electrode is closer to an ideal supercapacitor, the more vertical the curve as compared with that of the PANI electrode, which has a straight line in the low-frequency region and a small arc in the high frequency region which is related to the electronic resistance of the dense film [18]. At low frequency, the curve of the Ag/PANI electrode shows less diffusion resistance than the PANI electrode owing to faster ion transportation of the electrolytes (i.e., Na⁺ and H⁺) inside the macropores of Ag/PANI electrode [17].

4. Conclusions

Ag/PANI nanocomposites were produced using a direct electrodeposition method. An electroplating solution of 0.2 M aniline monomer in 0.2 M H₂SO₄ containing diluted AgNO₃ can provide ultrahigh porous composite film in lieu of denser PANI film without using AgNO₃. AgNO₃ concentration plays an important role in the specific capacitance of the composites for which 0.5 mM AgNO₃ is satisfactory to be incorporated to PANI film providing high specific capacitance of $420\,\mathrm{F}\,\mathrm{g}^{-1}$ measured in $0.5\,\mathrm{M}$ Na₂SO₄ at the scan rate of $10\,\mathrm{mV}\,\mathrm{s}^{-1}$. The excellent capacitive behavior of the Ag/PANI composite is due to the good electrical conductivity and fast mass transport of electrolytes (i.e., Na⁺ and H⁺) through the macropores of the Ag/PANI composite. The Ag/PANI composite exhibits ultrahigh specific capacitance, about 2-fold higher than that of pure PANI for the whole ranges of scan rates and current densities used in cyclic voltammetry and charge-discharge testing, respectively. In addition, Ag/PANI has high cycle stability with 94% retention of its original capacitance after 2000 cycles, indicating good cycle stability while pure PANI has only 58% retention of its original capacitance. This promising Ag/PANI composite could be useful for pseudocapacitor devices

Acknowledgments

This work was supported in part by grants from the Kasetsart University Research and Development Institute, the Thailand Research Fund (MRG5480195), the Commission on Higher Education, and Ministry of Education (The National Research University Project of Thailand).

References

- Zhang J, Shu D, Zhang T, Chen H, Zhao H, Wang Y, et al. Capacitive properties of PANI/MnO₂ synthesized via simultaneous-oxidation route. J Alloys Compd 2012;532:1–9.
- [2] Sawangphruk M, Limtrakul J. Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater Lett 2012;68:230–3.
- [3] Ryu KS, Kim KM, Park NG, Park YJ, Chang SH. Symmetric redox supercapacitor with conducting polyaniline electrodes. J Power Sources 2002;103:305–9.
- [4] Peng H, Ma G, Ying W, Wang A, Huang H, Lei Z. In situ synthesis of polyaniline/sodium carboxymethyl cellulose nanorods for high-performance redox supercapacitors. J Power Sources 2012;211:40–5.
- [5] Wang H, Hao Q, Yang X, Lu L, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem Commun 2009;11:1158–61.
- [6] Faverolle F, Attias AJ, Bloch B, Audebert P, Andrieux CP. Highly conducting and strongly adhering polypyrrole coating layers deposited on glass substrates by a chemical process. Chem Mater 1998:10:740–52.
- [7] Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 2004:65:295–301
- [8] Wang Y, Zhitomirsky I. Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Mater Lett 2011:65:1759–61.
- [9] Sawangphruk M, Pinitsoontorn S, Limtrakul J. Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. J Solid State Electrochem 2012:1–7.
- [10] Ahn HJ, Sung YE, Kim WB, Seong TY. Crystalline Ag nanocluster-incorporated RuO₂ as an electrode material for thin-film micropseudocapacitors. Electrochem Solid State Lett 2008:11:A112–5.
- [11] Devaraj S, Munichandraiah N. High capacitance of electrodeposited MnO_2 by the effect of a surface-active agent. Electrochem Solid State Lett 2005;8: A373-7.
- [12] Chang JK, Tsai WT. Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J Electrochem Soc 2003;150:A1333–8.
- [13] Vorotyntsev MA, Skompska M, Rajchowska A, Borysiuk J, Donten Ma. A new strategy towards electroactive polymer-inorganic nanostructure composites. Silver nanoparticles inside polypyrrole matrix with pendant titanocene dichloride complexes. J Electroanal Chem 2011;662:105–15.
- [14] Sawangphruk M, Sanguansak Y, Suktha P, Klunbud P. Facile synthesis of highly dispersed silica-silver core-shell nanospheres for enzymeless hydrogen peroxide detection. Electrochem Solid State Lett 2012;15:F5-7.
- [15] Moon DK, Ezuka M, Maruyama T, Osakada K, Yamamoto T. Kinetic study on chemical oxidation of leucoemeraldine base polyaniline to emeraldine base. Macromolecules 1993;26:364–9.
- [16] Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO_2 electrode used in aqueous electrochemical capacitor. Chem Mater 2004;16: 3184–90.
- [17] Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 2011;6:277–81.
- [18] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, et al. Supercapacitor devices based on graphene materials. J Phys Chem C 2009;113:13103–7.

EI SEVIER

Contents lists available at SciVerse ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes

Montree Sawangphruk a,c,*, Jumras Limtrakul b,c

- ^a Department of Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand
- ^b Department of Chemistry and Center of Nanotechnology, Kasetsart University, Bangkok 10900, Thailand
- ^c Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

ARTICLE INFO

Article history: Received 14 September 2011 Accepted 27 October 2011 Available online 4 November 2011

Keywords:
Pseudocapacitor
Manganese oxide
Polystyrene
Colloidal template
Supercapacitor

ABSTRACT

 $\rm MnO_2$ nanoparticles (NPs) with $\rm 1.8\pm0.2$ nm in diameter were successfully produced using an ethylene glycolassisted synthesis with successive hydrolysis and condensation reactions. The tiny NPs were used as precursors for producing three-dimensionally ordered macroporous (3DOM) electrodes using a colloidal crystal-templating method. The specific capacitances of 3DOM $\rm MnO_2$ electrodes depend on their pore diameters. The 3DOM electrode with about 200-nm pore diameter provides 3.0-, 2.0-, and 1.3-fold higher specific capacitance than the dense film and the 3DOM electrodes with larger pores, 400 nm and 900 nm, respectively. The ultrahigh specific capacitance of the 200-nm 3DOM electrode is 765 F g⁻¹ measured in 0.5 M $\rm Na_2SO_4$ at the scan rate of 2 mV s⁻¹. In addition, the capacity retention of the 200-nm 3DOM electrode is over 98% of the original capacitance after 2000 cycles while that of the dense film is only 78%.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Materials that exhibit pseudocapacitive storage range from conducting polymers [1] to transition metal oxides. RuO2 and Co2O3 have pretty high specific capacitance ($> 1000 \, \mathrm{F g}^{-1}$) in this class, but they are prohibitive in price and toxicity [2,3]. Efforts to develop more practical materials are now quite active. MnO_2 with about 1110 F g⁻¹ in the theoretical specific capacitance [4] is an important and well-studied class of electrode materials for pseudocapacitors. There are many methods being used to fabricate MnO₂ film electrodes[5–7]. Interestingly, an anodic deposition of the three-dimensionally ordered macroporous (3DOM) electrode of MnO₂ into a colloidal template provided high pseudocapacitance in neutral electrolyte [8]. Herein, we report a new and facile method based on an ethylene glycol-assisted synthesis with successive hydrolysis and condensation reactions for obtaining the colloidal suspension of small MnO₂ NPs. A simple colloidal crystal-templating (CCT) method is then used for producing the 3DOM electrodes of MnO₂. Influences of the macropore diameters of the 3DOM electrodes on their specific capacitances are also systematically studied.

2. Experimental

50 mL of ethylene glycol (99.5% v/v) was heated at 160 °C for 10 min to remove water and then cooled down to 80 °C. After that, 0.50 g of polyvinylpyrrolidone (10,000 g mol $^{-1}$) and 0.25 g of Mn(CH₃COO)₂•4-H₂O were sequentially added to the reactor while stirring at 300 rpm.

After 30 min, the resulting reddish suspension was cooled down to room temperature (25 $^{\circ}\text{C}$).

3DOM MnO₂ electrodes were prepared by the CCT method. Glassy carbon substrates with 1 cm² were lowered into the 1 wt.% polystyrene (PS) suspension in water (Thermo Fisher Scientific Inc) and then withdrawn at a regulated speed of about 0.6 cm s⁻¹. After coating, the films were dried at the ambient condition of 25 °C. The PS films were then used as colloidal templates for producing the 3DOM electrodes of MnO₂. A 20-µL MnO₂ suspension aliquot with 0.4 mg of solid content was infiltrated in the void spaces between the PS spheres onto the template electrodes and left in the oven to dry at 100 °C for 30 min. After solidification, the polymer templates were removed by solvent extraction with toluene and finally calcined at 500 °C for 3 h, leaving inverse replicas of the template arrays.

Dynamic light scattering (DLS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the particle size, structure, and morphology of as-prepared NPs and 3DOM electrodes. Cyclic voltammetry (CV), charge–discharge testing, and electrochemical impedance spectroscopy were used to characterize the capacitance and stability of as-prepared electrodes under a three-electrode system consisting of a Pt wire counter electrode, a Ag/AgCl reference electrode saturated in KCl, and a working electrode.

3. Results and discussion

3.1. Morphological and structural analyses

The microstructure of the MnO₂ NPs is revealed in a TEM image (Fig. 1a). An overall morphology shows highly dispersed NPs with

^{*} Corresponding author: Tel.: +66 0 2 942 8555; fax: +66 0 2 561 4621. *E-mail address:* fengmrs@ku.ac.th (M. Sawangphruk).

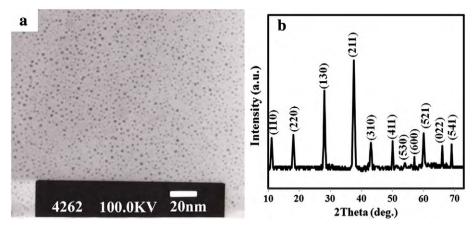


Fig. 1. (a) TEM image of MnO₂ nanoparticles and (b) XRD pattern of as-annealed MnO₂.

the average diameter of $1.8\pm0.2~\text{nm}$ which is in good agreement with $1.7\pm0.2~\text{nm}$ measured by the DLS. The MnO₂ NPs were rather small as compared with other MnO₂ NPs obtained by the precipitation method (50–100 nm) [5], solid state reaction (0.5–1.5 μ m) [6]. To the best of our knowledge, the MnO₂ NPs obtained in this work have the smallest size ever produced. For the possible mechanism, manganese alkoxide was first obtained and simultaneously reacted with the hydrated H₂O molecules of manganese acetate via a hydrolysis

reaction. In addition, hydrolyzed molecules can link together through a condensation reaction to form Mn–O–Mn bond.

The XRD pattern of the MnO₂ annealed at 500 °C for 3 h in the 2θ ranging from 10° to 75° is shown in Fig. 1b. All reflections in this pattern can be readily indexed to a tetragonal phase of α -MnO₂ (JCPDS 44-0141), with the calculated lattice constants a = 0.9816 nm and c = 0.2854 nm which are in good agreement with the previous work [9] indicating high purity of α -MnO₂.

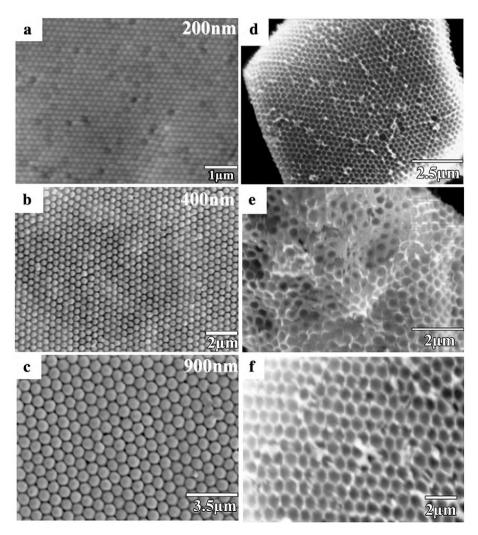


Fig. 2. SEM images of (a-c) colloidal crystalline templates of polystyrene and (d-f) 3DOM electrodes of MnO_2 produced using such templates.

PS particles with different sizes (200–900 nm) assembled into *fcc* arrays on the glassy carbon substrates are illustrated in Fig. 2a–c. The ordered packing of PS particles was found on crystalline films with a honeycomb-like structure. Air voids found in the PS opal films were used as the CCT to produce the 3DOM electrodes with different pore diameters (Fig. 2d–f). The lighter regions in the images represent the solid framework, and the darker circles are the air voids that can be occupied by electrolytes in pseudocapacitors. The average pore diameters of the 3DOM electrodes are less than the PS diameters due to the calcination process[10].

3.2. Electrochemical evaluation

The CV characteristics of as-prepared electrodes in Fig. 3a evaluated in 0.5 M Na₂SO₄ at potential intervals from 0 to 1 V at the scan rate of 50 mV s $^{-1}$ are a box-like shape indicating the pseudocapacitive behavior of the electrodes. By integrating the cathodic current for all potentials and subtracting the capacitive current contributed by the substrate, a value of the pseudocapacitive current (I_{cv}) can be calculated. Using this value, along with the mass of deposition (m) and the scan rate (v), we can then calculate the specific capacitance (C) according to the equation, $C = I_{CV}/mv$. The calculated C of the 3DOM (200 nm) MnO_2 electrode is 390 F g⁻¹ which is 3.4-, 2.0-, and 1.3-fold higher than those of the dense film, 3DOM (400 nm) and 3DOM (900 nm) MnO₂ electrodes, respectively. This capacitance value is also higher than 313 F g⁻¹ of the α -MnO₂ coated carbon nanofiber previously reported at the same scan rate [11]. For more comparisons, the C value of the 3DOM (200 nm) MnO_2 measured at 2 mV s⁻¹ is 765 F g^{-1} , which is relatively comparable with 770 F g^{-1} of Ag-doped MnO₂ recently reported [7]. High C of the 3DOM electrodes is possibly because of the good alignment of their macropores that can provide well-ordered tunnels, convenient for insertion/extraction of Na⁺ and

H⁺ into/from MnO₂ electrodes [12] leading to the fast ion transportation [13]. As MnO₂ pseudocapacitors store charge on their surfaces, decreasing the pore size of the 3DOM electrodes or increasing the surface area of the electrodes obviously increases active material usage.

The charge and discharge curves in Fig. 3b are nearly straight lines in the total range of potential, meaning a good pseudocapacitor performance [14]. The electrolyte, Na₂SO₄, can work at a voltage up to 1.0 V, which is agreeable with the potential window of the CV curves in Fig. 3a. The *C* of the electrodes can also be calculated from the discharge curve according to the following equation, $C = lt/\Delta Vm$ where ΔV is the working potential window (V), t is the discharging time (s), and I is the applied charge–discharge current (A). The calculated C of the 3DOM (200 nm) MnO₂ obtained at the applied current density of 2.5 A g⁻¹ from the second cycle is 518 F g⁻¹, which is well agreeable with 515 F g⁻¹ obtained from the CV at 5 mV s⁻¹ (the observed current density of 1.02 mA cm⁻²). This value is 2.9-, 1.8-, and 1.4-fold higher than those of the dense film, 3DOM (400 nm) and 3DOM (900 nm) electrodes, respectively.

The electrochemical stability of the electrodes was investigated using the galvanic charge–discharge at the applied current density of 2.5 A g $^{-1}$ (see Fig. 3c). For the 3DOM (200 nm) electrode, over 98% of the original capacitance was retained after 2000 cycles, indicating a good cycle ability. This electrode has comparatively 8%, 15%, and 20% higher stability than 3DOM (400 nm), 3DOM (900 nm), and dense film MnO₂ electrodes, respectively.

Nyquist plots of the electrodes were measured in $0.5\,\mathrm{M}$ $\mathrm{Na_2SO_4}$ using a sinusoidal signal of 40 mV over the frequency range from 100 kHz to 1 mHz (Fig. 3d). Each data point of the plots is at a different applied frequency with the lower left portion of the curves corresponding to the higher frequency. The Nyquist plot of the 3DOM (200 nm) electrode is closer to an ideal supercapacitor, the more vertical the curve as compared with that of the dense film electrode,

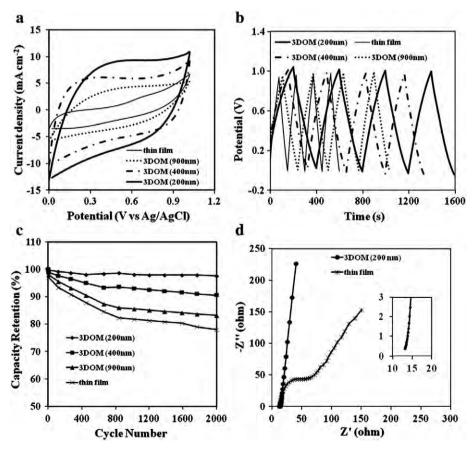


Fig. 3. (a) Cyclic voltammograms, (b) galvanostatic charge-discharge curves, (c) cycling stability performances, and (d) Nyquist plots of as-prepared electrodes.

which has a straight line in the low-frequency region and an arc in the high frequency region. This high frequency loop observed in the case of the dense film but not for the 3DOM electrode (see the inset curve of the 3DOM electrode in Fig. 3d) is related to the electronic resistance of the dense film [15]. At low frequency, the curve of the 3DOM electrode shows less diffusion resistance than the dense film electrode due to faster ion transportation of the electrolyte inside the macroporous electrode[8,13].

4. Conclusions

The 3DOM electrodes of MnO_2 with different pore diameters (200–900 nm) were produced from 1.8 ± 0.2 -nm MnO_2 nanoparticles using a simple CCT method with the assistance of polystyrene beads. The 3DOM electrode with about 200-nm pore diameter provides 3.0-, 2.0-, and 1.3-fold higher specific capacitance than the dense film and 3DOM electrodes with larger pores, 400 nm and 900 nm, respectively due to its higher pore density leading to faster ion transportation. In addition to its high specific capacitance, the capacity retention of 200-nm 3DOM electrode is over 98% of the original capacitance after 2000 cycles while that of the dense film is only 78%. The 3DOM electrode with high specific capacitance and durability may be used for practical applications.

Acknowledgments

This work was financially supported by the Thailand Research Fund (MRG5480195) and the Commission on Higher Education from the National Science and Technology Development Agency (NSTDA Chair Professor). Support from the Kasetsart University Research and Development Institute is also acknowledged.

References

- Snook GA, Kao P, Best AS. Conducting-polymer-based supercapacitor devices and electrodes. | Power Sources 2011;196:1-12.
- [2] Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed 2003;42:4092–6.
- [3] Xiong S, Yuan C, Zhang X, Xi B, Qian Y. Controllable synthesis of mesoporous Co₃O₄ nanostructures with tunable morphology for application in supercapacitors. Chem–Eur J 2009;15:5320−6.
- [4] Wu MS, Guo ZS, Jow JJ. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 2010;114:21861–7.
- [5] Kim ND, Yun HJ, Kyu Song I, Yi J. Preparation and characterization of nanostructured Mn oxide by an ethanol-based precipitation method for pseudocapacitor applications. Scr Mater 2011;65:448–51.
- [6] Zhang Y, Li G-y, Lv Y, Wang L-z, Zhang A-q, Song Y-h, et al. Electrochemical investigation of MnO₂ electrode material for supercapacitors. J Hydrogen Energ 2011;36:11760–6.
- [7] Wang Y, Zhitomirsky I. Cathodic electrodeposition of Ag-doped manganese dioxide films for electrodes of electrochemical supercapacitors. Mater Lett 2011;65: 1759–61.
- [8] Nakayama M, Kanaya T, Inoue R. Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochem Commun. 2007;9:1154–8
- [9] Yang YY, Xiao LF, Zhao YQ, Wang FY. Hydrothermal synthesis and electrochemical characterization of alpha-MnO₂ nanorods as cathode material for lithium batteries. Int | Electrochem Sci 2008;3:67–74.
- [10] Wang D, Caruso RA, Caruso F. Synthesis of macroporous titania and inorganic composite materials from coated colloidal spheres. Chem Mater 2001;13:364–71.
- [11] Liu J, Essner J, Li J. Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem Mater 2010;22: 5022–30.
- [12] Toupin M, Brousse T, Belanger D. Charge storage mechanism of MnO₂ electrode used in aqueous electrochemical capacitor. Chem Mater 2004;16:3184–90.
- [13] Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotech 2011;6:277–81.
- [14] Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources 2002:109:403–11.
- [15] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, et al. Supercapacitor devices based on graphene materials. J Phys Chem C 2009;113:13103–7.

