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ABSTRACT

The propose of this project is to consider and study the fixed points of an
infinite family of nonexpansive mappings, the variational inequality problem for relaxed
cocoercive and Lipschitz continuous, the system of variational inclusions problem and
the system of equilibrium problems by using a hybrid steepest descent methods and
viscosity approximation method under certain hypotheses. We prove strong convergence
theorem for finding a common element of the set of fixed points of an infinite family
of nonexpansive mappings, the set of solutions of the variational inequality problem for
relaxed cocoercive and Lipschitz continuous, the set of solutions of system of variational
inclusions problem and the system of equilibrium problems in Hilbert spaces.

Keywords: Nonexpansive mappings/ Variational inequality problem/ system of equi-
librium problems/system of variational inclusions problem/ Nonlinear mappings/hybrid
steepest descent methods/ viscosity approximation method
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บทคัดย่อ
จุดประสงค์ของโครงการวิจัยน้ีเพื่อพิจารณาและศึกษาจุดตรึงของวงศ์อนันต์สำหรับ

การส่งแบบไม่ขยาย ปัญหาอสมการเชิงแปรผัน ปัญหาระบบเชิงแปรผันรวมและปัญหา
ระบบเชิงดุลยภาพ โดยวิธีไฮบริดสตีปเปสท์เดสเซนท์ และวิธีการประมาณค่าแบบหน่วง
ภายใต้บางเงื่อนไข ซึ่งเราพิสูจน์ทฤษฎีบทการลู่เข้าแบบเข้มเพื่อหาสมาชิกร่วมของ เชต
คำตอบของจุดตรึงวงศ์อนันต์สำหรับการส่งแบบไม่ขยาย เชตคำตอบของปัญหาอสมการ
เชิงแปรผันสำหรับริแลคชโคโดเอ๊อชิฟและความต่อเน่ืองลิปสซิทซ์ เชตคำตอบของปัญหา
ระบบเชิงแปรผันรวมและเชตคำตอบของปัญหาระบบเชิงดุลยภาพในริภูมิฮิลเบิร์ต

คำสำคัญ: การส่งแบบไม่ขยาย/ ปัญหาอสมการเชิงแปรผัน/ ปัญหาระบบเชิงดุลยภาพ/
ปัญหาระบบเชิงแปรผันรวม / การส่งแบบไม่เชิงเส้น/ วิธีไฮบริดสตีปเปสท์เดสเซนท์/
วิธีการประมาณค่าแบบหน่วง
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CHAPTER I

INTRODUCTION

1.1 Background

Fixed-point iterations process for nonlinear mappings in Hilbert spaces and

Banach spaces including Mann and Ishikawa iterations process have been studied

extensively by many authors to approximate fixed point of various classes of opera-

tors and to solve variational inequalities in both Hilbert spaces and Banach spaces;

see also, for example [9], [20], [26], [51] and the references therein.

The variational inequality problem was first introduced by Hartman and

Stampacchia [25] in 1966, has had a great impact and influence in the develop-

ment of several branches of pure and applied sciences. The ideas and techniques

of this theory are being used in a variety of diverse fields and proved to be pro-

ductive and innovative, see [1-27] and the references therein. Analysis of these

problems requires a blend of techniques from convex analysis, functional analysis

and numerical analysis. As a result of the interaction between different branches

of mathematical and engineering sciences, we now have a variety of techniques to

suggest and analyze various algorithms for solving variational inequalities and re-

lated optimization problems. Using the projection technique, one can establish the

equivalence between the variational inequalities and fixed point problems. This

alternative equivalent formulation has played an important role in developing some

efficient numerical techniques for solving variational inequalities and related op-

timization problems. It is now well-known that the variational inequalities are

equivalent to the fixed-point problems, the origin of which can be traced back to

Lions and Stampacchia [35]. This alternative formulation has been used to suggest
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and analyze projection iterative methods for solving the variational inequalities

under the conditions that the involved operator must be strongly monotone and

Lipschitz continuous. These conditions are very strict and rule out its application

in several important problems. To overcome this drawback, Korpelevich [34] sug-

gested and analyzed the extragradient method by using the technique of updating

the solution. It has been shown that if the underlying operator is only monotone

and Lipschitz continuous, then the approximate solution converges to the exact

solution. Related to the variational inequalities, we have the problem of finding

the fixed points of the nonexpansive mappings, which is the current interest in

functional analysis. It is natural to consider a unified approach to these different

problems, see, for example, [29, 39, 45, 48].

Equilibrium problem which were introduced by Blum and Oettli [4]. The

Equilibrium problem theory provides a novel and unified treatment of a wide class

of problems which arise in economics, finance, image reconstruction, ecology, trans-

portation, network, elasticity and optimization which has been extended and gen-

eralized in many directions using novel and innovative techniques, see [4]. Related

to the equilibrium problems, we also have the problem of finding the fixed points

of the nonexpansive mappings, which is the subject of current interest in func-

tional analysis. It is natural to construct a unified approach for these problems. In

this direction, several authors have introduced some iterative schemes for finding

a common element of a set of the solutions of the equilibrium problems, the set

solutions of the variational inequality problems for a nonlinear mapping and a set

of the fixed points of an infinite (a finite) family of nonexpansive mappings. For

the detail, see [16], [53] and the references therein.

In 1952, the original Mann iteration was defined in a matrix formulation

by Mann [37]. In 1974, Ishikawa [27] introduced the iterative scheme which later,

it is said to be Ishikawa iteration and studied its strong convergence theorem for

lipschitzian pseudo-contractive mapping in Hilbert spaces.
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In 1989, Nadezhkina and Takahashi [39] introduced the following iterative

scheme for finding an element of fixed point problem and variational inequalities

and studied the weak convergence theorem for monotone and Lipschitz continuous

mapping nonexpansive mappings in a real Hilbert space.

In 1997 Combettes and Hirstoaga [16] introduced an iterative scheme of

finding the best approximation to initial data when EP (F ) is nonempty and proved

a strong convergence theorem.

1.2 Some Existing Algorithms of Fixed Points

Let X be a nonempty set and T : X −→ X a self map. We say that p ∈ X

is a fixed point of T if p = Tp and denote by F (T ) the set of all fixed points of

T . Having in view that many of the most important nonlinear problems of applied

mathematics reduce to solving a given equation which in turn may be reduced to

finding the fixed points of a certain operator, on the other hand, the metrical fixed

point theory has developed significantly in the second part of the 20th century.

As the constructive methods used in metrical fixed point theory are pre-

vailingly iterative procedures, that is, approximate methods, it is also of crucial

importance to have a priori or/and a posteriori error estimates or rate of conver-

gence for such method. For example, the Banach fixed point theorem concerns

certain contractions mappings of a complete metric space into itself. It states con-

ditions sufficient for the existence and uniqueness of a fixed point and it also given

a constructive procedure for obtaining better and better approximations to the

fixed point. By definition, this is a method such that we choose an arbitrary x0 in

a given set and calculate recursively a sequence x0, x1, x2, ... from a relation of the

form

xn = Txn−1 = T nx0 n = 1, 2, 3, .. (1.1)

That is, we choose an arbitrary x0 and determine successively x1 = Tx0, x2 =



4

Tx1, x3 = Tx2, .... It is also known as the Picard iteration starting at x0.

Iteration procedures are used in nearly every branch of applied mathematics,

and convergence proofs and error estimates are very often obtained by an applica-

tion of Banach fixed point theorem (or more difficult fixed point theorems). Many

researchers are interested in obtaining (additional) condition on T and E as general

as possible, and which should guarantee the (strong) convergence of the Picard it-

eration to a fixed point of T . Moreover, if the Picard iteration converges to a fixed

point of T , they will be interested in evaluating the error estimate (or alternatively,

the rate of convergence) of the method, that is, in obtaining a stopping criterion

for the sequence of successive approximations. However, the Picard iteration may

not converge even in the weak topology.

Construction of fixed point iteration processes of nonlinear mappings is an

important subject in the theory of nonlinear mappings, and finds application in a

number of applied areas. Now, fixed point iteration processes for approximating

fixed point of nonexpansive mappings, relatively nonexpansive mappings, hemirel-

atively nonexpansive mappings, generalized nonexpansive mappings and maximal

monotone operators in various space have been studied by many mathematicians.

Let (X, ‖ · ‖) be a real normed space and C ⊂ X be a closed and convex.

Three classical iteration processes are often used to approximate a fixed point of a

nonlinear mapping S : C −→ C.

If an equation can be put into the form Sx = x, and a solution x is an

attractive fixed point of the function S, then one may begin with a point x1 in

the basin of attraction of x, and let xn+1 = Sxn for n ≥ 1, and the sequence xn

will converge to the solution x. If the function S is continuously differentiable,

a sufficient condition for convergence is that the spectral radius of the derivative

is strictly bounded by one in a neighborhood of the fixed point. If this condition

holds at the fixed point, then a sufficiently small neighborhood must exist.
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Mann iteration

In 1953, Mann [37] introduced the iteration as follows: a sequence {xn}
defined by

xn+1 = αnxn + (1− αn)Sxn (1.2)

where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in

[0, 1]. Mann iteration has been extensively investigated for nonexpansive mappings.

One of the fundamental convergence results was proved by Reich [43]. In an infinite-

dimensional Hilbert space, Mann iteration can yield only weak convergence (see

[19] and [3]). Attempts to modify the Mann iteration method (1.2) so that strong

convergence is guaranteed have recently been made.

Halpern iteration

In 1967, Halpern [24] introduced the iteration as follows: a sequence {xn}
defined by

xn+1 = αnx0 + (1− αn)Sxn (1.3)

where the initial guess element x0 ∈ C is arbitrary and {αn} is a real sequence in

[0, 1] and prove strong convergence theorem under some certain control condition.

Ishikawa iteration

In 1974, Ishikawa [27] introduced the iteration as follows: a sequence {xn}
defined by

xn+1 = αnxn + (1− αn)S[βnxn + (1− βn)Sxn], ∀n ≥ 0, (1.4)

where the initial guess element x0 ∈ C is arbitrary and {αn} and {αn} are real

sequence in [0, 1] and and prove weak convergence theorem under some certain

control condition.

Marino and Xu [38] studied an explicit algorithm, which generated a se-
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quence {xn} recursively by the formula: For the initial guess x0 ∈ C is arbitrary

xn+1 = λnf(xn) + (1− λn)[αnV xn + (1− αn)Txn], ∀n ≥ 0, (1.5)

where {αn} and {λn} are sequences in (0, 1) satisfy some conditions. Let T, V :

C → C are two nonexpansive self mappings and f is a contraction on C. Then

{xn} converges strongly to a solution, which solves another variational inequality.

In general not much has been known regarding the convergence of the itera-

tion processes (1.3)-(1.4) unless the underlying space has elegant properties which

be briefly mention here.

Process (1.4) is indeed more general than process (1.2). But research has

been concentrated on the latter due probably to the reasons that the formulation

of process (1.2) is simpler than that of (1.4) and that a convergence theorem for

process (1.2) may possibly lead to a convergence theorem for process (1.4) provided

the sequence {βn} satisfies certain appropriate conditions. However, the introduc-

tion of process (1.4) has its own right. As a matter of fact, process (1.2) may fail

to converge while process (1.4) can still converge for a Lipschitz pseudo-contractive

mapping in a Hilbert space. Both processes (1.2) and (1.4) have only weak conver-

gence, in general. For example, Reich [43] proved that if X is a uniformly convex

Banach space with a Frechet differentiable norm and if {αn} is chosen such that
∑∞

n=0 αn(1−αn) = ∞, then the Mann’s iteration converges weakly to a fixed point

of T . However, we note that Mann’s iteration have only weak convergence even in

a Hilbert space.

Viscosity Approximation Method

In 2007, Yao et al. [53] introduced the following so-called viscosity approx-

imation method:

xn+1 = αnf(xn) + (1− αn)[βnxn + (1− βn)Sxn], ∀n ≥ 0, (1.6)

where S is a nonexpansive mapping of C into itself and f is a contraction on C.
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They obtained a strong convergence theorem under some mild restrictions on the

parameters.

Hybrid Steepest Descent Method

Yamada [52] introduced the following iterative scheme called the hybrid

steepest descent method:

xn+1 = Sxn − αnµBSxn, ∀n ≥ 1, (1.7)

where x1 = x ∈ H, {αn} ⊂ (0, 1), let B : H −→ H be a strongly monotone and

Lipschitz continuous mapping and µ is a positive real number. He proved that the

sequence {xn} generated by (1.7) converges strongly under a controlled condition

on the sequence {αn}.

Extragradient Method

In 1976, Korpelevich [34] introduced the following so-called extragradient

method: 



x0 = x ∈ C,

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn)

(1.8)

for all n ≥ 0, where λ ∈ (0, 1
k
), C is a closed convex subset of Rn and A is a

monotone and k-Lipschitz continuous mapping of C in to Rn . He proved that

if V I(A,C) is nonempty, then the sequences {xn} and {x̄n}, generated by (1.8),

converge to the same point z ∈ V I(A,C).

Recently, motivated by the idea of Korpelevichs extragradient method [34],

Nadezhkina and Takahashi[39] introduced the following iterative scheme for finding

an element of F (S)∩V I(A, C) and proved the following weak convergence theorem.
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1.3 The system of equilibrium problem and the variational

inclusion problem

1.3.1 The system of equilibrium problem

Let H be a real Hilbert space and C be a nonempty closed convex subset

of H. Let T be a nonexpansive mapping of C into itself and let B be a β-inverse-

strongly monotone of C into H. The equilibrium problem for F : C × C −→ R is

to find x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀y ∈ C. (1.9)

The set of solutions of (1.9) is denoted by EP (F ).

Let {Fi, i = 1, 2, . . . , N} be a finite family of bifunctions from C × C into

R, where R is the set of real numbers. The system of equilibrium problems for

{F1, F2, . . . , FN} is to find a common element x∗ ∈ C such that





F1(x
∗, y) ≥ 0, ∀y ∈ C,

F2(x
∗, y) ≥ 0, ∀y ∈ C,

...

FN(x∗, y) ≥ 0, ∀y ∈ C.

(1.10)

We denote the set of solutions of (1.10) by ∩N
i=1SEP (Fi), where SEP (Fi) is the

set of solutions to the equilibrium problems, that is,

Fi(x
∗, y) ≥ 0, ∀y ∈ C. (1.11)

If N = 1, then the problem (1.10) is reduced to the equilibrium problems.

If N = 1 and F (x∗, y) = 〈Bx∗, y − x∗〉, then the problem (1.10) is reduced to the

variational inequality problems of finding x∗ ∈ C such that

〈Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1.12)

The set of solutions of (1.12) is denoted by V I(C,B).
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1.3.2 The variational inclusion problem

Let B : H −→ H be a single-valued nonlinear mapping and M : H −→ 2H

be a muiti-valued mapping. The variational inclusion problem is to find x̃ ∈ H

such that

θ ∈ B(x̃) + M(x̃), (1.13)

where θ is the zero vecter in H. The set of solutions of problem (1.13) is denoted

by I(B, M). If M = ∂ψC , where C is a nonempty closed convex subset of H and

∂ψC : H −→ [0, +∞] is the indicator function of C, that is,

ψC(x) =





0, x ∈ C,

+∞, x /∈ C,

then, the variational inclusion problem (1.13) is equivalent to the variational in-

equality problems (1.12)

Numerous problems in physics, optimization and economics reduce to find

a solution of the equilibrium problem. Some methods have been proposed to solve

the equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [4],

Combettes and Hirstoaga [17]. Recently, Takahashi and Zembayashi [50] consider

the following equilibrium problem with a bifunction defined on the dual space of a

Banach space. Moreover, they proved a strong convergence theorem for finding a

solution of the equilibrium problem which generalized the result of Combettes and

Hirstoaga [17].

The purpose of this project is to consider the extragradient hybrid steepest

descent methods for finding a common element of the set of solutions for system

of mixed equilibrium problems, the set of fixed points of a nonexpansive mapping

and the set of solutions of variational inequality problems in a real Hilbert space.

Then, we prove a strong convergence theorem of the iterative sequence generated by

the extragradient hybrid steepest descent methods under some suitable conditions

in a real Hilbert space. As applications, at the end of the paper we utilize our
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results to study the optimization problem. All in all, we plan to construct the

algorithms by using the extragradient hybrid steepest descent method and discuss

the convergence criterion for the perturbed iterative algorithms to approximate

the solutions of the above three sets are obtained. Furthermore, we also plan to

study the relationships between the above problem and an interesting topic, as fixed

point theory. We plan to organize this project as following: In the first year, we will

give some new theorems about system of the variational inequality problems with

inverse strongly monotone mapping and relaxed cocoercive mapping and system of

mixed equilibrium problem with inverse strongly monotone mapping in the Hilbert

space. Also, some fixed point problems will be discussed and studied. In the second

year, the main results and some applications of this project will be presented, that

is, we plan to study a form system of variational inequality problems with nonlinear

mapping and system of mixed equilibrium problems for inverse strongly monotone

mappings. In conclusion, we point out that the results of this project unify, extend,

and improve some well-known results in literature, and moreover, the study of this

area is a fruitful and growing field of intellectual endeavor. Much work is needed

to develop this interesting subject.

This research is divided into 4 chapters. Chapter 1 is an introduction to the

research problems. Chapter 2 deals with some preliminaries and give some useful

results that will be used in later chapters. Chapter 3 we prove strong convergence

theorems for finding a common element of the fixed point set. The conclusion

output of research is in Chapter 4.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

2.1 Linear Spaces and Metric Spaces

Definition 2.1. Let X be a nonempty set, and assume that each pair of elements

x and y in X can be combined by a process called addition to yield an element z

in X denoted by x + y. Assume also that this operation of addition satisfies the

following condition (1)–(4):

(1) (x + y) + z = x + (y + z);

(2) x + y = y + x;

(3) there exists a unique element in X, denoted by 0 and called the zero

element, or the origin, such that x + 0 = x for all x ∈ X;

(4) each x ∈ X there corresponds a unique element in X, denoted by −x

and called the negative of x, such that x + (−x) = 0.

We also assume that each scalar α ∈ R and each element x in X can be

combined by a process called scalar multiplication to yield an element y in X

denoted by y = αx satisfying (5)–(8):

(5) α(βx) = (αβ)x;

(6) 1 · x = x;

(7) (α + β)x = αx + βx;

(8) α(x + y) = αx + αy.
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The system (X, ·, +) is called a linear space over R if it satisfies the con-

ditions (1)–(8). A linear space is often called a vector space, and its elements are

spoken as vectors.

Definition 2.2. Let X be a nonempty set. A mapping d : X×X −→ R, satisfying

the following conditions for all x, y and z in X:

(A1) d(x, y) = 0 ⇐⇒ x = y;

(A2) d(x, y) = d(y, x);

(A2) d(x, y) ≤ d(x, z)+d(z, y). The conditions (A1)-(A3) are usually called

the metric axioms.

The function d assigns to each pair (x, y) of element of X a nonnegative real

number d(x, y), which does not on the order of the elements; d(x, y) is called the

distance between x and y. The set X together with a metric, denoted by (X, d), is

called a metric space.

2.2 Normed Spaces and Banach Spaces

Definition 2.3. Let X be a linear space over the field K (R or C). A function

‖ · ‖ : X −→ R is said to be a norm on X if it satisfies the following conditions:

(1) ‖x‖ ≥ 0, ∀x ∈ X;

(2) ‖x‖ = 0 ⇔ x = 0;

(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖,∀x, y ∈ X;

(4) ‖αx‖ = |α|‖x‖,∀x ∈ X and ∀α ∈ K.

From this norm we can define a metric, induced by the norm ‖ · ‖, by

d(x, y) = ‖x− y‖, (x, y ∈ X).
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A linear space X equipped with the norm ‖ · ‖ is called a normed linear space.

Definition 2.4. A normed space (X, ‖·‖) is called strictly convex if for all x, y ∈ X,

x 6= y, ‖x‖ = ‖y‖ = 1, we have ‖λx + (1− λ)y‖ < 1, ∀λ ∈ (0, 1).

Definition 2.5. Let (X, ‖ · ‖) be a normed space. A sequence {xn} ⊂ X is said to

converge strongly in X if there exists x ∈ X such that lim
n−→∞

‖xn−x‖ = 0. That is,

if for any ε > 0 there exists a positive integer N such that ‖xn − x‖ < ε, ∀n ≥ N.

We often write lim
n−→∞

xn = x or xn −→ x to mean that x is the limit of the sequence

{xn}.

Definition 2.6. A sequence {xn} in a normed spaces is said to converge weakly to

some vector x if limn−→∞ f(xn) = f(x) holds for every continuous linear functional

f . We often write xn ⇀ x to mean that {xn} converges weakly to x.

Definition 2.7. Let (X, ‖ · ‖) be a normed space. A sequence {xn} ⊂ X is said to

be a Cauchy sequence if for any ε > 0 there exists a positive integer N such that

‖xm − xn‖ < ε, ∀ m,n ≥ N . That is, {xn} is a Cauchy sequence in X if and only

if ‖xm − xn‖ −→ 0 as m,n −→∞.

Theorem 2.8. [47] Let {xn} be a sequence of a normed space (X, ‖ · ‖), x ∈ X

and let xn → x if and only if, for any subsequence {xni
} of {xn}, there exist a

subsequence {xnij
} of {xni

} converging to x.

Definition 2.9. A normed space X is called complete if every Cauchy sequence in

X converges to an element in X.

Definition 2.10. A complete normed linear space over field K is called a Banach

space over K.

Lemma 2.11. [45] Let {xn} and {yn} be bounded sequences in a Banach space X

and let {βn} be a sequence in [0, 1] with 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Suppose xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and lim supn−→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn−→∞ ‖yn − xn‖ = 0.
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Lemma 2.12. [51] Assume {an} is a sequence of nonnegative real numbers such

that

an+1 ≤ (1− bn)an + cn, n ≥ 0,

where {bn} is a sequence in (0, 1) and {cn} is a sequence in R such that

(1)
∑∞

n=1 bn = ∞,

(2) lim supn−→∞
cn

bn
≤ 0 or

∑∞
n=1 |cn| < ∞,

Then limn−→∞ an = 0.

