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Abstract

Group analysis provides a regular procedure for mathematical modeling by classifying
differential equations with respect to arbitrary elements. This research presents the group classification of
one-dimensional equations of fluids with internal inertia where the specific energy is a function of density,

density gradient and entropy :

0 0
—p+—(pu)=0
Pl aX(p)

0 0

—(ps)+—(psu)=0

at(p) aX(p )

0 0 )

—(pu)+—(pu” +11)=0

8t(p) aX(p )
where,

M=pP+pip2,P=p* Lo pL(pip) a=2-Le a=pf,
op OX oa

t is the time , p, is the gradient of p with respect to x, s is the entropy, € = & (p A, S ) is the
specific energy, P is the pressure. The equivalence Lie group and the admitted Lie group are provided.

The group classification will separate all models into 82 classes according to the admitted Lie group.

Keywords: One-dimensional equations of fluids; admitted lie group; equivalence Lie group; group

classification
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Let us consider the governing equations of a medium whose
specific internal energy ¢ is a function of density p, density gradient
Vp, and entropy s. (Ref: Gavrilyuk, S.L. Shugrin, S.M. Media with
equations of state that depend on derivatives. Journal of Applied
Mechanics and Technical Physics, Val.37, No.2, Page 177-189
(1996))

op O "
L+ (pu)=0
ot o (pu®)

d d )
() +— - (psu*) =0 (1.1)

%(puj)+a%(pujuk+njk):0

o€

Sivop £ PIvAL

i ; op Op oe 0 op
ij:P5Jk+ /I—_—’ P: 27° — ﬂ—., /1:2
Pradad TP o Pt PRed)

This research deals with one-dimensional equations (1.1), which are
as follows:

%0+§(pu)=0 (1.2)
£ (p3)+2 (psu) =0 (1.3)
(o) + 2 (pu* +11) =0 (1.4)

where,

2 2
=P+ pl % , Pzpza—g—pi(pﬂa—p), /1=28—8, a= % , e=¢(p,a,s)
OX OX OX

op oa OX
Consider (1.4),

pu +up +(puu) +I1, =0
puU, +up, + puu, +u(pu), +11, =0.

Using (1.2) one obtains



pWU +uu,)+I1, =0
Consider (1.3),
pS. +8p, + pus, +s(pu), =0
By (1.2) one obtains
5, +Us, =0

Consider

op Y ,06 0, .0p o [apjz
H=P+pi| L, P=p>L 5% (p2 L), 1=25 a=|2L|,
p(axj P PP o

One obtains

H = ngp _p(p/lpx)x +p/1(px)2
= ple, — p(p2e,p,) + p2E,(p,)
= ngp +2p¢,(p,)° —2p(pe, )

Then we have new equations like this

p +(pu), =0 (1.5)
s, +Us, =0 (1.6)
p(u +uu)+T1, =0 (1.7)
where, = pe, +2pz,(p,) —20(pe,P,),

Equivalence Lie group

New we obtained an equivalence Lie group for equations (1.2)-
(1.4) , which is the following:

An infinitesimal operator X¢ of the equivalence Lie group is
sought in the form

X® =§X8X+§t8t+§p8p+§”8u +4%0,+¢°0,+¢°0,,



Where all coefficients &, &t ¢7, ¢t 02, ¢, c2are functions of xt, p,u,a,s,e¢.

The prolonged generator is

X®=X*+¢"0, +¢"0, +¢*0, +5"0, +¢™0, +¢“0, +¢¥0, +570, +
70, +6"0, +570, +¢%0, +5%*0, +¢"n0, +--

X4 00U, @8, 8, P, Py Uy Uy @y O, Sy, 10 84y 60, E ) €41 €085 AIE independent

t1 Y%
where

¢” =D¢” - p,Di&" — p D&’
g,o, = Dteé,p _prteé:X — 5 Dteé:t
¢" =Dg¢" —u, D& —u,Di¢g'
¢h = Dtegu _uthESZX -y Dteégt
¢ =D¢" -, D" ~a D¢
gal — Dteé/a _ax Dteé)( _at D:gt
g% =D;¢* —s,Di&" —s D¢
¢Y = Dtegs =Sy Dteézx - Dteét

¢ =D —£,Di¢" —£,Di¢" — D¢
¢ =Df¢ —¢,D¢" —¢,D ¢ - DiC”
= [3;4"9 —gpf)/ejé”’ —galjlié’“ —55[324’5
“ B e B -, B - DL
“ =D -¢,05¢" 5,0 -£D¢’
5% =D}¢*-5,Di¢"~5,Di¢" ~ 2D

"o N

The operators ¢, bare operators of the total derivatives with respect

to x and t , respectively in the space of the independent variables x
andt:

D; =0, + PO, +U,0, +a, 0, +5,0, + (& +&,p, +E,a, +£S,)0,

e
Dy =0,+p0,+U0,+0, +50, + (& +e,0 + €, +£.5,)0,



The operator Dt

X

D¢, D:, D¢, D, D are operators of the total derivative

with respect to xt,p,u,a,sin the space of the independent variables

Xt pu,a,s .

Since ¢, =0, then

So

Since ¢ =0, then

So,

X =0
g+ =0
De¢e —gpf)egp —&, D¢ gD =0

X X

Cx — 6,67 €6y —€6, =0

X® =0

¢t =0

Dtegg _ngtegp _gaDteé,a _5sDteé,S =0
gtg _5p§tp _gaé,ta _Esgts =0



Since ¢, =0, then

X, =0
¢*=0
Di¢* —¢,D°¢" —¢,D¢“ —£,Di¢° =0
Ci—8,00 —e,88 —,5 =0

So,

Now we obtain

§’=¢"(p,a,s,é)
¢ =¢"(p,a,s,e)
&= (pa,s,e)
¢ =" (pa,s,¢)

Next all necessary calculations were carried on a computer using the
symbolic manipulation program REDUCE

(Ref : 1.Hearn, A.C. : 1987 , REDUCE Users Mannual, ver. 3.3.
Santa Moica: The Rand Corporation CP 78.)



We obtain

X®=CX;+C,X; +C,X; +C,X; +C X5 +Cy X¢ + X7 + X5 + Xg + X5

where,

Xy =p0,+2a0,

X, =10, —uo, —2¢0,

X5 =0,

XS =td, +0,

X =0,

X =X0, +Ud, — 200, + 20,
X; = f(pWao,

X = 9(s),

X =20,
P

X1 =h(s),
Next Consider Lie Equations
1. X{=p0,+200,

Lie equations:

dx

di

95 _p5 (1.10)
a

da

=0 (1.11)

da .

E=20{ (1.12)
®_y (1.13)



Then
% = X
Consider (1.9),(2.11),(1.13) and (1.14) similar to (1.8) one obtain
f=t,0=us=5é=¢

consider (1.10)

J545=da
Yo
Inp=a+Inc
Inp—-Inc=a
In? -a
c
Ezea
c
p=ce’
Since a=0;5=p One obtain
p =ce’
So, c=p

Then,



From (1.12)
1. .
[=da =[2da
a
Ind=2a+Inc
Inad-Inc=2a
InZ:Za
C
QZeZa
Cc
a = ce??
Since a=0;a =« ONe obtain
a =ce’
Then,
a=qe®

So, one obtain the transformation

5_ et
Xg P
a=ae?

New we check it is an equivalence transformation

Let b=e* SO,

Since x=xf=ti=us=sé=¢ let f=f(xf 505 &) then

of of ox _of ox _of

X Rox oRox oX

of of of of ot of

ot ot ot ofot of

of of 9p of opb  bof
p pop pop B
of of g of aab® bef
da 0dda 0d da  0d

(1.15)



So, 0_0 90 _

Consider (1.2)

p; +(pu), = (pb), +(pbu), =bp, +b(pu), =b[p, +(pu),]

Consider (1.3)

(), +(550), = (pbs), + (pbsu), =b(ps), +b(psu), =b[(ps), +(psu),]

Since
- 08 o 1
A=2——=27 =
oa b’0a b
< L,08 .0 ,.:0p
P=p22—p—(piL
p o pﬁi(p a)~()
oe 0 1 . bop
=b%p? == — ph—(pb-— 1 —E
P oap PP PPt o)
o€ 0 op
=bp? —— ph—(pA L
P 3 aX(p 3 )
o€ 0 op
=b| p* - p—(pA—) |=hP
[ o PP }
- op Y 1 (opbY 1 (bopY
ﬁ=P+~,1(—pj =bP b—zi( P j ~bP b—zi(—pj
b 1% OX

Consider (1.4)
(P0); +(p0* +11), = (pbu), + (pbu® +bIT), = b[(pu), +(pu® +11),]
Hench (1.15) is an equivalence transformation.
2. XE=td,—ud, - 260,
Consider Lie equations:

di .
& (1.16)



Consider (1.16)

Int=a+Inc
Inf-Inc=a

=3

A O O™
I
o}

QD

Il
@

[}

I
)
@

Since a=0:f =t one obtain

t =ce’

Then,

Consider (1.17)
1.
Iadu =j—da

InG=-a+Inc
InG-Inc=-a

Since a=0:a4=u one obtain

(1.17)

(1.18)



Then,
G=ue™?
Consider (1.18)
j %d(;: j _2da
&
Ing=-2a+Inc
Ing—-Inc=-2a
Infz—za
C
éze—Za
C
E=ce?®
Since a=0;=¢ 0One obtain
& =ce’
Then,
E=ce™®

So, one obtain the transformation
i

X5 :a0=ue
g

New we check it is an equivalence transformation

Let b=e® SO,
f=tb
1
X;i=u=
2 b
.1
é‘:é'?

11

(1.19)



Ao e ot
ot ottt of ot o
So,
9_19
of bot
Consider (1.2)
~ ~ 10p Gpu; op lopu 1
pf+(pl])i:BE+ o :ﬁJFEE:B[thF(pU)X]
Consider (1.3)
o 1ops 5/’S“é ops 1opsu 1
(pS)t+(pSU)X=E p ~ bt b ox =E[(p8)t+(pSU)x]
Since

1
- ~ 0 —
5 .08 .0 ,.z0p b2 0 1 op
P_ 2 - — 2 _
5 PEP T e PPt
1 ,0¢e 1 0 op, 1| ,0¢ 0 op 1
= 2% 2 5, (P = —p L (p2 Py =~ p
7’ o 0w o bz{pa PP T

Consider (1.4)

1Y 1
10 ,O(Uj + =11
(o) + (a1, -2 [ o) b ) _1opu 1 0(pu4T)

:b—lz[(pu)t +(pu? +T1), ]

Hench (1.19) is an equivalence transformation

12
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3. X:=¢,

Consider Lie equations:

==t (1.20)
a=0;f =t
Consider (1.20)
[df =[da
t=a+c
Since a=0;f =t one obtain
t=0+c
Then
t=a+t
So, one obtain the transformation
Xs:t=a+t

New we check it is an equivalence transformation

Since s=x,p=pl=u,d=a,s5=sé=¢ then

ola+t)
ot

ot ot _of o
Xat o ot

2|,

So,

9_9o
o at
Consider (1.2)

pr +(PU); = p + (pu),

Consider (1.3)



14

([75){ + ([)gﬂ)i = (ps)t + (pSU)X

Since
J=0298 50
oa oa
20 .0 ,.-0p oe 0 op
P=p2 " p—(pAL)=p? “(pAaE)=p
Ps PaPr T o P P
~\2 2
' =ﬁ+~z(a_/3J P + ;{G_Pj 0
oX
Consider (1.4)

(PU); + (;562 +ﬁ)>z =(pu), + (puz +11),
Hench x: is an equivalence transformation
4, X¢=to, +0,

Consider Lie equations:

dax .
du
Ezl (1.22)

Since
t=t
Consider (1.21)
[dx = [fda=[tda
X=ta+c
Because of a=0;x=x one obtain
x=t0+cC

Then



X=ta+X

Consider (1.22)

jda:jlda
G=a+cC

Because of a=0;a=u one obtain
u=0+c
Then
Gd=a+u
So, one obtain the transformation

Xe_izw+x
li=u+a

New we check it is an equivalence transformation
Since t=t,p=p,a=a,5=sé=¢ then
of of ox _of sta+x _of

ox ORox oK ox o
of _ofox of of _of ota+x of ot _ of of __of

—_— = p = p —a—+—~=a—+—~
o4 oXot otot oX ot ot ot oxX ot ox ot

So,
2.9
oX OX
o 8 _0
—=_-a_
of ot ox
Consider (1.2)

5+ (50 _Qe_aﬁe+30w+a)=

. + u
il ax o +(pu),

Consider (1.3)

of

15
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" e ops _0ps Ops(u+a)
S)- SuU), = —a = (S Su
(08); + (PSU);, p T ox (p8), + (psu),
Since
J=292 0%
oa oa
20 .0 ,.-0p , 0g 0 op
=p" = — p—(pi-L —(pALE)=P
5 PP TP o P PR
B ~\2 a 2
1=P+ v{-’fj P +p/1£—pj =
%) OX
Consider (1.4)

(U +(50% +11), =

@xu+a)_aapw+a)+5OXU+af+TU

= (pu), +(pu’ +11),

ot

because of p, +(pu), =0.

