

รายงานวิจัยฉบับสมบูรณ์

โครงการ การประเมินวัฏจักรการใช้น้ำเพื่อการวางนโยบายการ ผลิตไบโอเอทานอลในประเทศอย่างยั่งยืน

โดย อาวีวรรณ มั่งมีชัย

เดือน มิถุนายน ปี 2556 ที่เสร็จโครงการ

สัญญาเลขที่ MRG5480207

รายงานวิจัยฉบับสมบูรณ์

โครงการ การประเมินวัฏจักรการใช้น้ำเพื่อการวางนโยบายการ ผลิตไบโอเอทานอลในประเทศอย่างยั่งยืน

> ผู้วิจัย อาวีวรรณ มั่งมีชัย สังกัด สถาบันบัณฑิตพัฒนบริหารศาสตร์

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Abstract

Project Code: MRG5480207

Project Title: Water Footprints of Cassava- and Molasses-Based Ethanol Production in

Thailand

Investigator: Aweewan Mangmeechai International College of National Institute of

Development Administration

E-mail: aweewan.m@nida.ac.th

Project Period: 2 years

The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/ L ethanol. Approximately 99 percent of the water in each of these WFs is used to cultivate crops. Ethanol production not only requires substantial amounts of water, but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

Keywords: Water footprint, Ethanol Production, Life-cycle assessment, renewable energy

บทคัดย่อ

รหัสโครงการ: MRG5480207

ชื่อโครงการ: การประเมินวัฏจักรการใช้น้ำเพื่อการวางนโยบายการผลิตไบโอเอทานอลใน

ประเทศอย่างยั่งยืน

ชื่อนักวิจัย อาวีวรรณ มั่งมีชัย สถาบันบัณฑิตพัฒนบริหารศาสตร์

E-mail Address : <u>Aweewan.m@nida.ac.th</u>

ระยะเวลาโครงการ 2 ปี

รัฐบาลไทยได้มีการส่งเสริมการผลิตและการใช้พลังงานทางเลือก หากมีการทดแทนน้ำมันเชื้อเพลิงบางส่วน ด้วยไบโอเอทานอล จะส่งผลให้เกิดปริมาณความต้องการน้ำในพื้นที่และในประเทศเพิ่มมากขึ้น การศึกษานี้ แสดงให้เห็นว่าวอเตอร์ฟุตปริ้นของการผลิตเอทานอล (ความต้องการใช้น้ำทั้งหมดตลอดวัฏจักรการผลิต) จาก กากน้ำตาลมีค่าน้อยกว่าการผลิตเอทานอลจากมันสำปะหลัง วอเตอร์ฟุตปริ้นของการผลิตเอทานอลจาก กากน้ำตาลและมันสำปะหลังมีค่าในช่วง 1,510-1,990 และ 2,300-2,820 ลิตรน้ำต่อลิตรเอทานอล ตามลำดับ โดยปริมาณน้ำที่ใช้ทั้งหมดนั้น ร้อยละ 99 ของปริมาณการใช้น้ำตลอดวัฏจักรการผลิตเอทานอลจะใช้ใน กระบวนการปลูกพืช นอกจากการผลิตเอทานอลจะมีความต้องการน้ำมากกว่าการผลิตน้ำมัน (conventional oil) แล้ว ราคาในการผลิตยังค่อนข้างสูง รัฐบาลได้มีมาตรการในการสนับสนุนให้ราคาเอทานอล (ก๊าซโซฮอล) ต่ำกว่าราคาน้ำมัน เช่น ลดการจัดเก็บภาษีน้ำมัน มีการสนับสนุนเงินให้กับผู้ผลิตเอทานอล และมีการประกัน ราคาผลผลิตทางการเกษตร เช่นมันสำปะหลังและอ้อยให้กับเกษตรกร สำหรับนโยบายการส่งเสริมการผลิต พลังงานจากพืชในระยะยาวนั้น รัฐบาลอาจต้องพิจารณาในประเด็นการเพิ่มผลผลิตต่อไร่ ส่งเสริมการผลิตเอทานอลจากกากน้ำตาล เนื่องจากมีการใช้ทรัพยากรน้ำ ป๋ยเคมี และราคาการผลิตต่ำกว่า

คำหลัก วอเตอร์ฟุตปริ้น การผลิตเอทานอล การประเมินวัฏจักรชีวิต พลังงานทดแทน

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- Natural Resources Research, "Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand" by Dr Aweewan Mangmeechai Prasert Pavasant, PhD, Scimago Q2
- 2. การนำผลงานวิจัยไปใช้ประโยชน์

งานวิจัยนี้จะทำให้เข้าใจถึงผลกระทบจากการเปลี่ยนแปลงแหล่งพึ่งพาปิโตรเลียม (Oil transition) จากการนำเข้าน้ำมันดิบไปสู่การผลิตไบโอเอทานอลในประเทศ ซึ่งทำให้เข้าใจถึงผลได้ผลเสีย ของการ ผลิตไบโอเอทานอลในแง่ของการใช้น้ำ การปล่อยก๊าซเรือนกระจก และพลังงานเพื่อความมั่นคงซึ่งจะเป็น ประโยชน์ต่อภาครัฐ อุตสาหกรรมและสังคมดังนี้

- ประโยชน์ต่อการวางแผนการจัดการทรัพยากรน้ำและนโยบายพลังงานของหน่วยงานรัฐ ทรัพยากรน้ำเป็นทรัพยากรที่มีอยู่อย่างจำกัด ดังนั้นการวางแผนจัดการทรัพยากรน้ำเพื่อให้เกิดการ ใช้ทรัพยากรอย่างมีประสิทธิภาพสูงสุดจึงเป็นสิ่งที่จำเป็น คือหากมีการจัดสรรทรัพยากรที่ไม่เหมาะสมอาจ ก่อให้เกิดความขัดแย้งการใช้น้ำเพื่อการผลิตพลังงานและการใช้น้ำเพื่อการอุปโภคและบริโภคอื่นๆ

- ประโยชน์เชิงธุรกิจต่อผู้ประกอบการ

เนื่องจากน้ำเป็นปัจจัยสำคัญในการผลิตเอทานอลจากมันสำปะหลังและกากน้ำตาล การเลือกที่ตั้ง สำหรับการเพาะปลูกและโรงงานผลิตเอทานอลบริเวณที่สามารถเข้าถึงทรัพยากรน้ำอย่างพอเพียงต่อการผลิต จึงมีความสำคัญ ดังนั้นการประเมินวัฏจักรการใช้น้ำของการผลิตเอทานอลจึงเป็นประโยชน์ต่อการวางแผน ทางธุรกิจสำหรับผู้ประกอบการในระยะยาว

-ประโยหน์ต่อสิ่งแวดล้อมและสังคมโดยส่วนรวม

การประเมินวัฏจักรการใช้น้ำของการผลิตเอทานอลจะนำไปสู่การวางนโยบายการจัดการทรัพยากร น้ำที่เหมาะสม ลดการขัดแย้งการใช้ทรัพยากรน้ำระหว่างภาคประชาชนและอุตสาหกรรม

-ประโยชน์ต่อนักศึกษา

งานวิจัยนี้สามารถนำไปใช้เป็นกรณีศึกษาที่สามารถนำไปอภิปรายในชั้นเรียนถึงความเชื่อมโยงระหว่าง วิทยาศาสตร์และการวิเคราะห์นโยบาย

1.2. รายละเอียดผลการดำเนินงานของโครงการ

ตามแผนการดำเนินโครงการวิจัยที่วางไว้ ในช่วง 18 เดือน จะเป็นการเก็บรวบรวมข้อมูลทุติยภูมิและ ประสานงานกับทางโรงงานในการเข้าไปเก็บข้อมูล และลงพื้นที่ไปเก็บข้อมูลจริงภายในพื้นที่เพราะปลูกและ โรงงานเอทานอล และจัดทำบทความทางวิชาการ รายละเอียดของผลการดำเนินงานสรุปในตารางที่ 1

กิจกรรมที่วางแผนไว้ใน	การดำเนินงานของกิจกรรม	การบรรลุผล
ช่วง 6 เดือนแรก		ของกิจกรรม
- ติดต่อประสานงานเพื่อเก็บข้อมูล	- ติดต่อทางสภาอุตสาหกรรม เพื่อขอความ	✓
ในโรงงานเอทานอลและในพื้นที่	อนุเคราะห์ทางโรงงานเอทานอล	
เพาะปลูก	- ติดต่อโรงงานเอทานอล เพื่อขอความอนุเคราะห์ใน	
	การเข้าเก็บข้อมูล	
- ติดต่อว่าจ้างผู้เก็บตัวอย่าง	- ได้ติดต่อประสานงานเพื่อหาบุคคลกรที่มีความรู้	√
	ความสามารถในการช่วยเก็บข้อมูล จำนวน 4 คน	
- สำรวจการใช้น้ำในการผลิต	- ทบทวนวรรณกรรม รายละเอียดดูในส่วนที่ 3	-
น้ำมันดิบ NGV และ LPG		
- สำรวจการใช้น้ำในการผลิตเอทา	- ทบทวนวรรณกรรมได้ข้อมูลบางส่วน รายละเอียดดู	√
นอลจากมันสำปะหลัง	ในส่วนที่ 3 เพื่อที่จะนำมาเปรียบเทียบกับข้อมูลจาก	
	การลงพื้นที่	
- สำรวจการใช้น้ำในการผลิตไฟฟ้า	- ทบทวนวรรณกรรมได้ข้อมูลบางส่วน รายละเอียดดู	√
	ในส่วนที่ 3	
- การใช้น้ำในกระบวนการผลิต	- ลงพื้นที่เก็บข้อมูลในพื้นที่และโรงงานเอทานอล	√
- จัดทำบทความและส่งเพื่อตีพิมพ์	- วารสาร Natural Resources Research	√
	(ระบบฐานข้อมูล Scimago Q2)	

1. สรุปผลการดำเนินงานของโครงการโดยย่อ

ผลการดำเนินงานโครงการตามแผนการดำเนินงานในช่วง 18 เดือน เป็นส่วนของการรวบรวมข้อมูล
ทุติยภูมิและลงพื้นที่ไปเก็บข้อมูลในพื้นที่และโรงงาน โดยข้อมูลสามารถสรุปได้เป็น 5 ส่วนดังนี้ สำรวจการใช้น้ำ
เพื่อการผลิตเอทานอล สำรวจการใช้น้ำเพื่อการผลิตไฟฟ้าและข้อมูลการขนส่งมันสำปะหลังและเอทานอล
ข้อมูลในโรงงานเอทานอล และการตีพิมพ์บทความทางวิชาการ