Definition 2.13. Let F and X be linear spaces over the field K.

(1) A mapping T : F −→ X is called a linear operator if T (x+y) = Tx+Ty

and T (αx) = αTx, ∀x, y ∈ F, and ∀α ∈ K.

(2) A mapping T : F −→ K is called a linear functional on F if T is a linear

operator.

Definition 2.14. Let F and X be normed spaces over the field K and T : X −→ F

a linear operator. T is said to be bounded on X if there exists a real number M > 0

such that ‖T (x)‖ ≤ M‖x‖,∀x ∈ X.

Definition 2.15. Sequence {xn}∞n=1 in a normed linear space X is said to be a

bounded sequence if there exists M > 0 such that ‖xn‖ ≤ M, ∀n ∈ N.

Definition 2.16. A subset C of a normed linear space X is said to be convex

subset in X if λx + (1− λ)y ∈ C for each x, y ∈ C and for each scalar λ ∈ [0, 1].

2.3 Inner Product Spaces and Hilbert Spaces

Definition 2.17. The real-value function of two variables 〈·, ·〉 : X ×X −→ R is

called inner product on a real vector space X if for any x, y, z ∈ X and α, β ∈ R
the following conditions are satisfied:
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(1) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉;

(2) 〈x, y〉 = 〈y, x〉;

(3) 〈x, x〉 ≥ 0 for each x ∈ X and 〈x, x〉 = 0 if and only if x = 0.

A real inner product space is a real vector space equipped with an inner

product.

Definition 2.18. A Hilbert spaces is an inner product space which is complete

under the norm induced by its inner product.

An inner product on X defines a norm on X given by ‖x‖ =
√
〈x, x〉.

Lemma 2.19. [47](The Schwarz inequality) If x and y are any two vector in an

inner product space X, then

|〈x, y〉| ≤ ‖x‖‖y‖.

Remark 2.20. In a Hilbert space H, weak convergence is defined by limn−→∞〈xn, y〉 =

〈x, y〉 for all y ∈ H. The notation xn ⇀ x is sometimes used to denote this kind of

convergence.

Remark 2.21. If xn ⇀ x and xn ⇀ y, then x = y.

Definition 2.22. Let H be a Hilbert space and let C be a nonempty closed convex

subset of H. Let f be a function of C into (−∞,∞], where (−∞,∞] = R ∪ {∞}.
Then, f is called lower semicontinuous if for any a ∈ R, the set {x ∈ C : f(x) ≤ a}
is closed.

Lemma 2.23. [47] Let X be an inner product space and {xn} be a bounded sequence

of H such that xn ⇀ x. Then following inequality holds:

‖x‖ ≤ lim
n−→∞

inf ‖xn‖.
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2.4 Basic Concepts in Hilbert Spaces

Let C be a closed convex subset of a real Hilbert space H with inner product

and norm are denoted by 〈., .〉 and ‖.‖, respectively. We have the following are hold:

‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉, (2.14)

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, (2.15)

‖x + y‖2 ≥ ‖x‖2 + 2〈y, x〉, (2.16)

and

‖λx + (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2 (2.17)

for all x, y ∈ H and λ ∈ R.

Lemma 2.24. [40] Let (E, 〈., .〉) be an inner product space. Then for all x, y, z ∈ E

and α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx+βy +γz‖2 = α‖x‖2 +β‖y‖2 +γ‖z‖2−αβ‖x−y‖2−αγ‖x−z‖2−βγ‖y−z‖2.

Lemma 2.25. [41] A Hilbert space H satisfies the Opial condition that is, for any

sequence {xn} with xn ⇀ x, the inequality lim infn−→∞ ‖xn−x‖ < lim infn−→∞ ‖xn−
y‖, holds for every y ∈ H with y 6= x.

2.5 Some Nonlinear Mappings in Hilbert Spaces

Let C be a closed convex subset of a real Hilbert space H with inner

product and norm are denoted by 〈., .〉 and ‖.‖, respectively. Let T : C → C a

nonlinear mapping. We use F (T ) to denote the set of fixed points of T , that is,

F (T ) = {x ∈ C : Tx = x}.
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Definition 2.26. A mapping S : C → C is called L-Lipschitz-continuous if there

exists a positive real number L such that

‖Su− Sv‖ ≤ L‖u− v‖, ∀u, v ∈ C. (2.18)

Definition 2.27. A mapping f : C → C is called a contraction on C if there exists

a constant α ∈ (0, 1) and x, y ∈ C such that

‖f(x)− f(y)‖ ≤ α‖x− y‖. (2.19)

Definition 2.28. A mapping T is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C. (2.20)

Theorem 2.29. [47] (Banach’s Contraction Mapping Principle) Let (X, d) be a

complete metric space and f : X → X be a contraction. Then f has a unique fixed

point, i.e. there exists a unique x∗ ∈ X such that Tx∗ = x∗.

Definition 2.30. The metric (nearest point) projection PC from a Hilbert space

H to a closed convex subset C of H is defined as follows: given x ∈ H, PCx is the

only point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

For every point x ∈ H, there exists a unique nearest point in C, denoted by

PCx, such that

‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C.

Lemma 2.31. [47] Let H be a real Hilbert spaces, there hold the following identities:

(i) for each x ∈ H and x∗ ∈ C, x∗ = PCx ⇐⇒ 〈x− x∗, y − x∗〉 ≤ 0, ∀y ∈ C;

(ii) PC : H −→ C is nonexpansive, that is, ‖PCx− PCy‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(iii) PC is firmly nonexpansive, that is,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, ∀x, y ∈ H;
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Definition 2.32. A mapping A of C into H is called monotone if

〈Au− Av, u− v〉 ≥ 0, ∀u, v ∈ C. (2.21)

Definition 2.33. A is called α-inverse-strongly monotone if there exists a positive

real number α such that

〈Au− Av, u− v〉 ≥ α‖Au− Av‖2, ∀u, v ∈ C. (2.22)

Lemma 2.34. Let A : H → H be a α-inverse-strongly monotone mapping. If

λ ≤ 2α, for any λ > 0 and α > 0 then I − λA is a nonexpansive mapping from H

into itself.

Proof. Let u, v ∈ H and λ > 0,

‖(I − λA)u− (I − λA)v‖2 = ‖(u− v)− λ(Au− Av)‖2

= ‖u− v‖2 − 2λ〈u− v,Au− Av〉+ λ2‖Au− Av‖2

≤ ‖u− v‖2 + λ(λ− 2α)‖Au− Av‖2.

Lemma 2.35. Let H be a real Hilbert space, let C be a nonempty closed convex

subset of H, let S : C −→ C be a nonexpansive mapping and let B : C −→ H be

a ξ-inverse strongly monotone. If 0 < αn ≤ 2ξ, then S − αnBS is a nonexpansive

mapping in H.

Proof. For any x, y ∈ C and 0 < αn ≤ 2ξ, we have

‖(S − αnBS)x− (S − αnBS)y

‖2 = ‖(Sx− Sy)− αn(BSx−BSy)‖2

= ‖Sx− Sy‖2 − 2αn〈Sx− Sy,BSx−BSy〉+ α2
n‖BSx−BSy‖2

≤ ‖x− y‖2 − 2αnξ‖BSx−BSy‖+ α2
n‖BSx−BSy‖2

= ‖x− y‖2 + αn(αn − 2ξ)‖BSx−BSy‖2

≤ ‖x− y‖2.

So, S − αnBS is a nonexpansive mapping of C into H.
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Remark 2.36. It is easy to see that if A is an α-inverse-strongly monotone mapping

of C into H, then A is 1
α
–Lipschitz continuous.

Definition 2.37. The mapping S : C −→ C is called a κ-strict pseudo-contraction

mapping if there exists a constant 0 ≤ κ < 1 such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ C. (2.23)

Definition 2.38. A typical problem is to minimize a quadratic function over the

set of fixed points of a nonexpansive mapping defined on a real Hilbert space H:

min
x∈F

[
1

2
〈Ax, x〉 − 〈x, b〉

]
,

where F is the fixed point set of a nonexpansive mapping S defined on H and b is

a given point in H.

Definition 2.39. A linear bounded operator A is strongly positive if there exists

a constant γ̄ > 0 with the property

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

Lemma 2.40. [38] Assume A is a strongly positive linear bounded operator on a

Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ̄.

Lemma 2.41. [38] Let C be a nonempty closed convex subset of H and let f be

a contraction of H into itself with η ∈ (0, 1), and A be a strongly positive linear

bounded operator on H with coefficient γ̄ > 0. Then , for 0 < γ < γ̄
η
,

〈
x− y, (A− γf)x− (A− γf)y

〉
≥ (γ̄ − ηγ)‖x− y‖2, ∀x, y ∈ H.

That is, A− γf is a strongly monotone with coefficient γ̄ − γη.

2.6 Basic Concept of Convex Analysis

Definition 2.42. [13] Let H be a Hilbert space and let C be nonempty closed

convex subset of H. Let f be a function of C into (−∞,∞], where (−∞,∞] =
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R∪{∞}. Then, f is called lower semicontinuous if for any a ∈ R, the set

{x ∈ C : f(x) ≤ a}

is closed. f is also called convex on if for any x, y ∈ C and t ∈ [0, 1], then

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

Theorem 2.43. [13](Minimization theorem)

Let C be a nonempty bounded closed convex subset of a Hilbert space H and let f

be a proper lower semicontinuous convex function of C into (−∞,∞]. Then there

exists x0 ∈ D(f) such that

f(x0) = min
x∈C

f(x).

Definition 2.44. [13] Let H be a Hilbert space and let f : H −→ (−∞,∞] be a

proper convex function. Then, we define the subdifferential ∂f of f by

∂f(x) = {x ∈ H : f(y) ≥ 〈y − x, z〉+ f(x), ∀y ∈ H}

for all x ∈ H. If f(x) = ∞, then ∂f(x) = ∅.

Lemma 2.45. [13] Let H be a Hilbert space and let f : H −→ (−∞,∞] be a

proper convex function. Let z ∈ H. Then

0 ∈ ∂f(z) ⇔ f(z) = min
x∈H

f(x).

Lemma 2.46. [13] Let E be a Banach space and let f : E −→ (−∞,∞] be a

proper lower semicontinuous convex function. Define the subdifferential of f as

follows:

∂f(x) = {x∗ ∈ E : f(y) ≥ 〈y − x, x∗〉+ f(x), ∀y ∈ E}

for each x ∈ E. Then, ∂f is a maximal monotone operator.

Lemma 2.47. [13] Let H be a Hilbert space and let C be a nonempty closed

convex subset of H. Define the indicator function iC of C by

iC(x) =





0, x ∈ C,

∞, otherwise.
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Then, iC is proper, convex and semicontinuous and ∂iC is a maximal monotone

operator.

Definition 2.48. [13] Let H be a Hilbert space and let C be a nonempty closed

convex subset of H and x ∈ C. Then we define the set NC(x) of H by

NC(x) = {z ∈ H : 〈u− x, z〉 ≤ 0,∀u ∈ C}.

Such a set NC(x) is called the normal cone of C.

Remark The set NC(x) is a closed convex cone of H.

Definition 2.49. [13] Let H be a Hilbert space and let C be a nonempty closed

convex subset of H. Let B be an operator of C into H. Then B is called hemicot-

inuous if for any u, v ∈ C and w ∈ H, the function

t 7→ 〈w,B(tu + (1− t)v)〉

of [0,1] into R is contonuous.

Theorem 2.50. [47] Let H be a Hilbert space and let C be a nonempty closed

convex subset of H. Let B : C −→ H be monotone and hemicontinuous and let

NC(x) denote the normal cone of C at x ∈ C. Define

Tx =





Bx + NCx, if v ∈ C,

∅, if v /∈ C.

Then T : H −→ 2H is a maximal monotone and 0 ∈ Tx iff x ∈ V I(C,B).

Lemma 2.51. [47] Let H be a Hilbert space and let C be a nonempty closed

convex subset of H. Let B be an operator of C into H. Let u ∈ C. Then for

λ > 0,

u ∈ V I(C, B) ⇔ u = PC(I − λB)u.

where PC is the metric projection of H onto C.
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Theorem 2.52. [47] Let H be a Hilbert space and let C be a nonempty bounded

closed convex subset of H. Let β > 0 and let B : C −→ H be β-inverse strongly

monotone. Then V I(C,B) 6= ∅.

Definition 2.53. [13] Let H be a Hilbert space and let C be a nonempty bounded

closed convex subset of H. A mapping T : C −→ C is called strictly pseudocon-

tractive if there exists k with 0 ≤ k < 1 such that:

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2 for all x, y ∈ C.

Remark. If k = 0, then T is nonexpansive. Put B = I − T , where

T : C −→ C is a strictly pseudocontractive mapping with k. Then B is 1−k
2

-

inverse-strongly monotone.

we assume that a bifunction F : C × C −→ R satisfies the following condi-

tions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Then, we have the following lemmas.

Lemma 2.54. [4] Let C be a nonempty closed convex subset of H and let F be a

bifunction of C × C into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then,

there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.
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Lemma 2.55. [16] Assume that F : C × C −→ R satisfies (A1)-(A4). For r > 0

and x ∈ H, define a mapping JF
r : H −→ C as follows:

JF
r (x) =

{
z ∈ C : F (z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}

for all z ∈ H. Then, the following hold:

(1) JF
r is single-valued;

(2) JF
r is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥JF
r x− JF

r y
∥∥2 ≤

〈
JF

r x− JF
r y, x− y

〉
;

(3) F (JF
r ) = EP (F );

(4) EP (F ) is closed and convex.



CHAPTER III

MAIN CONVERGENCE RESULTS

3.1 Hybrid Steepest Descent Methods

3.1.1 An infinite family of nonexpansive mappings

Let C be a nonempty closed convex subset of a real Hilbert space H. Let

{Tn}∞n=1 be a family of infinitely of nonexpansive mappings of C into itself and let

{µn}∞n=1 be a sequence of nonnegative numbers in [0,1]. For any n ≥ 1, define a

mapping Wn : C −→ C as follows:

Un,n+1 = I,

Un,n = µnTnUn,n+1 + (1− µn)I,

Un,n−1 = µn−1Tn−1Un,n + (1− µn−1)I,

... (3.24)

Un,k = µkTkUn,k+1 + (1− µk)I,

Un,k−1 = µk−1Tk−1Un,k + (1− µk−1)I,

...

Un,2 = µ2T2Un,3 + (1− µ2)I,

Wn = Un,1 = µ1T1Un,2 + (1− µ1)I,

such a mappings Wn is nonexpansive from C to C and it is called the W -mapping

generated by T1, T2, ..., Tn and µ1, µ2, ..., µn (see [46]).

Lemma 3.56. [46, 54] Let C be a nonempty closed convex subset of a real Hilbert

space H. Let T1, T2, ... be an infinite family of nonexpansive mappings of C into

itself such that ∩∞n=1F (Tn) 6= ∅, let µ1, µ2, ... be real numbers such that 0 ≤ µn ≤
b < 1 for every n ≥ 1. Then,
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(1) for every x ∈ C and k ∈ N, the limit limn−→∞ Un,kx exists;

(2) the mapping W of C into itself as follows:

Wx = lim
n−→∞

Wnx = lim
n−→∞

Un,1x, x ∈ C, (3.25)

is a nonexpansive mapping satisfying F (W ) =
⋂∞

n=1 F (Tn), which it is called

the W -mapping generated by T1, T2, ... and µ1, µ2, ...;

(3) F (Wn) = ∩∞n=1F (Tn), for each n ≥ 1;

(4) If E is any bounded subset of C, then lim
n→∞

sup
x∈E

‖Wx−Wnx‖ = 0.

Theorem 3.57. Let C be a nonempty closed convex subset of a real Hilbert space

H, let Fk, k ∈ {1, 2, 3, . . . , M} be a bifunction from C × C to R satisfying (A1)-

(A4), let {Tn} be an infinite family of nonexpansive mappings of C into itself and

let B be ξ-inverse strongly monotone such that

Θ := ∩∞n=1F (Tn) ∩ (∩M
k=1SEP (Fk)

) ∩ V I(C,B) 6= ∅.

Let f be a contraction of H into itself with η ∈ (0, 1) and let A be a strongly positive

linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄
η
. Let {xn},

{yn} and {un} be sequences generated by





x1 = x ∈ C chosen arbitrary,

yn = (1− δn)xn + δnPC(xn − αnBxn),

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
yn,

xn+1 = εnγf(un) + βnxn +
(
(1− βn)I − εnA

)
PC(Wnun − λnBWnun), ∀n ≥ 1,

(3.26)

where {Wn} is the sequence generated by (3.24) and {εn}, {βn} are two sequences

in (0, 1) and {rk,n}, k ∈ {1, 2, 3, . . . ,M} are a real sequence in (0,∞) satisfy the

following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,
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(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {αn}, {λn} ⊂ [e, g] ⊂ (0, 2ξ), limn→∞ αn = 0 and limn→∞ λn = 0,

(C4) {δn} ⊂ [0, b], for some b ∈ (0, 1) and limn→∞ |δn+1 − δn| = 0,

(C5) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . ,M},

Then, {xn} and {un} converge strongly to a point z ∈ Θ, which is the unique

solution of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ. (3.27)

Equivalently, we have z = PΘ(I − A + γf)(z).

Proof . From the restrictions on control sequence, without loss of generality, that

εn ≤ (1 − βn)‖A‖−1 for all n ≥ 1. From Lemma 2.40, we know that if 0 ≤ ρ ≤
‖A‖−1, then ‖I − ρA‖ ≤ 1− ργ̄. We will assume that ‖I −A‖ ≤ 1− γ̄. Since A is

a strongly positive bounded linear operator on H, we have

‖A‖ = sup
{∣∣〈Ax, x〉

∣∣ : x ∈ H, ‖x‖ = 1
}

.

Observe that

〈(
(1− βn)I − εnA

)
x, x

〉
= 1− βn − εn〈Ax, x〉 ≥ 1− βn − εn‖A‖ ≥ 0,

this show that (1− βn)I − εnA is positive. It follows that

‖(1− βn)I − εnA‖ = sup

{∣∣∣∣
〈(

(1− βn)I − εnA
)
x, x

〉∣∣∣∣ : x ∈ H, ‖x‖ = 1

}

= sup
{

1− βn − εn〈Ax, x〉 : x ∈ H, ‖x‖ = 1
}

≤ 1− βn − εnγ̄.

We divide the proof of Theorem 3.57 into seven steps.
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Step 1. We show that the mapping PΘ(γf + (I − A)) has a unique fixed

point.

Since f be a contraction of C into itself with coefficient η ∈ (0, 1). Then,

we have

‖PΘ(γf + (I − A))(x)− PΘ(γf + (I − A))(y)‖

≤ ‖(γf + (I − A))(x)− (γf + (I − A))(y)‖

≤ γ‖f(x)− f(y)‖+ ‖I − A‖‖x− y‖

≤ γη‖x− y‖+ (1− γ̄)‖x− y‖

= (1− (γ̄ − ηγ))‖x− y‖, ∀x, y ∈ C.

Since 0 < 1− (γ̄ − ηγ) < 1, it follows that PΘ(γf + (I −A)) is a contraction of C

into itself. Therefore by the Banach Contraction Mapping Principle, has a unique

fixed point, say z ∈ C, that is,

z = PΘ(γf + (I − A))(z).

Step 2. We show that Wn − λnBWn is nonexpansive.

For all x, y ∈ C, let Wn is the sequence defined by (3.24) and λn ∈ (0, 2ξ),

we obtain Wn − λnBWn is a nonexpansive. Indeed,

‖(Wn − λnBWn)x− (Wn − λnBWn)y‖2

= ‖(Wnx−Wny)− λn(BWnx−BWny)‖2

= ‖Wnx−Wny‖2 − 2λn〈Wnx−Wny, BWnx−BWny〉+ λ2
n‖BWnx−BWny‖2

≤ ‖x− y‖2 − 2λnξ‖BWnx−BWny‖+ λ2
n‖BWnx−BWny‖2

= ‖x− y‖2 + λn(λn − 2ξ)‖BWnx−BWny‖2

≤ ‖x− y‖2, (3.28)

which implies that Wn − λnBWn is a nonexpansive.
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Step 3. We show that the sequence {xn} is bounded.

In fact, let x̃ ∈ Θ, then

x̃ = PC(x̃− αnBx̃).

Setting vn = PC(xn−αnBxn) and I −αnB is a nonexpansive mapping , we obtain

‖vn − x̃‖ = ‖PC(xn − αnBxn)− PC(x̃− αnBx̃)‖

≤ ‖(xn − αnBxn)− (x̃− αnBx̃)‖

= ‖(I − αnB)xn − (I − αnB)x̃‖

≤ ‖xn − x̃‖ (3.29)

and

‖yn − x̃‖ ≤ (1− δn)‖xn − x̃‖+ δn‖vn − x̃‖

≤ (1− δn)‖xn − x̃‖+ δn‖xn − x̃‖

= ‖xn − x̃‖. (3.30)

Let =k
n = JFk

rk,n
J

Fk−1
rk−1,nJ

Fk−2
rk−2,n . . . JF2

r2,n
JF1

r1,n
for k ∈ {1, 2, 3, . . . , M} and =0

n = I for all

n. Because JFk
rk,n

is nonexpansive for each k = 1, 2, 3, . . . , M, x̃ = =k
nx̃ and (3.125),

we note that un = =M
n yn. It follows that

‖un − x̃‖ = ‖=M
n yn −=M

n x̃‖ ≤ ‖yn − x̃‖ ≤ ‖xn − x̃‖. (3.31)

Let en = PC(Wnun − λnBWnun), we can prove that

‖en − x̃‖ = ‖PC(Wnun − λnBWnun)− PC(Wnx̃− λnBWnx̃)‖

≤ ‖(Wnun − λnBWnun)− (Wnx̃− λnBWnx̃)‖

= ‖(Wn − λnBWn)un − (Wn − λnBWn)x̃‖

≤ ‖un − x̃‖ ≤ ‖xn − x̃‖, (3.32)
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which yields that

‖xn+1 − x̃‖ (3.33)

= ‖εn(γf(un)− Ax̃) + βn(xn − x̃) +
(
(1− βn)I − εnA

)
(en − x̃)‖

≤ εn‖γf(un)− Ax̃‖+ βn‖xn − x̃‖+ ‖(1− βn)I − εnA‖‖en − x̃‖

≤ εnγ‖f(un)− f(x̃)‖+ εn‖γf(x̃)− Ax̃‖+ βn‖xn − x̃‖+ (1− βn − εnγ̄)‖en − x̃‖

≤ εnγη‖un − x̃‖+ εn‖γf(x̃)− Ax̃‖+ βn‖xn − x̃‖+ (1− βn − εnγ̄)‖xn − x̃‖

≤ εnγη‖xn − x̃‖+ εn‖γf(x̃)− Ax̃‖+ βn‖xn − x̃‖+ (1− βn − εnγ̄)‖xn − x̃‖

= (1− (γ − γη)εn)‖xn − x̃‖+
(γ − γη)εn

(γ − γη)
‖γf(x̃)− Ax̃‖.