OX

OX

Hench x: is an equivalence transformation.

S5, XE=0,

Consider Lie equations:

Consider (1.23)

Because of a=0:%=x one obtain

Then

x=0+cC

Xs:X=a+x

(1.23)
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New we check it is an equivalence transformation

Since =t p=pl=ua=as=si=¢ then

o _of o _of oxva_of
OX OXOoX OX OX 1)

So,
o_9
X ox
Consider (1.2)
P+ (pU); = p +(pU),
Consider (1.3)
(P8); + (pS0), = (ps), + (psu),
Since
A= 22—2:22—2_1
T1=P+ 7(‘2—@2 =P + l(@_pjz =11
Consider (1.4)

(ﬁa)f + (/502 +ﬁ)>z = (pu)t + (puz +H)x
Hench x¢ is an equivalence transformation.
6. X&=x0,+ud, —2a0, + 250,

Consider Lie equations:

Il
>

ax (1.24)



da .
—=0
da
d_“:_zoz
da
9
da

Consider (1.24)

InX=a+Inc
InX—Inc=a

Because of a=0;%x=x one obtain
Then

Consider (1.25)

[2da = [ da

a
Ind=a+Inc

In—Inc=a

(1.25)
(1.26)

(1.27)



Since a=0;a4=u one obtain

u=ce
Then,
a=ue®
Consider (1.26)
1 y — —
jgda_j 2da

Inad=-2a+Inc
Ind-Inc=-2a

InE:—Za
C
QZe—Za
C
a=ce™
Since a=0:a =« 0One obtain
a =ce’
Then,
a=qe?
Consider (1.27)
j %dgz j 2da
&

Ing§=2a+Inc
Ing-Inc=2a

In

Since a=0;£=¢ one obtain

19



Then,

X!

Let b=¢* then

New we check it is an equivalence transformation

Since f=t,p=p,5=s then

of _of x _of oxb _bof
OX OXoOXx OX ox  oOX
~ ~ ~81 ~
of _of oa_of “p2% _ 1 of

da oG oa 04 oa  boa

So,

Consider (1.2)

20
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Y op 1opub 0Op bopu
.+ u). ==—+———=—"—+
Pt P = ot T ot hox

= p, +(pu),

Consider (1.3)

. . _6ps+16psub_aps+bapsu
‘ ot b ox  at o hox

= (ps), + (psu),

Since
2 4
J2208 L0 ob0 puy
oa oa oa
08 . op Oeb? 10 16,0
P 2ve il 2vey =Y el
P o pa~(pa~ Y Poax P Mo
b*0e 0 op b’0e 0 op
2098 5 % (pb'2a Ly = p2 2% o2 (pa Py = p2p
5 Poox P oo = op ox P o)
~\2 2
ﬁ:ﬁwi(a—?j =b?p +pb4ﬁ,(a—pj _b?P 4 pbt A (ﬁpj ~b*[1
oX oxb b?\ ox
Consider (1.4)

opub a(,O(Ub)2 +b2H) _bapu bza(,ou2 +1‘[)
o 2(xb) ot box

(p0); + (A0 +11), = =b(pu), +(pu’® +11),

Hench x¢ is an equivalence transformation.
7. X; = f(p)WVao,

Consider Lie equations:

de -\ [=

Because of 5=p,a@=« then (1.28) becomes

[d&=[t(p)Vada
é=f(p)Waa+c

Since a=0;&=¢ one obtain



e=f(p)Wald+c
Then,
é=f(p)Jaa+e

New we check it is an equivalence transformation.

Since s=xf=t,p=pd=ua=a,5=s then
of _of 8p+8f 08 afa(f(p)fa+g) 8f~+f,(p)\/aai
op Opodp O& 8p 6,0 o0e op op o€
of _dfoa of o _of  of o(f (p)aa+e) o, 1 f(p)aa—t
da 0ada 0Fda oa 63 o oa Na o€
of _of o8 _of o(f(p)WWaa+e) of
de 0Fo0c 08 o 08
So,
o _20
08 0
o 0 0
— = f' a_
5 o N
04 1 ()a_
oa aa 2\/7 P o€
Consider (1.2)
P +(pl); = p + (pu),
Consider (1.3)

(P8); +(pS0); = (pS), + (psu),

Since
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A=2&. —225—2[——(f0ﬂJ_a+6}~j7=fQﬁa——(fUﬁJ_é+eﬂ 2¢, =

— P(PAB); = {—p(f (p)Waa+e) - f’(p)@ag(f (p)«/5a+e)}—p[p/1px]x

T
Il
bz
901
bz

= pzsp - p(pip,),
P

Consider (1.4)
(P0); +(P0° +11), = (pu), + (pu* +10),
Hench x¢ is an equivalence transformation.
8. Xf=g(s)o,
Consider Lie equations:

g0 (1.29)

a=0é=¢
Because of s=s then(1.29) becomes

[d&=[g(s)da

g=g(s)a+c
Since a=0;é=¢ One obtain

e=0(s)0+c
Then,

g=g(s)a+e

New we check it is an equivalence transformation.
Consider (1.2)
P +(pU); = p +(pU),

Consider (1.3)
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(ﬁg)f + (ﬁgﬁ)i = (ps)t + (pSU)X

Since
1=28,=2(g(s)a+s),=2¢, =1
P = 5%, — p(pApy); = P (9(s)a+¢) , — p(pAp,),
= p’s, - p(pip,), =P
f=P+51(p,) =P+pi(p,) =TI
Consider (1.4)

(ﬁa)f + (/502 +1:I)>z = (pu)t + (,OU2 +H)x
Hench x: is an equivalence transformation.

9. x¢ :165
P

Consider Lie equations:

(1.30)

Because of 5=, then (1.30) becomes

[d=[2da
Yo
o1
E=—a+c
Yo
Since a=0:£=¢ one obtain
8=£0+C
Yo
Then,
o1
E=—a+¢
Yo,

New we check it is an equivalence transformation.



otaxte)
of _ofop of oe _of of p

op Opop 0c0p Op 0  Op op p°og
1

- ~ ~ 0(—a ~

a _ofor_af %0 i

0g 0&0s 0¢  O¢ o0¢

So,
0_0
0¢ O¢
6 _0,190
op op p°oe

Consider (1.2)
e +(pU)g = p +(pU),

Consider (1.3)

(P8); +(pS0); = (ps), + (psu),

Since
- 1
A=2¢, =2(—a+¢),=2¢,=1
Yo
5 2 apaia o 1 10,1
P=7p%2,—p(pApy); = p° {—(—aﬂr) +—2—(—a+8)}—p(p/1px)x
op p p-oe p
=p’s, - p(pip,), =P
f=P+pi(p,) =P+pi(p,) =TI
Consider (1.4)

(U, + (50 +T1), = (pu), +(pu? +T1-a), = (pu), +(pu? +11),

Hench x¢ is an equivalence transformation.
10. X& =h(s)a,

Consider Lie equations:

25
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%:hﬁ) (1.31)
a=0;5S=s
Consider (1.31)
j%ﬁz da
[H(s)ds = [da
H(§)=a+c
Since a=0;5=s one obtain
H(s)=0+c
Then,
H(s)=a+H(s)
If
H(5) =5 then H(s)=s
So,

S—a+s
New we check it is an equivalence transformation.
Consider (1.2)

P+ (pU); = p, +(pu),
Consider (1.3)

(P8); +(P580), = (p(a+9)), +(p(a+s)u), =ap, +(ps), +a(pu), +(psu),
= (ps), + (psu), ,since ap, +a(pu), =0

Since
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Consider (1.4)
(P0); +(P0° +11), = (pu), +(pu* +10),
Hench x; is an equivalence transformation.

So the equivalence Lie group are

X{ =p0,+2a0,
XS =10, —Ud, — 260,
X; =0,
X, =t0,+0,
X5 =0,
XE&=x3, +ud, — 200, + 20,
Xs = f(p)Vad,
Xs =9(s)o,
1

X:==0,
P

X1o =h(s)o,



Admitted Lie group

Consider the original equations

pe+ (pu)e =0, (pu); + (pu® + 1), = 0, (ps); + (psu)e =0, 1)
d(pe
I = p — pe = pPe, — 2p(ppaca)s + 20P2Ear @ = |Vpf?,

Since an equivalence Lie group allows changing arbitrary elements conserving the
structure of the studied equations. An infinitesimal operator X°¢ of the equivalence
Lie group is sought in the form

X =¢"0, + 0+ ("0 + ("Ou + ("0 + (°0s + (0,

where the coefficients £*, &, 7, ¢*, (%, ¢* and (° are all functions of (z,t, p,u, @, s, €).
Calculations give the following basis of generators of the equivalence Lie group,

X7 = p0d, +2a0,, X5 =10 + 20, — 2a0,,
X§ =10, —ud, —2e0., X{ = f(s)0s,
Yie = aty YQ6 = axa Y3€ = tax + auu Zf = pilasa
Z5 = f(s)0:, Z5 = g(p)V/a-,

where the functions f(s) and g(p) are arbitrary.

Since the equivalence transformations corresponding to the operators Xg, X¥,
Zy, Zs and Z$ are applied for simplifying the function ¢ in the classification process,
let us present these transformations. Because the function € depends on p, a and s,
only the transformations of these variables are presented:

XS p=p, a=qa, §=s £ = e 2,

X{: p=p, a=a, §=h(s,a) E=¢,

Z¢: p=p, a=qa, §=3s E=c¢c¢+pla,
Zs5: p=p, a=a, §=s5s E=c+ f(s)a,
ZS: p=p, a=a, §=s E=c+ag(p)a

where a is the group parameter. Using the equivalence transformations correspond-
ing to the generators Z¢ and Z5, the term C;p~! + Cy, which appears in the function
e(p,, s) can be omitted. Here C; and Cy are constants. By virtue of the equiv-
alence transformations corresponding to the generator Z5, the function £(p, o, s) is

considered up to the term /ag(p).
An admitted generator X of equations (1) is sought in the form

X = Sxax + gtat + Cpap + Cuau + Caaoz + Csas7

where the coefficients £, &%, (7, ¢*, ¢(* and (* are functions of the variables
(x,t, p,u,a,s). Calculations show that

fz = k4t&3 — %3% — ];1.73 + k5t3 + k’6t2 + kgt + kg, é-t = /{?4t2 — 2]:3315 — 2]:3115 + kgt + k7,
P = 2]61[) — ]{I4tp -+ ]{33p, (u = k’4<l’ — tU) + k:3u + klu — /{ZQU + 3]€5t2 + 2k56t + 1{58,
(™ = 6kia — dkyta + dksa, 5 = ((s),

where ky = ky — ks, ks = —ks, ki, (1 =1,2,...,8) are constant. The constants and
the function ((s) satisfy the equations

C(2€50pp0p + A€s0p0 — Esppp — 2€5,) + 2]2:1(25apppap2 + 9eqpptp
F620p0 + 620app0°p + 12600p0% — €pppp” — 32ppp) + 2k2(280ppap + deap )
—EppP — 26,) + k3(2€0ppp0® 4 8Eapptp + 4€0pQt + 820app*p
+16€00pQ% — €pppp® — 26,pp + 2¢,) — 2keq(a) = 0,

28



CI(4€sapap +degoa — 8spp) + C(4gsso<p05p +degq0 — 5ssp,0) + 2k (45504;);)05/)2
+13250pp + 126500p0%p + 12650007 + 850 — €5ppp%) + 2ka(4esapap
Hhesa — E5pp) + 123(45mppap2 + 1225000 + 16€50a,0%p + 16850007

8500t — E5ppp” + E5pp) = 0,

;sgsa + 2CI585a + Cgsssa + 2i;;l (5ssapp + 355504(105 + 2688&) + 2k2558a
+k73(585app + 4€ss0a + 255504) =0,

C(EsapP + 2€s00p0P + 265000 + Esa) + 2]21(5(1,”,,02 + 4€app + 6E00ap®p
+62000@” + 22a0pp00° + 1T€0app + 1300t + 22,)
+2k2(E0pp + 2€0ap0p + 26000 + €4) (5)
k3 (Eapp® + 420pP + 8a0ap@D + 82a0al® + 2 aappp? + 208 aaptp
+16e400 + 224) = 0,

<<2gsacxaa + 3gsacx) + 2];1(65aaaa0~52 + 25aaapap + 256aaaa + Sgaapp
+15200) + 2k2(22000@ + 320aa) + £3(8200aa0® + 2800ap0tp + 32€00at (6)
+3c0app + 18€0a) = 0,

' (285000 + €s0) + (265500 + Essa) + 2k1(Esapp + 6250000 + 2€saapip
) +13e5000 + 2650) + 2k (265000 + €50) (7)
+k3(Esapp + 8Esaaal® + 2850ap0p + 165000 + 2654) = 0,