2. สำรวจการใช้น้ำในการผลิตเอทานอล

ในส่วนการสำรวจการใช้น้ำเพื่อการผลิตเอทานอลสรุปในตารางที่ 1 มีหลายงานวิจัยที่ได้ทำการศึกษา วัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลจากพืชเช่น มันสำปะหลัง ข้าวโพด กากน้ำตาล หัวบีท ซึ่งงานวิจัยส่วน ใหญ่เป็นของต่างประเทศ โดยมารายงานของประเทศไทยหนึ่งฉบับ ซึ่งรายงานค่าการใช้น้ำทั้งวัฏจักรเท่ากับ 2,861-3,876 ลิตรน้ำต่อลิตรเอทานอล โดยเป็นการใช้น้ำในโรงงานเอทานอล นอกจากนี้ จากข้อมูลเบื้องต้นที่ ได้จากโรงงานเอทานอล (มันสำปะหลัง) พบว่าการผลิตจะใช้น้ำประมาณ 11.5-15 ลิตรน้ำต่อลิตรเอทานอล มีค่า ใกล้เคียงกับการรายงานของชินาธิปกรณ์ (1) 6.20-8.39 ลิตรต่อลิตรเอทานอล

ตาราง 2 งานวิจัยที่ศึกษาวัฏจักรการใช้น้ำเพื่อการผลิตเอทานอล (ลิตรน้ำต่อลิตรเอทานอล)

ชนิดของพืช	ประเทศ	รวมทั้งหมด	แหล่งข้อมูล
มันสำปะหลัง	ไทย	2,861-3,876	ชินาธิปกรณ์ (1)
กากน้ำตาล	ค่าเฉลี่ยทั่วโลก	2,516	
มันสำปะหลัง	ค่าเฉลี่ยทั่วโลก	2,926	UNESCO-IHE (2008)
กากน้ำตาล	ประเทศไทย	2,761	(2)
มันสำปะหลัง	ประเทศไทย	2,059	
เมล็ดข้าวโพด	สหรัฐอเมริกา	1,537	Fingerman et al.
หัวปีท	สหรัฐอเมริกา	1,275	(2010) (3)
ข้าวโพด	สหรัฐอเมริกา	10-324	
Switch grass	สหรัฐอเมริกา	1.9-9.8	— Wu et al. (2009)(4)
ข้าวโพด และซังข้าวโพด	สหรัฐอเมริกา	7-16.3	Wang และคณะ (5)
ข้าวโพด	สหรัฐอเมริกา	5-2,137.9	Yi-Wen Chiu และคณะ
			(6)
ข้าวโพด		40	Pimentel และ Patzek
			(7)
Switch grass		125	Pimentel และ Patzek
			(7)

ชินาธิปกรณ์ พงศ์ภิญโญภาพ และ ธำรงรัตน์ มุ่งเจริญ (1) อ้างถึงข้อมูลความต้องการใช้น้ำ หรือ ปริมาณการใช้น้ำของมันสำปะหลัง มีค่าเท่ากับ 2,038.2 ลบ.ม. ต่อไร่ สามารถแบ่งออกเป็นปริมาณฝนใช้การ เท่ากับ 1,413.4 ลบ.ม. ต่อไร่ (ร้อยละ 69) และปริมาณน้ำชลประทาน 624.832 ลบ.ม. ต่อไร่ (ร้อยละ31) เมื่อ คำนวณร่วมกับ ค่าผลผลิตมันสำปะหลังในปี 2551 เท่ากับ 3.4 ตันต่อไร่ (สำนักงานเศรษฐกิจการเกษตร, 2552) พบว่าปริมาณน้ำเสมือนของมันสำปะหลังมีค่าเท่ากับ 599.5 ลบ.ม.ต่อตัน เมื่อนำไปร่วมกับปริมาณน้ำที่ใช้ใน

โรงงานผลิตเอทานอลซึ่งมีขั้นตอนการผสม การย่อยแป้ง และการกลั่น โดยใช้น้ำเป็นปริมาณ 1.024, 0.003 และ 0.275 ลบ.ม. ต่อตัน ตามลำดับ จะสามารถสรุปได้ว่า ถ้าหัวมันสำปะหลังสด 1 ตัน ให้ผลผลิตเอทานอลประมาณ 155 – 210 ลิตร (8) ดังนั้น การใช้น้ำเพื่อการผลิตเอทานอลจะอยู่ในช่วง 2,861-3,876 ลิตรน้ำต่อลิตรเอทานอล แต่อย่างไรก็ตาม รายงานฉบับนี้ไม่ได้รวม Upstream ของไฟฟ้าที่ใช้ในการผลิตเอทานอล และการขนส่งของการ ผลิตเอทานอลในการคำนวณ

Wang และคณะ (5) ศึกษาวัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลจากเมล็ดข้าวโพด)Corn grain (
) และซังข้าวโพดCorn stoverในประเทศสหรัฐอเมริกาพบว่าวัฏจักรการใช้น้ำในการผลิตเอทานอลจากเมล็ด (
ข้าวโพดและซังข้าวโพดมีค่าในช่วง296-684 แกลลอนต่อบาเรลเอทานอล หรือเท่ากับ 490-1,134 แกลลอนต่อ
บาเรลน้ำมันดิบเทียบเท่า ซึ่งประกอบด้วยน้ำที่ใช้ในการปลูกข้าวโพด (4.6 แกลลอนต่อบาเรลเอทานอล) น้ำที่ใช้
ในการผลิตเอทานอล (147-306 แกลลอนต่อบาเรลเอทานอล) และน้ำที่ใช้ในการผลิตไฟฟ้าในสหรัฐอเมริกา
)144-373 แกลลอนต่อบาเรลเอทานอล ((9) ค่าเฉลี่ยพลังงานที่ใช้ในการผลิต 1 แกลลอนเอทานอล เท่ากับ
26,420 ปีที่ยูของก๊าซธรรมชาติ 8,900 ปีที่ยูของถ่านหินและ 0.88 กิโลวัตต์-ชม ของไฟฟ้า.(5)

Yi-Wenchiu และคณะ (6) ศึกษาวัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลจากเมล็ดข้าวโพด (Corn grain) โดยใช้สถิติการชลประทาน (Irrigation statistic) ในแต่ละพื้นที่ในประเทศสหรัฐอเมริกาพบว่าวัฏจักรการ ใช้น้ำในการผลิตเอทานอลมีค่าในช่วง 5-2,138 ลิตรต่อลิตรเอทานอล หรือ)210-89,790 แกลลอนต่อบาเรลเอ ทานอล(โดยปริมาณการใช้น้ำมีความแตกต่างกันในช่วงกว้างขึ้นอยู่กับวิธีการเพาะปลูกและวิธีการชลประทาน ในแต่ละพื้นที่ โรงงานผลิตเอทานอลกระจายตัวอยู่ในพื้นที่ที่มีกิจกรรมทางชลประทานมากกว่าในพื้นที่อื่น ๆ และการใช้น้ำที่ได้รับอนุญาตเพื่อการผลิตไบโอเอทานอลเพิ่มขึ้นจาก 1.9 เป็น 6.1 ล้านล้านลิตร ระหว่างปี 2548 และ 2552 ในขณะที่การผลิตเอทานอลเพิ่มขึ้นเพียง 15 ถึง 34 พันล้านลิตร ในช่วงเวลาเดียวกัน

Pimentel และ Patzek รายงานว่าวัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลจากข้าวโพดและ Switch grass มีค่าเป็น 1,680 และ 5,250 แกลลอนต่อบาเรลเอทานอล ตามลำดับ โดยไม่ได้ให้รายละเอียดการใช้น้ำใน แต่ละขั้นตอนการผลิต

UNESCO-IHE (2) รายงานว่าวัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลมีค่าในช่วงกว้าง ขึ้นอยู่กับชนิด พืช วิธีการเพาะปลูก กิจกรรมทางชลประทานและพื้นที่ งานวิจัยนี้ตั้งสมมุติฐานว่าน้ำที่ใช้ในกระบวนการผลิตใน โรงงานเอทานอลน้อยมื่อเทียบกับน้ำที่ใช้ในการกระบวนการเพาะปลูก ดังนั้นตัวเลขการใช้น้ำนี้จึงเป็นตัวเลขการ ใช้น้ำในกระบวนการเพาะปลูก การใช้น้ำเพื่อการผลิตเอทานอลจากกากน้ำตาล และมันสำปะหลังในประเทศ ไทยมีค่าอยู่ในช่วง 86,500 และ 116,000 แกลลอนน้ำต่อบาเรลเอทานอล

¹ บาเรลเอทานอลคิดเป็น 0.6 บาเรลน้ำมันดิบเทียบเท่า

Fingerman et.al. 2010 (3) รายงานการใช้น้ำเพื่อการผลิตเอทานอลจากเมล็ดข้าวโพด (Corn grain) และ หัวบีท ในรัฐแคลิฟอเนีย สหรัฐอเมริกา ประมาณ 1,533 และ 1,271 ลิตรน้ำต่อลิตรเอทานอล การใช้น้ำใน โรงกลั่นเอทานอล เท่ากับ 3.6 ลิตรน้ำต่อลิตรเอทานอล

Wu et.al. (2009) (4) สำรวจการใช้น้ำเพื่อการผลิตเอทานอล โดยรวมการใช้น้ำจากชลประทาน กระบวนการผลิต ในรัฐ ไอโอวา เนบร้าสก้า มินเนโซต้า สหรัฐอเมริกา พบว่า การใช้น้ำเพื่อการผลิตเทานอลจาก ข้าวโพด และ Switch grass อยู่ในช่วง 10-324 และ 1.9-9.8 ลิตรน้ำต่อลิตรเอทานอล ตามลำดับ ทั้งนี้ การศึกษาของ Wu et. al. (2009) ไม่ได้รวมค่า Green water ดั้งนั้นจึงได้ค่าที่ต่ำกว่าค่าของ UNESCO-IHE (2008) และ Fingerman et. al. (2010) จากนั้นนำข้อมูลจากรายงานมาประเมินความต้องการน้ำที่เพิ่มขึ้นตาม นโยบายส่งเสริมการผลิตไบโอเอทานอล (ดูตารางที่ 1)

กระบวนการผลิตเอทานอลจากมันสำปะหลังของประเทศไทยใช้น้ำน้อยกว่าค่าเฉลี่ยของทั่วโลก ส่วน การผลิตเอทานอลจากกากน้ำตาลใช้น้ำสูงกว่าระดับค่าเฉลี่ยทั่วโลก ดังนั้นประเทศไทยจึงควรศึกษาแนวทาง เพิ่มประสิทธิภาพการใช้น้ำเพื่อการผลิตเอทานอลจากกากน้ำตาล หรือเน้นการส่งเสริมการผลิตเอทานอลจากมัน สำปะหลัง หรือสรรหาพืชพลังงานทางเลือกอื่นที่ใช้น้ำน้อย เช่น จากรายงาน UNESCO-IHE (2008) และ Fingerman et.al. (2010) กล่าวว่าการผลิตเอทานอลจากหัวบีท มันฝรั่ง หรือเมล็ดข้าวโพด ใช้น้ำในการผลิต น้อยที่สุด นอกจากนี้การเพิ่มผลผลิตต่อไร่ให้มากขึ้นก็เป็นอีกแนวทางหนึ่งที่สามารถลดปริมาณการใช้น้ำใน กระบวนการผลิตเอทานอลได้