Enhanced Mechanical Properties and Bactericidal Activity of Polypropylene Nanocomposite with Dual-Function Silica-Silver Core-Shell Nanoparticles

Phansiri Suktha, Kannika Lekpet, Patcharaporn Siwayaprahm, Montree Sawangphruk Nontree Sawangphruk

¹National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

Correspondence to: M. Sawangphruk (E-mail: fengmrs@ku.ac.th)

ABSTRACT: Dual-function silica–silver core-shell (SiO₂@Ag) nanoparticles (NPs) with the core diameter of 17 ± 2 nm and the shell thickness of about 1.5 nm were produced using a green chemistry. The SiO₂@Ag NPs were tested *in vitro* against gram-positive *Staphylococcus aureus* (*S. aureus*) and gram-negative *Escherichia coli* (*E. coli*), both of which are human pathogens. Minimal inhibitory concentrations of the SiO₂@Ag NPs based on Ag content are 4 and 10 μg mL⁻¹ against *S. aureus* and *E. coli*, respectively. These values are similar to those of Ag NPs. SiO₂@Ag NPs were for the first time incorporated to a commodity polypropylene (PP) polymer. This yielded an advanced multifunctional polymer using current compounding technologies i.e., melt blending by twin-screw extruder and solvent (toluene) blending. The composite containing 5 wt % SiO₂@Ag NPs (0.05 wt % Ag) exhibited efficient bactericidal activity with over 99.99% reduction in bacterial cell viability and significantly improved the flexural modulus of the PP. Anodic stripping voltammetry, used to investigate the antibacterial mechanism of the composite, indicated that a bactericidal Ag⁺ agent was released from the composite in an aqueous environment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 128: 4339–4345, 2013

KEYWORDS: functional composites; antibacterial; nanocomposites; polymers; nanoparticles; polypropylene; core shell

Received 2 July 2012; accepted 25 September 2012; published online 25 October 2012

DOI: 10.1002/app.38649

INTRODUCTION

Inorganic nanoadditives are currently of interest and widely used in the plastic industries.^{1–4} They can enable formulation of new functional nanocomposites with superior properties when compared with the pure commodity plastics, which normally have a limited range of useful properties. For example, incorporating fumed SiO₂ NPs to PP enhances its gas barrier properties.² PP filled with powdered SiO₂ NPs can be used to enhance mechanical properties.⁵ Ag NPs incorporated into polymers (i.e., polyamide and PP) form high antibacterial nanocomposites.^{6–8} This can play an important role in the manufacture and use of medical devices, appliances, filters, nonwoven films, and antibacterial food packaging films.^{9,10} Such materials have high temperature stability, low volatility,¹¹ and can thereby be used to prevent bacterial infections.⁴

SiO₂-Ag core shell (SiO₂@Ag) NPs have attracted much interest due to their unique and multifunctional properties as well as their potential applications in catalysis, biosensor, optical devi-

ces and medical imaging. ^{12,13} There are many methods used to produce SiO₂@Ag NPs. These include an electroless deposition, ^{14,15} a sol-gel method, ^{16–18} and a seed-mediated growth technique. ^{19,20} Recently, we reported a facile and green chemistry synthesis of SiO₂@Ag NPs for hydrogen peroxide detection. ¹² The growth mechanism of the SiO₂@Ag NPs was that Ag⁺ was initially bound to the surfaces of colloidal SiO₂ nanospheres by electrostatic interaction to form an Ag⁺ layer. ^{12,21,22} Then, Ag⁺ was reduced to Ag metal by a green and mild reducing agent (D-(+)-glucose). ¹² To the best of our knowledge, SiO₂@Ag NPs have not yet been incorporated to PP. In this work, we then introduced SiO₂@Ag NPs produced using the green chemistry synthesis ¹² for improving both mechanical properties and bactericidal activity of PP nanocomposites.

EXPERIMENTAL

Chemicals and Materials

All analytical grade chemicals were used as received without further purification. These chemicals were tetraethyl orthosilicate

© 2012 Wiley Periodicals, Inc.

²Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

³Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food, and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

(TEOS, 98 wt %, Acros), methanol (99.9 v %, Merck), ammonium hydroxide (30 v%, Mallinckrodt), silver nitrate (99.8 wt %, Prolabo), D-(+)-glucose (99.5 wt %, Himedia), potassium chloride (99 wt %, Aldrich), nitric acid (70 v %, Aldrich), PP homopolymer plastic resin (99 wt %, IRPC), poly(propylenegraft-maleic anhydride) (PP-g-MA, average $M_w \sim 9100$, average $M_n \sim 3900$, maleic anhydride 8–10 wt %, Aldrich). Glassy carbon electrodes were obtained from Metrohm Autolab.

Preparations of SiO₂ and SiO₂@Ag NPs

Preparation methods of SiO₂ and SiO₂@Ag NPs were previously reported in detail.¹² Briefly, monodispersed 6 wt % SiO₂ NPs with diameter of 17 ± 2 nm were first obtained by a modified Stöber method.²³ SiO₂ precursor, 22 mL TEOS, was added to methanol solvent (77 mL) with mixing by a magnetic stirrer at 300 rpm. Subsequently, Milli-Q water (7.2 mL) was added to the solution and the pH of the mixture was adjusted to 9 using NH₄OH (0.8 mL) and further stirred for 30 min. The mixture was left at a static condition and ambient temperature overnight. To prepare SiO₂@Ag NPs, an aqueous solution of AgNO₃ was added to the colloidal suspension of SiO₂ NPs while mixing on a magnetic stirrer at 300 rpm. After 30 min, D-(+)-glucose was added to the mixture and heated to $50^{\circ}\text{C} \pm 2^{\circ}\text{C}$. The mole fraction ratio of SiO_2 : Ag : D-(+)-glucose was 100: 1:1. The structural and morphology of all as-prepared NPs characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) of the materials were previously reported.12

Preparations of SiO₂@Ag NPs/PP Nanocomposites

SiO₂@Ag NPs/PP-Coated Glass Slides for Antibacterial Tests. SiO₂@Ag/PP nanocomposites were prepared using a solvent blending method. The SiO₂@Ag NPs were loaded to the PP matrix with different SiO₂@Ag contents (0.1-5.0 wt % SiO₂ and 0.001-0.05 wt % Ag) as compared with the total mass of the nanocomposites. PP-g-MA, a compatibilizer, was used to assist the dispersion of core-shell NPs in the PP matrix. The mole fraction of PP-g-MA to the core-shell NPs was fixed at 2: 1. A known quantity (1 g) of PP granules was added to 25-mL toluene with continuous stirring (300 rpm) at 120°C until the PP was completely dissolved. Then, SiO₂@Ag NPs and PP-g-MA were added into the aforementioned polymer solution. This mixed solution was stirred for 30 min then ultrasonicated for 5 min to attain better dispersion of NPs in the polymer matrix. A glass slide $(2.5 \times 7.5 \text{ cm}^2)$ was immersed into the composite for 4 h at ambient temperature. This yielded a nanocomposite film. The as-prepared nanocomposite film was then used for antibacterial testing.

SiO₂@Ag NPs/PP Nanocomposites for Mechanical Tests. Nanocomposites containing SiO₂@Ag NPs at 5 wt % SiO₂ and 0.05 wt % Ag were prepared by melt mixing in a Lab-Tech twin-screw co-rotating extruder with L/D 40 (D26 mm). Note that the 5 wt % SiO₂ loading was previously reported as an optimum condition for the SiO₂/PP nanocomposites.^{2,5} To improve the dispersion of NPs in the PP matrix, 10 wt % PP-g-MA was used as a compatibilizer and the residence time of the mixture in the mixing section was increased after feeding NPs.

The apparatus had a vacuum venting port to remove any volatile products formed during the compounding process. Before melt processing, core-shell NPs were mixed with PP pellets and dried for 24 h at 105°C to remove the remaining traces of impurities. The mixed NP/PP pellets were then fed into the throat of a twin screw pelletizing extruder. Compounding was done using a screw rotating speed of 200 rpm and a temperature profile of 185, 195, 200, 200, 200, 195, and 185°C in the sequential heating zones from the hopper to the die. After compounding, the material was extruded from a die having three cylindrical nozzles of 4-mm diameter to produce cylindrical extrudates. These were immersed immediately in a water bath (22°C) and pelletized into 5-mm pellets with an adjustable rotating knife located after the water bath.

Antibacterial Activity Tests

The antibacterial activity tests were carried by following a standard testing method.24 The NPs dispersed in methanol were collected by centrifugation, washed three times with water, and resuspended in water by ultrasonication for 10 min. The suspended NPs were then used for antibacterial testing against both gram-negative E. coli and gram-positive S. aureus. These bacteria were selected because they are both well-known pathogenic bacteria responsible for foodborne illnesses and clinical infections. The bacterial cells were initially prepared for the antibacterial testing of the as-prepared core-shell samples. E. coli and S. aureus were streaked on nutrient agar (NA) plates to separate bacterial cells to single colonies and incubated for overnight at 37°C. Microorganisms from a single colony of each type of bacteria were used to inoculate 5 mL of sterile nutrient broth (NB) medium in test tubes. Inoculated media was incubated on a shaker (150 rpm) for 24 h at 37°C. Optical density of media at a wavelength of 0.6 μ m (OD_{0.6}) was then measured. Cells were allowed to grow on the shaker incubator until OD_{0.6} reached 0.4. After bacterial cells were ready for use in antibacterial testing of the core-shell NPs, the test was begun by exposing bacterial cells [10⁸ colony forming units (CFU) per mL] to the minimum inhibitory concentration (MIC) of Ag. This cell number was selected since it represents a mid-range value of the logarithmic growth phase. A dilution plating technique was used to determine the number of viable cells remaining after 10-min treatment. Surviving cells plated onto NA and incubated for 24 h at 37°C. Dilutions were done by adding 0.1 mL of the original bacterial solution to 0.9 mL of sterile water. The resulting solution was subsequently diluted until viable colonies could be counted. To ensure that any reduction in bacterial cells was due to the core-shell NPs, the observed results were compared to the results obtained by treating bacteria with the SiO₂ alone i.e., no Ag and two control experiments: (i) with the absence of both bacteria and NPs (negative control) and (ii) with the presence of bacteria and no core-shell NPs treatment (positive control). All antibacterial tests of the core-shell NPs were repeated for five times and the mean values were reported.

In addition, the antibacterial activity of SiO₂@Ag NPs/PP nanocomposites containing the Ag contents of 0, 0.001, 0.010, 0.025, and 0.050 wt % coated on glass slides was tested using a modified standard method.²⁵ In this test, 100 μ L of bacterial suspension in saline at $OD_{0.6} \approx 0.4$ were placed onto the as-prepared

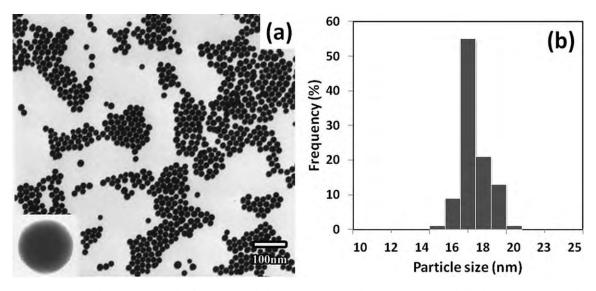


Figure 1. (a) Transmission electron micrograph of SiO₂ NPs including an inset image of a single SiO₂ NP and (b) the size distribution of SiO₂ NPs.

glass slide in a fume hood. After drying in air, the resulting slide was placed in a Petri dish, immediately covered with fresh NA medium, and incubated at 37°C overnight. Viable cells were counted using standard dilution plating. A control experiment i.e., using an uninoculated PP-coated glass slide was also done. All antibacterial tests of the nanocomposites were repeated for five times and the mean values were reported.

Anodic Stripping Voltammetry Measurement

First, the as-prepared nanocomposite film coated glass slide was stored in a flask containing 100 mL aqueous media (93-mL distilled water + 7 mL 0.1*M* HNO₃) at ambient temperature for 1 week. This was previously reported as an appropriate soaking time for Ag/PP composite since no sudden increase in Ag⁺ release was observed from the 7th day onwards.²⁶ HNO₃ was added to prevent the released Ag⁺ ions from reducing to metallic silver. Second, electrodeposition of the reducible species (Ag⁺) onto glassy carbon electrode surfaces was carried out at a

constant potential (-0.1 V vs. Ag/AgCl) using a chronoamperometry. Third, electrooxidation (stripping) of reduced Ag metal by applying an anodic potential was done to bring metallic Ag back into solution (Ag⁺). Anode stripping voltammetry (ASV) was then used to measure trace amounts of Ag⁺ released from the SiO₂@Ag NPs/PP nanocomposite. In a typical ASV measurement, coated glassy carbon, Ag/AgCl, and Pt wire were used as working, reference, and counter electrodes, respectively. Experiments were done using a μ AUTOLABIII potentiostat (Eco-Chemie, Utrecht, Netherlands). The supporting electrolyte used was 0.1M NaNO₃.

Measurements of Mechanical Properties

The specimens for mechanical property tests were prepared in an Engel single screw injection molding machine (Monomat 80, Germany). This machine consists of three different heating zones and the temperatures of these were 245, 195, and 190°C for the feeding zone, compressing zone, and metering zone,

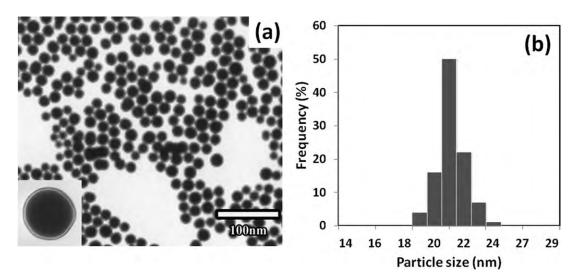


Figure 2. (a) Transmission electron micrograph of SiO₂@Ag NPs including an inset image of a single SiO₂@Ag NP and (b) the size distribution of SiO₂@Ag NPs.

ARTICLE Applied Polymer

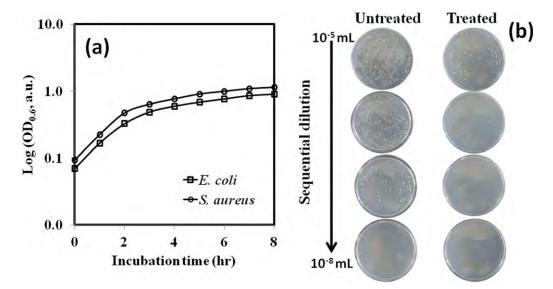


Figure 3. (a) Growth curves of E. coli and S. aureus and (b) photographs of surviving S. aureus colonies untreated (left) and treated (right) by SiO₂@Ag NPs on the sterile plates with sequential dilutions of 10⁻⁵-10⁻⁸. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

respectively. The mold was cooled with water at 25°C. The tensile properties were investigated using ASTM D638 on samples with the dimensions of 15 cm \times 1.9 cm \times 0.3 cm (length \times width × thickness). The testing apparatus was a universal testing machine (UTM, Hounsfield) at a cross-head speed of 5 mm min⁻¹. Flexural testing was conducted on the same machine according to ASTM D790 with a three-point bending system. Samples with dimensions of 15 cm \times 15 cm \times 0.3 cm were tested at a cross-head speed of 2.0 mm min⁻¹. Five specimens were tested for each set of samples, and the mean values were reported. Tensile and flexural toughness were calculated from the area under stress-strain curve.

RESULTS AND DISCUSSION

Characterizations of SiO2 and SiO2@Ag NPs

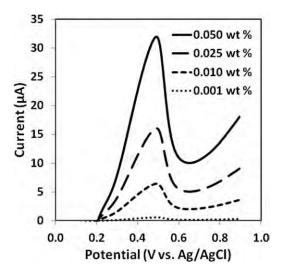
The TEM image in Figure 1(a) shows dispersed SiO₂ NPs. Average diameter of SiO_2 NPs is 17 \pm 2 nm as determined from the size histogram [Figure 1(b)]. The inset magnified image of a single nanosphere of SiO₂ in Figure 1(a) represents a condition with no shell on the surface of SiO2. SiO2@Ag NPs [Figure 2(a)] are also highly dispersed and rather uniform. The particle size histogram [Figure 2(b)] shows their average diameter as 21 \pm 2 nm. The inset image shows the average shell thickness is about 1.5 nm. The XRD, EDX, and DLS characteristics of asprepared NPs as well as the mechanism of the core-shell growth was previous reported.12

Bactericidal Activities

SiO₂ and SiO₂@Ag NPs. E. coli and S. aureus were selected for testing antibacterial activity of SiO₂@Ag NPs. At OD_{0.6} \approx 0.4, bacterial cells were in the middle portion (about 2 h) of their logarithmic growth phase as determined from their growth curves [Figure 3(a)]. Viable cells treated with core-shell NPs and incubated at 37°C for 24 h were counted by a dilution plating method. Photographs of plates were made from sequential dilutions (10⁻⁵-10⁻⁸ mL) viable S. aureus colonies. These samples were untreated with core-shell NPs and their controls then grown on sterile plates. They are shown in Figure 3(b). Inhibition of S. aureus growth after treating with SiO2@Ag NPs was clearly observed. Surviving S. aureus colonies could be counted when samples were diluted to 10^{-5} mL. Untreated bacteria could be counted at a dilution of 10^{-8} . This represents three orders of magnitude difference, indicating that the SiO₂@Ag NPs have considerable antibacterial activity.

For further quantitative analyses, several calculations were done. N/N_0 was determined, where the term N_0 denotes the number

Table I. Viability, N/No and % Reduction in Viability of E. coli and S. aureus Cultures After Treatment with SiO₂@Ag NPs at Minimal Inhibitory Concentrations (MICs) based on Ag Contents (10 μg mL⁻¹ for E. coli and 4 μg mL⁻¹ for S. aureus)


	Viability (CFU mL ⁻¹)		N/N _O		% Reduction in viability	
Samples	E. coli	S. aureus	E. coli	S. aureus	E. coli	S. aureus
Negative control	0	0	N/A	N/A	N/A	N/A
Positive control	567000000	581000000	1.00	1.00	0.00	0.00
SiO ₂ NPs	552000000	571000000	0.97	0.98	2.65	1.72
SiO ₂ -Ag core-shell NPs	15722333	131000000	0.03	0.23	97.23	77.45

4342

Table II. Viability, N/N_0 , and % Reduction in Viability of *E. coli* and *S. aureus* Cells After Being Cultured on SiO₂@Ag NPs/PP Nanocomposites at Different Ag Loadings

	Viability (CFU mL ⁻¹)		N/N _O		% Reduction in viability	
Ag loading (wt %)	E. coli	S. aureus	E. coli	S. aureus	E. coli	S. aureus
0	432200000	37000000	1.00	1.00	0.00	0.00
0.001	255166667	236166667	0.59	0.64	40.96	36.17
0.010	140166667	125333333	0.32	0.34	67.57	66.13
0.025	80666667	73333333	0.19	0.20	81.34	80.18
0.050	48000	50000	0.00	0.00	99.99	99.99

of CFU at the beginning of the treatment before adding the SiO₂@Ag NPs (time 0) and N is the number of CFU after treatment with the NPs at MICs (10 μg mL⁻¹ for E. coli and 4 μg mL⁻¹ for S. aureus). The % reduction in viability was determined (% reduction = $(A - B)/A \times 100$). In this calculation, A is the number of surviving microbial colonies in the blank solution and B is the number of surviving microbial colonies in the SiO₂@Ag NPs. Results are given in Table I. All data listed were determined from three replicate experiments. The results show that SiO₂ NPs dispersed in water are not good for inhibiting the cell growth of E. coli and S. aureus since % reductions in cell viability are only 2.65 and 1.72 for E. coli and S. aureus, respectively (see Table I). However, SiO2 with the Ag shell can significantly inhibit E. coli and S. aureus cells when treated with SiO_2 @Ag NPs at MICs of 10 and 4 μ g mL⁻¹, respectively. E. coli and S. aureus viability was reduced by 97.23 and 77.45%, respectively. At 10 μg mL⁻¹, no viable S. aureus cells were observed. The MICs of the core-shell NPs in this study are similar to those of Ag NPs (3–40 μ g mL⁻¹).^{27–29} These values are slightly lower than those of Fe₂O₃-SiO₂-Ag composites (16-31 μg mL⁻¹)³⁰ and considerably lower than those of metal oxide NPs such as nanocrytalline 8 \pm 1 nm MgO (625 μ g mL⁻¹).²⁴ Lower MIC yields better antibacterial activity. The results here indicate that the as-prepared core-shell NPs are able to inhibit

Figure 4. Anodic stripping voltammograms of SiO₂@Ag NPs/PP nanocomposites containing the Ag contents of 0, 0.001, 0.010, 0.025, and 0.050 wt %.

S. aureus more easily than *E. coli*. This is because the cell membranes of gram-negative *E. coli* consist of an outer layer of lipopolysaccharide and proteins. This outer layer confers protection upon *E. coli* cells and is not found on the cell membranes of gram-positive *S. aureus*. As a result, gram-negative *E. coli* is in general more difficult to inactivate in this manner.³¹

SiO₂@Ag NPs Containing PP Nanocomposites. Polymer nanocomposites were obtained using a solvent blending technique employing the dispersant PP-g-MA and coated on the microscope glass slides. The antibacterial activity of SiO₂@Ag NPs/PP nanocomposites was studied using a challenge test.²⁵ Results showed that increasing the mass loading of the core-shell NPs from 0.001 to 0.05 wt % based on Ag content leads to increased inhibitory activity as shown in Table II. The viable cell counts of both *E. coli* and *S. aureus* were reduced by up to 99.99% at 0.05 wt % of Ag loadings. Untreated PP showed no antibacterial activity. This result is in good agreement with Ag/polyimide nanocomposite with Ag loading of 0.06 wt %.⁸ The antibacterial mechanism observed in the composites is possibly due to Ag⁺ biocide released from polymer nanocomposites.^{8,11}

Silver Ion Release

A typical voltammogram obtained from ASV shows the value of the stripping potential and the peak height and area. These decrease in subsequent stripping scans indicating reflecting decreasing concentration of silver on the glassy carbon electrode surface. The summation of all stripping scans is directly proportional to the total concentration of the silver ions released from the SiO₂@Ag NPs/polypropylene nanocomposites. Figure 4 shows ASVs which are the summation curves of all the stripping

Table III. Mechanical Properties of PP as well as SiO₂/PP, and SiO₂@Ag NPs/PP Nanocomposites

Mechanical properties	PP	SiO ₂ /PP	SiO ₂ -Ag/PP
Flexural modulus (MPa)	1630 ± 10	1850 ± 15	1860 ± 16
Flexural strength (MPa)	48.4 ± 0.4	53.2 ± 0.5	52.4 ± 0.5
Tensile modulus (MPa)	1810 ± 20	1840 ± 23	1830 ± 25
Tensile strength (MPa)	36.8 ± 0.1	36.7 ± 0.2	36.9 ± 0.2

scans for composites with different Ag loading contents. A stripping peak at about 0.5 V vs. Ag/AgCl in Figure 4 is related to oxidation of Ag metal (Ag \rightarrow Ag⁺ + e⁻). This indicates that nanocomposites can release Ag+ biocide in an aqueous environment. Additionally, the content of released silver increased with the amount of silver incorporated into the composites. These results are in good agreement with previous studies of Ag incorporation into polymer nanocomposites.^{8,11,26} Using a calibration method, 8,11,26 the quantitative amount of Ag⁺ release can be determined. The concentration of Ag+ released from the SiO₂@Ag NPs/polypropylene composite is in good agreement with that released from the Ag/PP composite.26 These composites contained 0.05 wt % Ag with respect to one gram of the solid composite. At lower Ag loading levels, the released Ag+ was \sim 5.0, 2.2, and 0.4 μ g L⁻¹ for loading of 0.025, 0.010, and 0.001 wt %, respectively. Ag⁺ released from the SiO₂@Ag NPs/ polypropylene nanocomposites in the aqueous environment can inactivate bacterial cells. It binds to tissue proteins of bacteria and causes structural changes in bacterial cell walls and nuclear membranes leading to cell death. 32-34

Mechanical Testing

The mechanical performance of SiO₂@Ag/PP composites is listed in Table III. The results show that the flexural strength values of SiO₂@Ag/PP and SiO₂/PP composites are 53.2 \pm 0.5 and 52.4 \pm 0.5 MPa while that of the PP is 48.4 \pm 0.4 MPa. The flexural strength values listed in Table III indicate that the capability of the composites to support stress transmitted from the thermoplastic matrix is rather good. In addition to flexural strength, the flexural modulus of the composites is 220-230 MPa higher than that of PP. This shows that stiffness of the composites is good. However, tensile strength and tensile modulus describing the elastic properties of the composites are approximately the same as those of PP. This is in good agreement with previous reports that ungrafted nano SiO2 NPs cannot improve tensile strength and tensile modulus of PP.35 This data also indicates that addition of SiO2@Ag NPs does not cause a reduction in tensile strength. It was previously reported that incorporating pure Ag NPs into polyamide caused reduction in tensile strength of that polymer.³⁶ This is because metal additives e.g., silver NPs can create cavities in the polymer matrix due to the debonding of the polymer from the metal surface.