By induction, we have

‖xn − x̃‖ ≤ max

{
‖x1 − x̃‖, ‖γf(x̃)− Ax̃‖

γ̄ − γη

}
, ∀n ∈ N. (3.34)

This implies that {xn} is bounded, and hence so are {un}, {en}, {yn}, {BWnun},
{Bxn}, {Aen}, {vn − xn}, and {f(un)}.

Step 4. We show that lim
n→∞

‖xn+1 − xn‖ = 0.

We claim that, if ωn be a bounded sequence in C. Then

lim
n−→∞

‖=k
nωn −=k

n+1ωn‖ = 0, (3.35)

for every k ∈ {1, 2, 3, . . . , M}. From Step 2 of the proof Theorem 3.1 in [18], we

have that for k ∈ {1, 2, 3, . . . , M},

lim
n−→∞

‖JFk
rk,n+1

ωn − JFk
rk,n

ωn‖ = 0. (3.36)

Note that for every k ∈ {1, 2, 3, . . . , M}, we obtain

=k
n = JFk

rk,n
JFk−1

rk−1,n
JFk−2

rk−2,n
. . . JF2

r2,n
JF1

r1,n
= JFk

rk,n
=k−1

n .
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Thus

‖=k
nωn −=k

n+1ωn‖ (3.37)

= ‖JFk
rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n+1ωn‖

≤ ‖JFk
rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk

rk,n+1
=k−1

n ωn − JFk
rk,n+1

=k−1
n+1ωn‖

≤ ‖JFk
rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖=k−1

n ωn −=k−1
n+1ωn‖

≤ ‖JFk
rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk−1

rk−1,n
=k−2

n ωn − JFk−1
rk−1,n+1

=k−2
n ωn‖

+‖=k−2
n ωn −=k−2

n+1ωn‖

≤ ‖JFk
rk,n
=k−1

n ωn − JFk
rk,n+1

=k−1
n ωn‖+ ‖JFk−1

rk−1,n
=k−2

n ωn − JFk−1
rk−1,n+1

=k−2
n ωn‖

+ . . . + ‖JF2
r2,n
=1

nωn − JF2
r2,n+1

=1
nωn‖+ ‖JF1

r1,n
ωn − JF1

r1,n+1
ωn‖.

Now, apply (3.36) to conclude (3.35).

Since Tn and Un,n are nonexpansive, we have

‖Wn+1xn −Wnxn‖ = ‖µ1T1Un+1,2xn − µ1T1Un,2xn‖

≤ µ1‖Un+1,2xn − Un,2xn‖

= µ1‖µ2T2Un+1,3xn − µ2T2Un,3xn‖

≤ µ1µ2‖Un+1,3xn − Un,3xn‖

≤ . . .

≤ µ1µ2 . . . µn‖Un+1,n+1xn − Un,n+1xn‖

≤ M1

n∏
i=1

µi, (3.38)

where M1 ≥ 0 is an appropriate constant such that ‖Un+1,n+1xn−Un,n+1xn‖ ≤ M1

for all n ≥ 0.

From I − αnB is nonexpansive, we have

‖vn+1 − vn‖ = ‖PC(xn+1 − αn+1Bxn+1)− PC(xn − αnBxn)‖

≤ ‖(xn+1 − αn+1Bxn+1)− (xn − αnBxn)‖

≤ ‖(xn+1 − αn+1Bxn+1)− (xn − αn+1Bxn)‖+ |αn+1 − αn|‖Bxn‖

≤ ‖xn+1 − xn‖+ |αn+1 − αn|‖Bxn‖. (3.39)
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From (3.26) and (3.39), we have

‖yn+1 − yn‖ (3.40)

= ‖(1− δn+1)(xn+1 − xn) + δn+1(vn+1 − vn) + (δn+1 − δn)(vn − xn)‖

≤ (1− δn+1)‖xn+1 − xn‖+ δn+1‖vn+1 − vn‖+ |δn+1 − δn|‖vn − xn‖

≤ (1− δn+1)‖xn+1 − xn‖+ δn+1

{
‖xn+1 − xn‖+ |αn+1 − αn|‖Bxn‖

}

+ |δn − δn+1|‖xn − vn‖

= ‖xn+1 − xn‖+ δn+1|αn+1 − αn|‖Bxn‖+ |δn − δn+1|‖xn − vn‖. (3.41)

Now, we compute ‖un+1−un‖ and ‖en+1−en‖. Consider the following computation:

‖un+1 − un‖ = ‖=M
n+1yn+1 −=M

n yn‖

≤ ‖=M
n+1yn+1 −=M

n+1yn‖+ ‖=M
n+1yn −=M

n yn‖

≤ ‖yn+1 − yn‖+ ‖=M
n+1yn −=M

n yn‖

≤ ‖xn+1 − xn‖+ δn+1|αn+1 − αn|‖Bxn‖+ |δn − δn+1|‖xn − vn‖

+ ‖=M
n+1yn −=M

n yn‖ (3.42)

and

‖en+1 − en‖

= ‖PC(Wn+1un+1 − λn+1BWn+1un+1)− PC(Wnun − λnBWnun)‖

≤ ‖(Wn+1un+1 − λn+1BWn+1un+1)− (Wnun − λnBWnun)‖

= ‖(Wn+1un+1 − λn+1BWn+1un+1)− (Wn+1un − λn+1BWn+1un)

+ (Wn+1un − λn+1BWn+1un)− (Wnun − λnBWnun)‖

≤ ‖(Wn+1un+1 − λn+1BWn+1un+1)− (Wn+1un − λn+1BWn+1un)‖

+ ‖Wn+1un −Wnun‖+ ‖λnBWnun − λn+1BWn+1un‖

≤ ‖un+1 − un‖+ M1

n∏
i=1

µi + λn‖BWnun‖+ λn+1‖BWn+1un‖

≤ ‖xn+1 − xn‖+ δn+1|αn+1 − αn|‖Bxn‖+ |δn − δn+1|‖xn − vn‖

+‖=M
n+1yn −=M

n yn‖+ M1

n∏
i=1

µi + λn‖BWnun‖+ λn+1‖BWn+1un‖.(3.43)
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Setting

ln =
xn+1 − βnxn

1− βn

=
εnγf(un) +

(
(1− βn)I − εnA

)
en

1− βn

,

we have xn+1 = (1− βn)ln + βnxn, n ≥ 1. It follows that

ln+1 − ln

=
εn+1γf(un+1) +

(
(1− βn+1)I − εn+1A

)
en+1

1− βn+1

− εnγf(un) +
(
(1− βn)I − εnA

)
en

1− βn

=
εn+1

1− βn+1

(
γf(un+1)− Aen+1

)

+
εn

1− βn

(
Aen − γf(un)

)
+ (en+1 − en). (3.44)

It follows from (3.43) and (3.44) that

‖ln+1 − ln‖ − ‖xn+1 − xn‖

≤ εn+1

1− βn+1

∥∥γf(un+1)− Aen+1

∥∥ +
εn

1− βn

∥∥Aen − γf(un)
∥∥

+ δn+1|αn+1 − αn|‖Bxn‖+ |δn − δn+1|‖xn − vn‖

+ ‖=M
n+1yn −=M

n yn‖+ M1

n∏
i=1

µi + λn‖BWnun‖

+ λn+1‖BWn+1un‖

≤ εn+1

1− βn+1

(
‖γf(un+1)‖+ ‖Aen+1‖

)
+

εn

1− βn

(
‖Aen‖+ ‖γf(un)‖

)

+ δn+1|αn+1 − αn|‖Bxn‖+ |δn − δn+1|‖xn − vn‖

+ ‖=M
n+1yn −=M

n yn‖+ M1

n∏
i=1

µi + λn‖BWnun‖

+ λn+1‖BWn+1un‖. (3.45)

This together with conditions (C1)-(C4) and (3.35) imply that

lim sup
n−→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖
) ≤ 0.

By Lemma 2.11, we obtain

lim
n−→∞

‖ln − xn‖ = 0.

Consequently,

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

(1− βn)‖ln − xn‖ = 0. (3.46)
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Applying (3.35), (3.46) and conditions (C3), (C4) to (3.39) and (3.42), we obtain

that

lim
n−→∞

‖un+1 − un‖ = lim
n−→∞

‖vn+1 − vn‖ = 0. (3.47)

Step 5. We show that lim
n→∞

‖Wnen − en‖ = 0.

For any x̃ ∈ Θ and (3.28), we obtain

‖vn − x̃‖2 = ‖PC(xn − αnBxn)− PC(x̃− αnBx̃)‖2

≤ ‖(xn − αnBxn)− (x̃− αnBx̃)‖2

≤ ‖xn − x̃‖2 + (α2
n − 2αnξ)‖Bxn −Bx̃‖2. (3.48)

By Lemma 2.31(iv) and (3.48), we have

‖yn − x̃‖2 ≤ (1− δn)‖xn − x̃‖2 + δn‖vn − x̃‖2

≤ (1− δn)‖xn − x̃‖2 + δn

{‖xn − x̃‖2 + (α2
n − 2αnξ)‖Bxn −Bx̃‖2

}

= ‖xn − x̃‖2 + (α2
n − 2αnξ)δn‖Bxn −Bx̃‖.2 (3.49)

So, from (3.31) and (3.49), we derive

‖en − x̃‖2 ≤ ‖un − x̃‖2 ≤ ‖xn − x̃‖2 + (α2
n − 2αnξ)δn‖Bxn −Bx̃‖.2 (3.50)

From (3.26), we have

‖xn+1 − x̃‖2

= ‖((1− βn)I − εnA)(en − x̃) + βn(xn − x̃) + εn(γf(un)− Ax̃)‖2

= ‖((1− βn)I − εnA)(en − x̃) + βn(xn − x̃)‖2

+ ε2
n‖γf(un)− Ax̃‖2 + 2βnεn〈xn − x̃, γf(un)− Ax̃〉

+ 2εn〈((1− βn)I − εnA)(en − x̃), γf(un)− Ax̃〉

≤
(
(1− βn − εnγ̄)‖en − x̃‖+ βn‖xn − x̃‖

)2

+εnLn

≤ (1− βn − εnγ̄)2‖en − x̃‖2 + β2
n‖xn − x̃‖2

+ 2(1− βn − εnγ̄)βn‖en − x̃‖‖xn − x̃‖+ εnLn
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≤
[
(1− εnγ̄)2 − 2(1− εnγ̄)βn + β2

n

]
‖en − x̃‖2

+ (1− βn − εnγ̄)βn

{
‖en − x̃‖2 + ‖xn − x̃‖2

}
+ β2

n‖xn − x̃‖2 + εnLn

= (1− εnγ̄)(1− βn − εnγ̄)‖en − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn (3.51)

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − x̃‖2 + (α2

n − 2αnξ)δn‖Bxn −Bx̃‖2
}

+ (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

= (1− εnγ̄)2‖xn − x̃‖2

+ (1− εnγ̄)(1− βn − εnγ̄)(α2
n − 2αnξ)δn‖Bxn −Bx̃‖2 + εnLn

≤ ‖xn − x̃‖2 + (1− εnγ̄)(1− βn − εnγ̄)(α2
n − 2αnξ)δn‖Bxn −Bx̃‖2 + εnLn.

It follows that

(1− εnγ̄)(1− βn − εnγ̄)(2gξ − e2)b‖Bxn −Bx̃‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)(2αnξ − α2
n)δn‖Bxn −Bx̃‖2

≤ ‖xn − x̃‖2 − ‖xn+1 − x̃‖2 + εnLn

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + εnLn,

where

Ln = εn‖γf(un)− Ax̃‖2 + 2βn〈xn − x̃, γf(un)− Ax̃〉

+ 2〈((1− βn)I − εnA)(en − x̃), γf(un)− Ax̃〉.

By conditions (C1), (C2) and (3.46), we obtain

lim
n→∞

‖Bxn −Bx̃‖ = 0. (3.52)
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Since PC is firmly nonexpansive mapping, we have

‖vn − x̃‖2 = ‖PC(xn − αnBxn)− PC(x̃− αnBx̃)‖2

≤ 〈
(xn − αnBxn)− (x̃− αnBx̃), vn − x̃

〉

=
1

2

{
‖(xn − αnBxn)− (x̃− αnBx̃)‖2 + ‖vn − x̃‖2

−‖(xn − αnBxn)− (x̃− αnBx̃)− (vn − x̃)‖2
}

≤ 1

2

{
‖xn − x̃‖2 + ‖vn − x̃‖2 − ‖(xn − vn)− αn(Bxn −Bx̃)‖2

}

≤ 1

2

{
‖xn − x̃‖2 + ‖vn − x̃‖2 − ‖xn − vn‖2

−α2
n‖Bxn −Bx̃‖2 + 2αn‖xn − vn‖‖Bxn −Bx̃‖

}
.

Hence, we have

‖vn − x̃‖2 ≤ ‖xn − x̃‖2 − ‖xn − vn‖2 + 2αn‖xn − vn‖‖Bxn −Bx̃‖

and so

‖yn − x̃‖2

≤ (1− δn)‖xn − x̃‖2 + δn‖vn − x̃‖2

≤ (1− δn)‖xn − x̃‖2 + δn

{‖xn − x̃‖2 − ‖xn − vn‖2 + 2αn‖xn − vn‖‖Bxn −Bx̃‖}

= ‖xn − x̃‖2 − δn‖xn − vn‖2 + 2δnαn‖xn − vn‖‖Bxn −Bx̃‖. (3.53)

Using (3.51) and (3.53), we also have

‖xn+1 − x̃‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)‖en − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)‖un − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)‖yn − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − x̃‖2 − δn‖xn − vn‖2 + 2δnαn‖xn − vn‖‖Bxn −Bx̃‖

}

+ (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ ‖xn − x̃‖2 − (1− εnγ̄)(1− βn − εnγ̄)δn‖xn − vn‖2

+ 2(1− εnγ̄)(1− βn − εnγ̄)δnαn‖xn − vn‖‖Bxn −Bx̃‖+ εnLn.
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It follow that

(1− εnγ̄)(1− βn − εnγ̄)δn‖xn − vn‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖)

+ 2(1− εnγ̄)(1− βn − εnγ̄)δnαn‖xn − vn‖‖Bxn −Bx̃‖+ εnLn.

From conditions (C1), C(4), (3.46) and (3.52), we obtain

lim
n→∞

‖xn − vn‖ = 0. (3.54)

Observe also that if en = PC(Wnun − λnBWnun), then

‖en − x̃‖2 = ‖PC(Wnun − λnBWnun)− PC(x̃− λnBx̃)‖2

≤ ‖(Wnun − λnBWnun)− (x̃− λnBx̃)‖2

= ‖(Wnun − λnBWnun)− (Wnx̃− λnBWnx̃)‖2

≤ ‖un − x̃‖2 + (λ2
n − 2λnξ)‖BWnun −Bx̃‖2

≤ ‖xn − x̃‖2 + (λ2
n − 2λnξ)‖BWnun −Bx̃‖2. (3.55)

Substituting (3.55) in (3.51), we have

‖xn+1 − x̃‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)‖en − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − x̃‖2 + (λ2

n − 2λnξ)‖BWnun −Bx̃‖2
}

+ (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ ‖xn − x̃‖2 + (1− εnγ̄)(1− βn − εnγ̄)(λ2
n − 2λnξ)‖BWnun −Bx̃‖2 + εnLn.

It follows that

(1− εnγ̄)(1− βn − εnγ̄)(2gξ − e2)‖BWnun −Bx̃‖2

≤ (1− εnγ̄)(1− βn − εnγ̄)(2λnξ − λ2
n)‖BWnun −Bx̃‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + εnLn

Since ‖xn+1 − xn‖ −→ 0 (n −→∞) and conditions (C1) and (C2), we obtain

lim
n→∞

‖BWnun −Bx̃‖ = 0. (3.56)
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Since PC is firmly nonexpansive (Lemma 2.31 (iii)), we have

‖en − x̃‖2 = ‖PC(Wnun − λnBWnun)− PC(x̃− λnBx̃)‖2

≤ 〈
(Wnun − λnBWnun)− (x̃− λnBx̃), en − x̃

〉

=
1

2

{
‖(Wnun − λnBWnun)− (x̃− λnBx̃)‖2 + ‖en − x̃‖2

−‖(Wnun − λnBWnun)− (x̃− λnBx̃)− (en − x̃)‖2
}

≤ 1

2

{
‖un − x̃‖2 + ‖en − x̃‖2 − ‖(Wnun − en)− λn(BWnun −Bx̃)‖2

}

≤ 1

2

{
‖xn − x̃‖2 + ‖en − x̃‖2 − ‖Wnun − en‖2

−λ2
n‖BWnun −Bx̃‖2 + 2λn‖Wnun − en‖‖BWnun −Bx̃‖

}
.

Hence, we have

‖en − x̃‖2

≤ ‖xn − x̃‖2 − ‖Wnun − en‖2 + 2λn‖Wnun − en‖‖BWnun −Bx̃‖. (3.57)

Using (3.51) and (3.57), we also have

‖xn+1 − x̃‖2 ≤ (1− εnγ̄)(1− βn − εnγ̄)‖en − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − x̃‖2 − ‖Wnun − en‖2

+ 2λn‖Wnun − en‖‖BWnun −Bx̃‖
}

+ (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ ‖xn − x̃‖2 − (1− εnγ̄)(1− βn − εnγ̄)‖Wnun − en‖2

+ 2(1− εnγ̄)(1− βn − εnγ̄)λn‖Wnun − en‖‖BWnun −Bx̃‖+ εnLn.

It follow that

(1− εnγ̄)(1− βn − εnγ̄)‖Wnun − en‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖)

+ 2(1− εnγ̄)(1− βn − εnγ̄)λn‖Wnun − en‖‖BWnun −Bx̃‖+ εnLn.

From condition (C1), (3.46) and (3.56), we obtain

lim
n→∞

‖Wnun − en‖ = 0. (3.58)
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For any x̃ ∈ Θ, note that JFk
rk,n

is firmly nonexpansive (Lemma 2.55(2)) for k ∈
{1, 2, 3, . . . , M}, then we have

‖=k
nyn − x̃‖2 = ‖JFk

rk,n
=k−1

n yn − JFk
rk,n

x̃‖2

≤
〈
JFk

rk,n
=k−1

n yn − JFk
rk,n

x̃,=k−1
n yn − x̃

〉

=
〈
=k

nyn − x̃,=k−1
n yn − x̃

〉

=
1

2

(
‖=k

nyn − x̃‖2 + ‖=k−1
n yn − x̃‖2 − ‖=k

nyn −=k−1
n yn‖2

)
.

So, we obtain

‖=k
nyn − x̃‖2 ≤ ‖=k−1

n yn − x̃‖2 − ‖=k
nyn −=k−1

n yn‖2, k = 1, 2, 3, . . . , M

which implies that for each k ∈ {1, 2, 3, . . . ,M − 1},

‖=k
nyn − x̃‖2 ≤ ‖=0

nyn − x̃‖2 − ‖=k
nyn −=k−1

n yn‖2

−‖=k−1
n yn −=k−2

n yn‖2 − . . .− ‖=2
nyn −=1

nyn‖2 − ‖=1
nyn −=0

nyn‖2

≤ ‖yn − x̃‖2 − ‖=k
nyn −=k−1

n yn‖2

≤ ‖xn − x̃‖2 − ‖=k
nyn −=k−1

n yn‖2.

Consequently, from (3.51) we derive that

‖xn+1 − x̃‖2 ≤ (1− εnγ̄)(1− βn − εnγ̄)‖en − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)‖un − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

= (1− εnγ̄)(1− βn − εnγ̄)‖=k
nyn − x̃‖2 + (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ (1− εnγ̄)(1− βn − εnγ̄)
{
‖xn − x̃‖2 − ‖=k

nyn −=k−1
n yn‖2

}

+ (1− εnγ̄)βn‖xn − x̃‖2 + εnLn

≤ ‖xn − x̃‖2 − (1− εnγ̄)(1− βn − εnγ̄)‖=k
nyn −=k−1

n yn‖2 + εnLn.

Thus, we have

(1− εnγ̄)(1− βn − εnγ̄)‖=k
nyn −=k−1

n yn‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + εnLn.
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By lim inf
n−→∞

βn > 0, εn −→ 0 as n →∞ and (3.46), so we deduce that

lim
n−→∞

‖=k
nyn −=k−1

n yn‖ = 0, k = 1, 2, . . . , M − 1, (3.59)

that is,

‖u(k)
n − u(k−1)

n ‖ −→ 0 as n −→∞.

Therefore, we have

‖yn − un‖ = ‖=0
nyn −=k

nyn‖

≤ ‖=0
nyn −=1

nyn‖+ ‖=1
nyn −=2

nyn‖+ . . . + ‖=M−1
n yn −=M

n yn‖.