อาวีวรรณ (10) รายงานวัฏจักรการใช้น้ำเพื่อการผลิตน้ำมันดิบในประเทศสหรัฐอเมริกามีค่าในช่วง 342-470 แกลลอนต่อบาเรลน้ำมันดิบ ซึ่งคิดเป็นการใช้น้ำในกระบวนการขุดเจาะน้ำมันและกระบวนการกระตุ้น อัตราการผลิตน้ำมัน (Enhance oil recovery) 167-177 แกลลอนต่อบาเรลน้ำมันดิบ กระบวนการกลั่นน้ำมัน 52-166 แกลลอนต่อบาเรลน้ำมันดิบ การผลิตไฟฟ้าเพื่อการผลิตน้ำมันดิบ 9.8-13.8 แกลลอนต่อบาเรลน้ำมันดิบ และกระบวนการอื่นๆ 113 แกลลอนต่อบาเรลน้ำมันดิบ วัฏจักรการใช้น้ำเพื่อการผลิตเอทานอลจากข้าวโพดมีค่า สูงกว่าการผลิตน้ำมันดิบ โดยค่าการใช้น้ำต่ำสุดของการผลิตเอทานอลจากข้าวโพด มีค่าสูงกว่าค่าการใช้น้ำ สูงสุดของการผลิตน้ำมันดิบ เมื่อเทียบวัฏจักรการใช้น้ำในการผลิตเอทานอลเทียบกับน้ำมันดีเซลพบว่าการผลิต เอทานอลใช้น้ำมากกว่า 200-400 เท่า Wu et.al. (2009) (4) รายงานวัฏจักรการใช้น้ำเพื่อการผลิตน้ำมันดีเซล จากน้ำมันดิบจากสหรัฐอเมริกา และซาอุดิอาราเบีย อยู่ในช่วง 3.4-6.6 และ 2.8-5.8 ลิตรน้ำต่อลิตรน้ำมัน ดีเซล ตามลำดับ

Life cycle stage	การเก็บข้อมูล
การปลูกมันสำปะหลัง/อ้อย	ข้อมูลปฐมภูมิของเกษตรกรและการทบทวนเอกสาร
การขนส่ง	การสัมภาษณ์และการทบทวนเอกสาร
การผลิตเอทานอล	ข้อมูลปฐมภูมิของโรงงานผลิตเอทานอลจากอ้อยและ
	มันสำปะหลัง
การขนส่งเอทานอล	ข้อมูลปฐมภูมิของโรงงานผลิตเอทานอลจากอ้อยและ
	มันสำปะหลัง
การใช้ไฟฟ้าแบบ Grid mix	ข้อมูลทุติยภูมิจากฐานข้อมูลต่างประเทศ
การขุดเจาะและผลิต ปิโตรเลียม	ข้อมูลทุติยภูมิจากฐานข้อมูลต่างประเทศ

สำปะหลัง

3. การปลูกอ้อยและมันสำปะหลัง

3.1 ข้อมูลการปลูกพืช

การปลูกอ้อย

ขอบเขตการศึกษาของกระบวนการปลูกอ้อย ครอบคลุมตั้งแต่ การเตรียมแปลงปลูก การปลูก การดูแล รักษา และการเก็บเกี่ยวอ้อย โดยพิจารณาครอบคลุมตลอดวงจรชีวิตของการปลูกอ้อยในส่วนของการใช้ ทรัพยากรสำคัญ ได้แก่ น้ำมันเชื้อเพลิง ปุ๋ยเคมี สารเคมี และน้ำ

จากการลงพื้นที่สัมภาษณ์เกษตรกร และการทบทวนเอกสารวงจรชีวิตการปลูกอ้อยของไทย คือคิดที่ ระยะเวลา 3 ปี (อ้อยใหม่ 1 ปี และอ้อยตอ 2 ปี) ครอบคลุมกิจกรรมตั้งแต่การปลูกอ้อยใหม่ การปลูกตอ การ เตรียมพื้นที่การบำรุงรักษา และการเก็บเกี่ยว ในการปลูกอ้อย เกษตรกรจะใส่ปุ๋ยเคมีสูตร 15-15-15 หรือ 16-16-16 เฉลี่ยประมาณ 89.5-105.3 กก./ไร่ และ ใช้สารเคมีกำจัดหญ้าและวัชพืช 0.6-0.8 กก./ไร่ อ้อยมีอายุเก็บเกี่ยว ประมาณ 10- 12 เดือน เกษตรกรจึงนิยมปลูกอ้อยให้ได้อายุ เก็บเกี่ยวตรงกับฤดูหีบอ้อยของโรงงานที่อยู่ในพื้นที่ คือ โรงงานจะทำการหีบอ้อยประมาณเดือน ต.ค. - พ.ค. (กำหนดการที่แน่นอนขึ้นอยู่กับสภาพอากาศและ ปริมาณผลผลิตอ้อยในแต่ละปี)

การปลูกมันสำปะหลัง

การปลูกมันสำปะหลังประกอบไปด้วย การเตรียมแปลงปลูก การปลูก การคูแลรักษา และการเก็บเกี่ยว โดยใช้ปลูกประมาณ 10 เดือนแล้วถึงสามารถเก็บเกี่ยวผลผลิตได้ โดยจะทำการปลูกใหม่ทุกปี ในกระบวนการ ปลูกต้องใช้ทรัพยากรสำคัญต่างๆ ได้แก่ น้ำมันเชื้อเพลิง ปุ๋ยเคมี สารเคมี และน้ำ ตาราง 4 แสดงผลผลิตต่อไร่ ของอ้อยและมันสำปะหลังซึ่งค่าที่รายงานในรายงานประจำปีของศูนย์สารสนเทศการเกษตร

ตาราง 4 ผลผลิตต่อไร่ของอ้อยและมันสำปะหลัง

		ผลผลิตต่อไร่ (กก/ไร่)(11, 12)								
	2549	2550	2551	2552	2553					
มันสำปะหลัง	3,375	3,668	3,401	3,628	3,013					
อ้อย	7,899	10,194	11,157	11,094	10,905					

การคำนวณวอเตอร์ฟุตปรินต์ของพืช

จากคู่มือการคำนวณวอเตอร์ฟุตปรินต์ของการเพราะปลูกพืช (13) กล่าวว่า วอเตอร์ฟุตปรินต์ของการ เพราะปลูกพืช (**WF proc**) คือ ผลรวมของค่า Green water footprint (**WF green**) Blue water footprint (**WF Blue**) และ gray water footprint (**WF Gray**) ดูสูตรคำนวณที่ (1)

$$WF$$
 proc $(m3/ton) = WF$ proc $green + WF$ proc $hlue + WF$ proc $grey$ (1)

Green water footprint, **WF green (m3/ton)** คือปริมาณน้ำฝนที่ถูกใช้ในกระบวนการเพาะปลูก ซึ่งเป็น ปริมาณน้ำฝนที่ถูกใช้แล้วหมดไป ไม่มีการใหลลงสู่แหล่งน้ำธรรมชาติ อาจเกิดจากการระเหย การดูดซับของพืช โดยคำนวณจาก Consumptive water use, **CWU green(m3/ha)** หารด้วยผลผลิตต่อพื้นที่เพราะปลูก Yield, **Y** (ton)

WF proc, green (m3/ton)
$$=\frac{\text{CWU green (m3/ha)}}{\text{Y (}\frac{\text{ton}}{\text{ha}}\text{)}}$$

Blue water footprint, **WF proc, blue (m3/ton)** คือปริมาณน้ำจากระบบชลประทานที่ถูกใช้ใน กระบวนการเพาะปลูก ซึ่งแล้วหมดไป อาจเกิดจากการระเหย การดูดซับของพืช คำนวณจาก

CWU blue (m3/ha) หารด้วย ผลผลิตต่อพื้นที่เพราะปลูก $Y(\frac{\mathsf{ton}}{\mathsf{ha}})$ ปริมาณการระเหยของน้ำในอ่างเก็บ น้ำชลประทานเพื่อการเพาะปลูกไม่นับรวมเป็น Blue water footprint

WF proc,blue (m3/ton) =
$$\frac{\text{CWU blue (m3/ha)}}{\text{Y (}\frac{\text{ton}}{\text{ha}}\text{)}}$$

ผลผลิตต่อพื้นที่ (Y) สามารถใช้ข้อมูลทางสถิติ ในกรณีที่พืชให้ผลผลิตระยะยาวให้ใช้ค่าเฉลี่ยผลผลิตตลอดช่วง ชีวิตของพืช ซึ่งในช่วงระยะเริ่มแรกกับช่วงสุดท้ายของช่วงชีวิตพืชจะให้ผลผลิตต่ำ Gray water footprint, WF proc, gray คือ ปริมาณน้ำปนเปื้อนสารเคมีต่างๆที่ถูกชะล้างสู่แหล่งน้ำ ธรรมชาติ สารเคมีที่ใช้ เช่น ปุ๋ย (ในโตรเจน ฟอสฟอรัส) สารกำจัดศัตรูพืช เป็นต้น โดยคำนวณจาก ปริมาณการ ใช้สารเคมีต่อพื้นที่เพราะปลูก (AR, Kg/ha) คูณกับ สัดส่วนในการชะละลาย (α) หารด้วย ค่าสูงสุดที่พืช สามารถดูดซับสารเคมี $(C_{max}, kg/m3)$ ลบด้วยความเข้มข้นที่มีอยู่สะสมในธรรมชาติ $(C_{max}, kg/m3)$ แล้วหารด้วย ผลผลิตต่อพื้นที่เพราะปลูก $Y(\frac{ton}{ha})$

$$WF_{proc,gray} = \frac{(\alpha \times AR)/(Cmax - C nat)}{Y}$$

Green water และ Blue water คำนวณจากผลรวมค่า Evapotranspiration (ET, mm/day) ตลอดช่วงการ เจริญเติบโตของพืช

$$CWU\ green = 10 \times \sum_{d=1}^{lgp} ET_{green}$$

CWU blue =
$$10 \times \sum_{d=1}^{lgp} ET_{blue}$$

ET คือ Blue water evapotranspiration ET คือ Blue water evapotranspiration คูณ 10 เพื่อ การแปลงหน่วย mm เป็น m3/ha โดยผลรวมค่า ET เริ่มจากวันแรกที่ทำการปลูกพืช (วันที่ 1) จนถึงวันที่เก็บ เกี่ยวผลผลิตได้ (Ipg = length of growing period) หรือถ้าเป็นพืชชนิดที่มีช่วงชีวิตยาว ก็ให้ใช้ค่าเฉลี่ยการคาย ระเหยตลอดช่วงชีวิต ยกตัวอย่างเช่นพืชมีช่วงอายุ 20 ปี สามารถเก็บเกี่ยวผลผลิตเริ่มปีที่ 6 เป็นต้นไป ก็ให้นำ ผลรวมค่า ET ตลอดระยะเวลาการปลูกพืช 20 ปี หารด้วยผลผลิตที่สามารถเก็บเกี่ยวได้ตลอด 15 ปี