CONCLUSIONS

Monodispersed SiO₂ NPs with diameter of 17 ± 2 nm were successfully obtained by a modified Stöber method. The SiO₂ NPs were then used as a core precursor for obtaining the SiO₂@Ag NPs with the shell thickness of about 1.5 nm under a green chemistry synthesis for which D-(+)-glucose was used as a reducing agent. The antibacterial activities of core-shell NPs and their composites with polypropylene were tested against *S. aureus* and *E. coli*. The minimum inhibitory concentrations based on Ag content of SiO₂@Ag NPs are 4 and 10 μ g mL⁻¹ for *S. aureus* and *E. coli*, respectively. These values are in good agreement with those of Ag NPs. SiO₂@Ag NPs incorporated into polypropylene matrices exhibited high antibacterial activity (about 99 % reduction in viability) at Ag loading levels of 0.05

wt %. The flexural strength and modulus of the composite were investigated according to ASTM D638 and D790. The flexural modulus of the composite was improved about 14% when compared with the pure polypropylene while its tensile strength and modulus are not decreased. The SiO₂@Ag NPs obtained in this work might be applied to other manufacture industrial plastics requiring high antibacterial activity.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Kasetsart University Research and Development Institute, the Thailand Research Fund (MRG5480195), the Commission on Higher Education, Ministry of Education ("the National Research University Project of Thailand" and "Postgraduate Education and Research Programs in Petroleum and Petrochemicals and Advanced Materials").

REFERENCES

- 1. Ozkaraca, A. C.; Kaynak, C. Polym. Compos. 2012, 33, 420.
- 2. Vladimirov, V.; Betchev, C.; Vassiliou, A.; Papageorgiou, G.; Bikiaris, D. *Compos. Sci. Technol.* **2006**, *66*, 2935.
- Damm, C.; Münstedt, H. Surf. Coat. Technol. 2008, 202, 5122.
- Silver, S.; Phung, L. T.; Silver, G. J. Ind. Microbiol. Biotechnol. 2006, 33, 627.
- Bikiaris, D. N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G. P. Eur. Polym. J. 2005, 41, 1965.
- Damm, C.; Munstedt, H.; Rosch, A. Mater. Chem. Phys. 2008, 108, 61.
- Gawish, S. M.; Avci, H.; Ramadan, A. M.; Mosleh, S.; Monticello, R.; Breidt, F.; Kotek, R. J. Biomater. Sci. 2012, 23, 43.
- Sanchez-Valdes, S.; Ramirez-Vargas, E.; Ortega-Ortiz, H.; Ramos-Devalle, L. F.; Mendez-Nonell, J.; Mondragon-Chaparro, M.; Neira-Velazquez, G.; Yanez-Flores, I.; Meza-Rojas, D. E.; Lozuno-Ramirez, T. J. Appl. Polym. Sci. 2012, 123, 2643.
- Perkas, N.; Shuster, M.; Amirian, G.; Koltypin, Y.; Gedanken, A. J. Polym. Sci. A 2008, 46, 1719.
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M. C. J. Food Eng. 2012, 109, 513.
- 11. Kumar, R.; Münstedt, H. Biomaterials 2005, 26, 2081.
- 12. Sawangphruk, M.; Sanguansak, Y.; Suktha, P.; Klunbud, P. Electrochem. Solid-State Lett. 2012, 15, F5.
- 13. Jankiewicz, B. J.; Jamiola, D.; Choma, J.; Jaroniec, M. Adv. Colloid. Interface Sci. 2012, 170, 28.
- Zhu, M.; Qian, G.; Hong, Z.; Wang, Z.; Fan, X.; Wang, M. J. Phys. Chem. Solids 2005, 66, 748.
- 15. Ding, G.; Qian, G.; Wang, Z.; Qiu, J.; Wang, M. Mater. Lett. **2006**, 60, 3335.
- 16. Jeon, H.-J.; Yi, S.-C.; Oh, S.-G. Biomaterials 2003, 24, 4921.
- Akhavan, O.; Azimirad, R.; Moshfegh, A. Z. J. Phys. D 2008, 41, 195305.
- Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.;
 Liz-Marzan, L. M. J. Colloid. Interface Sci. 2005, 283, 392.

Applied Polymer Article

- 19. Jiang, Z.-J.; Liu, C.-Y. J. Phys. Chem. B 2003, 107, 12411.
- Nischala, K.; Rao, T. N.; Hebalkar, N. Colloids Surf. B 2011, 82, 203.
- Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A. Langmuir 2002, 18, 3352.
- Tang, S.; Tang, Y.; Zhu, S.; Lu, H.; Meng, X. J. Solid State Chem. 2007, 180, 2871.
- 23. Stöber, W.; Fink, A.; Bohn, E. *J. Colloid Interface Sci.* **1968**, 26, 62.
- 24. Makhluf, S.; Dror, R.; Nitzan, Y.; Abramovich, Y.; Jelinek, R.; Gedanken, A. Adv. Funct. Mater. 2005, 15, 1708.
- Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G. Nat. Mater. 2008, 7, 236.
- Radheshkumar, C.; Münstedt, H., React Funct Polym 2006, 66, 780.
- Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.;
 Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R. *J. Phys. Chem. B* 2006, *110*, 16248.

- Sharma, V. K.; Yngard, R. A.; Lin, Y. Adv. Colloid Interface Sci. 2009, 145, 83.
- 29. Krishnaraj, C.; Jagan, E. G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P. T.; Mohan, N. *Colloid. Surf. B* **2010**, *76*, 50.
- Zhang, X.; Niu, H.; Yan, J.; Cai, Y. Colloid. Surf. A 2011, 375, 186.
- 31. Xu, K.; Wang, J. X.; Kang, X. L.; Chen, J. F. *Mater. Lett.* **2009**, *63*, 31.
- 32. Rai, M.; Yadav, A.; Gade, A. Biotechnol. Adv. 2009, 27, 76.
- Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J. Nanotechnology 2005, 16, 2346.
- 34. Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. *Environ. Sci. Technol.* **2008**, *42*, 8959.
- 35. Cai, L. F.; Mai, Y. L.; Rong, M. Z.; Ruan, W. H.; Zhang, M. Q. Express Polym. Lett. 2007, 1, 2.
- 36. Radheshkumar, C.; Munstedt, H. Mater. Lett. 2005, 59, 1949.

Facile Synthesis of Highly Dispersed Silica-Silver Core-Shell Nanospheres for Enzymeless Hydrogen Peroxide Detection

Montree Sawangphruk,^{a,b,z} Yanisa Sanguansak,^a Phansiri Suktha,^a and Panupong Klunbud^a

^aDepartment of Chemical Engineering and ^bCenter for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

Highly-dispersed 17 ± 2 -nm SiO₂ nanospheres were obtained by a modified StÖber method and then used as material precursors in a green chemistry process for obtaining SiO₂-Ag core-shell nanocomposites with the shell thickness of 1.5 nm. In addition, an enzymeless SiO₂-Ag core-shell modified electrode was fabricated and used for the first time to detect H₂O₂. The modified electrode has a fast amperometric response of <2 s at low detection limit of 0.1 μ M. The linear range of H₂O₂ detection is estimated to be from 0.25 μ M to 6.7 mM with a determination coefficient R^2 of >0.99.

© 2011 The Electrochemical Society. [DOI: 10.1149/2.015201esl] All rights reserved.

Manuscript submitted September 16, 2011; revised manuscript received October 4, 2011. Published November 21, 2011.

Silica-silver core-shell (SiO2@Ag) nanostructures are of interest due to their greatly potential applications in nanoelectronic devices, molecular recognition, medical imaging, and optical devices. 1-3 Herein, we demonstrate that SiO₂@Ag nanospheres can be used in the research area of biosensors for detecting hydrogen peroxide (H₂O₂). An accurate and reliable determination of H₂O₂ is important since it gets involved the diagnostic response for several medical sensing devices such as blood glucose and neurotransmitter sensors. 4 H₂O₂ concentrations usually range from micromolar (µM) for in vivo conditions to millimolar (mM) for bleaching applications.⁴ There are many methods being used to detect H₂O₂ such as spectrophotometry based on peroxidase enzyme, titration, and amperometry.⁴ Among them, the amperometry has many advantages i.e., low cost, simultaneousness, high sensitivity and selectivity, and simplicity.⁵ Note that although the SiO2-Ag composites have not been used for detecting H₂O₂ yet, SiO₂ micro/nanospheres assembled on electrodes with highly ordered macroporous films can enhance the diffusion of redox species through the electroanalyses leading to high sensitivity and selectivity.6,7 Ag nanoparticle-based emzymeless H2O2 detection was widely investigated by means of the amperometry.^{8–19} From this reason, the SiO₂@Ag modified electrode in this work exhibits good catalytic activity toward the reduction of H2O2 leading to an enzymeless sensor with a fast amperometric response time at very low detection limit. The linear detection range is estimated to be from $a \mu M$ to mM.

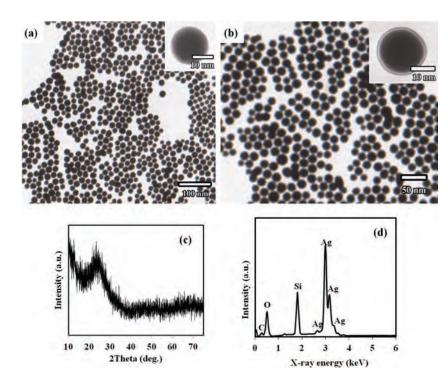
Experimental

*Preparation of SiO*₂ *nanospheres.*—All chemicals used in this work were of analytical grade. Highly dispersed 6 wt% SiO₂ nanospheres in methanol were prepared by a modified Stöber method²⁰ as follows. In a typical process, 22 mL of tetraethyl orthosilicate (98 wt%, Acros) were added to 70 mL of methanol (99.9 v%, Merck) while stirring on a magnetic stirrer at 300 rpm. After that, 7.2 mL of Milli-Q water (resistivity ≥18 MΩ cm) were added to the reactor and the pH of the mixed solution was adjusted to be 9 using 0.8 mL NH₄OH (30 v%, Mallinckrodt). The mixture was further stirred for 30 min and then kept in static condition at ambient temperature (25 ± 2°C) for overnight.

Preparation of SiO₂@Ag nanospheres.—The solution of AgNO₃ (99.8 wt%, Normapur Prolabo) was added into the colloidal suspension of SiO₂ while stirring on a magnetic stirrer at 300 rpm. After 30-min stirring, D-(+)-glucose (99.5 wt%, Himedia) was added to the mixture heated up to the warm temperature ($50\pm2^{\circ}$ C). The mole fraction of SiO₂: Ag: D-(+)-glucose is 100:1:1.

z E-mail: fengmrs@ku.ac.th

Structural, elemental, and morphological characterizations.—The XRD patterns were recorded on a diffractometer with Cu K α radiation ($\lambda = 1.5406$ Å) and a graphite monochromator at 40 kV, 30 mA. Dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to characterize the particle size, zeta potential, element, and morphology of as-prepared nanoparticles (NPs). The TEM images of samples were performed on a JEM 1220 with an accelerating voltage of 100 kV.

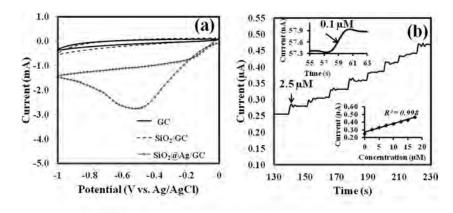

Electrochemical characterization.—SiO₂ and SiO₂@Ag nanospheres modified electrodes were prepared by a drop-coating process. A 10-μL aliquot of the colloidal dispersion containing 1% wt solid content was dropped to cover the glassy carbon (GC) electrode with the diameter of 3 mm in flush PTFE mounting assemblies, which was then dried for 1 h in ambient conditions. The as-prepared electrodes were then used as an emzymeless sensor for detecting H_2O_2 . Cyclic voltammetry (CV) and chronoamperometry were used to characterize the sensing performance of as-prepared electrodes under a three-electrode system consisting of a Pt wire counter electrode, a Ag/AgCl reference electrode saturated in KCl, and a working electrode.

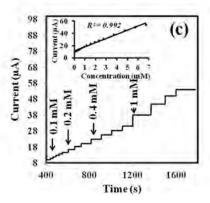
Results and Discussion

Characterizations of SiO_2 -Ag core-shell nanospheres.—The microstructure of the SiO_2 NPs is revealed in a TEM image (Figure 1a). An overall morphology shows high dispersion of the NPs with the average diameter of 17 ± 2 nm determined from the size distribution of all NPs seen on the TEM image, which is in good agreement with 18 ± 3 nm measured by the DLS. An inset image in Figure 1a represents a single nanosphere of SiO_2 having no shell on its surface while the TEM image of the $SiO_2@Ag$ nanospheres (Figure 1b) shows the average shell thickness of 1.5 nm. An inset image presents a single core-shell nanosphere.

The possible mechanism of the $SiO_2@Ag$ nanospheres is that Ag^+ is firstly bound to the surface of colloidal SiO_2 nanospheres to form Ag^+ layer, owing to the electrostatic interaction. 21,22 This process was confirmed by the decreasing zeta potential of the complex, -31 mV, as compared with -47 mV of the bare colloidal SiO_2 nanospheres. After that, the Ag^+ layer was reduced by D-(+)-glucose to form nucleating sites, continuously growing the Ag shell.

The XRD pattern of the pristine SiO_2 nanospheres in Figure 1c shows only one broad diffuse peak at the 2Θ value of 24° , which is attributed to the amorphous pristine SiO_2 . The EDX spectrum of $SiO_2@Ag$ (Figure 1d) consists of a peak at 0.28 keV associated with CK_α due to the GC electrode, two peaks at 0.52 and 1.8 keV of OK_α and OK_α respectively owing to the OK_α core, two predominant peaks


Figure 1. TEM images of (a) SiO₂ nanospheres with an inset image of a single SiO₂ nanosphere and (b) SiO₂@Ag nanospheres with an inset image of a single core-shell nanosphere as well as (c) XRD pattern of SiO₂ nanospheres and (d) EDX spectrum of SiO₂@Ag nanospheres.


at 3.00 and 3.16 keV from $AgL_{\alpha I}$ and $AgL_{\beta I}$, respectively and other peaks at 2.66, 3.38, and 3.52 keV represent AgL_i , $AgL_{\beta 2}$, and $AgL_{\gamma 1}$, respectively due to the Ag shell.

Electrochemical evaluation for H_2O_2 detection.—The cyclic voltammograms of as-prepared electrodes in 10 mM H_2O_2 in 0.2 M PBS (pH 7.4) at the scan rate of 0.01V s⁻¹ are shown in Figure 2a. Clearly, the bare GC and the SiO₂ modified GC (SiO₂/GC)

electrodes cannot detect H_2O_2 since there is no redox peak observed. On the other hand, the $SiO_2@Ag/GC$ shows a predominant reduction peak of H_2O_2 at -0.48 V which is in good agreement with -0.49 V of Ag/reduced graphene oxide modified GCE.²³ The possible reduction mechanism of H_2O_2 at the Ag shell of the $SiO_2@Ag/GC$ electrode is proposed as follows;

$$2Ag + H_2O_2 \rightarrow 2AgOH$$
 [1]

Figure 2. (a) cyclic voltammograms of GC, SiO_2/GC , and $SiO_2@Ag/GC$ electrodes in 10 mM H_2O_2 in 0.2 M PBS (pH 7.4) (scan rate: 0.01 V/s) and amperometric plots of the $SiO_2@Ag$ nanospheres modified glassy carbon electrodes in 0.2 M PBS buffer (pH 7.4) on the consecutive injection of H_2O_2 with (b) μ M and (c) mM ranges.

$$2AgOH + 2e^{-} + 2H^{+} \rightarrow 2Ag + 2H_{2}O$$
 [2]

First, H_2O_2 reacts with the Ag shell to give argentous hydroxide (see reaction 1), which then gets reduced to the renewed Ag shell (see reaction 2).²⁴

Figures 2b and 2c show typical amperometric (cathodic currenttime) plots of the SiO₂@Ag/GC electrode in 0.2 M PBS (pH 7.4) on the consecutive injection of H_2O_2 . The current response at high signalto-noise ratio (~5) in Figure 2b is linearly increased as a function of H_2O_2 concentrations (2.5–20 μ M) which is a typical range for in vivo conditions and residual levels in foodstuff and drinking water.⁴ The SiO₂@Ag/GC modified electrode shows high sensing performances i.e., a determination coefficient (R^2) of 0.998 (see the inset calibration curve in Figure 2b), the detection limit of 0.1 µM at the signal-tonoise ratio of >3, the fast time response of <2 s, and the sensitivity of 35.4 $\mu A~mM^{-1}~cm^{-2}$ (see the upper inset plot in Figure 2b). The sensitivity in this work is comparatively in good agreement with 38.2 µA mM⁻¹ cm⁻² of the graphene oxide/MnO₂ modified GC (LOD = $0.8 \mu M$)²⁵ and slightly better than $20.5 \mu A \text{ mM}^{-1}$ of the myoglobin/Ag NPs modified pyrolytic graphite electrode (LOD = 1 μ M).²⁶ At higher concentration of H₂O₂ (mM range) which is the typical level for bleaching applications, the SiO₂@Ag/GC electrode also provides the linear detection range of H₂O₂ from 0.1 mM to 6.7 mM with the R^2 of 0.992 (see the inset curve in Figure 2c).

Conclusions

Highly dispersed 6-wt% SiO_2 nanospheres in methanol with the diameter of 17 ± 2 nm were obtained by a modified StÖber method. $SiO_2@Ag$ core-shell nanospheres with the average shell thickness of 1.5 nm were then obtained by a green chemistry. The $SiO_2@Ag$ nanospheres modified glassy carbon electrodes were fabricated and used for hydrogen peroxide detection. The $SiO_2@Ag$ modified electrode exhibits a fast amperometric response of <2 s and the detection limit of $0.1~\mu M$ at high signal-to-noise ratio (>3). The linear range is estimated to be from $0.25~\mu M$ to 6.7~mM with R^2 of >0.99. The $SiO_2@Ag$ modified electrode could able to detect H_2O_2 for in vivo conditions and residual levels in foodstuff and drinking water as well as bleaching applications.

Acknowledgment

This work was supported in part by grants from the Faculty of Engineering, the Kasetsart University Research and Development Institute, the Thailand Research Fund (MRG5480195), the Commission on Higher Education, Ministry of Education ("the National Research University Project of Thailand" and "Postgraduate Education and Research Programs in Petroleum and Petrochemicals and Advanced Materials").

References

- 1. J.-H. Kim, W. W. Bryan and T. Randall Lee, Langmuir, 24, 11147 (2008).
- L. Chen, X. Han, J. Yang, J. Zhou, W. Song, B. Zhao, W. Xu and Y. Ozaki, J. Colloid Interface Sci., 360, 482 (2011).
- J. C. Flores, V. Torres, M. Popa, D. Crespo and J. M. Calderón-Moreno, *J. Non-Cryst. Solids*, 354, 5435 (2008).
- S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle and G. Denuault, Anal. Chem., 74, 1322 (2002).
- 5. W. Lu, F. Liao, Y. Luo, G. Chang and X. Sun, *Electrochim. Acta*, **56**, 2295 (2011).
- 6. J. Cichelli and I. Zharov, J. Am. Chem. Soc., 128, 8130 (2006).
- M. R. Newton, A. K. Bohaty, H. S. White and I. Zharov, J. Am. Chem. Soc., 127, 7268 (2005).
- W. B. Lu, Y. L. Luo, G. H. Chang and X. P. Sun, *Biosens. Bioelectron.*, 26, 4791 (2011)
- 9. S. Liu, J. Q. Tian, L. Wang and X. P. Sun, *Carbon*, 49, 3158 (2011).
- J. Q. Tian, H. L. Li, W. B. Lu, Y. L. Luo, L. Wang and X. P. Sun, *Analyst*, 136, 1806 (2011).
- 11. J. Tian, H. Li, W. Lu, Y. Luo, L. Wang and X. Sun, Analyst, 136, 1806 (2011).
- 12. S. Liu, J. Tian, L. Wang and X. Sun, Carbon, 49, 3158 (2011).
- 13. S. Liu, J. Tian, L. Wang and X. Sun, J. Nanopart. Res., 1 (2011).
- S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang and X. Sun, *Macromolecules*, 43, 10078 (2010).
- 15. Y. Luo, W. Lu, G. Chang, F. Liao and X. Sun, *Electrochim. Acta*, **56**, 8371 (2011).
- 16. W. Lu, G. Chang, Y. Luo, F. Liao and X. Sun, J. Mater. Sci., 46, 5260 (2011).
- 17. G. Chang, Y. Luo, W. Lu, F. Liao and X. Sun, J. Nanopart. Res., 13, 2689 (2011).
- 18. X. Qin, W. Lu, Y. Luo, G. Chang and X. Sun, *Electrochem. Commu.*, 13, 785 (2011).
 19. J. Tian, Y. Luo, H. Li, W. Lu, G. Chang, X. Qin and X. Sun, *Cat. Sci. Technol.*,
- J. Tian, Y. Luo, H. Li, W. Lu, G. Chang, X. Qin and X. Sun, Cat. Sci. Technol. (2011).
- 20. W. Stober, A. Fink and E. Bohn, *J. Colloid Interface Sci.*, 26, 62 (1968).
- V. G. Pol, D. N. Srivastava, O. Palchik, V. Palchik, M. A. Slifkin, A. M. Weiss and A. Gedanken, *Langmuir*, 18, 3352 (2002).
- 22. S. Tang, Y. Tang, S. Zhu, H. Lu and X. Meng, J. Solid State Chem., 180, 2871 (2007).
- S. Liu, L. Wang, J. Tian, Y. Luo, X. Zhang and X. Sun, J. Colloid Interface Sci., 2011).
- M. R. Guascito, E. Filippo, C. Malitesta, D. Manno, A. Serra and A. Turco, *Biosens. Bioelectron.*, 24, 1057 (2008).
- 25. L. Li, Z. Du, S. Liu, Q. Hao, Y. Wang, Q. Li and T. Wang, *Talanta*, 82, 1637 (2010).
- 26. X. Gan, T. Liu, J. Zhong, X. Liu and G. Li, *ChemBioChem*, **5**, 1686 (2004).