From (3.59), we have

lim
n→∞

‖yn − un‖ = 0. (3.60)

Since xn+1 = εnγf(un) + βnxn + ((1− βn)I − εnA)en, we have

‖xn − en‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − en‖

= ‖xn − xn+1‖+ ‖εnγf(un) + βnxn +
(
(1− βn)I − εnA

)
en − en‖

= ‖xn − xn+1‖+ ‖εn(γf(un)− Aen) + βn(xn − en)‖

≤ ‖xn − xn+1‖+ εn(‖γf(un)‖+ ‖Aen‖) + βn‖xn − en‖,

that is,

‖xn − en‖ ≤ 1

1− βn

‖xn − xn+1‖+
εn

1− βn

(‖γf(un)‖+ ‖Aen‖
)
.

By conditions (C1), (C2) and (3.46) it follows that

lim
n−→∞

‖xn − en‖ = 0. (3.61)

On the other hand, from (3.26), we have

‖yn − xn‖ = δn‖vn − xn‖.

Since lim
n−→∞

‖xn − vn‖ = 0, we get

lim
n−→∞

‖yn − xn‖ = 0. (3.62)
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We observe that

‖Wnen − en‖ ≤ ‖Wnen −Wnun‖+ ‖Wnun − en‖

≤ ‖en − xn + xn − yn + yn − un‖+ ‖Wnun − en‖

≤ ‖en − xn‖+ ‖xn − yn‖+ ‖yn − un‖+ ‖Wnun − en‖.

Consequently, we obtain

lim
n→∞

‖Wnen − en‖ = 0. (3.63)

Let W be the mapping defined by (3.25). Since {en} is bounded, applying Lemma

3.56(4) and (3.63), we have

‖Wen − en‖ ≤ ‖Wen −Wnen‖+ ‖Wnen − en‖ −→ 0 as n −→∞. (3.64)

Step 6. We show that q ∈ Θ, where Θ := ∩∞n=1F (Tn) ∩ (∩M
k=1SEP (Fk)

) ∩
V I(C,B).

Since {xn} is bounded, we see that there exits a subsequence {xni
} of {xn}

which converges weakly to q. It follows from (3.62) and (3.61) that yni
⇀ q and

eni
⇀ q . From (3.60), we obtain that =k

ni
yni

⇀ q for k = 1, 2, ..., M .

First, we show that q ∈ ∩M
k=1SEP (Fk). Since un = =k

nyn for k = 1, 2, 3, . . . , M ,

we also have

Fk(=k
nyn, y) +

1

rn

〈y −=k
nyn,=k

nyn −=k−1
n yn〉 ≥ 0, ∀y ∈ C.

If follows from (A2) that,

1

rn

〈y −=k
nyn,=k

nyn −=k−1
n yn〉 ≥ −Fk(=k

nyn, y) ≥ Fk(y,=k
nyn).

Replacing n by ni, we have

〈
y −=k

ni
yni

,
=k

ni
yni

−=k−1
ni

yni

rni

〉
≥ Fk(y,=k

ni
yni

).

Since
=k

ni
yni−=k−1

ni
yni

rni
−→ 0 and =k

ni
yni

⇀ q, it follows by (A4) that

Fk(y, q) ≤ 0 ∀y ∈ C,
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for each k = 1, 2, 3, . . . , M .

For t with 0 < t ≤ 1 and y ∈ H, let yt = ty + (1 − t)q. Since y ∈ C and

q ∈ C, we have yt ∈ C and hence Fk(yt, q) ≤ 0. So, from (A1) and (A4) we have

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1− t)Fk(yt, q) ≤ tFk(yt, y)

and hence Fk(yt, y) ≥ 0. From (A3), we have Fk(q, y) ≥ 0 for all y ∈ C and hence

q ∈ SEP (Fk) for k = 1, 2, 3, . . . , M , that is, q ∈ ∩M
k=1SEP (Fk).

Next, we show that q ∈ ∩∞n=1F (Tn). By Lemma 3.56(2), we have F (W ) =

∩∞n=1F (Tn). Assume q /∈ F (W ). Since eni
⇀ q and q 6= Wq, it follows by the

Opial’s condition (Lemma 2.25) that

lim inf
i−→∞

‖eni
− q‖ < lim inf

i−→∞
‖eni

−Wq‖

≤ lim inf
i−→∞

{‖eni
−Weni

‖+ ‖Weni
−Wq‖}

≤ lim inf
i−→∞

‖eni
− q‖

which derives a contradiction. Thus, we have q ∈ F (W ) = ∩∞n=1F (Tn).

Finally, Now we prove that q ∈ V I(C,B).

We define the maximal monotone operator

Qq1 =





Bq1 + NCq1, q1 ∈ C,

∅, q1 /∈ C.

For any given (q1, q2) ∈ G(Q), hence q2 − Bq1 ∈ NCq1. Since en ∈ C we see from

the definition of NC that

〈q1 − en, q2 −Bq1〉 ≥ 0.

On the other hand, from en = PC(Wnun − αnBWnun), we have

〈
q1 − en, en − (Wnun − αnBWnun)

〉 ≥ 0,

that is 〈
q1 − en,

en −Wnun

αn

+ BWnun

〉
≥ 0.
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Therefore, we obtain

〈q1 − eni
, q2〉 ≥ 〈q1 − eni

, Bq1〉

≥ 〈q1 − eni
, Bq1〉 −

〈
q1 − eni

,
eni

−Wnuni

αni

+ BWnuni

〉

=

〈
q1 − eni

, Bq1 −BWnuni
− eni

−Wnuni

αni

〉

= 〈q1 − eni
, Bq1 −Beni

〉+ 〈q1 − eni
, Beni

−BWnuni
〉

−
〈

q1 − eni
,
eni

−Wnuni

αni

〉

≥ 〈q1 − eni
, Beni

−BWnuni
〉 −

〈
q1 − eni

,
eni

−Wnuni

αni

〉
,(3.65)

Since ‖eni
−Wnuni

‖ → 0 as i →∞ and B is Lipschitz continuous we obtain that

〈q1 − q, q2〉 ≥ 0.

Notice that Q is maximal monotone, we obtain that q ∈ Q−10 and hence q ∈
V I(C,B). This implies q ∈ Θ. Since z = PΘ(γf + (I − A))(z), we have

lim sup
n−→∞

〈
xn − z, γf(z)− Az

〉
= lim

i−→∞

〈
xni

− z, γf(z)− Az
〉

=
〈
q − z, γf(z)− Az

〉
≤ 0. (3.66)

On the other hand, we have

〈
en − z, γf(z)− Az

〉
=

〈
en − xn, γf(z)− Az

〉
+

〈
xn − z, γf(z)− Az

〉

≤ ‖en − xn‖‖γf(z)− Az‖+
〈
xn − z, γf(z)− Az

〉
.

From (3.61) and (3.66), we obtain that

lim sup
n−→∞

〈
en − z, γf(z)− Az

〉
≤ 0. (3.67)

Step 7. Finally, we show that {xn} converges strongly to z = PΘ(I−A+γf)(z).
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Indeed, from (3.26) , we have

‖xn+1 − z‖2

= ‖((1− βn)I − εnA)(en − z) + βn(xn − z) + εn(γf(un)− Az)‖2

= ‖((1− βn)I − εnA)(en − z) + βn(xn − z)‖2

+ ε2
n‖γf(un)− Az‖2 + 2βnεn〈xn − z, γf(un)− Az〉

+ 2εn〈((1− βn)I − εnA)(en − z), γf(un)− Az〉

≤
(
(1− βn − εnγ̄)‖en − z‖+ βn‖xn − z‖

)2

+ε2
n‖γf(un)− Az‖2

+ 2βnεnγ〈xn − z, f(un)− f(z)〉+ 2βnεn〈xn − z, γf(z)− Az〉

+ 2(1− βn)εnγ〈en − z, f(un)− f(z)〉+ 2εn〈en − z, γf(z)− Az〉

− 2βnεn〈en − z, γf(z)− Az〉 − 2ε2
n〈(A(en − z), γf(un)− Az〉

≤ (1− βn − εnγ̄)2‖en − z‖2 + β2
n‖xn − z‖2 + 2(1− βn − εnγ̄)βn‖en − z‖‖xn − z‖

+ ε2
n‖γf(un)− Az‖2 + 2βnεnγ‖xn − z‖‖f(un)− f(z)‖

+ 2(1− βn)εnγ‖en − z‖‖f(un)− f(z)‖+ 2βnεn‖xn − z‖‖γf(z)− Az‖

− 2βnεn‖en − z‖‖γf(z)− Az‖ − 2ε2
n‖A(en − z)‖‖γf(un)− Az‖

+ 2εn〈en − z, γf(z)− Az〉

≤
[
(1− εnγ̄)2 − 2(1− εnγ̄)βn + β2

n

]
‖en − z‖2 + β2

n‖xn − z‖2

+ (1− βn − εnγ̄)βn

{
‖en − z‖2 + ‖xn − z‖2

}
+ ε2

n‖γf(un)− Az‖2

+ 2βnεnγη‖xn − z‖‖un − z‖+ 2(1− βn)εnγη‖en − z‖‖un − z‖

+ 2βnεn‖xn − z‖‖γf(z)− Az‖ − 2βnεn‖en − z‖‖γf(z)− Az‖

− 2ε2
n‖A(en − z)‖‖γf(un)− Az‖+ 2εn〈en − z, γf(z)− Az〉

≤ (1− εnγ̄)(1− βn − εnγ̄)‖en − z‖2 + (1− εnγ̄)βn‖xn − z‖2

+ ε2
n‖γf(un)− Az‖2 + 2βnεnγη‖xn − z‖2 + 2(1− βn)εnγη‖xn − z‖2

+ 2βnεn‖xn − z‖‖γf(z)− Az‖ − 2βnεn‖en − z‖‖γf(z)− Az‖

+ 2ε2
n‖A(en − z)‖‖γf(un)− Az‖+ 2εn〈en − z, γf(z)− Az〉
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≤ (1− εnγ̄)(1− βn − εnγ̄)‖xn − z‖2 + (1− εnγ̄)βn‖xn − z‖2

+ ε2
n‖γf(un)− Az‖2 + 2εnγη‖xn − z‖2

+ 2βnεn‖xn − z‖‖γf(z)− Az‖ − 2βnεn‖xn − z‖‖γf(z)− Az‖

+ 2ε2
n‖A(en − z)‖‖γf(un)− Az‖+ 2εn〈en − z, γf(z)− Az〉

=
(
1− 2εnγ̄ + ε2

nγ̄2 + 2εnγη
)‖xn − z‖2 + ε2

n‖γf(un)− Az‖2

+ 2ε2
n‖A(en − z)‖‖γf(un)− Az‖+ 2εn〈en − z, γf(z)− Az〉

=
[
1− 2(γ̄ − γη)εn

]‖xn − z‖2 + εn

{
2〈en − z, γf(z)− Az〉+ εnK

}
.

where K is an appropriate constant such that

K ≥ max

{
sup
n≥1

{
γ2‖xn − z‖2 + ‖γf(un)− Az‖2 + 2‖A(en − z)‖‖γf(un)− Az‖

}}
,

Set bn = 2(γ − γη
)
εn and cn = εn

{
2〈en − z, γf(z)− Az〉+ εnK

}
. Then we have

‖xn+1 − z‖2 ≤ (1− bn)‖xn − z‖2 + cn, ∀n ≥ 0. (3.68)

From the condition (C1) and (3.124), we see that

lim
n→∞

bn = 0,
∞∑

n=0

bn = ∞ and lim sup
n→∞

cn ≤ 0.

Therefore, applying Lemma 2.12 to (3.68), we get that {xn} converges strongly to

z ∈ Θ. This completes the proof.

Corollary 3.58. Let C be a nonempty closed convex subset of a real Hilbert space

H, let Fk, k ∈ {1, 2, 3, . . . , M} be a bifunction from C×C to R satisfying (A1)-(A4)

and let B be ξ-inverse strongly monotone such that

Θ :=
(∩M

k=1SEP (Fk)
) ∩ V I(C, B) 6= ∅.

Let f be a contraction of H into itself with η ∈ (0, 1). Let {xn}, {yn} and {un} be

sequences generated by



x1 = x ∈ C chosen arbitrary,

yn = (1− δn)xn + δnPC(xn − αnBxn),

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
yn,

xn+1 = εnf(un) + βnxn +
(
1− βn − εn

)
PC(un − λnBun), ∀n ≥ 1,
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where {εn}, {βn} are two sequences in (0, 1) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are a

real sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {αn}, {λn} ⊂ [e, g] ⊂ (0, 2ξ), limn→∞ αn = 0 and limn→∞ λn = 0,

(C4) {δn} ⊂ [0, b], for some b ∈ (0, 1) and limn→∞ |δn+1 − δn| = 0,

(C5) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . ,M},

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique solution

of the variational inequality

〈
(f(z)− z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘf(z).

Proof . Put Tn ≡ I for all n ≥ 1 and for all x ∈ C. Then Wn = I, A = I and

γ = 1. The conclusion follows from Theorem 3.57. This completes the proof.

If δn = 0 and M = 1, in Theorem 3.57, then we can obtain the following

result immediately.

Corollary 3.59. Let C be a nonempty closed convex subset of a real Hilbert space

H, let Fk, k ∈ {1, 2, 3, . . . , M} be a bifunction from C × C to R satisfying (A1)-

(A4), let {Tn} be an infinite family of nonexpansive mappings of C into itself and

let B be ξ-inverse strongly monotone such that

Θ := ∩∞n=1F (Tn) ∩ EP (F ) ∩ V I(C,B) 6= ∅.



46

Let f be a contraction of H into itself with η ∈ (0, 1) and let A be a strongly positive

linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄
η
. Let {xn},

{yn} and {un} be sequences generated by





x1 = x ∈ C chosen arbitrary,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = εnγf(un) + βnxn +
(
(1− βn)I − εnA

)
PC(Wnun − λnBWnun), ∀n ≥ 1,

where {Wn} is the sequence generated by (3.24) and {εn}, {βn} are two sequences

in (0, 1) and {rn} are a real sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {λn} ⊂ [e, g] ⊂ (0, 2ξ) and limn→∞ λn = 0,

(C4) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique solution

of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘ(I − A + γf)(z).

3.2 Relaxed hybrid Steepest Descent Methods

let D : C −→ H be a nonlinear mapping, ϕ : C −→ R ∪ {+∞} be a real-

valued function and let F : C×C −→ R be a bifunction such that C ∩ domϕ 6= ∅,
where R is the set of real numbers and domϕ = {x ∈ C : ϕ(x) < +∞}.
The generalized mixed equilibrium problem for finding x ∈ C such that

F (x, y) + 〈Dx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C. (3.69)
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The set of solutions of (3.69) is denoted by GMEP (F, ϕ, D), that is,

GMEP (F, ϕ, D) = {x ∈ C : F (x, y) + 〈Dx, y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C}.

We see that if x is a solution of a problem (3.69) then x ∈ domϕ.

If D = 0, then the problem (3.69) is reduced into the mixed equilibrium

problem is denoted by MEP (F, ϕ).

If ϕ = 0, then the problem (3.69) is reduced into the generalized equilibrium

problem is denoted by GEP (F, D).

If D = 0 and ϕ = 0, then the problem (3.69) is reduced into the equilibrium

problem is denoted by EP (F ).

If F = 0 and ϕ = 0, then the problem (3.69) is reduced into the variational

inequality problem is denoted by V I(C, D).

For solving the generalized mixed equilibrium problem and the mixed equi-

librium problem, let us give the following assumptions for the bifunction F , the

function ϕ and the set C:

(H1) F (x, x) = 0, ∀x ∈ C;

(H2) F is monotone, that is, F (x, y) + F (y, x) ≤ 0 ∀x, y ∈ C;

(H3) for each y ∈ C, x 7→ F (x, y) is weakly upper semicontinuous;

(H4) for each x ∈ C, y 7→ F (x, y) is convex;

(H5) for each x ∈ C, y 7→ F (x, y) is lower semicontinuous;

(B1) for each x ∈ H and λ > 0, there exist abounded subset Gx ⊆ C and yx ∈ C

such that for any z ∈ C \Gx,

F (z, yx) + ϕ(yx)− ϕ(z) +
1

λ
〈yx − z, z − x〉 < 0; (3.70)
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(B2) C is a bounded set.

Lemma 3.60. [14] Let C be a nonempty closed convex subset of H. Let F :

C × C → R be a bifunction satisfies (H1)-(H5) and let ϕ : C → R ∪ {+∞} be

a proper lower semicontinuous and convex function. Assume that either (B1) or

(B2) holds. For λ > 0 and x ∈ H, define a mapping T
(F,ϕ)
λ : H → C as follows:

T
(F,ϕ)
λ (x) =

{
z ∈ C : F (z, y)+ϕ(y)−ϕ(z)+

1

λ
〈y−z, z−x〉 ≥ 0, ∀y ∈ C

}
, ∀z ∈ H.

Then, the following properties hold:

1. For each x ∈ H, T
(F,ϕ)
λ (x) 6= ∅;

2. T
(F,ϕ)
λ is single-valued;

3. T
(F,ϕ)
λ is firmly nonexpansive, that is, for any x, y ∈ H,

∥∥T
(F,ϕ)
λ x− T

(F,ϕ)
λ y

∥∥2 ≤
〈
T

(F,ϕ)
λ x− T

(F,ϕ)
λ y, x− y

〉
;

4. F (T
(F,ϕ)
λ ) = MEP (F, ϕ);

5. MEP (F, ϕ) is closed and convex.

Theorem 3.61. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let F be bifunction from C × C to R satisfying (H1)-(H5) and let ϕ : C −→
R∪{+∞} be a proper lower semicontinuous and convex function with either (B1) or

(B2). Let B, D be two ξ, β-inverse strongly monotone mapping of C into H, respec-

tively. Let S : C −→ C be a nonexpansive mapping. Let f : C → C be a contraction

mapping with η ∈ (0, 1) and let A be a strongly positive linear bounded operator with

γ > 0 and 0 < γ < γ
η
. Assume that Θ := F (S) ∩ V I(C,B) ∩GMEP (F, ϕ, D) 6= ∅.

Let {xn}, {yn} and {un} be sequence generated by the following iterative algorithm:




x1 = x ∈ C chosen arbitrary,

un = T
(F,ϕ)
λn

(xn − λnDxn),

yn = βnγf(xn) + (I − βnA)PC(Sun − αnBSun),

xn+1 = (1− δn)yn + δnPC(Syn − αnBSyn), ∀n ≥ 1,

(3.71)
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where {δn}, {βn} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b], for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) {λn} ⊂ [c, d] ⊂ (0, 2β) and lim
n−→∞

|λn+1 − λn| = 0,

(C4) {αn} ⊂ [e, g] ⊂ (0, 2ξ) and lim
n−→∞

|αn+1 − αn| = 0.

Then, {xn} converges strongly to z ∈ Θ, which is the unique solution of the varia-

tional inequality 〈
γf(z)− Az, x− z

〉
≤ 0, ∀x ∈ Θ. (3.72)

Proof . We may assume, in view βn −→ 0 as n −→ ∞, that βn ∈ (0, ‖A‖−1). By

Lemma 2.40, we obtain ‖I − βnA‖ ≤ 1− βnγ̄, ∀n ∈ N.

We divide the proof of Theorem 3.61 into six steps.

Step 1. We claim that the sequence {xn} is bounded.

Now, let p ∈ Θ, It is clear that

p = Sp = PC(p− αnBp) = T
(F,ϕ)
λn

(p− λnDp).

Let un = T
(F,ϕ)
λn

(xn − λnDxn) ∈ dom ϕ, D be β-inverse strongly monotone and

0 ≤ λn ≤ 2β, we have

‖un − p‖ ≤ ‖xn − p‖. (3.73)

Let zn = PC(Sun − αnBSun) and S − αnBS be a nonexpansive mapping, we have

from Lemma 2.35 that

‖zn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ (3.74)
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and

‖yn − p‖ ≤ βn‖γf(xn)− Ap‖+ ‖1− βnA‖‖zn − p‖

≤ βn‖γf(xn)− Ap‖+ (1− βnγ)‖zn − p‖

≤ βnγ‖f(xn)− f(p)‖+ βn‖γf(p)− Ap‖+ (1− βnγ)‖xn − p‖

≤ βnγη‖xn − p‖+ βn‖γf(p)− Ap‖+ (1− βnγ)‖xn − p‖

= (1− (γ − ηγ)βn)‖xn − p‖+ βn‖γf(p)− Ap‖.

Similarly, and let wn = PC(Syn − αnBSyn) in (3.74), we can prove that

‖wn − p‖ ≤ ‖yn − p‖ ≤ (1− (γ − ηγ)βn)‖xn − p‖+ βn‖γf(p)− Ap‖,(3.75)

which yields that

‖xn+1 − p‖ ≤ (1− δn)‖yn − p‖+ δn‖wn − p‖

≤ (1− δn)‖yn − p‖+ δn‖yn − p‖

= ‖yn − p‖|

≤ (1− (γ − ηγ)βn)‖xn − p‖+ βn‖γf(p)− Ap‖

= (1− (γ − ηγ)βn)‖xn − p‖+
(γ − ηγ)βn

(γ − ηγ)
‖γf(p)− Ap‖

≤ max

{
‖xn − p‖, ‖γf(p)− Ap‖

(γ − ηγ)

}

≤ . . .

≤ max

{
‖x1 − p‖, ‖γf(p)− Ap‖

(γ − ηγ)

}
, ∀n ≥ 1.

This show that {xn} is bounded. Hence {un}, {zn}, {yn}, {wn}, {BSun}, {BSyn},
{Azn} and {f(xn)} are also bounded.