Clesa + Cessa + 2]’%1 (gsapp + 355(1(105 + 28301) + 2k2€sa + %3 (esapp (8)
+4e 000 + 255&) = 07

C(26 500t + €50) + 2k (Eapp + 6200a0® + 2€00p0p + 134000+ 2¢,)
+2k2 (2600 + 4) + k3(Eapp + 82a0a®® + 2€00p0p + 16000 + 22,) = 0,

k4 (2€0ppp0p? + 8 appaip + 4200 + 8Eaapp@*p

10
+16€00p0® — €pppp® — 28,50 + 2¢,,) + 6k5q(ar) = 0, (10)

ka(4€sapp0p® + 128 50p0p + 166 500,0% p
+16250a0° 4 850t — £5ppp” + £5pp) = 0,

(11)

k4<€ssapp + 4gssaaa + 2533&) = 07 (12)
k1(Eappp® + 420pp + 82000p@° P + 82aaa®® + 2€0app0p” + 202 4aptp

+16e400 + 224) =0, (13)

k1(82anaal® + 2200ap0P + 32000 + 3Eaapp + 1820a) = 0, (14)
k1(Esapp + 82s0000® + 28 500p0p + 1625000 + 225,) = 0, (15)
ks(Esapp + 4500t + 265,) = 0, (16)

ki(Eapp + 82a0a@® + 20pEpap + 166000 + 26,) = 0. (17)

where ¢ = a/\/a and a® = 1. The determining equations (2)-(17) define the kernel
of admitted Lie algebras and its extensions. The kernel of admitted Lie algebras
consists of the generators which are admitted by equations (1) for any function
e(p,, s) and it is defined by the generators

Yizata }/QZaxv YE}:tax—{'au

The transformations corresponding to Y; and Y5 are shifts with respect to time
and space variable, and the transformations corresponding to Y3 are the Galilean
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transformations. Extensions of the kernel of admitted Lie algebras depend on the
value of the function €(p, a, s). They can only be operators of the form

k1 Xy + ko Xo + k3 X3 + ks Xy + k5 X5 + ke X6 + 05,

where

Xy = p0, + a0y, Xo =t0; — u0,, X3 = ud, + 2000, — 0, — 2t0;,
Xy = ptd, + (ut — x)0, + 4atd, — txd, — 20y, X5 = 30, + 3t20y, Xo = 20, + 2t0,.

Case k4 # 0 The functions £(p, @, s) for which there exists an admitted generator
with k4 # 0 are studied first. This generator can be rewritten in the form

Xy + k1 Xy + ko Xo + ks X5 + ks X5 + ke Xe + (0,

where ¢ = ((s). Using the equivalence transformation corresponding to the gen-
erator X{ = 0, one can assume that for this generator k& = 0. Notice also that
if ( # 0, then using the equivalence transformation corresponding to X, one can
assume that ¢ = 1. From equation (16) one finds that Assume that there exists an
admitted generator with k4 # 0. Using the equivalence transformation correspond-
ing to the generator X{ = J;, one can assume that for this generator k1 = 0. Notice
also that if ¢’ # 0, then using X = h(S)0s, one can assume that ( = —S. From
(16)
Eas = p (ap™, S).
es = p*Y(ap™, ) + ¢(p, S).
e=pPlap™,8) + d(p, S) + ¢(p, ).

Substituting in (17) one has
PPap + 8oz2g0aaa + 20pPaap + 160000 + 200 = 0
or introducing the function
9= 200an + P = 20720V 0,

this equation becomes
pYp +4age + 29 = 0.

Solution of this equation is

g(p.a) = p2qlap™),

hence,

~1/2 1/2

Pa)a
[ o2a atapyda = g7 [0 gtap )z = [ 200 ds = 202

a'?p, = G(z) + hi(p)
P = a2G4(2) + a2h (p)

[z da=pt [a ey de = g7 [ 2 Rq)ds = fale)

pa Pqlap™) = 2(a
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o= p4(2) + ' hi(p) + ha(p)
e = p*Y(ap™, ) + d(p, S) + p*q(z) + a**hy(p) + ha(p).

One can assume that

Thus,
e=pYlap™™,8) +¢(p, 9).

Differentiting equation ss10 with respect to «, one finds that k5 = 0. Equations ss10
and ss20 become

P Gppp + 2005 — 26, = 0.
p¢pp5 - ¢pS =0.

Solution of the first equation is

¢ = p*61(S) + p~ 92(S) + ¢3(S).

Hence,
Gps = 2pdy — p~ Py,

and then the second equation becomes
dy =0 = ¢ = C = const

Thus,
e =" (W(ap™.8) +6(S)) +p7'C + 6s(S).

By virtue of arbitrariness of the function 1, one assigns ¢; = 0. Because of the
equivalence transformations corresponding to Z{ and Z§ one can assume that ¢3 = 0
and C' = 0. Thus, if there exists a generator with k4 # 0, then the function (p, «, S)
has to be of the form

e=p"Y(z,9), z=ap . (18)

Let us study group properties of equations (1) with the function (p, a, S) of the
form (18). Substituting the function £(p, o, .S) (18) into the determining equations
(..)-(...), and making some manipulations (differentiations and linear combinations)
one obtains that these equations are reduced to the equations k5 = 0, kg = 0 and

2(ks — k1) (2% — 20 + ) + 2k (2022 — ) + ((2as2 — ¥s) = 0, (19)

(2(k3 — k1) (29, — ¥) + 2kt +15()g = 0. (20)
Integrating equation (20), one has

where the function A\(z) is an arbitrary function. Excluding ks from (19) using (21),
one finds that
220, — A =0,

which means that the function A\ = ¢z'/? is an arbitrary function or

A= k22
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where k is constant. Thus, for the group classification of equations (1) with the
function £(p, o, S) of the form (18) one needs to analyze the only equation

ks — kp)(21h, — V) + 2kotp + ¢ = k22, (22)
Since g # 0, one finds
¢ =" (k22 = 2 ((ks — ko) (29 — ¥) + kath)) (23)

Because of that ¢ = ((S) and differentiating (23) with respect to z, one has to
require that
ak —f- b(l{?3 — l{il) + C]fg = 0, (24)

where
a=(705"),, b=—2(v5" (v —0) . e=—2(v5"0) .

Equation (24) is a classifying equation. For arbitrary function ¢ (z,.S) one has
ks =ky, ka=0, k=0 (25)
or the kernel of admitted generators consists of the generators
Yi, Yo, V3, X1+ X3, X (26)
An extension of this Lie algebra occurs if one of the constants
ks — ki, ko, k
does not vanish. Operators of the extension have the form
v Xo + X3 + Xp,
where h = h(S) and (3, v are constant such that
h? + 3%+ 4% £ 0.
The table of commutators
Yi =0, Yo=0,, Y3 =10, + 0y, X1 = p0, + a0y, Xy = 1t0; — ud,,

X5 = udy + 20, — x0, — 2t0y, X4 = t(p0, + ud, + 4ad, — t0; — x0,) — x0,
X5 = 20, + 3t%0,, X¢ = t20, + 2t0,,

Y; Yo V3 | Xy | Xy X3 Xy X5 Xe
Y; 0 0| Y, 0 Y, =21 | X5 + X3 | 3X¢ 2Y;5
Y, 0 0 0 0 0 -Y, -Y; 0 0
Y; Y, 0 0 0 -Y; Y 0 0 0
X, 0 0 0 0 0 0 0 0 0
X -Y; 0| Y; 0 0 0 X4 3X5 2X¢
X3 2Y; Yo| =Y3| O 0 0 —2X, | -5X5| —3X;g
Xa|—-X1—X3|Y;| O 0| =Xy | 2X4 0 —F —X5
X5 —3X5 0 0 0 | —3X5| 5X5 F 0 0
Xs —2Y3 0 0 0 | —2X¢| 3Xs X5 0 0
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where F' = 2t3(t0, + 40,).

Yy Yo Vs | Xi| Xy | X3 Xy
Vi 0 0| Y2 [0 Y1 [-2" [ X1+ X,
Y, 0 0l o0JOo] 0 [-Y] -V
Y3 —Y, 0] 0 0| -Ys] Y3 0
X, 0 0] 0 JO] O 0 0
X 1 0|5 [0] 0 0 Xy
X; 2Y Yo -Ys| 0] O 0 | —2X,
Xy |- X1 —X3|Y5] 0 | 0| -X4| 2X,y 0

Y Yo| V3 | X1 +X35] Xo X3 Xy
Y1 0 0| Y, -2V Yi | =2 | X5+ X3
Y, 0 01 0 —Y) 0 | -Y, —Y3
Y3 —Y) 0] 0 Y3 —Y3 | Y3 0
X1+ X5 2Y; Y, | —Y5 0 0 0 —2X,
X5 -Y; 0| Y 0 0 0 Xy
X3 2Y; Y, | —Y; 0 0 0 —2X4
Xy -Xi1—X3|Y;] O 2Xy - X4 | 2Xy 0

Notice that
}/17 }/27 S/:On X1+X37 X47

compose an ideal and
X27 X3

compose a subalgebra of
}/17 }/27 }/E’)a X1+X37 X4; X?; X3

For classifying all possibilities, it is convenient to consider the functions a(z,S),
b(z,S) and ¢(z,5) as coordinates of the three-dimensional vector v = (a, b, ¢). For
analyzing relations between the constants k3 — kq, k2 and k& one can study the vector
space Span(V'), where the set V' consists of the vectors v with z and S are changed.

Let dim(Span(V')) = 3, then
kgzkl, kQIO, k=0. (27)

There is no extensions in this case. Let dim(Span(V)) = 2, then there exists a
constant vector (v, 5, q) # 0 such that

~va + Bb+ qc = 0.
Assume that v # 0
a=—Pb—qgc=b[(ks — k1) — Bk] + c(ka — qk) =0

If one of the constants (k3 — k1) — Sk and ks — gk does not vanish, then dim (V') < 2.
Hence,
(k?g — ]{51> = 6/{3, kz = ql{?

and

¢ = kh(S),
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where
h(S) = 5" (212 = 2Bz + (a = B)Y)) - (28)

The function h(S) can be also simplified: either A = 0 or h = 1 . The extension is
defined by the generator
/8X3 + qXQ + hag

Case h=0,5+#0,q9q=p0q q#1/2:

1
B(2q—1)
It gives dim(V) =1. Case h=0, 8 #0,q=£q, ¢ =1/2:

) = zl_gH(S) + /2

P = 22 <H(S) + 216 1n(z)> :

It gives dim(V) =1. Case h=1, f =0:

1
— =95 1/2
v=e7Q(2)+ 2qz

ng + 285
Using equivalence transformation one can reduce the function
b =eQ(2)

Case h =1, B#0, q = B, § # 1/2

b

527 1)
B(X3 + qXa) + 20s.

Using equivalence transformation one can reduce the function
W = 2'79Q(ze )

Case h=1,8+#0,q=pq, ¢=1/2:

) = zl’gQ(ze*ﬁS) + 212

1—q - 1
I (Q<ze ) 4 261n<z>)

B(Xs + (1/2)Xs) + 20s.
It can be reduced to? N
Y =271 (Qze™%) + In(2))
X3+ (1/2) X5 + 20s.
Assume that v =0, 8 # 0,
b= —qc= ak+c(ky —q(ks — k1)) =0

Similar to the previous case

k= 0, k‘g = Q(kg — /{1),
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and

¢ = —2(ks — k1 )h(95),

where
hS) =gt (2 + (g — 1)¢) . (29)

The function h(S) can be also simplified: either h = 0 or h = 1. The extension is
defined by the generator
X3 + ng — 2h85.

Case h = 0:
¥ =z"1H(S),

X3 + QXQ

It gives dim(V') = 1. Case h = 1:

= 2'""H(ze7%),

X3 + ng + 285
Assume that v =0, =0,

C:0:>6Lk’+b(k?3—]€1) =0
Similar to the previous case
k:O, kg—klzo,

and
(¢ = —2koh(S),

where
h(S) = v5'. (30)
The function h(S) can be also simplified h = 1. In this case

Y =e " H(2),
and the extension is defined by the generator
X5 — 20s.
Let dim(Span(V')) = 1, then there exists a constant vector (v, 3,q) # 0 such that
a=n7g, b=Pg, c=qy,
with some function g(z,S) # 0 which is not constant. Assume that  # 0
ak + b(ks — k1) + cks = 0,

g=a, b=pa, c=qa=k=—pF(ks— k1) — qka,

and

¢ = —(ks — k1)h1(S) — k2ha(S5),

where

hi(8) = vg" (B2 + 2z, — ¢)) | (31)



ha(8) = 5" (g2 + 20). (32)

The extension is defined by the generators
X3 — h10s, X5 — hoOs.
Since, g # 0, one can assume that ho = 1. Notice that the commutator
[ X3 — h10g, X2 — heds| = W05 = 0.

Hence, hy = A, where X is constant.
A\ —
2, — A+ 1)y = <q2ﬁ)zl/2. (33)

s = 2 + ¢z, (34)
¢ — 521/2 _|_Kzl+>\€—25
X5 — s, Xy+ Os.