Available at www.sciencedirect.com

SciVerse ScienceDirect

High-performance supercapacitor of manganese oxide/ reduced graphene oxide nanocomposite coated on flexible carbon fiber paper

Montree Sawangphruk ^{a,b,*}, Pattarachai Srimuk ^a, Poramane Chiochan ^a, Atiweena Krittayavathananon ^a, Santamon Luanwuthi ^a, Jumras Limtrakul ^b

ARTICLE INFO

Article history: Received 5 February 2013 Accepted 29 March 2013 Available online 9 April 2013

ABSTRACT

Although supercapacitors have higher power density than batteries, they are still limited by low energy density and low capacity retention. Here we report a high-performance supercapacitor electrode of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper (MnO2-rGO/CFP). MnO2-rGO nanocomposite was produced using a colloidal mixing of rGO nanosheets and 1.8 ± 0.2 nm MnO₂ nanoparticles. MnO₂rGO nanocomposite was coated on CFP using a spray-coating technique. MnO2-rGO/CFP exhibited ultrahigh specific capacitance and stability. The specific capacitance of MnO₂rGO/CFP determined by a galvanostatic charge-discharge method at 0.1 A g⁻¹ is about 393 F g^{-1} , which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO₂-GO/CFP, MnO₂/ CFP, rGO/CFP, and GO/CFP, respectively. The capacity retention of MnO2-rGO/CFP is over 98.5% of the original capacitance after 2000 cycles. This electrode has comparatively 6%, 11%, 13%, and 18% higher stability than MnO₂-GO/CFP, MnO₂/CFP, rGO/CFP, and GO/CFP, respectively. It is believed that the ultrahigh performance of MnO₂-rGO/CFP is possibly due to high conductivity of rGO, high active surface area of tiny MnO2, and high porosity between each MnO2-rGO nanosheet coated on porous CFP. An as-fabricated all-solid-state prototype MnO2-rGO/CFP supercapacitor (2 × 14 cm) can spin up a 3 V motor for about 6 min.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Supercapacitors have a major advantage of 10- to 100-fold higher power density (charge/dischrage rate) than batteries [1–3]. Besides, they have a longer cycle-life, no memory effect, and much safer due to physical energy storage-based mechanism leading to maintenance-free when compared with bat-

teries [3]. Supercapacitors store energy via two mechanisms i.e., electrochemical double layer capacitance (EDLC) and pseudocapacitance. They are used in portable devices or equipments requiring low energy e.g., photographic flash, flashlights, personnel memory cards, portable media players, and automated (medical) meter reading equipment as well as used in conjunction with batteries or fuel cells to deliver high

^a National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

^b Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

^{*} Corresponding author at: National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand. Fax: +66 (0) 2 561 4621.

power typically needed during rapid breaking and rapid acceleration in hybrid electric vehicles [3].

However, supercapacitors store lower energy density (\sim 0.5–30 Wh kg⁻¹) than batteries (\sim 20–180 Wh kg⁻¹) [1–3]. In order to increase the energy density of supercapacitors, electrode materials with higher active surface area and conductivity, which can store both EDLC and pseudocapacitance, are required. Graphene exhibited high EDLC with the theoretical value of 550 F g⁻¹ calculated for single-layer graphene sheet [1,4] and high intrinsic (quantum) capacitance (\sim 21 μ F cm⁻²), which is the upper limit for carbon-based materials [1,5]. MnO₂ displayed ultrahigh faradaic pseudocapacitance with the theoretical value of 1110 F g⁻¹ [6,7]. The composites of graphene-related materials and MnO₂ recently reported can display ultrahigh EDLC and pseudocapacitance [8,9].

MnO₂–graphene oxide (GO) composite synthesized by a soft chemical route in a water–isopropyl alcohol system exhibited a specific capacitance (SC) of 210 F g⁻¹ determined by a galvanostatic charge–discharge method at an applied current density of 0.15 A g⁻¹ [10]. MnO₂–graphene composites produced by a microwave-assisted method displayed the SC of 310 F g⁻¹ determined by a cyclic voltammetry at a scan rate of 2 mV s⁻¹, about threefold higher than that of pure graphene [8]. More recently, MnO₂ clusters were directly coated on different carbon materials using a chelation-mediated aqueous solution method [9]. It was found that the composite supercapacitor electrode consisting of reduced GO (rGO) and MnO₂ exhibited the highest SC of 260 F g⁻¹ at an applied current density of 0.3 A g⁻¹, when compared with other composite electrodes studied [9].

However, the size of MnO₂ clusters previously produced by the chelation-mediated technique [9] is rather big, a cluster size of >100 nm for which the specific pseudocapacitance of MnO2 clusters may not play a major role to the total SC of the composite. In this work, we therefore produced the composite of rGO nanosheets and tiny MnO2 nanoparticles $(1.8 \pm 0.2 \text{ nm in diameter})$ [7] using a simple colloidal mixing method. The diluted oxygen-containing functional groups of rGO can benefit the dispersion of MnO2 on rGO nanosheets and the infiltration of electrolyte [11]. We fabricated a flexible supercapacitor electrode by coating as-prepared MnO2-rGO composite on flexible carbon fiber paper (CFP). CFP, an electrically graphitic sheet of the randomly arranged short carbon fibers, has high flexibility, conductivity, and electrochemical stability [12]. The as-fabricated flexible MnO2-rGO/CFP electrode can in addition remove a typical drawback due to the brittle characteristic of metal oxide supercapaciotor electrode usually limiting its applications especially for flexible devices.

Although MnO₂–graphene composite coated on the flexible CFP has not yet been studied, other flexible supercapacitor electrodes were recently reported. For example, a flexible graphene-based supercapacitor produced by using a simple laser scribing method exhibited a specific capacitance of 276 F g⁻¹ [1]. Graphene paper produced by an electrospinning technique exhibited the SC of 197 F g⁻¹ [13]. The rGO paper produced by a flame-induced reduction of GO paper had the SC of 212 F g⁻¹ [14]. The folded graphene paper produced by a thermal reduction of GO aerogel at 200 °C in air for 1.5 h gave the SC of 172 F g⁻¹ [15]. MnO₂–graphene composite pa-

per, produced by a three-step route i.e., (i) preparation of MnO_2 –GO composite dispersion, (ii) vacuum filtration for making MnO_2 –GO paper, and (iii) thermal reduction of MnO_2 –GO to MnO_2 –graphene, exhibited the SC of 256 F g⁻¹ [16].

2. Experimental

2.1. Preparation of reduced graphene oxide nanosheets

Preparation methods of GO based on Hummers and Offeman method [17] and rGO nanosheets using a chemical reduction process were previously reported by our group elsewhere [18,19]. Briefly, 3.0 g graphite powder (20-40 µm, Sigma-Aldrich) and 1.5 g NaNO₃ (99.5%, QRec) were added to 150 ml H₂SO₄ (98%, QRec) while stirring at 100 rpm in an ice bath for 1 h. 8.0 g KMnO₄ (99%, Ajax Finechem) was slowly added to the mixture at 25 °C for 2 h without stirring. 90 ml Milli-Q water (>18 M Ω cm) was added to the suspension with continuous stirring (100 rpm) at 95 °C for 12 h. Then, 30 ml H₂O₂ (30%, Merck) was slowly added to the diluted suspension. For the purification, the mixture was filtered through polyester fiber (Carpenter Co., USA). The filtrate was centrifuged at 6000 rpm for 15 min and the remaining solid material was then washed in succession with 200 ml Milli-Q water, 100 ml HCl (30%, Sigma-Aldrich), and 100 ml ethanol (30%, Merck). This process was repeated three times. The GO powder was collected by filtration and vacuum dried. For preparation of rGO nanosheets, 0.5 g GO powder was dispersed in 200 ml Milli-Q water using ultrasonication for 30 min. 216 g D(-)fructose (99%, Sigma-Aldrich), recognized as a reducing agent [18], was added to the as-dispersed suspension. The mixture was then refluxed at 98 °C for 24 h. The rGO powder was finally collected using the same purification method of GO powder mentioned above.

2.2. Preparation of MnO₂ nanoparticles

Tiny MnO₂ nanoparticles were produced using an ethylene glycol-assisted synthesis with successive hydrolysis and condensation reactions [7]. In brief, 50 ml ethylene glycol (99.5%, Sigma–Aldrich) were heated at 160 °C for 10 min to remove water and then cooled down to 80 °C. Next, 0.50 g polyvinyl-pyrrolidone (10,000 g mol⁻¹, Sigma–Aldrich) used as a stabiliser and 0.25 g Mn(CH₃COO)₂·4H₂O (99%, Sigma–Aldrich), oxide precursor, were sequentially added to ethylene glycol while stirring at 300 rpm. After 30 min, the resulting reddish suspension of MnO₂ nanoparticles was cooled down to room temperature (25 °C). The mechanism of MnO₂ formation based on an ethylene glycol-assisted synthesis with successive hydrolysis and condensation reactions was proposed by our group elsewhere [7].

2.3. Fabrication of MnO2-rGO electrodes

 MnO_2 -rGO nanocomposites were produced by adding rGO powder to the colloidal MnO_2 nanoparticles suspended in ethylene glycol at the 1:1 weight ratio of rGO: MnO_2 . The mixture was stirred at 300 rpm for 30 min and then coated on

graphitized CFP with the thickness of 400 μm and the electrical resistance of <12 $m\Omega$ cm² (SGL CARBON SE, Germany) by a simple spray coating technique (Paasche Airbrush Company, USA). The airbrush head used a coating pressure and temperature of 20 psi and 25 °C, respectively. The specific loading of MnO₂–rGO on the CFP was around 4 mg cm⁻².

2.4. Structural, morphological, and electrochemical characterizations

Raman Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR) were used to characterize the structures of GO and rGO nanosheets. Raman spectra were recorded on a Senterra Dispersive Raman spectroscope (Bruker Optics, Germany) with a laser excitation wavelength of 514 nm. GO and rGO powders were placed on a clean SiO2/Si substrate and were then used for Raman measurement. The FTIR spectra were acquired on a FTIR spectrometer (Perkin Elmer System 2000). The specimens for FTIR measurement were prepared by grinding the dried rGO powder mixed with potassium bromide (KBr) to a fine powder and then compressing under high pressure into thin pellets. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize the morphology of rGO. The TEM images of samples were made using a JEM 1220 (JEOL Ltd., Japan) with an accelerating voltage of 100 kV. The TEM specimens were prepared by placing the aqueous suspension (~0.05 mg ml⁻¹) of rGO in acetone on the copper grids followed by drying under ambient conditions. Energy-Dispersive X-ray spectroscopy (EDX) was used to do elemental analysis of the as-prepared electrodes. X-ray Diffraction (XRD) with CuK α radiation (lambda = 1.54 Å) was employed to characterize the crystalline structure of MnO2. The chemical composition and the energy state of MnO2-rGO/CFP were carried out using X-ray photoelectron spectroscopy (XPS) measurements with Al-K alpha radiation (hv = 14,866 eV). Nitrogen adsorption-desorption isotherms of rGO and MnO2/rGO samples were carried out at -196 °C (77 K) using a Quantachrome Autosorb-1C instrument. The samples were degassed at 200 °C for 15 h before the gas sorption measurement. The specific surface area and pore size distribution of rGO and MnO₂/ rGO samples were derived by using the Brunauer-Emmert-Teller (BET) method.

Cyclic voltammetry (CV), galvanostatic charge–discharge testing, and electrochemical impedance spectroscopy were used to characterize the capacitance and stability of as-prepared electrodes under a three-electrode system consisting of a Pt wire counter electrode, a Ag/AgCl reference electrode saturated in KCl, and a working electrode. All electrochemistry measurements were carried out in 0.5 M Na₂SO₄ using a computer-controlled μ -AUTOLAB II potentiostat (Eco-Chemie, Utrecht, The Netherlands) equipped with a FRA2 frequency response analyzer module running GPES/FRA software.

2.5. Fabrication of an all-solid-state MnO₂–rGO supercapacitor device

The polymer-gelled electrolyte was prepared by the following method with our modification [1,20]. 1 g polyvinyl alcohol (PVA, molecular weight 89,000–98,000, 99% hydrolyzed,

Sigma–Aldrich) was mixed with 10 ml Milli-Q water. The mixture was heated at ${\sim}90\,^{\circ}\text{C}$ under constant stirring (100 rpm) for 20 min and then cooled down to room temperature (25 °C). After cooling, 10 ml of 0.5 M NaNO₃ was added to the mixture and stirred (100 rpm) for 30 min.

Fabrication of an all-solid-state flexible MnO_2 –rGO/CFP supercapacitor device was assembled by pouring the polymer-gelled electrolyte (100 µl electrolyte/1 cm² of the electrode) onto the MnO_2 –rGO/CFP electrode with the dimension of 2 × 14 cm [1]. This assembly was left under ambient conditions (25 °C) for 3 h to ensure that the electrolyte completely wets the MnO_2 –rGO/CFP electrode. The all-solid-state MnO_2 –rGO supercapacitor was then fabricated by sandwiching two electrolyte-coated MnO_2 –rGO/CFP electrodes and left overnight until the polymer-gelled electrolyte solidified. The polymer electrolyte acts as both the electrolyte and the ion-porous separator.

3. Results and discussion

3.1. Morphological and structural characterizations

TEM images of rGO nanosheets, MnO₂, and rGO–MnO₂ nanocomposites are shown in Fig. 1a–c, respectively. A few layers of rGO nanosheets have different lateral sizes randomly overlapping each other (Fig. 1a). Highly dispersed MnO₂ nanoparticles have the average diameter of about 1.8 ± 0.2 nm (Fig. 1b). The MnO₂–rGO composite produced by a colloidal mixing method in Fig. 1c shows tiny MnO₂ nanoparticles sitting on rGO surface. A low-magnification SEM image (Fig. 1d) shows the composite coated on CFP for which the carbon fiber has the diameter of 8–10 μm and the MnO₂–rGO nanosheets have the lateral size of less than 5 μm and high porosity among adjacent MnO₂–rGO nanosheets coated on CFP. The inset digital image in Fig. 1d shows that the as-fabricated supercapacitor electrode remains high flexibility of CFP.

The N₂ adsorption/desorption isoterms of rGO and MnO₂/ rGO nanosheets in Fig. 2 can be assorted as a type IV adsorption isoterm according to the IUPAC classification, which is feature of mesoporous materials [21,22]. The hysteresis loop starts from the relative pressure of 0.42 to that of 0.99. The isoterms in Fig. 2 also exhibit an H3-type hysteresis loop due to the existing mesopores of absorbents having slitshaped pores [22]. This confirms that N2 adsorbed on rGO nanosheets. The BET specific surface area of rGO is about $510\,\mathrm{m^2\,g^{-1}}$, which is in good agreement with $492\,\mathrm{m^2\,g^{-1}}$ of other previous work and significantly higher than 8.5 m² g⁻¹ of graphite [23]. Interestingly, the specific surface area of MnO₂/rGO composite is about 490 m² g⁻¹, which is slightly lower than that of pure rGO indicating that the composite is rather stable and still dispersed. Additionally the mesoporous structure of the MnO2-rGO nanosheets may play an important role to the high power density of supercapacitor electrode due to the fast diffusion of electrolytes (Na⁺ and H⁺) improving electrolyte access to high interfacial area [21].

Note the XRD spectrum of MnO_2 as well as the Raman, FTIR, and XPS spectra of GO and rGO nanosheets were previously reported and explained in details elsewhere [7,18]. rGO nanosheets with the C:O ratio of 10.5:1 were produced by

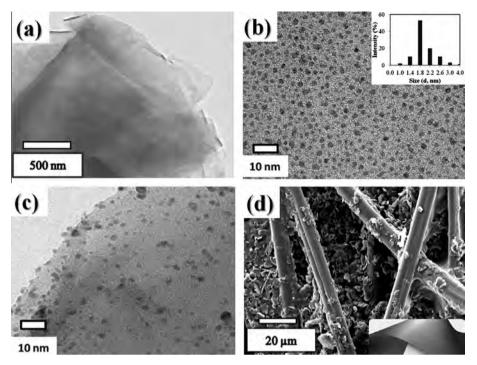


Fig. 1 – TEM images of (a) rGO nanosheets, (b) MnO₂ nanoparticles, and (c) MnO₂-rGO nanocomposite as well as (d) low-magnification SEM image of MnO₂-rGO coated on CFP.

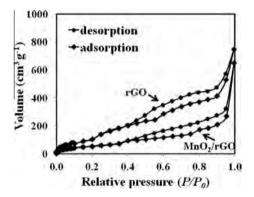


Fig. 2 – N₂ adsorption/desorption isotherms of (a) rGO nanosheets and (b) MnO₂/rGO composite.

reducing GO with fructose [18]. A typical EDX spectrum of MnO₂-rGO/CFP electrode in Fig. 3a consists of three peaks at 0.64, 5.90, and 6.54 keV of MnL $_{\alpha 1}$, MnK $_{\alpha 1}$, and MnK $_{\beta 1}$, respectively. A peak at 0.28 keV is found associated with CK_{α} of rGO and CFP. Oxygen peak is found at the same peak position of MnL_{o1}. Fig. 3b shows the wide-scan XPS spectrum of the asprepared MnO₂-rGO/CFP for which Mn, O, and C elements are found on the sample. The narrow-scan XPS spectrum (Fig. 3c) shows two peaks located at 641.4 and 652.6 eV, which can be attributed to Mn 2p_{3/2} and Mn 2p_{1/2} of Mn⁴⁺, respectively. The peak values agree well with those reported for MnO2, indicating Mn⁴⁺ oxidation state [24]. Fig. 3d shows the narrow-scan O 1s XPS spectra of as-prepared MnO2-rGO/CFP. The O 1s peak has contributions from two oxygen species, an O2- peak of MnO₂ at the lower binding energy (528.8 eV) and a much broader OH- peak of manganese hydroxide and functional groups of rGO at a higher binding energy (530.2 eV) [24-26].

3.2. Electrochemical evaluation

The CV characteristics of as-prepared electrodes (Fig. 4a) evaluated in 0.5 M Na₂SO₄ at potential intervals from 0 to 1 V vs. Ag/AgCl at a scan rate of 10 mV s⁻¹ are a box-like shape indicating the good (ideal) capacitive behaviour of the supercapacitor electrodes [11]. The potential range of as-prepared electrodes is wider than 0.6 V vs. SHE of Mn₂O₃-mesoporous carbon electrode [27]. Using an average cathodic current (I_{cv}) for all potentials of CV curve along with the mass of deposition (m), the discharging time (Δt), and the potential window (ΔV), we can calculate SC according to the equation, SC = I_{cv} $\Delta t/m\Delta V$. Note, Δt is equal to $\Delta V/v$ where v is a scan rate [28,29]. The calculated SC of the MnO2-rGO/CFP electrode is $393 \,\mathrm{Fg^{-1}}$ which is 1.6-, 2.3-, 2.7-, and 9.5-fold higher than those of the MnO2-GO/CFP, MnO2/CFP, rGO/CFP, and GO/CFP electrodes, respectively. Note that the SC of the bare CFP is only 0.05 F g⁻¹. High SC of the MnO₂-rGO/CFP electrode is most possibly because the incorporative effect stems from high surface area of tiny MnO2 nanoparticles, high conductivity of rGO nanosheets (5-200 S m⁻¹ which is about three orders of magnitude higher than that of the GO) [30], and high porosity of MnO₂-rGO nanosheets coated on CFP [9]. Especially high porous supercapacitor electrodes can provide well-ordered tunnels and convenient for insertion/extraction of Na+ and H+ into/from the electrode leading to the fast ion transportation [24,31]. The calculated SC decreases when the scan rate increases from 2 to 100 mV s⁻¹ (Fig. 4b) indicating that the electrochemical capacitive process was controlled by concentration polarization or diffusion electrochemistry [32]. At high scan rate, the cations (Na⁺ and H⁺) are mainly adsorbed on the outer surface of the electrode while at low scan

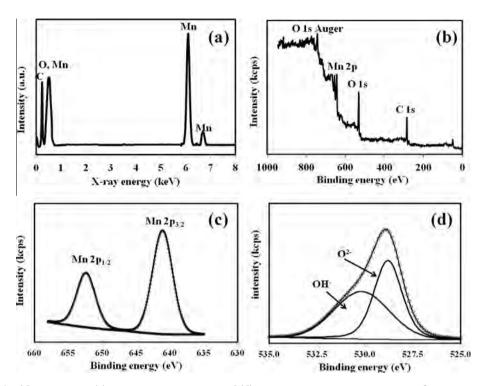


Fig. 3 - (a) EDX, (b) wide-scan XPS, (c) narrow-scan Mn 2p, and (d) narrow-scan O 1s XPS spectra of as-prepared MnO2-rGO/CFP.

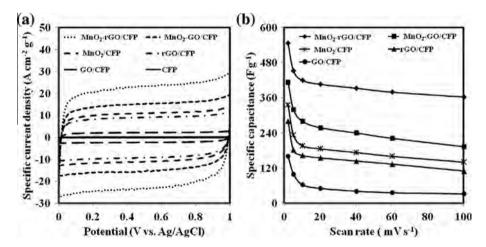


Fig. 4 – (a) Cyclic voltammograms and (b) specific capacitance vs. scan rates of as-prepared supercapacitor electrodes in 0.5 M Na₂SO₄.

rates the cations can approach deep pores of the supercapacitor electrodes leading to higher SC [33].