ความต้องการใช้น้ำของพืช (Crop water requirement)

ปริมาณความต้องการใช้น้ำของพืช (Consumptive Use or Evapotranspiration) หมายถึง ปริมาณน้ำที่พืชต้องการใช้จริง ๆ รวมกับปริมาณน้ำที่ต้องสูญเสียไปโดยการระเหยจากผิวดินหรือผิวน้ำในแปลง เพาะปลูกนั้นด้วย ปริมาณน้ำที่พืชต้องการใช้จริง ๆ ได้แก่ ปริมาณน้ำที่พืชใช้สำหรับการหล่อเลี้ยงลำต้นและ โครงสร้างต่าง ๆ การนำอาหารขึ้นไปบำรุงส่วนต่าง ๆ ของพืชแล้วคายน้ำออกทางใบ "การคายน้ำ" (Transpiration) รวบกับการระเหยของน้ำ (Evaporation) ดังนั้นจึงเรียกรวมว่า Evapotranspiration

Evapotranspiration = Evaporation + Transpiration

การคำนวณค่า Evapotranspiration (ET) การประเมินความ ต้องการใช้น้ำของพืช โดยพิจารณาจากค่า สัมประสิทธิ์การใช้น้ำของพืช (Crop coefficient, Kc) และ ปริมาณการใช้น้ำของพืชอ้างอิง (Reference crop evapotranspiration, Eto) ดังนี้ เมื่อ ET = ความต้องการใช้น้ำของพืช (มม./วัน) Kc คือ สัมประสิทธิ์การใช้น้ำของพืช สำหรับ สัมประสิทธิ์การใช้น้ำของพืช ขึ้นอยู่กับชนิด และอายุการเจริญเติบโตของพืช โดยงานวิจัยนี้ใช้ค่า สัมประสิทธิ์การใช้น้ำของพืชจากสูตร Penman Monteith (ดู ตาราง 5) ETo คือปริมาณการใช้น้ำของพืชอ้างอิง (มม./วัน) ค่า ETo ใช้ข้อมูลจากรายงานของกรมชลประทาน (ดู ตาราง 6) ซึ่ง ตรวจวัดโดยวิธี Penman-Monteith (Reference Evapotranspiration by Penman – Monteith) โดยนำข้อมูลอุตุนิยมวิทยาตั้งแต่ พ.ศ. 2494-2538 (ระยะเวลา 45 ปี) มาดำเนินการจัดทำซึ่งข้อมูล ขณะนั้น กรมอุตุนิยมวิทยาตั้งแต่ พ.ศ. 2494-2538 (ระยะเวลา 45 ปี) มาดำเนินการจัดทำซึ่งข้อมูล ขณะนั้น กรมอุตุนิยมวิทยาไดรวบรวมข้อมูลสภาพทางอากาศ จาก 48 จังหวัด จำนวน 64 สถานี ตรวจวัดอากาศมาจัดทำและได้พิมพ์เผยแพร่ปริมาณการใช้น้ำของพืชอ้างอิงตั้งแต่ปี พ.ศ. 2539 ปัจจุบันกรมอุตุนิยมวิทยาได้เพิ่มจำนวนสถานีตรวจวัดสภาพอากาศมากขึ้น เป็นจำนวนทั้งสิ้น 120 สถานีครอบคลุมพื้นที่ 64 จังหวัด ข้อมูลสภาพอากาศที่รวบรวมเผยแพร่ล่าสุดเป็นช่วงระยะ 30 ปี ระหว่าง พ.ศ. 2524-2553 (ค.ศ. 1981-2010) โดยกรมอุตุนิยมวิทยาจะนำมาเผยแพร่ทุก ๆ 10 ปี ข้อมูลสภาพอากาศดังกล่าว ฝ่ายเผยแพร่การใช้น้ำของพืชอ้างอิง โดยวิธีการ Penman-Monteith ซึ่งเป็นวิธีการที่องค์การอาหารและเกษตรแห่ง สหประชาชาติ (FAO) ให้การยอมรับและมีความเชื่อถือในระดับสูง

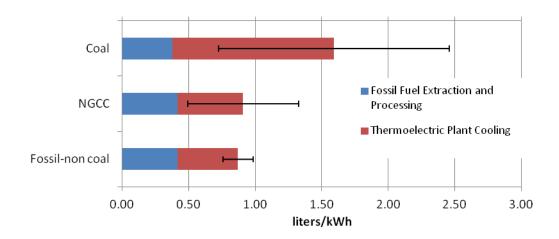
ตาราง 5 : ค่าสัมประสิทธิ์การใช้น้ำของพืช (Crop Coefficient, KC) โดยวิธี Penman Monteith ของพืช อ้อยและมันสำปะหลัง

	อ้อย	อ้อย	มันสำปะหลัง
เดือนที่	(14)	(15)	(15)
1	0.63	0.65	0.3
2	0.83	0.86	0.3
3	1	1.13	0.3
4	1.13	1.35	0.8
5	1.18	1.56	1.1
6	1.18	1.29	1.1
7	1.13	1.2	1.1
8	1.03	0.93	0.5
9	0.85	0.63	0.5
10	0.65	0.52	0.5
11	0.53		0.5
12	0.5		0.5

ตาราง 6 ปริมาณการใช้น้ำของพืชอ้างอิงโดยวิธี Penman-Monteith

	Epan (16)	Penman-Monteith (17)						
	นครสวรรค์	นครสวรรค์	สถานีเกษตร ตากฟ้า นครสวรรค์	สระแก้ว	อรัญประเทศ			
ET0 (มม. ต่อ วัน)			นครสวรรค์		สระแก้ว			
ม.ค.	4.8	3.71	3.94	3.96	3.89			
ก.พ.	6.3	4.87	4.35	4.46	4.35			
มี.ค.	7.6	6.06	4.88	4.67	4.98			
เม.ย.	8.4	6.06	4.93	4.66	4.91			
พ.ค.	6.8	4.55	4.46	3.96	4.11			
มิ.ย.	6.2	4.1	4.02	3.88	4.06			
ก.ค.	5.6	3.92	3.89	3.45	3.99			
ส.ค.	5	3.71	3.48	3.4	3.6			

ก.ย.	4.4	3.32	3.57	3.24	3.35
ต.ค.	4.2	3.57	3.54	3.64	3.42
พ.ย.	4.3	3.51	3.86	3.92	3.61
บิ.ค.	4.4	3.37	3.81	3.78	3.64


เกษตรกรพึ่งพาเฉพาะน้ำฝนโดยไม่ได้ใช้น้ำชลประทาลในการปลูกอ้อยและมันสำปะหลัง ปริมาณการ ใช้น้ำของอ้อยและมันสำปะหลังในแต่ละเดือนแสดงใน ตาราง 7 อ้อยใช้ปริมาณน้ำในการเพาะปลูก มากกว่ามันสำปะหลังซึ่งมีค่าอยู่ในช่วง 1,963-2,242 ล.ม./ไร่ และ 1,416-1,466 ล.ม./ไร่ ตามลำดับ

ตาราง 7 แสดงปริมาณการใช้น้ำของอ้อยและมันสำปะหลัง

ET		อ้อย			มันสำเ	ปะหลัง
(มม./เดือน)	นครสวรรค์	นครสวรรค์	สระแก้ว	สระแก้ว	สระแก้ว	สระแก้ว
	สถานี 1	สถานี 2	สถานี 1	สถานี 2	สถานี 1	สถานี 2
ม.ค.	74.8	79.4	79.8	78.4	36.828	36.177
ก.พ.	117.3	104.7	107.4	104.7	37.464	36.54
มี.ค.	212.3	170.9	163.6	174.4	43.431	46.314
11.1날	245.4	199.7	188.7	198.9	111.84	117.84
พ.ค.	220.0	215.7	191.5	198.8	135.036	140.151
มิ.ย.	158.7	155.6	150.2	157.1	128.04	133.98
ก.ค.	145.8	144.7	128.3	148.4	117.645	136.059
ส.ค.	107.0	107.0	98.0	103.8	52.7	55.8
ก.ย.	62.7	67.5	61.2	63.3	48.6	50.25
ମ.ନ.	57.5	57.1	58.7	55.1	56.42	53.01
พ.ย.					58.8	54.15
บิ.ค.					58.59	56.42
รวม	1401.5	1302.2	1227.4	1283.0	885.4	916.7
ลบ.ม. /ไร่	2242.4	2083.5	1963.9	2052.8	1416.6	1466.7

3.2 สำรวจการใช้น้ำในการผลิตไฟฟ้า

ทางผู้วิจัยต้องการรวบรวมข้อมูลการใช้น้ำเพื่อการผลิตไฟฟ้า เพื่อนำไปรวมในการคำนวณวัฏจักรชีวิต ของการผลิตเอทานอลโดยสรุปดังรูปที่ 1

รูปที่ 1 ปริมาณการใช้น้ำเพื่อการผลิตไฟฟ้า

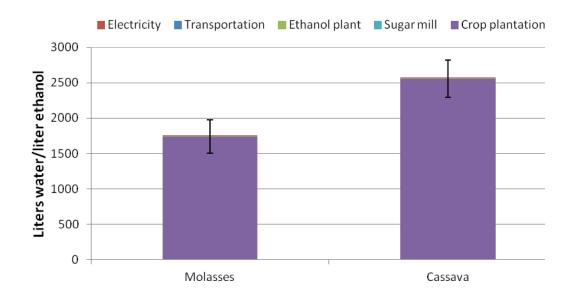
3.3 ข้อมูลโรงงานเอทานอล

ทางทีมวิจัยได้เข้าทำการเก็บข้อมูลโรงงานเอทานอลจำนวน 6 โรงงาน โดยข้อมูลปริมาณการใช้น้ำ การใช้ไฟฟ้า ในแต่กระบวนการผลิตสรุปในตาราง 8 - ตาราง 9

ตาราง 8 ปริมาณการใช้น้ำของโรงงานเอทานอลในการผลิตเอทานอล 1 ลิตร

			Molasses- based		Ну	rbrid Ca		assava-based	
Input	nput	Units	Plant A	Plant B	Plant C	Plant D	Plant E (Dry)	Plant F (Fresh)	Plant F (dry)
1.Material	Sugar cane	kg	100	92	65-75	80			
	Molasses	kg	4.25	3.67	3.48- 3.76	3.9-4.0			
2. Water	Molasses	liter	3.03	2.75		2.86			
	Fermentation	liter	6.3	4.67		11.04			
	Boiler	liter	0.87	2.00		0.8			
	Cooling Tower	liter	2.61	1.33		8			
	Cleaning	liter	0.43	0.07		0.67-1			