Using equivalence transformation

Assume that y =0 and § # 0
ak + b(kg — kl) + Ckg = 0,

g=b, a=0, c=qb= (ks — k1) = —qka,

and
¢ =15" (k"2 = 2((ks — k1) + (ks — ks + k1)9)))

¢ = kh(S) + 2ksha(S),

where

h(S) = ¥z,
ha(S) =g (a(zv: —¥) —4).
The extension is defined by the generators
h10s, X5 — qX3 4+ 2hs0s.
Here one has to assume that hy # 0 or h; = 1. The commutator is
[h10s, Xo — qX3 + 2he0s] = 2h50s = 2A0s.

Hence, hy = AS and
1/}3 - 21/27

ASts = gz, — (q + L) (35)

Case ¢ =0
=228

X2 - 2583, 35.
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It gives dim(V') = 0. Case ¢ # 0
) =Kz 212G
Xy —qX3—250g, Os.
If K =0, then dim(V) =0, hence K # 0. Assume that y =0, =0and ¢ #0
ak + b(ks — k1) + cke = 0,
g=c¢, a=0, b=0, =k, =0

¢ = khi(S) = 2(ks — k1)ha(5),

where

hi(S) = ?/15121/2;
ha(S) = Y5 (242 — ).
The extension is defined by the generators
h10s, X3 — 2hs0s.
As in the previous case one can assume that h; = 1. The commutator is
[0, X3 — 2h90s] = 2h505 = 2)\0s.

Hence, ho = AS and
Pg = 212,
ASZY2 = zip, — ).

=Kz + 228
X3+ S0g, 0s.

If K =0, then dim(V) =0, hence K # 0. Let dim(Span(V')) = 0, then there exists
a constant vector (v, 5, ¢q) such that

a=7v, b=, c=q.
vk + B(ks — k1) + gk = 0,
¢ =15" (k"2 =2 ((ks — k)2t + (k= ks + k1)Y))
C - khl(S) + (kg — k1>h2(S) + k2h3<5),
a=(2"705") , b=—2(v5 (0. =) , e=—=2(d5") .

z

where
(8) + vz = 225", ha(S) + Bz = —205" (210 — ¥), ha(S) +qz = —205".
The extension is defined by the generators
X3+ hoOs, Xo+ h3ds, hi(S)0s.
If hy # 0, then one can assume that h; = 1, and

[0s, X3 + ha0s] = hy0s = A0,
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[85, X2 + hgas] - hg@s - )\385,

where Ay and A3 are constant.

172 S1/2 212
g = T Ao+ T Bz = =2(zt: =), A7 . T —2. (37)
Case =0
=228,
X3+ S0y, Xo—250g, Os.
Case B # 0

U= 23S = B2),
Xy —2X3—450g, Os.
If hy =0, then v # 0
=71z,
X3+ 350g, X5 —250s.

Using equivalence transformation
b =272,
Case ky =0

Case where all operators such that ky = 0:
2(3ky — Sks)acy + 2k — 3ks)pe, +e5C = 2(ky — ky — 2k3)e — o' Pg+ o —kp™t, (38)

where g = g(p) and ¢ = ¢(9).

One-dimensional case

Here we use the algebraic approach. This approach supposes that using algebraic
properties of admitted Lie algebras, during the first step of solving the determining
equations one defines unknown constants and functions of an admitted generator. In
particular, according to the last comment of the previous section, one-dimensional
Lie algebras can be reduced to one of two cases, either ( = 0 or ( = 1. The set of
possible basis generators containing the generators X;, X5 and X3 is exhausted by
the following generators

(=0 (=1

1. Xl—i—ﬁXg—i"}/Xg 4. X1+5X2+’YX3+(95
. BXy + X3 D. BXs 4+ X3+ 0

3. X 6. X5 + 0y

In the next step, one has to substitute the coefficients of each generator into the
determining equation (38) and solve it with respect to the function (p, o, s). Here
we present the calculations of the first case. Substituting

k=1 k=0, ks=~, (=0
into equation (38), one obtains

2(3 — 5y)aza + (2 = 37)pe, = 2(1 — B — 27)e — a'Pg(p) + @(s) —kp™'.  (39)
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The characteristic system of this equation is

da dp ds de

2B3=57)a  (2=37)p 0 2(1=5—2y)e—a'g(p) +¢(s) —kp~"
Invariants of the characteristic system depend on the vanishing of the expression
k=(2-37)(1-5—27)(4—-28-Ty).
If k # 0, then the solution of (39) is
(9, 0,5) = aV2(5) + Bls) + B o B, ap20 -5/ 2152 2)

where g, ¢, h and constant k are arbitrary elements. Using the equivalence transfor-
mations corresponding to Z7, Z5 and Z5, one gets that

e(p,a, s) = h(s, ap—2(3—57)/(2—3v))p2(1—ﬁ—2w)/(2—37).

In this case the system of equations (1) admits the generator
X1+ BXo+79Xs, (2-37)(1—-8-29)(4—-28-"Ty) #0.
Similar, one finds that If 3 =1—2vy, 2 —3v # 0, then
elp,a,s) = d(s)Inp + h(s, ap G20/,
X1+ (1 —29) X, +vXs.

Ifﬂz%, 2 — 37 # 0, then

e(p,a,s) =p* (C Inp + h(s, ap—2(3—5v)/(2—3v)>> ’

Ty —4
2

Xp+( )Xo + 7 Xs.

Ify=2 (1+38)(1463)#0, then

e(p,a,s) = h(s, p)a' ™+,

Xy 4 %o 42X, (1436)(1468) 0,

Ifv= %, B = —%, then
(p, @, 5) = (6(s) — Cp~) na+ h(p,s).
1 2
X1 — =Xy + - Xs.
173 2 + 33
If y =2 f=—¢, then

elp,a,s) = (U(p) Ina+ h(p, s))a'’?,

1 2
X — =X, + -Xs.
175 2+33



Here C, 9, ¢ and h are arbitrary.
Two-dimensional case
Considering the basis generators

X =X+ qXo+ X+ Xey, ¥V =X+ @Xo+7X3 + X,
and their commutator satisfies the equation
[Xu Y] = plX +p2Y

Hence,
[XCU XC2] = p1X¢ + p2Xe,,
and
(p1B1 + p2B2) X1 + (P1qr + p2g2) Xo + (P11 + p2y2) X5 = 0.

From these conditions one finds that

GG — GG = p1G + P2, (40)

and
p1f1 +p2fB2 =0, p1g1 +p2q2 =0, p171+p2ye = 0. (41)
For two-dimensional algebras there are only two possibilities p; # 0, ps = 0 and

p1 = 0, po = 0. Let us consider the case p; # 0, py = 0. For this case one finds
that the basis of the algebra consists of the generators

X =X¢, Y =0X+¢@Xo+7nXs+ X

Since the algebra is two-dimensional, one obtains that ¢; # 0. Using the equivalence
transformation, one can assume that ; = 1. The general solution of equation (40)
is

G2 = p1S + o,

where the constant ¢y can be assumed to be zero. Thus, in the case p; # 0, ps =0
one the admitted algebra has the form (up to equivalence transformations):

{0s, BX1 + ¢Xo +7vX5 + S0s}.

The list of such algebras is exausted by the following algebras

{0s, X1 + Xy + v X3+ S0s}. (42)
{85, X2 + ’7X3 + Sas} (43)
{0s, X3+ S0s}. (44)
{0s, S0s}. (45)
Let us consider the case p; =0, p, = 0. For this case eqation (40) becomes
GG — (¢ = 0. (46)

Notice that if (Z + (3 # 0, then one can assume that ¢; = 1. In this case equation
(46) gives that (; = k(;. Hence, one also can assume that (, = 0. Thus, admitted
algebras in the case p; = 0, ps = 0 have the following forms

{51 X1 + 1 Xo + X3+ 0s, oXi+ X+ 72X5}, (47)
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{51X1 + a Xo + 11 X5, SoXi + 2 Xo + 72 X5}, (48)
The set of algebras of form (47) is exausted by the list

{nXo + X5+ 0s, X1+ ¢@Xo+72X5}, (49)
{51 X1 + X5+ 0s, Xo+7Xs}, (50)
{A/X1+q@Xo+0s, X3} (51)

The set of algebras of form (48) is exausted by the list

{nXo + X5, Xi+ @Xo+ 1X3}, (52)
{61 X7 + X5, Xo+ 19X}, (53)
{51X1+ a1 Xe, X3} (54)

Consider {0;, X; + X5 +vX3 + s0s}
The characteristic system of equation (38) is

da dp ds de

2572 —=3)a (312 —2)p -0 2272 + g2 — 1)e + a/2gy(p) — @o(s) + kep™t
Case 1 v # 2/3, then

S = 21,

Y

—2(5v2—3)/(3v2—2)

zp = ap ,
e = Cp.
Where
p=22v%+qg—1)/(37 —2),
/ 1
w_ L 1)2 . koL
Cp B 2)p(oz 92(p) — p2(s) + k2p™"),
1
C = | p (2?2322 g0 () — 0y(20) + kapVdp + h(z1, 22).
(372 - 2)

Case 1.1 (u+ 1)p # 0 or (72 +2¢g2 — 4)(272 + ¢2 — 1) # 0 One can assume that
g2 = 07(;02 :Oka :()7
then
e = h(s, z)pH.

Dfferentiate equation (38) with respect to p one obtains
AL (p(-Tre 20/ (322 (252 p(812-9)/ (2= g, (p) — 01 (5)p + iy )) = 0. (55)

Dfferentiate this equation with respect to 2o one obtains

/ (72 - QQQ - 1)
+ =g =0,

then



Equation (38) becomes
2272+ g2 = Dp1p — (T2 + 2¢2 — 4)ky = 0.
Splitting this equation with respect to p one obtains
(272 + @ — 1)1 =0.

and
(Tve 4+ 2q2 — 4)ky = 0.

Since (u+ 1) # 0, then p; = 0 and k; = 0. Then equation (38) becomes

1/2
hs + 3§Z£222hz2 = 2(%% —q1)h — 0322/ .

The characteristic system of this equation is

ds (372 —2)dz dh
1 21122 2(%% —q)h — Cyzs/?
Then B
Y1 s
23 = 2263"@72 ,
dh 3q2 _'_ 1 1/2 Y1 s
— =2 —q1)h — c3z2,' “e3122
3q2 +1
ey (372 — 271 (]1)
' = —6367)‘8231/26_3’;;71*28 = _ngé/Ze_()\—r,,g%Q)s
_ _ _ 6gatl
Case 1.1.1 X — 3721_2 =0, then A = ﬁ, or g, = 2(3%22_2).
C = —c3z/” / ds = —csz3""s + h(zs)
Then . B
h=(—cs2'%s + h(z3))e™ = (—cs2y/°eT22"5 + h(z5))e™2 ="
h = —0325/28 + h(zg)@?wvzlﬂs‘
Then

e = (—csz’s + h(23)e37721*25)p“.

Case 1.1.2 A — g245) # 0, or 1 = 2(63(15;_12)7 then

1/2 —(A\—z2)s
_ 1/2 ~(A—gt5)s ;. @323 € 122
C = —c323 e 2-2"ds = 3 o
( o 3’72—2)

+ h(z3)

Then

1/2_ —(A—515)s
0323/ e~ M)

=)

3v2—2

h=( + h(z3))e™

1/2 —1 g 1 g
_ ol

(>‘ - 37,)2/172)

+ h(z3)e™
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ey2l?
— (/\_7271) + h(z3)eM

3y2—2
C30¢1/2p_(572_3)/(372_2)
B

3v2—2

+ h(z3)e™

Then one can asuume c3 = 0, then
h = h(z3)e™.

Then
£ = h(z3)eMpt.
Consider {1 Xs + 71 X3+ 05, X1+ @2 Xo + X5}
Then (38) becomes
1071020 + 3m1pe, — €5 = 2201 + q1)e + a2 g1(p) — o1 + krp™! (56)

and

2(579 — 3)ae, + (372 — 2)pe, = 2(272 + g2 — 1)e + a2 ga(p) — pa(s) + kap~t.
(57)
The characteristic system of equation (57) is

da dp _ds de

25% —3)a (32 —2)p 0 2(2ya4 g2 — 1)+ al/2gy(p) — @a(s) + kop=t'

Case 1 v, # 2/3, then

zZ1 =S
2y = ap—2(572—3)/(3’72—2)

de 1 _
dp m@@% + 2 — e+ a'Pg5(p) — a(21) + kap™")

2279+ g2 — 1)

e=Cpl, =
oo (372 —2)
Where )
C, e_ - 1/2 _ k; 1
P (3,}/2 — 2)p(a 92(p) 902(8) + kop )’
) 1 o ) ) )
C = mp 1 “(25/210(572 3)/ (372 2)92(/))_%02(’21)_’_%/) 1).