The electrochemical performance of as-prepared electrodes was also evaluated by galvanostatic charge–discharge tests carried out under different current densities. The linear voltage-time curves in Fig. 5a show a symmetric characteristic of charge–discharge curves indicating a good capacitive behaviour of the high-performance supercapacitor electrode [34]. The as-prepared electrodes can work at a potential up to 1.0 V for MnO₂–rGO/CFP while slightly lower than 1.0 V for other electrodes. All potentials in Fig. 5a are in good agreement with those observed from CVs in Fig. 4a. The SC of as-prepared electrodes was calculated from the discharge curve

according to the following equation, SC = $I\Delta t/\Delta V$ where ΔV is the working potential window (V) excluding IR drop, Δt is the discharging time (s), and I is the constant current density (A g⁻¹). At the applied current density of 0.1 A g⁻¹, the SC of MnO₂–rGO/CFP is about 393 F g⁻¹, which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO₂–GO/CFP, MnO₂/CFP, rGO/CFP, and GO/CFP, respectively. The similar results are also found at higher applied current densities (Fig. 5b). MnO₂–rGO/CFP has the highest SC at the applied current densities of 0.1–2.0 A g⁻¹ indicating good rate capacity when compared with other supercapacitor electrodes studied.

The electrochemical stability of the electrodes was investigated using the galvanostatic charge–discharge at the applied

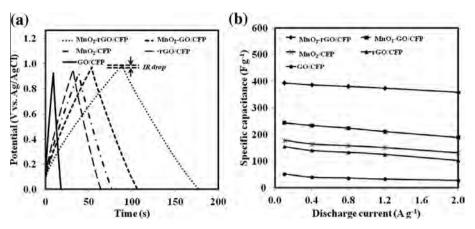


Fig. 5 – (a) Galvanostatic charge–discharge curves of as-prepared electrodes under different constant currents and (b) specific capacitance vs. current density.

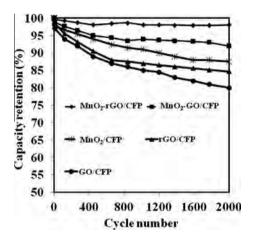


Fig. 6 – Capacity retention of as-prepared electrodes over 2000 cycles of galvanostatic charge-discharge tests.

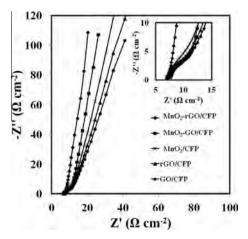


Fig. 7 – Nyquist plots of as-prepared electrodes in $0.5\,M$ Na_2SO_4 using a sinusoidal signal of $40\,mV$ over the frequency range from 100 to $1\,mHz$.

current density of 0.1 A $\rm g^{-1}$ over 2000 cycles (Fig. 6). For MnO₂–rGO/CFP, over 98.5% of the original capacitance was retained after 2000 cycles, indicating good cycle ability. Whilst, other

electrodes i.e., MnO_2 –GO/CFP, MnO_2/CFP , rGO/CFP, and GO/CFP have 6%, 11%, 13%, and 18% less stability than MnO_2 –rGO/CFP, respectively.

Nyquist plots of as-prepared electrodes were measured in 0.5 M Na₂SO₄ using a sinusoidal signal of 40 mV vs. Ag/AgCl over the frequency range from 100 to 1 mHz (Fig. 7). Each data point of the plots is at a different applied frequency with the lower left portion of the curves corresponding to the higher frequency. The Nyquist plot of MnO2-rGO/CFP is closer to an ideal supercapacitor, the more vertical the curve as compared with that of other electrodes, which have a straight line in the low-frequency region and a small arc in the high frequency region regarding with their high electronic resistance [35]. At low frequency, the curve of MnO2-rGO/CFP electrode shows less diffusion resistance than others due to faster ion transportation of the electrolyte inside the porous composite electrode [31,36]. High frequency loops observed in the inset curves in Fig. 7 are related to the electronic resistance of supercapacitor electrodes. Polarization resistance or charge transfer resistance value determined from the high frequency loop of MnO₂-rGO/CFP is \sim 2 Ω cm⁻², which is lower than \sim 7 Ω cm⁻² of other electrodes. Note a solution resistance is \sim 7 Ω . This indicates that a high conductivity of rGO nanosheet can enhance charge transportation of pseudocapacitive materials, MnO₂ nanoparticles.

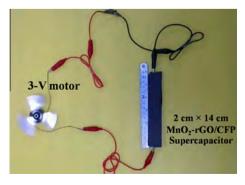


Fig. 8 – A 2×14 cm all-solid-state prototype of MnO₂-rGO/ CFP supercapacitor supplying electricity to 3 V spinning motor.

3.3. An all-solid-state MnO2-rGO/CFP supercapacitor

In order to demonstrate the performance of MnO₂–rGO/CFP, an all-solid-state prototype of MnO₂–rGO/CFP supercapacitor was made by sandwiching two pieces of MnO₂–rGO/CFP (2×14 cm) with a polymer-gelled electrolyte separator at the middle (see Fig. 8) [1]. The as-fabricated supercapacitor, fully charged at a constant potential of 9.0 V (Panasonic 6LR61XWA – Alkaline Battery), can spin up a 3 V motor for \sim 6 min (Movie S1).

4. Summary

GO was prepared by a modified Hummers method and used as a precursor for producing rGO nanosheets for which GO was reduced with a reducing agent fructose. MnO2 nanoparticles with the diameter of 1.8 ± 0.2 nm were produced by ethylene glycol-assisted synthesis with successive hydrolysis and condensation reactions. MnO2-rGO nanocomposites produced by a simple colloidal mixing were coated on flexible CFP using a simple spray-coating technique. Flexible supercapaciotor paper of MnO2-rGO/CFP exhibited ultrahigh specific capacitance and stability. At an applied current density of 0.1 A g^{-1} , the SC of MnO₂-rGO/CFP is about 393 F g⁻¹, which is 1.6-, 2.2-, 2.5-, and 7.4-fold higher than those of MnO₂-GO/CFP, MnO₂/CFP, rGO/CFP, and GO/CFP, respectively. In addition to its high specific capacitance, the capacity retention of MnO2-rGO/CFP is over 98.5% of the original capacitance after 2000 cycles. This electrode has comparatively 6%, 11%, 13%, and 18% higher stability than MnO2-GO/CFP, MnO₂/CFP, rGO/CFP, and GO/CFP electrodes, respectively. It is believed that incorporative effects of MnO2-GO/CFP lead to ultrahigh capacitance. A high conductivity of rGO can enhance charge transportation, high active surface area of tiny MnO₂ nanoparticles can contribute pseudocapacitance, and high porosity among MnO2-rGO nanosheets coated on CFP can accelerate mass diffusion of electrolytes. An all-solidstate supercapacitor of MnO₂-rGO/CFP can spin up 3 V motor for about 6 min (discharging time). We believe that MnO2rGO/CFP may be used as supercapacitor electrodes especially for flexible electronic devices.

Acknowledgments

This work was supported in part by Grants from the Faculty of Engineering, the Kasetsart University Research and Development Institute, the Thailand Research Fund (MRG5480195), the Commission on Higher Education, Ministry of Education ("the National Research University Project of Thailand" and "Postgraduate Education and Research Programs in Petroleum and Petrochemicals and Advanced Materials").

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.carbon. 2013.03.062.

REFERENCES

- [1] El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012;335(6074):1326–30.
- [2] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater 2008;7(11):845–54.
- [3] Liu CG, Yu ZN, Neff D, Zhamu A, Jang BZ. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 2010;10(12):4863–8.
- [4] Stoller MD, Park S, Yanwu Z, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett 2008;8(10):3498–502.
- [5] Xia J, Chen F, Li J, Tao N. Measurement of the quantum capacitance of graphene. Nat Nanotechnol 2009;4(8):505–9.
- [6] Wu MS, Guo ZS, Jow JJ. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 2010;114(49):21861–7.
- [7] Sawangphruk M, Limtrakul J. Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater Lett 2012;68:230–3.
- [8] Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F. Fast and reversible surface redox reaction of graphene–MnO₂ composites as supercapacitor electrodes. Carbon 2010;48(13):3825–33.
- [9] Zhang J, Zhao XS. A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons. Carbon 2013;52:1–9.
- [10] Chen S, Zhu J, Wu X, Han Q, Wang X. Graphene oxide–MnO₂ nanocomposites for supercapacitors. ACS Nano 2010;4(5):2822–30.
- [11] Li Y, Zhao N, Shi C, Liu E, He C. Improve the supercapacity performance of MnO₂-decorated graphene by controlling the oxidization extent of graphene. J Phys Chem C 2012;116(48):25226–32.
- [12] Yuan CJ, Wang CL, Wu TY, Hwang KC, Chao WC. Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor. Biosens Bioelectron 2011;26(6):2858–63.
- [13] Tai Z, Yan X, Lang J, Xue Q. Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. J Power Sources 2012;199:373–8.
- [14] Sun D, Yan X, Lang J, Xue Q. High performance supercapacitor electrode based on graphene paper via flameinduced reduction of graphene oxide paper. J Power Sources 2013;222:52–8.
- [15] Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater 2012;24(8):1089–94.
- [16] Li Z, Mi Y, Liu X, Liu S, Yang S, Wang J. Flexible graphene/ MnO₂ composite papers for supercapacitor electrodes. J Mater Chem 2011;21(38):14706–11.
- [17] Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc 1958;80(6):1339–9
- [18] Sawangphruk M, Krittayavathananon A, Chinwipas N. Ultraporous palladium on flexible graphene-coated carbon fiber paper as high-performance electro-catalysts for the electro-oxidation of ethanol. J Mater Chem A 2013;1(4):1030–4.
- [19] Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 2012;50(14):5156–61.
- [20] Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 2009;9(5):1872–6.

- [21] Gund GS, Dubal DP, Patil BH, Shinde SS, Lokhande CD. Enhanced activity of chemically synthesized hybrid graphene oxide/Mn₃O₄ composite for high performance supercapacitors. Electrochim Acta 2013;92:205–15.
- [22] Kalubarme RS, Ahn C-H, Park C-J. Electrochemical characteristics of graphene/manganese oxide composite catalyst for Li-oxygen rechargeable batteries. Scr Mater 2013;68(8):619–22.
- [23] Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 2010;55(12):3909–14.
- [24] Toupin M, Brousse T, Belanger D. Charge storage mechanism of MnO₂ electrode used in aqueous electrochemical capacitor. Chem Mater 2004;16(16):3184–90.
- [25] Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M. Highenergy MnO₂ nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010;4(10):5835–42.
- [26] Wei W, Cui X, Mao X, Chen W, Ivey DG. Morphology evolution in anodically electrodeposited manganese oxide nanostructures for electrochemical supercapacitor applications: effect of supersaturation ratio. Electrochim Acta 2011;56(3):1619–28.
- [27] Zhang LL, Wei T, Wang W, Zhao XS. Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater 2009;123(1-3):260-7.
- [28] Dai Y, Wang K, Zhao J, Xie J. Manganese oxide film electrodes prepared by electrostatic spray deposition for electrochemical capacitors from the KMnO₄ solution. J Power Sources 2006;161(1):737–42.

- [29] Nagarajan N, Humadi H, Zhitomirsky I. Cathodic electrodeposition of MnO_x films for electrochemical supercapacitors. Electrochim Acta 2006;51(15):3039–45.
- [30] Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 2007;7(11):3499–503.
- [31] Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 2011;6(5):277–81.
- [32] Yin Z, Zheng H, Ma D, Bao X. Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C 2008;113(3):1001–5.
- [33] Sawangphruk M, Pinitsoontorn S, Limtrakul J. Surfactantassisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. J Solid State Electrochem 2012;16(8):2623–9.
- [34] Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, et al. Enhancing the supercapacitor performance of graphene/ MnO₂ nanostructured electrodes by conductive wrapping. Nano Lett 2011;11(10):4438–42.
- [35] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, et al. Supercapacitor devices based on graphene materials. J Phys Chem C 2009;113(30):13103–7.
- [36] Nakayama M, Kanaya T, Inoue R. Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochem Commun 2007;9(5):1154–8.

ORIGINAL PAPER

Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes

Montree Sawangphruk · Supree Pinitsoontorn · Jumras Limtrakul

Received: 16 December 2011 / Revised: 7 February 2012 / Accepted: 13 February 2012 / Published online: 23 February 2012 © Springer-Verlag 2012

Abstract Ag-doped MnO₂ pseudocapacitor electrodes with dendrite and foam-like structures were successfully produced for the first time using an electrodeposition method employing structure-directing agents, i.e., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) acting through micelle formation at solid–liquid interfaces. Doping silver with MnO₂ enhanced their electronic conductance. Controlling pseudocapacitor electrode morphologies with surfactants accelerated ion transport. The specific capacitance values of the Ag-doped MnO₂ films produced with SDS and CTAB, measured in 0.5 M Na₂SO₄

at a scan rate of 5 mV s⁻¹ were 551 and 557 Fg⁻¹, respectively. These values are about 2.7-fold higher than that of the pure MnO_2 film and about 1.4-fold higher than that of the Ag-doped MnO_2 film made without using surfactants.

Keywords Electrodeposition · Supercapacitor · Pseudocapacitor · Manganese oxide · Surfactant · Electrochemical capacitance

Ia₂SO₄ Introduction

Global warming and shortages of fossil fuels encourage society to move towards sustainable and renewable energies with low carbon emissions [1]. There is increasing interest in renewable energy. However, the lack of good electrical energy storage systems remains a large problem [1]. In order to overcome this problem, high-efficiency energy storage devices such as batteries and electrochemical capacitors (ECs) are needed. ECs are referred to as supercapacitors because of their extraordinarily high capacitance density. They can physically store charges at their solid-liquid interfaces. This phenomenon is known as electrochemical double-layer capacitance (EDLC). Thus, ECs does not produce any volume change that usually accompanies redox reactions of the active masses in batteries. The charging and discharging rates of ECs are equally high while those of batteries are kinetically limited since they rely on reaction kinetics and mass transport [2].

An important subclass of EC devices consists of pseudocapacitors which undergoes both an electron transfer reaction and EDLC storage. Materials that exhibit pseudocapacitive storage include conducting polymers [3] (i.e., polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) and a variety of transition metal

M. Sawangphruk

Department of Chemical Engineering, Kasetsart University, Bangkok 10900, Thailand

S. Pinitsoontorn

Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

J. Limtrakul

Department of Chemistry and Center of Nanotechnology, Kasetsart University, Bangkok 10900, Thailand

M. Sawangphruk · J. Limtrakul Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

M. Sawangphruk (☒) · J. Limtrakul NANOTEC Center of Excellence, National Nanotechnology Center, Kasetsart University, Bangkok 10900, Thailand e-mail: fengmrs@ku.ac.th

oxides. RuO₂ pseudocapacitors have relatively high specific capacitance (>1,000 Fg⁻¹) in this class. However, their costs are prohibitive and their materials toxic [4]. Efforts to develop more practical and inexpensive pseudocapacitive materials such as MnO₂ [5–9] and NiO [10–12] are now quite active. MnO₂ is an important and well-studied material for supercapacitors. It exhibits theoretical specific capacitance of approximately 1,110 Fg⁻¹ through stoichiometric reduction of MnO₂ to MnOOH in a potential window of 1 V [13].

However, the capacitance for thick MnO₂ films (≈100 µm) is ultimately limited by the poor electrical conductivity of MnO₂. Alternatively, the stability of ECs in the thin MnO₂ film (<5 µm) configuration is restricted because of low mass loading [14, 15]. In order to overcome the electrical resistance of MnO2, silver was incorporated into MnO2 thin films. Ag mass loading of 50 μg cm⁻² was accomplished using cathodic electrodeposition. This led to higher specific capacitance and lower electrical resistance compared with pure MnO₂ films. Specific capacitance of 770 Fg⁻¹ was obtained for pure MnO₂ films at a scan rate of 2 mV s⁻¹ in 0.5 M Na₂SO₄ electrolyte [6]. Previously, silver was incorporated in RuO₂ films using a radio frequency magnetron co-sputtering technique. The results showed that Ag-doped RuO2 provided significantly higher specific capacitance than RuO₂ films. This was due to high electrical conductivity of Ag-doped RuO₂ [16].

In this work, we further improve the specific capacitance of Ag-doped MnO₂ films. This was done by controlling their morphology with surfactants in the electrodeposition process and increasing mass loading to an economical level (0.4-0.5 mg cm⁻²) [17, 18]. Use of surfactants for controlling morphology of the electrodeposited Ag-doped MnO₂ has not been done previously. However, the effect of surfactants on the morphology of the pure MnO₂ films was previously studied. Adding surfactants (i.e., CTAB and Triton X-100) to the electrodepositing solution of manganese sulfate can increase the surface area of MnO2. This leads to enhancement of the rechargeability of alkali manganese oxide batteries [19]. MnO₂ films electrodeposited in the presence of the Triton X-100 provide high porosity and therefore high surface area. This leads to 59% enhancement in specific capacitance when compared with values for MnO₂ film produced without Triton X-100 [5]. Structures of surfactants with nonpolar hydrocarbon chains and ionic or neutral polar head groups play an important role in electrosynthesis. This is because they can form micelle at solid-liquid interfaces [20-22]. Coulombic interactions between the head groups of surfactants and electrode surfaces are strong. Thus, micelles formed can be used as soft templates in the electrodepositing process [23].

Experimental

Chemicals and materials

Potassium permanganate (KMnO₄), silver nitrate (AgNO₃), sodium sulfate (Na₂S₂O₃), sodium nitrate (NaNO₃), potassium chloride (KCl), sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB) purchased from the Sigma-Aldrich Co. were of analytical reagent grade. All solutions and subsequent dilutions were prepared using ultra-pure water (>18 M Ω cm). Graphite electrodes were supplied by Structural Probe, Inc.

Electrodeposition

Electrodeposition experiments were conducted using a conventional three-electrode system. A 1 cm² graphite substrate, a platinum mesh, and an Ag/AgCl electrode (in saturated KCl) were used as the working, counter, and reference electrodes, respectively. Electrodeposition of MnO₂ was performed following a reported cathodic electrodeposition [6]. We further developed the process as follows. The electrodeposition was carried out at a current density of 1 mA cm⁻² vs. Ag/AgCl for 30 min in aqueous 20 mM KMnO₄ in 0.5 M NaNO₃ containing 0–1 mM AgNO₃ at 25 °C. The surfactants (CTAB or SDS) in concentrations of 0–1 mM were added to the process for the surface morphology-controlled samples. The as-electrodeposited films were annealed at 400 °C for 2 h to obtain a crystalline phase and to increase the purity of MnO₂ films [24].

Structural and morphological characterizations

The microstructure and composition of the as-prepared films were investigated using scanning electron microscopy/energy dispersive X-ray spectroscopy (EDX) operating at 15 kV. The XRD patterns of samples were recorded using a diffractometer with CuK_{α} radiation (λ =1.5406 Å) and a graphite monochromator at 40 kV and 30 mA.

Electrochemical evaluation

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to evaluate the specific capacitance and stability of as-prepared electrodes. These techniques used a computer-controlled μ-AUTOLAB II potentiostat (Eco-Chemie, Utrecht, The Netherlands) equipped with a FRA2 frequency response analyzer module running GPES/FRA software. CV curves were scanned at voltage ramp rates of 1–100 mV s⁻¹. EIS was carried out using a sinusoidal signal of 5 mV vs. Ag/AgCl over the frequency range from 100 kHz to 1 mHz. An aqueous electrolyte consisting of 0.5 M Na₂SO₄ was used for all

capacitive measurements. This was done because when applied to supercapacitors, aqueous Na₂SO₄ electrolyte, presents several advantages over the organic ones. It is relatively inexpensive, more environmentally friendly, and easier to make [25]. Additionally, the stability potential window of Na₂SO₄ with regard to the pseudocapacitive mechanism is about twice as large as in acidic or basic electrolytes [25].

Results and discussion

Surface morphology

Scanning electron micrographs of the Ag-doped MnO₂ films and the pure MnO₂ film are shown in Fig. 1. In the presence of a cationic surfactant, CTAB, agglomerated oxide nanoparticles with a foam-like structure were observed (Fig. 1a). With an anionic surfactant, SDS, a dendrite Ag-MnO₂ structure is seen (Fig. 1b). In contrast, without structure-directing surfactants, denser film structures were observed on both Ag/MnO₂ (Fig. 1c) and cracked MnO₂ (Fig. 1d) films. The crack-free morphology of Ag-doped MnO₂ is similar to materials recently reported [6]. This is possibly due to the strong interfacial interaction between the hybrid film and the graphite substrate. In contrast, the cracks typically found on the pure oxide films [26, 27] are because

 $\label{eq:Fig. 1} \begin{array}{l} Fig. \ 1 & Scanning \ electron \\ micrographs \ of \ Ag-doped \\ MnO_2 \ films \ produced \ using \\ a \ CTAB, \ b \ SDS, \ c \ without \\ surfactant, \ and \ d \ the \ pure \ MnO_2 \\ film \end{array}$

of the huge stress generated by the capillary force during the drying process [28, 29]. Surfactants significantly affect the morphology of the Ag-doped MnO₂ films. They play an important role in the nucleation and growth of hybrid films through the hemisphere-micelle formation at the electrode-liquid interface [19]. The structure of these products is controlled through a balance of interfacial forces between metal oxide precursor and surfactant [19, 30]. However, further studies on the nucleation mechanism for surfactant-assisted electrodeposition of foam-like and dendrite Ag-doped MnO₂ structures are still needed.