We can choose some appripriate constant M > 0 such that

M ≥ max

{
sup
n≥1

{‖BSun‖}, sup
n≥1

{‖BSyn‖}, sup
n≥1

{‖γf(xn)− Azn‖},

sup
n≥1

{‖un − xn‖}, sup
n≥1

{‖wn − yn‖}
}

. (3.76)

Step 2. We claim that lim
n→∞

‖xn+1 − xn‖ = 0.
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It follows from Lemma 3.60 that un−1 = T
(F,ϕ)
λn−1

(xn−1 − λn−1Dxn−1) and

un = T
(F,ϕ)
λn

(xn − λnDxn) for all n ≥ 1, we get

F (un−1, y) + ϕ(y)− ϕ(un−1) + 〈Dxn−1, y − un−1〉

+
1

λn−1

〈y − un−1, un−1 − xn−1〉 ≥ 0, ∀y ∈ C (3.77)

and

F (un, y)+ϕ(y)−ϕ(un)+ 〈Dxn, y−un〉+ 1

λn

〈y−un, un−xn〉 ≥ 0, ∀y ∈ C. (3.78)

Take y = un−1 in (3.78) and y = un in (3.131), we have

F (un−1, un) + ϕ(un)− ϕ(un−1)

+〈Dxn−1, un − un−1〉+
1

λn−1

〈un − un−1, un−1 − xn−1〉 ≥ 0

and

F (un, un−1) + ϕ(un−1)− ϕ(un) + 〈Dxn, un−1 − un〉+
1

λn

〈un−1 − un, un − xn〉 ≥ 0.

Adding the above two inequalities, the monotonicity of F implies that

〈Dxn −Dxn−1, un−1 − un〉+

〈
un−1 − un,

un − xn

λn

− un−1 − xn−1

λn−1

〉
≥ 0

and

0 ≤
〈

un−1 − un, λn−1(Dxn −Dxn−1) +
λn−1

λn

(un − xn)− (un−1 − xn−1)

〉

=

〈
un − un−1, un−1 − un +

(
1− λn−1

λn

)
un + (xn − λn−1Dxn)

− (xn−1 − λn−1Dxn−1)− xn +
λn−1

λn

xn

〉

=

〈
un − un−1, un−1 − un +

(
1− λn−1

λn

)
(un − xn) + (xn − λn−1Dxn)

− (xn−1 − λn−1Dxn−1)

〉
.
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Without loss of generality, let us assume that there exists c ∈ R such that λn >

c > 0, ∀n ≥ 1, we have

‖un − un−1‖2 ≤ ‖un − un−1‖
{
‖xn − xn−1‖+

∣∣∣1− λn−1

λn

∣∣∣‖un − xn‖
}

and hence

‖un − un−1‖ ≤ ‖xn − xn−1‖+
1

λn

|λn − λn−1|‖un − xn‖

≤ ‖xn − xn−1‖+
1

c
|λn − λn−1|M. (3.79)

Since S − αnBS is nonexpansive for each n ≥ 1, we have

‖zn − zn−1‖

= ‖PC(Sun − αnBSun)− PC(Sun−1 − αn−1BSun−1)‖

≤ ‖(Sun − αnBSun)− (Sun−1 − αn−1BSun−1)‖

= ‖(Sun − αnBSun)− (Sun−1 − αnBSun−1) + (αn−1 − αn)BSun−1‖

≤ ‖(Sun − αnBSun)− (Sun−1 − αnBSun−1)‖+ |αn−1 − αn|‖BSun−1‖

≤ ‖un − un−1‖+ |αn−1 − αn|‖BSun−1‖. (3.80)

Substitution (3.79) into (3.80), we obtain

‖zn − zn−1‖ ≤ ‖xn − xn−1‖+
1

c
|λn − λn−1|M + |αn−1 − αn|‖BSun−1‖.(3.81)

From (3.71), we have

‖yn − yn−1‖ = ‖βnγf(xn) + (I − βnA)zn − βn−1γf(xn−1)− (I − βn−1A)zn−1‖

= ‖βnγ(f(xn)− f(xn−1)) + (βn − βn−1)γf(xn−1)

+ (I − βnA)(zn − zn−1)− (βn − βn−1)Azn−1‖

= ‖βnγ(f(xn)− f(xn−1)) + (βn − βn−1)(γf(xn−1)− Azn−1)

+ (I − βnA)(zn − zn−1)‖

≤ βnγ‖f(xn)− f(xn−1)‖+ |βn − βn−1|‖γf(xn−1)− Azn−1‖

+ (I − βnA)‖zn − zn−1‖

≤ βnγη‖xn − xn−1‖+ |βn − βn−1|‖γf(xn−1)− Azn−1‖

+ (1− βnγ)‖zn − zn−1‖. (3.82)
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Substitution (3.81) into (3.82) yields that

‖yn − yn−1‖

≤ βnγη‖xn − xn−1‖+ |βn − βn−1|‖γf(xn−1)− Azn−1‖

+ (1− βnγ)
{
‖xn − xn−1‖+

1

c
|λn − λn−1|M + |αn−1 − αn|‖BSun−1‖

}

= (1− (γ − γη)βn)‖xn − xn−1‖+ |βn − βn−1|‖γf(xn−1)− Azn−1‖

+
(1− βnγ)

c
|λn − λn−1|M + (1− βnγ)|αn−1 − αn|‖BSun−1‖. (3.83)

From wn = PC(Syn − αnBSyn) and S − αnBS is nonexpansive mapping, we have

‖wn − wn−1‖ = ‖PC(Syn − αnBSyn)− PC(Syn−1 − αn−1BSyn−1)‖

≤ ‖(Syn − αnBSyn)− (Syn−1 − αn−1BSyn−1)‖

= ‖(Syn − αnBSyn)− (Syn−1 − αnBSyn−1) + (αn−1 − αn)BSyn−1‖

≤ ‖yn − yn−1‖+ |αn−1 − αn|‖BSyn−1‖. (3.84)

Also, from (3.71) and (3.83), we have

‖xn+1 − xn‖

= ‖(1− δn)yn + δnwn − {(1− δn−1)yn−1 + δn−1wn−1}‖

= ‖(1− δn)(yn − yn−1) + δn(wn − wn−1) + (δn − δn−1)(wn−1 − yn−1)‖

≤ (1− δn)‖yn − yn−1‖+ δn‖wn − wn−1‖+ |δn − δn−1|‖wn−1 − yn−1‖

≤ (1− δn)‖yn − yn−1‖+ δn

{‖yn − yn−1‖+ |αn−1 − αn|‖BSyn−1‖
}

+ |δn − δn−1|‖wn−1 − yn−1‖

= ‖yn − yn−1‖+ δn|αn−1 − αn|‖BSyn−1‖+ |δn − δn−1|‖wn−1 − yn−1‖

≤ (1− (γ − γη)βn)‖xn − xn−1‖+ |βn − βn−1|‖γf(xn−1)− Azn−1‖

+
(1− βnγ)

c
|λn − λn−1|M + (1− βnγ)|αn−1 − αn|‖BSun−1‖

+ δn|αn−1 − αn|‖BSyn−1‖+ |δn − δn−1|‖wn−1 − yn−1‖

≤ (1− (γ − γη)βn)‖xn − xn−1‖+
{
|βn − βn−1|+ (1− βnγ)

c
|λn − λn−1|

+ (1− βnγ + δn)|αn−1 − αn|+ |δn − δn−1|
}

M. (3.85)
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Set bn = (γ − γη)βn and

cn =
{
|βn−βn−1|+ (1− βnγ)

c
|λn−λn−1|+ (1−βnγ+δn)|αn−1−αn|+|δn−δn−1|

}
M.

Then, we have

‖xn+1 − xn‖ ≤ (1− bn)‖xn − xn−1‖+ cn, ∀n ≥ 0. (3.86)

From the conditions (C1)-(C4), we see that

lim
n→∞

bn = 0,
∞∑

n=0

bn = ∞ and lim sup
n→∞

cn ≤ 0.

Therefore, applying Lemma 2.12 to (3.86), we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.87)

Step 3. We claim that lim
n→∞

‖Swn − wn‖ = 0.

For any p ∈ Θ and Lemma 2.35, we obtain

‖zn − p‖2 = ‖PC(Sun − αnBSun)− PC(p− αnBp)‖2

≤ ‖(Sun − αnBSun)− (p− αnBp)‖2

= ‖(Sun − αnBSun)− (Sp− αnBSp)‖2

≤ ‖xn − p‖2 + (α2
n − 2αnξ)‖BSun −Bp‖2. (3.88)

From (3.71) and (3.88), we have

‖yn − p‖2

= ‖βn(γf(xn)− Ap) + (I − βnA)(zn − p)‖2

= ‖(I − βnA)(zn − p)‖2 + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ (1− βnγ)2‖zn − p‖2 + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ (1− βnγ)2
{
‖xn − p‖2 + (α2

n − 2αnξ)‖BSun −Bp‖2
}

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉
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= (1− βnγ)2‖xn − p‖2 + (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ ‖xn − p‖2 + (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.89)

From (3.71), (3.75), (3.89) and Lemma 2.31(iv), we have

‖xn+1 − p‖2

≤ (1− δn)‖yn − p‖2 + δn‖wn − p‖2

≤ (1− δn)‖yn − p‖2 + δn‖yn − p‖2

≤ ‖yn − p‖2

≤ ‖xn − p‖2 + (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.90)

It follow that

(1− βnγ)2(2gξ − e2)‖BSun −Bp‖2

≤ (1− βnγ)2(2αnξ − α2
n)‖BSun −Bp‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.91)

From condition (C1) and (3.87), we obtain

lim
n→∞

‖BSun −Bp‖ = 0. (3.92)
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From wn = PC(Syn − αnBSyn), (3.89) and Lemma 2.35, we have

‖wn − p‖2 = ‖PC(Syn − αnBSyn)− PC(p− αnBp)‖2

≤ ‖(Syn − αnBSyn)− (p− αnBp)‖2

= ‖(Syn − αnBSyn)− (Sp− αnBSp)‖2

≤ ‖yn − p‖2 + (α2
n − 2αnξ)‖BSyn −Bp‖2

≤
{
‖xn − p‖2 + (1− βnγ)2(α2

n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

}

+ (α2
n − 2αnξ)‖BSyn −Bp‖.2 (3.93)

Using (3.71), (3.89) and (3.93), we obtain

‖xn+1 − p‖2 ≤ (1− δn)‖yn − p‖2 + δn‖wn − p‖2

≤ (1− δn)
{
‖xn − p‖2 + (1− βnγ)2(α2

n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

}

+ δn

{
‖xn − p‖2 + (1− βnγ)2(α2

n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

+ (α2
n − 2αnξ)‖BSyn −Bp‖2

}

= ‖xn − p‖2 + (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

+ (α2
n − 2αnξ)δn‖BSyn −Bp‖.2 (3.94)

It follows that

(2gξ − e2)b‖BSyn −Bp‖2

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+ (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2 + β2

n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.95)

From condition (C1), (3.87) and (3.92), we obtain

lim
n→∞

‖BSyn −Bp‖ = 0. (3.96)



57

Since PC is firmly nonexpansive, we have

‖wn − p‖2 = ‖PC(Syn − αnBSyn)− PC(p− αnBp)‖2

≤ 〈
(Syn − αnBSyn)− (p− αnBp), wn − p

〉

=
1

2

{
‖(Syn − αnBSyn)− (p− αnBp)‖2 + ‖wn − p‖2

−‖(Syn − αnBSyn)− (p− αnBp)− (wn − p)‖2
}

≤ 1

2

{
‖yn − p‖2 + ‖wn − p‖2 − ‖(Syn − wn)− αn(BSyn −Bp)‖2

}

≤ 1

2

(
‖xn − p‖2 + (1− βnγ)2(α2

n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

)

+
1

2

{
‖wn − p‖2 − ‖Syn − wn‖2

−α2
n‖BSyn −Bp‖2 + 2αn〈Syn − wn, BSyn −Bp〉

}
. (3.97)

Hence, we have

‖wn − p‖2 ≤ ‖xn − p‖2 − ‖Syn − wn‖2 + (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

+ 2αn‖Syn − wn‖‖BSyn −Bp‖. (3.98)

Using (3.94) and (3.98), we have

‖xn+1 − p‖2

≤ (1− δn)‖yn − p‖2 + δn‖wn − p‖2

≤ (1− δn)
{
‖xn − p‖2 + (1− βnγ)2(α2

n − 2αnξ)‖BSun −Bp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

}

+ δn

{
‖xn − p‖2 − ‖Syn − wn‖2

+ (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2 + 2αn‖Syn − wn‖‖BSyn −Bp‖

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

}

= ‖xn − p‖2 − δn‖Syn − wn‖2

+ (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2 + 2αnδn‖Syn − wn‖‖BSyn −Bp‖

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.99)
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It follow that

b‖Syn − wn‖2

≤ δn‖Syn − wn‖2 ≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)

+ (1− βnγ)2(α2
n − 2αnξ)‖BSun −Bp‖2 + 2αnδn‖Syn − wn‖‖BSyn −Bp‖

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.100)

Observing condition (C1), (3.87), (3.92) and (3.96), we obtain

lim
n→∞

‖Syn − wn‖ = 0. (3.101)

Note that

‖yn − p‖2

≤ (1− βnγ)2‖zn − p‖2 + β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ (1− βnγ)2‖un − p‖2 + β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ (1− βnγ)2
{
‖xn − p‖2 + λn(λn − 2β)‖Dxn −Dp‖2

}
+ β2

n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ ‖xn − p‖2 + (1− βnγ)2λn(λn − 2β)‖Dxn −Dp‖2 + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.102)

From (3.71) and (3.102), we can compute

‖xn+1 − p‖2

≤ (1− δn)‖yn − p‖2 + δn‖wn − p‖2

≤ (1− δn)‖yn − p‖2 + δn‖yn − p‖2

= ‖yn − p‖2

≤ ‖xn − p‖2 + (1− βnγ)2λn(λn − 2β)‖Dxn −Dp‖2

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.103)
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It follow that

(1− βnγ)2d(2β − c)‖Dxn −Dp‖2

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖) + β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉, (3.104)

which imply that

lim
n→∞

‖Dxn −Dp‖ = 0. (3.105)

In addition, from the firmly nonexpansivity of T
(F,ϕ)
λn

, we have

‖un − p‖2 = ‖T (F,ϕ)
λn

(xn − λnDxn)− T
(F,ϕ)
λn

(p− λnDp)‖2

≤ 〈
(xn − λnDxn)− (p− λnDp), un − p

〉

=
1

2

{
‖(xn − λnDxn)− (p− λnDp)‖2 + ‖un − p‖2

−‖(xn − λnDxn)− (p− λnDp)− (un − p)‖2
}

≤ 1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un − λn(Dxn −Dp)‖2

}

=
1

2

{
‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2

+2λn〈xn − un, Dxn −Dp〉 − λ2
n‖Dxn −Dp‖2

}
.

So, we obtain

‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 + 2λn‖xn − un‖‖Dxn −Dp‖.(3.106)

Substituting (3.106) into (3.102) to get

‖yn − p‖2

≤ (1− βnγ)2‖un − p‖2 + β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ (1− βnγ)2
{
‖xn − p‖2 − ‖xn − un‖2 + 2λn‖xn − un‖‖Dxn −Dp‖

}

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉

≤ ‖xn − p‖2 − (1− βnγ)2‖xn − un‖2 + 2(1− βnγ)2λn‖xn − un‖‖Dxn −Dp‖

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉 (3.107)
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and hence

‖xn+1 − p‖2

≤ ‖yn − p‖2

≤ ‖xn − p‖2 − (1− βnγ)2‖xn − un‖2

+ 2(1− βnγ)2λn‖xn − un‖‖Dxn −Dp‖

+ β2
n‖γf(xn)− Ap‖2 + 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.108)

It follows that

(1− βnγ)2‖xn − un‖2

≤ ‖xn+1 − xn‖(‖xn+1 − p‖+ ‖xn − p‖)

+ 2(1− βnγ)2λn‖xn − un‖‖Dxn −Dp‖+ β2
n‖γf(xn)− Ap‖2

+ 2βn〈(I − βnA)(zn − p), γf(xn)− Ap〉. (3.109)

This together with ‖xn+1− xn‖ → 0, ‖Dxn−Dp‖ → 0, βn → 0 as n →∞ and the

condition on λn implies that

lim
n→∞

‖xn − un‖ = 0 and lim
n→∞

‖xn − un‖
λn

= 0. (3.110)

Consequently, from (3.87) and (3.158)

‖xn+1 − un‖ ≤ ‖xn+1 − xn‖+ ‖xn − un‖ → 0 as n →∞. (3.111)

From (3.71) and condition (C1), we have

‖yn − zn‖ = ‖βnγf(xn) + (1− βnA)zn − zn‖ ≤ βn‖γf(xn)−Azn‖ → 0 as n →∞.

(3.112)

From S − αnBS is nonexpansive mapping(Lemma 2.35), we have

‖wn − zn‖ = ‖PC(Syn − αnBSyn)− PC(Sun − αnBSun)‖

≤ ‖(S − αnBS)yn − (S − αnBS)un‖

≤ ‖yn − un‖. (3.113)
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Next, we will show that ‖xn − yn‖ → 0 as n →∞.

We consider xn+1 − yn = δn(wn − yn) = δn(wn − zn + zn − yn).

From (3.113), we have

‖xn+1 − yn‖ ≤ δn(‖wn − zn‖+ ‖zn − yn‖)

≤ δn(‖yn − un‖+ ‖zn − yn‖)

≤ δn(‖xn+1 − yn‖+ ‖xn+1 − un‖+ ‖zn − yn‖). (3.114)

Observing condition (C2), (3.111) and (3.112), it follow that

‖xn+1−yn‖ ≤ δn

1− δn

(‖xn+1−un‖+‖zn−yn‖) ≤ b

1− b
(‖xn+1−un‖+‖zn−yn‖) → 0.

(3.115)

From (3.87) and (3.115), we obtain

‖xn − yn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − yn‖ → 0 as n →∞. (3.116)

We observe that

‖Swn − wn‖ ≤ ‖Swn − Szn‖+ ‖Szn − Syn‖+ ‖Syn − wn‖

≤ ‖wn − zn‖+ ‖zn − yn‖+ ‖Syn − wn‖

≤ ‖yn − un‖+ ‖zn − yn‖+ ‖Syn − wn‖

≤ ‖yn − xn‖+ ‖xn − un‖+ ‖zn − yn‖+ ‖Syn − wn‖.(3.117)

Consequently, we obtain

lim
n→∞

‖Swn − wn‖ = 0. (3.118)

Step 4. We prove that the mapping PΘ(γf + (I − A)) has a unique fixed point.

Since f be a contraction of C into itself with coefficient η ∈ (0, 1). Then,
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we have

‖PΘ(γf + (I − A))(x)− PΘ(γf + (I − A))(y)‖

≤ ‖(γf + (I − A))(x)− (γf + (I − A))(y)‖

≤ γ‖f(x)− f(y)‖+ ‖I − A‖‖x− y‖

≤ γη‖x− y‖+ (1− γ̄)‖x− y‖

= (1− (γ̄ − ηγ))‖x− y‖, ∀x, y ∈ C.

Since 0 < 1− (γ̄ − ηγ) < 1, it follows that PΘ(γf + (I −A)) is a contraction of C

into itself. Therefore by the Banach Contraction Mapping Principle, has a unique

fixed point, say z ∈ C, that is,

z = PΘ(γf + (I − A))(z).

Step 5. We claim that q ∈ F (S) ∩ V I(C, B) ∩GMEP (F, ϕ,D).

First, we show that q ∈ F (S).

Assume q /∈ F (S). Since wni
⇀ q and q 6= Sq, it follows by the Opial’s

condition (Lemma 2.25) that

lim inf
i−→∞

‖wni
− q‖ < lim inf

i−→∞
‖wni

− Sq‖

≤ lim inf
i−→∞

{‖wni
− Swni

‖+ ‖Swni
− Sq‖}

= lim inf
i−→∞

∥∥Swni
− Sq‖

≤ lim inf
i−→∞

‖wni
− q‖.

This is a contradiction. Thus, we have q ∈ F (S).

Next, we prove that q ∈ GMEP (F, ϕ, D).

From Lemma 3.60 that un = T
(F,ϕ)
λn

(xn − λnDxn) for all n ≥ 1 is equivalent

to

F (un, y) + ϕ(y)− ϕ(un) + 〈Dxn, y − un〉+
1

λn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.
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From (H2), we also have

ϕ(y)− ϕ(un) + 〈Dxn, y − un〉+
1

λn

〈y − un, un − xn〉 ≥ −F (un, y) ≥ F (y, un).

Replacing n by ni, we obtain

ϕ(y)− ϕ(uni
) + 〈Dxni

, y − uni
〉+

〈
y − uni

,
uni

− xni

λni

〉
≥ F (y, uni

). (3.119)

Let yt = ty +(1− t)q for all t ∈ (0, 1] and y ∈ C. Since y ∈ C and q ∈ C, we obtain

yt ∈ C. So, from (3.119) we have

〈yt − uni
, Dyt〉 ≥ 〈yt − uni

, Dyt〉 − ϕ(yt) + ϕ(uni
)− 〈Dxni

, yt − uni
〉

−
〈

yt − uni
,
uni

− xni

λni

〉
+ F (yt, uni

)

≥ 〈yt − uni
, Dyt −Duni

〉+ 〈yt − uni
, Duni

−Dxni
〉 − ϕ(yt)

+ ϕ(uni
)−

〈
yt − uni

,
uni

− xni

λni

〉
+ F (yt, uni

). (3.120)

Since ‖uni
− xni

‖ −→ 0, i →∞, we obtain ‖Duni
−Dxni

‖ −→ 0. Furthermore, by

the monotonicity of D, we have

〈yt − uni
, Dyt −Duni

〉 ≥ 0.