Case 1.1 (u+1Lp#0or (Ty2+2¢g —4)272+q¢—1)#0

1 1/2 ~ wa(21) _ ky -
= —— Ho_ Iz h
(3,}/2 _ 2) (22 92(p) + 1 1Y 1+ up ) + (2’1, Zg)
1 . 21) ky 1
OZ(&yz%w”nﬁw*mwr”@uo+wﬂ159“—1£}p1*w+h@h@>
y —
Then
1 1/2 % p2(21) ks

e = = (aPg(p) + p~h) + h(z1, 2)p"

(372 —2) poo l4p
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One can assume that
go = 0,g02 :O,kQ :O,

then
e = h(s, z)pH.

Dfferentiate equation (56) with respect to p one obtains
AL (p(-Te =20/ (322 (252 p(812-9)/ B12-2 g, (p) — 01 (5)p + iy )) = 0. (58)

Dfferentiate this equation with respect to z, one obtains

r (=2 —1)
A E T R Y
then

Equation (58) becomes
2(2v2 + g2 — L)p1p — (772 + 22 — 4)ky = 0.
Splitting this equation with respect to p one obtains
(272 + g2 — 1)1 = 0.

and
(Tve 4+ 2q2 — 4)ky = 0.

Since (p+ 1) # 0, then ¢y = 0 and k; = 0. Then equation (56) becomes

1/2
hs + 33;i2zzh22 = 2(232%% —q1)h — 03,22/ )

The characteristic system of this equation is

ds  (3y2—2)dzy dh
L 2Nz 2(33?:;71 —q)h — c3zal?
Then )
2y
2’3 s 226372_2
dh 3¢2 +1 12 s
_— = 2 —_— j— h i 3v9—2
ds (372 — 2% q1) C3z3' "e3n
3¢ +1
h — C As )\ -9 .
Clet = —03251/263%71*25
C, = —C3€_>‘SZ?1)/263'Y;1—2S p— _03231,/26_()\_3’:271—2)8
Case 1.1.1 A — ;-5 = (,then
Y2 —2
C= —032§/2S + h(z3)
Then

h = (—csz”s + h(z3))e™ = (—cgz;me?;;—l?ss + h(z3))e*
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h = —0322/ s+ h(z3)e™

Then
e = (—cs2y/%s + h(z3)e™) pt
Case 1.1.2 \ — 3;;1_2 # 0,then
a2 ~(A—EL)s
C323
—( - )
1/2 —(A—315)s
—c323' e 2
h=(—2= + h(z3))e™
()\ o 372 2)
1/2 515)s\ zls)s
63(22 e3r2—2 )6372 2 A
()‘ - 3721_2)
a2
73 2 + h(z;),)e)‘s
(/\ - 372 2)
1/2 ,—(5v2—3)/(3v2—2)
e + h(z;;)e’\s
(/\ N 372 2)
Then one can asuume c3 = 0, so
e = h(z)ept.
Case 1.2 y = —1, then ¢ =2 — 772
C = (¥20(p) — pa(z)p + kalnp) + h(z1, 7).
(372 - 2)
Then ]
— 1/2 . k’ —11 h —1
*= B2 2)(a 92(p) = pals) + kap~ ' Inp) + h(s, 20)p
One can assume that
g2 =0,02 =0,
then ks
e=[—2 _In + h(s, z -1

So equation (56) becomes

ha + 325 mhe, = — (T + 2q1)h — 25/ pE72 =9/ =2) g, (p)

(59)
+pr(s)p — ke P28 I p + kg g — K.
Dfferentiate this equation with respect to p one obtains
A (252 pEr2 D2 Dg, (p) — 01(5)p + ko TP Inp) = 0, (60)

Dfferentiate this equation with respect tozy one obtains

! (8v2 —5)

=0
PI1 + (372 _ 2)91 9



then
(8v2—5)/(372—2)

g1 =C3p :
Equation (60) becomes
(771 + 2q1)
— ks =0.
P1pP (3/_}/2 _ 2) 2

Splitting this equation with respect to p one obtains

Y1 = O)
and
(771 +2q1)
(372 —2)
Case 1.2.1 7y +2q; # 0, or g1 # —7v/2 then ky = 0. Equation (59) becomes

ko = 0.

hs + (3722%2)22]122 = —(Tn +2q)h — 03221/2 — k.

The characteristic system of this equation is

1 27122 —(Tv1 + 2q1)h — 032«’%/2 — /{1.

Then

—2vq s
23 = z29€37272

fl]; = —(Tn +2q:1)h — a2t 2Tt — fy
h=Ce* \=—(T71 +2q1)
Clets = —0323{/2637;71*28 —ky
C'= —036_)\823{/2637’;71’28 — ke = —032§/267(A737’;71’2)5 — ke

1 1
Case 1.2.1.1 A — 325 = 0, or g1 = —3(7+ 5-25)7 then

e—)\s

C= —632’;/25 + kl h

+ h(z3)

Then

—As —As

+ h(z3))e™ = (—6325/263;;}288 - kle)\

e

h = (—632’;/28 + ky 3 + h(z3))eM

k
h=—cszy' s + ~ + h(z)e™.

A
Then I
£ = (—63221/25 + Xl + h(Z3)€/\s>p71.
One can assume that
kl = 07

then
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# —3(7+ 55,=5)m then

1/2 —(A—520)s s
—c325' e "2 e
C = + kl + h(Zg)
_<)‘ - 37;/172) A
1/2 —(A—51)s —As
—C3Z3 € 2 e s
h = ( + k?l —+ h(23>>6
()\ - 3W2 2) A
1/2_+15)s\ ztls)s
03(22 63"/2 2 ) 3v2—2 kl
= + — + h(Zg)
()\ o 372 2> A
1/2
0322 k?l s
% LM hz)e
()\ o 372 2> A
_ 03041/2p—(5"/2—3)/(372—2) N ﬁ N h(ZS)e)‘
(>\ - 372 2> A

Then one can asuume c3 = 0, k; = 0 so

e = h(z)eMpt.

1/2 —(x-BLys

—c323' e
C = + h(z3)
6 %)
2 —(-gl)s
h=( G3% © o i + h(z3))e™
_()\ - 372*2)
1/2 3_7112)5 Fog)s
C Z Y2 (& Y2
_ 3( X ) + h(zg)e)\s
( o 3’72 2)
s )2
=2 4 h(zg)er
A= 5)
C a1/2 7(57273)/(37272)
-3 i —i—h(zg)e’\s
( - 372 2)

Then one can asuume c3 = 0, so
_ As 1
e = h(zg)e™pH.

Case 1.2.2 7 +2¢; = 0 or ¢ = —77,/2 Then equation (59) becomes

The characteristic system of this equation is
ds (372 —2)dz dh
1 2’71Z2 —6322 kl + kg

372 2)



Then o
23 = z9€¥2-2°
dh 1/2 371
— = —ki+——=k
s C3%9 1+ Br—2)"
3m
h = / —0322 — ]{/‘1 + mk’gds + h<23)
o [ —egeemi g 1 O e
/ C3z3 € 1+(32_2)25+ (23)
Case 1.2.2.1 5 =0.
Wz
h = —032;/23 — ks + h(z3).
Then "
€= [ﬁ Inp — c3za'’s — kys + h(z)]p .
o —
L 1/263”;1‘2 " 371 ks + h(z)
= —(32 —k1s + ————=kos zZ
323 3721_2 1 (372 —2) 2 3
Then
71
k’ 1/263“’2 —2° 3 1
€= 7lnp—cz —k3+7ks—|—hz .
B M TRt gy, gy el

Case 1.3 p=0o0r g =1—2v

1 g —
= ) B0) a1,
Then
1 12 ~ .
= m@z Ga(p) — a(21) I p — kop™ ) + h(z1, 20)
One can assume that
g2 = 07 kj? — 07
then .

So equation (56) becomes

hs + 3 271 5220z = =227 + q1)h — 22 p®2 =8/ Br=2 g, (p)

n _ (61)
—pa(5) 2EWFWNEEIN 4 5, (5) — fryp!
Dfferentiate equation (61) with respect to p one obtains
1/2 — — — — n —
i (22202 gy (p) oo (s) CREZREEN 4 hypT) = 0. (62)
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Dfferentiate this equation with respect to z, one obtains

/ (5’72 - 3)

+ o= =0,
P (372 _ 2) (51
then
1 = cap- G112,
Equation (60) becomes
20271 + q1)
—_ ki = 0.
-2 "

Splitting this equation with respect to p one obtains

and
(271 + q1)

(372 — 2)
Case 1.3.1 2y, +¢; # 0, or q; # —27then s = 0. Then (61) becomes

QOQZO.

hs + 3’3;i222h22 = =2(2n +@)h - 25/203 + p1(s).

The characteristic system of this equation is

@ - (3’}/2 — 2)d22 . dh
1 27122 —2(2v +q)h — 03?«“%/2 + 901(5).
Then —2v1
23 = 29€%12-2"
dh
<= 22t a)h - 2 e+ ei(s)

h=Ce \=—22v+q)

C'e™ = —cyz’? + o1 (s)
1/2 —(A\—z2s ~

s 172 - -3
C' = —cze 2 2em2" 4 o (s)e™ = —czea2e” NI 4 5 (s)

Case 1.3.1.1 )\ —

1
37’;172 = 0, or q; = —<2 —+ m)'yl then

C = —CgZé/ZS + 51(8) + h(Zg)

Then

h = (—03z§/28 + v1(s) + 11(23))6’\S = (—0325/263;;&258 + 90:1(3) + h(z;;))e“

h=—csz'’s + G1(s) + h(zs)e.
e = —csz' s + Gi(s) + h(zs)e.
One can assume that
©1 = 07

then
e=—c3z?s + h(zs)e.
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Case 1.3.1.2 A — 325 # 0, or g1 # —(2+ 553:-=5)n then

1/2 —(A—z2L)s

—c323' e 7 322 ~
C = 3 3)\ o + (,01(5) + h(Zg)
-A—75)
1/2_ —(A—5H5)s
—caz3' e 72 ~ <
h=(—"r +¢1(s) + h(z3))e
_( - 372*2)
1/2 5= 0s)sy gtls)s ~
calz e 372 e 372 = s
_ ol I L Gi(e) + han)e?
( o 3’72—2)
cazl/? -
3 = S
= 7271 —+ 901(5) + h(Zg)e/\
( o 3’72—2)
C a1/2 _(572_3)/(372_2) E
s P + G1(s) + h(z3)e™
( - 372_2)

Then one can asuume c3 = 0,¢; = 0 so
e = h(z3)e™.

Case 1.3.2 27 + ¢; = 0 or ¢ = —27; Then equation (61) becomes

1/2
hs + 33;i222h22 = _22/ c3 + (101(5) - 33;i2902<8)'

The characteristic system of this equation is

ds _ (372 —2)dz _ dh
1 2712 —221/203 +¢1(s) — 33;i2 902(3>’
Then oy
23 = Z26372—28
dh / 3

3
h = /—03z;/2 + p1(s) — S N wa(s)ds + h(z3)
2

= / —03z§/2e3711*23 + ¢(s)ds + h(z3)

Case 1.2.2.1 ;15 =0.
Y2

g4 Q(s) + h(z3).

h = —cg,zé
Then
-1 (s)Inp — 324
£= ——— —
(372 _ 2)902 P 323

one can assume that ¢ =0 .

g4 Q(s) + h(z3)

-1
e = G, g Pl o = el 4 )
-
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Case 1.3.2.2 3%1_2 #0 .
3“7271728 371
h = —cyzh/?E —kis+ ——kes + h(z
o T Gy )
Then
g_[Lln —021/263%1725—k5+£k s+ h(z3)]p~"!
Br-2) 7O g T T By TR

Case 1.3.2 2y, + ¢; = 0, then equation (61) becomes

1/2
hz1 + 33;i222h22 = _22/ c3 + 901<8) - 3732%2902(8>

Dfferentiate this equation with respect to s one obtains

P1(s) = 322505(s),

then

901(8) = 33;32902(‘9) +cr.

So equation (61) becomes

1/2
h., + 33;i222h,22 = —C322/ + ¢1.
The characteristic system of this equation is
le . (3’}/2 — 2)d22 . dh
1 2129 —032’;/2 + 01’

Case 1.3.2.1 7, # 0 then

3v9—2
et =2z

379 — 2
h = (312=2) / z;l(—cgz;/2 — +c1)dz + h(2).
2
one can assume that
C3 — 0.
Then 5 5
h = wcl In 25 + h(z).
27

Case 1.3.2.2 7 = 0 then
Zo = Z,

h = /(—0321/2 —c1)dz + h(z).
one can assume that
C1 = 0.