Chemical structure of silver-doped manganese oxides

The phase and purity of the as-annealed oxide films were determined by powder XRD measurements. The XRD patterns in Fig. 2a, b show five dominant peaks. They can be indexed as (110), (101), (111), (211), and (310) planes of a pure tetragonal phase of $\beta\text{-MnO}_2$ and are in good agreement with previous work [31, 32]. The XRD spectra also indicate that the films possess the high crystallinity of pure $\beta\text{-MnO}_2$. This is seen in the sharp and intense spectral peaks. Interestingly, in Fig. 2b, no peaks related to Ag are observed in Ag-doped MnO $_2$ samples. This can be attributed to Ag ion insertion inside the tunnel of the $\beta\text{-MnO}_2$ structure occurring more in doping than in the coating process. It is well established that MnO $_2$ can accommodate large ions such as

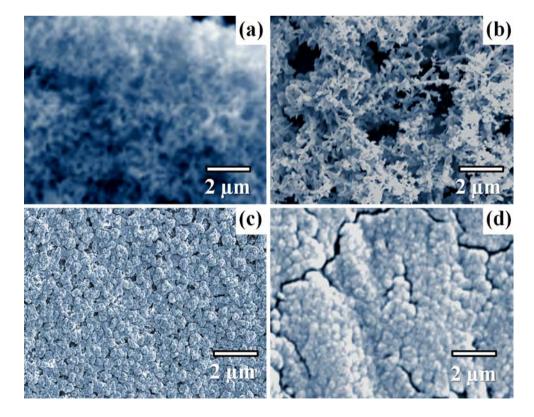
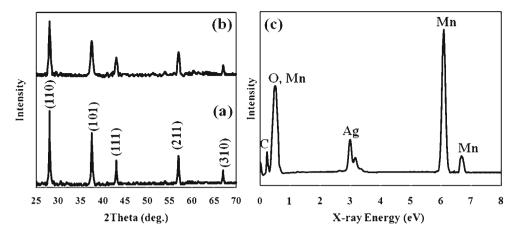



Fig. 2 X-ray diffraction patterns of a MnO₂ and b Ag-doped MnO₂ and c energy X-ray dispersive spectrum of Ag-doped MnO₂

 Na^+ , K^+ , Ag^+ , and Ca^{2+} [33–35]. Typical EDX spectrum of the Ag-doped MnO_2 films in Fig. 2c shows Mn, Ag, O, and C elements. A peak at 0.64 keV is attributed to $OL_{\alpha 1}$. Two peaks at 5.90 and 6.54 keV represent $MnK_{\alpha 1}$, and $MnK_{\beta 1}$, respectively. The two predominant peaks at 3.00 and 3.16 keV result from $AgL_{\alpha 1}$ and $AgL_{\beta 1}$, respectively. A peak at 0.28 keV is found associated with CK_{α} of the graphite electrode.

Electrochemical evaluation

Cyclic voltammetry

The EDLC of the Ag-doped and pure MnO₂ films was investigated by means of the cyclic voltammetry in a 0.5 M Na₂SO₄ electrolyte solution at potential intervals from 0 to 1 V vs. Ag/AgCl at the scan rate of 5 mV s⁻¹. The voltammograms indicate pseudocapacitive behavior which stores energy through highly reversible surface redox (Faradic) reactions and the EDLC with highly reversible charging–discharging reactions of cations (i.e., Na⁺ and H⁺) on the surface of oxide electrodes. The charge storage mechanism is attributed to the adsorption of Na⁺ and H⁺ on the surface of pseudocapacitor electrodes [14]. By integrating the

cathodic current for all potentials and subtracting the capacitive current contributed by the substrate, a value of the pseudocapacitive current ($I_{\rm cv}$) can be calculated. Using this value, along with the mass of deposition (m) and the scan rate (v), we can then calculate the specific capacitance (C) according to the equation, $C=I_{\rm cv}/mv$. From the CV in Fig. 3, the calculated C values of the Ag-doped MnO₂ electrodes produced using CTAB and SDS as soft templates, i.e., Ag/MnO₂ (CTAB) and Ag/MnO₂ (SDS) at the scan rate of 5 mV s⁻¹ were 551 and 557 Fg⁻¹, respectively. These values are about 1.4- and 2.7-fold higher than that of Ag/MnO₂ and MnO₂, respectively.

CV measurements were also done at different scan rates over a range of 1–100 mV s⁻¹. Calculated *C* values are shown in Fig. 3b. These values decrease with increasing scan rates since the scan rate makes a direct impact on the diffusion of Na⁺ and H⁺ into the pseudocapacitor electrodes. At high scan rates, the cations (Na⁺ and H⁺) will primarily approach the outer surface of the electrode. At low scan rates, the cations can approach deep pores of the pseudocapacitor electrodes. Low scan rates allow more contribution to EDLC of the MnO₂. However, a closer look at the slope of the specific capacitance curves of the Ag/MnO₂(CTAB) and the Ag/MnO₂(SDS) electrodes in Fig. 3b is revealing that the diffusion of

Fig. 3 a Cyclic voltammograms of the pure MnO₂ and Ag-doped MnO₂ films in 0.5 M Na₂SO₄ at a scan rate of 5 mV s⁻¹ and **b** specific capacitance as a function of the scan rate for which Ag-doped films were prepared from 20 mM KMnO₄ solution containing 1 mM AgNO₃ and 1 mM surfactants (i.e., SDS or CTAB)

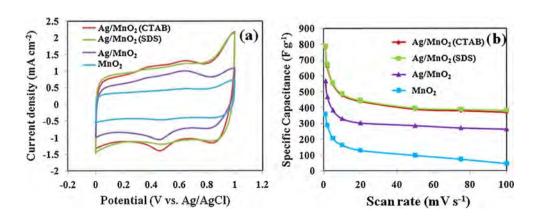
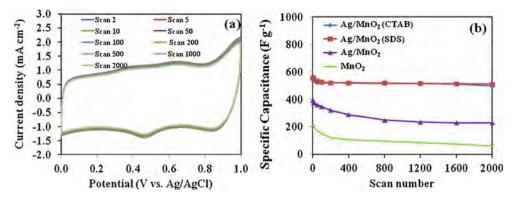



Fig. 4 a Cyclic voltammograms of Ag/MnO₂ (CTAB) at a range of scan (cycling) number (2–2,000) and **b** specific capacitance of all prepared films as a function of the scan number

 Na^+ and H^+ inside deep nanopores at high scan rates can significantly enhance pseudocapacitance. This suggests that the foam-like structure of $\mathrm{Ag/MnO_2(CTAB)}$ and the dendrite structure of $\mathrm{Ag/MnO_2(SDS)}$ electrodes offer a faster pathway for ion transport and lower resistance for charge and electrolyte diffusion.

The stability of doped pseudocapacitors has additionally been studied using the CV measurements over scan (cycling) number of 2,000. Figure 4a presents CV curves of Ag/MnO₂ (CTAB) upon cycling for 2,000 scans at the scan rate of 5 mV s⁻¹ with the cut-off voltages 0-1 V vs. Ag/AgCl in 0.5 M Na₂SO₄. The calculated value of C after 2,000 scans is only 1.4% less than that at scan number 2 (552 Fg⁻¹). This indicates high Ag/MnO₂ (CTAB) stability. Figure 4b compares the C values of all prepared films as a function of the scan number. In this figure, Ag/MnO₂ (SDS) with its dendrite structure provides similar C values over the scan number of 2,000 with high stability. This is comparable to Ag/MnO₂ (CTAB). However, the Ag/MnO₂ electrode made without surfactants in the electrodepositing process shows less specific capacitance (about 1.5 times). The C values of Ag/MnO₂ still possess a significant two- to threefold increase over that of pure MnO2, which is in good agreement with very recent work [6].

Electrochemical impedance spectroscopy

The impedance plots in Fig. 5 show a partial semicircle at a high-frequency component. This is due to Faradic charge transfer resistance and a nearly straight line along the imaginary axis at a low-frequency component due to the mass transport limit. The smaller semicircles (inset of Fig. 5) in the high-frequency range are observed in the case of Ag-doped MnO₂ films. This can be compared with the larger semicircle of pure MnO₂. From this, it can be suggested that incorporation of silver into MnO₂ structure leads to fast electron transfer across electrified interfaces or an inner Helmholtz layer to the solvated cations in the outer Helmholtz layer. This process

enhances the specific capacitance of pseudocapacitor electrodes as evidenced from the cyclic voltammetry. Additionally, the magnitude of charge-transfer resistances at the solid-liquid interface is in the following order: Ag/ $MnO_2(SDS) \approx Ag/MnO_2(CTAB) < Ag/MnO_2 < MnO_2$. If charge-transfer resistance is smaller, the pseudocapacitor provides higher specific capacitance values [10]. The slope of the straight line in a low frequency range is due to the Warburg resistance. This is a result of the frequency dependence of ion diffusion from the electrolyte to the electrode interface. From the Nyquist curves, the slopes of the curves for the Ag/MnO₂ (SDS) and Ag/ MnO₂ (CTAB) electrodes are steeper than the slope for Ag/MnO₂ and the pure MnO₂. This implies that the dendrite and foam-like structures of Ag/MnO2 can significantly enhance diffusion of solvated cations to the porous electrodes. If we compared the Nyquist curves of Ag/MnO₂ and the pure MnO₂, doping silver into MnO₂ structure enhanced the electronic conductance of the oxide supercapacitor as well as the ion transport [36, 37].

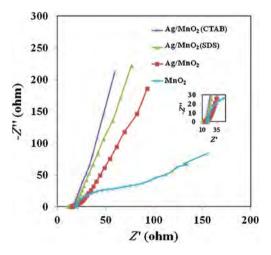


Fig. 5 Nyquist plots of as-prepared electrodes in $0.5~M~Na_2SO_4$ using a sinusoidal signal of 5 mV over the frequency range from 100~kHz to 1~mHz

Conclusions

In summary, MnO_2 and Ag-doped MnO_2 pseudocapacitors at a mass-loading level of 0.4 mg cm⁻² were coated on graphite electrodes by using an electrodeposition. With the presence of surfactants (i.e., SDS or CTAB) in the electroplating solution, dendrite and foam-like structures of Agdoped MnO₂ were successfully produced in lieu of denser films produced without surfactants in the solution. The specific capacitance values of the Ag/MnO2 (CTAB) and Ag/MnO₂ (SDS) in 0.5 M Na₂SO₄ at the scan rate of 5 mV s^{-1} were $551 \text{ and } 557 \text{ Fg}^{-1}$, respectively. These values are about 2.7-fold higher than that of the pure MnO2 and about 1.4-fold higher than that of the Ag-doped MnO₂ film without using surfactants. The foam-like structure of Ag/ MnO₂ (CTAB) and the dendrite structure of Ag/MnO₂ (SDS) electrodes with high stability play an important role in the specific capacitance of pseudocapacitors by enhancing ion transport and lowering resistance for charge and electrolyte diffusion. These Ag-doped MnO₂ pseudocapacitor electrodes with foam-like and dendrite structures providing high specific capacitance and durability may be used for practical applications.

Acknowledgments This work was supported in part by grants from the Thailand Research Fund (MRG5480195), the National Science and Technology Development Agency (NSTDA Chair Professor and NANOTEC Center of Excellence), the Kasetsart University Research and Development Institute, the Commission on Higher Education, Ministry of Education ("the National Research University Project of Thailand" and "Postgraduate Education and Research Programs in Petroleum and Petrochemicals and Advanced Materials"). S.P. extends appreciation to the Integrated Nanotechnology Research Center, Khon Kaen University for their financial support.

References

- Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854
- Miller JR, Simon P (2008) Materials science—electrochemical capacitors for energy management. Science 321(5889):651–652
- Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196 (1):1–12
- Sugimoto W, Iwata H, Yasunaga Y, Murakami Y, Takasu Y (2003) Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew Chem Int Ed 42(34):4092–4096
- 5. Devaraj S, Munichandraiah N (2007) The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO_2 on its capacitance properties. J Electrochem Soc 154(10):A901–A909
- Wang Y, Zhitomirsky I (2011) Cathodic electrodeposition of Agdoped manganese dioxide films for electrodes of electrochemical supercapacitors. Mater Lett 65(12):1759–1761
- Demarconnay L, Raymundo-Pinero E, Beguin F (2011) Adjustment of electrodes potential window in an asymmetric carbon/MnO₂ supercapacitor. J Power Sources 196(1):580–586

- Zhu G, Li HJ, Deng LJ, Liu ZH (2010) Low-temperature synthesis of delta-MnO₂ with large surface area and its capacitance. Mater Lett 64(16):1763–1765
- Sawangphruk M, Limtrakul J (2012) Effects of pore diameters on the pseudocapacitive property of three-dimensionally ordered macroporous manganese oxide electrodes. Mater Lett 68(1):230–233
- Justin P, Meher SK, Rao GR (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C 114(11):5203–5210
- Gao B, Yuan CZ, Su LH, Chen SY, Zhang XG (2009) High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes. Electrochim Acta 54(13):3561–3567
- Nam SH, Kim YS, Shim HS, Choi SM, Kim HJ, Kim WB (2008) Size controlled nickel oxide nanoparticles on carbon nanotubes for supercapacitor electrode. J Nanosci Nanotechnol 8(10):5427–5432
- Wu MS, Guo ZS, Jow JJ (2010) Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 114 (49):21861–21867
- Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO₂ electrode used in aqueous electrochemical capacitor. Chem Mater 16(16):3184–3190
- Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450
- Ahn H-J, Sung Y-E, Kim WB, Seong T-Y (2008) Crystalline Ag nanocluster-incorporated RuO₂ as an electrode material for thinfilm micropseudocapacitors. Electrochem Solid-State Lett 11(7): A112–A115
- Devaraj S, Munichandraiah N (2005) High capacitance of electrodeposited MnO₂ by the effect of a surface-active agent. Electrochem Solid State Lett 8(7):A373–A377
- Chang JK, Tsai WT (2003) Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors. J Electrochem Soc 150 (10):A1333–A1338
- Ghaemi M, Khosravi-Fard L, Neshati J (2005) Improved performance of rechargeable alkaline batteries via surfactant-mediated electrosynthesis of MnO₂. J Power Sources 141(2):340–350
- Matejka P, Vlckova B, Vohlidal J, Pancoska P, Baumruk V (1992)
 The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid: a surface-enhanced Raman scattering study. J Phys Chem 96(3):1361–1366
- Foucault R, Birke RL, Lombardi JR (2003) SERS of surfactants in monolayer and multibilayer forms on an electrified Ag surface. Langmuir 19(21):8818–8827
- Ndiaye L, Cowache P, Cadene M, Lincot D, Vedel J (1993) Effect of a surfactant on cadmium telluride films prepared by electrodeposition on transparent conducting oxides. Thin Solid Films 224 (2):227–231
- Rusling JF, Howe DJ (1994) Electron transfer in surfactant films on electrodes; copper phthalocyaninetetrasulfonatedidodecyldimethylammonium bromide. Inorg Chim Acta 226 (1-2):159-169
- 24. Nathan T, Cloke M, Prabaharan SRS (2008) Electrode properties of Mn_2O_3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. J Nanomater 2008. doi:10.1155/2008/948183
- Demarconnay L, Raymundo-Pinero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution. Electrochem Commun 12(10):1275

 1278
- Babakhani B, Ivey DG (2011) Effect of electrodeposition conditions on the electrochemical capacitive behavior of synthesized

- manganese oxide electrodes. J Power Sources 196(24):10762-10774
- Broughton JN, Brett MJ (2005) Variations in MnO₂ electrodeposition for electrochemical capacitors. Electrochim Acta 50 (24):4814–4819
- Gauthier G, Lazarus V, Pauchard L (2007) Alternating crack propagation during directional drying. Langmuir 23(9):4715– 4718
- Dufresne ER, Corwin EI, Greenblatt NA, Ashmore J, Wang DY, Dinsmore AD, Cheng JX, Xie XS, Hutchinson JW, Weitz DA (2003) Flow and fracture in drying nanoparticle suspensions. Phys Rev Lett 91(22):224501/1-4
- Khimyak YZ, Klinowski J (2000) Formation of mesoporous silicates using Triton X surfactants in the presence of concentrated mineral acids. J Mater Chem 10(8):1847–1855
- Yang Z, Zhou C, Zhang W, Li H, Chen M (2010) [beta]-MnO₂ nanorods: a new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf A 356(1–3):134–139

- Jia Y, Xu J, Zhou L, Liu H, Hu Y (2008) A simple one step approach to preparation of [gamma]-MnOOH multipods and [beta]-MnO₂ nanorods. Mater Lett 62(8–9):1336–1338
- Abuzeid HM, Hashem AM, Narayanan N, Ehrenberg H, Julien CM (2011) Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries. Solid State Ionics 182(1):108–115
- 34. Hu R, Cheng Y, Xie L, Wang D (2007) Effect of doped Ag on performance of manganese oxide octahedral molecular sieve for CO oxidation. Chin J Catal 28(5):463–468
- Kunkalekar RK, Salker AV (2010) Low temperature carbon monoxide oxidation over nanosized silver doped manganese dioxide catalysts. Catal Commun 12(3):193–196
- Zhang H, Yu X, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 6(5):277–281
- Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107

ARTICLE IN PRESS

CARBON XXX (2012) XXX-XXX

Available at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/carbon

Synthesis and antifungal activity of reduced graphene oxide nanosheets

Montree Sawangphruk ^{a,b,*}, Pattarachai Srimuk ^a, Poramane Chiochan ^a, Tanas Sangsri ^c, Patcharaporn Siwayaprahm ^c

- ^a National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
- ^b Center for Advanced Studies in Nanotechnology and its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand

ARTICLE INFO

Article history: Received 12 May 2012 Accepted 28 June 2012 Available online xxxx

ABSTRACT

Reduced graphene oxide (rGO) nanosheets were produced using a modified Hummers method. Antifungal activity of rGO nanosheets was tested against three fungi i.e., Aspergillus niger (A. niger), Aspergillus oryzae (A. oryzae) and Fusarium oxysporum (F. oxysporum). The rGO inhibits the mycelial growth of the fungi and it is believed that this is due to its sharp edges. The half maximal inhibitory concentration (IC $_{50}$), a measure of the effectiveness of the rGO in inhibiting the fungi, was investigated. IC $_{50}$ values of the rGO against F. oxysporum, A. niger, and A. oryzae are 50, 100, and 100 μ g ml $^{-1}$, respectively.

 $\ensuremath{\text{@}}$ 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Graphene is a material consisting of a monolayer of sp² bonded carbon atoms [1]. It is of interest due to its high surface area (~2,630 m² g⁻¹) [2], high electrical conductivity (~2000 S cm⁻¹) [3], high thermal conductivity (4,840–5,300 W m⁻¹ K⁻¹) [4], high electronic carrier mobility (200,000 cm² V⁻¹ s⁻¹) [5], and high Young modulus (~10 TPa) [6] leading to various potential applications [7]. Graphene is produced by various techniques. Such techniques include micromechanical exfoliation of graphite ("Scotch-tape" method) [1], ultrahigh vacuum techniques [8], and variations of Hummers method [9]. Among these, a Hummers method is facile and scalable. This method can be used to produce graphene oxide (GO) in large quantities. GO is a graphene sheet with carboxylic groups, phenol hydroxyl, and epoxide groups [10]. The carbon to oxygen ratio of GO is rather high

(approximately 3:1) [11]. GO is not conductive due to its lack of an extended π -conjugated orbital carbon. However, after reduction of GO with basic chemicals such as hydrazine, hydroxylamine, and sodium borohydride, reduced graphene oxide (rGO) with diluted oxygen species (C:O = 10.3:1) is formed [12]. Furthermore, this material is electrically conductive. The conductivity of rGO is 5–200 S m $^{-1}$ which is about 3 orders of magnitude higher than that of the GO [13].

Recently, it was reported that graphene nanowalls, GO and rGO can inhibit the growth of bacterial cells (i.e., Escherichia coli, Staphylococcus aureus) [14–16]. Graphene nanowalls can damage bacterial cell membranes with their extremely sharp edges [15]. GO and rGO with oxygen-containing functionalities can oxidize glutathione. This is a redox state mediator in bacteria. Its oxidation leads to inhibition of bacteria [14]. In comparison, rGO has higher oxidation capacity than GO, graphite, and graphite oxide [14]. Although the bactericidal

E-mail address: fengmrs@ku.ac.th (M. Sawangphruk). 0008-6223/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.carbon.2012.06.056

Please cite this article in press as: Sawangphruk M et al. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon (2012), http://dx.doi.org/10.1016/j.carbon.2012.06.056

^c Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^{*} Corresponding author at: National Center of Excellence for Petroleum, Petrochemicals and Advance Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand. Fax: +66 025614621.

activities of graphene related materials were reported recently, to the best of our knowledge their antifungal activity has not yet been studied.

In this work, we studied the antifungal activity of rGO against three fungi i.e., Aspergillus niger, Aspergillus oryzae, and Fusarium oxysporum. Aspergillus niger and Fusarium oxysporum are phytopathogenic fungi that cause diseases on vegetables and fruits. For example, A. niger is a common contaminant of food and feed and causes a disease called "black mold" on grapes, onions, and peanuts. A. niger is a xerophilic mold, i.e., it can grow under conditions of low water activity. It can cause deterioration of stored food as well as archived library reserves and museum collections [17,18]. F. oxysporum is a saprophytic plant pathogen, which can grow on organic matters in soil and in the rhizosphere of plants. It can survive for long periods causing Panama disease or Fusarium wilt [19]. On the other hand, A. oryzae is a beneficial fungus used for the production of traditional Japanese fermented food e.g., sake, rice vinegar, and soy sauce as well as for heterogeneous enzyme production [20]. A. oryzae is Generally Recognized As Safe (GRAS) by US Food and Drug Administration (FDA) and the World Health Organization (WHO) [20].

2. Experimental

2.1. Chemicals and materials

Graphite powder (20–40 μ m, Sigma Aldrich), sulfuric acid (98%, QRec), hydrogen peroxide (30%, Merck), potassium permanganate (99%, Ajax Finechem), sodium nitrate (99.5%, QRec), hydrazine (80%, Merck), and acetone (99.5%, QRec) were of Analytical Reagent grade. Potato dextrose agar (PDA) was obtained from Sigma Aldrich. Water was purified by using the Milli-Q system (>18 $M\Omega$ cm, Millipore).

2.2. Preparation of graphene oxide

GO was synthesized by using a Hummers method [9] with our modification as follows. Graphite powder (3.0 g) and NaNO₃ (1.5 g) were put to a concentrated $\rm H_2SO_4$ (150 ml) while stirring at 100 rpm in an ice bath for 1 h. KMnO₄ (8.0 g) was slowly added to the mixture at 25 °C for 2 h without stirring. Milli-Q water (90 ml) was added to the suspension and kept stirring (100 rpm) at 95 °C for 12 h. Then, 30% $\rm H_2O_2$ (30 ml) was slowly added to the diluted suspension. For the purification, the mixture was filtered through polyester fiber (Carpenter Co.). The filtrate was centrifuged at 6000 rpm for 15 min and the remaining solid material (GO) was then washed in succession with 200 ml of water, 100 ml of 30% HCl, and 100 ml of ethanol. This process was repeated for 3 times. The final product GO was collected by filtration and vacuum dried.