	Distillation	liter	1.09	0.60					
			14.33	11.41		23.37-			
	Total	liter			13.04	23.70			
Input									
1. Material	Dry Cassava	kg				2.7	2.6-		2.5
1. Material	Dry Cassava	kg				2.1	2.9		2.0
	Fresh	kg						6	
	cassava	9						Ŭ	
2. Water	Dry cassava	liter				1.33	1.5	4.5	
	Fresh	liter							1
	cassava								
	Fermentation	liter				8	5	6	6
	Boiler	liter				0.8	0.95	5	5
	Cooling	liter				8	0.6	1	1
	Tower								
	Cleaning								
	fresh cassava	liter						10	
	(Recycle)								
	Cleaning	liter				0.67-1	0.25	0.1	0.1
	process					18.80-			
	Total	liter				19.13	8.3	26.6	13.1
Output									
1. Product	Ethanol	liter	1	1	1	1	1	1	1
2. Spent			7.00	40.0	0.70	12.67-			
wash	Molasses	liter	7.83	10.0	8.70	13.33			
	Fresh	liter						10	
	Cassava	iilel						10	
	Dry Cassava	liter				9.00	6.25		6.5
3.		liter	0.43			0.67-1	0.25	0.1	0.1
Cleaning		шс				0.07-1	0.20	0.1	0.1
4. Water	Molasses	liter	1.5	0.75	4.34	0.57-			
loss				30		1.23			
	Cassava					0.33	0.25	0.5	0.5
5.		liter	4.57	0.67		8.8	1.55	16	6


Recycling					
water					

ตาราง 9 ข้อมูลการใช้พลังงานของโรงงานเอทานอลในการผลิตเอทานอล 1 ลิตร

Unit/L ethanol	Plant A	Plant B	Plant C	Plant D	Plant E	Plant F
	Molasses	Molasses	Molasses/Cassava	Molasses/Cassava	Cassava	Cassava
Grid mix (kWh)	0.10	0.27	0.24	0.17	0.30-0.36	0.29-0.36
Coal (kg)	0.52					0.50
Biogas(liters)				270	150-200	200
Wood chip (kg)					0.60-0.75	
Biomass (kg)			0.04			
Fuel oil (liters)				0.14		

4. วอเตอร์ฟุตปริ้นของการผลิตเอทานอลจากมันสำปะหลังและกากน้ำตาล

จากข้อมูลดังกล่าวข้างต้นสามารถสรุปเป็นข้อมูลวอเตอร์ฟุตปริ้นของการผลิตเอทานอลจากมัน สำปะหลังและกากน้ำตาลดังแสดงในรูปที่ 2 โดยแบ่งเป็นข้อมูลการใช้น้ำในการปลูกพืช กระบวนการขนส่ง การ ผลิตไฟฟ้า การใช้น้ำในโรงผลิตเอทานอล จากข้อมูลสามารถสรุปได้ว่าการผลิตเอทานอลใช้ปริมาณน้ำในการ ผลิตมากกว่ากากน้ำตาล

รูปที่ 2 วอเตอร์ฟุตปริ้นของการผลิตเอทานอลจากมันสำปะหลังและกากน้ำตาล 1 ลิตร

5. จัดทำบทความทางวิชาการ

ทางผู้วิจัยได้ส่งบทความเพื่อตีพิมพ์ในวารสารชื่อ Natural Resources Research และได้รับการตอบ รับตีพิมพ์แล้ว ดู จม ตอบรับตีพิมพ์ด้านล่าง

Dear Dr Mangmeechai:

Your revised submission to Natural Resources Research, "Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand" by Dr Aweewan Mangmeechai Prasert Pavasant, PhD, has been accepted for publication.

Your manuscript will be sent to the publisher. After the publisher has processed your manuscript, they will send you proofs as pdf files by email. You should then download the proofs, print and correct them and return them as instructed. For that reason, please notify me if your email address changes.

Sincerely,

John Carranza, Ph.D.

Editor-in-Chief*

Natural Resources Research

เอกสารอ้างอิง

- 1. ชินาธิปกรณ์ พงศ์ภิญโญภาพ และ ธำรงรัตน์ มุ่งเจริญ, วอเตอร์ฟุตพริ้นท์ของกระบวนการผลิตเอทา นอลจากมันสำปะหลังในประเทศไทย. วิศวกรรมสาร มก. **2554**, 75.
- 2. UNESCO-IHE Institute for Water Education, *The Water Footprint of Bio-energy: Global Water Use for Bio-ethanol, Bio-diesel, Heat and Electricity*; Delft, Netherlands, 2008.
- 3. Fingerman, R. K., Torn, S. M., O'Hare H. M., and Kammen, M. D.,, Accounting for the Water Impacts of Ethanol Production. *Environmental Research Letters* **2010**, 5.
- 4. Wu, M., Mintz, M., Wang, M., Arora, S., Water Consumption in the Production of Ethanol and Petroleum Gasoline. *Environmental Management* **2009**, 44, 981-997.
- 5. Wang, M., Wu, M., Huo, H., Life-cycle Energy and Greenhouse Gas Emission Impacts of Different Corn Ethanol Plant Types. *Environmental Research Letters* **2007**, 2.

- 6. Yi-Wen Chiu, W., B., Sangwon Suh, Water Embodied in Bioethanol in the United States. *Environmental Science and Technology* **2008**, 43, 2688-2692.
- 7. Pimentel, D., Patzek, W. T., Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. *Natural Resources Research* **2005**, 14 (1), 65-76.
- 8. อัมพร ยังโหมด, เอกสารวิชาการเอทานอลจากมันสำปะหลัง,; กรมวิชาการเกษตร: กรุงเทพ.
- 9. Gleick, H. P., Water and Energy. Annual Review Energy 1994, 19, 267-99.
- Mangmeechai, A. Life Cycle Greenhouse Gas Emissions Consumptive Water Use and Levelized Costs of Unconventional Oil in North America. Carnegie Mellon University, Pittsburgh, PA, 2009.
- 11. ศูนย์สารสนเทศการเกษตร, ข้อมูลพื้นฐาน เศรษฐกิจการเกษตร; สำนักงานเศรษฐกิจการเกษตร: กรุงเทพ, 2551.
- 12. ศูนย์สารสนเทศการเกษตร, ข้อมูลพื้นฐาน เศรษฐกิจการเกษตร; สำนักงานเศรษฐกิจการเกษตร: กรุงเทพ, 2553.
- 13. Hoekstra Y. A., C., K. A., Mekonnen, M. M., *Water Footprint Manual: State of the Art*, 2009 Water Footprint Network: Enschede, The Netherlands, 2009.
- 14. ดิเรก ทองอร่าม, ความต้องการน้ำของพืช เกษตรยุคใหม่: กรุงเทพฯ, 2529.
- 15. กลุ่มงานวิจัยการใช้น้ำชลประทาน, ค่าสัมประสิทธิ์พืช (*Kc*) ของพืช 40 ชนิด สำนักอุทกวิทยาและ บริหารน้ำ.
- กรมอุตุนิยมวิทยา, ปริมาณการระเหยน้ำจากถาดวัดการระเหยแบบเอ (Epan) เฉลี่ยรายเดือนในรอบ
 30 ปี (2504-2533).
- 17. กรมชลประทาน, ปริมาณการใช้น้ำของพืชอ้างอิงโดยวิธี Penman-Monteith (Reference Evapotranspiration by Penman Monteith) ค่าเฉลี่ยปี 2524-2554; กระทรวงเกษตรและ สหกรณ์: กรุงเทพฯ, 2554.
- 18. สวทช, คู่มือพัฒนา *Eco-efficiency* สำหรับอุตสาหกรรมผลิตไฟฟ้า 2552.
- 19. กระทรวงพลังงาน, โครงการ "การศึกษาการประเมินวงจรชีวิตการผลิตและการใช้เอทานอลจากมันปะ หลังและอ้อย". 2550.

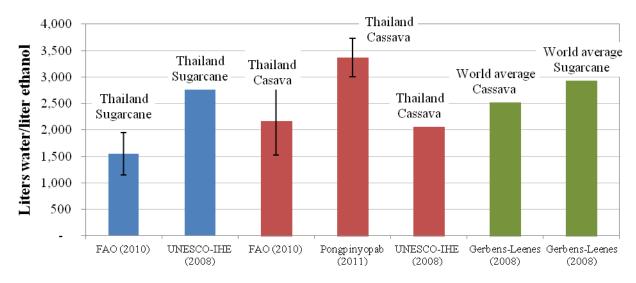
ภาคผนวก

Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

Aweewan Mangmeechai * and Prasert Pavasant

* Corresponding author: phone 662-727-3008 e-mail aweewan.m@nida.ac.th

International College of National Institute of Development Administration and Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok Thailand


Abstract

The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/ L ethanol. Approximately 99 percent of the water in each of these WFs is used to cultivate crops. Ethanol production not only requires substantial amounts of water, but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

1. Introduction

Petroleum consumption accounted for approximately 35-40 percent of the total energy consumed in Thailand (Ministry of Energy, 2011). Due to volatile global oil prices as well as an attempt to reduce oil dependency, the Thai government has been promoting the renewable energy industry as well as stimulating the consumption of renewable energy in the country through a number of governmental policies such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers (Sora, 2010). The country's renewable energy development plan lists three bioethanol production targets. The short-term target is 3 M liters of ethanol per day (2008-2011), the mid-term target is 6.2 M liters of ethanol per day (2012-2016), and the long-term target is 9.0 M liters of ethanol per day (2017-2022) (Department of Alternative Energy Development and Efficiency, 2012).

Despite rapid growth in biofuel production worldwide, sufficient information on water related to its production is required (Ridley, 2012). Replacing transport fuels made from crude oil with biofuels made from crops, will take large efforts and will require substantial amounts of water, which would enhance water competition (Chiu, 2012, Dominguez-Faus, 2009, Engelhaupt, 2007, King, 2008, Mishra, 2011, Scown, 2011). The global annual biofuel water footprint (WF) will increase from 90 km³/year to 970 km³/year in 2030 (Gerbens-Leenes, 2011, Lienden van, 2010). The WF of ethanol production was reported to be within the range of 1,550-3,450 L water /L ethanol (see Figure 1). The results seem to vary greatly depending on crop type, plantation method, and irrigation system. The WF of molasses-based ethanol in Thailand was in the range of 985-2,761 L water/ L ethanol; the WF of cassava-based ethanol was 1,265-3,876 L water/ L ethanol. Pongpinyopap (2011) reported that water use in a cassava plantation equaled to 12,739 m³/ha; of this, 8,834 m³/ha (69%) was from rainfall and 3,905 m³/ha (31%) from irrigated water. With a yield of approximately 21 tons/ha, water use for the cassava plantation was 599.5 m³/ton. At an ethanol plant, water use for mixing, fermentation and distillation processes was 1.024, 0.003 and 0.275 m³/ton, respectively. The study assumed that 1 ton of cassava can produce 155-210 L of ethanol. Thus, water use for cassava-based ethanol production was estimated to be 2,861-3,876 L water/ L ethanol. UNESCO-IHE (2008) reported on the WFs of molasses- and cassava-based ethanol produced in Thailand. This study assumed that water use in ethanol plants could be neglected. The WF of molasses was 119 m³/GJ (64 m³/GJ gray water and 55 m³/GJ blue water) or 2,761 L water/L ethanol, while the WF of cassava was 87 m³/GJ (79 m³/GJ gray water and 8 m³/GJ blue water) or 2,059 L water/ L ethanol. The FAO (2010) estimated the WFs of molasses- and cassava-based ethanol in Thailand at 1,550 and 2,168 L water/ L ethanol, respectively. Gerbens-Leenes (2011) estimated the respective world average WFs of molasses- and cassava-based ethanol at 2,516 and 2,926 L water/ L ethanol.