Then
h = (—c32"?)z, + h(2).
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Case 2 v, = 2/3, then the characteristic is

3o _dp _ds e
2 0 0 2(1/3+ qo)e + a2ga(p) — pa(s) + kap~t
S = 21,
pP = 22,
e = Caltde,
Where 3
Claltie, = %(amgz(p) — @a(s) + kap™t).
Then

3 _
C= 2 / a2 (a2 gy (29) — po(2) + kazy V)da + B(21, 22).
Case 2.1 (2 +1/6)(g2 + 1/3) # 0. One can assume that
go = 0,(,02 :O,kg ZO

Then,

£ = h(z1, 2)a! 3%,

Dfferentiate equation (61) with respect to « one obtains
—(3a2 +1/2)a"? gi(p) + (3¢2 + 1)r(s) — 25 k1 (32 + 1) = 0. (63)

Since (g2 +1/6)(g2 + 1/3) # 0, then dfferentiate this equation with respect toa and
z9 one obtains

g1 =0k =0.
Then equation (63) becomes
(3¢2 + 1)ipa(s) = 0.
Since (g2 + 1/3) # 0, then ¢ = 0. So equation (56) becomes
h., — 3v120h., = 2((15q2 + 3)y1 — q1)h.
The characteristic system of this equation is

%  —dz dh

1 N 3’}/122 a 2((15(]2 + 3)’}/1 — ql)h'

Case 2.1.1 ~; # 0 then

=1
e = 2z,

h = h(z)z.

Where
A= —=2((15¢2 + 3)v1 — q1)/3m,

Case 2.1.2 v; = 0 then



Case 2.2 ¢ = —1/6. One can assume that
Y2 = 0, kQ =0.

Then,
£ =(3/2)g2(p) In at’? + h(zy, z0) /.

Dfferentiate equation (56) with respect to o one obtains

—(371 — 6q1)g2(p) + V20 (s) — a2z ky = 0.

Dfferentiate this equation with respect to 2o and « one obtains
k1 = 0,01 = 0.
Then equation (64) becomes
(71 = 2q1)g2(p) = 0.
Case 2.2.1 7 — 2¢; # 0, then g, = 0. So equation (56) becomes
hay = 3m22h, = (71— 2q¢1)h — g1(p).
Dfferentiate this equation with respect top one obtains
g = ¢s.
Then equation (56) becomes
h,, — 3m129h,, = (71 — 2q1)h — c3.

The characteristic system of this equation is

le —dZQ dh

1 322 B (71 - 291)h —c3

Case 2.2.1.1 y; # 0 then

=1
et = zz9m

h=Cz.
Where
A= —(’71 - 2Q1)/3’Yl,
/ C3
C'z = ,
2 37122
, 1
C' = —— | s ead h(z).
s 2o c3dze + h(2)

Since v; — 2q; # 0 , then one can assume that
C3 = 0.

Then
h = h(2)z.
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Case 2.2.1.2 7, = 0 then

29 = Z,
h = Ce 271,
where
C'e 20 = _¢y.
Then

C = / —c3e®1 7 dz) + h(z),
Since ;1 — 2¢g; # 0, then ¢; # 0 ,one can assume that
C3 = 0.

Then
h = h(z)e 207,

Case 2.2.2 7 — 2q; = 0, then equation (56) becomes

h., — 3v122h., = 157192(p) — g1(p).

Dfferentiate this equation with respect top one obtains

91(p) = 157195(p).
Then
g1(p) = 157192(p) + cs.

Equation (56) becomes
h‘Zl - 3’}/12’2h22 = —C3.

The characteristic system of this equation is

ds _ —dw _ dh

1 N 3’712’2 N —C3
Case 2.2.2.1 7, # 0 then

e = zzgﬁ,
he y Lesdzg + h(2)
= — | 25 csdz z).
3 2
Then ) »
h=(—cl h o
(371 c3lnze + h(2))z,

Case 2.2.2.2 7, = 0 then
29 = Z,

h = / —c3dz + h(z).

One can assume that

Then
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Case 2.3 ¢ = —1/3. One can assume that
gos = 0.

Then,
e =—(3/2)(2(8) — kap ) Ina + h(z1, 2).

Dfferentiate equation (56) with respect to « one obtains
a2g1(p) — 2(6m1 + 3q1)2(s) + 23 3ka (T + 2q1) = 0. (65)
Dfferentiate this equation with respect toa one obtains
g1 =0,
Dfferentiate equation (65) with respect to zo one obtains
k2 (21 + 6¢1) = 0.
Case 2.3.1 7y; + 2¢; # 0, then ky = 0. Then equation (65) becomes
(27 + @1)pa(s) = 0.
Case 2.3.1.1 291 + ¢; # 0,then s = 0. So equation (56) becomes
h., — 31120k, = —2(2v1 + @ )h + o1 — k123 .
Dfferentiate this equation with respect tos one obtains
$1 = C1,
Then one obtains the equation
B — 3m122hs, = =227 + )b + 1 — k125

The characteristic system of this equation is

% _ —dz dh

1 37122 N —2(271 + Ch)h +c — klzgl'

Case 2.3.1.1.1 7; # 0 then

=1
€l = zz9m |

h=Cz.
Where
A=22v1+q)/3n,
/ —1
C'zy = — kiz3").
) 37122 (c1 12 )
/ 1
C'=— [ 25" M—c1 + k123 Ydz + h(2).
3m

Remark A # 0. and A # —1, then One can assume that

clzo,lﬁ:(),
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then

h = h(z)z,
Case 2.3.1.1.2 +; = 0 then

29 = Z,

h = Ce 2,

where
Cle 2% = ¢ — kizyt.

Then

C = /(Cl — k’lz_l)@quZlel + h(2)7
Since 291 + ¢; # 0, and 3 = 0 then ¢; # 0. One can assume that
= 07 kl - O)

then
h = h(z)e 4™,

Case 2.3.1.2 2v; + ¢; = 0,then equation (56) becomes
hay — 311220, = 01 — 157100 — k23 "
Dfferentiate this equation with respect tos one obtains
1 = 15716,

then
o1 = 157102 + ¢,

Then equation (56) becomes
th — 3"}/122hz2 = C — klzgl.

The characteristic system of this equation is

% ~ —dz dh

1 3mzm o —kizy b

Case 2.3.1.2.1 v; # 0 then

=1
et = 2z,

—1
h=-— / 2y (er — kyzy H)dzg + h(2).
3
one can assume that
ki =0.
Then )
h=——ci1 h(z).
3%01 nzy + h(z)
Case 2.3.1.2.2 y; = 0 then
29 = Z,

h = /(01 — k127 Ydz + h(z2).
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one can assume that
Cc1 — 0.

Then
h = (=kiz ")z + h(z).

Case 2.3.2 7y, + 2¢; = 0, then (65) becomes
Y12 = 0,
Case 2.3.2.1 7, # 0, then ¢y = 0. Then (56) becomes
h., — 3122hz, = 3y1h 4+ @1 + (1571ke — K1) 23 "
Dfferentiate this equation with respect tos one obtains
$1 = C1,
Then one obtains
h,, — 3m129h,, = 3v1h + ¢1 + (157y1ky — kl)zz_l.

The characteristic system of this equation is

% B —dz dh

1 n 3’7122 N 3’}/1h + C1 + (15’}/1]{32 — kﬁl)ZQ_l‘

then —1
e = 2z,
h=Czt,
where 1
S 15 ko — k) 2z,
C z 37122 (c1+ (1571ky — K1)z, )
Then
C= 3711 /(Cl + (1571ks — k)2, ")dza + h(2).
1
Then

1
h= 5@z + (15mke = k) z) + A(2).
1

Case 2.3.2.2 7; = 0, then (56) becomes
hzl = Y1 — klzgl.
Dfferentiate this equation with respect tos one obtains

Y1 = C,
then (56) becomes
h31 = C1 — kI12’2_1.
The characteristic system of this equation is

dz _ dz dh

1 N 0 _cl—/ﬁz;l'
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then
29 = Z,

h = /(01 — k2 Y)dz + h(z).

one can assume that
C1 = 0.

Then

h = (—kiz7")z1 + h(2).
Consider {61X1 + ’71X3 + 85, X2 + ’}/QX:J,}.
Then (38) becomes

2(361 — 5m1)aca + (261 — 3m)pe, + &5 = 2(61 — 271)e — a2 g1(p)

+or(s) + —kip™! (66)

and
107202, + 37208, = 2(272 + 1)e + a'/2g5(p) — pa(s) + kap™ L. (67)

If 75 = 0, then ¢ = (=1/2)(a'2ga2(p) — 2(s) + kap™t). So £(p, @, s) can be trans-
formed to zero thus we will consider in case 72 # 0. The characteristic system of
equation (67) is

da dp ds de
0ma 3vp 0 20272+ 1)e +all2ga(p) — pals) + kap~t
Then
Z1 = S
2 = ap_10/3
de_ 1 (2(27v5 + De + 22207 B ga(p) — pa(21) + kap ™)
dp 3vap V2 2 P g2\p PYalz1 20

e =Cp' = (2/3)(2+1/%)
;TR
C = 37(@/ p°2g2(p) — @a(z1) + kap™")
Y2
Case 1 (u+ 1) #0or (v2+1/2)(72 +2/7) # 0. Then

Ly ©a(21) - ko —1—p
= o + — +h
¢ (22" "ga2(p) P 1 ) (21, 22)

Then

L 1. pa(21) —u ko “1-p
e _— - 7 = h Y2
e = (3, (2 0lp) + = =p™ = 7T H s, 22)p

One can assume that
g2 = O,QOQ :0,/{32 :O,

then
e = h(s, z)pH.

Dfferentiate equation (66) with respect to p one obtains

A (p02=2/32) (232G, (p) — 1(5)p™3 + ki p™/3)) = 0. (68)



Dfferentiate this equation with respect to z, one obtains

pgy + (3 —6/72)g1 = 0,

then

g1 = cap O,

Equation (68) becomes
2(1+ 272)p1p — (24 T72)k1 = 0.
Splitting this equation with respect to p one obtains

(1 —+ 2’}/2)301 =0.

and
(2+Ty2)k1 =0.

Since (p+ 1) # 0, then p; = 0 and k; = 0. Then equation (66) becomes

s T %Zthz = _(451/372 + 251/3 — 271/’)/2)h — 0325/2‘

The characteristic system of this equation is

ds  —3dz dh
1 20122 —(Bi(4/72 +2)/3 — 271 /72)h — sz’
Then y
23 = 226718
dh B1
ds —(B1(4/72 +2)/3 — 271 /3)h — c3z3/ P72

h=Ce* \=—2B1(2/y2+1)/3 —71/72)

B1 B1
C = —0367)\8211/267?8 — _Cszé/Qef()\Jr?)s

Case 1.1 )\ + % = 0,then
C = —032§/2S + h(z3)
Then ) )
h = (_03%/23 + h(z3))e™ = (—0325/267188 + h(z3))e 5 °
h=—cszy’s + h(23)e’%13.

Then .
€= (—0325/23 + h(z)e 3 %) pt.

Case 1.2 \ + % # 0,then

1/2 _ P1
_6323/ e~ (A)s

—(+ )

C = + h(zs)

1/2 _ (B
_032,3/ e~ (A+3h)s

—(A+ 8

h=( + h(z3))eM
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Then one can asuume c3 = 0, so
e = h(z3)eMpt.
Case 2 = —1, or 75 = —2/7, then
1

C= g(%ﬂfﬁ(ﬂ) — 0o(z1)p + ka2 Inp) 4+ h(z1, 22).
2
Then )
e = [372(25/29”2(/)) — a(8)p + ko Inp) + h(s, )] p7".

One can assume that
g = 07 Yo = 07

then

=[—1 h .
==l et s )l

Dfferentiate equation (66) with respect to p one obtains

(" 0%3g1(p) — @1(s)p + k™2 In p) = 0.

Dfferentiate this equation with respect tozy one obtains

;8
pg+ 391 =0,
then
g1 =csp .
Equation (69) becomes
1P — 7(4B1(3_ 7%)7% =0.

Splitting this equation with respect to p one obtains

Y1 = O)
and
(451 — 7’)/1)]{32 = 0.
Case 2.1 403, — 7y1 # 0 , then ky = 0. Equation (66) becomes
hs — %Zgh@ = (461 — 7’)/1)]1 — 03221/2 — kl.
The characteristic system of this equation is
ds — —3dz dh
1 2ﬁleZ (4ﬁ1 — 7’71)]1 — 032’;/2 - kl ‘
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Then
281
23 = z9€ 3 °
dh B1
P (481 — Ty)h — csz 2™ — ky

h = C’eAs, A= 4ﬁ1 - 7’}/1
C' = (—cgzé/Qe’%ls

Case 2.1.1 A+ 2 =0, then A = —2.,

k —As
C = —cs3z’s + % + N(z3)

Then

k e—)\s
h = (—C3z§/28 + 1T + h(z3))e™ = (—c3zy €3 s +

k
h=—cs2%e s + Xl + h(z)e™ = —cszy/ s + Xl +h
Then K
B

€= [—032';/23 + 71 + h(z)e 3°)p L.

One can assume that
ki1 =0,
Then
B1

e =(—cs'?s + h(zs)e” 7 )p "
Case 2.1.2 A + & £ 0,then

B
12 —(0+5)s ke

C = —6353()\ " %) + h + h(z3)
e (ﬁ)) B e
_ 03(221(/:1@2§_3m5 N k;\l + h(zg)e
_ (;?’f; + k;\l + h(z)e

B 03a1/2p’5/3 ky

A+E2) A
Then 1253
C3a'"p ks As] —1
=|——F—+~+h

Then one can asuume c3 = 0, k; = 0, so

£ = h(z)eMpt.