2.3. Reduction of graphene oxide

GO powder (100 mg) was sonicated in Milli-Q water (30 ml) for 30 min. Hydrazine hydrate (3 ml) was added to the as-dispersed suspension. After that, the mixture was refluxed at 98 $^{\circ}$ C for 24 h. For workup, the product (rGO) was harvested

using the same purification method mentioned above. The final product rGO was collected by filtration and vacuum dried.

2.4. Structural and morphological characterizations

Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were used to characterize the structure of rGO. The FTIR spectra were acquired on a FTIR spectrometer (Perkin Elmer System 2000). The specimens for FTIR measurement were prepared by grinding the dried powder of rGO together with potassium bromide (KBr) to a fine powder and then compressed under high pressure into thin pellets. Raman spectra were recorded on a Senterra Dispersive Raman spectroscope (Bruker optics, Germany) with a laser excitation wavelength of 514 nm. The powders of rGO placed on a clean SiO₂/Si substrate were used for the Raman measurement. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of rGO. The TEM images of samples were performed on a JEM 1220 (JEOL Ltd., Japan) with an accelerating voltage of 100 kV. The specimens of TEM were prepared by placing the aqueous suspension (~0.05 mg/ml) of rGO in acetone on the copper grids and dried under ambient conditions.

2.5. Antifungal assay

rGO nanosheets were dispersed in 15 ml PDA agar at 50 °C and poured into sterilized Petri dishes (90 mm in diameter). After solidification, agar disks (5 mm diameter) covered by fungal growth were aseptically removed from a young (5 day old) PDA fungal culture. The disks were aseptically placed at the center of the PDA agar plates containing rGO nanosheets (0–500 μ g ml⁻¹). All Petri plates were incubated at 25 °C for 7 days. Experiments were performed with five replicates. The average fungal colony diameters were determined. Growth inhibition of A. niger, F. oxysporum and A. oryzae was proportional to the concentrations of the rGO nanosheets (0–500 μ g ml⁻¹) in PDA. The antifungal effect was expressed as the percentage of mycelial growth inhibition and calculated by the formula below [21]:

Mycelial growth inhibition(%) =
$$\frac{d_c - d_t}{d_c} \times 100$$

where d_c is the average diameter (mm) of fungal colony in control and d_t is the average diameter (mm) of fungal colony in treatment.

Results and discussion

3.1. Characterizations

The as-prepared GO and rGO materials were dispersed in acetone to a nominal concentration of 0.5 mg ml⁻¹ (Fig. 1a). Exfoliated GO produced through the modified Hummers method had sufficient functional groups (e.g., epoxides, hydroxyls, carboxylic acids) [10,22] to enable suspension in acetone. After reducing GO with hydrazine hydrate, rGO was harvested and re-dispersed in acetone using sonication. The rGO suspension shows black color produced by the removal of oxygen by reduction with hydrazine hydrate. The

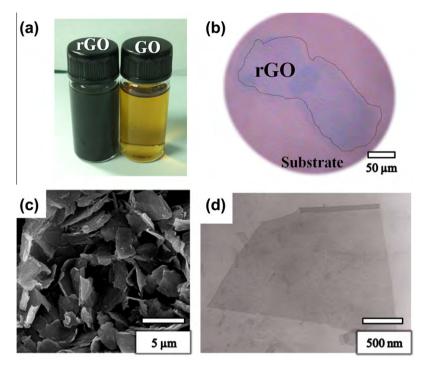


Fig. 1 – (a) Photograph showing the dispersion of rGO (left) and GO (right) in acetone, (b) optical micrograph, (c) SEM image and (d) TEM image of rGO nanosheets.

microstructures of rGO nanosheets were observed by optical microscopy (Fig. 1b), SEM (Fig. 1c) and TEM (Fig. 1d). The optical micrograph shows the transparent characteristic of rGO nanosheets on an oxidized Si substrate. The SEM image shows rGO nanosheets with average particle (lateral) size of less than 5 μm coated on the carbon substrate. The TEM image shows a few layers of rGO nanosheets with different lateral sizes. The nanosheets randomly overlap forming different edge graphitic layers.

A Raman spectrum of the rGO (Fig. 2a) shows the breathing mode of A_{1g} , the so-called D band at about 1342 cm⁻¹. The inplane bond-stretching motion of E_{2g} of sp² carbon atoms, namely the G band occurs at about 1576 cm⁻¹ [23,24]. The intensity of the D band is higher than that of the G band

due to creation of new many smaller graphitic sheets. The intensity ratio of G/D is 0.85, which is in good agreement with previous work [25,26]. Fig. 2b shows the FTIR spectrum of rGO powders. The presence of different functionalities in rGO was found at $\sim\!3200\text{--}3400~\text{cm}^{-1}$ (a broad peak of O–H), at $\sim\!1718~\text{cm}^{-1}$ (C=O), at 1579 cm $^{-1}$ (skeletal C=C), at 1226 cm $^{-1}$ (C–OH), and at 1070 cm $^{-1}$ (C–O). All of these observations are due to stretching vibrations. These FTIR results agree with previous work [12,27].

3.2. Antifungal activity of rGO nanosheets

The concentrations of rGO nanosheets, which can totally inhibit the mycelia growths of A. niger (Fig. 3), A. oryzae

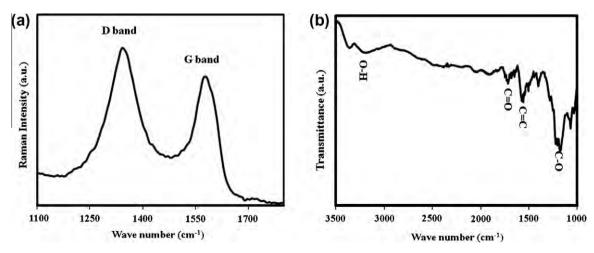


Fig. 2 - (a) Raman and (b) FTIR spectra of rGO nanosheets.

Please cite this article in press as: Sawangphruk M et al. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon (2012), http://dx.doi.org/10.1016/j.carbon.2012.06.056

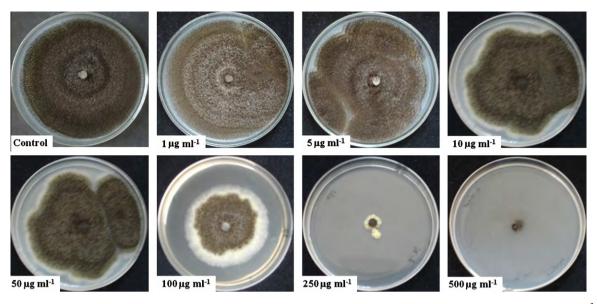


Fig. 3 – Mycelial growth of A. niger on the PDA media containing different concentrations of rGO (0-500 μg ml⁻¹).

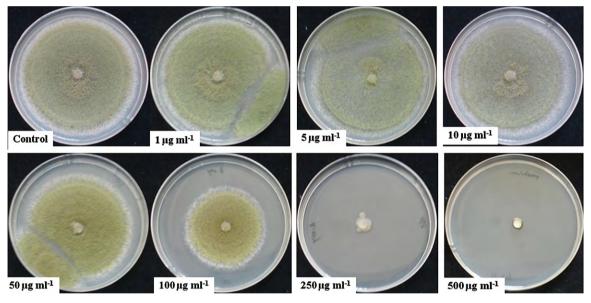


Fig. 4 - Mycelial growth of A. oryzae on the PDA media containing different concentrations of rGO (0-500 µg ml⁻¹).

(Fig. 4), and F. oxysporum (Fig. 5), are at 500, 500, and 250 μg ml⁻¹, respectively. The reason, why the rGO nanosheets were effective to inhibit fungi, is probably due to the direct contact with the cell walls of fungi. After the contact, the reactive oxygen-containing functionalities of several small rGO nanosheets could chemically react with the organic functional groups of chitin and other polysaccharides on the cell walls of fungi [28]. Notably, the antibacterial mechanism of graphene-related materials based on the direct contact with the bacterial cells was previously reported [14,15]. It was also reported that the antifungal mechanism of essential oils containing oxygen-species functional groups (e.g., phenol) was due to the direct contact with the cell walls of fungi [18,21,29]. Interestingly, it was recently reported that the

cytotoxicity of GO nanosheets on A549 human cells occurred as a result of direct interactions between the cell membrane and GO nanosheets [30].

As the extent of fungal growth inhibition was dependent on the concentration of rGO used, the half-maximal inhibitory concentration (IC₅₀) values were then determined by plotting the logarithm of the concentration of the rGO ($\mu g\,ml^{-1}$) versus the mycelial growth inhibitory activity (%) in Fig. 6. The IC₅₀ values of the rGO nanosheets against F. oxysporum, A. niger, and A. oryzae are 50, 100, and 100 $\mu g\,ml^{-1}$, respectively. This might be because the rGO can easily get attached to the external cell wall of F. oxysporum via hydroxyl oxygen species of glycoproteins [31]. These inhibitory concentrations are about 2-fold lower than those of the essential oils

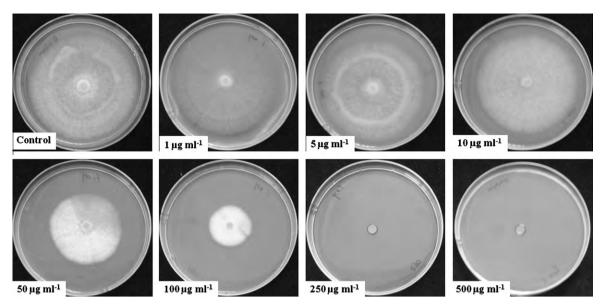


Fig. 5 - Mycelial growth of A. oxysporum on the PDA media containing different concentrations of rGO (0-500 µg ml⁻¹).

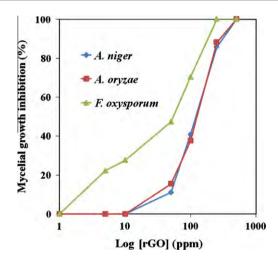


Fig. 6 – Plots of the logarithm of the concentration of the rGO (μ g ml⁻¹) versus the mycelial growth inhibitory activity (%).

[18] and ZnO nanoparticles [32] being used as antifungal materials. This means that rGO nanosheets have a superior antifungal activity.

4. Summary

rGO nanosheets were produced using a modified Hummers method using reduction with hydrazine hydrate. The antifungal activity of as-produced rGO nanosheets was investigated against three fungi i.e., A. niger, A. oryzae and F. oxysporum. It was found that IC₅₀ values of rGO nanosheets against F. oxysporum, A. niger, and A. oryzae are 50, 100, and $100 \,\mu \mathrm{g} \,\mathrm{ml}^{-1}$, respectively. The findings further suggest antifungal applications of graphene-related materials. The fungitoxicity of rGO against pathogenic fungi e.g., A. niger and F. oxysporum might support the possibility of using rGO as an antifungal nanomaterial. Conversely, the fungitoxicity of

rGO against nonpathogenic and beneficial fungi e.g., A. oryzae could be a concern.

Acknowledgments

This work was supported in part by grants from the Faculty of Engineering, the Kasetsart University Research and Development Institute, the Thailand Research Fund (MRG5480195), the Commission on Higher Education, Ministry of Education ("the National Research University Project of Thailand" and "Postgraduate Education and Research Programs in Petroleum and Petrochemicals and Advanced Materials").

REFERENCES

- [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field in atomically thin carbon films. Science 2004;306(5696):666–9.
- [2] Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498–502.
- [3] Wu Z-S, Ren W, Gao L, Zhao J, Chen Z, Liu B, et al. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009;3(2):411–7.
- [4] Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.
- [5] Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146(9):351–5.
- [6] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321(5887):385–8.
- [7] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 2010;22(35):3906–24.
- [8] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006;312(5777):1191–6.

Please cite this article in press as: Sawangphruk M et al. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon (2012), http://dx.doi.org/10.1016/j.carbon.2012.06.056

- [9] Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80(6):1339.
- [10] Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009;4(4):217–24.
- [11] Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006;16(2):155–8.
- [12] Zhou X, Zhang J, Wu H, Yang H, Zhang J, Guo S. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. J. Phys. Chem. C 2011;115(24):11957–61.
- [13] Gómez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007;7(11):3499–503.
- [14] Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 2011;5(9):6971–80.
- [15] Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010;4(10):5731–6.
- [16] Hu W, Peng C, Luo W, Lv M, Li X, Li D, et al. Graphene-based antibacterial paper. ACS Nano 2010;4(7):4317–23.
- [17] Mishra AK, Dubey NK. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 1994;60(4):1101–5.
- [18] Rasooli I, Rezaei MB, Allameh A. Growth inhibition and morphological alterations of Aspergillus niger by essential oils from Thymus eriocalyx and Thymus x-porlock. Food Control 2006;17(5):359–64.
- [19] Ito S-i, Nagata A, Kai T, Takahara H, Tanaka S. Symptomless infection of tomato plants by tomatinase producing Fusarium oxysporum formae speciales nonpathogenic on tomato plants. Physiol. Mol. Plant Pathol. 2005;66(5):183–91.
- [20] Machida M, Yamada O, Gomi K. Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res. 2008;15(4):173–83.

- [21] Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from *Turkish Origanum* acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008;99(18):8788–95.
- [22] Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998;102(23):4477–82.
- [23] Hsiao M-C, Liao S-H, Yen M-Y, Liu P-I, Pu N-W, Wang C-A, et al. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Interfaces 2010;2(11):3092–9.
- [24] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000;61(20):14095–107.
- [25] Mativetsky JM, Treossi E, Orgiu E, Melucci M, Veronese GP, Samori P, et al. Local current mapping and patterning of reduced graphene oxide. J. Am. Chem. Soc. 2010;132(40):14130–6.
- [26] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45(7):1558–65.
- [27] Choi E-Y, Han TH, Hong J, Kim JE, Lee SH, Kim HW, et al. Noncovalent functionalization of graphene with endfunctional polymers. J. Mater. Chem. 2010;20(10):1907–12.
- [28] Hudler GW. Magical mushrooms mischievous molds, vol.7. Princeton NJ: Princeton University; 1998 [p. 7].
- [29] Badeaa KM, Soliman RI. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002;40(11):1669–75.
- [30] Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011;5(5):3693–700.
- [31] Schoffelmeer EAM, Klis FM, Sietsma JH, Cornelissen BJC. The cell wall of Fusarium oxysporum. Fungal Genet. Biol. 1999;27(2):275–82.
- [32] He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011;166(3):207–15.

Journal of Materials Chemistry A

RSC Publishing

COMMUNICATION

Cite this: *J. Mater. Chem. A*, 2013, **1**, 1030

Received 11th October 2012 Accepted 27th November 2012

DOI: 10.1039/c2ta00659f

www.rsc.org/MaterialsA

Ultraporous palladium on flexible graphene-coated carbon fiber paper as high-performance electrocatalysts for the electro-oxidation of ethanol†

Montree Sawangphruk, *ab Atiweena Krittayavathananona and Natee Chinwipasa

For palladium nanocatalysts (PdNCs) to be used as a successfully high-performance direct ethanol fuel cell anode material, improvements in electro-catalytic activity and stability are needed. Here we show an excellent controllable electrodeposition method for fabricating the ultraporous structure of PdNCs. Ultraporous PdNCs were coated on three different carbon materials: flexible carbon fiber paper (CFP), and CFP modified with either graphene oxide (GO) or reduced graphene oxide (rGO) nanosheets. The as-fabricated electrode of PdNCs/rGO/CFP exhibits higher catalytic activity toward the electro-oxidation of ethanol in alkaline media, more excellent poisoning tolerance to carbonaceous species, and higher stability than other electrodes.

Direct ethanol fuel cells (DEFCs) are one of the most promising carbon-neutral, sustainable, and efficient power sources for powering portable, mobile, and stationary devices. Anion-exchange membrane (AEM) DEFCs with Pd-(Ni-Zn)/vulcan XC-72 catalyst toward ethanol oxidation in KOH had a power density of 170 mW cm⁻² at 80 °C. The state-of-the-art AEM DEFCs using Pd-based catalysts have recently been demonstrated to yield ultrahigh power density (185 mW cm⁻² at 60 °C) while the state-of-the-art peak power density achieved by the conventional proton exchange membrane (PEM) DEFCs using Pt-based catalysts was only 79.5 mW cm⁻² at 90 °C. PEM-DEFCs have a rather low power density due to the poor kinetics of ethanol oxidation on the surface of catalyst.

"National Center of Excellence for Petroleum, Petrochemicals and Advance Material, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand. E-mail: fengmrs@ku.ac.th; Fax: +66 (0)2-561-4621; Tel: +66 (0)2-942-8555

^bCenter for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, Bangkok 10900, Thailand [†] Electronic supplementary information (FSI) available: Details of chemicals and

† Electronic supplementary information (ESI) available: Details of chemicals and materials used in this work, structural and morphological characterizations, electrochemical evaluation, electrodeposition of ultraporous Pd nanocrystals, EDX and XRD spectra of Pd/rGO/CFP, and electrochemically active surface area (EASA) and TGA-DTA of as-prepared electrodes. See DOI: 10.1039/c2ta00659f

Although the complete electro-oxidation reaction of ethanol to CO_2 (CH₃CH₂OH + 12OH⁻ \rightarrow 2CO₂ + 9H₂O + 12e⁻) on the Pd catalyst anode of AEM DEFCs can give a high electron density, 12 electrons per ethanol molecule, this reaction requires high activation energy (overpotential) to be overcome for the scission of a C-C bond.⁵ Meanwhile, it was reported that another candidate reaction of incomplete ethanol oxidation to acetic acid (CH3CH2OH + $4OH^- \rightarrow CH_3COOH + 3H_2O + 4e^-$) or acetaldehyde (CH₃CH₂OH + $2OH^- \rightarrow CH_3CHO + 2H_2O + 2e^-$) via CH_3CHO_{ads} intermediate has lower a electron density (only 4 or 2 electrons per ethanol molecule).5 This incomplete reaction can be observed from the backward anodic peak of cyclic voltammograms (CVs) corresponding to the stripping of poisoning intermediate CH3CHOads chemically adsorbed on the catalyst surface.6 The peak height of this backward anodic peak relates to an amount of unneeded poisoning intermediates. The ratio of the forward anodic peak current density (I_f) to the backward anodic peak current density (I_b) investigated by cyclic voltammetry is typically used as a criterion for investigating the catalytic activity of the fuel cell catalysts.7 A high I_f/I_b ratio implies that the catalyst has high catalytic activity and excellent poisoning tolerance to unneeded intermediate species.

The development of highly active Pd and Pd-based catalyst anode electrodes with high I_f/I_b ratio is consequently crucial for the practical use of AEM DEFCs. Although Pd nanostructures e.g., nanoflowers, nanoparticles, porous particles, and nanoporous films and Pd-based alloy catalysts e.g., $Pd_{33}Pt_{67}$ nanowires, Pd₄₅Pt₅₅ nanowires, PdSn nanoparticles, and Au core@Pd shell recently developed exhibit high specific current density toward the electro-oxidation reaction of ethanol, poor poisoning tolerance to intermediate species i.e., CH_3CHO_{ads} ($I_f/I_b < 1.3$) $^{7-14}$ is still a concern inhibiting their catalytic activities.

In the present work, an ultraporous Pd catalyst coating flexible reduced graphene oxide (rGO) nanosheet-coated carbon fiber paper (CFP) is prepared using a direct electrodeposition method. Graphene is the newest carbon support material to have received attention. It has several outstanding properties necessary for developing good fuel cell electrodes *e.g.*, high electrical conductivity (~2000 S cm⁻¹), high surface area (~2630 m² g⁻¹), high flexibility

(Young modulus \sim 10 TPa), high electronic carrier mobility (200 000 cm² V⁻¹ s⁻¹), cost effectiveness, simple handling, and high electrochemical stability.16 CFP is an electrically graphitic sheet of the randomly arranged short carbon fibers. 17 CFP has high flexibility, conductivity, high electrochemical stability, and excellent gas permeability. The electrodeposition is well recognized as a simple, cheap, and scalable technique.18 Pd nanowires produced using this technique with the assistance of an alumina membrane exhibited an I_f of 73.8 mA cm⁻² and I_f/I_b of about 0.9 for the electro-oxidation of ethanol (1.0 M ethanol + 1.0 M KOH).19 Tetrahexahedral PdNCs with high-index facets electrodeposited on glassy carbon electrode provided an I_f of 1.84 mA cm⁻² and I_f/I_b of 0.48 toward the electrooxidation of ethanol (0.1 M ethanol + 0.1 M NaOH).20 Pd nanoparticles have been recently electrodeposited on graphene sheets by reducing Pd2+ in ethanol.21 It was found that a more negative potential ($-0.85 \text{ V} \nu s$. Pt pseudoreference) provided denser Pd films when compared to a lower potential (-0.75 V vs. Pt pseudoreference).21 Pd nanoparticles were also electrodeposited on the graphene surface by cycling potentials from -0.3 to -0.5 V vs. Ag/AgCl in a 1 $\text{mM} [\text{PdCl}_4]^{2-} + 1 \,\text{M} \,\text{NH}_4 \text{Cl} \,\text{electrolyte} \,(\text{pH} = 3.4).^{22} \,\text{Recently, star-like}$ Pd clusters have been electrodeposited on the surface of GO sheets using a pulse electrodeposition in 0.01 M PdCl₂ in 1 M HCl and used in PEMFC exhibiting a power density of about 1.08 kW g⁻¹ at 70 °C.²³

In this work, ultraporous PdNCs were electrochemically deposited on rGO nanosheet-coated CFP using cyclic voltammetry (0 to -0.75 V vs. Ag/AgCl) in Pd(NO₃)₂ + H₂SO₄. The as-prepared Pd/rGO/ CFP electrode in this work has ultrahigh porosity and flexibility exhibiting ultrahigh specific current density towards the electrooxidation of ethanol in alkali media. To the best of our knowledge, the Pd/rGO/CFP electrode has the highest I_f/I_b ratio when compared with other previous work implying that it has excellent poisoning tolerance to the carbonaceous species.