So, from (H4), (H5) and the weak lower semicontinuity of ϕ,
uni−xni

λni
−→ 0 and

uni
⇀ q, we have

〈yt − q,Dyt〉 ≥ −ϕ(yt) + ϕ(q) + F (yt, q) as i −→∞. (3.121)

From (H1), (H4) and (3.121), we also get

0 = F (yt, yt) + ϕ(yt)− ϕ(yt)

≤ tF (yt, y) + (1− t)F (yt, q) + tϕ(y) + (1− t)ϕ(q)− ϕ(yt)

= t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)[F (yt, q) + ϕ(q)− ϕ(yt)]

≤ t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)〈yt − q,Dyt〉

= t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)t〈y − q,Dyt〉.
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Dividing by t, we get

F (yt, y) + ϕ(y)− ϕ(yt) + (1− t)〈y − q,Dyt〉 ≥ 0.

Letting t → 0 in the above inequality, we arrive that, for each y ∈ C

F (q, y) + ϕ(y)− ϕ(q) + 〈y − q, Dq〉 ≥ 0.

This implies that, q ∈ GMEP (F, ϕ,D).

Finally, Now we prove that q ∈ V I(C,B).

We define the maximal monotone operator

Qq1 =





Bq1 + NCq1, q1 ∈ C,

∅, q1 /∈ C.

Since B is ξ-inverse strongly monotone and condition (C4), we have

〈Bx−By, x− y〉 ≥ ξ‖Bx−By‖2 ≥ 0.

Then Q is maximal monotone. Let (q1, q2) ∈ G(Q). Since q2 − Bq1 ∈ NCq1 and

wn ∈ C, we have 〈q1−wn, q2−Bq1〉 ≥ 0. On the other hand, from wn = PC(Syn−
αnBSyn), we have

〈
q1 − wn, wn − (Syn − αnBSyn)

〉 ≥ 0,

that is 〈
q1 − wn,

wn − Syn

αn

+ BSyn

〉
≥ 0.
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Therefore, we obtain

〈q1 − wni
, q2〉

≥ 〈q1 − wni
, Bq1〉

≥ 〈q1 − wni
, Bq1〉 −

〈
q1 − wni

,
wni

− Syni

αni

+ BSyni

〉

=

〈
q1 − wni

, Bq1 −BSyni
− wni

− Syni

αni

〉

= 〈q1 − wni
, Bq1 −Bwni

〉+ 〈q1 − wni
, Bwni

−BSyni
〉

−
〈

q1 − wni
,
wni

− Syni

αni

〉

≥ 〈q1 − wni
, Bwni

−BSyni
〉 −

〈
q1 − wni

,
wni

− Syni

αni

〉
. (3.122)

Noting that ‖wni
− Syni

‖ → 0 as i →∞, we obtain

〈q1 − q, q2〉 ≥ 0.

Since Q is maximal monotone, we obtain that q ∈ Q−10 and hence q ∈ V I(C,B).

This implies q ∈ Θ. Since z = PΘ(γf + (I − A))(z), we have

lim sup
n−→∞

〈
γf(z)− Az, xn − z

〉
= lim

i−→∞

〈
γf(z)− Az, xni

− z
〉

=
〈
γf(z)− Az, q − z

〉
≤ 0. (3.123)

On the other hand, we have

〈
γf(z)− Az, yn − z

〉
=

〈
γf(z)− Az, yn − xn

〉
+

〈
γf(z)− Az, xn − z

〉

≤ ‖γf(z)− Az‖‖yn − xn‖+
〈
γf(z)− Az, xn − z

〉
.

From (3.116) and (3.123), we obtain that

lim sup
n−→∞

〈
γf(z)− Az, yn − z

〉
≤ 0. (3.124)

Step 6. Finally, we claim that xn → z, where z = PΘ(γf + (I − A))(z).
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We note that

‖yn − z‖2

= ‖(I − βnA)(zn − z) + βn(γf(xn)− Az)‖2

≤ ‖(I − βnA)(zn − z)‖2 + 2βn〈(γf(xn)− Az), (I − βnA)(zn − z)

+ βn(γf(xn)− Az)〉

= ‖(I − βnA)(zn − z)‖2 + 2βn〈(γf(xn)− Az), yn − z〉 (3.125)

≤ ‖I − βnA‖2‖zn − z‖2 + 2βnγ〈f(xn)− f(z), yn − z〉+ 2βn〈γf(z)− Az, yn − z〉

≤ (1− βnγ)2‖zn − z‖2 + 2βnγη‖xn − z‖‖yn − z‖+ 2βn〈γf(z)− Az, yn − z〉

≤ (1− βnγ)2‖xn − z‖2 + βnγη(‖xn − z‖2 + ‖yn − z‖2) + 2βn〈γf(z)− Az, yn − z〉

= (1− 2βnγ + β2
nγ2 + βnγη)‖xn − z‖2 + βnγη‖yn − z‖2 + 2βn〈γf(z)− Az, yn − z〉

which implies that

‖yn − z‖2

≤
(

1−
(
2γ − γη

)
βn

1− γηβn

)
‖xn − z‖2

+
βn

1− γηβn

[
βnγ

2‖xn − z‖2 + 2〈γf(z)− Az, yn − z〉
]
. (3.126)

On the other hand, we have

‖xn+1 − z‖2 ≤ ‖yn − z‖2

≤
(

1−
(
2γ − γη

)
βn

1− γηβn

)
‖xn − z‖2

+
βn

1− γηβn

[
βnγ2‖xn − z‖2 + 2〈γf(z)− Az, yn − z〉

]

≤
(

1−
(
2γ − γη

)
βn

1− γηβn

)
‖xn − z‖2

+
βn

1− γηβn

[
2〈γf(z)− Az, yn − z〉+ βnγ

2K

]
. (3.127)

where K is an appropriate constant such that K ≥ supn≥1{‖xn − z‖2}.

Set ln =

(
2γ−γη

)
βn

1−γηβn
and en = βn

1−γηβn

[
2〈γf(z)−Az, yn−z〉+βnγ2K

]
. Then we have

‖xn+1 − z‖2 ≤ (1− bn)‖xn − z‖2 + cn, ∀n ≥ 0. (3.128)
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From the condition (C1) and (3.124), we see that

lim
n→∞

ln = 0,
∞∑

n=0

ln = ∞ and lim sup
n→∞

en ≤ 0.

Therefore, applying Lemma 2.12 to (3.128), we get that {xn} converges strongly

to z ∈ Θ. This completes the proof.

Corollary 3.62. Let C be a nonempty closed convex subset of a real Hilbert space

H, let B be ξ-inverse-strongly monotone mapping of C into H and S : C −→ C be

a nonexpansive mapping. Let f : C → C be a contraction mapping with η ∈ (0, 1)

and let A be a strongly positive linear bounded operator with γ > 0 and 0 < γ < γ
η
.

Assume that Θ := F (S) ∩ V I(C, B) 6= ∅. Let {xn} and {yn} be sequence generated

by the following iterative algorithm:





x1 = x ∈ C chosen arbitrary,

yn = βnγf(xn) + (I − βnA)PC(Sxn − αnBSxn),

xn+1 = (1− δn)yn + δnPC(Syn − αnBSyn), ∀n ≥ 1,

where {δn} and {βn} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b],for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) {αn} ⊂ [e, g] ⊂ (0, 2ξ) and lim
n−→∞

|αn+1 − αn| = 0.

Then, {xn} converges strongly to z ∈ Θ, which is the unique solution of the varia-

tional inequality 〈
γf(z)− Az, x− z

〉
≤ 0, ∀x ∈ Θ.

Proof . Put F (x, y) = ϕ = D = 0 for all x, y ∈ C and λn = 1 for all n ≥ 1 in

Theorem 3.61, we get un = xn. So {xn} converges strongly to z ∈ Θ, which is the

unique solution of the variational inequality.
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Corollary 3.63. Let C be a nonempty closed convex subset of a real Hilbert space

H and let F be bifunction from C ×C to R satisfying (H1)-(H5). Let S : C −→ C

be a nonexpansive mapping and let f : C → C be a contraction mapping with

η ∈ (0, 1). Assume that Θ := F (S) ∩ EP (F ) 6= ∅. Let {xn}, {yn} and {un} be

sequence generated by the following iterative algorithm:





x1 = x ∈ C chosen arbitrary,

yn = βnf(xn) + (1− βn)ST F
λn

xn,

xn+1 = (1− δn)yn + δnSyn, ∀n ≥ 1,

where {δn} and {βn} be two sequences in (0, 1) and {λn} ⊂ (0,∞) satisfy the

following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b], for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) lim
n−→∞

|λn+1 − λn| = 0.

Then, {xn} converges strongly to z ∈ Θ.

Proof . Put ϕ = D = 0, γ = 1, A = I and αn = 0 in Theorem 3.61. Then we have

PC(Sun) = Sun and PC(Syn) = Syn. So {xn} converges strongly to z ∈ Θ.

3.3 Viscosity Approximation Methods

3.3.1 A countable family of nonexpansive mappings

In this section, we will use the viscosity approximation method to prove

a strong convergence theorem for finding a common element of the set of fixed

points of a countable family of nonexpansive mappings, the set of solutions of

the variational inequality problem for relaxed cocoercive and Lipschitz continuous
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mappings, the set of solutions of system of variational inclusions and the set of

solutions of equilibrium problem in a real Hilbert space.

Definition 3.64. Let M : H −→ 2H be a multi-valued maximal monotone map-

ping, then the set-valued mapping JM,λ : H −→ H defined by

JM,λ(x̃) = (I + λM)−1(x̃), ∀x̃ ∈ H (3.129)

is called the resolvent operator associated with M , where λ is any positive number

and I is the identity mapping.

Lemma 3.65. [5] Let M : H −→ 2H be a maximal monotone mapping and let B :

H −→ H be a Lipshitz continuous mapping. Then the mapping M +B : H −→ 2H

is a maximal monotone mapping.

Lemma 3.66. [36, 5]

(1) The resolvent operator JM,λ is single-valued and nonexpansive for all λ > 0,

that is,

‖JM,λ(x)− JM,λ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H and ∀λ > 0.

(2) The resolvent operator JM,λ is 1-inverse-strongly monotone, that is,

‖JM,λ(x)− JM,λ(y)‖2 ≤ 〈x− y, JM,λ(x)− JM,λ(y)〉, ∀x, y ∈ H.

Lemma 3.67. [36]

(1) Let x̃ ∈ H is a solution of problem (1.13) if and only if x̃ = JM,λ(I −λB) for

all λ > 0, that is,

I(B, M) = F (JM,λ(I − λB)), ∀λ > 0.

(2) If λ ∈ [0, 2β], then I(B,M) is a closed convex subset in H.
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Lemma 3.68. [49] Let H be a Hilbert space and M a maximal monotone on H.

Then, the following holds:

∥∥JM,rx− JM,sx‖2 ≤ r − s

r

〈
JM,rx− JM,sx, JM,rx− x

〉
, ∀s, r > 0, x ∈ H,

where JM,r = (I + rM)−1 and JM,s = (I + sM)−1.

Lemma 3.69. [2] Let C be a nonempty closed subset of a Banach space and let {Sn}
be a sequence of mappings of C into itself. Suppose that

∑∞
n=1 sup{‖Sn+1z−Snz‖ :

z ∈ C} < ∞. Then, for each y ∈ C, {Sny} converges strongly to some point of C.

Moreover, let S be a mapping of C into itself defined by

Sy = lim
n−→∞

Sny for all y ∈ C.

Then limn−→∞ sup{‖Sz − Snz‖ : z ∈ C} = 0.

Theorem 3.70. Let C be a nonempty closed convex subset of a real Hilbert space

H and B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with

ω > φµ2, for some φ, ω, µ > 0. Let G = {Gk : k = 1, 2, 3, . . . , N} be a finite family

of β-inverse strongly monotone mappings from C into H and let F be a bifunction

from C × C −→ R satisfying (A1)-(A4). Let f : C −→ C be a contraction with

coefficient ψ (0 ≤ ψ < 1) and {Sn} be a sequence of nonexpansive mappings of C

into itself such that

Ω :
∞⋂

n=1

F (Sn) ∩
( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C,B) ∩ EP (F ) 6= ∅.

Let the sequences {xn} and {yn} be generated by





x1 = x ∈ C chosen arbitrarily,

yn = JMN ,λN,n
(I − λN,nGn) . . . JM2,λ2,n(I − λ2,nG2)JM1,λ1,n(I − λ1,nG1)Trnxn,

xn+1 = αnf(xn) + βnxn + γnSnPC(yn − ξnByn), ∀n ≥ 1,

(3.130)

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following con-

ditions:
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(C1) αn + βn + γn = 1,

(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λk,n}N
k=1 ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λk,n+1 − λk,n| = 0, for each k ∈

{1, 2, . . . , N},

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.

Suppose that
∑∞

n=1 sup{‖Sn+1z− Snz‖ : z ∈ K} < ∞ for any bounded subset K of

C. Let S be a mapping of C into itself defined by Sy = limn−→∞ Sny for all y ∈ C

and suppose that F (S) =
⋂∞

n=1 F (Sn). Then, the sequences {xn} and {yn} converge

strongly to the same point x∗ ∈ Ω, where x∗ = PΩf(x∗).

Proof . First, we prove that the mapping PΩf : H −→ C has a unique fixed point.

In fact, since f : C −→ C is a contraction with ψ ∈ [0, 1) and PΩf : H −→ Ω

is also a contraction, we obtain

‖PΩf(x)− PΩf(y)‖ ≤ ‖f(x)− f(y)‖ ≤ ψ‖x− y‖, ∀x, y ∈ C.

Therefore, there exists a unique element x∗ ∈ C such that x∗ = PΩf(x∗), where

Ω :
∞⋂

n=1

F (Sn) ∩
( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C,B) ∩ EP (F ).

Now, we prove that (I − ξnB) is nonexpansive.

Indeed, for any x, y ∈ C, since B : C −→ H be a µ-Lipschitz continuous
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and relaxed (φ, ω)-cocoercive mappings with ω > φµ2 and ξn ≤ 2(ω−φµ2)
µ2 , we obtain

‖(I − ξnB)x− (I − ξnB)y‖2

= ‖(x− y)− ξn(Bx−By)‖2

= ‖x− y‖2 − 2ξn〈x− y,Bx−By〉+ ξ2
n‖Bx−By‖2

≤ ‖x− y‖2 − 2ξn

{
−φ‖Bx−By‖2 + ω‖x− y‖2

}
+ ξ2

n‖Bx−By‖2

≤ ‖x− y‖2 + 2ξnφµ2‖x− y‖2 − 2ξnω‖x− y‖2 + ξ2
nµ

2‖x− y‖2

= (1 + 2ξnφµ2 − 2ξnω + ξ2
nµ2)‖x− y‖2

=

(
1− ξnµ

2

[
2(ω − φµ2)

µ2
− ξn

])
‖x− y‖2

≤
(

1− ξnµ
2

[
2(ω − φµ2)

µ2
− b

])
‖x− y‖2.

Setting

ζ =
µ2

2

[
2(ω − φµ2)

µ2
− b

]
> 0,

thus,

‖(I − ξnB)x− (I − ξnB)y‖2 ≤ (1− 2ξnζ)‖x− y‖2 ≤ (1− ξnζ)2‖x− y‖2,

which implies that

‖(I − ξnB)x− (I − ξnB)y‖ ≤ (1− ξnζ)‖x− y‖ ≤ ‖x− y‖. (3.131)

Hence (I − ξnB) is nonexpansive.

We divide the proof of Theorem 3.70 into five steps.

Step 1. We show that the sequence {xn} is bounded.

Now, let x̃ ∈ Ω and if {Trn} be a sequence of mappings defined as in Lemma

2.55. Then x̃ = PC(x̃− λnBx̃) = Trnx̃ and let un = Trnxn. So, we have

‖un − x̃‖ = ‖Trnxn − Trnx̃‖ ≤ ‖xn − x̃‖. (3.132)

For k ∈ {1, 2, . . . , N}, and for any positive integer number n, we define the operator

Υk
n : C −→ H as follows:

Υ0
nx = x,
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Υk
nx = JMk,λk,n

(I − λk,nGk) . . . JM2,λ2,n(I − λ2,nG2)JM1,λ1,n(I − λ1,nG1)x

for all n, we get yn = ΥN
n un. On the other hand, since Gk : C −→ H is β-

inverse strongly monotone and λk,n ⊂ [c, d] ⊂ (0, 2β), then JMk,λk,n
(I − λk,nGk) is

nonexpansive. Thus Υk
n is nonexpansive. From Lemma 3.67(1), we have x̃ = ΥN

n x̃.

It follows that

‖yn − x̃‖ = ‖ΥN
n un −ΥN

n x̃‖ ≤ ‖un − x̃‖ ≤ ‖xn − x̃‖. (3.133)

Setting vn = PC(yn − ξnByn) and I − ξnB is a nonexpansive mapping, we obtain

‖vn − x̃‖ = ‖PC(yn − ξnByn)− PC(x̃− ξnBx̃)‖

≤ ‖(yn − ξnByn)− (x̃− ξnBx̃)‖

= ‖(I − ξnB)yn − (I − ξnB)x̃‖

≤ ‖yn − x̃‖ ≤ ‖xn − x̃‖. (3.134)

From (3.130) and (3.134), we deduce that

‖xn+1 − x̃‖ = ‖αnf(xn) + βnxn + γnSnvn − x̃‖

≤ αn‖f(xn)− x̃‖+ βn‖xn − x̃‖+ γn‖vn − x̃‖ (3.135)

≤ αn‖f(xn)− f(x̃)‖+ αn‖f(x̃)− x̃‖+ βn‖xn − x̃‖+ γn‖xn − x̃‖

≤ αnψ‖xn − x̃‖+ αn‖f(x̃)− x̃‖+ (1− αn)‖xn − x̃‖

≤ (
1− αn(1− ψ)

)‖xn − x̃‖+ αn‖f(x̃)− x̃‖

=
(
1− αn(1− ψ)

)‖xn − x̃‖+ αn(1− ψ)
‖f(x̃)− x̃‖

(1− ψ)

≤ max

{
‖xn − x̃‖, ‖f(x̃)− x̃‖

1− ψ

}
.

It follows from induction that

‖xn − x̃‖ ≤ max

{
‖x1 − x̃‖, ‖f(x̃)− x̃‖

1− ψ

}
, ∀n ≥ 1.

Therefore, {xn} is bounded and hence so are {vn}, {yn}, {un}, {Byn} and {Snvn}.

Step 2. We claim that limn−→∞ ‖xn+1 − xn‖ = 0.
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By the definition of Tr, un = Trnxn and un+1 = Trn+1xn+1, we get

F (un, y) +
1

rn

〈y − un, un − xn〉 ≥ 0 for all y ∈ H (3.136)

and

F (un+1, y) +
1

rn+1

〈y − un+1, un+1 − xn+1〉 ≥ 0 for all y ∈ H. (3.137)

Take y = un+1 in (3.136) and y = un in (3.137), we have

F (un, un+1) +
1

rn

〈un+1 − un, un − xn〉 ≥ 0

and hence

F (un+1, un) +
1

rn+1

〈un − un+1, un+1 − xn+1〉 ≥ 0.

So, from (A2) we have

〈
un+1 − un,

un − xn

rn

− un+1 − xn+1

rn+1

〉
≥ 0

and hence

〈
un+1 − un, un − un+1 + un+1 − xn − rn

rn+1

(un+1 − xn+1)
〉
≥ 0.

Without loss of generality, let us assume that there exists a real number c such

that rn > c > 0 for all n ∈ N. Then, we have

‖un+1 − un‖2 ≤
〈

un+1 − un, xn+1 − xn +
(
1− rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
{
‖xn+1 − xn‖+

∣∣∣1− rn

rn+1

∣∣∣‖un+1 − xn+1‖
}

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+
M1

c
|rn+1 − rn|, (3.138)

where M1 = sup{‖un − xn‖ : n ∈ N}.
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Notice from Lemma 3.68 that

‖yn+1 − yn‖

= ‖ΥN
n+1un+1 −ΥN

n un‖

≤ ‖(un+1 − λk,n+1GkΥ
k
n+1un+1)− (un − λk,nGkΥ

k
nun)‖

+ ‖JMk
, λk,n+1(un − λk,nGkΥ

k
nun)− JMk

, λk,n(un − λk,nGkΥ
k
nun)‖

≤ ‖un+1 − un‖+ |λk,n+1 − λk,n|‖GkΥ
k
nun‖

+
|λk,n+1 − λk,n|

λk,n+1

‖JMk
, λk,n+1(un − λk,nGkΥ

k
nun)− (un − λk,nGkΥ

k
nun)‖

≤ ‖un+1 − un‖+ 2M2|λk,n+1 − λk,n|

≤ ‖xn+1 − xn‖+
M1

c
|rn+1 − rn|+ 2M2|λk,n+1 − λk,n|, (3.139)

where M2 is an appropriate constant such that

M2 = max

{
sup
n≥1

{‖GkΥ
k
nun‖

}
,

sup
n≥1

{‖JMk
, λk,n+1(un − λk,nGkΥ

k
nun)− (un − λk,nGkΥ

k
nun)‖

JMk
, λk,n+1

}}
.

Since I − ξnB is nonexpansive mappings, we have the following estimates:

‖vn+1 − vn‖ ≤ ‖PC(yn+1 − ξn+1Byn+1)− PC(yn − ξnByn)‖

≤ ‖(yn+1 − ξn+1Byn+1)− (yn − ξnByn)‖

= ‖(yn+1 − ξn+1Byn+1)− (yn − ξn+1Byn) + (ξn − ξn+1)Byn‖

≤ ‖(yn+1 − ξn+1Byn+1)− (yn − ξn+1Byn)‖+ |ξn − ξn+1|‖Byn‖

= ‖(I − ξn+1B)yn+1 − (I − ξn+1B)yn‖+ |ξn − ξn+1|‖Byn‖

≤ ‖yn+1 − yn‖+ |ξn − ξn+1|‖Byn‖. (3.140)

Substituting (3.139) into (3.140), we obtain

‖vn+1 − vn‖ ≤ ‖xn+1 − xn‖+
M1

c
|rn+1 − rn|+ 2M2|λk,n+1 − λk,n|

+ |ξn − ξn+1|‖Byn‖. (3.141)

Indeed, define xn+1 = (1− βn)zn + βnxn for all n ∈ N. It follows that

zn =
xn+1 − βnxn

1− βn

=
αnf(xn) + γnSnvn

1− βn

.