_ 1/2 —(w+2 _
—kl)e /\S:—0323/ e (/\+3)8—/€1€ As

1/2 B k1€_>\s

+ h(23))e’\8

61



Case 2.2 43, — 7y; = 0. Then equation (66) becomes

2 1/2 7
s 51 ZQhZQ = —0322/ kg% — kl.

then
s 251 22h., = —c32” + k.

The characteristic system of this equation is

@ _ —3dz dh
1 2012 —0325/2 + ks
Then
281
23 = Z9€ 3 °
dh
—— =35 + ks
ds

Case 2.2.1 31 # 0, then

_B1
g€ 37

h = 30321/ + k3s + h(z3)

1

_Bi,
B, € 3

= 303(2;/26?8)7 + k’38 + h(Zg)
1

= 303(a1/2p_5/3)/51 + k3s + h(z3),

Then k 5
_ 2 €3, 1/2 —5/3 -1
€= In « + k3s + h(z )
[372 np -+ B — p ) 3 (z3)]p
then one can assume that c3 = 0. So
€= [ﬁ hlp + kgS + h(Z3)]p_1.
372
Case 2.2.2 5, =0, then
Z3 = Z9.
dh
Fr —e3" — by

h = / 0322 — kids + h(z) = (— 03z2 —ki)s + h(z) = (— 03z2 — k1)s + h(za),

Then I
€= [372 np— (c32’” + ky)s + h(zo)]p™"
Y2

Case 3 = 0. then

1 . _
C = —(2"0m(p) — pa(z1) Inp — kap™) + h(21, 20).

1 i _
ST 3y —(2"20(p) — pa(8) I p — kap™) + (s, 23).
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One can assume that
92 = 07 k? = 07

then

1
€= -—pa(s) Inp+ h(s, 2).
372

Dfferentiate equation (66) with respect to p one obtains

(220731 (p) + I p((2/3)2(s) + (83 (70)
—41)/3)p2(s)) — (451 — 671)/3)p2(s) — u(s) + kp~') = 0.

Dfferentiate this equation with respect to z5 one obtains

RS
+ g1 =0,
91 391
then
g1 =csp .

Equation (70) becomes
(20, + 2(47 — 281)02)p — 3k1 = 0.

Splitting this equation with respect to p one obtains

k‘l - O,
and
©g + (471 — 2B1)p2 = 0.
Then
2 = e(201— 4W1)

Then equation (66) becomes

s 2[31 29hz, = 2(B1 — 271)h — 35/203 - %6(2’8174%)5 + p1(s).

Then
hs - 275122h22 = 2(61 - 271)]1 - 25/203 + ¢1(8)'

The characteristic system of this equation is

ds  —3dz dh

1 28 28y — 2v)h — e3P + ou(s)

Then

2P1
Z3 = Z9€ 3

=2(f1 —2m)h — 0325/2 + ¢1(s)
h=Ce* \=2(8 —27)

¢ = ( 0322 +¢1( )) X — C3Z:)1)/26 (A+ 31)8—}-%(3).
Case 3.1 A—i—%:Othen)\:—?

s

@
ds

C = —cgz§/2s + ¢3(s) + h(z3)



Then
h = <—C32;/23 + ¢3(s) + h(Zg))e/\S = (—cgzéﬂe%lss + ¢s3(s) + h(zg))e’\s

h = —6325/26%886>\5 + pa(s) + h(z3)e* = —c3z s+ ba(s) + h(zs)e.

Then 1
£ = Q%(S) Inp — c3zy'°s + Gu(s) + h(zs)e™
2

One can assume that

Then )
e=—wy(s)Inp— 03,2%/23 + h(23)e>‘8
372

Case 3.2 \ + % # 0,then
—c3z§/26‘(“%1)8

C:
—(A+ 8

+ ¢3(s) + h(z3)

1/2 _(a+81)s
—c323' e 3
S+ ¢3(s) + h(z3))e™

Then

One can asuume c3 = 0, ¢4 = 0, so

1
= 1 h As
£ 372302(5) np+ h(zs)e

Consider {/Ble + quQ + 85, Xg}
Then (38) becomes

60100 + 2B1pe, + s = 2(B1 — ql)e — a'2g1(p) + @1(s) — kip™?
and
10ag, + 3ps, = 4e + a'%gy(p) — @a(s) + kop™t.

The characteristic system of equation (72) is

doz_@_ds_ de

100 3p 0 de+a'g(p) — pals) + hap
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Then
zZ1 =S
2 = ap 103
de 1
_— = — 4 1/2 _ k, -1
ap 3p( e+’ ga(p) — pa(s) + kap™)
e =Cp'?
—7/3
/ p B
C = T(Z§/2p5/392(,0) — a(21) + kap™)
1 5 3 B 3
¢ = 5(25/292@) - 1902(21)P 3 _ kop ™) + bz, 20).
Then ) 5
€= (§(25/29~2(P) - i@z(%)ﬁ_y?’ — k2p_7/3) + h(z1, 22))04/3

One can assume that
g2 = 0,00 =0,ky =0,

then

e = h(s, z)p*>.

Equation (71) becomes

251

72’2h22 = —2(

Yo — p3 (2201 (p) — p~p1(s) + p~2ky)

B1 + 3¢
hg — .
3

Dfferentiate equation (71) with respect to p one obtains

1/2 _ _
L(p (2 g1(p) + p~Ppr(s) — p~1hky)) = 0. (73)
Dfferentiate this equation with respect to z, one obtains

1

’ 1 _ 07
Py + 391
then
g1 =csp /.
Equation (73) becomes
4@1p - 7l€1 =0.

Splitting this equation with respect to p one obtains

Y1 = 0, kl =0.
Then equation (71) becomes
2 3
hs — ﬂzghz2 = —2(L il (h)h — 2
3 3
The characteristic system of this equation is
@ . —3d22 o dh

1 N 2B12’2 N _2(61—23[11)}1—2;/263.



Then
2681
23 = z9€ 3 °
dh Bl + 3(]1
= AP - 4,
-2 3
h = Ce)\s’ )\ — M
3
C'= —63€_ASZ§/26_%5 = —cgzg/Ze_(“%l)s

Case 1 A + 2 = 0,then
C = —03z§/25 + h(z3)

Then 5 5
h=(—csz'’s + h(23))e™ = (—cszy e 355 + h(z3))e” 7

8
h=—cya?s + h(z3)e™ 3"

Then .
1
e = (—csz”s + hlzg)e™ 7)p">.

Case 2 \ + % # 0, then

1/2 _ (B
—03z3/ e~ (A+5h)s

C= + h(z
2 —(arAys
C3z3 € 3 As
h = + h(z3))e
1/2 Bigy ZBig
cs3(zy/"e3%)es g
= + h(z3)e
v
3%2 As
= —"— + h(z)e
1/2,-5/3
Csax'~p As
= ————— 4+ h(z3)e
Then 53
c3a/ p As\ 4/3
= (————— + h(z3)e )
Then one can asuume c3 = 0, so
e = h(z3)eMp/?.
Consider {¢1 X5 + 71X5, X1+ ¢Xo + 712 X3}.
Then (38) becomes
107 aeq + 37108, = 2(271 + q1)e + @21 (p) — 1 (s) + kip~™. (74)
and
2(3 = 5m)aca + (2 = 372)pg, = 2(1 — g2 — 2m2)e — @?gs(p) (75)

+pa(s) — kap™!
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If vy = 0, then q; # 0. So e = (—=1/q)(a'?g1(p) — ¢1(5) + kip™'). Then (p, @, s)
can be transformed to zero thus we will consider in case 71 # 0. Then one can

assume that y; = 1 and 79 = 0 Then (74) and (75) becomes
10ag, + 3pe, = 2(2+ q1)e + a2g1(p) — p1(s) + kip~™.

6ac, + 2p2, = 2(1 — g2)e — a'2ga(p) + @a(s) — kop™!

The characteristic system of equation (74-1) is

da dp ds de
00 3p 0 22+aq)e+a2gi(p) —pi(s) +Ekipt
Then
21 =S
2= ap_10/3
de 1 1/2 -1
- 37)(2(2 +q)e +a"gi(p) —¢1(s) + kip)
2(2

3

—1—p
;P _
¢ = 3 (Z§/2P5/391(P) —p1(z1) + kip™h)

Case 1 (g + 1)u # 0, then

k
L) 4 b2, 20)

1, 1 z)
C= 1/291(P)+901< 2 M_1+M

3\
Then

1 1/2 ~ 901(21) —u ky “1p
= ( — -~ 7 - h V2
€ (3(22 gi(p) + m P i ,up )+ h(z1,22))p

One can assume that
g1 = O,gOl :O,kl :O,

then
e = h(s, z2)p".
Equation (75) becomes
2 4 2
Saaha, = (S + 20+ Db+ 007 (5 2 gu(0) — 07 pu(s) + 07 k)

Dfferentiate equation this equation with respect to p one obtains

L (p =203 (23 gy (p) — p=3a(5) + p~¥kn)) = 0.

Dfferentiate this equation with respect to zo one obtains

pgs + (1 —2¢1)/(3)g2 = 0,

then

s = cap~(1720)/@)

(76)

(77)
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Equation (78) becomes
2(q1 +2)pap — (2q1 + T)ka = 0.
Splitting this equation with respect to p one obtains
(1 +2)p2 = 0.

and
(2(]1 + 7)]€2 =0.

Since (u+ 1) # 0, then ps = 0 and ks = 0. Then equation (75) becomes

2 4q 2 1/2
ngh@ = (? + QQQ + g)h + 0322/
The characteristic system of this equation is
ds  3dz dh

0 229 (4%—"_2612—’_%)]1_'—632;/2'

Then dh 3 4 2
q1 1/2
= (2 + DA
7 2z2(( 5 T2+ )h+en’)
3 4(]1 2
h=Cz2 A A="(=%+2¢+ =
/ 3 1/2
C zg‘ = 2—/22(0322/ )

Case 1.1 A =1/2, then
C= 203 In 2o + h(s)

Then 3
h = (503 In 2y + h(s))2y

Then 3
€= ((503 In 2y + h(s))2y)p".
Case 1.2 X\ # 1/2, then
o Seqz; V2
C2(=A+1/2)

—A+1/2
3C329

h= (2(—>\+1/2)

+ h(s)

+h(s))z

30321/2
2 A
= h

At/ T Me)

B 303041/2P_5/3

=12 + h(s)z
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Then
3C3Oél/2p_5/3

ST Y12

Then one can asuume c3 = 0, so

+ h(s)zy)p".

e = h(s)zyp"

Case 2 = —1, then

1 -
C = 3(2"0(p) — er(21)p+ ki lnp) + hiz, 2).

Then
1

= [g(Z§/2951(p) —o1(20)p + k1 In p) + h(z1, 22)]p

One can assume that

-1

g1 = 07 Y1 = 07
then .
€= [gkl Inp+ h(s, 20)]p "

Dfferentiate equation (77) with respect to p one obtains
1/2 _
(25" ga(p) — pa(s)p + k1 227 In p) = 0.

Dfferentiate this equation with respect to 25 one obtains

8
then
g2 = czp 3.
Equation (79) becomes
2(q2 — 2
Pap — <Q23>k1 =0.

Splitting this equation with respect to p one obtains

§02:O7

and
2(¢2 — 2)k1 = 0.

Case 2.1 ¢o — 2 # 0, then k; = 0. Equation (77) becomes
2 1/2
gZQh/Z2 = 2((]2 — 2)h + C3%29 -+ kQ.

The characteristic system of this equation is

ds  3dz dh

0 222 2(q2 — 2)h + 0325/2 + k’g.

Then
dh 3

P 272(2(612 —2)h + sz’ + ko)
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h=Cz,\=3(q—2)
3
C' = §z2 ;1 )‘(03221/2 + ko).

Remark A # 0,
Case 2.1.1 A = 1/2, then

3 1/2

C= 2(03 In 2o — 2kozy %) + h(s).
Then
3 . 3
h= (§(c3 In 2o — 2koz, 1/2) + h(s))z, - 2(03 In 2524/ — 2ky) + h(s)z;/2
Then 5
€= [2(03 In 2524/ — 2k9) + h(s)z 1/2];)_1.

One can assume that
lﬂg - O,

Then

3
£ = [503 Inzo + h(s )]zéﬂp

Case 2.1.2 X\ # 1/2, then

—A+1/2 ~)
3, C329 kozs

= — h(s).
C=3 St o) T
Then
3 03,2;/ k: 3 csal2p3 ky N
h— _ h(s -+ ) +h .
Then 12 —5/3
3 czal?p™ ko -1
= (— + = h )
=B T o) e il
One can assume that
CgZO,kQZO.