A Hummers method²⁴ with our modification was used to synthesize GO powder as follows. Graphite powder (3.0 g) and NaNO₃ (1.5 g) were added to concentrated H₂SO₄ (150 ml) while stirring at 100 rpm in an ice bath for 1 h. KMnO₄ (8.0 g) was slowly added to the mixture at 25 °C for 2 h without stirring. Milli-Q water (90 ml) was added to the suspension with continuous stirring (100 rpm) at 95 °C for 12 h. Then, 30% H₂O₂ (30 ml) was slowly added to the diluted suspension. For the purification, the mixture was filtered through a polyester fiber (Carpenter Co., USA). The filtrate was centrifuged at 6000 rpm for 15 min and the remaining solid material was then washed in succession with 200 ml of water, 100 ml of 30% HCl, and 100 ml of ethanol. This process was repeated 3 times. The final product GO was collected by filtration and vacuum dried. For reduction of GO, GO powder (0.5 g) was sonicated in 200 ml Milli-Q water for 30 min. Fructose (216 g) was added to the asdispersed suspension. After that, the mixture was refluxed at 98 °C for 24 h. The final product (rGO) was eventually harvested using the same purification method mentioned above and characterized by Raman and FTIR spectroscopy (Fig. S2[†]).

rGO powder was sonicated in acetone for dispersion (1 mg ml⁻¹). The dispersion was then coated on a flexible CFP substrate using a spray-coating technique (Paasche Airbrush Company, USA). The airbrush head had a single action and fine lines (1/32 inch in diameter). It was used for spaying an rGO in acetone suspension onto the CFP substrate. The coating pressure and temperature were

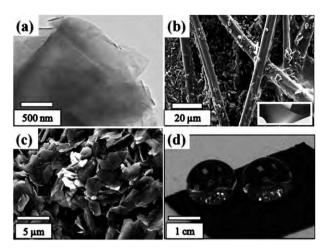


Fig. 1 (a) TEM of rGO nanosheets, (b) lower- and (c) higher-magnification SEM images of rGO nanosheets coated on flexible CFP, and (d) photograph of two water droplets on rGO/CFP showing its superhydrophobicity.

20 psi and 25 °C, respectively. The specific mass of rGO on the CFP was about 4 mg cm⁻². 3D ultraporous Pd nanocatalysts were electrodeposited onto the rGO/CFP electrode using cyclic voltammetry by cycling potential from 0 to -0.75 V vs. Ag/AgCl in 1 mM palladium(II) nitrate in 0.5 M H₂SO₄ at a scan rate of 0.01 V s⁻¹ for 10 cycles. Thermogravimetric analysis (TGA 2960 in a flow of air at a heating rate of 10 °C min⁻¹, TA instruments) was used to determine the Pd content on the electrodes.

A TEM image (Fig. 1a) shows a few layers of rGO nanosheets with different lateral sizes randomly overlapping each others. The SEM images with different magnifications in Fig. 1b and c show assprayed rGO nanosheets on CFP (4 mg cm⁻²). The carbon fiber is about 8 µm in diameter. An inset image (Fig. 1b) shows that rGO/ CFP remains highly flexible. The average particle (lateral) size of rGO nanosheets (Fig. 1c) is less than 5 µm. Two spherical droplets of 40 μL water on rGO/CFP (Fig. 1d) indicate its superhydrophobicity, which is needed for AEM fuel cells.²⁵ This is because a hydrophilic electrode can lead to a flooding problem of the membrane fuel cells.

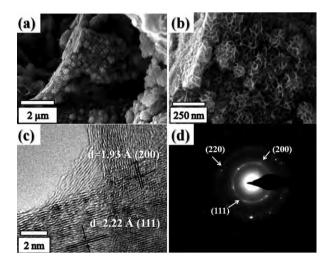
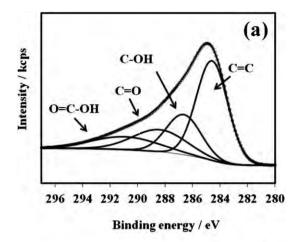
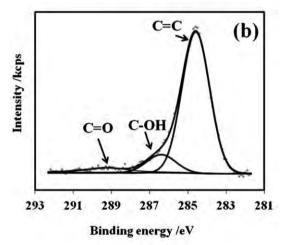




Fig. 2 (a) Lower- and (b) higher-magnification SEM images of as-electrodeposited Pd on the rGO/CFP electrode, (c) HRTEM image, and (d) electron diffraction pattern of as-electrodeposited Pd.

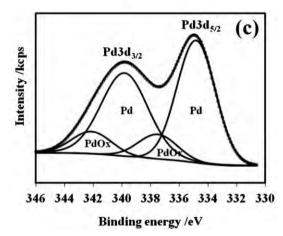
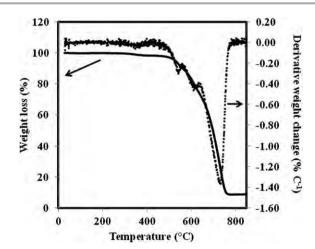


Fig. 3 XPS spectra of (a) C1s of GO, (b) C1s of rGO, and (c) Pd3d of Pd/rGO.


3D ultraporous Pd nanocatalysts were electrodeposited onto the surface of rGO/CFP electrode using cyclic voltammetry (Fig. S1†). The electrodeposition mechanism of Pd during the backward scan is as follows, $Pd^{2+} + 2e^- \rightarrow Pd$. On the other hand, during the forward scan the stripping (oxidation) peak of Pd (Pd \rightarrow Pd²⁺ + 2e⁻) is observed at -0.15 V ν s. Ag/AgCl. It is believed that this stripping process is a key leading to the ultraporous Pd located on the entire surface of rGO/CFP (Fig. 2a and b). Pd nanostructure bridged each other forming ultraporous Pd (see EDX spectrum in Fig. S3a†). The

diameter of each Pd nanorod (Fig. 2b) has an average size of about 20 nm. The high-resolution TEM image (Fig. 2c), electron diffraction pattern (Fig. 2d), and XRD pattern (Fig. S3b†) indicate that the Pd catalyst exhibits a typical face-centered cubic (fcc) lattice structure.

C1s XPS spectrum of GO shown in Fig. 3a consists of four peaks centered at 284.0, 286.1, 287.8, and 290.3 eV, which can be attributed to C=C, C-OH, C=O, and O=C-OH, respectively. After reducing with fructose, most oxygen related species were removed. Lower peak intensities of C-OH and C=O are observed in Fig. 3b. The C:O ratio determined by XPS increased from 2.3:1 of GO to 10.5:1 of rGO. This ratio is well agreeable with 10.3:1 of high-quality graphene nanosheets previously reported. Fig. 3c shows the curved-fitted XPS Pd3d spectrum of Pd/rGO/CFP. The two peaks centered at 335.0 and 340.1 eV can be assigned to Pd3d_{5/2} and Pd3d_{3/2} of Pd(0) metal, respectively. Other two weak peaks centered at 342.2 and 337.4 eV can be attributed to Pd3d_{5/2} and Pd3d_{3/2} of Pd(11) oxide, respectively.

TGA was used to examine the loading content of Pd and thermal decomposition of the as-prepared electrode under air at a heating rate of 10 °C min⁻¹. The curves of weight loss and derivative weight change of Pd/rGO/CFP are shown in Fig. 4. As the temperature was increased to 200 °C, the sample weight decreased slightly (about 0.2 wt%) due to water evaporation. The major weight losses, occurring between about 500 °C and 750 °C, are due to combustion of the carbon in the samples.²⁹ At about 536 °C of the derivative weight change, the weight loss can be attributed to 5 wt% polytetra-fluoroethylene (PTFE) typically used in the fabrication of CFP³⁰ and the gaseous oxidation of carbon of rGO and CFP at about 724 °C.²⁸ The residual weight corresponding to the weight of the Pd catalyst is approximately 0.40 mg per 1 cm² geometrical area of the electrode. Pd contents on GO/CFP and CFP also determined using TGA (Fig. S4†) are 0.36 and 0.35 mg cm⁻², respectively.

Electrochemically active surface area (EASA) of the Pd/rGO/CFP electrode was determined by cyclic voltammetry in 0.5 M $\rm H_2SO_4$ at a scan rate of 0.01 V s⁻¹ (Fig. S5†) and compared with Pd/GO/CFP, Pd/CFP, and commercial Pd-activated carbon coated on CFP (Pd–C/CFP) electrodes. A high EASA would have many active sites for the electro-oxidation reaction of ethanol. The calculated EASA of ultraporous Pd/rGO/CFP at the mass loading of Pd catalysts

Fig. 4 TGA weight loss and derivative weight change profiles of Pd/rGO/CFP sample.

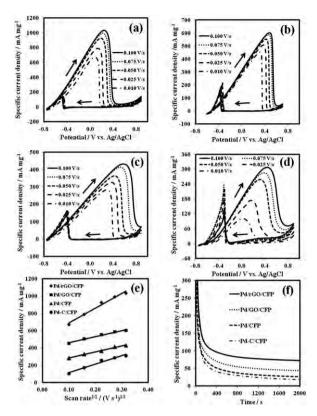


Fig. 5 Cyclic voltammograms of (a) Pd/rGO/CFP, (b) Pd/GO/CFP, (c) Pd/CFP, and (d) commercial Pd-C/CFP in 1 M C₂H₅OH in 0.5 M NaOH at different scan rates $(0.01-0.1 \text{ mV s}^{-1})$, (e) the plots of the square root of scan rate vs. anodic peak current and (f) chronoamperomograms of as-prepared electrodes in 1 M C₂H₅OH in 0.5 M NaOH

(0.4 mg cm⁻²) is about 63.2 m² g⁻¹, which is significantly higher than 25.8 m² g⁻¹ of Pd coated on CNT²⁸ and 45.0 m² g⁻¹ of Pd nanoflower.7 In addition, the EASA of Pd/rGO/CFP is about 1.7-, 3.3-, and 5.0-fold higher than those of Pd/GO/CFP, Pd/CFP, and commercial Pd-C/CFP, respectively.

Typical CVs during the electro-oxidation of ethanol on Pd/rGO/ CFP electrode in 1 M C₂H₅OH in 0.5 M NaOH at different scan rates $(0.01-0.1 \text{ V s}^{-1})$ are shown in Fig. 5a. As clearly seen from the

forward scan, a peak for the oxidation of ethanol appears with a broad shoulder in the potential region from -0.55 to the onset potential peak of 0.34 V vs. Ag/AgCl at a scan rate of 0.1 V s⁻¹. The anodic oxidation potential increases as the scan rate increases. At lower scan rates, the electro-oxidation reaction of ethanol takes more time to occur, hence the cut off potential shifts to more negative values. In the backward scan, no oxidation peak occurs until the electrode poisons are lost from the surface. In particular when the potential moves to more negative values than -0.37 V vs. Ag/AgCl, CH₃CHO_{ads} is stripped from the electrode.

The forward scan onset potential provides a rough measure of the overpotential requirements of the ethanol oxidation process for which the oxidation reactions of ethanol on Pd/GO/CFP, Pd/CFP, and Pd-C/CFP electrodes appear at potentials centered at ca. 0.30 to 0.60 V vs. Ag/AgCl for scan rates of $0.01 \text{ to } 0.10 \text{ V s}^{-1}$ (see Fig. 5b-d). These onset potentials are significantly higher than 0.09 to 0.24 V vs. Ag/AgCl of Pd/rGO/CFP indicating that the ethanol oxidation is more kinetically favorable on the Pd/rGO/CFP. The magnitude of the forward wave current is indicative of the overall electrocatalytic activity of the catalyst electrodes for ethanol oxidation. For example, the specific current density of Pd/rGO/CFP at 0.05 V s⁻¹ is 925 mA mg_{pd}^{-1} , which is comparable with 950 mA mg_{pdpt}^{-1} achieved using the Pd₄₅Pt₅₅ nanowires/glassy carbon electrode. ¹² As this reaction is under the diffusion electrochemistry, at higher scan rates (0.1 V s⁻¹) the specific peak current density of Pd/rGO/CFP is increased to be 1033 mA mg_{pd}^{-1} , which is about 1.7-, 2.4- and 3.4-fold higher than Pd/GO/CFP, Pd/CFP, and commercial Pd-C/CFP electrodes, respectively. More importantly, the I_f/I_h ratio of Pd/rGO/CFP at 0.05 V s⁻¹ is 5.26, which is higher than 0.95 of Pd₄₅Pt₅₅ nanowires/glassy carbon. To the best of our knowledge, the I_f/I_b ratio in this work is the highest when compared with other previous work (see Table 1).

Based on the CV analysis, it is believed that Pd/rGO/CFP electrodes can possibly offer active sites that are accessible for adsorption/desorption of chemical species occurring in the electrooxidation reaction of ethanol, rGO nanosheet-coated CFP can play multifunctional roles in increasing the performance of Pd catalyst such as fast mass transport and fast electron transfer as compared to CFP and GO modified CFP.31 Furthermore, the specific oxidation peak current at different scan rates has a linear relationship with the

Table 1 Electrochemically active surface area (EASA), the ratio of the forward anodic peak current density (I_f) to the backward anodic peak current density (I_b) of the Pd and Pd-based catalyst electrodes for ethanol oxidation in alkali media

Catalyst electrodes	Solutions	EASA (m ² g ⁻¹)	Scan rate (mV s ⁻¹)	I _f (mA mg ⁻¹)	$I_{ m f}/I_{ m b}$	Ref.
Pd nanoflowers/Ni electrode	1 M EtOH + 0.5 M KOH	45.00	50	765	1.20	7
Pd ₃₃ Pt ₆₇ nanowires/GCE ^a	1 M EtOH + 0.5 M NaOH	52.04	50	\sim 310	\sim 0.90	11
Pd ₄₅ Pt ₅₅ nanowires/GCE	1 M EtOH + 0.5 M NaOH	_	50	\sim 950	\sim 0.95	12
Pd NPs-helical carbon fiber/GCE	0.5 M EtOH + 1 M KOH	_	50	_	\sim 0.88	33
Pd NPs-carbon black/CRE ^b	1 M EtOH + 1 M KOH	_	50	\sim 840	\sim 0.88	34
Pd NPs/GCE	1 M EtOH + 1 M KOH	_	10	_	\sim 0.54	35
PdSn-MWCT/GCE	0.5 M EtOH + 0.5 M KOH	63.58	50	_	1.27	13
Au core@Pd shell/GCE	0.5 M EtOH+ 0.1 M KOH	_	50	_	0.74	14
Pd/rGO/CFP	1 M EtOH + 0.5 M NaOH	63.20	50(100)	925(1033)	5.26 (6.08)	This work
Pd/GO/CFP	1 M EtOH + 0.5 M NaOH	37.18	50(100)	585(601)	3.00 (3.27)	This work
Pd/CFP	1 M EtOH + 0.5 M NaOH	19.15	50(100)	413(430)	2.14 (2.82)	This work
Pd-C(Sigma)/CFP	1 M EtOH + 0.5 M NaOH	12.64	50(100)	286(308)	1.16 (1.37)	This work

^a GCE: glassy carbon electrode. ^b Carbon rod electrode.

oxidation peak potential (Fig. 5e). This indicates that the ethanol oxidation process was controlled by concentration polarization or diffusion electrochemistry.³²

The long-term stability of as-prepared catalysts for oxidizing 1 M $\rm C_2H_5OH$ in 0.5 M NaOH was investigated using chronoamperometry (current–time measurement) at 0.30 V νs . Ag/AgCl. The results are shown in Fig. 5f. Pd/rGO/CFP maintained its catalytic superiority about 1.6-, 2.5- and 3.2-fold higher specific current density than Pd/GO/CFP, Pd/CFP, and commercial Pd–C/CFP, respectively.

Conclusions

rGO nanosheets with a C:O ratio of 10.5:1 were produced by reducing GO with a green chemical, fructose, rGO nanosheets were coated on CFP (4 mg cm⁻²) using a simple spray-coating technique. A 3D ultraporous Pd nanocatalyst was then electrodeposited on the rGO/CFP electrode at the mass loading of about 0.4 mg cm⁻² using a cyclic voltammetry. Pd/rGO/CFP with ultrahigh surface porosity, flexibility, and high EASA (63.2 m² g⁻¹) exhibits high catalytic activity and stability toward ethanol oxidation in alkali media. With the collaborative effects including the fast mass transport due to the 3D ultraporous Pd nanocrystals and the enhanced electron transfer that stems from rGO nanosheets, the Pd/rGO/CFP electrode has 1.7-, 2.4- and 3.4-fold higher catalytic activity than Pd/GO/CFP, Pd/CFP, and commercial Pd-C/CFP electrodes, respectively. The catalytic stability of Pd/rGO/CFP is 1.6-, 2.5- and 3.2-fold better than those electrodes, respectively. An ultrahigh I_f/I_h ratio of Pd/rGO/CFP (6.08 at a scan rate of 0.1 V s⁻¹) indicates that it has excellent poisoning tolerance to carbonaceous intermediates i.e., CH₃CHO_{ads}. We believe that the ultraporous Pd/rGO/CFP may be one of the best electro-catalysts for alcohol fuel cells.

Acknowledgements

This work was financially supported by the Thailand Research Fund and the Commission on Higher Education (MRG5480195). Support from the Kasetsart University Research and Development Institute (KURDI) and "National Research University Project of Thailand (NRU)" is also acknowledged.

Notes and references

- 1 J. B. Xu, T. S. Zhao, Y. S. Li and W. W. Yang, *Int. J. Hydrogen Energy*, 2010, 35, 9693.
- 2 T. S. Zhao, Y. S. Li and S. Y. Shen, Front. Energy Power Eng. China, 2010, 4, 443.
- 3 C. Bianchini, V. Bambagioni, J. Filippi, A. Marchionni, F. Vizza, P. Bert and A. Tampucci, *Electrochem. Commun.*, 2009, **11**, 1077.
- 4 M. Z. F. Kamarudin, S. K. Kamarudin, M. S. Masdar and W. R. W. Daud, *Int. J. Hydrogen Energy*, DOI: 10.1016/j.ijhydene.2012.07.059.
- 5 S. Y. Shen, T. S. Zhao and Q. X. Wu, *Int. J. Hydrogen Energy*, 2012, **37**, 575.
- 6 Z. X. Liang, T. S. Zhao, J. B. Xu and L. D. Zhu, *Electrochim. Acta*, 2009, 54, 2203.

- 7 M. Hasan, S. B. Newcomb, J. F. Rohan and K. M. Razeeb, *J. Power Sources*, 2012, 218, 148.
- 8 G. Hu, F. Nitze, T. Sharifi, H. R. Barzegar and T. Wågberg, J. Mater. Chem., 2012, 22, 8541.
- 9 Q. Yi, F. Niu and L. Sun, Fuel, 2011, 90, 2617.
- 10 X. Wang, W. Wang, Z. Qi, C. Zhao, H. Ji and Z. Zhang, *Electrochem. Commun.*, 2009, **11**, 1896.
- 11 H. Wu, H. Li, Y. Zhai, X. Xu and Y. Jin, *Adv. Mater.*, 2012, 24, 1594.
- 12 C. Zhu, S. Guo and S. Dong, Adv. Mater., 2012, 24, 2326.
- 13 T. Ramulifho, K. I. Ozoemena, R. M. Modibedi, C. J. Jafta and M. K. Mathe, *Electrochim. Acta*, 2012, **59**, 310.
- 14 D. Kim, Y. W. Lee, S. B. Lee and S. W. Han, *Angew. Chem.*, 2012, **124**, 163.
- 15 R. N. Singh and R. Awasthi, Catal. Sci. Technol., 2011, 1, 778.
- 16 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, *Science*, 2004, 306, 666.
- 17 C. J. Yuan, C. L. Wang, T. Y. Wu, K. C. Hwang and W. C. Chao, *Biosens. Bioelectron.*, 2011, **26**, 2858.
- 18 H. Zhang, W. Zhou, Y. Du, P. Yang and C. Wang, *Electrochem. Commun.*, 2010, 12, 882.
- 19 H. Wang, C. Xu, F. Cheng and S. Jiang, *Electrochem. Commun.*, 2007, 9, 1212.
- 20 N. Tian, Z.-Y. Zhou, N.-F. Yu, L.-Y. Wang and S.-G. Sun, *J. Am. Chem. Soc.*, 2010, **132**, 7580.
- 21 R. S. Sundaram, C. Gómez-Navarro, K. Balasubramanian, M. Burghard and K. Kern, *Adv. Mater.*, 2008, **20**, 3050.
- 22 M. Rezaei, S. H. Tabaian and D. F. Haghshenas, *Electrochim. Acta*, 2013, **87**, 381.
- 23 C. T. Hsieh, Y. Y. Liu and A. K. Roy, *Electrochim. Acta*, 2012, 64, 205.
- 24 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
- 25 D. D. Nguyen, N.-H. Tai, S.-B. Lee and W.-S. Kuo, *Energy Environ. Sci.*, 2012, 5, 7908.
- 26 X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang and S. Guo, *J. Phys. Chem. C*, 2011, **115**, 11957.
- 27 Y. Zhao, X. Yang, J. Tian, F. Wang and L. Zhan, *Int. J. Hydrogen Energy*, 2010, 35, 3249.
- 28 C.-T. Hsieh, Y.-Y. Liu, Y.-S. Cheng and W.-Y. Chen, *Electrochim. Acta*, 2011, **56**, 6336.
- 29 N. Lavoie, P. R. L. Malenfant, F. M. Courtel, Y. Abu-Lebdeh and I. J. Davidson, *J. Power Sources*, 2012, 213, 249.
- 30 T. Ha, J. Cho, J. Park, K. Min, H.-S. Kim, E. Lee and J.-Y. Jyoung, *Int. J. Hydrogen Energy*, 2011, **36**, 12427.
- 31 C.-T. Hsieh, Y.-Y. Liu and A. K. Roy, *Electrochim. Acta*, 2012, **64**, 205.
- 32 Z. Yin, H. Zheng, D. Ma and X. Bao, *J. Phys. Chem. C*, 2008, **113**, 1001.
- 33 G. Hu, F. Nitze, H. R. Barzegar, T. Sharifi, A. Mikołajczuk, C.-W. Tai, A. Borodzinski and T. Wågberg, *J. Power Sources*, 2012, **209**, 236.
- 34 Y. Z. Su, M. Z. Zhang, X. B. Liu, Z. Y. Li, X. C. Zhu, C. W. Xu and S. P. Jiang, *Int. J. Electrochem. Sci.*, 2012, 7, 4158.
- 35 J. Sun, Y. Wang, C. Zhang, T. Kou and Z. Zhang, *Electrochem. Commun.*, 2012, 21, 42.