Figure 1: WFs of ethanol production (L water/L ethanol) from sugarcane and cassava in Thailand compared to world average

Inconsistency of framework for WF calculation causes unfair comparison among different studies. For instance, some studies did not report on the water used in ethanol plants as well as indirect water use associated with ethanol production. This knowledge is important for water management because the water used in an ethanol plant is generally withdrawn from irrigation (blue water) and is different from water used for crops, which is primarily from rain (green water). Moreover, there are conflicting results, for example, the study of UNESCO-IHE reported that molasses-based ethanol production consumed a larger amount of water than cassava-based ethanol. On the contrary, the FAO reported that the production of cassava-based ethanol required a larger volume of water.

The aim of this study is to quantify the WFs associated with the production of molasses- and cassava-based ethanol in Thailand to understand their potential impacts. Both direct and indirect water consumption values are reported. In addition, policy recommendations on water management are discussed.

2. Materials and Methods

2.1 Water footprint: The WF of a product (commodity, good or service) is defined as the volume of freshwater that is used for its production. In this study, the water consumption in ethanol production in Thailand was estimated. To do this, crop cultivation, ethanol plant processes, transportation, and related energy use were all taken into consideration. The WF of crop cultivation in Thailand was also calculated following the 2011 WF assessment manual of Hoekstra et al. (2009). Total water use is a summation of the green water, blue water, and gray water. The green WF refers to rainwater that evaporates during the production process. This is particularly relevant for crop growth. The blue WF refers to surface water and groundwater used for irrigation that evaporate during production process. The gray WF of a product is the

volume of polluted water as well as the volume of dilution water that is discharged during the production process; it is defined as the amount of water needed to dilute pollutants emitted to natural water systems during the production process to the extent that the quality of ambient water remains within agreed water quality standards. In this study, green WF was calculated using Thai national data (see crop cultivation section); blue WF and gray WF was verified by field survey data

2.2 Crop cultivation: The crop water requirement is the water needed for evapotranspiration under ideal growth conditions; it is measured from planting to harvesting. Conditions are ideal when adequate soil water is maintained by rainfall and/or irrigation so that it does not limit plant growth and crop yield. The crop water requirement (CWR) is calculated by multiplying the reference crop evapotranspiration (ETo) by the crop coefficient (Kc): $CWR = Kc \times ETo$. It is assumed that CWR are fully met so that actual crop ETo will be equal to CWR: ETc = CWR (Hoekstra et. al., 2009). The ETo is the evapotranspiration rate from a reference surface. The reference is a hypothetical surface with extensive green grass cover possessing specific characteristics. The only factors affecting ETo are climatic parameters. ETo expresses the evaporating power of the atmosphere at a specific location and time of year and does not consider crop characteristics and soil factors. The FAO Penman-Monteith equations were used here to produce the ETo data reported by the Royal Irrigation Department (2011). ETo was calculated using weather data of 120 weather stations within 64 provinces from 1981 to 2010. In this study, ETo data from the provinces with ethanol plants were selected for our calculations. The Kc varies over the length of a growing period. Value of Kc-Penman Monteith of cassava and sugarcane were obtained from the Royal Irrigation Department (Irrigation Water Management Research Group) and summarized in Table 1. According to interviews with farmers, most of them rely solely on green water for crop cultivation; thus, the blue WF in this study was zero. No assessment was made of the gray WF of crops.

Table 1 Monthly Crop coefficients (Kc) for sugarcane and cassava in Thailand

	Sugarcane	Cassava
Month		
January	0.65	0.3
February	0.86	0.3
March	1.13	0.3
April	1.35	0.8
May	1.56	1.1
June	1.29	1.1
July	1.2	1.1
August	0.93	0.5
September	0.63	0.5
October	0.52	0.5
November		0.5

Sugarcane and cassava are commonly planted in the northern, northeastern and central parts of Thailand. The planting time for sugarcane starts in July and ends in December, and the cultivating period is approximately 10-12 months. For cassava, the planting time is from May to July and the cultivating period is about one year. The harvest season for both sugarcane and cassava is from December to February (Office of Agricultural Economics, 2010). The interviews with farmers and information from the literatures revealed that fertilizer 15-15-15 or 16-16-16 was used on average 250-313 kg/ha of sugarcane (Department of Agriculture) or 15-7-18 or 15-15-15 was used on average 313 kg/ha of cassava (Department of Agriculture). Diesel use during sugarcane plantation was estimated to be in the range of 94-188 L diesel/ha, while cassava consumed a slightly higher amount at 125-313 L diesel/ha (Thailand Environment Institute Foundation, 2007). Since crop yields according to the interviewed farmers varied greatly, the average national crop yield was used for the WF calculations; they are summarized in Table 2.

Table 2 Annual average crop yields for sugarcane and cassava in Thailand

	Yield (tons/ha) (Agricultural Information Center, 2008; Agricultural Information Center, 2010)				
	2006	2007	2008	2009	2010
Cassava	21.1	22.9	21.3	22.7	18.8
Sugarcane	49.4	63.7	69.7	69.3	68.2

Water use allocation for the production of molasses-based ethanol: Molasses, the input material for ethanol production, is a by-product of sugar mills. For this reason, water consumption during sugarcane plantation and transportation from the field to the sugar mill was allocated by the economic values of the outputs (Thailand Environment Institute Foundation, 2007). Sugarcane can be converted to raw sugar, white sugar, refined sugar, and molasses. One ton of sugarcane as an input can produce 45.42 kg of molasses as a by-product. The economic value of molasses is approximately 9% of the outputs (Table 3). The water use in the sugar mill is estimated at 240 liters for each ton of sugarcane.

Table 3 Economic values of sugar mill output (Agricultural Information Center, 2010; Office of the Cane and Sugar Board, 2012)

	Kg	Baht/kg	Allocation
Raw sugar	60.02	8.6-13.2	0.23
White sugar	31.71	10.8-17.3	0.30
Refined sugar	16.81	21.4	0.38
Molasses	45.42	4.87	0.09

2.3 Ethanol plant: The water consumptive use of six ethanol plants was collected: two produced molasses-based ethanol, two produced cassava-based ethanol, and two were hybrid ethanol plants. The input materials and production averages are summarized in Table 4. The production was in the range of 100,000–230,000 L/day, accounting for approximately 35% of the current national production. Due to privacy issues, the actual names of the plants have not been disclosed.

Table 4 Daily average production in ethanol plants in Thailand

	Plant A	Plant B	Plant C	Plant D	Plant E	Plant F
Input material	Molasse s	Molasse s	Molasses /Cassava	Molasse s /Cassava	Dry Cassava	Fresh/Dry Cassava
Average production (L/day)	230,000	150,000	230,000	150,000	200,000	100,000

2.4 Transportation: Since water is used in the petroleum production process, this study estimated the indirect water use from transportation from the fields to ethanol plants and from ethanol plants to fuel mixing stations. The types of trucks used for loading crop yields and their fuel consumption are summarized in Table 5. The average commute was estimated to be 20-200 km (round trip). Most of the molasses-based ethanol plants in Thailand are located near a sugar mill and the molasses are transported via a pipe using electricity (1.87 kWh/ton-km) (Thailand Environment Institute Foundation, 2007).

Normally, between 16,000 and 32,000 liters of ethanol are transported by truck from an ethanol plant to a mixing station. The fuel consumption of a 16 K truck is 0.57 L diesel/km-16 K truck and 0.73 L diesel/km-32K truck. Based on interviews, one round trip was estimated at 150-500 km.

Table 5: Truck fuel consumption in Thailand

	Loading	Empty truck	
	(ton/truc	(L diesel/km)	Full load
	k)	(Thailand	(L diesel/km)
		Environment Institute	(Thailand Environment
		Foundation, 2007)	Institute Foundation, 2007)
Tractor	25-35		
trailer		3-3.50	2.50-3
6-wheeel	10-15		
truck		3.42-3.98	2.15-2.97
10-wheel	18-25		
truck		2.50-3.50	2.28-2.65
Trailer	32-40	4.13-5.97	1.70-3.98

2.5 Petroleum: Since diesel fuel is used during the plantation and transportation processes, the water consumption during petroleum production was counted in the life-cycle process. Wu et. al. (2009) reported that the WFs of refined products of conventional USA and Saudi Arabia crude oil were in the range of 3.4-6.6 and 2.8-5.8 L water/ L refined products, respectively. About 90 percent of U.S. onshore oil production consumes from 2.1 to 5.4 liters of water for each liter of crude oil recovered. With consumed average of 1.5 liters of water per liter of crude oil refined, a total of 3.6–7.0 L of water is required to produce and process 1 L of crude oil. Similarly, for Saudi Arabian crude oil, 2.9–6.1 liters of water is consumed for each liter of crude oil produced and processed.

2.6 Electricity: Estimates of consumptive water use for power generation were obtained from the National Energy Technology Laboratory or NETL (DOE, 2009). NETL (DOE, 2009) reported on the water consumption for coal, nuclear, natural gas combined cycle (NGCC), and fossil non-coal (primarily oil-based) power generation, which included the production of primary fuels and water cooling requirements for thermal plants. Figure 2 shows the estimated consumptive water use for the different power plants. The uncertainty bars for the thermoelectric plants result from the ranges reported by NETL. Gleick (1994) reported on the water consumption of hydroelectric-based power generation. Hydroelectric power, on average, requires 17 liters of water /kWh, which is largely due to evaporative losses. Differences in evaporative losses result from the weather at, type of, and size of the hydroelectric plant. Seepage losses can also lead to consumptive water use at a hydroelectric power plant.

The Thai national grid mix shows that the majority of power comes from natural gas (68%), followed by coal (24%), hydro-power (7.2%), and fossil fuel (0.8%) (Ministry of Energy, 2011). It can thus be estimated that 1.74-2.73 liters of water is needed to produce a kilowatt hour of electricity.