Then
e = [h(s)z]p™".
Case 2.2 ¢, — 2 = 0 then Then equation (77) becomes

22h22 = 0322 + k'Q + ]{31

or
1/2

2
ZthQ C329 + k’g.

3
The characteristic system of this equation is
ds  3dz dh

0 220 03z2 +k3




Then 3
h = 2 / 2:2’1(0325/2 + k3)dza + h(s)

3 3
h= (232" + ksl z) + h(s) = 5(2e30! 07 4 ky Inz) + hs).

Then . 5
e=[ghilnp+ 5(2@,@1/%—5/3 + kslnz) + h(s)]p~ .

One can assume that

C3 = 0.
Then ] 3
€= [§k1 Inp+ 51{:3 In 2o + h(s)]p~ "

Case 3 ;= 0. then

_ Lo -1

= 5(22 gi(p) —p1(z1) Inp — kip™") + h(z1, 22).

Then

_ Lo -1

€= 5(22 Gi(p) —¢1(s)Inp —kip™") + h(s, 22).

One can assume that
g1 = 07 kl = 07

then .
€= 3 In pp1(s) + h(s, z9).

Dfferentiate equation (77) with respect to p one obtains

(20 g1(p) + 01()(2(1 = 02)/(3) In p — 2/3) — pa(s) + kap™") = 0.

Dfferentiate this equation with respect to zo one obtains

p +§ —0
then
go = c3p /3.

Equation (80) becomes

2
g(l — q2)pp1 — ko = 0.

Splitting this equation with respect to p one obtains

and
(1 —g2)p1 = 0.
Case 3.1 1 — ¢ # 0, then ¢; = 0. Equation (77) becomes

%Zghz2 =—2(qa — 1)h + 0325/2 — a(s).

(80)
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The characteristic system of this equation is

ds  3dz dh
0 2, ~2(qz — Dh + c3z/? — pa(s)
jizzlﬂﬁwm—nh+%£”—wﬂ$>
h=Cz,A=3(1-q)
' = 222 ! ’\(03221/2 — pa(s))

Remark A # 0,
Case 3.1.1 A = 1/2, then

C= 3(03 In 2y — 2p5(s) 2 /%) + h(s).
Then
h= (2(03 In 2z — 205(8) 25 /%) + h(s))z/* = ;)(Cg In 202" — 205(s)) + h(s)z’?,
then 5
€= 5(03 In 292" — 209(5)) + h(s)zy>.

One can assume that
Yo = 07
Then

3
€= [503 In 2 + h(s)]z’>.

Case 3.1.2 \ # 1/2, then

3.3z 7 a(s)zy?
c==: - h(s).
i wrry; e el
Then
3, o5z ©a(s) v 3 el PpT g (s) A
h=> h(s)z == h(s)z2.
iy R e UG Rkt vy U O
Then
3 a2 p=5/3

T i T ¢2A(S))+h(5>25'

One can assume that
C3 = O, Y2 = 0.

Then
e = h(s)z.

Case 3.2 1 — ¢; = 0, then equation (77) becomes

Saha, = an'” = (2/3)p1(s) — pa(s):
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or
%22h22 = 03221/2 + @3($).

The characteristic system of this equation is

ds  3dz dh

0 22y 03221/2 + 903(3)'
R S T TE dz + h
=3 25 (325" " + p3(s))dza + h(s)

3 3
h = 5(203,221/2 + @3(8)Inzg) + h(s) = 5(263041/2/)75/3 + 3(s) In 2z3) + h(s).

Then
€= ;ln pp1(s) + 2(203041/2/)5/3 + @3(s)Inz9) + h(s).
One can assume that
c3 = 0.
Then ] 3
€=3 In pp1(s) + 5@3(3) In zo + h(s).

Consider {51X1 + ’leg, X2 + ’}/QXg}.
Then (38) becomes

2(361 — 5711)aeq + (261 — 2v1)pe, = 2(01 — 2m)e — 041/291(,0)

or(s) — kip (81)

and
1072024 4 372p2, = 2(272 + 1)e + 2g2(p) — @a(s) + kop™ (82)

If 75 = 0, then ¢ = (—=1/2)(a'2g2(p) — w2(s) + kap™t). So £(p, @, s) can be trans-
formed to zero thus we will consider in case o # 0. The characteristic system of
equation (82) is

do dp ds de
10720 3yp 0 2(2792+ 1)+ a'/2g2(p) — pa(s) + kap™
Then
zZ1 =S
2 = ap~10/3
9 L (929 + D+ aV2g(p) — a(s) + hap ™)
dp  372p
2
— Ot = (2 + 1
e=Cp'sp 372( 72+ 1)

—1—p
/ p _
¢ = 37, (207 g5(p) — pal(z1) + kap™t)

Case 1 (u+ 1)u # 0, then

k
72,0717”) + h(Zl, 22)

1 . o1(z1)
C = (2"G@@p) + = pn - Tt
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Then

1 1/2 ~ 901(8) — ko 1
= (— + wo__ 12 _'_ h , 14
e = (5—(2""g2(p) P T’ )+ h(s, 22)p

One can assume that
go = 0,302 :O,kg :O,
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then
e = h(s, z)p".
Equation (81) becomes
2 48, 28, 2 . ) )
ghazhs, = (3§; + 51 - ,Z;)h + p R (g1 (p) — p P (5) + p k)

Dfferentiate this equation with respect to p one obtains
_ 1/2 _ _
AL (p02=D/G) (224, (p) — p~3¢p1(5) + p~3hy)) = 0.
Dfferentiate this equation with respect to z, one obtains
pgy + (12 = 2)/(372)g1 = 0,

then

g = c3p—(72—2)/(3“/2) .

Equation (83) becomes
2(1+272)p1p — (2 + Ty2)k1 = 0.
Splitting this equation with respect to p one obtains

(1 + 272)801 =0.

and

Since (p+ 1) # 0, then p; = 0 and k; = 0. Then equation (81) becomes

1/2
%ﬁlzthQ = (% + % — %)h + 6322/ .

For nonisentropic,3; # 0. The characteristic system of this equation is

@ _ 3dzg dh
0 262 (% + % - %)h + sz’
Then dh 3 48, 2B 2
1 1 71 1/2
— = — 4+ — " )h+ =
dzo 25122((3’72 3 72 ) 22"
3 4B 281 2
h:CZA,)\:— _— = - —
2 251(372 3 Y2 )
3 1/2
C'zy = T 0322/

3c3 —1-X+1/2
===
26,

(83)



Case 1.1 A =1/2, then
3cs
20 h
C = 55 nzy + h(s)
Then

h= (Tﬂllnzz—i—h( 5))z)

Then

<<§/311“2 b))

Case 1.2 X\ # 1/2, then
S0y M1/

¢= 251(—i i) is)

—A+1/2

3C3
201 (A +1/2)
B 3cdz1/2
C2B1(=A+1/2)

3

h=( + h(s))zy

303041/2/)_5/
C2B1(=A+1/2)

Then
363a1/2p_5/3

T 28 (=N +1/2)

Then one can asuume c3 = 0, so

e = h(s)zp"
Case 2 u = —1, then
LY

¢ = g(zé 2G2(p) — p2(21)p + ko In p) + h(z1, 22).
2
1 _E/3 .
= 372( a'2p 5B (p) — 2(z1)p + kalnp) + h(z1, 22).
Then ]
€= [372(041/2%)_5/393@) — @a(s)p+ kalnp) + h(s, z2)|p~

One can assume that
g2 = 07 Y2 = 07
then ]
= [(—Fk,1 h(s, -1
€ [(372 o Inp + h(s, 22)]p

Dfferentiate equation (81) with respect to p one obtains

(270 01(0) = er(s)p + kM In p) = 0.

Dfferentiate this equation with respect tozy one obtains

L8
pgl 391_7

1
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then
g1 =c3p .

Equation (84) becomes
(46 =7

Splitting this equation with respect to p one obtains
Y1 = O)

and
(451 — 7’71)]@2 = O
Case 2.1 403, — 71 # 0 , then ky = 0. Equation (81) becomes

%5122hz2 = —(4ﬂ1 — 7’}/1)h + 0325/2 + k‘l.

For nonisentropic,3; # 0. The characteristic system of this equation is

ds 3dzy dh

0 2Bz —(481 — Ty)h + 032;/2 +ki

Then i 5
— = 45, — h k
42 25122( (481 — Ty)h + c32/” + k)
-3
h = CZ%, A= 2761<4ﬁ1 — 7’}/1)
3
C'z) = 2+ k
2 = gp (@4 + k)
3¢3, —1-a41/2 1)
!
kyz
=g TR
remark A\ =# 0,
Case 2.1.1 A =1/2, then
363 klzg)‘
1 — h
€= 5 (inm — 25) 4 (o
Then
. 303 klzg’\ A 303 A kl
h = (2ﬁ1(ln 2T )+ h(s))zy = 2ﬂ1(1n2222 )\)+h(3)22
Then 5 "
c
[263; (In 2925 — )\1) + h(s)z]p~".
One can assume that k; = 0, then
Ay | h A 71
e = [+ A5
Case 2.1.2 X\ # 1/2, then
3C32 ST iz

C= + h(s)

261 (—A+1/2) A



3c32 ’\H/ kyzy ™
h= - h
e ey R WOl
1/2 1
) S h(s)z

T 2B (A 1/2) A
B 3C3Oé1/2p_5/3 kl
C2B1(=A+1/2) A

Then 12 —8/3
3cgac/“p” ky N1
= —_— h .
f= gy o TRl

Then one can asuume c3 = 0,k = 0, so

e =h(s)zp™"

Case 2.2 43, — 7y; = 0, then Then equation (81) becomes

)
281200, = 3237 — T(2 — Bk + k.

or
2 _ 1/2
381200, = 325" + k.

For 2 dimensional, 5 # 0. The characteristic system of this equation is

ds  3dz dh
0 2612 0325/2 + ks
Then 5
h = / 25 (esz"” + ks)dzy + h(s)
201
h = 5 2 (2e325"% + k3In 23) + h(s) = 5 (230?73 4 kzIn 29) + h(s).
26, 26
Then 3
€= [ kolnp 4 ——(2c30?p™3 4 ksIn 25) + h(s)]p~"
32 261
One can assume that c3 = 0,
C3 = 0.
Then 5
kol — ksl h -1
€= [372 2Inp+ 25, 31n 2o + h(s)]p
Case 3 =0 then
1 - _
C = ——('%Ga(p) — pa(z1) Inp — kop™") + h(z1, 22).

Then ]
ST 3y —(2"20(p) — pa(8) I p — kap™) + (s, 23).

One can assume that
g = 07 k2 = 07
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then

—1
€= 37, In ppa(s) + h(s, 22).
Y2

Dfferentiate equation (81) with respect to p one obtains

(= 2 0%3g1(p) + 2271 — Bi) In ppa(s) + kip~t) = 0. (85)

Dfferentiate this equation with respect to z, one obtains

;0 h
g, =0,
Py + 391
then
g1 =c3p 2.

Equation (85) becomes

4
5(2% — B1)pp2 — k1 = 0.

Splitting this equation with respect to p one obtains
k1 =0,

and
(2n — Bi)gp2 = 0.
Case 3.1 27 — 81 # 0, then ¢y = 0. Equation (81) becomes
%5122hz2 = 2(2’)/1 — ﬁl)h + (332;/2 — @1(8).

For nonisentropic,3; # 0. The characteristic system of this equation is

0 20120 202y — B)h+ sz’ — pu(s)
dh 3 1/2
dz 251Z2( (271 = Bu)h + c3z #1(s))
3
h=Cz,A=—(27 — B1)
B
O = 21N el — i(s)).
26

Remark A\ # 0, Case 3.1.1 A\ = 1/2, then

O = 2 (eslnz + 201(5)55 ) + h(s).

26
Then
3
h= (2 (esln 2o+ 200(5)25 ) + h(s))2? = o (5 Tn 2zl + 21(s)) + B(s) 2,
25 26
then

3
€= ma@m@@/+wm»+h@£@
1



One can assume that

Y1 = 07
Then
2 el h(s)]z2.
€= [25103 nzs + h(s)]z
Case 3.1.2 X\ # 1/2, then
—A+1/2 -
C = 1(0322 o 901(S>Z2 ) + h(S)
26, —A+1/2 —A
Then
3 ez’ ©1(5) N3 st PpT o (s) A
25 Taript A ) TR =g e T ) )z
Then - 5)
3 ,csa/cpT N A\
= — h
Tap T T ) e
One can assume that
C3 = O, Y1 = 0
Then
e = h(s)z.

Case 3.2 27 — 31 # 0, then equation (81) becomes

2B120hs, = c323"" — 2(2B1 — )a(s) — i1 (s).

or
1/2
§Z251hz2 = 0322/ + @3(s).

For 2 dimensional, 51 # 0. The characteristic system of this equation is

ds  3d% _ dh
0 2012 0322/ + @3(s )
3 1/2
h= o [ 2 (caz” + pa(s))dzz + h(s)
251
b — 1/2 3 1/2 —5/3
(20322 + @3(8)Inzg) + h(s) = —(2c3a“p 7" + @3(s) In 23) + h(s).

Qