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ABSTRACT

The propose of this project is to consider and study the fixed points of an
infinite family of nonexpansive mappings, the variational inequality problem for relaxed
cocoercive and Lipschitz continuous, the system of variational inclusions problem and
the system of equilibrium problems by using a hybrid steepest descent methods and
viscosity approximation method under certain hypotheses. We prove strong convergence
theorem for finding a common element of the set of fixed points of an infinite family
of nonexpansive mappings, the set of solutions of the variational inequality problem for
relaxed cocoercive and Lipschitz continuous, the set of solutions of system of variational

inclusions problem and the system of equilibrium problems in Hilbert spaces.

Keywords: Nonexpansive mappings/ Variational inequality problem/ system of equi-
librium problems/system of variational inclusions problem/ Nonlinear mappings/hybrid
steepest descent methods/ viscosity approximation method
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CHAPTER 1

INTRODUCTION

1.1 Background

Fixed-point iterations process for nonlinear mappings in Hilbert spaces and
Banach spaces including Mann and Ishikawa iterations process have been studied
extensively by many authors to approximate fixed point of various classes of opera-
tors and to solve variational inequalities in both Hilbert spaces and Banach spaces;

see also, for example [9], [20], [26], [51] and the references therein.

The variational inequality problem was first introduced by Hartman and
Stampacchia [25] in 1966, has had a great impact and influence in the develop-
ment of several branches of pure and applied sciences. The ideas and techniques
of this theory are being used in a variety of diverse fields and proved to be pro-
ductive and innovative, see [1-27] and the references therein. Analysis of these
problems requires a blend of techniques from convex analysis, functional analysis
and numerical analysis. As a result of the interaction between different branches
of mathematical and engineering sciences, we now have a variety of techniques to
suggest and analyze various algorithms for solving variational inequalities and re-
lated optimization problems. Using the projection technique, one can establish the
equivalence between the variational inequalities and fixed point problems. This
alternative equivalent formulation has played an important role in developing some
efficient numerical techniques for solving variational inequalities and related op-
timization problems. It is now well-known that the variational inequalities are
equivalent to the fixed-point problems, the origin of which can be traced back to

Lions and Stampacchia [35]. This alternative formulation has been used to suggest



and analyze projection iterative methods for solving the variational inequalities
under the conditions that the involved operator must be strongly monotone and
Lipschitz continuous. These conditions are very strict and rule out its application
in several important problems. To overcome this drawback, Korpelevich [34] sug-
gested and analyzed the extragradient method by using the technique of updating
the solution. It has been shown that if the underlying operator is only monotone
and Lipschitz continuous, then the approximate solution converges to the exact
solution. Related to the variational inequalities, we have the problem of finding
the fixed points of the nonexpansive mappings, which is the current interest in
functional analysis. It is natural to consider a unified approach to these different

problems, see, for example, [29, 39, 145, [18].

Equilibrium problem which were introduced by Blum and Oettli [4]. The
Equilibrium problem theory provides a novel and unified treatment of a wide class
of problems which arise in economics, finance, image reconstruction, ecology, trans-
portation, network, elasticity and optimization which has been extended and gen-
eralized in many directions using novel and innovative techniques, see [4]. Related
to the equilibrium problems, we also have the problem of finding the fixed points
of the nonexpansive mappings, which is the subject of current interest in func-
tional analysis. It is natural to construct a unified approach for these problems. In
this direction, several authors have introduced some iterative schemes for finding
a common element of a set of the solutions of the equilibrium problems, the set
solutions of the variational inequality problems for a nonlinear mapping and a set
of the fixed points of an infinite (a finite) family of nonexpansive mappings. For

the detail, see [16], [53] and the references therein.

In 1952, the original Mann iteration was defined in a matrix formulation
by Mann [37]. In 1974, Ishikawa [27] introduced the iterative scheme which later,
it is said to be Ishikawa iteration and studied its strong convergence theorem for

lipschitzian pseudo-contractive mapping in Hilbert spaces.



In 1989, Nadezhkina and Takahashi [39] introduced the following iterative
scheme for finding an element of fixed point problem and variational inequalities
and studied the weak convergence theorem for monotone and Lipschitz continuous

mapping nonexpansive mappings in a real Hilbert space.

In 1997 Combettes and Hirstoaga [10] introduced an iterative scheme of
finding the best approximation to initial data when E P(F’) is nonempty and proved

a strong convergence theorem.

1.2 Some Existing Algorithms of Fixed Points

Let X be a nonempty set and T : X — X a self map. We say that p € X
is a fized point of T if p = Tp and denote by F(T') the set of all fixed points of
T. Having in view that many of the most important nonlinear problems of applied
mathematics reduce to solving a given equation which in turn may be reduced to
finding the fixed points of a certain operator, on the other hand, the metrical fixed

point theory has developed significantly in the second part of the 20th century.

As the constructive methods used in metrical fixed point theory are pre-
vailingly iterative procedures, that is, approximate methods, it is also of crucial
importance to have a priori or/and a posteriori error estimates or rate of conver-
gence for such method. For example, the Banach fixed point theorem concerns
certain contractions mappings of a complete metric space into itself. It states con-
ditions sufficient for the existence and uniqueness of a fixed point and it also given
a constructive procedure for obtaining better and better approximations to the
fixed point. By definition, this is a method such that we choose an arbitrary zy in
a given set and calculate recursively a sequence xg, x1, xs, ... from a relation of the
form

Tp=Txp_1=T"29g n=1,23,.. (1.1)

That is, we choose an arbitrary xy and determine successively xy = Txg, 2o =



Txqy,x3 =Tz, .... It is also known as the Picard iteration starting at z.

Iteration procedures are used in nearly every branch of applied mathematics,
and convergence proofs and error estimates are very often obtained by an applica-
tion of Banach fixed point theorem (or more difficult fixed point theorems). Many
researchers are interested in obtaining (additional) condition on 7" and E as general
as possible, and which should guarantee the (strong) convergence of the Picard it-
eration to a fixed point of T'. Moreover, if the Picard iteration converges to a fixed
point of T, they will be interested in evaluating the error estimate (or alternatively,
the rate of convergence) of the method, that is, in obtaining a stopping criterion
for the sequence of successive approximations. However, the Picard iteration may

not converge even in the weak topology.

Construction of fixed point iteration processes of nonlinear mappings is an
important subject in the theory of nonlinear mappings, and finds application in a
number of applied areas. Now, fixed point iteration processes for approximating
fixed point of nonexpansive mappings, relatively nonexpansive mappings, hemirel-
atively nonexpansive mappings, generalized nonexpansive mappings and maximal

monotone operators in various space have been studied by many mathematicians.

Let (X, ]| - ||) be a real normed space and C' C X be a closed and convex.
Three classical iteration processes are often used to approximate a fixed point of a

nonlinear mapping S : C' — C.

If an equation can be put into the form Sx = x, and a solution z is an
attractive fixed point of the function S, then one may begin with a point x; in
the basin of attraction of z, and let x,,; = Sz, for n > 1, and the sequence z,
will converge to the solution z. If the function S is continuously differentiable,
a sufficient condition for convergence is that the spectral radius of the derivative
is strictly bounded by one in a neighborhood of the fixed point. If this condition

holds at the fixed point, then a sufficiently small neighborhood must exist.



Mann iteration

In 1953, Mann [37] introduced the iteration as follows: a sequence {z,}
defined by

Tpt1 = Ay + (1 — ) STy, (1.2)

where the initial guess element zy € C is arbitrary and {«,} is a real sequence in
[0,1]. Mann iteration has been extensively investigated for nonexpansive mappings.
One of the fundamental convergence results was proved by Reich [43]. In an infinite-
dimensional Hilbert space, Mann iteration can yield only weak convergence (see
[19] and [3]). Attempts to modify the Mann iteration method (1.2)) so that strong

convergence is guaranteed have recently been made.
Halpern iteration

In 1967, Halpern [24] introduced the iteration as follows: a sequence {z,}

defined by
Tpr1 = oo + (1 — o) Sz (1.3)

where the initial guess element xy € C' is arbitrary and {«,} is a real sequence in

[0, 1] and prove strong convergence theorem under some certain control condition.
Ishikawa iteration

In 1974, Ishikawa [27] introduced the iteration as follows: a sequence {x,}

defined by
Tpt1 = QpTp + (1 - an)s[ﬁnxn + (1 - ﬁn)san Vn > 0, (1'4>

where the initial guess element xy € C' is arbitrary and {«,} and {a,} are real
sequence in [0,1] and and prove weak convergence theorem under some certain

control condition.

Marino and Xu [38] studied an explicit algorithm, which generated a se-



quence {x,} recursively by the formula: For the initial guess xy € C' is arbitrary
Tonr1 = Mf(xn) + (1= A) [V, + (1 — ap)Tz,], Vn >0, (1.5)

where {a,,} and {\,} are sequences in (0, 1) satisfy some conditions. Let T, V :
C — (' are two nonexpansive self mappings and f is a contraction on C'. Then

{z,} converges strongly to a solution, which solves another variational inequality.

In general not much has been known regarding the convergence of the itera-
tion processes (1.3)-(1.4) unless the underlying space has elegant properties which

be briefly mention here.

Process (1.4) is indeed more general than process (1.2). But research has
been concentrated on the latter due probably to the reasons that the formulation
of process (1.2) is simpler than that of (1.4) and that a convergence theorem for
process (1.2) may possibly lead to a convergence theorem for process (1.4) provided
the sequence {3, } satisfies certain appropriate conditions. However, the introduc-
tion of process (1.4) has its own right. As a matter of fact, process (1.2) may fail
to converge while process (1.4) can still converge for a Lipschitz pseudo-contractive
mapping in a Hilbert space. Both processes (1.2) and (1.4) have only weak conver-
gence, in general. For example, Reich [43] proved that if X is a uniformly convex
Banach space with a Frechet differentiable norm and if {«a,} is chosen such that
Yoo g on(l—ay,) = oo, then the Mann’s iteration converges weakly to a fixed point
of T'. However, we note that Mann’s iteration have only weak convergence even in

a Hilbert space.
Viscosity Approximation Method

In 2007, Yao et al. [53] introduced the following so-called viscosity approx-

imation method:
Tp4+1 = O‘nf(xn) + (1 - an)[ﬁnxn + (1 - ﬁn)an]v vn Z 07 (16)

where S is a nonexpansive mapping of C' into itself and f is a contraction on C'.



They obtained a strong convergence theorem under some mild restrictions on the

parameters.
Hybrid Steepest Descent Method

Yamada [52] introduced the following iterative scheme called the hybrid

steepest descent method:
Tpy1 = STy, — auuBSx,, Yn > 1, (1.7)

where 1 = 2 € H, {a,} C (0,1), let B: H — H be a strongly monotone and
Lipschitz continuous mapping and p is a positive real number. He proved that the
sequence {x,} generated by (1.7) converges strongly under a controlled condition

on the sequence {a,,}.
Extragradient Method

In 1976, Korpelevich [34] introduced the following so-called extragradient
method:
xo=2x € C,
Yn = Po(x, — NAx,), (1.8)
Tnt1 = Po(x, — MNAy,)
for all n > 0, where A € (0, %),C’ is a closed convex subset of R” and A is a
monotone and k-Lipschitz continuous mapping of C' in to R™ . He proved that

if VI(A,C) is nonempty, then the sequences {x,} and {z,}, generated by (L.8),

converge to the same point z € VI(A, C).

Recently, motivated by the idea of Korpelevichs extragradient method [34],
Nadezhkina and Takahashi[39] introduced the following iterative scheme for finding

an element of F'(S)NVI(A, C) and proved the following weak convergence theorem.



1.3 The system of equilibrium problem and the variational

inclusion problem

1.3.1 The system of equilibrium problem

Let H be a real Hilbert space and C' be a nonempty closed convex subset
of H. Let T be a nonexpansive mapping of C' into itself and let B be a f-inverse-
strongly monotone of C' into H. The equilibrium problem for F': C' x €' — R is
to find z* € C such that

F(z*,y) >0, Yy e C. (1.9)

The set of solutions of (1.9) is denoted by EP(F).

Let {F;, i =1,2,..., N} be a finite family of bifunctions from C' x C into
R, where R is the set of real numbers. The system of equilibrium problems for

{F\,F5,...,Fx} is to find a common element z* € C such that

(

Fi(z*,y) >0, Yy € C,

FQ(x*7y) > 07 vy € 07
(1.10)

FN(x*>y) 207 vye C.

We denote the set of solutions of (1.10) by NY,SEP(F;), where SEP(F;) is the

set of solutions to the equilibrium problems, that is,
Fi(z*,y) >0, VyeC. (1.11)

If N =1, then the problem (1.10) is reduced to the equilibrium problems.
If N =1and F(z*,y) = (Bz*,y — x*), then the problem (1.10)) is reduced to the

variational inequality problems of finding x* € C' such that
(Bx*,y —z*) >0, VyeC. (1.12)

The set of solutions of (1.12)) is denoted by VI(C, B).



1.3.2 The variational inclusion problem

Let B : H — H be a single-valued nonlinear mapping and M : H — 2/
be a muiti-valued mapping. The variational inclusion problem is to find * € H
such that

0 € B(z) + M(%), (1.13)

where 6 is the zero vecter in H. The set of solutions of problem (1.13)) is denoted
by I(B,M). If M = 0¢¢, where C' is a nonempty closed convex subset of H and

OYe : H — [0, +00] is the indicator function of C| that is,

0, x e (),
Yo(z) =
+oo, x¢C,
then, the variational inclusion problem (1.13)) is equivalent to the variational in-

equality problems (1.12)

Numerous problems in physics, optimization and economics reduce to find
a solution of the equilibrium problem. Some methods have been proposed to solve
the equilibrium problem in a Hilbert space; see, for instance, Blum and Oettli [4],
Combettes and Hirstoaga [L7]. Recently, Takahashi and Zembayashi [50] consider
the following equilibrium problem with a bifunction defined on the dual space of a
Banach space. Moreover, they proved a strong convergence theorem for finding a
solution of the equilibrium problem which generalized the result of Combettes and

Hirstoaga [17].

The purpose of this project is to consider the extragradient hybrid steepest
descent methods for finding a common element of the set of solutions for system
of mixed equilibrium problems, the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequality problems in a real Hilbert space.
Then, we prove a strong convergence theorem of the iterative sequence generated by
the extragradient hybrid steepest descent methods under some suitable conditions

in a real Hilbert space. As applications, at the end of the paper we utilize our
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results to study the optimization problem. All in all, we plan to construct the
algorithms by using the extragradient hybrid steepest descent method and discuss
the convergence criterion for the perturbed iterative algorithms to approximate
the solutions of the above three sets are obtained. Furthermore, we also plan to
study the relationships between the above problem and an interesting topic, as fixed
point theory. We plan to organize this project as following: In the first year, we will
give some new theorems about system of the variational inequality problems with
inverse strongly monotone mapping and relaxed cocoercive mapping and system of
mixed equilibrium problem with inverse strongly monotone mapping in the Hilbert
space. Also, some fixed point problems will be discussed and studied. In the second
year, the main results and some applications of this project will be presented, that
is, we plan to study a form system of variational inequality problems with nonlinear
mapping and system of mixed equilibrium problems for inverse strongly monotone
mappings. In conclusion, we point out that the results of this project unify, extend,
and improve some well-known results in literature, and moreover, the study of this
area is a fruitful and growing field of intellectual endeavor. Much work is needed

to develop this interesting subject.

This research is divided into 4 chapters. Chapter 1 is an introduction to the
research problems. Chapter 2 deals with some preliminaries and give some useful
results that will be used in later chapters. Chapter 3 we prove strong convergence
theorems for finding a common element of the fixed point set. The conclusion

output of research is in Chapter 4.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

2.1 Linear Spaces and Metric Spaces

Definition 2.1. Let X be a nonempty set, and assume that each pair of elements
x and y in X can be combined by a process called addition to yield an element z
in X denoted by x 4+ y. Assume also that this operation of addition satisfies the

following condition (1)—(4):
(D) (x+y) +z=2+(y+2);
2 z+y=y+ua;

(3) there exists a unique element in X, denoted by 0 and called the zero

element, or the origin, such that x + 0 = x for all x € X;

(4) each x € X there corresponds a unique element in X, denoted by —x

and called the negative of z, such that x + (—x) = 0.

We also assume that each scalar &« € R and each element z in X can be
combined by a process called scalar multiplication to yield an element y in X

denoted by y = az satisfying (5)—(8):
(5) aBz) = (af)z;
6) 1 -z =u;
(7) (a+ Bz = ax + fa;

8) alr +y) = ar + ay.
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The system (X, -, +) is called a linear space over R if it satisfies the con-
ditions (1)—(8). A linear space is often called a vector space, and its elements are

spoken as vectors.

Definition 2.2. Let X be a nonempty set. A mapping d : X x X — R, satisfying

the following conditions for all x,y and z in X:
(A1) d(z,y) =0 <=z =y;
(A2) d(z,y) = d(y, x);

(A2) d(z,y) < d(x,z)+d(z,y). The conditions (A1)-(A3) are usually called

the metric axioms.

The function d assigns to each pair (x,y) of element of X a nonnegative real
number d(zx,y), which does not on the order of the elements; d(x,y) is called the
distance between x and y. The set X together with a metric, denoted by (X, d), is

called a metric space.

2.2 Normed Spaces and Banach Spaces

Definition 2.3. Let X be a linear space over the field K (R or C). A function

|- |l : X — R is said to be a norm on X if it satisfies the following conditions:
(1) [|z|| > 0,Vz € X;
(2) lz] = 0 & = = 0;
(3) lz+yll < ll=ll + NIyl v, y € X;

(4) [|azx| = |a|||z],Vx € X and Va € K.

From this norm we can define a metric, induced by the norm || - ||, by
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A linear space X equipped with the norm || - || is called a normed linear space.

Definition 2.4. A normed space (X, ||-]|) is called strictly convex if for all z,y € X,
e 7y, |zl = llyll =1, we have [[Az + (1 = N)y[| < 1, VA € (0, 1),

Definition 2.5. Let (X, || -||) be a normed space. A sequence {z,} C X is said to
converge strongly in X if there exists x € X such that lim ||z, —z|| = 0. That is,
if for any € > 0 there exists a positive integer N such that ||z, — z| < ¢,Vn > N.

We often write lim x, = x or x,, — x to mean that x is the limit of the sequence

Definition 2.6. A sequence {x,} in a normed spaces is said to converge weakly to
some vector z if lim,, ., f(x,) = f(x) holds for every continuous linear functional

f. We often write x,, = x to mean that {x,} converges weakly to x.

Definition 2.7. Let (X, || -||) be a normed space. A sequence {z,,} C X is said to
be a Cauchy sequence if for any € > 0 there exists a positive integer N such that
|Zm — xn|| < €,¥ m,n > N. That is, {z,} is a Cauchy sequence in X if and only

if |2 — zn|| — 0 as m,n — oc.

Theorem 2.8. [47] Let {z,} be a sequence of a normed space (X,| - ), z € X
and let x, — x if and only if, for any subsequence {x,,} of {x,}, there exist a

subsequence {xnlj} of {xn,} converging to x.

Definition 2.9. A normed space X is called complete if every Cauchy sequence in

X converges to an element in X.

Definition 2.10. A complete normed linear space over field K is called a Banach

space over K.

Lemma 2.11. [45] Let {z,} and {y,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0, 1] with 0 < liminf, . G, <limsup,__ . 3, < 1.
Suppose Tpy1 = (1 — Bn)yYn + Bnxy for all integers n > 0 and limsup,,_ (||yns1 —

Ynll = | Zns1 — 2a]]) < 0. Then, lim,, o0 ||yn — 24| = 0.
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Lemma 2.12. [51] Assume {a,} is a sequence of nonnegative real numbers such
that

Ap41 S (]- - bn)an + Cpy, N Z 07

where {b,} is a sequence in (0,1) and {c,} is a sequence in R such that

(1) 220:1 bp, = 00,

(2) limsup,,__.. 5= <0 or 377 [c,| < o0,

Then lim,,__,~ a, = 0.
Definition 2.13. Let F and X be linear spaces over the field K.