76

Thus, we have

‖zn+1 − zn‖ =

∥∥∥∥∥
αn+1f(xn+1) + γn+1Sn+1vn+1

1− βn+1

− αnf(xn) + γnSnvn

1− βn

∥∥∥∥∥

=

∥∥∥∥∥
αn+1

1− βn+1

(f(xn+1)− f(xn)) +
γn+1

1− βn+1

(Sn+1vn+1 − Snvn)

+

(
αn+1

1− βn+1

− αn

1− βn

)
f(xn) +

(
γn+1

1− βn+1

− γn

1− βn

)
Snvn

∥∥∥∥∥
≤ αn+1

1− βn+1

‖f(xn+1)− f(xn)‖+
γn+1

1− βn+1

‖Sn+1vn+1 − Snvn‖

+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖

≤ ψαn+1

1− βn+1

‖xn+1 − xn‖+
γn+1

1− βn+1

‖Sn+1vn+1 − Snvn‖

+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖. (3.142)

Now, compute

‖Sn+1vn+1 − Snvn‖ ≤ ‖Sn+1vn+1 − Sn+1vn‖+ ‖Sn+1vn − Snvn‖

≤ ‖vn+1 − vn‖+ ‖Sn+1vn − Snvn‖

≤ ‖xn+1 − xn‖+
M1

c
|rn+1 − rn|+ |ξn − ξn+1|‖Byn‖

+ 2M2|λk,n+1 − λk,n|+ ‖Sn+1vn − Snvn‖. (3.143)

Combining (3.142) and (3.143), we have

‖zn+1 − zn‖ ≤ ψαn+1

1− βn+1

‖xn+1 − xn‖+
γn+1

1− βn+1

{
‖xn+1 − xn‖+

M1

c
|rn+1 − rn|

+ |ξn − ξn+1|‖Byn‖+ 2M2|λk,n+1 − λk,n|+ ‖Sn+1vn − Snvn‖
}

+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖

≤ ‖xn+1 − xn‖+
γn+1

1− βn+1

{
M1

c
|rn+1 − rn|+ |ξn − ξn+1|‖Byn‖

+ 2M2|λk,n+1 − λk,n|
}

+
γn+1

1− βn+1

‖Sn+1vn − Snvn‖

+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖.
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It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ γn+1

1− βn+1

{
M1

c
|rn+1 − rn|+ |ξn − ξn+1|‖Byn‖+ 2M2|λk,n+1 − λk,n|

}

+
γn+1

1− βn+1

‖Sn+1vn − Snvn‖+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖

≤ γn+1

1− βn+1

{
M1

c
|rn+1 − rn|+ |ξn − ξn+1|‖Byn‖+ 2M2|λk,n+1 − λk,n|

}

+
γn+1

1− βn+1

sup
{
‖Sn+1z − Snz‖ : z ∈ {vn}

}

+

∣∣∣∣
αn+1

1− βn+1

− αn

1− βn

∣∣∣∣‖f(xn)− Snvn‖.

This together with conditions (C1)-(C6) and limn−→∞ sup
{
‖Sn+1z − Snz‖ : z ∈

{vn}
}

= 0 imply that

lim sup
n−→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.12, we obtain ‖zn − xn‖ −→ 0 as n −→ ∞. It then follows

that

lim
n−→∞

‖xn+1 − xn‖ = lim
n−→∞

(1− βn)‖zn − xn‖ = 0. (3.144)

By (3.141), we also have

lim
n−→∞

‖vn+1 − vn‖ = 0. (3.145)

Step 3. We claim that limn−→∞ ‖Svn − vn‖ = 0.

Since {Gk : k = 1, 2, 3, . . . N} is β-inverse strongly monotone mappings, by
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the choice of {λk,n} for given x̃ ∈ Ω and k ∈ {0, 1, 2, . . . , N − 1}, we also have

‖Υk+1
n un − x̃‖2

= ‖JMk+1,λk+1,n
(I − λk+1,nGk+1)Υ

k
nun − JMk+1,λk+1,n

(I − λk+1,nGk+1)x̃‖2

≤ ‖(I − λk+1,nGk+1)Υ
k
nun − (I − λk+1,nGk+1)x̃‖2

= ‖(Υk
nun − λk+1,nGk+1Υ

k
nun)− (x̃− λk+1,nGk+1x̃)‖2

= ‖(Υk
nun − x̃)− λk+1,n(Gk+1Υ

k
nun −Gk+1x̃)‖2

= ‖Υk
nun − x̃‖2 − 2λk+1,n

〈
Υk

nun − x̃, Gk+1Υ
k
nun −Gk+1x̃

〉

+ λ2
k+1,n‖Gk+1Υ

k
nun −Gk+1x̃‖2

≤ ‖Υk
nun − x̃‖2 − 2λk+1,nβ‖Gk+1Υ

k
nun −Gk+1x̃‖+ λ2

k+1,n‖Gk+1Υ
k
nun −Gk+1x̃‖2

≤ ‖un − x̃‖2 − 2λk+1,nβ‖Gk+1Υ
k
nun −Gk+1x̃‖+ λ2

k+1,n‖Gk+1Υ
k
nun −Gk+1x̃‖2

≤ ‖xn − x̃‖2 + λk+1,n(λk+1,n − 2β)‖Gk+1Υ
k
nun −Gk+1x̃‖2. (3.146)

Form (3.135), we have

‖xn+1 − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖vn − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖yn − x̃‖2

= αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖ΥN
n un − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖Υk+1
n un − x̃‖2 (3.147)

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2

+ γn

{
‖xn − x̃‖2 + λk+1,n(λk+1,n − 2β)‖Gk+1Υ

k
nun −Gk+1x̃‖2

}

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 + γnλk+1,n(λk+1,n − 2β)‖Gk+1Υ
k
nun −Gk+1x̃‖2.

It follows that

γnλk+1,n(2β − λk+1,n)‖Gk+1Υ
k
nun −Gk+1x̃‖2

≤ γnc(2β − d)‖Gk+1Υ
k
nun −Gk+1x̃‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2.
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By condition (C2), (3.144) and lim infn→∞ γn > 0, we obtain

lim
n→∞

‖Gk+1Υ
k
nun −Gk+1x̃‖ = 0. (3.148)

From Lemma 3.66(2) and I − λk+1,nGk+1 is nonexpansive, we have

‖Υk+1
n un − x̃‖2

= ‖JMk+1,λk+1,n
(I − λk+1,nGk+1)Υ

k
nun − JMk+1,λk+1,n

(I − λk+1,nGk+1)x̃‖2

≤
〈
(I − λk+1,nGk+1)Υ

k
nun − (I − λk+1,nGk+1)x̃, Υk+1

n un − x̃
〉

=
1

2

{
‖(I − λk+1,nGk+1)Υ

k
nun − (I − λk+1,nGk+1)x̃‖2 + ‖Υk+1

n un − x̃‖2

−‖(I − λk+1,nGk+1)Υ
k
nun − (I − λk+1,nGk+1)x̃− (Υk+1

n un − x̃)‖2
}

≤ 1

2

{
‖Υk

nun − x̃‖2 + ‖Υk+1
n un − x̃‖2 − ‖(Υk

nun

−Υk+1
n un)− λk+1,n(Gk+1Υ

k
nun −Gk+1x̃)‖2

}

≤ 1

2

{
‖Υk

nun − x̃‖2 + ‖Υk+1
n un − x̃‖2 − ‖Υk

nun −Υk+1
n un‖2

−λ2
k+1,n‖Gk+1Υ

k
nun −Gk+1x̃‖2

+ 2λk+1,n〈Υk
nun −Υk+1

n un, Gk+1Υ
k
nun −Gk+1x̃〉

}
,

which yields that

‖Υk+1
n un − x̃‖2

≤ ‖Υk
nun − x̃‖2 − ‖Υk

nun −Υk+1
n un‖2

+ 2λk+1,n‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖

≤ ‖un − x̃‖2 − ‖Υk
nun −Υk+1

n un‖2

+ 2λk+1,n‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖

≤ ‖xn − x̃‖2 − ‖Υk
nun −Υk+1

n un‖2

+ 2λk+1,n‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖. (3.149)
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Substituting (3.149) into (3.147), we obtain

‖xn+1 − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖Υk+1
n un − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn

{
‖xn − x̃‖2 − ‖Υk

nun −Υk+1
n un‖2

+ 2λk+1,n‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖

}

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖Υk
nun −Υk+1

n un‖2

+ 2λk+1,nγn‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖.

It follows that

γn‖Υk
nun −Υk+1

n un‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2

+ 2λk+1,nγn‖Υk
nun −Υk+1

n un‖‖Gk+1Υ
k
nun −Gk+1x̃‖.

By condition (C2), (3.144), (3.148) and lim infn→∞ γn > 0, we obtain

lim
n→∞

‖Υk
nun −Υk+1

n un‖ = 0. (3.150)

For x̃ ∈ Ω, we obtain

‖vn − x̃‖2 = ‖PC(yn − ξnByn)− PC(x̃− ξnBx̃)‖2

≤ ‖(yn − ξnByn)− (x̃− ξnBx̃)‖2

= ‖(yn − x̃)− ξn(Byn −Bx̃)‖2

≤ ‖yn − x̃‖2 − 2ξn〈yn − x̃, Byn −Bx̃〉+ ξ2
n‖Byn −Bx̃‖2

≤ ‖yn − x̃‖2 − 2ξn

{
−φ‖Byn −Bx̃‖2 + ω‖yn − x̃‖2

}
+ ξ2

n‖Byn −Bx̃‖2

≤ ‖yn − x̃‖2 + 2ξnφ‖Byn −Bx̃‖2 − 2ξnω‖yn − x̃‖2 + ξ2
n‖Byn −Bx̃‖2

≤ ‖yn − x̃‖2 + 2ξnφ‖Byn −Bx̃‖2 − 2ξnω

µ2
‖Byn −Bx̃‖2 + ξ2

n‖Byn −Bx̃‖2

≤ ‖xn − x̃‖2 +

(
2ξnφ + ξ2

n −
2ξnω

µ2

)
‖Byn −Bx̃‖2. (3.151)
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On the other hand, we have

‖xn+1 − x̃‖2 = ‖αnf(xn) + βnxn + γnSnvn − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖Snvn − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖vn − x̃‖2 (3.152)

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2

+γn

{
‖xn − x̃‖2 +

(
2ξnφ + ξ2

n −
2ξnω

µ2

)
‖Byn −Bx̃‖2

}

= αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖xn − x̃‖2

+γn

(
2ξnφ + ξ2

n −
2ξnω

µ2

)
‖Byn −Bx̃‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 + γn

(
2ξnφ + ξ2

n −
2ξnω

µ2

)
‖Byn −Bx̃‖2.

It follows that

(
2aω

µ2
− b2 − 2bφ

)
γn‖Byn −Bx̃‖2

≤
(

2ξnω

µ2
− ξ2

n − 2ξnφ

)
γn‖Byn −Bx̃‖2

≤ ‖xn − x̃‖2 − ‖xn+1 − x̃‖2 + αn‖f(xn)− x̃‖2

≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2.

It now follows from the last inequality, conditions (C2), (3.144) and lim infn→∞ γn >

0 that

lim
n→∞

‖Byn −Bx̃‖ = 0. (3.153)
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Since PC is firmly nonexpansive, we have

‖vn − x̃‖2 = ‖PC(yn − ξnByn)− PC(x̃− ξnBx̃)‖2

= ‖PC(I − ξnB)yn − PC(I − ξnB)x̃‖2

≤
〈
(I − ξnB)yn − (I − ξnB)x̃, vn − x̃

〉

=
1

2

{
‖(I − αnB)yn − (I − ξnB)x̃‖2 + ‖vn − x̃‖2

−‖(I − ξnB)yn − (I − ξnB)x̃− (vn − x̃)‖2
}

≤ 1

2

{
‖yn − x̃‖2 + ‖vn − x̃‖2 − ‖(yn − vn)− ξn(Byn −Bx̃)‖2

}

≤ 1

2

{
‖yn − x̃‖2 + ‖vn − x̃‖2 − ‖yn − vn‖2

− ξ2
n‖Byn −Bx̃‖2 + 2ξn〈yn − vn, Byn −Bx̃〉

}
,

which yields that

‖vn − x̃‖2

≤ ‖yn − x̃‖2 − ‖yn − vn‖2 + 2ξn‖yn − vn‖‖Byn −Bx̃‖

≤ ‖xn − x̃‖2 − ‖yn − vn‖2 + 2ξn‖yn − vn‖‖Byn −Bx̃‖. (3.154)

Substituting(3.154) into (3.152), we obtain

‖xn+1 − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖vn − x̃‖2 (3.155)

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2

+γn

{
‖xn − x̃‖2 − ‖yn − vn‖2 + 2ξn‖yn − vn‖‖Byn −Bx̃‖

}

= αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖xn − x̃‖2 − γn‖yn − vn‖2

+2γnξn‖yn − vn‖‖Byn −Bx̃‖

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖yn − vn‖2 + 2γnξn‖yn − vn‖‖Byn −Bx̃‖.

It follows that

γn‖yn − vn‖2 ≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2

+ 2γnξn‖yn − vn‖‖Byn −Bx̃‖.
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By condition (C2), (3.144), (3.153) and lim infn→∞ γn > 0, we obtain

lim
n→∞

‖yn − vn‖ = 0. (3.156)

On the other hand, in the light of Lemma 2.55(ii) Trn is firmly nonexpansie, so we

have

‖un − x̃‖2 = ‖Trnxn − Trnx̃‖2

≤ 〈Trnxn − Trnx̃, xn − x̃〉 = 〈un − x̃, xn − x̃〉

=
1

2

(‖un − x̃‖2 + ‖xn − x̃‖2 − ‖xn − un‖2
)
,

which implies that

‖un − x̃‖2 ≤ ‖xn − x̃‖2 − ‖xn − un‖2.

Form (3.152), we have

‖xn+1 − x̃‖2 ≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖vn − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖yn − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖un − x̃‖2

≤ αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn

{
‖xn − x̃‖2 − ‖xn − un‖2

}

= αn‖f(xn)− x̃‖2 + βn‖xn − x̃‖2 + γn‖xn − x̃‖2 − γn‖xn − un‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖xn − un‖2. (3.157)

It follows that

γn‖xn − un‖2 ≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2.

By condition (C2), (3.144) and lim infn→∞ γn > 0, we obtain

lim
n→∞

‖xn − un‖ = 0. (3.158)

Observe that

xn+1 − xn = αn(f(xn)− xn) + γn(Snvn − xn).
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By condition (C2) and (3.144), we have

limn−→∞γn‖Snvn − xn‖ = limn−→∞(‖xn+1 − xn‖ − αn‖f(xn)− xn‖) = 0. (3.159)

Since

‖Svn − un‖ ≤ ‖Svn − xn‖+ ‖xn − un‖.

From (3.158) and (3.159), we have

limn−→∞‖Snvn − un‖ = 0. (3.160)

Form (3.157), we have

‖xn+1 − x̃‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖xn − un‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖(xn − yn) + (yn − un)‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2

− γn

{
‖xn − yn‖2 + 2‖xn − yn‖‖yn − un‖+ ‖yn − un‖2

}

= αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2

− γn‖xn − yn‖2 − 2γn‖xn − yn‖‖yn − un‖ − γn‖yn − un‖2

≤ αn‖f(xn)− x̃‖2 + ‖xn − x̃‖2 − γn‖xn − yn‖2.

It follows that

γn‖xn − yn‖2 ≤ ‖xn − xn+1‖(‖xn − x̃‖+ ‖xn+1 − x̃‖) + αn‖f(xn)− x̃‖2.

By condition (C2), (3.144) and lim infn→∞ γn > 0, we obtain

lim
n→∞

‖xn − yn‖ = 0. (3.161)

Since

‖un − yn‖ ≤ ‖un − xn‖+ ‖xn − yn‖.
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From (3.158) and (3.161), we have

limn−→∞‖un − yn‖ = 0. (3.162)

Furthermore, by the triangular inequality we also have

‖Snvn − vn‖ ≤ ‖Snvn − un‖+ ‖un − yn‖+ ‖yn − vn‖. (3.163)

From (3.156), (3.160) and (3.162), we have

limn−→∞‖Snvn − vn‖ = 0. (3.164)

Applying Lemma 3.69 and (3.164), we have

‖Svn − vn‖ ≤ ‖Svn − Snvn‖+ ‖Snvn − vn‖

≤ sup
{
‖Sz − Snz‖ : z ∈ {vn}

}
+ ‖Snvn − vn‖ −→ 0.

Step 4. We claim that lim supn−→∞〈f(x∗)− x∗, xn − x∗〉 ≤ 0.

Indeed, we choose a subsequence {vni
} of {vn} such that

lim sup
n−→∞

〈f(x∗)− x∗, Svn − x∗〉 = lim
i−→∞

〈f(x∗)− x∗, Svni
− x∗〉. (3.165)

Without loss of generality, let {vni
} ⇀ z ∈ C. From ‖Svn − vn‖ −→ 0, we obtain

Svni
⇀ z. Then, (3.165) reduces to

lim sup
n−→∞

〈f(x∗)− x∗, Svn − x∗〉 = 〈f(x∗)− x∗, z − x∗〉.

In order to show 〈f(x∗)− x∗, z − x∗〉 ≤ 0, it suffices to show that

z ∈ Ω :
∞⋂

n=1

F (Sn) ∩
( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C, B) ∩ EP (F )

Firstly, we will show z ∈ F (S) =
⋂∞

n=1 F (Sn).

Assume z /∈ F (S). By Opial’s theorem(Lemma 2.25) and ‖Svn− vn‖ −→ 0,
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we have

lim inf
i−→∞

‖vni
− z‖ < lim inf

i−→∞
‖vni

− Sz‖

= lim inf
i−→∞

‖vni
− Svni

+ Svni
− Sz‖

= lim inf
i−→∞

‖Svni
− Sz‖

≤ lim inf
i−→∞

‖vni
− z‖.

This is a contradiction. Thus, we obtain z ∈ F (S).

Next, we will show that z ∈ V I(C, B).

Let

Tw1 =





Bw1 + NCw1, w1 ∈ C;

∅, w1 /∈ C.

Since B is relaxed (φ, ω)-cocoercive, µ-Lipschitz continuous with ω > φµ2, we

obtain

〈Bx−By, x−y〉 ≥ (−φ)‖Bx−By‖2+ω‖x−y‖2 ≥ (ω−φµ2)‖x−y‖2 ≥ 0, (3.166)

which yields that B is monotone. Then T is maximal monotone (see [44]). Let

(w1, w2) ∈ G(T ). Since w2 − Bw1 ∈ NC(w1) and vn ∈ C, we have 〈w1 − vn, w2 −
Bw1〉 ≥ 0. On the other hand, from vn = PC(yn − ξnByn), we have

〈
w1 − vn, vn − (yn − ξnByn)

〉 ≥ 0 (3.167)

that is, 〈
w1 − vn,

vn − yn

ξn

+ Byn

〉
≥ 0. (3.168)
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Therefore, we obtain

〈w1 − vni
, w2〉 ≥ 〈w1 − vni

, Bw1〉

≥ 〈w1 − vni
, Bw1〉 −

〈
w1 − vni

,
vni

− yni

ξni

+ Byni

〉

=

〈
w1 − vni

, Bw1 −Byni
− vni

− yni

ξni

〉

= 〈w1 − vni
, Bw1 −Bvni

〉+ 〈w1 − vni
, Bvni

−Byni
〉

−
〈

w1 − vni
,
vni

− yni

ξni

〉

≥ 〈w1 − vni
, Bvni

〉 −
〈

w1 − vni
,
vni

− yni

ξni

+ Byni

〉

= 〈w1 − vni
, Bvni

−Byni
〉 −

〈
w1 − vni

,
vni

− yni

ξni

〉
.(3.169)

Noting that ‖vni
− yni

‖ −→ 0 and B is relaxed (φ, ω)-cocoercive and (3.169), we

obtain

〈w1 − z, w2〉 ≥ 0.

Since T is maximal monotone, we have z ∈ T−10, and hence z ∈ V I(C,B).

Now, we will show that z ∈ ⋂N
k=1 I(Gk,Mk).

For this purpose, let k ∈ {1, 2, 3, . . . , N} and Gk is β-inverse strongly

monotone, Gk is an 1
β
-Lipschitz continuous monotone mapping. It follows from

Lemma 3.65, we know that Mk+Gk is maximal monotone. Let (v, g) ∈ G(Mk+Gk),

that is, g − Gkv ∈ Mk(v). On the other hand, since Υk
ni

uni
= JMk,λk,ni

(Υk−1
ni

uni
−

λk,ni
GkΥ

k−1
ni

uni
), we have

Υk
ni

uni
− λk,ni

GkΥ
k
ni

uni
∈ (I + λk,ni

Mk)(Υ
k
ni

uni
),

that is,

1

λk,ni

(Υk−1
ni

uni
−Υk

ni
uni

− λk,ni
GkΥ

k−1
ni

uni
) ∈ Mk(Υ

k
ni

uni
). (3.170)

By virtue of the maximal monotonicity of Mk + Gk, we have
〈

v −Υk
ni

uni
, g −Gkv − 1

λk,ni

(Υk−1
ni

uni
−Υk

ni
uni

− λk,ni
GkΥ

k−1
ni

uni
)

〉
≥ 0, (3.171)
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and so

〈
v −Υk

ni
uni

, g

〉

≥
〈

v −Υk
ni

uni
, Gkv +

1

λk,ni

(Υk−1
ni

uni
−Υk

ni
uni

− λk,ni
GkΥ

k−1
ni

uni
)

〉

=

〈
v −Υk

ni
uni

, Gkv −GkΥ
k
ni

uni
+ GkΥ

k
ni

uni
−GkΥ

k−1
ni

uni

+
1

λk,ni

(Υk−1
ni

uni
−Υk

ni
uni

)

〉
(3.172)

≥ 0 + 〈v −Υk
ni

uni
, GkΥ

k
ni

uni
−GkΥ

k−1
ni

uni
〉

+

〈
v −Υk

ni
uni

,
1

λk,ni

(Υk−1
ni

uni
−Υk

ni
uni

)

〉
.