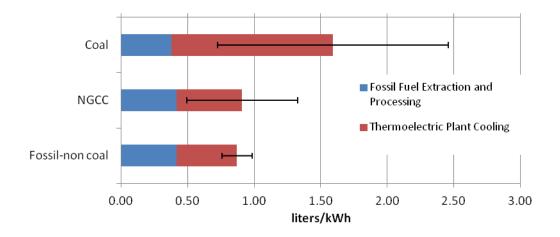


Figure 2: Consumptive water use for electricity generation in Thailand

3. Results and Discussion

3.1 Water footprint

The WF of cassava-based ethanol is larger than that of molasses-based ethanol. The WF of ethanol made from molasses was estimated to be in the range of 1,510-1,990 L water/L ethanol, while that made from cassava was 2,300-2,820 L water/L ethanol (Figure 3). Crop plantation was responsible for approximately 99% of the WF. Water use in the ethanol plant and indirect water use shared a minor portion of the WF. The WF of cassava and molasses-based ethanol are in the same range as WF of corn based ethanol. Research studies reported corn-based ethanol water consumption (field-to-pump) ranges from 263 to 784 L water/L ethanol (de Fraiture, 2008, National Research Council, 2008, Pimentel, 2003, Pimentel, 2005) and from 5 to 2,138 L water/L ethanol when including regional irrigation practices (Chiu, 2009).

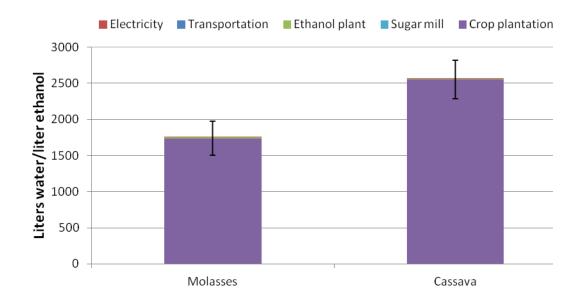


Figure 3: WF of ethanol production in Thailand

3.1.1 Crop cultivation WF:

The estimated cassava water requirement was in the range of 885-952 mm/year or $8,850-9,519 \text{ m}^3$ /ha or 415-470 L/kg cassava. Sampattagul (2012) (Sampattagul, 2012) reported that cassava fields in the northern part of Thailand consumed 509 L water/kg (of which, 192 was blue water, 232 green water, and 85 gray water). The estimate was slightly higher due to different weather, temperature, and rainfall that affect the ET_0 .

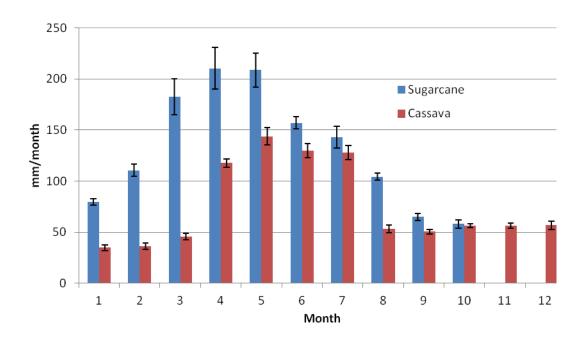


Figure 4: Crop water requirements of sugarcane and cassava plantations in Thailand

However, sugarcane requires a larger amount of water than cassava (Figure 4). Crop water requirements tend to peak during summer (April-July). Water requirement for sugarcane was estimated at 1,220-1,400 mm/year or 12,269 –14,081 m³/ha or 201-248 L water/kg sugarcane. This estimate is similar to the estimated made by the Royal Irrigation Department (Royal Irrigation Department); it reported that sugarcane required 172-205 L water/kg. Sampattagul and Kongboon (2012) reported that a kilogram of sugarcane produced in the northern part of Thailand required approximately 202 L water (of which 90 was blue water, 87 green water, and 25 gray water), using the CROPWAT model (FAO, 2013).

At a sugar mill, 100–103 kg of sugarcane can produce 3.90-4.25 kg of molasses by-product, which can thus produce 1 L of ethanol. In other words, 1 ha of sugarcane can produce approximately 531- 675 L of ethanol per crop cycle. In contrast, an approximately 6 kg of fresh cassava or 2.5-2.9 kg of dry weight cassava can be converted to 1 liter of ethanol. In other words, 1 ha can produce 3,138-3,819 L of ethanol.

During crop plantation, indirect water use from fuel consumption was estimated at 0.04-0.15 L water/L ethanol for molasses-based ethanol and 0.11-0.54 L water/L ethanol for cassava-based ethanol. Both organic and chemical fertilizers are normally applied in the field. However, water use during fertilizer production is minimal and can be neglected.

3.1.2 Ethanol plant WF

The water used in an ethanol plant, is usually withdrawn from a river in close proximity to the ethanol plant and stored for future use in reservoirs; this type of water is counted as blue water. Cassava-based ethanol required larger amounts of water than molasses-based ethanol, but the former's actual consumptive water use was less than that of the latter's (Figure 5). In other words, in an ethanol plant, cassava-based ethanol required larger quantities of water withdrawal. Overall, molasses-based ethanol required 11.42-23.54 L water/L ethanol, dry cassava-based ethanol required 8.30-18.97 L water/L ethanol and fresh cassava-based ethanol required 26.60 L water/L ethanol. Water used in the boiler, cooling tower, and fresh cassava cleaning process can be reused. The amount of spent wash (i.e., gray water) or Venus from molasses was 7.8-9.9 L/L ethanol, and for cassava it was 5.5-9.7 L/L ethanol. Spent wash is not discarded; instead, it is distributed to farmers since it contains nutritional properties for plant growth. Thailand has a zero wastewater discharge policy; thus, no wastewater is discharged to the natural water systems. Certain plants reported that treated wastewater was used to water trees around ethanol plants.

Indirect water use from fuel and electricity was minor. The sources of energy used in the six studied ethanol plants varied (e.g., the national grid mix, coal, woodchip, biogas, and biomass). The water consumption related to energy in the ethanol plants was 0.22-0.60 L water/L ethanol (molasses-based) and 0.57-0.90 L water/L ethanol (cassava-based).

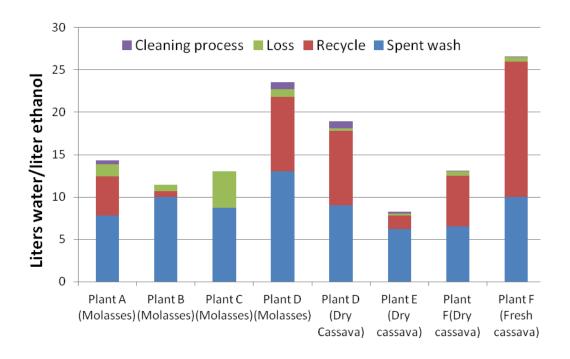


Figure 5: Water consumption in ethanol plants in Thailand

3.2 WF affected by ethanol policies

As mentioned, the Thai government has announced a renewable energy plan that targets the production of 3 M liters ethanol/day in 2008-2011, 6.2 M liters/day in 2012-2016, and 9.0 M liters/day in 2017-2022. Total water consumption reported as blue water, green water, and gray water is summarized in Table 6.

Table 6: Blue, green, and gray water (M liters/day) in Thailand

Blue water	Green water	Gray water
		(Spent wash)
12-25	5,213-7,668	23-27
25-52	10,774-15,847	47-55
37-76	15,640-23,004	68-80
	12-25 25-52	12-25 5,213-7,668 25-52 10,774-15,847

The average annual rainfall countrywide is 1,700 mm. The total volume of water in all the river basins is estimated at 800 billion m^3 . Of the total, 600 billion m^3 (approximately 75 percent) is lost through evaporation, evapotranspiration, and infiltration. The remaining 200 billion m^3 discharges in rivers and streams

(Sethaputra, 2001). The agricultural sector is the main user of available water, accounted for 71 percent of total water demand; the domestic sector accounts for 5 percent, the industrial sector accounts for 2 percent and the remaining 22 percent accounts for the ecological balance.

With this amount of water availability, water shortage is still the major problem for agricultural sector, especially in dry season. The problem seems to be more serious since the rapid increase in water demand, while the total water supply remains the same or even decreases due to deforestation (National Science Technology and Innovation Policy Office, 2012). In addition, current environment constraints may prohibit large-scale irrigation projects. These would result in a more competition for water and point to more serious water shortages in agriculture. With the additional water requirement reported in Table 6, the government must accordingly be prepared for increased water requirements in each region. As mentioned, crop plantation was responsible for approximately 99% of the WF. The agricultural practice in Thailand tremendously relies on rainfall (green water) to grow agricultural products. Fluctuating rainfall, however, causes water excess during rainy season and water shortage during dry season. In addition, the irrigation system is only available for certain areas (mostly for paddy fields). The imbalance between rainfall and crop water requirement during dry season would lead to lower crop yield compared to other countries (as discussed in section 3.3).

Water used in ethanol plants shared a minor portion of the WF although it is significant in terms of water management since it must be withdrawal from local irrigation systems. In alignment with the ethanol production plan, the government has approved and allowed investors to establish ethanol plants. As of now, the total allowable ethanol production capacity in Thailand is 12.3 M liters/day: of this amount, 2.7 M liters/day is from molasses-based ethanol plants, 8.6 M liters/day is from cassava-based ethanol plants, and 1 M liters/day is from hybrid plants. Here are the ethanol production capacity numbers by region: 1.3 M liters/day in the northern region, 1.3 M liters/day in the central region, 4.2 M liters/day in the eastern region, and 5.5 M liters/day in the northeastern region. Most of the ethanol plants in the eastern part produce cassava-based ethanol.

If all ethanol plants in Thailand produced at their allowable capacities, their total water consumption (blue water) alone would be 86.6-133.6 M liters/day: 10.2-14.2 liters in the northern part, 11.3–15.2 liters in the central part, 26.0–44.5 liters in the eastern part, and 39.1-59.7 liters in the northeastern part (the most arid area in the country). This additional water requirement to the existing consumption would definitely introduce water shortage, especially in the northeastern part, if no irrigational system plans to support ethanol production.

3.3 Policy Opportunities

Freshwater is a fundamental resource to all ecological and societal activities, including food production, industrial activities, and human consumption. One of the biggest water problems in Thailand is water shortage, especially in the dry season.

Water supplies in many regions are not sufficient to satisfy all agricultural, industrial and environmental demands. Obviously, molasses-based ethanol and cassava-based ethanol require significant amounts of fresh water. Without water management plans to preserve the bio-ethanol supplement in the future, water deficits would be inevitable and would affect crop yields.

The Thai government should acknowledge good farming practices for sustainable crop production and high productivity. According to FAO (2010), sugarcane yields in Thailand were relatively low compared to other countries, ranking 34th out of 99 countries. Meanwhile, cassava yields ranked Thailand 8th out of 101 countries.

To increase crop yields, additional irrigation and fertilizers must be applied, which will probably lead to greater water use and water pollution. Currently, cassavabased ethanol requires larger amounts of chemical fertilizers than molasses-based ethanol to produce 1 liter of ethanol.

For cassava cultivation, farmers apply approximately 313 kg of chemical fertilizer per ha per crop or 87.8 g fertilizer/L ethanol. To cultivate sugarcane, farmers reported using 500-625 kg of chemical fertilizer per ha per crop or 74.1 g fertilizer/L ethanol (molasses).

Biofuel production requires large subsidies. Increasing crop yields (e.g. by improved soil management, irrigation, fertilizer use, and farm machinery) would make ethanol production costs more competitive and, in the long term, could allow for ethanol to be efficiently substituted for gasoline. At present, the Thai government subsidizes ethanol producers to maintain a price that is lower than that of gasoline. The Thai government's exempted oil tax for gasoline mixed with E20 and E85 is 2.58 and 40.65 cents/liter ethanol, respectively. In May 2012, the Thai government approved US\$5.8 million to compensate cassava-based ethanol producers due to the cassava's price increase. Not only did the Thai government provided an oil tax exemption for consumers and cost compensation to the ethanol producers, the government also assured farmers profitable crop prices (Ministry of Energy, 2012). Similar to U.S. policy, the Thai government paid 53 cent subsidy for ethanol and cheap corn, driving the increasing corn price due to the demand while dropping the ethanol price due to the oversupply (Engelhaupt, 2007). Since the public is provided these subsidies, the Thai government must ensure that promoting biofuel policy is sustainable and does not introduce any risks or damages in the future or entail additional public costs (Ditomaso, 2010, Schubert, 2010).

Uncertainty analysis (e.g. potential greenhouse gas reduction and water consumption) should be incorporated in the decision-making process for future alternative energy policy in Thailand (Mullins, 2011). Moreover, studies on indirect land-use changes should be included in life-cycle assessment of environmental impacts of biofuels (Lapola, 2010, Plevin, 2010, Searchinger, 2008, Wallington, 2012).

Thailand has surplus food capacity. According to the reports (Centre for Agricultural Information, 2011,FAO, 2011), the most important agricultural exports sectors are rice, natural rubber, sugar, and cassava, respectively. The domestic

consumption of cassava and sugarcane accounted approximately 27% and 28%, respectively, of the total production. Thus, biofuel production may not affect local food availability but my affect certain countries like China, Japan, Cambodia and Indonesia, which are the major importers of cassava and sugarcane products of Thailand (Centre for Agricultural Information, 2011).

Water footprints of ethanol production should be reduced and should be guided by a water stress index. The water intensity production will need to be decreased in regions of high water stress and increased in regions where water stress is currently low (Ridoutt, 2010). Molasses-based ethanol seems to be more favorable than cassava-based ethanol in terms of associated water consumption, chemical fertilizer use, and production costs. Since most of the approved ethanol plants in Thailand produce cassava-based ethanol, the Thai government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and practices to increase crop yields, especially for sugarcane. In addition, the Thai government may want to consider next-generation biofuel in its future energy policy. For example, in the USA, the production of next-generation feedstocks (e.g. municipal solid waste, forest residuals, dedicated energy crops, microalgae) are expected to better than conventional biofuel production (e.g. corngrain or soybean) when considering these following factors: greenhouse gas emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and load-use changes (Williams, 2009).

Acknowledgements

This research was funded by The Thailand Research Fund (Grant number MRG5480207)

References

Centre for Agricultural Information. Thailand Foreign Agricultural Trade Statistics. Bangkok: Office of Agricultural Economics, 2011.

Chiu YW, Walseth, B., Suh, S. Water Embodied in Bioethanol in the United States. *Environmental Science and Technology* 2009;43:2688-92.

Chiu YW, Wu, M. Assessing County-Level Water Footprints of Different Cellulosic-Biofuel Feedstock Pathways. *Environmental Science and Technology* 2012;46:9155-62.

de Fraiture C, Giordano, M., Liao, Y. Biofuels and Implications for Agricultural Water Use: Blue Impacts of Green Energy. *Water Policy* 2008;10:67-81.

Department of Agriculture. Cassava Plantation Manual. Available from:

http://it.doa.go.th/pibai/pibai/n11/v_11-mar/jakfam2.html Accessed September, 2012.

Department of Agriculture. Sugar cane Plantation Manual. Available from: it.doa.go.th/vichakan/news.php?newsid=13. Accessed September,2012.

Department of Alternative Energy Development and Efficiency. Energy Policy. Bangkok: Ministry of Energy, 2008.

Department of Alternative Energy Development and Efficiency. The Renewable and Alternative Energy Development Plan for 25 Percent in 10 Years (AEDP 2012-2021). Bangkok: Department of Energy, 2012.

Ditomaso MJ, et. al. Biofuel vs Bioinvasion: Seeding Policy Priorities *Environmental Science and Technology* 2010;44:6906-10.

DOE. Estimating Freshwater Needs to Meet Future Thermoelectric Generation Requirements: Update 2009. Washington, DC: National Energy Technology Laboratory, 2009.

Dominguez-Faus R, Powers, E. S., Burken, G. J., Alvarez, J. P. The Water Footprint of Biofuels: A Drink or Drive Issue? *Environmental Science and Technology* 2009;43:3005-10.

Engelhaupt E. Biofueling Water Problem. *Environmental Science and Technology* 2007:7593-5.

FAO. Bioenergy and Food Security: The BEFS Analysis for Thailand. Rome, Italy: FAO, 2010.

FAO. CROPWAT 8.0, 2013. Available from:

http://www.fao.org/nr/water/infores_databases_cropwat.html. Accessed September, 2013.

FAO. FAOSTAT, 2010. Available from:

http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed September, 2012.

FAO. Thailand and FAO Achievements and success stories. Italy: FAO, 2011. Gerbens-Leenes W, and Hoekstra, Y. A. The Water Footprint of Biofuel-

Based Transport. Energy and Environmental Science 2011; 4.

Gleick HP. Water and Energy. *Annual Review Energy* 1994;19:267-99.

Hoekstra Y. A.; Chapagain K. A.; Mekonnen MM. Water Footprint Manual: State of the Art 2009. Enschede, The Netherlands: Water Footprint Network., 2009.

Irrigation Water Management Research Group. Crop Coefficient (Kc) 40 crop types. Bangkok: Office of Hydrology and Water Management Royal Irrigation Department.

King CW, Webber, M.E. Water Intensity of Transportation *Environmental Science and Technology* 2008;42:7866-72.

Lapola DM, et. al. Indirect Land-use Changes Can Overcome Carbon Savings from Biofuels in Brazil. *Proceedings of the National Academy of Sciences of the United States of America* 2010;107:3388-93.

Lienden van AR, Gerbens-Leenes, P. W., Hoekstra, A. Y., van der Meer, T.H. Biofuel Scenarios in a Water Perspective: The Global Blue and Green Water Footprint of Road Transport in 2030. Delft, Netherlands: UNESCO-IHE Institute for Water Education, 2010.

Ministry of Energy. Energy Situation in Thailand. Bangkok, Thailand: Ministry of Energy, 2011.

Ministry of Energy. National Energy Policy Council Resolution, 2012. Available from: http://www.eppo.go.th/nepc/kbg/kbg-104.htm. Accessed September, 2012.

Mishra GS, Teh, S. Life Cycle Water Consumption and Withdrawal Requirements of Ethanol from Corn Grain and Residues. *Environmental Science and Technology* 2011;45:4563-9.

Mullins AK, Griffin, M. W., Matthews, S.H. Policy Implications of Uncertainty in Modeled Life-cycle Greenhouse Gas Emissions of Biofuels. *Environmental Science and Technology* 2011;45:132-8.

National Research Council. Water Implications of Biofuels Production in the United States: National Academies Press, 2008:19-25.

National Science Technology and Innovation Policy Office. Thailand Technology Needs Assessments Report for Climate Change-Adaptation. Bangkok, 2012.

Office of Agricultural Economics. Agricultural Economics Database. Bangkok: Ministry of Agriculture and Cooperatives, 2010.

Pimentel D. Ethanol Fuels: Energy Balance, Economics, and Environmental Impacts are Negative. *Natural Resources Research* 2003;12:127-34.

Pimentel D, Patzek, T. W. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. *Natural Resources Research* 2005;14:65-76.

Plevin RJ, et.al. Greenhouse Gas Emissions from Biofuels' Indirect Land Use Change Are Uncertain But May Be Much Greater Than Previously Estimated. *Environmental Science and Technology* 2010;44:8015-21.

Pongpinyopap S, Mungcharoen, T. The Water Footprint of Cassava Based Ethanol in Thailand *Kasetsart Engineering Journal* 2011;75.

Ridley EC, et. al. Biofuels: Network Analysis of the Literature Reveals Key Environmental and Economic Unknowns *Environmental Science and Technology* 2012;46:1309-15.

Ridoutt GB, Pfister, S. Reducing Humanity's Water Footprint. *Environmental Science and Technology* 2010;44:6019-21.

Royal Irrigation Department. Crop Water Requirement. Bangkok.

Royal Irrigation Department. Reference Evapotranspiration by Penman – Monteith from 1981-2011. Bangkok: Ministry of Agriculture and Cooperatives, 2011.

Sampattagul S, Kongboon, R. The Water Footprint of Sugarcane and Cassava in Northern Thailand. *Social and Behavioral Sciences* 2012:40:451-60.

Schubert R, Blasch, J. Sustainability Standards for Bioenergy-A Means to Reduce Climate Change Risks? *Energy Policy* 2010;doi:10.1016/j.enpol.2010.01.011.

Scown CD, Horvath, A., McKone, T.E. Water Footprint of U.S. Transportation Fuels. *Environmental Science and Technology* 2011;45:2541-53.

Searchinger T, et. al. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-use Change. *Science* 2008;319:1238-40.

Sethaputra S, Thanopanuwat, S., Kumpa, L., Pattanee, S. Thailand's Water Vision: A Case Study. Bangkok: The FAO-ESCAP Pilot Project on National Water Visions, 2001.

Sora G, Banse, M., Kemfert, C. An Overview of Biofuel Policies Across the World. *Energy Policy* 2010;38:6977-88.

Thailand Environment Institute Foundation. Life Cycle Assessment of Cassava and Molasses-Based Ethanol Bangkok: Ministry of Energy, 2007.

UNESCO-IHE. The Water Footprint of Bio-energy: Global Water Use for Bio-ethanol, Bio-diesel, Heat and Electricity. The Value of Water Research Report Series. Institute for Water Education, Delft, Netherlands, 2008.

Wallington TJ, et.al. Corn Ethanol Production, Food Exports, and Indirect Land Use Change. *Environmental Science and Technology* 2012;46:6379-84.

Williams RDP, Inman, D., Aden, A., Heath. A. G. Environmental and Sustainability Factors Associated with Next-Generation Biofuels in the U.S.: What Do We Really Know? *Environmental Science and Technology* 2009;43:4763-75.

Wu M, Mintz, M., Wang, M., Arora, S. Water Consumption in the Production of Ethanol and Petroleum Gasoline. *Environmental Management* 2009;44:981-97.