(1) A mapping T : F — X is called a linear operatorif T(z+y) = Tx+Ty
and T(ax) = aTz,Vr,y € F, and Va € K.

(2) A mapping T : F' — K is called a linear functional on F if T is a linear

operator.

Definition 2.14. Let F' and X be normed spaces over the field Kand T : X — F
a linear operator. 7' is said to be bounded on X if there exists a real number M > 0

such that [|T(x)| < M||z||,Vz € X.

Definition 2.15. Sequence {z,}%, in a normed linear space X is said to be a

bounded sequence if there exists M > 0 such that ||z, | < M,Vn € N.

Definition 2.16. A subset C' of a normed linear space X is said to be convex

subset in X if A\x + (1 — M)y € C for each x,y € C and for each scalar A € [0, 1].

2.3 Inner Product Spaces and Hilbert Spaces

Definition 2.17. The real-value function of two variables (-,-) : X x X — R is
called inner product on a real vector space X if for any z,y,z € X and «,3 € R

the following conditions are satisfied:
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(1) (az + By, z) = oz, 2) + B(y, 2);

(2) (z,y) = (y, v);

(3) (z,z) > 0 for each z € X and (x,z) = 0 if and only if z = 0.

A real inner product space is a real vector space equipped with an inner
product.

Definition 2.18. A Hilbert spaces is an inner product space which is complete

under the norm induced by its inner product.

An inner product on X defines a norm on X given by ||z|| = \/(z, x).

Lemma 2.19. [47](The Schwarz inequality) If x and y are any two vector in an

iner product space X, then

(=, 9) < [lz[lly]l-

Remark 2.20. In a Hilbert space H, weak convergence is defined by lim,, . (z,,y) =
(x,y) for all y € H. The notation x,, — x is sometimes used to denote this kind of

convergence.
Remark 2.21. 1f x,, = = and z,, — y, then = = y.

Definition 2.22. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let f be a function of C into (—o00, 00|, where (—oo,00] = R U {oo}.

Then, f is called lower semicontinuous if for any a € R, the set {x € C': f(x) < a}

is closed.

Lemma 2.23. [47] Let X be an inner product space and {x,} be a bounded sequence

of H such that x,, — x. Then following inequality holds:

|z|| < lim inf||z,].
n—-am~o
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2.4 Basic Concepts in Hilbert Spaces

Let C be a closed convex subset of a real Hilbert space H with inner product

and norm are denoted by (., .) and ||.||, respectively. We have the following are hold:
lz = ylI* = ll«]* = [lylI* = 2(z — v, 9), (2.14)
lz +yl* < el +2{y, = +y), (2.15)
lz + yll* > [l=]* + 2{y, =), (2.16)

and
Az + (1= Nyll* = Alle]* + (1 = Mlyl* = A1 = V= = yl® (2.17)

for all z,y € H and A € R.

Lemma 2.24. [40] Let (E,(.,.)) be an inner product space. Then for all z,y,z € E
and o, B,y € [0,1] with o + 4+ v =1, we have

law+ By + 2] = allzl* + BllylI* + 711 2* — aBlle —y|I* —avllz — 2II* = Bylly — 2.

Lemma 2.25. [41] A Hilbert space H satisfies the Opial condition that is, for any
sequence {x, } with x, — x, the inequality liminf, . ||z,—2z| < liminf, . ||z,—

yl|, holds for every y € H with y # x.

2.5 Some Nonlinear Mappings in Hilbert Spaces

Let C' be a closed convex subset of a real Hilbert space H with inner
product and norm are denoted by (.,.) and ||.||, respectively. Let T': C' — C a
nonlinear mapping. We use F(T') to denote the set of fixed points of 7', that is,
F(I)={xeC:Tx =z}
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Definition 2.26. A mapping S : C' — C'is called L-Lipschitz-continuous if there

exists a positive real number L such that
|Su— Sv|| < L||lu—vl||, Yu,veC. (2.18)

Definition 2.27. A mapping f : C' — C'is called a contraction on C' if there exists

a constant a € (0,1) and z,y € C such that

1 (z) = fW)ll < allz —yl. (2.19)
Definition 2.28. A mapping T is called nonexpansive if
Tz — Tyl < ||z —yll, Vz,yecC. (2.20)

Theorem 2.29. [17] (Banach’s Contraction Mapping Principle) Let (X,d) be a
complete metric space and f : X — X be a contraction. Then f has a unique fixed

point, i.e. there exists a unique x* € X such that Tx* = z*.

Definition 2.30. The metric (nearest point) projection Po from a Hilbert space
H to a closed convex subset C' of H is defined as follows: given x € H, Pox is the

only point in C' with the property
| = Pox|| = inf{[lz =yl : y € C}.
For every point x € H, there exists a unique nearest point in C', denoted by

Pcx, such that

|z — Poz|| < ||z —y| forallye (.

Lemma 2.31. [47] Let H be a real Hilbert spaces, there hold the following identities:

(i) for each x € H and z* € C, 2* = Pox <= (x —z*,y — z*) <0, Vy € C,
(i1) Po: H — C is nonezpansive, that is, |Pcx — Poy|| < ||z — y||, V,y € H;

(11i) Pe is firmly nonexpansive, that is,

| Pcx — Poy||? < (Pox — Poy,x — y), Yo,y € H;
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Definition 2.32. A mapping A of C' into H is called monotone if
(Au— Av,u—v) >0, Yu,veC. (2.21)

Definition 2.33. A is called a-inverse-strongly monotone if there exists a positive

real number « such that
(Au — Av,u —v) > a||Au — Av||?, VYu,v e C. (2.22)

Lemma 2.34. Let A : H — H be a a-inverse-strongly monotone mapping. If
A < 2a, for any A >0 and o > 0 then I — AA is a nonexpansive mapping from H
into itself.

Proof. Let u,v € H and X\ > 0,

I(1 = AA)u — (I = AA)w[* = [[(u—v) = A(Au— Av)||*
= Jlu—ov|* = 2\ (u — v, Au — Av) + \?|| Au — Av||?

< lu =) + A\ — 2a)||Au — Av]]?.

Lemma 2.35. Let H be a real Hilbert space, let C' be a nonempty closed convex
subset of H, let S : C' — C' be a nonexpansive mapping and let B : C' — H be
a &-inverse strongly monotone. If 0 < a,, < 2¢, then S — a,, BS is a nonexpansive

mapping in H.
Proof. For any x,y € C and 0 < o, < 26, we have

|(S — a,BS)x — (S — o, BS)y
I* = lI(Sz - Sy) — an(BSz — BSy)|*
= ||Sz — Sy||* — 2a,,(Sx — Sy, BSx — BSy) + o2||BSx — BSy||*
< |z = ylI* = 20,8]| BSz — BSy|| + ay|| BSz — BSy||*

= |lz = yl* + anlan — 2)|BSz — BSy|*

IA

lz = ylI*.

So, S — a,BS is a nonexpansive mapping of C into H.
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Remark 2.36. It is easy to see that if A is an a-inverse-strongly monotone mapping

of C' into H, then A is X-Lipschitz continuous.

Definition 2.37. The mapping S : C' — C'is called a k-strict pseudo-contraction

mapping if there exists a constant 0 < k < 1 such that
ISz — Syl> < e — yl + Kl - S)e — (I~ S)yl’, VeyeC.  (223)

Definition 2.38. A typical problem is to minimize a quadratic function over the

set of fixed points of a nonexpansive mapping defined on a real Hilbert space H:

min
zel

%(Ax,@ ~(a, b)] ,

where F' is the fixed point set of a nonexpansive mapping S defined on H and b is

a given point in H.

Definition 2.39. A linear bounded operator A is strongly positive if there exists

a constant 4 > 0 with the property
(Az,z) > 7llz|*, Vo € H.

Lemma 2.40. [38] Assume A is a strongly positive linear bounded operator on a

Hilbert space H with coefficient 57 > 0 and 0 < p < ||A||~t. Then ||[I—pA| < 1—p7.

Lemma 2.41. [38] Let C' be a nonempty closed convex subset of H and let f be
a contraction of H into itself with n € (0,1), and A be a strongly positive linear

bounded operator on H with coefficient ¥ > 0. Then , for 0 < vy < %,

<:L“ —y, (A=7f)z — (A - ’yf)y> > —=m)llz—yl*, Va,yeH.

That is, A —~ [ is a strongly monotone with coefficient 5 — yn.

2.6 Basic Concept of Convex Analysis

Definition 2.42. [13] Let H be a Hilbert space and let C' be nonempty closed

convex subset of H. Let f be a function of C' into (—o0, o0], where (—o0, 00| =
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RU{oo}. Then, f is called lower semicontinuous if for any a € R, the set
{reC: f(z) <a}
is closed. f is also called convez on if for any z,y € C and t € [0, 1], then

flz+ 1 —t)y) <tf(x)+ (1 —6)f(y).

Theorem 2.43. [13](Minimization theorem)
Let C be a nonempty bounded closed convex subset of a Hilbert space H and let f
be a proper lower semicontinuous convex function of C' into (—oo, oc|. Then there

exists xyg € D(f) such that
f(wo) = min f(a).

Definition 2.44. [13] Let H be a Hilbert space and let f : H — (—o00, 00| be a

proper convex function. Then, we define the subdifferential f of f by

OF () = {r € H: f(y) > {y—2.2) + f(x), Wy € H}
for all z € H. If f(x) = oo, then df(z) = 0.

Lemma 2.45. [13] Let H be a Hilbert space and let f : H — (—o0, 0] be a

proper convex function. Let z € H. Then

0€df(z) & f(z) =min f(z).

reH
Lemma 2.46. [13] Let E be a Banach space and let f : E — (—00, 0] be a
proper lower semicontinuous convex function. Define the subdifferential of f as
follows:

of(x) ={z" € E: f(y) > (y —z,2") + f(z), Yy € £}

for each x € E. Then, 0f is a maximal monotone operator.

Lemma 2.47. [13] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Define the indicator function ic of C' by
0, =xzeC,

ic(z) =
oo, otherwise.
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Then, ic is proper, convex and semicontinuous and Ji¢ is a maximal monotone

operator.

Definition 2.48. [13] Let H be a Hilbert space and let C' be a nonempty closed

convex subset of H and = € C. Then we define the set N¢(x) of H by
Ne(z)={z€ H: (u—x,z) <0,Vu € C}.

Such a set N¢(x) is called the normal cone of C.

Remark The set N¢(z) is a closed convex cone of H.

Definition 2.49. [I3] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B be an operator of C' into H. Then B is called hemicot-

inuous if for any u,v € C' and w € H, the function
t— (w, B(tu+ (1 —t)v))
of [0,1] into R is contonuous.

Theorem 2.50. [47] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B : ' — H be monotone and hemicontinuous and let
N¢(x) denote the normal cone of C' at x € C. Define

Bx + Ngz, if veC,
Tr =

0, if vé¢dcC.
Then T : H — 2 is a maximal monotone and 0 € Tz iff x € VI(C, B).

Lemma 2.51. [47] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let B be an operator of C into H. Let u € C. Then for
A >0,

ueVI(C,B) < u= Po(I — \B)u.

where P is the metric projection of H onto C.
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Theorem 2.52. [47] Let H be a Hilbert space and let C' be a nonempty bounded
closed convex subset of H. Let 8 > 0 and let B : C' — H be (-inverse strongly
monotone. Then VI(C, B) # 0.

Definition 2.53. [I3] Let H be a Hilbert space and let C' be a nonempty bounded
closed convex subset of H. A mapping T : C' — C is called strictly pseudocon-

tractive if there exists k with 0 < k& < 1 such that:

T2 = Tyl* < llo = ylI* + k(I = T)x — (I = T)y|* for all z,y € C.

Remark. If £ = 0, then T is nonexpansive. Put B = [ — T, where

1-k_

T : C — C'is a strictly pseudocontractive mapping with k. Then B is =

inverse-strongly monotone.
we assume that a bifunction F': C' x C' — R satisfies the following condi-
tions:
(Al) F(z,z) =0 for all z € C
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(A3) for each z,y,z € C, limy)o F(tz 4+ (1 — t)z,y) < F(x,y);

(A4) for each z € C,y +— F(x,y) is convex and lower semicontinuous.

Then, we have the following lemmas.

Lemma 2.54. [4] Let C be a nonempty closed convex subset of H and let F' be a
bifunction of C' x C into R satisfying (A1)-(A4). Let r > 0 and v € H. Then,

there exists z € C' such that

1
F(z,y)—l—;(y—z,z—@ >0, Vyed.
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Lemma 2.55. [16] Assume that F': C x C' — R satisfies (A1)-(A4). Forr >0

and x € H, define a mapping J* : H — C' as follows:
Jf(x):{ zGC’:F(Z,y)—l—%(y—z,z—x) >0, VyEC}
for all z € H. Then, the following hold:
(1) JE is single-valued;
(2) JE is firmly nonexpansive, that is, for any x,y € H,
9= I < (3 - Fna =)

(3) F(J) = EP(F);

(4) EP(F) is closed and conver.



CHAPTER III

MAIN CONVERGENCE RESULTS

3.1 Hybrid Steepest Descent Methods

3.1.1 An infinite family of nonexpansive mappings

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
{T,,}22, be a family of infinitely of nonexpansive mappings of C' into itself and let
{1}, be a sequence of nonnegative numbers in [0,1]. For any n > 1, define a

mapping W,, : C' — C as follows:

Unnn = 1,
Unn = nToUpnir + (1 — pn)l,
Unn-1 = pn1Tn1Upp + (1 = p1)1,
(3.24)
Uni = DU per + (1 — ),

U1 = ph—1Dp—1Uns + (1 — p—1)1,

Una = ToU,3+ (1 — po)l,

Wy,=Us1 = wuTiUps+ (1— ),

such a mappings W,, is nonexpansive from C' to C' and it is called the W-mapping

generated by T1, Ty, ..., T,, and pq, fio, ..., i, (see [46]).

Lemma 3.56. [40, 54] Let C' be a nonempty closed convez subset of a real Hilbert
space H. Let Ty, T5, ... be an infinite family of nonexpansive mappings of C into
itself such that NS F(T,) # 0, let pq, pia, ... be real numbers such that 0 < p, <

b <1 for everyn > 1. Then,
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(1) for every x € C' and k € N, the limit lim,,__,o, U, yx exists;
(2) the mapping W of C' into itself as follows:

Wx= lim Wyx= lim U, z, v €C, (3.25)

n—-aoo n—-—oo

is a nonexpansive mapping satisfying F(W) = (,—_, F(T,,), which it is called

the W-mapping generated by 11, T, ... and py, pa, ...

9

(3) F(W,,) =N, F(T,), for each n > 1;

(4) If E is any bounded subset of C', then lim sup [|[Wz — W,z|| = 0.
E

n—oo xE
Theorem 3.57. Let C be a nonempty closed convexr subset of a real Hilbert space
H, let Fy,k € {1,2,3,..., M} be a bifunction from C x C to R satisfying (A1)-
(A4), let {T,,} be an infinite family of nonexpansive mappings of C into itself and

let B be &-inverse strongly monotone such that
© =M F(T,) N (ML SEP(Fy,)) NVI(C, B) # 0.

Let f be a contraction of H into itself with n € (0,1) and let A be a strongly positive
linear bounded operator on H with coefficient ¥ > 0 and 0 < v < % Let {x,},

{yn} and {u,} be sequences generated by

§
x1 = x € C chosen arbitrary,

Yn = (1 - 5n)xn + 5nPC('Tn - Oéann)y

_ gFy 7FM-1 7FM—2 F, TF
Up = JT]M,n ‘]T]\/Ifl,n‘]rlwfzn T J’r‘g,n‘]rl,nyn’

Tni1 = €nVf (Un) + Bun + (1 = Bo)] — €,A) Pe(Wyu, — A BW,uy,), Vn > 1,
(3.26)

where {W,} is the sequence generated by (3.24) and {€,}, {5,} are two sequences
in (0,1) and {rp.}, k € {1,2,3,..., M} are a real sequence in (0,00) satisfy the

following conditions:

(C1) lim, €, =0 and >~ | €, = 00,
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(C2) 0 < liminf,, . 6, <limsup, . G, <1,
(C3) {an},{ \} Cle,g] C (0,28), lim, oo, =0 and lim, ., A\, =0,
(C4) {6,} C[0,b], for some b € (0,1) and lim,,_ |01 — 6| =0,
(C5) liminf, o7k, > 0 andlim, o0 |7k nt1—7Tkn| = 0 foreach k € {1,2,3,..., M},
Then, {x,} and {u,} converge strongly to a point z € ©, which is the unique
solution of the variational inequality
<(A—7f)z,$—z> >0, Vr € 0. (3.27)

FEquivalently, we have z = Po(I — A+ vf)(2).

Proof. From the restrictions on control sequence, without loss of generality, that
en < (1 — Bo)||A]7! for all n > 1. From Lemma [2.40, we know that if 0 < p <
|A|| 7Y, then ||[I — pA|| <1 — py. We will assume that ||[I — A|| < 1—4. Since A is

a strongly positive bounded linear operator on H, we have
IA| = sup{|<A:v,:c>| Lz H ||z]| = 1}.
Observe that
<((1 — Gl — enA)x,x> =1—0,— e (Azx,z) > 1— 5, —e,]|A]| >0,

this show that (1 — 3,)I — €, A is positive. It follows that

(1= B)1 —€e, Al = sup{’<((1 — Bo)I — enA)iL',x> cx € H,||z]| = 1}

= sup{l — Bp —en(Ax, ) x € H, ||z|| = 1}

S 1_611_611:)/'

We divide the proof of Theorem [3.57 into seven steps.
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Step 1. We show that the mapping Pg(vf + (I — A)) has a unique fixed

point.

Since f be a contraction of C' into itself with coefficient n € (0,1). Then,

we have

[Po(vf + (I = A))(x) = Po(vf + (I = A) ()]
IV f + (I = A)(x) = (v + T = A) W)
Wi @) = F)ll+ I = Alfllz =yl

lle =yl + @ =)z =yl

ININ A

Q=@ =)z —yll, Vr,yel.

Since 0 < 1 — (5 —ny) < 1, it follows that Po(vf + (I — A)) is a contraction of C
into itself. Therefore by the Banach Contraction Mapping Principle, has a unique

fixed point, say z € C, that is,

z=Po(vf+ (I —A))(2).

Step 2. We show that W,, — \,, BW,, is nonexpansive.

For all z,y € C, let W, is the sequence defined by (3.24) and A, € (0, 2¢),

we obtain W,, — A\, BW,, is a nonexpansive. Indeed,

(W, = \e BW,, )z — (W, — A\ BW,, )y ||
= |[|(Whz — Woy) — A\(BW,x — BW,)|I?
= [|[Whr — Woyl|* — 20 (Woz — Wyy, BW, 2 — BW,y) + \2|| BW,x — BW,y||*
< o=yl = 20ENBWaz — BWogl| + A2 BW,iz — BW,y|?

= |lz = yl* + M(An = 20| BW,z — BW,y||*

IA

2 —yl?, (3.28)

which implies that W,, — A\, BW,, is a nonexpansive.



Step 3. We show that the sequence {x,} is bounded.
In fact, let = € ©, then

% = Po(% — a, B).

28

Setting v,, = Po(x, — a, Bx,) and I — o, B is a nonexpansive mapping , we obtain

lvn = 2| = |[Pe(zn — anBrn) — Po(T — 0, BT)||
< |(zn — anBzy) — (T — 0, BT)||
= ||(I —a,B)x, — (I — a,B)Z||

< |, — 7
and

lyn — 2| < (1= 6n)llzn — 2| + dnllvn — 2|
< (1 =)llzn — Tl + Onllzn — ||

= lzn = 2.

Let S = JFk JTFkxc 11ankk 2. JE R for ke {1,2,3,..., M} and

n. Because J,ikn is nonexpansive for each k =1,2.3,..., M, T =
we note that u, = SMy,. It follows that
ln =2l = 1S5 Yo — S 2]l < My — 2| < |l — 2.

Let e, = Po(Wyu, — Ay BW,u,,), we can prove that

lew — | = ||Po(Wattn — AyBWttn) — Po(Wii — A BW,)||

< (Wt — M BWostt) — (Windi — Ay BW,7) |

= |(Wy = A\a BW, )y, — (Wy, — A BW,)Z|

IN

[un — 2| < lzn — 2],

(3.29)

(3.30)
= [ for all

nd (3.129),

(3.31)

(3.32)
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which yields that

@01 — 2| (3.33)

||EN(7f(un) - A‘%) + ﬁn(xn ) ((1 - ﬁn) €n )(671 - j)”

< el f(un) = ATl + Bullzn = Z[ + [|(1 = Bu) I — enAll|len — 7|

< e[l f(un) = F@ + el f(2) = AZ|| + Bullen — 2] + (1 = Bn — a7 llen — 2]
< enynllun — || + enlly f(2) — AZ|| + Bullen — 2l + (1 = Bn — en¥)[|2n — Z|

< enynllen — 2| + enllvf(2) — AZ| + Bullen — 2| + (1 = B — en¥)||l2n — ]

- - Nl — a5l + T = 1Men -
= (=& —me)llzn — 7| + 7o >|| vf(E) — Az

By induction, we have

N
2 — 7| gmax{“g;l—gz“,w}, Vn € N. (3.34)
Y=

This implies that {z,} is bounded, and hence so are {u,}, {e,}, {yn}, {BWyu,},
{Bz,}, {Ae,}, {v, — x,}, and {f(u,)}.

Step 4. We show that lim ||z,+1 — x,| = 0.

We claim that, if w,, be a bounded sequence in C. Then

lim [|S%w, — S w, || = (3.35)

n—--auoo

for every k € {1,2,3,..., M}. From Step 2 of the proof Theorem 3.1 in [I§], we
have that for k € {1,2,3,..., M},

lim [[JF  w, = J* w,|| = 0. (3.36)

oo N Tknt1
Note that for every k € {1,2,3,..., M}, we obtain

Fr 7Fe—1 7Fr—2 Fp F1_Fk(xk1
'] JTk 1,n JTIc 2n " JT'anrln_J Sn



Thus
1S*w,, —
_ HJFk ST
< ||JFk ST
< H(]Fk gk-1y,
< HJFk gk-1y,
HIS,
< ||JFk ST

+o 12 Shwn

7’l

n

Now, apply (3.36) to conclude (3.35).

Since T,, and U, ,, are nonexpansive, we have

||Wn+1xn -

Ml H 223
=1
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K wnl (3.37)
— Jk Sl
—Jf;’;ﬂ S wall + LS wn — ik L SR iwnl
W = It S wnll 118 wn — S wnl
B S 4 10, 8, — T 8|
“ﬁﬁwnH
B S ) S, — T S|
Jvian S, || + ||J£1nwn Jf:lnHwnH.
Woznll = aTiUngr2n — 11U, 22, ||
< pl|Uns1,2%n — Un o]
= M1HM2T2Un+1,333n - M2T2Un,3l’nH
< papel|Uns3%n — Un sl
<
< papa - i ||Ungr 1% — Uppg1 T ||
< - (3.38)

where M; > 0 is an appropriate constant such that ||U, 1144120 — Up 12| < My

for all n > 0.

From I — o, B is nonexpansive, we have

[Un+1 = vnl|

IN

A

S ||xn+1

||PC(xn+1 - anJrlenJrl) -
[(Zn1 —

< l@ng =

Po(

Ty, — an B, ||

Uy 1BTpy1) — (T — an Bry)||
Un1BTpi1) — (Tn — Q1 Bry)|| + |angr — anl|| Bay|
— Zpll + ani1 — || Baal|. (3.39)
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From (3.26) and (3.39), we have

IA

IN

[¥nt1 — Yall (3.40)
(1 = 0n1)(@nt1 — Tn) + 1 (Va1 — V) + (Gnsr — 65) (vn — )|

(1 = Gns)l|ns1 — Zall + dngal|vasr — vall + [0nt1 — dnlllvn — @4l

(1 = Gps1)l|@ns1 — 2| + 5n+1{|!xn+1 — ol + |41 — OzanBl‘nH}

+ 100 = dnt1lllzn — vall

[Znt1 — Znll + Ongilonir — anl|| Bon || + |00 — dnga|l|2n — vnll- (3.41)

Now, we compute ||t +1—uy,|| and ||e,+1—e,||. Consider the following computation:

||Un+1 - Un|| = ||%£\L/-[|-1yn+l - %,%nH

and

IN

IA

IN

IN

IS0 U1 — S rtnll + 1S 1Y — Sa ynl|

N

> ||yn+1 - yn” + Hg%lyn - %%ynH
< @nt1r — ool + Sngalans — anl| Bon || + [0 — S|l 20 — va|

IS0 — S0l (3.42)

lent1 — enl|
| Pc(Wyi1tni1 — Apr1 BWhi1tn 1) — Pe(Whu, — A\ BWou,) ||
|(Waia1ttn1 — A1 BWo1tng) — (Watn — A BWyu, ) ||
[(Whi1tns1 — M1 BWaiatng1) — Wigatn — A1 BWuy,)
+ (Whiitn — A1 BWogiuy,) — (Whu, — Ay BWu,)||
| (Whs1tni1 — A1 BWip1tng1) — (Wagitn — A 1 BWy 11, |
+ [[Whs1t, — Watg || + || M BWhtt, — A1 BWo 1w, |
1 = ] + My [ T i+ Al BWottn | + A BWongat|

i1
|01 = Znll + Onga| 1 — || Baa || + [0 — Onga|[|l2n — vnl]

‘*’H%rj‘;{&-lyn - %%ynn + M, H:ui + Al [ BW || + A1 [| BWip1us[[3.43)

i=1
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Setting
[— Tpy1 — ﬁnxn o €n7f<un> + (( ﬂn) €n )en
" 1- 511 B 1- Bn ’
we have x,.1 = (1 — B,)l, + Buxn, n > 1. It follows that

b1 — Uy
en 17 (Uny1) + (1= Bor)] — €np1A)enta
1= Bp
e fun) + (1= Ba)] — enA)en
1— 0,
= 1in—;;+1 ('Vf(un—i—l) - Aen-H)

_|_

— (Aen ~ f(un)> F (eng1 — en). (3.44)
It follows from (3.43)) and (3.44) that

1lnr = Il = l#ns1 = 20|

€n+1

< 1_—&H|"Vf(un+1> - A€n+1H +

€n
1— ﬁn HAen - ’Yf(un)”
+ Ont1lanes — anll| Bzn|| 4 [0n = dpsa ||z — va|
n

i=1

+ Mg 1| BWh 1ty ||

€n+1

< il
< T <||7f(un+1)|| + ||Aen+1||> ﬁn (||Aen|| T ||7f(un)||>
+5”+1|a"+1 - an|||BIn|| + |5n - 5n+1|||$n — Un“

=1

—i—/\n+1||BWn+1un||. (345)

This together with conditions (C1)-(C4) and (3.35) imply that

timsup ([l — Lall = zaes — 2all) < 0.

n—:u;o

By Lemma 2.11, we obtain
lim ||l — x| = 0.

Consequently,

lim ||zpi1 —xn] = lim (1 — B,)||l, — || = 0. (3.46)
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Applying (3.35), (3.46) and conditions (C3), (C4) to (3.39) and (3.42), we obtain
that

lm |[ups1 — upnl = lim ||v41 —v,]] = 0. (3.47)

Step 5. We show that lim ||[W,e, —e,| = 0.

For any 7 € © and (3.28), we obtain

||vn — i‘Hz = ||Pe(x, — anBxy) — Po(Z — OanaE)H2

IN

|(x,, — anBx,) — (T — anB:i?)HQ

< llaw = 3P+ (02 = 20,8)|Ban — BEE. (3.48)
By Lemma 2.31(iv) and (3.48), we have

Yy — 35”2 < (1 =dn)l|zn — 57”2 + Onllvn — ‘%H2

IN

(1 - 5n)||xn - jH2 + 571{”“”71 - jHQ + (ai - 20%5)”an - BjHQ}

= lzn — 2|* + (o} — 20,8)0,|| By, — Bi||.2 (3.49)
So, from (3.31) and (3.49), we derive
llen — 2% < llun = ZII* < llon — 2 + (0, — 2008) ]| Bxy — BZ|.* (3.50)
From (3.20), we have

o
= B — e — ) + Bul — )+ ealy () — AD)?
= @ = B~ enA)(en — ) + e — DI
F S () — AF| + 28,0, — 7,7 (un) — AZ)
260{(1 = B = €u)(en — 7). () — AR)
(0= 80 — ewllew — 2+ Bullan — 2]) +enL

< (1= Bu—ea¥)llen — 21° + Bollwn — 2|

IN

+2(1 = 8o — en7)Bnllen — Elll|lwn — T + €nLn
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< [0 ed)? =200 e+ 82 llen — &
(1= By = eA)Ba{llen = 2 + o = &P | + Bl = 7 + ea L
= (=)= B = aDllen =72 + (1 = ) Bualln = F* + el (351)
< (1= e = o = ean){lzn = I + (02 — 20,£)0, | Bz, — B3}
+ (1 = €,9)Bullzn — Z|* + €, Ln
= (1= &)l - 3
+ (1 = e,7)(1 = B — €a¥) (a2 — 20,6)d,,|| By, — BE||> + €, Ly,

< Hxn - fi||2 + (1 - €n7)(1 — Bn — EnW)(ai - 2an§)5n”BIn - Bj:||2 + €L
It follows that

(1= &)L = B — €7)(29€ — €*)b]| Bz, — Bz||?

(1 = &) (L = Ba = €7)(200& — ;)05 | By, — BE||?

IN

IA

||l’n - j||2 - ||xn+1 - ‘%H2 + 6nLn

< Nzn = o l(lzn — 2| + [[2n1 — Z|) + €nln,
where

Lo = caltf () — AZJ2 + 28, (e — &, (u) — AG)

+2((1 = B)I — e A)(en — ), vf(u,) — AZ).
By conditions (C1), (C2) and (3.46), we obtain

lim ||Bx, — Bz| = 0. (3.52)
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Since P¢ is firmly nonexpansive mapping, we have

lv, — 2| = |Pe(xn — anBr,) — Po(Z — a,BI)|?
< <(xn - a,Bzx,) — (Z — a,B), v, — :r;>

1 - N =12

= 5{l@n — anBa) = (7 — € BE) | + o — 7|

(20 = anBay) = (& = 0 BE) — (va — )2}

1 - - -

< S{llwn =2+ llow = &1* = ll(20 = va) = an(Ba, — B}
1 . .

< S{lwn = &2 + o = 212 = o — vall?

2
— a2|| B, — Bi|[* + 20020 — vallll B, — B }.

Hence, we have
o, = 2> < lzg = Z)* = l2n = vall* + 20020 — v, ||| Bz, — BE||
and so

[

IN

(1= 6n)llzn — Z[1* + plvn — 2|7
< (1= 6n)llwn — ) + 5n{||xn — Z|* — |20 — val® + 20|z — vnll[| By — Bi’”}

lzn — Z||* = Onl|lTn — v |* + 2600 ||2n — vu||| Bz, — B (3.53)

Using (3.51) and (3.53)), we also have

[T g1 — T

< (=) =B —eaNlen = 21* + (1 = €.7) Bullen — Z|* + enLn

< (T—e)(1 = B0 — ealun — 2 + (1 = €a7)Bullwn — Z)|* + €n L

< (T=e) (1= B0 = eaNlyn — 2> + (1 = €7) Bullzn — Z[|* + €, Ly

< (1= a1 = By = eN{len = 312 = dulln = val® + 20000ll2, = valll| Bao — Bl }
+ (1 = e9) Bl — Z||* + €nLn

< an — 22— (1= €)1 = B — €a¥)0nllzn — vall?

+ 2(1 - Enﬁ/)(l — Bn — 6n7)5n04n||$n - UnH”an - B'%H + €L
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It follow that

(1 - En’?)(l - ﬁn - enﬁ)dnnmn - 'UnHQ
< “3771 - xn—l-lH(Hxn - jH + Hxn—I—l - j”)

+2(1 — €,9)(1 = Bn — €x7)0nan||xn — va|||| B — BZ|| + €n L.
From conditions (C1), C(4), (3.46) and (3.52)), we obtain
T e vl = 0 (350
Observe also that if e, = Po(W,u, — A\, BW,u,), then

lew =2l = [|Po(Wttn = ABWittn) — Po(@ — A BE)|P
< (Wit — AaBWtty) — (& — Ay BT)|?
= [(Wtty — M BWotty) — (W@ — A BW, )|
< g = 27 4 (A2 = 208 | BWu,, — B |)?

Substituting (3.55) in (3.51), we have

241 — 2|

IN

(1= e¥)(1 = Bn — ) llen — ZiHQ + (1 = €,7) Bnllzn — j”2 + €nLln
< (=)= B — e {llzn = 3+ (A = 20,01 BWou, — B2}

+ (1 = €,7)Ball@n — &> + €Ly

IN

2n — Z|1* + (1 — €,9)(1 = Bo — €a7) (A2 — 20,8) || BWyu, — BE|* + €, L.
It follows that

(1 —e,7)(1 = Bn — €.7)(29€ — €)|| BWyu,, — B ||?

(1= e,7) (1 = Bn — €.7)(20E — A2)||BW,u,, — BE|)?

IA

IA

[n = Tnall([l2n — Z| + 200 = Z]) + enln
Since ||zp+1 — Tn|| — 0(n — o0) and conditions (C1) and (C2), we obtain

lim ||BW,u, — BE|| = 0. (3.56)
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Since P¢ is firmly nonexpansive (Lemma [2.31] (iii)), we have

len — 2|7 =

IN

IA

Hence, we have

| Pc(Wyaty, — A\ BWyuy,) — Po(% — A\, B7)|?

((Wou, — My BWyuy,) — (2 — X\, BZ), €, — T)

1

SNt = X\ BWo) = (& = A BE) |2+ e — &)

| (Wattn = M BWota) = (& = \Bi) = (e — &)1}

1 . - -

S{ =312+ llew = &2 = 11(Watwn = €0) = Au(BWou, — B3)*}
1 . 8

s{len = 712+ llew = 712 = [Wan — ea?

= N2 BWttn — BE|2 + 22, [Wty = ea[| BWyun — Bl }.

len — 2|

< lwn — :Z‘||2 — [|Whu, — en||2 + 20, || W, — e[| BWyu, — BZ||. (3.57)

Using (3.51) and (3.57), we also have

nss — 2" <

IA

It follow that

(1= )1 = B = ea)llen — Z[I° + (1 = €27) Bullwn — Z|* + €nLn
(1= )1 = B — e { llzn = 1 = [Watn = el

20 [Watt — || BWittr, — B:I:H} 4 (1 — e9)Bolln — F|2 + €nLn
20 — Z[|* = (1 — €7) (1 = B — ea¥) Wt — en]?

+2(1 — €,7)(1 = Bn — €n7) M| Wty — en|||| BWyuy, — BZ|| + €, L.

(1 - En’w(l — B — En’_}/)HWnun - 6n||2

< llen = zpal|(lzn = Z{ + llzn = 2[))

+2(1 — €,7)(1 = Bn — €7) Ml | Wt — en|| | BWhuyn, — BE|| 4 €nLy,.

From condition

(C1), (3.46) and (3.56), we obtain

lim |[Wyu, — e,|| = 0. (3.58)
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For any & € ©, note that J'* is firmly nonexpansive (Lemma 2.55(2)) for k €

{1,2,3,..., M}, then we have

IShyn — 2l = I75F, S0y — Ji0 2
§<ﬁ2%1% T 7.3
= <%f’;yn — 7,98y, — 2
= 2 (Iskw. — a2+
So, we obtain
R e [ o e e [ T
which implies that for each k € {1,2,3,...

IS0y = ZI1° < IS0 — 21 — 1S5 —

— 1198y — 9572y W
<l — 71 — I19Ey. -
< o — 32 = 19y -

Consequently, from (3.51) we derive that

IN

||xn+1 _j‘|2

IN

IN

M —

-1

-1

-1

I

nll.

— 3 = Sk — S5 al?).

SE Yyl k=1,2,3,..., M

1},

yn||2

12 = 1ISnyn — S0yn

(1 — €)1~ By 6n’7)||€n_j||2+(1_%:}/)671”‘7371_f|’2+€nLn

(1—e)(1 =By — 6n'7)||un - jH2 +(1— 6n'7)ﬁﬂ||xn - "Z‘H2 + €L,

< ||$n - 57”2 — (=&Y =By — Enﬁ)H%ﬁyn - %fz_lynHQ + €L,

Thus, we have

(1 - En'?)(l — B — En;)/)H%]riyn N

T

< Nz = upall(Jzn — 2| + |20 — Z||) + €nLn.

I”

(
(

= (1= = Bo = eMIShyn — 21 + (1 = €a¥)Ballwn — 2l + enLn
(1= ) (1 = Bu = e {llan = 72 = S5 — S0}

+(1 =€) Bnlln — Z||* + € Ln
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By liminf 3, > 0, ¢, — 0 as n — oo and (3.46)), so we deduce that

lim ||SFy, — Syl =0, k=1,2,..., M —1, (3.59)

n—~ao

that is,
[u® — 4=V — 0 as n — oo.
Therefore, we have
Yn = unll = 1905 — Shvall
< 1190 = Suall + 19090 — Saall + -+ 1Sy — S5 wall.

From (3.59), we have

lim ||y, — u,|| = 0. (3.60)

Since x,11 = €,7f(un) + Buzn + (1 — Bo)I — €,A)e,, we have

lzn —enll < [lan = Znga |l + |21 — enl]
= |lzn = zoall + eV (un) + Bown + (1 = Ba)] — €nA)en — e
= Nzn = znnll + llea(rf (un) — Aen) + Bn(zn — en)||
< lzn = 2 ll + ey (un) | + [[Aenll) + Ballzn — enll,
that is,

L |+ 5
1_571 o :Un-i-l 1_671

By conditions (C1), (C2) and (3.46) it follows that

(I f ()l + [[Aeall)-

|zn —en] <

nli_I)noo |z, —en| = 0. (3.61)
On the other hand, from (3.20), we have
[Yn = wnll = Onllvn — zn].
Since nleOO |zn — vn|| = 0, we get

lim |y, — x| = 0. (3.62)
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We observe that

[When — enl|

IA

[When — Wt || + [[Watn, — e,

IN

llen — Tn + Tr — Yn + Yn — || + [|Watn, — e

< len = zall + llen = yull + [lyn = unll + [Watn — en]|.

Consequently, we obtain

lim ||[W,e, — en|| = 0. (3.63)

Let W be the mapping defined by (3.25). Since {e,} is bounded, applying Lemma
3.50(4) and (3.63), we have

IWe, —en| < |[[We, — Whenll + [|[When — en]| — 0 as n — 0. (3.64)

Step 6. We show that ¢ € ©, where © := N2>, F(T,,) N (N}, SEP(F})) N
VI(C,B).