From ‖Υk
nun − Υk+1

n un‖ −→ 0, we also obtain that Υk
ni

uni
⇀ z and {Gk : k =

1, 2, 3, . . . , N} are Lipschitz continuous, we have

lim
n−→∞

〈v −Υk
ni

uni
, g〉 = 〈v − z, g〉 ≥ 0. (3.173)

Since Mk + Gk is maximal monotone, we have θ ∈ (Mk + Gk)(z), that is, z ∈
⋂N

k=1 I(Gk,Mk).

Finally, we will show that z ∈ EP (F ).

Since un = Trnxn, we have

F (un, y) +
1

rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

If follows from (A2) that,

1

rn

〈y − un, un − xn〉 ≥ −F (un, y) ≥ F (y, un),

and hence 〈
y − uni

,
uni

− xni

rni

〉
≥ F (y, uni

).

Since
uni−xni

rni
−→ 0 and uni

⇀ z, it follows by (A4) that F (y, z) ≤ 0 for all y ∈ H.

For t with 0 < t ≤ 1 and y ∈ H, let yt = ty + (1− t)z. Since y ∈ H and z ∈ H, we

have yt ∈ H and hence F (yt, z) ≤ 0. So, from (A1) and (A4) we have

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z) ≤ tF (yt, y)
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and hence F (yt, y) ≥ 0. From (A3), we have F (z, y) ≥ 0 for all y ∈ H and hence

z ∈ EP (F ). Therefore, it follows that z ∈ Ω.

Since x∗ = PΩf(x∗), we have

lim sup
n−→∞

〈f(x∗)− x∗, xn − x∗〉 = lim sup
n−→∞

〈f(x∗)− x∗, Svn − x∗〉

= lim
i−→∞

〈f(x∗)− x∗, Svni
− x∗〉

= 〈f(x∗)− x∗, z − x∗〉 ≤ 0. (3.174)

On the other hand, we have

lim sup
n→∞

〈f(x∗)− x∗, xn+1 − x∗〉 ≤ lim sup
n→∞

〈f(x∗)− x∗, xn+1 − xn〉

+ lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉.

Since ‖xn+1 − xn‖ −→ 0 as n −→∞ and (3.174), we have

lim sup
n→∞

〈f(x∗)− x∗, xn+1 − x∗〉 ≤ 0. (3.175)

Step 5. We claim that limn−→∞ ‖xn − x∗‖ = 0.

Indeed, from (3.130) and (3.134), we obtain

‖xn+1 − x∗‖2

= 〈αnf(xn) + βnxn + γnSnvn − x∗, xn+1 − x∗〉

= αn〈f(xn)− x∗, xn+1 − x∗〉+ βn〈xn − x∗, xn+1 − x∗〉+ γn〈Snvn − x∗, xn+1 − x∗〉

≤ 1

2
βn

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)
+

1

2
γn

(
‖vn − x∗‖2 + ‖xn+1 − x∗‖2

)

+ αn〈f(xn)− f(x∗), xn+1 − x∗〉+ αn〈f(x∗)− x∗, xn+1 − x∗〉

≤ 1

2
(1− αn)

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

+
1

2
αn

(
‖f(xn)− f(x∗)‖2 + ‖xn+1 − x∗‖2

)
+ αn〈f(x∗)− x∗, xn+1 − x∗〉

≤ 1

2

[
1− αn(1− ψ2)

]
‖xn − x∗‖2 +

1

2
(1− αn)‖xn+1 − x∗‖2 +

1

2
αn‖xn+1 − x∗‖2

+ αn〈f(x∗)− x∗, xn+1 − x∗〉,
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which implies that

‖xn+1 − x∗‖2 ≤
[
1− αn(1− ψ2)

]
‖xn − x∗‖2 + 2αn〈f(x∗)− x∗, xn+1 − x∗〉

= (1− bn)‖xn − x∗‖2 + δn, (3.176)

where bn = αn(1− ψ2) and δn = 2αn〈f(x∗)− x∗, xn+1 − x∗〉. It is easy to see that

bn −→ 0,
∑∞

n=1 bn = ∞ and lim supn−→∞
δn

bn
≤ 0. Applying Lemma 2.12 to (3.176),

we conclude that

xn −→ x∗ = PΩf(x∗).

Consequently, also {yn} converges strongly to x∗. The proof is now complete.

As in [ [2], Theorem 4.1 ], we can generate a sequence {Sn} of nonex-

pansive mappings satisfying condition
∑∞

n=1 sup{‖Sn+1z − Snz‖ : z ∈ K} < ∞ for

any bounded subset K of C by using covex combination of general sequence {Tk}
of nonexpansive mappings with a common fixed point.

Corollary 3.71. Let C be a nonempty closed convex subset of a real Hilbert space

H and B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with

ω > φµ2, for some φ, ω, µ > 0. Let G = {Gk : k = 1, 2, 3, . . . , N} be a finite family

of β-inverse strongly monotone mappings from C into H and let F be a bifunction

from C × C −→ R satisfying (A1)-(A4). Let f : C −→ C be a contraction with

coefficient ψ (0 ≤ ψ < 1) and {δk
n} be a family of nonnegative numbers with indices

n, k ∈ N with k ≤ n such that

Ω : F
( ∞⋂

k=1

F (Tk)
)
∩

( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C, B) ∩ EP (F ) 6= ∅.

Let the sequences {xn} and {yn} be generated by




x1 = x ∈ C chosen arbitrarily,

yn = JMN ,λN,n
(I − λN,nGn) . . . JM2,λ2,n(I − λ2,nG2)JM1,λ1,n(I − λ1,nG1)Trnxn,

xn+1 = αnf(xn) + βnxn + γn

∑n
k=1 δk

nTkPC(yn − ξnByn), ∀n ≥ 1,

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following con-

ditions:
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(C1) αn + βn + γn = 1,

(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λk,n}N
k=1 ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λk,n+1 − λk,n| = 0, for each k ∈

{1, 2, . . . , N},

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0,

(C7)
∑n

k=1 δk
n, ∀n ∈ N, limn−→∞ δk

n > 0, ∀k ∈ N and
∑k

n=1

∑n
k=1 |δk

n+1− δk
n| < ∞.

Then, the sequences {xn} and {yn} converge strongly to the same point x∗ ∈ Ω,

where x∗ = PΩf(x∗).

In Theorem 3.70 taking N = 1 and Sn = S, then we have the following

corollary.

Corollary 3.72. Let C be a nonempty closed convex subset of a real Hilbert space

H and B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with

ω > φµ2, for some φ, ω, µ > 0. Let G be an β-inverse strongly monotone mappings

from C into H and let F be a bifunction from C × C −→ R satisfying (A1)-(A4).

Let f : C −→ C be a contraction with coefficient ψ (0 ≤ ψ < 1) and S be a

nonexpansive mappings of C into itself such that

Ω : F (S) ∩ I(G,M) ∩ V I(C,B) ∩ EP (F ) 6= ∅.
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Let the sequences {xn} and {yn} be generated by





x1 = x ∈ C chosen arbitrarily,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = JM,λn(I − λnG)un,

xn+1 = αnf(xn) + βnxn + γnSPC(yn − ξnByn), ∀n ≥ 1,

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following con-

ditions:

(C1) αn + βn + γn = 1,

(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λn} ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λn+1 − λn| = 0,

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.

Then, the sequences {xn} and {yn} converge strongly to the same point x∗ ∈ Ω,

where x∗ = PΩf(x∗).



CHAPTER IV

CONCLUSIONS AND OUTPUTS

4.1 Conclusions

The following results are all main theorems of this research:

(1). Let C be a nonempty closed convex subset of a real Hilbert space H, let

Fk, k ∈ {1, 2, 3, . . . ,M} be a bifunction from C × C to R satisfying (A1)-(A4), let

{Tn} be an infinite family of nonexpansive mappings of C into itself and let B be

ξ-inverse strongly monotone such that

Θ := ∩∞n=1F (Tn) ∩ (∩M
k=1SEP (Fk)

) ∩ V I(C,B) 6= ∅.

Let f be a contraction of H into itself with η ∈ (0, 1) and let A be a strongly

positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄
η
. Let

{xn}, {yn} and {un} be sequences generated by




x1 = x ∈ C chosen arbitrary,

yn = (1− δn)xn + δnPC(xn − αnBxn),

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
yn,

xn+1 = εnγf(un) + βnxn +
(
(1− βn)I − εnA

)
PC(Wnun − λnBWnun), ∀n ≥ 1,

where {Wn} is the sequence generated by (3.24) and {εn}, {βn} are two sequences

in (0, 1) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are a real sequence in (0,∞) satisfy the

following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {αn}, {λn} ⊂ [e, g] ⊂ (0, 2ξ), limn→∞ αn = 0 and limn→∞ λn = 0,
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(C4) {δn} ⊂ [0, b], for some b ∈ (0, 1) and limn→∞ |δn+1 − δn| = 0,

(C5) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . , M},

Then, {xn} and {un} converge strongly to a point z ∈ Θ, which is the unique

solution of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘ(I − A + γf)(z).

(2). Let C be a nonempty closed convex subset of a real Hilbert space H, let

Fk, k ∈ {1, 2, 3, . . . , M} be a bifunction from C × C to R satisfying (A1)-(A4) and

let B be ξ-inverse strongly monotone such that

Θ :=
(∩M

k=1SEP (Fk)
) ∩ V I(C, B) 6= ∅.

Let f be a contraction of H into itself with η ∈ (0, 1). Let {xn}, {yn} and {un} be

sequences generated by





x1 = x ∈ C chosen arbitrary,

yn = (1− δn)xn + δnPC(xn − αnBxn),

un = JFM
rM,n

J
FM−1
rM−1,nJ

FM−2
rM−2,n . . . JF2

r2,n
JF1

r1,n
yn,

xn+1 = εnf(un) + βnxn +
(
1− βn − εn

)
PC(un − λnBun), ∀n ≥ 1,

where {εn}, {βn} are two sequences in (0, 1) and {rk,n}, k ∈ {1, 2, 3, . . . , M} are a

real sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {αn}, {λn} ⊂ [e, g] ⊂ (0, 2ξ), limn→∞ αn = 0 and limn→∞ λn = 0,

(C4) {δn} ⊂ [0, b], for some b ∈ (0, 1) and limn→∞ |δn+1 − δn| = 0,
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(C5) lim infn−→∞ rk,n > 0 and limn−→∞ |rk,n+1−rk,n| = 0 for each k ∈ {1, 2, 3, . . . , M},

Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique

solution of the variational inequality

〈
(f(z)− z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘf(z).

(3). Let C be a nonempty closed convex subset of a real Hilbert space H, let

Fk, k ∈ {1, 2, 3, . . . ,M} be a bifunction from C × C to R satisfying (A1)-(A4), let

{Tn} be an infinite family of nonexpansive mappings of C into itself and let B be

ξ-inverse strongly monotone such that

Θ := ∩∞n=1F (Tn) ∩ EP (F ) ∩ V I(C,B) 6= ∅.

Let f be a contraction of H into itself with η ∈ (0, 1) and let A be a strongly

positive linear bounded operator on H with coefficient γ̄ > 0 and 0 < γ < γ̄
η
. Let

{xn}, {yn} and {un} be sequences generated by





x1 = x ∈ C chosen arbitrary,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = εnγf(un) + βnxn +
(
(1− βn)I − εnA

)
PC(Wnun − λnBWnun), ∀n ≥ 1,

where {Wn} is the sequence generated by (3.24) and {εn}, {βn} are two sequences

in (0, 1) and {rn} are a real sequence in (0,∞) satisfy the following conditions:

(C1) limn−→∞ εn = 0 and
∑∞

n=1 εn = ∞,

(C2) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C3) {λn} ⊂ [e, g] ⊂ (0, 2ξ) and limn→∞ λn = 0,

(C4) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.
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Then, {xn} and {un} converge strongly to a point z ∈ Θ which is the unique

solution of the variational inequality

〈
(A− γf)z, x− z

〉
≥ 0, ∀x ∈ Θ.

Equivalently, we have z = PΘ(I − A + γf)(z).

(4). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F

be bifunction from C×C to R satisfying (H1)-(H5) and let ϕ : C −→ R∪{+∞} be

a proper lower semicontinuous and convex function with either (B1) or (B2). Let

B, D be two ξ, β-inverse strongly monotone mapping of C into H, respectively. Let

S : C −→ C be a nonexpansive mapping. Let f : C → C be a contraction mapping

with η ∈ (0, 1) and let A be a strongly positive linear bounded operator with γ > 0

and 0 < γ < γ
η
. Assume that Θ := F (S) ∩ V I(C, B) ∩ GMEP (F, ϕ, D) 6= ∅. Let

{xn}, {yn} and {un} be sequence generated by the following iterative algorithm:





x1 = x ∈ C chosen arbitrary,

un = T
(F,ϕ)
λn

(xn − λnDxn),

yn = βnγf(xn) + (I − βnA)PC(Sun − αnBSun),

xn+1 = (1− δn)yn + δnPC(Syn − αnBSyn), ∀n ≥ 1,

where {δn}, {βn} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b], for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) {λn} ⊂ [c, d] ⊂ (0, 2β) and lim
n−→∞

|λn+1 − λn| = 0,

(C4) {αn} ⊂ [e, g] ⊂ (0, 2ξ) and lim
n−→∞

|αn+1 − αn| = 0.

Then, {xn} converges strongly to z ∈ Θ, which is the unique solution of the varia-

tional inequality 〈
γf(z)− Az, x− z

〉
≤ 0, ∀x ∈ Θ.
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(5). Let C be a nonempty closed convex subset of a real Hilbert space H, let

B be ξ-inverse-strongly monotone mapping of C into H and S : C −→ C be a

nonexpansive mapping. Let f : C → C be a contraction mapping with η ∈ (0, 1)

and let A be a strongly positive linear bounded operator with γ > 0 and 0 < γ < γ
η
.

Assume that Θ := F (S)∩V I(C, B) 6= ∅. Let {xn} and {yn} be sequence generated

by the following iterative algorithm:





x1 = x ∈ C chosen arbitrary,

yn = βnγf(xn) + (I − βnA)PC(Sxn − αnBSxn),

xn+1 = (1− δn)yn + δnPC(Syn − αnBSyn), ∀n ≥ 1,

where {δn} and {βn} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b],for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) {αn} ⊂ [e, g] ⊂ (0, 2ξ) and lim
n−→∞

|αn+1 − αn| = 0.

Then, {xn} converges strongly to z ∈ Θ, which is the unique solution of the varia-

tional inequality 〈
γf(z)− Az, x− z

〉
≤ 0, ∀x ∈ Θ.

(6). Let C be a nonempty closed convex subset of a real Hilbert space H and

let F be bifunction from C × C to R satisfying (H1)-(H5). Let S : C −→ C

be a nonexpansive mapping and let f : C → C be a contraction mapping with

η ∈ (0, 1). Assume that Θ := F (S) ∩ EP (F ) 6= ∅. Let {xn}, {yn} and {un} be

sequence generated by the following iterative algorithm:





x1 = x ∈ C chosen arbitrary,

yn = βnf(xn) + (1− βn)ST F
λn

xn,

xn+1 = (1− δn)yn + δnSyn, ∀n ≥ 1,
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where {δn} and {βn} be two sequences in (0, 1) and {λn} ⊂ (0,∞) satisfy the

following conditions:

(C1) lim
n−→∞

βn = 0 and
∑∞

n=1 βn = ∞,

(C2) {δn} ⊂ [0, b], for some b ∈ (0, 1) and lim
n−→∞

|δn+1 − δn| = 0,

(C3) lim
n−→∞

|λn+1 − λn| = 0.

Then, {xn} converges strongly to z ∈ Θ.

(7). Let C be a nonempty closed convex subset of a real Hilbert space H and

B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with ω > φµ2,

for some φ, ω, µ > 0. Let G = {Gk : k = 1, 2, 3, . . . , N} be a finite family of β-

inverse strongly monotone mappings from C into H and let F be a bifunction

from C × C −→ R satisfying (A1)-(A4). Let f : C −→ C be a contraction with

coefficient ψ (0 ≤ ψ < 1) and {Sn} be a sequence of nonexpansive mappings of C

into itself such that

Ω :
∞⋂

n=1

F (Sn) ∩
( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C,B) ∩ EP (F ) 6= ∅.

Let the sequences {xn} and {yn} be generated by





x1 = x ∈ C chosen arbitrarily,

yn = JMN ,λN,n
(I − λN,nGn) . . . JM2,λ2,n(I − λ2,nG2)JM1,λ1,n(I − λ1,nG1)Trnxn,

xn+1 = αnf(xn) + βnxn + γnSnPC(yn − ξnByn), ∀n ≥ 1,

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following

conditions:

(C1) αn + βn + γn = 1,

(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,



99

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λk,n}N
k=1 ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λk,n+1 − λk,n| = 0, for each k ∈

{1, 2, . . . , N},

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.

Suppose that
∑∞

n=1 sup{‖Sn+1z−Snz‖ : z ∈ K} < ∞ for any bounded subset K of

C. Let S be a mapping of C into itself defined by Sy = limn−→∞ Sny for all y ∈ C

and suppose that F (S) =
⋂∞

n=1 F (Sn). Then, the sequences {xn} and {yn} converge

strongly to the same point x∗ ∈ Ω, where x∗ = PΩf(x∗).

(8).Let C be a nonempty closed convex subset of a real Hilbert space H and

B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with ω > φµ2,

for some φ, ω, µ > 0. Let G = {Gk : k = 1, 2, 3, . . . , N} be a finite family of β-

inverse strongly monotone mappings from C into H and let F be a bifunction

from C × C −→ R satisfying (A1)-(A4). Let f : C −→ C be a contraction with

coefficient ψ (0 ≤ ψ < 1) and {δk
n} be a family of nonnegative numbers with indices

n, k ∈ N with k ≤ n such that

Ω : F
( ∞⋂

k=1

F (Tk)
)
∩

( N⋂

k=1

I(Gk,Mk)
)
∩ V I(C, B) ∩ EP (F ) 6= ∅.

Let the sequences {xn} and {yn} be generated by





x1 = x ∈ C chosen arbitrarily,

yn = JMN ,λN,n
(I − λN,nGn) . . . JM2,λ2,n(I − λ2,nG2)JM1,λ1,n(I − λ1,nG1)Trnxn,

xn+1 = αnf(xn) + βnxn + γn

∑n
k=1 δk

nTkPC(yn − ξnByn), ∀n ≥ 1,

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following

conditions:

(C1) αn + βn + γn = 1,
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(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λk,n}N
k=1 ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λk,n+1 − λk,n| = 0, for each k ∈

{1, 2, . . . , N},

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0,

(C7)
∑n

k=1 δk
n, ∀n ∈ N, limn−→∞ δk

n > 0, ∀k ∈ N and
∑k

n=1

∑n
k=1 |δk

n+1 − δk
n| < ∞.

Then, the sequences {xn} and {yn} converge strongly to the same point x∗ ∈ Ω,

where x∗ = PΩf(x∗).

(9). Let C be a nonempty closed convex subset of a real Hilbert space H and

B : C −→ H be relaxed (φ, ω)-cocoercive and µ-Lipschitz continuous with ω > φµ2,

for some φ, ω, µ > 0. Let G be an β-inverse strongly monotone mappings from

C into H and let F be a bifunction from C × C −→ R satisfying (A1)-(A4).

Let f : C −→ C be a contraction with coefficient ψ (0 ≤ ψ < 1) and S be a

nonexpansive mappings of C into itself such that

Ω : F (S) ∩ I(G,M) ∩ V I(C,B) ∩ EP (F ) 6= ∅.

Let the sequences {xn} and {yn} be generated by





x1 = x ∈ C chosen arbitrarily,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = JM,λn(I − λnG)un,

xn+1 = αnf(xn) + βnxn + γnSPC(yn − ξnByn), ∀n ≥ 1,

where {αn}, {βn}, {γn} ⊂ (0, 1) and {ξn}, {rn} ⊂ (0,∞) satisfy the following

conditions:
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(C1) αn + βn + γn = 1,

(C2) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞,

(C3) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1,

(C4) {ξn} ⊂ [a, b] for some a, b with 0 ≤ a ≤ b ≤ 2(ω−φµ2)
µ2 and limn−→∞ |ξn+1−ξn| =

0,

(C5) {λn} ⊂ [c, d] ⊂ (0, 2β) and limn→∞ |λn+1 − λn| = 0,

(C6) lim infn−→∞ rn > 0 and limn−→∞ |rn+1 − rn| = 0.

Then, the sequences {xn} and {yn} converge strongly to the same point x∗ ∈ Ω,

where x∗ = PΩf(x∗).

4.2 Outputs

The three-published papers in international journals (MRG5480206)

1. Nawitcha Onjai-uea, Chaichana Jaiboon and Poom Kumam, A relaxed

hybrid steepest descent methods for common solutions of generalized mixed

equilibrium problems and fixed point problems, Fixed Point Theory and Ap-

plications 2011, 2011:32 (ISI, 2010 impact factor 1.9436 )

2. N. Onjai-uea, C. Jaiboon, P. Kumam and U.W. Humphries, Convergence

of iterative sequences for fixed points of an infinite family of nonexpansive

mappings based on a hybrid steepest descent methods. Journal of Inequalities

and Applications 2012, 2012:101 (ISI, 2010 impact factor 0.88 )

3. C. Jaiboon and P. Kumam, Viscosity approximation method for system

of variational inclusions problems and fixed point problems of a countable

family of nonexpansive mappings. Volume 2012, Article ID 816529, 26 pages,

2012 (ISI, 2010 impact factor 0. 630)
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