Since {x,} is bounded, we see that there exits a subsequence {z,,} of {z,}
which converges weakly to ¢. It follows from (3.62) and (3.61) that y,, — ¢ and

en, — ¢q . From (3.60), we obtain that %,’jyn —~qfork=12,..M.

First, we show that ¢ € N}, SEP(F},). Since u,, = S¥y, fork =1,2,3,..., M,

we also have

1
F(SEy,y) + —(y - SEy, Sy, — S5 y,) >0, VyeC.

n

If follows from (A2) that,

1 B
—(y- Sy, SRy, — SE71y) > —F(SF . y) > Fiuly, S5u,).

Replacing n by n;, we have

S* 4 — Sy,
k, i ng i ng k’
<y - %niyniv - r : > = Fk(y’ %my”z)
g

Sk g —SE Ly )
Since "yr—y — 0 and S¥ y,, — ¢, it follows by (A4) that



41

foreach k =1,2,3,..., M.

For ¢t with 0 < ¢ < 1 and y € H, let y, = ty + (1 — t)g. Since y € C and
q € C, we have y, € C and hence Fj(y:,q) <0. So, from (Al) and (A4) we have

0 = Filye,y) < tFe(ye,y) + (1= O Fk(ye q) < (v, y)
and hence Fi(y:,y) > 0. From (A3), we have Fy(q,y) > 0 for all y € C' and hence

q € SEP(F}) for k=1,2,3,..., M, that is, ¢ € "L, SEP(F},).

Next, we show that ¢ € Ny, F(T,,). By Lemma 3.56(2), we have F(W) =
N> F(T,). Assume ¢ ¢ F(W). Since e,, — ¢ and ¢ # Wy, it follows by the
Opial’s condition (Lemma 2.25) that
liminf ||e,, — ¢|| < liminf |le,, — Wyq||
< h.minf{Hem - Weni” + HWeni - Wq”}

< liminf ||e,, — ¢l
1—>0Q

which derives a contradiction. Thus, we have ¢ € F(W) =N, F(T,).
Finally, Now we prove that ¢ € VI(C, B).

We define the maximal monotone operator

BQI + NCC]h q1 € 07
@7 q1 g_f C.

For any given (q1,¢2) € G(Q), hence ¢o — Bqy € Neoqp. Since e, € C' we see from

Qq =

the definition of Ng that
(@1 — en g2 — Bai) > 0.
On the other hand, from e, = Po(W,u, — o, BW,u,), we have
(g1 — en, €0 — Wyou, — a0, BW,u,)) > 0,

that is
n - Wn n
<QI — €n, ‘ “ + BWnun> > 0.

n
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Therefore, we obtain

<Q1_6nm(J2> > <Q1_6niaBQ1>

en; — Witly,
Z <Q1_€nuBQ1>_<Q1_€m,la—+BWnuni>
en, — Wity
= <Q1 - entql - BVVnunZ - ;>
O,

- <QI — €n,, BQ1 - Benz> + <Q1 - enineni - BWnuni>

en; — Witly,
—\q1 — enia
Oy,

n, — Wt
Z <q1 - enia Beni - BWnunz> - <q1 — 6ni, u>c365)

Oy,

(3

Since ||e,,; — Wy, || — 0 as i — oo and B is Lipschitz continuous we obtain that

(@1 — q,q2) > 0.

Notice that @ is maximal monotone, we obtain that ¢ € Q=0 and hence ¢ €

VI(C, B). This implies ¢ € ©. Since z = Po(vf + (I — A))(z), we have

lirgup<xn —2z,7f(2) — Az> = lEnoo<xn —z,7f(z) — Az>
= <q —z,7f(z) — Az> <0. (3.66)

On the other hand, we have
(en=27F(2) = Az) = (en—2n,2f(2) = Az) + (0 — 2,7f(2) - Az)
< e = @alllnf(2) = Azl + (20 = 2,7f(2) - Az).
From (3.61) and (3.66), we obtain that

lim sup<en —z,7vf(2) — Az> <0. (3.67)

n——oo

Step 7. Finally, we show that {z,} converges strongly to z = Po(I — A+~f)(2).
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Indeed, from (3.26)) , we have

IA

VAN

IN

IN

@nsr = 2|
11 = BT = enA)(en — 2) + Buln — 2) + en(rf () — A2)|
1L = Bl = eaA)(en = 2) + Balwn = )|

€l (n) = A2 + 2Buenn — 2,7 f () — A2)

+26,(((1 = B)] = enA)(ew — 2),7f (uwn) = Az)

(1= = ellen = 2l + Bullrn — =) +€2 27 () — Az
+2Bneny(Tn — 2, fun) = f(2)) + 20nen(zn — 2,7f(2) — Az)

+2(1 = Ba)enrlen — 2 f(un) = J(2)) + 2enlen — 2,7/(2) - A2)

— 2Bnenlen — 2 7f(2) = Az) = 262 ((Alen = 2), 7 (un) = A2)
(1= B = ea)?llen = 217 + B2l = 212 +2(1 = B = a¥)Bullen — 2z = 2]
+ 1 ) = A2 + 2Byl — 2l f1r) — F(2)]

+2(1 = Bu)enllen = 2ll1f () = ()| + 28ueallan — 2ll17() = Az
—20uenllen — 2l 7£(2) = Azl = 2€2[| Alen = 2) |17 (ua) — Az
+2€,(en — 2,7f(2) — Az)

(1= e)? = 201 = &)+ 02 llew — 21° + B2l — 211

(1= Bo = ea)Bu{ e = 212 + lan = 202} + 7S (un) = Az
+ 28neaynlen = 2lllun — 21 + 201 = Ba)ewrnllen — 2w —
+2Bucalln = 27F(2) = Azl = 2Bucallen — 2l () — Az

= 22| A(en — 2)17F (un) = Az]| + 2enen — 2,7/ (2) — A2)
(1= )1 = B — ea¥)llen — 21> + (1 = 7)Ballz — 2|7

+ 2l fwn) = Az + 2Beaynllan — 2P +2(1 = Bu)ewynllzn — 2|
+ 28neallan — 2l (2) = Azl = 2Bucallen — 2l £ (2) - Az

+26,]|Aen — 2) 7 f (un) — Az|| + 2enlen — 2,7.f(2) — Az)
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IN

(1= &)1 = Bo — exDlln — 21 + (1 = &M ullzn — 2|

+epllvf(un) — Az|? + 2eym]| 2y — ||

+2Bueallzn — 20 (2) = Azl = 2Buenlln — 2|7 (2) - Az

26| Aen = 2)17f (un) = Az]| + 2enien — 2,7/(2) - A2)

= (1= 267+ 7% + 2609) [0 — 21 + €|y f(un) — Az
+2€2 )| Alen = 2) 17 (n) = Azl| + 2enfen — 2,7f(2) — A2)

= [1=207 = ym)en] llzn = 212 + en{ 2en — 2,7(2) = A2) + ek }.

where K is an appropriate constant such that
K > max { sup {72||a:n — 2|+ 1y f(un) = A2|* + 2| Aen — 2)[I17f (un) — Az||}},

Set b, = 2(7 — 777)€n and ¢, = en{Q(en —z,7f(z) — Az) + enK}. Then we have
|Zns1 — 2]|* < (1= by)||zn — 2||* + ca, V0 > 0. (3.68)
From the condition (C1) and (3.124), we see that

lim b, =0, an =00 and limsupc, <O0.
n=0

Therefore, applying Lemma 2.12/ to (3.68), we get that {z,,} converges strongly to

z € ©. This completes the proof. O
Corollary 3.58. Let C' be a nonempty closed conver subset of a real Hilbert space
H, let Fp,k € {1,2,3,..., M} be a bifunction from C x C to R satisfying (A1)-(A4)
and let B be &-inverse strongly monotone such that

O := (ML, SEP(F,)) NVI(C, B) # 0.

Let f be a contraction of H into itself with n € (0,1). Let {x,}, {yn} and {u,} be

sequences generated by
(
x1 = x € C chosen arbitrary,

Yn = (1 - 5n)xn + 6nPC(In - aann)y

_ 7Fy 7FM—1 7PM—2 F TR
Un = JT}M,n JT]\/I—l,n J”’]M—2,n e Jrz’nJrl,nyVH

Tp4+1 = Enf(un) + ﬁnxn + (1 - 571 - En)PC'(un - )‘nBun)a n Z L

\
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where {e,}, {B.} are two sequences in (0,1) and {ry,},k € {1,2,3,..., M} are a
real sequence in (0,00) satisfy the following conditions:

(C1) lim,,_, €, =0 and > ", €, = 00,

(C2) 0 < liminf, . G, <limsup,_ . G, <1,

(C3) {an},{ \} C e, 9] C (0,28), lim, oo vy, =0 and lim, o A\, =0,

(C4) {6,} C[0,b], for some b € (0,1) and lim,, . |01 — 6| =0,

(C5) liminf, o7, > 0 andlim, o0 |7k ny1—TEn| = 0 foreach k € {1,2,3,..., M},

Then, {x,} and {u,} converge strongly to a point z € © which is the unique solution

of the variational inequality
<(f(z) - z,x—z> >0, Vz € O.
FEquivalently, we have z = Po f(z).

Proof. Put T,, = I for all n > 1 and for all x € C. Then W,, = I, A = I and

~ = 1. The conclusion follows from Theorem 3.57. This completes the proof.  [J

If 6, = 0 and M = 1, in Theorem [3.57, then we can obtain the following

result immediately.

Corollary 3.59. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let Fy,k € {1,2,3,..., M} be a bifunction from C x C to R satisfying (A1)-
(A4), let {T,} be an infinite family of nonexpansive mappings of C' into itself and

let B be &-inverse strongly monotone such that

© =M F(T,)NEP(F)NVI(C,B) # 0.
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Let f be a contraction of H into itself withn € (0,1) and let A be a strongly positive
linear bounded operator on H with coefficient ¥ > 0 and 0 < v < % Let {x,},
{yn} and {u,} be sequences generated by

.

x1 =x € C chosen arbitrary,

F(tn,y) + 2y — tp,up — x,) >0, Yy € C,

Tn

| Tl = e f(un) + Buzn + (1 = Ba)I — €, 4) Pe(Wou, — My BWyuy,), Vo > 1,

where {W,} is the sequence generated by (3.24) and {€,}, {5,} are two sequences
in (0,1) and {r,} are a real sequence in (0,00) satisfy the following conditions:
(C1) lim, o€, =0 and > 7 | €, = 00,

(C2) 0 < liminf, . B, <limsup,_ . G, <1,

(C3) { .} Cle,g] € (0,28) and lim,, oo A, =0,

(C4) liminf,, 7, >0 and lim,, . |71 — 7a] = 0.

Then, {z,} and {u,} converge strongly to a point z € © which is the unique solution

of the variational inequality
<(A —vf)z,x — z> >0, Vo € 0.

Equivalently, we have z = Po(I — A+ vf)(2).

3.2 Relaxed hybrid Steepest Descent Methods

let D : C' — H be a nonlinear mapping, ¢ : C — R U {+0o0} be a real-
valued function and let F': C' x C' — R be a bifunction such that C'N dome # (),
where R is the set of real numbers and domy = {x € C': p(z) < +o0}.

The generalized mized equilibrium problem for finding x € C such that

F(z,y) + (Dz,y —x) + o(y) —p(z) 20, VyeC. (3.69)



A7

The set of solutions of (3.69) is denoted by GM EP(F, ¢, D), that is,
GMEP(F,0,D)={x € C: F(z,y)+ (Dx,y —z) + ¢(y) — p(z) >0, Vye C}.
We see that if = is a solution of a problem (3.69) then z € dome.

If D = 0, then the problem (3.69) is reduced into the mized equilibrium
problem is denoted by M EP(F, p).

If ¢ = 0, then the problem (3.69) is reduced into the generalized equilibrium
problem is denoted by GEP(F, D).

If D =0 and ¢ = 0, then the problem (3.69) is reduced into the equilibrium
problem is denoted by EP(F).

If F =0 and ¢ =0, then the problem (3.69) is reduced into the variational

inequality problem is denoted by VI(C, D).

For solving the generalized mixed equilibrium problem and the mixed equi-
librium problem, let us give the following assumptions for the bifunction F', the
function ¢ and the set C:

(H1) F(z,z) =0, Vo e C;

(H2) F is monotone, that is, F(x,y) + F(y,z) <0 Vz,y € C,
(H3) for each y € C, x+— F(x,y) is weakly upper semicontinuous;
(H4) for each z € C, y +— F(z,y) is convex;

(H5) for each x € C, y +— F(x,y) is lower semicontinuous;

(B1) for each z € H and A > 0, there exist abounded subset G, C C' and y, € C

such that for any z € C'\ G,

F(o9) +0(0) — 9() + Sl = 2=y <0 (370)
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(B2) C is a bounded set.

Lemma 3.60. [14] Let C be a nonempty closed convex subset of H. Let F :
C x C — R be a bifunction satisfies (H1)-(H5) and let ¢ : C — R U {+o0} be
a proper lower semicontinuous and convexr function. Assume that either (B1) or

(B2) holds. For A >0 and x € H, define a mapping Tf\F’“O) : H — C as follows:

1
7" (@) = {z € O+ Fle,p)+o) o)+ (y—2,2-2) 20, Yy e C}, Vz€ H.

Then, the following properties hold:

~

. For each x € H, T\"9(z) #0;
2. T)EF’“’) s single-valued;

3. T)EF’“O) is firmly nonexpansive, that is, for any x,y € H,
HT)EF#)).T _ TA(F"P)yHQ < <T§F"")x _ TA(F,so)y’ v y>;
4. F(T#)) = MEP(F, p);

5. MEP(F, ) is closed and conver.

Theorem 3.61. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let F be bifunction from C x C to R satisfying (H1)-(H5) and let ¢ : C —
RU{+00} be a proper lower semicontinuous and convex function with either (B1) or
(B2). Let B, D be two &, -inverse strongly monotone mapping of C' into H, respec-
tively. Let S : C — C' be a nonexpansive mapping. Let f : C' — C be a contraction
mapping withn € (0,1) and let A be a strongly positive linear bounded operator with
¥>0and0<vy< g Assume that © := F(S)NVI(C,B)NGMEP(F, ¢, D) # 0.

Let {z,}, {yn} and {u,} be sequence generated by the following iterative algorithm:

.
x1 = x € C chosen arbitrary,

Uy = T)Ef’w) (xn, — A\ Dxy), (571)

Yn = Buvf(zn) + (I — 5 A)Po(Su, — a BSuy,),

Tnt1 = (1 - 5n)yn + 5nPC(Syn - OanSyn), Vn > 1,



49

where {6,}, {Bn} be two sequences in (0,1) satisfy the following conditions:

(C1) lim B,=0and " B, =00,

(C2) {0,} C [0,0], for some b € (0,1) and lim |0,+1 — 9, =0,

(C3) {\.} C e, d] € (0,20) and lim |A\,11 — A\, =0,

(C4) {an} Cle,g] € (0,2¢) and lim |y — ] = 0.

Then, {x,} converges strongly to z € ©, which is the unique solution of the varia-

tional inequality

<fyf(z) — Az, x — z> <0, Vz € O. (3.72)
Proof. We may assume, in view 3, — 0 as n — oo, that 3, € (0, ||4]~"). By
Lemma 2.40), we obtain || — ,Al| <1— 3,7, Vn € N.

We divide the proof of Theorem [3.61] into six steps.

Step 1. We claim that the sequence {z,} is bounded.

Now, let p € ©, It is clear that
p=5Sp=Pe(p— a,Bp) = T{"(p— \Dp).

Let u, = Tg’“p) (xn, — AnDx,) € dom ¢, D be (-inverse strongly monotone and

0 <\, <20, we have
[tn = pl| < [l — pl|- (3.73)

Let z, = Po(Su, — a, BSu,) and S — a,, BS be a nonexpansive mapping, we have

from Lemma [2.35 that

120 = pIl < llun = pll < [l2n = pll (3.74)
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and
lvn —pll < Ballvf (@) — Apll + 11 = BuAllllzn — pl|
< Ballvf(zn) = Apll + (1 = B2 — Pl
S ﬁn7||f<xn) - f(p)H + Bn||7f(p> - Ap” + (1 - Bn7)||xn _pH
< Buynllzn = pll + Bullvf(p) — Apll + (1 = B:7) |20 — pll

(1= —=n)B)llwn —pll + Bullvf(p) — Apll.

Similarly, and let w,, = Po(Sy, — a, BSY,) in (3.74), we can prove that

lwn =l < My —2ll < (1= F = n07)Bu) |20 — pll + Bullvf(p) — Apl|(3.75)

which yields that

|21 =Pl < (1= 6u)|lyn — pll + nllwn — pl|
< (1 =36u)lyn — pll + Snllyn — Dl
= |y — pll|
< (L= F=m)Bu)lzn — pll + Bullvf(p) — Ap||
= (= G- mllen - ol + T ) -
< max{uxn —pu,”””_@’)—‘f”'”'}
¥ —nv)
<
< max{“xl _p”,H’yf_(p)——ApH} ., Vn>1.
¥ =)

This show that {z,} is bounded. Hence {u,}, {z.}, {yn}, {wn}, {BSu,}, {BSy.},
{Az,} and {f(x,)} are also bounded.

We can choose some appripriate constant M > 0 such that

M > max { sg}f{llBSunH}, SL;I?{HBSynH}a Sgrf{va(%) — Azll},

sup{||un — znl|}, Sup{llwn—ynH}} (3.76)
n>1 n>1

Step 2. We claim that lim ||z, — 2] = 0.
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It follows from Lemma 3.60 that u,_; = Tg’j) (p_1 — Ap_1Dxy—1) and

Uy, = T)Ef’w) (x, — ApDzy) for all n > 1, we get

and

F(un—1,y) + 0(y) — @(tn-1) + (DTp_1,y — Un_1)
1
)‘n—l

(Y = Up_1,Up_1 — Tp_1) >0, Vy e C (3.77)

1

n

Take y = u,—; in (3.78) and y = u,, in (3.131)), we have

and

F(tn—1,un) + ©(tn) — @(tp_1)

+<Dl‘n_1, Up — un—1> +

1
F(tp, un—1) + @(tn—1) — @(tn) + (D2, un_1 — upn) + )\_<un71 — Upy, Up — Tpy) > 0.

n

Adding the above two inequalities, the monotonicity of F' implies that

and

)\n >\n71

Up — Tn Up—1 — Tn-1
<D$n - Da:n—laun—l - un) + <un—l — Up, - 2 0

S <un—1 — Up, )\n—l(DCEn - Dxn—l) + A (un - xn) - (un—l - xn—1)>

An

An_
= <un — Up—1, Up—1 — Up + <1 - l)un + (xn - )\nlexn>

Ap—
- (xnfl - )\nlexnfl) — Tp + /\ 1xn>

An_
= <un — Up—1,Up—1 — Up + (1 - 1) (un - xn) + (xn - )\nlexn)

An

- ($n,1 - )\nlD:Enl)>-
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Without loss of generality, let us assume that there exists ¢ € R such that A\, >

l|n — $n||}

Hun - un—IH < Hxn - xn—IH + _|/\n - /\n—1|||un - xn”

< =
1
< Jlan = m | + <A = Aua M. (3.79)

c>0, Vn>1, we have

)\nfl
An

it = ttn PP < un_ln{nxn — )+ 1=

and hence

Since S — a,, BS' is nonexpansive for each n > 1, we have

Hzn - Zn—IH

= ||Pc(Su, — a, BSuy,) — Po(Sun_1 — ay_1BSu,_1)||

< |(Sup — apBSuy,) — (Stp—1 — a1 BSu,_1)||

= ||(Su, — anBSuy,) — (Stup—1 — anBSup_1) + (n—1 — ) BSup_1]|

< [[(Sup — 0, BSuy,) — (Stp_1 — @y BSup_1)|| + |0n_1 — anl|| BStupn_1|

< un = tna|l + fon—1 — anl[| BSun-1 | (3.80)

Substitution (3.79) into (3.80), we obtain
1
lzn — zno1ll < o — x| + E|>\n — M1 M + a1 — ap||BSu,—1][3.81)
From (3.71), we have

1yn = yn—all = 11Bavf(@a) + (I = BuA) 20 — Bue1vf(@n-1) — (I = Bo1A) 2
= By (f(zn) = f(@n1)) + (Bn — Bn1)7f (2n1)
+ (I = 3rA)(zn = 2n-1) = (Bn = Bn1) Azn |
= 18uy(f(2a) = f(@n-1)) + (Bn = Bo1) (VS (#n-1) — Azp1)
+ (I = BnA) (20 — zn1)|
Bl f(@n) = f@n-0)ll + 1Bn = Buallvf(@n-1) — Azpa]
+ (= BnA)l2n — 2nl|

IN

< ﬁnWH% - $n—1|| + |ﬁn - ﬁn—1|”’7f($n—1) - AZn—ln
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Substitution (3.81) into (3.82) yields that

Hyn - yn—l”
ﬁn7n||xn - xn—ln + |ﬁn - ﬁn—1|||'7f(xn—1) - Azn—ln
1
(1= B e = @utl 4~ = Al M + a1 =l [ BSuaa|}

(1 - (7 - 777)/671)‘|xn - xnfln + ’ﬁn - /67171’”/7][.(371171) - Azn,1H

+ (1 — 571,7)

SN = M| M+ (1= )|t =l [ BS | (3.83)

From w, = Po(Sy, — @, BSy,) and S — a,, BS is nonexpansive mapping, we have

|wn = wn || = [1Po(Syn — anBSyn) — Po(SYn—1 — n-1BSyn 1)

S H(Syn - anBSyn) - (Syn—l - an—lBSyn—l)H
= ||(Syn - anBSyn) - (Syn—l - anBSyn—l) + (O-/n—l - an)BSyn—1||

S “yn - yn—1|| + ’an—l - an|”BSyn—1H (384)

Also, from (3.71) and (3.83), we have

IAN

IN

IN

IN

i — ]
(1 = 6n)yn + Onwn — {(1 = 6p-1)Yn—1 + Sp—1wn-1}|

10— 820~ t2) 8 = t002) + (5o = Gt = )]
(1= 8.0l = 3l 8l = w1l 4160 = Bl = g
(1= 6:)llwn — Yn-all + 6n{llun — n-all + lan-1 — || BSyn_1| }
16— B s — g

19 = ol + Bl — @l 1B+ 180 — B s —
(1= (7= Bl — ol + 18— Bacal I £ () — Az

4 2P A M (L 8.l — o BS ]
+80l00cr = all BStos |+ 150~ Sl s — ol

(1= (7= 3Bl =zl + {18 — s+ E=2D )

&
(1= BT + 6| Ctnt — | + |00 — 5n,1\}M. (3.85)
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(1 B ﬂni)
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n = { B0 = Baca |- A = A+ (1= BT+ 00 -1 = |+ 160 — G} AL,

Then, we have
[#ns1 — 2ol < (1= bp)[|#n — 2pall + cny VR > 0.
From the conditions (C1)-(C4), we see that

lim b, =0, an =00 and limsupc, <O0.

n—o00 N—00
n=0

Therefore, applying Lemma 2.12] to (3.80), we have
lim ||zp41 — xa] = 0.

Step 3. We claim that lim ||Sw, — w,| = 0.

For any p € © and Lemma 2.35, we obtain

lza = plI* = | Pc(Sun — anBSun) — Po(p — o Bp)|*
< [[(Sup — anBSuy,) — (p — Oanp)HQ
= ||(Sup — anBSu,) — (Sp — a, BSp)|?

< lzw = plI* + (0 — 2008)[| BSu,, — Bp|*.
From (3.71) and (3.88), we have

lyn — pII?

= Ba(vf(20) = Ap) + (I = BuA) (20 — p)|

= I = BaA)(za — D) + Ballvf (z0) — Apl®
+20.((I = BnA) (20 — p), 7S (2n) — Ap)

< (1= 89?20 = pII* + Bllvf (zn) — Aplf?
+26,(( = BnA) (20 — p),7f (2n) — Ap)

(1= 87 llzn = pII? + (a2 — 20,8 BSu, — Bp|* |

IN

+ Bl f (@n) = Apll* + 28,((I = BaA) (20 — p), 7 f (2n) — Ap)

(3.86)

(3.87)

(3.88)



= (1= 87 llzn = plI* + (1 = 87)*(af, = 2008) || BSuy, — Bp|®
+672L||7f(xn) - Ap||2 + 2ﬂn<(l - ﬁnAxZn - p>77f(xn) - Ap>
lzn = plI* + (1 = 827)* (0, — 208) | BSuy — Bp||*

IA

+ G207 f (2n) — AplI® + 268,((I — BnA) (20 — p),7.f (2n) — Ap).

From (3.71), (3.75), (3.89) and Lemma 2.31(iv), we have

|41 = plI*

IN

(1= 60)|lyn — I + bnljwn — p|?

IN

(1= 6)|lym — pII” + 6nllyn — pI?

IA
s

|
=
T

IA

lzn = plI* + (1 = B.7)* (o, — 2008) || BSu,, — Bp]*

+ G207 f (2n) — AplI® + 28,((I — BaA) (20 — p),7.f (2n) — Ap).

It follow that

(1= B.7)*(29€ — )| BSuy, — Bp|*

< (1= 8792w — ap)||BSu, — Bp|®
<l = plI* = llenes = pl* + Brlvf (2,) — Apll?
+26,(( = BnA) (20 — p), 7S (2n) — Ap)
< lwn = @i l(l2n = pll + 2ns1 = pll) + B2l f (20) — Apl|?

From condition (C1) and (3.87), we obtain

lim ||BSu, — Bpl|| = 0.

5}

(3.89)

(3.90)

(3.91)

(3.92)
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From w,, = Po(Sy, — a,BSy,), (3.89) and Lemma 2.35, we have
lwn —plI* = Po(Syn — anBSys) — Po(p — cn Bp)|1?

< [[(Syn — anBSy,) — (p — anBp)||?

= [[(Syn — anBSy,) — (Sp — @, BSp)||?

< Ny = plI” + (@ = 2008) || BSy, — Bp|?

< {llea = pIP+ (1 = B7)%(02 — 200)|| BSun — Bp?
+ B2 () = APII + 28,((1 = Bud)(za = ), 7f () — Ap)}
+ (a? = 20,,8)|| BSy, — Bp||.2 (3.93)

Using (3.71), (3.89) and (3.93), we obtain

IA

(1 =) [lyn — 2lI* + dullwn — pl*

(1= 6.){ o = pI* + (1 = B.7)*(02 — 20,8) | BSun — By

+ B2 @a) = API + 28,((1 = B A) (2 = ), 7 () — Ap) |
80l =PI + (1 = 5.9)%(02 = 2008) | BSun — Bp?
+Ballvf (wn) = Apll* + 28,((1 = B A) (20 — p),7.f (20) — Ap)

+ (a2 — 20,) | BSy. — Byl }

1 = pl?

IN

= Nlzn —pl* + (1 = 827)*(07; — 2008) | BSuy, — Bpl|*
+Bulvf (wn) — Apll* + 28,((1 = B2 A) (20 — ), 7 (2n) — Ap)
+ (02 — 20,,€)0,||BSy, — Bp)|.2 (3.94)
It follows that
(29§ — €*)b]| BSyn — Bpl|*
< lzn = zopal[(fzn = pll + ll2ns = pl)
+(1 = 8,7)* (0, — 2008)| BSun — Bp||* + B llvf () — Apll*
+20,((I = BpA) (20 — p), v f(x0n) — Ap). (3.95)
From condition (C1), (3.87) and (3.92)), we obtain

lim ||BSy, — Bp|| = 0. (3.96)
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Since Pg is firmly nonexpansive, we have

lwa —plI* =

Hence, we have

1Pe(Syn — anBSyn) — Pe(p — cBp)|*

((Syn — anBSyyn) — (p — an Bp), wn — p)

S {108 — 0uBSu) — (b~ BRI + luwn — plP?

(St — awBSy) = (p — awBp) — (w, — p)|*}

Sl — oI + e = 9l ~ (S — w2) — 0u(BSy — Bp) )
5 (= pIP + (1 = B30 — 20,) | BSu, — Byl

+ B2 f (20) = AP|2 +26u((1 = BuA) (2 = P), 1 (@a) — Ap))
+ 5l = I 159 — wa?

>
~ 02||BSya — Bp|* + 200(Sya — wn, BSya — Bp) ). (3.97)

lwa =plI* < llwn = plI* = [1Syn — wall* + (1 = 8,7)* (0, — 2008) || BSu,, — Bpl*

+ B27 f (xn) — Apl® + 26, (( — BnA) (20 — p), 7S (2n) — Ap)

+ 20 [|Syn — walll| BSyn — Bp|- (3.98)

Using (3.94) and (3.98), we have

|1 — pl?

IN

(1= 6n)llyn — pII* + Gallwn — plI*

< (1= 5n){llwn —pl* + (1 = 87)*(ap — 20m8) || BSun — Bp|*

+ 8n{ Il = PII* = 1Syn — wa?

+(1 = B:7)* (g — 2008) [ BSun — Bp||* + 2001 Sy — wal| | BSys — Bpl|

+ B217F ) = Apll* +26,{(1 = BaA) (20 — p), V(@) = Ap) }

= lzn = plI* = 0all Sy — wn®

+(1 - 5717)2(@721 — 20,,8)|| BSuy, — Bp”2 + 20,00 || Syn — wi ||| BSy, — Bp|

+ﬁr2L||7f<$n) - Ap||2 + 26n<(j - BnA)(Zn - p)7 7f<xn> - Ap> (399)
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It follow that

bl[Syn _wnH2
< 6ullSyn — wall® < Nlwn — s l([|2n — pll + [|20s1 — pII)

+(1 = B:7)* (e — 2008) | BSun — Bpl|* + 2000, | Sy — wall | BSys — Bpl|

+ B2\ f (2n) — Ap|* + 26,((1 — BrA) (20 — p), 7S (20) — Ap). (3.100)

Observing condition (C1), (3.87), (3.92) and (3.90), we obtain

lim || Sy, — wy| = 0. (3.101)
Note that
Iy — ol
< (1 =627z — 0l + B2l f (2n) — Apl* + 26,((I = BnA) (20 — p), 7S (20) — Ap)

IA

(1= Bu7)llwn = pII* + Ballvf (wa) — Apl* + 282 ((I — BuA) (20 — p), 7 (2n) — Ap)
(1= B { 20 = Pl + a0 = 28)|[ D = Dpl[* | + B217f () — Apl*
+200((I = 5nA) (20 — ), 7 (2n) — Ap)

o = B + (1 = 5292000 = 28)[[ D = Dpl* + B217f (20) = Apl]*

+28,((I = B2 A) (20 — p), 7 (20) — Ap). (3.102)

IN

IN

From (3.71) and (3.102), we can compute

21 — pII?

IA

(1= 0) [y — PII* + dnllwn — plI?

< (=621 — I + Sullyn — 217

= lyn —pl?

20 = plI* + (1 = B.7)* MM — 26)|| Dz, — Dpl|?

+ B2 f (2n) — Apl” + 26, (I = BaA) (20 — p), vf (n) — Ap). (3.103)

IN
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It follow that

(1 - ﬁni)Qd(zﬁ - C)HDxn - DpHQ
< Nlwn = a2 = pll + 12041 — 2l + Ballv S (20) — Ap|?

+ 28, ((I = BnA) (20 — p), 7 f(20) — Ap), (3.104)

which imply that

lim ||Dz, — Dpl|| = 0. (3.105)
In addition, from the firmly nonexpansivity of Tg’@, we have
lun = pl* = IT37 (@0 = MDaz) = T3, (p = A\ Dp)|*

< <(3:n — MDzxy,) — (p— \uDp),up, — p>
1
= 5{l@n = ADz) = (= 2aDp) | + lun = pI*

(@0 = D) = (p = MDp) = (1 = p)*}

1

< S{ e =PI + = pI? = 10 = w0 = Mu(Daa = Dp)|I* |
1

= S{low =PI+ llun = I = 12 =

+2\n (T, — Uy, Dz, — Dp) — A2|| D,y — Dp||2}.
So, we obtain
lun = pII* < ll2n = pI* = ll2n — unll® + 20l 20 — || D2y — Dpl|.(3.106)
Substituting (3.106) into (3.102) to get

[y — plI?
(1 = Ba7)?Ilwn = plI* + Bl f (wn) = Apl* + 28.((I — B2 A) (20 — p), 7 f (wn) — Ap)
< (1= B2 {llew = I = lan = wall* + 20alle = wall| D — Dyl }
+ Ballvf (wn) = Apl* + 28.((I = BuA) (20 — p), 7.f (20) — Ap)
<l = pl* = (1= 87w — wall® + 2(1 = 87)* Ml — walll| Dz — Dpl|

+ Bl f(@n) = Apll* + 28,((1 — BuA) (20 — p),7f (2n) — Ap) (3.107)

IA

A\
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and hence

|41 = plI*

IN

Iy — p|1?
< lzw = plI? = (1 = Ba7)?||@n — un?
+2(1 = 8,7 Mallzn — wnl||| Dz — Dp|

+ B2 f (2n) — Apl® + 28.((I — BaA) (20 — p), 7f (2n) — Ap). (3.108)

It follows that

(1 - Bni)QHxn - unl|2
< lzntr — zall(lzn — pll + 2 — pl)
+2(1 = 8,7 Mallwn — unlll| D2y, — Dpl| + B3| v f (x0) — Ap|)?

+200((I = 50 A) (20 — ), 7f(2n) — Ap). (3.109)

This together with ||z,+1 — x,|| — 0, || Dz, — Dp|| — 0, 5, — 0 as n — oo and the

condition on A, implies that

|Zn — un]| _

lim ||z, — u,|| =0 and lim S 0. (3.110)
Consequently, from (3.87) and (3.158))
|Zns1 — unll < || Tns1 — x| + |20 — un|| — 0 as n — 0. (3.111)

From (3.71) and condition (C1), we have

g = zall = 1807 f (z0) + (1 = BrA)z — 2l < Bullvf (2n) — Azp|| — 0 as n — oo.
(3.112)

From S — «,,BS is nonexpansive mapping(Lemma [2.35)), we have

|lwn — znl] = ||Pe(Syn — nBSy,) — Po(Su, — a,, BSu,)||

IN

I(S — anBS)yn, — (S — a, BS)u,||

IN

1Y — - (3.113)
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Next, we will show that ||z, — y,|| — 0 as n — oc.
We consider z,11 — ¥ = On(Wn, — Yn) = Sn(Wy — 20 + 20 — Yn)-

From (3.113), we have

Hxn—&-l - yn” < 5n(||wn - Zn“ + “Zn - ynH)
< n(llyn — unll + 120 — ynll)
< OnlllTnr = Ynll + l2nss = wnll 4 1z —wnll). (3.114)

Observing condition (C2), (3.111) and (3.112), it follow that

n

b
201 =ynll < (lzntr=unl+lza=gull) < 37— (l@nsr—wall+llza=yull) — 0.

1-9,
(3.115)
From (3.87) and (3.115), we obtain
20 = ynll < ll2n = Znsall + [[2n1 = ynll = 0 as n — oo. (3.116)

We observe that

[Swn —wnll - < [[Swn = Szall + 1520 = Syl + [[Syn — wal
< lwn = 2zall + 120 = yall + [[Syn — wal]
< lyn = unll + llzn = wall + [[Syn — wn]]

< Hyn - xn” + Hxn - un” + ”Zn - ynH + HSyn - wn||-(3'117)

Consequently, we obtain

lim ||Sw, —wy,| = 0. (3.118)
Step 4. We prove that the mapping Po(vf + (I — A)) has a unique fixed point.

Since f be a contraction of C' into itself with coefficient n € (0,1). Then,
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we have

[Po(vf + (I = A))(x) = Po(vf + (I = A) ()]
IV f + (I = A)() = (v + T = A) W)
Wr@) = F)ll+ I = Allllz =yl

lle =yl + @ =)z =yl

INIA

IN

Q=@ =)z —yll, Vr,yel.

Since 0 < 1 — (5 —ny) < 1, it follows that Po(vf + (I — A)) is a contraction of C
into itself. Therefore by the Banach Contraction Mapping Principle, has a unique

fixed point, say z € C', that is,

z=Po(vf + (I = A))(2).

Step 5. We claim that ¢ € F(S)NVI(C,B)NGMEP(F,p, D).
First, we show that ¢ € F'(S).

Assume ¢ ¢ F(S). Since w,, — ¢q and ¢ # Sgq, it follows by the Opial’s

condition (Lemma 2.25) that

liminf ||w,, —q| < liminf|w,, —Sq||
1——00 100

IN

lim inf{ [|wy,, — Swy,|| + ||Swa, — Sql|}
= liminf||Sw,, — Sq|

< liminf |w,, — q||.
This is a contradiction. Thus, we have ¢ € F(.5).
Next, we prove that ¢ € GMEP(F, ¢, D).

From Lemma 3.60 that u,, = Tg’@) (xy, — A\ Dxy,) for all n > 1 is equivalent
to

1
F(un,y) +o(y) — o(tn) + (Dxp,y — up) + A—(.y — U, Up — Tp) >0, VyeC.

n



63

From (H2), we also have

1
() — o(un) + (Dxp,y — up) + A—<y = Up,y Up — Tn) > —F(up,y) > F(y, up).

n

Replacing n by n;, we obtain

Up, — T,

Let yy = ty+ (1 —t)g forallt € (0,1] and y € C. Since y € C and ¢q € C, we obtain
y € C. So, from (3.119) we have

(Yt = tn,, Dye) > (Y — tny, DY) — p(ye) + @(n,) — (DT, Yt — Un,)
> (Yt — Uny, Dy — Dun,) + (Y — Uny, Dtn, — Dg) — 0(yt)
+o(up,) — <yt — “”A;x”> FF(ynun,).  (3.120)

Since ||up, — xp,|| — 0, i — 00, we obtain ||Du,,, — Dz,,|| — 0. Furthermore, by

the monotonicity of D, we have
<yt - unia Dyt - Dunl> Z 0

So, from (H4), (H5) and the weak lower semicontinuity of ¢, % — 0 and

Up, — ¢, We have

(e — 4, Dy) > —o(ye) +o(q) + F(ye, q) as i — oo. (3.121)

From (H1), (H4) and (3.121), we also get

0 = Fy,y) + () — ¢y)
< tF(yey) + (L= F (g, q) +te(y) + (1 —t)ela) — (ye)
= F Y y) + () — o) + (1= [F (g, q) + o(a) — o(u)]
< i[F(yey) +ey) — ey + (1 =)y — a, Dyr)

= tF(y,y) +o(y) — o)) + (1 = t)t{y — q, Dyy).
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Dividing by ¢, we get
Flye.y) +(y) —eye) + (1 = ){y — ¢, Dys) > 0.

Letting ¢ — 0 in the above inequality, we arrive that, for each y € C

F(q,y) +¢(y) — (q) + {y — ¢, Dg) = 0.
This implies that, ¢ € GMEP(F, ¢, D).
Finally, Now we prove that ¢ € VI(C, B).

We define the maximal monotone operator

Bqi + Neqi, ¢ € C,
@7 q1 §é C.

Qq =

Since B is {-inverse strongly monotone and condition (C4), we have
(Bx — By,x —y) > &||Bx — Byl* > 0.

Then @ is maximal monotone. Let (¢1,92) € G(Q). Since go — Bq1 € Nogy and
wy, € C, we have (g1 —wy,, g2 — Bq) > 0. On the other hand, from w,, = Po(Sy, —

a, BSy,), we have
<CI1 — Wnp, Wy — (Syn - anBSyn>> Z 07

that is
Wy — Syn
Q1 — Wpy ————— —}-BS’yn > 0.
Qp
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Therefore, we obtain

(01 — Wn,, 2)

Z <QI - wn“BQ1>
Wy, — Sym
2 <Q1—wninC]1>— ql_u]nwOé—_'_B’SyTLZ
= <(J1 — Wp,;, Bgy — BSyn, — —y>
(0779
< Wn; — Sym >
—\q1 — Wy, ———
O,
Wy, — SYn,
Z <Q1 - wn“Bwni - BS?/m) - q1 — wni, : - ). (3122)
Oy,

Noting that ||w,, — Syn,|| — 0 as i — oo, we obtain

{1 — q,q2) > 0.

Since @ is maximal monotone, we obtain that ¢ € Q~'0 and hence ¢ € VI(C, B).
This implies ¢ € ©. Since z = Pg(vf + (I — A))(2), we have

limsup<7f(z) — Az, x, — z> = lim <7f(z) — Az, x,, — z>

n—s00 o

- (e -0 @)

On the other hand, we have

<7f(2) — Az, y, — Z> = <7f(z) — Az, y, — xn> + <7f(z) — Az, z, — z>
< ) = Aslllg - wall + (1) = Az~ 2).

From (3.116) and (3.123), we obtain that

lim Sup<7f(z) — Az, y, — z> <0. (3.124)

n—-auoOo

Step 6. Finally, we claim that x,, — 2z, where z = Po(vf + (I — A))(2).
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We note that

VAN

(VAN VAN VA

1y — 2II°

I(Z = BaA)(zn = 2) + Bu(7f (wn) — A2)|?

I(1 = BaA) (20 — ) + 28u((7f (20) — A2), (I = BuA) (20 — 2)

+ Bn(vf (2n) — Az))

(1 = BuA) (20 = )| + 28u((7f (20) = A2), 40 = 2) (3.125)
11 = BuAll*ll2n = 211 + 28u7(f (20) = f(2), 40 = 2) + 28u(7f (2) — Az, yn — 2)
(1= BT Mz = 2lI* + 28,ymll2n — 2lllyn — 2l +28a(7.f (2) — Az, yn — 2)

(1= BT llwn = 211* + Buyn(llzn — 21° + llyn — 201%) + 28:(7f () — Az, yn — 2)

(1 - 26n7+ 67%72 + ﬁn’}/n)“xn - ZH2 + 6n777||yn - Z||2 + 2ﬂn<7f(z) - AZ, Yn — z>

which implies that

1y — 2|1
(27 — ) Bn )
= (1 s, Il
+1_ﬁmlﬁnﬁ2llxn—z”2+2<ﬁ(z) —Az,yn—z>]. (3.126)

On the other hand, we have

lzner = 21" < lyn — 217

< G—Eﬁ}fﬁ&)mfww

1 —nf,
+1fﬁml@¢Wm—wﬂnwﬂ@—Aa% a]
< (- ;%?)nn—ﬂQ
T _%nﬁn [2<7f(2) — Az, yn — 2) + @ﬁ?K] . (3.127)

where K is an appropriate constant such that K > sup,>,{|lz, — 2[/*}.

Set ([, =

(27—777) Bn
1=nfBn

1=ynBn

and e, = —2» [2<7f(z) — Az, yp—2) +6n72K] . Then we have

|Zns1 — 2||* < (1 =b,) ||z — 2||> + €y, Y > 0. (3.128)
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From the condition (C1) and (3.124), we see that

lim [, =0, Zln =o0 and limsupe, < 0.
n:() n—oo

Therefore, applying Lemma 2.12] to (3.128), we get that {z,} converges strongly

to z € ©. This completes the proof. ]

Corollary 3.62. Let C' be a nonempty closed convex subset of a real Hilbert space
H, let B be &-inverse-strongly monotone mapping of C' into H and S : C — C' be
a nonexpansive mapping. Let f: C — C be a contraction mapping with n € (0,1)
and let A be a strongly positive linear bounded operator withy >0 and 0 < vy < %
Assume that © := F(S)NVI(C,B) # 0. Let {x,} and {y,} be sequence generated

by the following iterative algorithm:

(
x1 = x € C chosen arbitrary,

L Tpt+1 = (1 - 5n)yn +5nPC(Syn - anBSyn)a Vn Z 17

where {0,} and {B,} be two sequences in (0,1) satisfy the following conditions:

(C1) lim B,=0and " B, =00,

(C2) {6,} C [0,b],for some b € (0,1) and lim |d,41 — 0n| =0,

(C3) {an} Cle,g] € (0,28) and lim |y, — ] = 0.

Then, {z,} converges strongly to z € ©, which is the unique solution of the varia-

tional inequality

<7f(z)—Az, x—z> <0, Vreo.

Proof. Put F(z,y) =9 =D =0forall z,y € Cand \, =1 foralln > 1 in
Theorem 3.61, we get u,, = x,. So {z,} converges strongly to z € ©, which is the

unique solution of the variational inequality. O
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Corollary 3.63. Let C' be a nonempty closed convex subset of a real Hilbert space
H and let F be bifunction from C x C to R satisfying (H1)-(H5). Let S : C — C
be a nonexpansive mapping and let f : C — C be a contraction mapping with
n € (0,1). Assume that © := F(S) N EP(F) # (. Let {x,}, {yn} and {u,} be

sequence generated by the following iterative algorithm.:

)
x1 =x € C chosen arbitrary,

| Tns1 = (1 = 8,)Yn + 0,SYn, Vn > 1,

where {6,} and {B,} be two sequences in (0,1) and {\,} C (0,00) satisfy the

following conditions:

(C1) lim B,=0and " B, =00,
(C2) {0,} C [0,b], for some b € (0,1) and lim |d,41 — 6, =0,

(C9) T |Anst — M| = 0.
Then, {x,} converges strongly to z € ©.

Proof. Put p=D =0,7=1, A= 1 and a;, = 0 in Theorem [3.61. Then we have

Po(Suy,) = Su, and Po(Sy,) = Sy,. So {x,} converges strongly to z € ©. O

3.3 Viscosity Approximation Methods
3.3.1 A countable family of nonexpansive mappings

In this section, we will use the viscosity approximation method to prove
a strong convergence theorem for finding a common element of the set of fixed
points of a countable family of nonexpansive mappings, the set of solutions of

the variational inequality problem for relaxed cocoercive and Lipschitz continuous
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mappings, the set of solutions of system of variational inclusions and the set of
solutions of equilibrium problem in a real Hilbert space.

Definition 3.64. Let M : H — 2 be a multi-valued maximal monotone map-

ping, then the set-valued mapping Jys» : H — H defined by

Jux(@) =T +IM)"(3), Vie H (3.129)

is called the resolvent operator associated with M, where ) is any positive number

and [ is the identity mapping.

Lemma 3.65. [5] Let M : H — 2% be a mazimal monotone mapping and let B :
H — H be a Lipshitz continuous mapping. Then the mapping M + B : H — 21

1s a maximal monotone mapping.

Lemma 3.66. [30, [5]

(1) The resolvent operator Jyr . is single-valued and nonexpansive for all A > 0,

that is,

| Jan(z) — T < |l —yll, Yo,y € H and VA > 0.

(2) The resolvent operator Jy y is 1-inverse-strongly monotone, that is,

[ Tvn(z) = Tap W) |IP < (x =y, Jun(x) — Jua(y)), Yo,y € H.

Lemma 3.67. [30]

(1) Let & € H is a solution of problem (1.13) if and only if T = Jy (I —AB) for
all X > 0, that is,

I(B,M) = F(Jux(I = AB)), YA > 0.

(2) If X € [0,20], then I(B, M) is a closed convex subset in H.
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Lemma 3.68. [19] Let H be a Hilbert space and M a mazimal monotone on H.

Then, the following holds:

HJM,TJ: - JM,S':EH2 S i

<JM,,A1" — I, v — :1:>, Vs, r>0, x € H,
where Jyr, = (I +rM)™ and Jy s = (I + sM)™1.

Lemma 3.69. [2] Let C be a nonempty closed subset of a Banach space and let {S,,}
be a sequence of mappings of C into itself. Suppose that > " sup{||Sn+12—Snz]| :
z € C'} < 00. Then, for each y € C, {S,y} converges strongly to some point of C'.

Moreover, let S be a mapping of C' into itself defined by
Sy= lim S,y forallyeC.
Then lim,, o sup{||Sz — Spz|| : z € C} = 0.

Theorem 3.70. Let C be a nonempty closed convexr subset of a real Hilbert space
H and B : C — H be relazed (¢,w)-cocoercive and p-Lipschitz continuous with
w > ou?, for some ¢p,w, ;> 0. Let G ={Gr : k=1,2,3,..., N} be a finite family
of B-inverse strongly monotone mappings from C into H and let F' be a bifunction
from C' x C — R satisfying (A1)-(A4). Let f: C — C be a contraction with
coefficient ¢ (0 <1 < 1) and {S,} be a sequence of nonexrpansive mappings of C

into itself such that
oo N
Q: () F(S,) N (ﬂ (G, Mk)> AVI(C, B) N EP(F) # 0.
n=1 k=1

Let the sequences {x,} and {y,} be generated by

(
x1 = x € C chosen arbitrarily,

Yn = JMN,AN,n([ - )\N,nGn) cee JMQ,,\Q,n(I - )\2,nG2)JM1,A1,n ([ - >\1,nG1)Trn$n,

L Tpt+1 = Oénf(xn) + Bpr, + '7nSnPC(yn - anyn), Vn > 1,

(3.130)
where {an}, {Bn}, {7} C (0,1) and {&,}, {rn} C (0,00) satisfy the following con-

ditions:
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(C1) an+ B+ v =1,
(C2) lim, oy, =0,> 7 | @, = 00,

(C3) 0 < liminf, .. G, <limsup,_ .G, <1,

(C4) {&:} C [a,b] for some a,bwith 0 < a <b < 222 andlim, o |§ria—Ea| =

0,

(C5) {enti, C le,d] C (0,28) and limy, oo | Aems1 — Ain| = 0, for each k €
{1,2,...,N},

(C6) liminf,, . r, >0 and lim,,__.o |rpe1 — ra| = 0.

Suppose that Y~ sup{||Sn12 — Snz|| : 2 € K} < 0o for any bounded subset K of
C. Let S be a mapping of C' into itself defined by Sy = lim,,__.o S,y for all y € C
and suppose that F(S) = (.—, F(Sy). Then, the sequences {x,} and {y,} converge
strongly to the same point x* € ), where x* = Po f(x*).

Proof. First, we prove that the mapping Pof : H — (' has a unique fixed point.

In fact, since f : C — C'is a contraction with ¢» € [0,1) and Pof : H —

is also a contraction, we obtain

[1Paf(x) = Pafy)ll < If(z) = FW)ll < ¥lle —yll, Yo,y eC.

Therefore, there exists a unique element z* € C such that x* = Pq f(z*), where

Q: ﬁ F(S,) N (ﬂ (G, Mk)) NVI(C,B)N EP(F).

Now, we prove that (I — &,B) is nonexpansive.

Indeed, for any z,y € C, since B : C' — H be a p-Lipschitz continuous
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and relaxed (¢, w)-cocoercive mappings with w > ¢u? and &, < 2(“’;—?“2), we obtain

H(I - an)Jj - ([ - gnB)yHZ
= |[(z —y) — &(Bz — By)|

|z — y||* — 26, (x — y, Bz — By) + &*||Bx — By||?

IN

I = yl? = 26 ~ 011 B2 = Byl* + wllz — y|*} + &)1 Br - By|?

IN

lz = ylI* + 26agp®(lz = ylI* — 260wz — ylI* + Ep’lle — ylI?

(1+26,01° — 26w + E2p°) |z — y)?

- G—&mﬂ%ﬁ;ﬂ@~fﬁ)m—yw

< G_@Mﬂ%ﬂﬁ@ﬁ—ﬂ)W—mﬁ

‘= I [2(w — op?)
2 112

Setting
— b} > 0,
thus,
I = &B)r — (I = &B)yl* < (1 = 2&0) [z — ylI* < (1 = &)z — yll%,
which implies that
(I = &B)r = (I = &B)yll < (1= &)z —yll <z =yl (3.131)

Hence (I — &, B) is nonexpansive.
We divide the proof of Theorem 3.70 into five steps.
Step 1. We show that the sequence {z,} is bounded.

Now, let € Q and if {7},  } be a sequence of mappings defined as in Lemma

2.55. Then & = Po(Z — \,BZ) = T,,% and let u,, = T, x,. So, we have
lun — 2| = |T7, 20 = T0, 2| < [lon — 2. (3.132)

For k € {1,2,..., N}, and for any positive integer number n, we define the operator
Yk C — H as follows:

0, _
T,x =z,
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TZ$ = JMlm/\k,n (I — )\kak) c. JM27)\27n ([ — )\27nG2)JM1,)\17n (I — )\17nG1)$

for all n, we get y, = YYu,. On the other hand, since G} : C — H is (-

inverse strongly monotone and A, C [¢,d] C (0,20), then Jyg, x, (I — A\pnGy) is

nonexpansive. Thus T* is nonexpansive. From Lemma 3.67(1), we have 7 = TV 7.

It follows that

g = 2l = 17w = T2 < flun — 2 < [l — - (3.133)

Setting v, = Po(y, — & Byy,) and I — &, B is a nonexpansive mapping, we obtain

lon = 2| = [|Pc(yn — &aByn) — Po(@ — §BI)||

S ||(yn - anyn) - (i' - ani')H
- ||(I - gnB)yn - (I - gnB)‘%H

< yn — 2l < flon — 2. (3.134)

From (3.130) and (3.134), we deduce that

”xn—i-l - j” = Hanf(‘rn) + ﬁnxn + Vnsnvn - j“

< anllf(wn) = Z) + Bullwn — 2| + yallon — 2] (3.135)
< ol f(zn) = F@I + anll f(Z) = 2| + Ballzn — Z[ + yallzn — 2|
< otz — I+ onl f(Z) — 2 + (1 — an) |z — 2]
< (1= =) llzn — 2| + anll f(2) — 7
= (1= 1= )l = 3l + an(1 - ) DT
< max{”xn -z, —Hf(lwz;rlrll } .

It follows from induction that
|2, — || < max {||g:1 — i, W} . Vn> L

Therefore, {x,} is bounded and hence so are {v,}, {yn}, {u.}, {By,} and {S,v,}.

Step 2. We claim that lim,, . ||2n41 — zn|| = 0.
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By the definition of T}, u,, = T, x, and u,11 =T, Tpi1, we get

1
F(up,y) + —(y — up,up —x,) >0 forall ye H (3.136)
and
1
F(ups1,y) + (Y — Ups1, Upy1 — Tpy1) >0 forall ye H. (3.137)
T'n+1

Take y = w41 in (3.130) and y = w, in (3.137), we have

1
F(“na“n—&—l) + _<un+1 — Up, Up — xn) Z 0
T'n

and hence

1

F(un—i-la un) + <un — Up+1y, Un+1 — xn—i—l) Z O
Tn+1

So, from (A2) we have

Up — Tn Un4+1 — Tpyl

<un+1 — Unp, - 2 0
Tn T'n+1

and hence

Tn

<un+1 = Un, Up — Upt1 + Up41 — Tp — (U'n,—l—l - xn+1)> 2 0.

rn+1
Without loss of generality, let us assume that there exists a real number ¢ such

that r,, > ¢ > 0 for all n € N. Then, we have

r
Hun+l - unH2 S <un+1 — Un, Tnt+1 — Tp + (1 - = )(unJrl - xn+1)>
Tn+1

r
< Muner = wnl{llonss = ll 1= s~
Tn+1
and hence
1
|tns1 — unll < || Tps1 — x| + |Tna1 — Toll|tner — Zoaa ||
Tnt1
M,
S ||£En+1 - xn” + T|T.n+l - Tn|7 (3138)

where M; = sup{||lu, — x| : n € N}.
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Notice from Lemma [3.68 that

||yn+1 - yn||

= ||T7]¥+1Un+1 - Tﬁf“n”

< (g1 = M1 Gr Ly tingr) — (tn — MG Loy |

+ 1Tty Menrr (U, — Ak nGkT o) — Jag s Mg (Un — )\k,nGkTiun)H
< Hun-i-l - un” + |)‘k ntl — Ak n|||Gkazun”

N N
+ "“f—’“'nJMk, Nen1 (tn — MenGr Yo, ) = (wn = Non G Yoy, |
kn+1
<ttt = un|| + 2Mo Mg pgr — A
M

< J@nsr — x| + 71|7“n+1 — | + 2Ma| Ak g1 — Akl (3.139)

where M, is an appropriate constant such that

M, = max{sup{ ||GkTZun||},
n>1

sup
n>1

{ \’JMk, Ak n+1( - )\k nGkT Un) ( Up — )\k,nGkTﬁun)H }
JMk7 >\k,n+1 ‘

Since I — &, B is nonexpansive mappings, we have the following estimates:

IN

| Po(Yns1 — Ent1BYni1) — Po(yn — £ Byn)||

[ (Ynt1 = &nr1BYnt1) — (Yn — EnBYn) ||

= [[Wnt1 = &as1BYn+1) — (Yn — Eat1BYn) + (€0 — Ent1) Byal|
< a1 = &as1BYns1) = Un — Ear1 Byn) | + 1§ — Ensa || Bynl
= (I = &1 B)ynt1 — (I = &1 B)ynll + 160 — Enta|l| Byal|

[Yn+1 = ynll + [€n = Enral| Bynll. (3.140)

[Un+1 = vnl|

IN

IN

Substituting (3.139) into (3.140), we obtain
M,y
”Un-i-l - Un” < Hxn-i-l xn” +— |Tn+1 Tn’ + 2M2|)‘k,n+1 - )‘k,n’

Indeed, define z,, 1 = (1 — 3,)2, + Bz, for all n € N. It follows that

Tp4+1 — ann anf($n) + 'YnS Un
Zn = =
1- ﬁn 1-— ﬁn
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Thus, we have

an+1f<xn+1) + 7n+1Sn+1Un+1 O‘nf(xn) + ’YnSnvn
2n41 — zall = -
1— ﬁn—‘rl 1— ﬁn

a 1371—;;1(]0@%1) — flzn)) + 1Zn—gi+l(5n+1”n+1 — Sptn)

Ony1 O Yn+1 In
+(1—5n+1 1_ﬁn>f(xn)+(1_ﬁn+l 1—5n)5v"

(679 Yn
< || f(@ni1) = F@a)ll + 5| Sn10ns1 — St
1- ﬁn-‘rl

1= Bpt
TG o | 1) = Sl
< f?%fﬂawrﬂmu+T%§iﬂ&HwMa—&wm
+‘ 1?"5;1 — @1 1f(20) = Sval- (3.142)
Now, compute
110t = Sutall < [Susrtars = Soervall + [Sns1vn — Syl

N

=~ ||Un+1 - Un” + ||Sn+1'Un - SnUnH

IN

M,
||-7Cn+1 - In|| + 7|rn+1 - 7"n| + |§n - §n+1|||B?Jn||

+ 2M2|)\k,n+1 — )\k,n| + HSn—l-lUn - Sn’UnH (3143)

Combining (3.142) and (3.143)), we have

wan—i-l Yn+1
1- ﬂn-ﬁ-l ﬁn-ﬁ-l

+ |£n - §n+1||lByn” + 2M2|)\k,n+1 - )\k,n| + ”Sn—i-lvn - Snvn”}

M,
Hzn-i-l - Zn” < Hxn-&-l xn” + Hxn-&-l xn” +— |rn+1 T'n |

(07 |
T - o) - Sl
Tn41 Ml
< Mo =l + 725 s =l + e = ol
- Mn+l c
20t = M| P+ T2 S0, = Sy
1- 6n+1
Opi1
+ Tn S Unll.
22— 2o~ Sl
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It follows that

Hzn-i-l - 2n” - Hxn-I-l - an
Tn+1 M,
< ———— 9 —|rns1 = Tal + & = L[| Bynl| + 2Ma| Mg nt1 — Akl
11— ﬁn-ﬁ-l c
In+1 Olpt1 Qy,
4+ — Sn Un — Sn'Un + ' - f Tpn) — Snvn
I ﬁn+1 || +1 || 1- 6n+1 1- Bn || ( ) ||
n M
< {—wrnﬂ 1 — Gl By + 20 A — Ak,n\}
- 5n+1 c
+ o sup{HSnHz —Spz| 2 € {vn}}
1-— ﬂn—&-l
an+1 (679
— Tn) — Spp ||
2 0 1) - Sl

This together with conditions (C1)-(C6) and lim,_ . sup{||Sn+1z —Snz|| 1 2z €

{vn}} = 0 imply that

lim sup(||zn41 — 2nl| = [|[Zne1 — 20||) < 0.

n—aoo

Hence, by Lemma 2.12, we obtain ||z, — x,|| — 0 as n — oo. It then follows
that

lim ||z, — @] = lUm (1 — 5,)|lzn — 2| = 0. (3.144)

By (3.141), we also have

lim ||vp41 — va|| = 0. (3.145)

Step 3. We claim that lim,,_ || Sv,, — v,|| = 0.

Since {Gy : k =1,2,3,... N} is f-inverse strongly monotone mappings, by
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the choice of {\y,,} for given z € Q and k € {0,1,2,..., N — 1}, we also have

1Ty, — )12
= N Tats deir (T = M0 Gr) Tt = Ity v (I = Mer1n G 7|
< I = MeyrnGrrt) Vot — (I = Mg 1,0 Greg1) 7
= [[(Thun — My 1nGrr Thttn) — (F — Neg1,0Gia @) ||
= [[(Thun — &) = M1 (G Yoty — G @)
= ||ITru, — )% - 2Ak+l,n<rﬁ;un — &, G Thay, — Gk+1f>

+ )\iJrl,nHGk—l-lTl:Lun - Gk+1[i’||2

< |Thun = F* = 201 w8 Gria Tt — G Zl + A1 Grn T — Grya @)
< Jlun — 57H2 - 2)‘k+1,nﬂHGk+1Tﬁun — G 7| + )\i+1,nHGk+1Tﬁun - Gk+133"”2
< n = 7+ Merraesin — 20)[|Geri T, — Gl (3.146)

Form (3.135), we have

[2nr1 — 2|
< agllf(zn) = 27 + Ballwn — 2| + nllvn — 2|
< agllf(za) = 27 + Ballwn — 2N + Yallyn — 2|
= ag|f(@n) = 2 + Ballzn — 2 + 3l Th wn — 217
< ol f(mn) = 2?4 Ballzn — 2)1* + vl Yo u, — 2| (3.147)

< ol f(wn) = Z[* + Bollzn — 7|

+ Tn ||xn - ‘%HQ + /\k—&-l,n(/\k—&-l,n - 2ﬁ)||Gk'+1Tﬁun - Gk+lj||2}

IA

onllf (@n) = Z1* + lon = 2l + YoMt 10 Ak 10 = 2B)|Grsa Tntin — G 2|,

It follows that

%)\k+1,n(25 - >\k+1,n)||Gk+1Tﬁun - Gk+193||2

(28 = d)|Grpr Yoy — G @

IA

IN

120 = Tl (lzn = 2l + @i — 2[) + onllf (@) — 2%



By condition (C2), (3.144) and liminf,_. 7, > 0, we obtain

lim HGk—i-lTZun — Gk—&—ljﬁ” =0.
n—00

From Lemma [3.66(2) and I — A\g41,,Gr41 is nonexpansive, we have

HTﬁHun

— ||
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(3.148)

= [ Ttesrerin = Mot 10 Gros) ot — Intyagssn (I — Mer1,0Grr1) |

< <(I — Mep1nGroe) You, — (I = Mep1.0Gr) 3, Yo, — 56>

1 ~ ~
= {10 = M1 Gri) Tt = (I = Mesrn G + 05+ 0 — 31

— (I = Mes1.0Grs) Yo, — (I = Mg1,0Gry1)Z — (TE My, — f)HZ}

IN

1
{72+ | T5 = 712 = (Tl

= Y5 ) = MG Thtn = Grnn®)| |

IN

1 - ~
L SR AR R A N

- )\z+1,nHGk+1TfLun - Gk+1i’”2

+ 2N 10 (Lo, — Yy, Gy Thu, — Gk+1v%>}a

which yields that

IN

I, — 22

I, — & — [ Chu, — |

2 Tt — T |G Yot — G
lan — &2 = [T, — 5, 2

+ sl T = CE | Gy Tt — G2
e — &2 = 'Thuy — T, |2

2l Tt — T |G Tt — Gl

(3.149)
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Substituting (3.149) into (3.147), we obtain

|1 — 2|

IN

| f(20) = Z)* + Bullwn — &|° + 7| Yo 0y — 2

IN

nllf(@n) = Z|* + Ballzn — 2" + %{Ill‘n S e F ST S

+ 20l Thtn = Y5 || Gra i — Gl |

IN

ol f(@a) = Z* + [l — ZI* — | Tnten — Tr

+ 2Ak+1,n7n||T7Izun - TZ—~_1un|| ”Gk-&-lTﬁun = G
It follows that

'YnHTI:Lun - Tﬁﬂunuz
< Nlan = g || (J2n = Zl| + 201 — Z]) + anll f(20) — 2]

+ 204107l Thttn = T [[[| G Tt — G 7).

By condition (C2), (3.144), (3.148) and liminf, . v, > 0, we obtain

lim |5, — TE L, || = 0. (3.150)
For z € ), we obtain
v, = 2> = ||Pe(yn — &Byn) — Po(@ — &,BE)|)?
< N[y — & Byn) — (2 — & BI)|?
— (g — &) — &u(Bya — B
< lyn — &I = 260 (yo — &, By — B) + €2|| By — Ba?
< g — 2 = 26.{ =0l By — Bill* +wliyn — 31} + &)1 Bya - Bil?
< lyn — &[> + 26001l Byn — BE|> — 2600y — F|> + ]| By — Bl
<l = 3l + 26,01 By — B3l = 252 | By, — Bl + €11 By, — Bal?
< o= 2l + (260 +€ - 252 1By, - Bl (3.151)
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On the other hand, we have

[

INIA

IN

<

It follows that

IN

<

ot f(z0) + Bun + YnSnvn — Z||?

anlf(@n) = Zl* + Bullzn — Z)|* + Yl Spvn — 7|

an |l f(@n) = Zl° + Ballzn — Z|* + Yallvn — 2| (3.152)
anlf(@n) = Z|° + Ballzn — 2|

+%{ lzn — 2)1* + (2£n¢ +&n - 2i—"2w) |1 Byn — Bf||2}

anllf(@n) = Zl1° + Bullzn — 21 + llwn — 2|2

26w .
+%(2€n¢+§3— - )HByn—Bx!|2

- - 26nw N
anllf (n) = Z* + ll2n — Z[I* + 7 <2£n<b +&n — E ) 1By, — Ba|*.

2aw ~
(22 - 0~ 200 ) By B

28w N
( MQ _5721_2571(;5)771”32%1_31'”2
[z = Z|° — (|20 — Z[|* + anll f(2n) — 27

20 = Znrill(lzn = 2l + @i — 2]) + onllf (@) — 2%

It now follows from the last inequality, conditions (C2), (3.144) and liminf,, . 7, >

0 that

lim ||By, — BZ| = 0. (3.153)
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Since Pg is firmly nonexpansive, we have

o — 2|

IN

IN

which yields that

Substituting(3.15

IA

<

1Pe(yn — &uByn) — Po(T — &.B7)||?

| Pe(l — uB)y — Pell — &.B)2?

((I = &B)yn — (I = &.B)T, v, — )
I~ 0By — (1 = & B + v —

(I = &B)yn — (I = &uB)7 — (v, — D)}
1
Sl = 12+ llow = 3 = 19 = 00) = &u(Byn — B}
1
2
— &11By, — Bi|]* + 260 (o — vn, Byn — B) },

{llyn = 212 + low = 212 = lyn = val?

v — 2|
lyn = ZI* = [lyn = vall* + 2&allyn — valll| Byn — BZ||

2 = 2l = lyn = vall® + 28allyn — vall| By — Bz|.  (3.154)

1) into (3.152)), we obtain

||:Bn+1 - j||2
< apl|f(zn) = Z)* + Bullwn — Z* + yallvn — 2|7 (3.155)
<ol f(n) = 2|7+ Balln — 7

o m = 12 = llyn = > + 265 19 — onll|1 By — B3l }

= Oéan(wn) - 57”2 + ﬁn”xn - 57H2 + Y |70 — f”Q — YnllYn — UnH2

+2’7n€n||yn - UNHHByn - Bi”

< anllf(@n) = 2l + llzn — 2 = Yallyn — vall* + 290 lyn — vallll Byn — B

It follows that

Yallgn = vall® < Nz = wasall (2 = 2 + lznss = 2I) + anll f(20) — 2|

+ 29m&nllyn — vnll| Byn — B



By condition (C2),
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(3.144), (3.153) and liminf, . 7, > 0, we obtain

lim ||y, —v,|| = 0. (3.156)

On the other hand, in the light of Lemma 2.55(ii) 7, is firmly nonexpansie, so we

have

| tn —

which implies that

57”2 = ||Trnxn_Trnj||2
< (T, x,—T, 2,0, — %) = (u, — T, 2, — )
1 N N
= §(Hun — 2?4 [|an — 2] = [|zn — uall?),

lun = ZI* < llon — 2 = [l — wall*.

Form (3.152), we have

IA

s — |

IAN AN IA

IA

It follows that

’YnHIn _un||2

By condition (C2),

Observe that

anll f(2n) = 21+ Bullzn — Z[* + vallon — 2|7
| f(n)
o || f ()

anllf () = 22+ Ballen = 312 + 3 ln = 712 = o — wall?}

Z* + Ballzn — Z* + yallyn — 21

IS

H2 + Bz, — 57H2 + Yo | tn — jH2

aan(xn) - j||2 + ﬁonn - fi||2 + 'Yonn - j||2 - 'Yonn - un”2

| f(zn) — Z|1? + |20 — Z|1? — YallTn — ual®. (3.157)

< wn = zaal|(len — 21+l — Z[) + anll £ (20) — 2],
(3.144) and liminf, . v, > 0, we obtain

lim ||z, — u,|| = 0. (3.158)

n—oo

Tpntl — Tp = O‘n(f(xn) - xn) + ’Yn(SnUn - In)
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By condition (C2) and (3.144), we have
iy, —soo V[ Sntn = @l = limp o ([|Tn41 — Tall — | f(2n) — zall) = 0. (3.159)
Since
[Svn —unll < 1500 = 2all + [0 — unl.

From (3.158) and (3.159), we have

lim,, oo || Spvn — uy|| = 0. (3.160)
Form (3.157), we have
@01 — jHQ
< onllf(@n) = 2l + llon — 2 — yllen — uall®
< onllf(@n) = 2l + llon — 21 = yll (@0 = yn) + (Y — un)|”
< ol f(zn) = 2| + [l — 27

= sl + 20 = gl = 0l + N — 2}
= ol f(zn) — 2P + 2. — 2|
- ’Yonn - yn||2 - 27n||xn - ynHHyn - un” - %LH@/H - un||2

< onllf(zn) = 2P + llon — 217 = Yallzn — yal®
It follows that
Yall#n = yal® < Nz = znall(l2n — 20+ lza — 21) + ol f(20) — 2%
By condition (C2), (3.144) and liminf, ., 7, > 0, we obtain
nh_)nolo |zn — ynll = 0. (3.161)
Since

[un = ynll < Nun = @ull + [l20 = ynll
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From (3.158) and (3.161), we have
lim, oo ||t — yn| = 0. (3.162)
Furthermore, by the triangular inequality we also have
[Snvn = vnll < [[1Snn = wnll + lun = ynll + [y — vnll- (3.163)
From (3.156), (3.160) and (3.162), we have
lim,, oo || Spvn — vn|| = 0. (3.164)
Applying Lemma [3.69 and (3.164), we have
[Svn = vnll < [[Svn — Snvnll + [|Snvn — onl]
< sup{HSz —Spzl| iz € {vn}} + 1ISwvn — vn]| — 0.
Step 4. We claim that limsup,_ ., (f(z*) — z*, z, — z*) <O0.
Indeed, we choose a subsequence {v,,} of {v,} such that
limsup(f(z*) — 2%, Sv, — 2*) = lim (f(z") — 2", Sv,, — x). (3.165)

n—-s00 1——00

Without loss of generality, let {v,,} — z € C. From ||Sv, — v,]| — 0, we obtain
Sv,, — z. Then, (3.165) reduces to
limsup(f(z*) — z*, Sv, — 2*) = (f(z*) — 2",z — x¥).

In order to show (f(z*) — z*, z — z*) <0, it suffices to show that

2eq: ﬁ F(S,) N (ﬂ (G, Mk)> NVI(C, B) N EP(F)

Firstly, we will show z € F(S) = (., F(S,).

Assume z ¢ F(S). By Opial’s theorem(Lemma 2.25) and ||Sv,, — v,|| — 0,
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we have

liminf ||v,, — 2| < liminf |jv,, — Sz||
1—00 1—>00
= liminf ||v,, — Sv,, + Sv,, — Sz||
1—00

= liminf ||Sv,, — Sz||

< liminf ||v,, — 2|
This is a contradiction. Thus, we obtain z € F(S).
Next, we will show that z € VI(C, B).

Let
Bwy + Newy, w; € C

@, wlgéC

T’LU1 =

Since B is relaxed (¢,w)-cocoercive, p-Lipschitz continuous with w > ¢u?, we

obtain
(Bx—By,z—y) > (—¢)|| Bz —By||’ +wllz—y[]* > (w—¢p®)|lz—yl|* > 0, (3.166)

which yields that B is monotone. Then 7' is maximal monotone (see [44]). Let
(wy,wy) € G(T). Since wy — Bwy € Ng(wy) and v, € C, we have (w; — v, wy —

Bwy) > 0. On the other hand, from v, = Po(y, — &, Byn), we have
<’LU1 — Un, Un — (yn - gnByn)> Z 0 (3167)
that is,

<w1 ~ o, U"f;y" + Byn> > 0. (3.168)
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Therefore, we obtain

(W1 — vy, wa) > (w1 — vy, Buwy)

Z <’lU1 - Univa1> - <w1 - Unm @ + Bynl>

Un; — Yn,
- <w1_vn“Bw1_Byni_’b€—y’b>

= (wy — vy, Bwy — Buy,) + (w1 — vy, Buy, — Byn,)

Un; = Yn,
- wy, — Uﬂi? 5
n;

Z <w1_vn¢7BUni>_<w1_vni7@+3yni>

= (wy — p;, Bu,, — Byy,) — <w1 — Up,, @>.(3.169)

Noting that ||v,, — yn,|| — 0 and B is relaxed (¢,w)-cocoercive and (3.169), we
obtain

(wy — z,wq9) > 0.

Since T is maximal monotone, we have z € 70, and hence z € VI(C, B).
Now, we will show that z € (5_, I(Gy, My).

For this purpose, let & € {1,2,3,..., N} and Gy is (-inverse strongly
monotone, Gy is an %-Lipschitz continuous monotone mapping. It follows from
Lemma 3.65, we know that My +G} is maximal monotone. Let (v,g) € G(My+GYy,),
that is, g — Gyv € My(v). On the other hand, since T wn, = Jag a,.,. (Vo ttn, —

Ao Ge Y iy, ), we have

that is,

1

A—(nglum—r Uy — Mene GEYE ) € Mi(TE uy,). (3.170)
k,n;

By virtue of the maximal monotonicity of M} + G}, we have

<v — Y% U, g — Grv — (T, — T8, — Mo, G Y 1um)>2 0, (3.171)

Ak,ni
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and so

<v — Tk unz,g>

1
U—T U, Gro +

)\k,ni

(Y5, — TE gy — Ao, G Y0 lum)>

0= Y5y, Grv — GYE w4+ GRYE w,, — GR Y

|
T T

)\k —(Ch g, — Tﬁiuni)> (3.172)

> 0+ (v—"TE up,, Gm U, — GEYE My,

+ <v — Y5 /\k (P51, — Tflun)>

From ||[Yhu, — YEttu,| — 0, we also obtain that Y% w, — z and {Gy : k =

1,2,3,..., N} are Lipschitz continuous, we have
lim (v — Y% up,,9) = (v—2,9) > 0. (3.173)

Since M} + G}, is maximal monotone, we have 6 € (M) + G)(2), that is, z €
My 1(Gr, My,).

Finally, we will show that z € EP(F).

Since u,, = T, z,, we have

1
F(up,y) + —{y — up,u, —x,) >0, VyeC.
r

n

If follows from (A2) that,

1

_<y = Unp, Up — xn> > _F(umy) > F(y>un)v
rn

and hence

Up, — Tn,
Yy — U’TLN
T

g

> > F(y, up,).
Since ";ﬂnx’” — 0 and wu,, — z, it follows by (A4) that F\(y,z) <0 forall y € H.

For t with0O <t <landy € H, let yy =ty+ (1 —t)z. Since y € H and z € H, we
have y; € H and hence F(y;, z) < 0. So, from (Al) and (A4) we have

0 = Fys,y) <tF(ye,y) + (1 =) F(ys, 2) < tF(ys,y)
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and hence F(y,y) > 0. From (A3), we have F(z,y) > 0 for all y € H and hence
z € EP(F). Therefore, it follows that z € .

Since z* = Po f(z*), we have

limsup(f(z*) — 2%, z,, —2*) = limsup(f(z*) — 2", Sv, — x)

n——aoo n—=ao

= lim (f(z*) — 2", Sv,, — x")

1——00

= (f(z") —a",z—2") <0. (3.174)
On the other hand, we have

limsup(f(z*) — 2%, 41 — %) < limsup(f(z*) — 2", 1 — )

+ limsup(f(z*) — 2", x, — 2*).

n—oo

Since ||zp+1 — Tn|| — 0 as n — oo and (3.174)), we have

limsup(f(z*) — 2", x4 — ") < 0. (3.175)

n—oo

Step 5. We claim that lim,,_ . ||z, — 2*|| = 0.
Indeed, from (3.130) and (3.134), we obtain

[
= <Oénf('rn) + ann + fynSn'Un - x*7 Tpt1 — LU*>

= an(f(zn) — 2" i1 — ) + Bplxn — 2, 2pp1 — %) + Y0 (Spvn — 2%, 21 — 27)

< 5 (I = 212 + hower = 1) + 30 (lon = 21 + s = 2°IP)
F anlf(@n) = F@), i = 7+ Al (57 = @, 2y — )
< 30— ) (llra — 27 + rnss — )
+ 500 (1) = FEN + fomes = 1) + anlf(@7) = 2,01 —a°)
< o[t = anlt =)l — 21 + 50~ g — a1+ Ganllrans — |

+an(f(z7) — 2", wnn — 27),
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which implies that

[2pp1 — 2?7 < |1 —an(l - ¢2)] [z — 2™ [1* + 200 (f(2*) — 2", 2py1 — 27)
= (1=by)||wn — 2" + 6y, (3.176)

where b, = a,(1 — ¥?) and §,, = 2, (f(z*) — 2*, 2.1 — z*). It is easy to see that
b, — 0, > 7 b, = 0o and limsup,__, Z—Z < 0. Applying Lemma [2.12 to (3.170),
we conclude that

x, — " = Pof(x").

Consequently, also {y,} converges strongly to z*. The proof is now complete. [

As in [ [2], Theorem 4.1 |, we can generate a sequence {S,} of nonex-
pansive mappings satisfying condition Y~ sup{||S,112 — Spz| : z € K} < oo for
any bounded subset K of C' by using covex combination of general sequence {T}}

of nonexpansive mappings with a common fixed point.

Corollary 3.71. Let C' be a nonempty closed convex subset of a real Hilbert space
H and B : C — H be relazed (¢,w)-cocoercive and p-Lipschitz continuous with
w > ou?, for some ¢p,w, ;> 0. Let G ={Gr : k=1,2,3,..., N} be a finite family
of B-inverse strongly monotone mappings from C into H and let F' be a bifunction
from C' x C — R satisfying (A1)-(A4). Let f: C — C be a contraction with
coefficient ¥ (0 <9 < 1) and {65} be a family of nonnegative numbers with indices

n,k € N with k < n such that

QO F<ﬁ F(Tk)> N (ﬁv] 1(Gy., Mk)> AVI(C,B)NEP(F) # 0.

Let the sequences {x,} and {y,} be generated by

(
x1 = x € C chosen arbitrarily,

Yn = JMN,)\NW(I - )\N,nGn) e JMQ,,\Q,n([ - )\Q,nGQ)JMI,,\Ln(I - )\l,nGl)Trnmn>

L Tnt1 = anf(xn) + ﬁnxn + Tn Zzzl 6£TkPC(yn - gnByn)a vn Z 17

where {an}, {Bn}, {7} C (0,1) and {&,}, {rn} C (0,00) satisfy the following con-

ditions:
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(C1) an+ B+ v =1,
(C2) lim, oy, =0,> 7 | @, = 00,

(C3) 0 < liminf, .. G, <limsup,_ .G, <1,

(C4) {&:} C [a,b] for some a,bwith 0 < a <b < 222 andlim, o |§ria—Ea| =

0,

(C5) {enti, C le,d] C (0,28) and limy, oo | Aems1 — Ain| = 0, for each k €
{1,2,...,N},

(C6) liminf,, . r, >0 and lim,, .o |rpe1 — ra| =0,

(C7) Sr_ 0k Wn €N, lim, o 0F >0, Yk e N and S5, ST [0k, — 6%| < oo

Then, the sequences {x,} and {y,} converge strongly to the same point z* € (2,

where x* = Pq f(x*).

In Theorem 3.70 taking N = 1 and S,, = 5, then we have the following

corollary.

Corollary 3.72. Let C' be a nonempty closed convex subset of a real Hilbert space
H and B : C — H be relaxed (¢, w)-cocoercive and p-Lipschitz continuous with
w > ou?, for some ¢,w, u > 0. Let G be an B-inverse strongly monotone mappings
from C into H and let F be a bifunction from C x C' — R satisfying (A1)-(A4).
Let f : C — C be a contraction with coefficient ¥ (0 < b < 1) and S be a

nonexpansive mappings of C' into itself such that

Q:F(S)NIG,M)NVI(C,B)NEP(F) #.
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Let the sequences {z,} and {y,} be generated by

(
x1 = x € C chosen arbitrarily,

F(tn, y) + 7=y — thn, un — ) >0, Yy el

Yn = JM,)\n([ - AnG)'u’nu

Tpt1 = O‘nf(xn) + Bnx, + ’YnSPC(yn - anyn), Vn > 1,

\

where {an}, {Bn}, {1} C (0,1) and {&,}, {rn} C (0,00) satisfy the following con-
ditions:

(C2) lim, o, =0,> 7 | @, = 00,

(C3) 0 < liminf, . G, <limsup,_ . G, <1,

(C4) {&} C [a,b] for some a,b with0 < a <b < 2(“’;—35“2) andlim,, oo [€pi1—En] =

0,
(C5) {\.} C e, d] C (0,20) and lim, oo |Ant1 — An| =0,
(C6) liminf,, .7, >0 and lim,, .o |Tpy1 — 7ra| = 0.

Then, the sequences {x,} and {y,} converge strongly to the same point x* € ,

where x* = Pq f(x*).



CHAPTER IV

CONCLUSIONS AND OUTPUTS

4.1 Conclusions

The following results are all main theorems of this research:

(1). Let C' be a nonempty closed convex subset of a real Hilbert space H, let
Fr,k€{1,2,3,..., M} be a bifunction from C' x C to R satisfying (A1)-(A4), let
{T,,} be an infinite family of nonexpansive mappings of C' into itself and let B be

&-inverse strongly monotone such that
O =M, F(T,) N (ML, SEP(F,)) NVI(C,B) # 0.

Let f be a contraction of H into itself with n € (0,1) and let A be a strongly
positive linear bounded operator on H with coefficient 4 > 0 and 0 < v < % Let

{zn}, {yn} and {u,} be sequences generated by

(
x1 = x € C chosen arbitrary,

Yn = (1 = 0,)xy + 0, Peo(x, — oy Bxy),

_ gFy 7FM-1 7FM—2 R 7R
un - ‘]TI\/IYHJT]Wfl,n JT]V[*?,’VL ct J’I‘Q’n Jrlyny’l’H

Tni1 = a7 (W) + Bpzy + (1 = Bu)1 — €,A) Pe(Wyu,, — Ay BW,uy,), Yn>1,

\
where {W,,} is the sequence generated by (3.24) and {e,}, {8.} are two sequences
in (0,1) and {rp,},k € {1,2,3,..., M} are a real sequence in (0, 00) satisfy the
following conditions:

(C1) lim,—e €, =0and > 7 €, = o0,

(C2) 0 < liminf, . B, <limsup,,_ . 5, <1,

(C3) {an}, {\n} Cle,g] € (0,28), lim, oo, =0 and lim, o A\, = 0,
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(C4) {6,} C [0,b], for some b € (0,1) and lim,, 0 |61 — dp| =0,

(C5) liminf, o7k, > 0and lim, o [rgni1—7kn| = 0foreach k € {1,2,3,..., M},

Then, {z,} and {u,} converge strongly to a point z € ©, which is the unique

solution of the variational inequality
<(A —vf)z,x — z> >0, Vo € 0.
Equivalently, we have z = Po(I — A+ ~vf)(2).

(2). Let C' be a nonempty closed convex subset of a real Hilbert space H, let
Fi,ke€{1,2,3,..., M} be a bifunction from C x C to R satisfying (A1)-(A4) and

let B be &-inverse strongly monotone such that
© := (ML,SEP(F,)) NVI(C,B) # 0.

Let f be a contraction of H into itself with n € (0,1). Let {z,}, {y.} and {u,} be

sequences generated by

(
x1 = x € C chosen arbitrary,

Yn = (]- - 5n)xn + 5nPC<xn - anBIn)u

__ JF Fy—1 7Fvm—2 Fy TF
un - J’r‘]\i[v{nj"‘]\ffl,nJTMfln e J . J ! ynv

T2n Timn

L Tp41 = Enf(un) + ﬁnl‘n + (1 - ﬁn - En)PC(un - /\nBun)a n Z 17

where {e,}, {8,} are two sequences in (0,1) and {ry,},k € {1,2,3,..., M} are a
real sequence in (0, co) satisfy the following conditions:

(C1) lim,—e €, =0and > 7 €, = 00,

(C2) 0 < liminf, . B, <limsup,_ . G, <1,

(C3) {an},{ \n} Cle,g] C (0,28), lim, oo @, =0 and lim, oo Ay =0,

(C4) {0,} C [0,b], for some b € (0,1) and lim,, o0 [6p41 — 0n] =0,
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(C5) liminf, o 7%, > 0andlim, o |[rgni1—7%n| = 0foreach k € {1,2,3,..., M},

Then, {z,} and {u,} converge strongly to a point z € © which is the unique

solution of the variational inequality
<(f(z) — 2,0 = z> >0, Yz €0.

Equivalently, we have z = Pg f(2).
(3). Let C' be a nonempty closed convex subset of a real Hilbert space H, let

Fe,k €{1,2,3,..., M} be a bifunction from C' x C' to R satisfying (A1)-(A4), let

{T,} be an infinite family of nonexpansive mappings of C' into itself and let B be

&-inverse strongly monotone such that
©:=N2,F(T,)NEP(F)NVI(C,B) # 0.

Let f be a contraction of H into itself with n € (0,1) and let A be a strongly
T Let
n

positive linear bounded operator on H with coefficient ¥ > 0 and 0 < v <

{zn}, {yn} and {u,} be sequences generated by

.
x1 = x € C chosen arbitrary,
zn) >0, Vy e C,

F(Un, y) + %(y = Up, Unp
Tnt1 = a7 (W) + Bpzy + (1 = Bo)I — €,A) Pe(Wyu,, — A BW,uy,), Vn> 1,

\
where {W,,} is the sequence generated by (3.24) and {¢,}, {8.} are two sequences

in (0,1) and {r,} are a real sequence in (0, c0) satisfy the following conditions:
(C1) lim, o€, =0and > 7 €, = 00,

(C2) 0 < liminf, o B, <limsup,_ . G, <1,
(C3) {A\n} Cle,g] € (0,26) and lim,, oo A, = 0,

(C4) liminf, .7, >0 and lim,, .. |rms1 — ra| = 0.
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Then, {z,} and {u,} converge strongly to a point z € © which is the unique

solution of the variational inequality
<(A —vf)z,x — z> >0, Ve € 0.
Equivalently, we have z = Po(I — A+ ~vf)(z).

(4). Let C be a nonempty closed convex subset of a real Hilbert space H. Let F
be bifunction from C' x C' to R satisfying (H1)-(H5) and let ¢ : C' — RU{+o0} be
a proper lower semicontinuous and convex function with either (B1) or (B2). Let
B, D be two &, f-inverse strongly monotone mapping of C' into H, respectively. Let
S : C' — C be a nonexpansive mapping. Let f : C' — C be a contraction mapping
with 7 € (0,1) and let A be a strongly positive linear bounded operator with 7 > 0
and 0 < v < % Assume that © := F(S)NVI(C,B)NGMEP(F,p,D) # 0. Let

{z,}, {yn} and {u,} be sequence generated by the following iterative algorithm:

(

x1 = x € C chosen arbitrary,
Up = T/gnF’w(xn — \Dzy),
Yn = Buvf(xn) + (I — BnA)Po(Su, — a, BSu,),

xn—‘rl = (1 - 6n>yn + 5nPC(Syn - anBSyn)a vn Z 17

\

where {4, }, {8.} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim B, =0and > 7 G, = oo,

(C2) {d,} C[0,b], for some b € (0,1) and lim |41 — | =0,

(C3) {\n} Cle,dl € (0,208) and lim [N\, — Ay =0,

(C4) {an} Cle,g] € (0,2¢) and lim a1 — | = 0.

Then, {x,} converges strongly to z € O, which is the unique solution of the varia-

tional inequality

<’Yf(2)—Az, x—z>§0, Vo € 0.
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(5). Let C be a nonempty closed convex subset of a real Hilbert space H, let
B be &-inverse-strongly monotone mapping of C' into H and S : C — C be a
nonexpansive mapping. Let f : C' — C be a contraction mapping with n € (0, 1)
and let A be a strongly positive linear bounded operator with ¥ > 0 and 0 < v < %
Assume that © := F(S)NVI(C, B) # (. Let {x,} and {y,} be sequence generated

by the following iterative algorithm:

(
x1 = x € C chosen arbitrary,

Yn = ﬁn’Yf(xn) + (] - ﬂnA>PC(an - O./nBSIL‘n),

| Tn41 = (1 =8,)yn + 0, Pc(Syn — @y, BSy,), Vn > 1,

where {4, } and {f3,,} be two sequences in (0, 1) satisfy the following conditions:

(C1) lim B,=0and >~ B, = oo,
(C2) {0,} C [0,b],for some b € (0,1) and lim |41 — 6,] =0,

(C3) {an} Cle,g] € (0,2¢) and lim a1 — | = 0.

Then, {x,} converges strongly to z € O, which is the unique solution of the varia-
tional inequality

<7f(z) — Az, x—z> <0, Vx € 06.

(6). Let C be a nonempty closed convex subset of a real Hilbert space H and
let F' be bifunction from C' x C' to R satisfying (H1)-(H5). Let S : C — C
be a nonexpansive mapping and let f : C' — C' be a contraction mapping with
n € (0,1). Assume that © := F(S) N EP(F) # 0. Let {z,}, {y»} and {u,} be

sequence generated by the following iterative algorithm:

)
x1 = x € C chosen arbitrary,

Yn = Bnf () + (L = B,)STY a0,

L Tp+1 = (1 - 5n)yn + 5nSyna vn Z 17
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where {0,} and {8,} be two sequences in (0,1) and {\,} C (0,00) satisfy the

following conditions:

(C1) lim B,=0and >~ B, = oo,
(C2) {0,} C [0,b], for some b € (0,1) and lim |d,41 — d,] =0,

(C3) lm Anst — An| = 0.

Then, {z,} converges strongly to z € ©.

(7). Let C be a nonempty closed convex subset of a real Hilbert space H and
B : C — H berelaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢pu?,
for some ¢,w,u > 0. Let G = {Gy : k = 1,2,3,..., N} be a finite family of (-
inverse strongly monotone mappings from C' into H and let F' be a bifunction
from C' x C — R satisfying (A1)-(A4). Let f : C — C be a contraction with
coefficient ¢ (0 <1 < 1) and {S,} be a sequence of nonexpansive mappings of C'
into itself such that

oF ﬁ F(S) N (ﬁv] 1(Gy, Mk)> AVI(C,B)NEP(F) # 0.

Let the sequences {z,} and {y,} be generated by

.
x1 = x € C chosen arbitrarily,

Yn = Ity iy (L = AN Gn) - Iay pg,, (I = AonG2) Iay vy, (L = Ay oG T 0,

L Tpt+l = Oénf(xn> + ﬁnxn + ’VnSnPC(yn - anyn)y vn > 1;

where {a,}, {0n}, {7} C (0,1) and {&,},{r.} C (0,00) satisfy the following
conditions:
(C2) lim, oo, =0,> 7 | @, = 00,

(C3) 0 < liminf, .. B, <limsup,_ .. G, <1,
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(C4) {&} C [a,b] for some a,bwith 0 < a < b < 22 and lim, o [€41—Ea| =

0,

(C5) { Mty C e, d] C (0,28) and lim, oo [Agns1 — Akn| = 0, for each k €
{1,2,...,N},

(C6) liminf,, 7, >0 and lim, ., |41 — 7| = 0.

Suppose that >~ | sup{||Sp4+12 —S,z|| : 2 € K} < oo for any bounded subset K of
C. Let S be a mapping of C' into itself defined by Sy = lim,,_ .., S,y for all y € C
and suppose that F'(S) = (>, F(S,). Then, the sequences {z,} and {y, } converge

strongly to the same point z* € Q, where z* = Py f(x*).

(8).Let C' be a nonempty closed convex subset of a real Hilbert space H and
B : C — H berelaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢u?,
for some ¢,w,u > 0. Let G = {Gy : k = 1,2,3,..., N} be a finite family of (-
inverse strongly monotone mappings from C' into H and let F' be a bifunction
from C' x C — R satisfying (A1)-(A4). Let f : C — C be a contraction with
coefficient 1 (0 < ¢ < 1) and {0*} be a family of nonnegative numbers with indices

n, k € N with k& < n such that
o) N
Q- F(ﬂ F(Tk)> N (ﬂ 1(Gy, Mk)> NVI(C,B)NEP(F) % 0.
k=1 k=1

Let the sequences {z,} and {y,} be generated by

)
x1 = x € C chosen arbitrarily,

Yn = JMN,ANm(I — ANvnGh) - - JMQ,AQ,,Z([ - Az,nG2)JM1,,\1,n(I — MG T,

[ Tnt+l = anf("”'ﬂ) + BnTn + Yo ZZ:1 5§,TkPC(yn - éﬂByn)u Vn > 1,

where {a,}, {0}, {7} C (0,1) and {&,},{r.} C (0,00) satisfy the following

conditions:
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(C3) 0 < liminf,, . 6, <limsup, . G, <1,

(C4) {&,} C [a,b] for some a,bwith0 < a < b < 2 “(’5“ ) and lim,,__ 1&ni1—En| =

0,

(C5) {Menti, C le,d] € (0,20) and limy, oo [Ment1 — Aewn| = 0, for each k €
{1,2,...,N},

(C6) liminf, .7, >0 and lim, . |rny 1 — 7, =0

(C7) S, 6%, Yn €N, lim, o 6% >0, Yk € Nand S2F_ S0 |65, — 0F| < oo.

Then, the sequences {x,} and {y,} converge strongly to the same point z* € ,

where z* = Py f(x*).

(9). Let C be a nonempty closed convex subset of a real Hilbert space H and
B : C — H berelaxed (¢, w)-cocoercive and p-Lipschitz continuous with w > ¢u?,
for some ¢,w, > 0. Let G be an f-inverse strongly monotone mappings from
C into H and let F' be a bifunction from C x C' — R satisfying (A1)-(A4).
Let f : C — C be a contraction with coefficient ¢» (0 < ¢ < 1) and S be a

nonexpansive mappings of C' into itself such that
Q:F(S)NIG,M)NVI(C,B)NEP(F) #0.

Let the sequences {x,} and {y,} be generated by
(

x1 = x € C chosen arbitrarily,

F(un,y) + 2y — tp,u, —x,) >0, VyeC,

Tn

Yn = JM,)\n (I - )\nG>un7

L1 = Oénf(.ilﬁn) + ﬁnxn + fYnSPC'(yn - anyn)v vn > 17

where {a,}, {0}, {7} € (0,1) and {&.},{r.} C (0,00) satisfy the following

conditions:
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(C2) lim, ooy, =0,> 7 @, = 00,
(C3) 0 < liminf,, . 6, <limsup, . G, <1,

(C4) {&,} C [a,b] for some a,bwith0 < a <b < 2(“};—3’“2) and lim, o |1 —&n| =

0,
(C5) {Au} C e, d] € (0,20) and limy, oo [Api1 — An| =0,

(C6) liminf,, .7, >0 and lim,, ., |41 — 7| = 0.

Then, the sequences {x,} and {y,} converge strongly to the same point z* €

where z* = Py f(z*).

4.2 Outputs

The three-published papers in international journals (MRG5480206)

1. Nawitcha Onjai-uea, Chaichana Jaiboon and Poom Kumam, A relaxed
hybrid steepest descent methods for common solutions of generalized mixed
equilibrium problems and fixed point problems, Fixed Point Theory and Ap-
plications 2011, 2011:32 (ISI, 2010 impact factor 1.9436 )

2. N. Onjai-uea, C. Jaiboon, P. Kumam and U.W. Humphries, Convergence
of iterative sequences for fixed points of an infinite family of nonexpansive
mappings based on a hybrid steepest descent methods. Journal of Inequalities

and Applications 2012, 2012:101 (ISI, 2010 impact factor 0.88 )

3. C. Jaiboon and P. Kumam, Viscosity approximation method for system
of variational inclusions problems and fixed point problems of a countable
family of nonexpansive mappings. Volume 2012, Article ID 816529, 26 pages,
2012 (ISI, 2010 impact factor 0. 630)
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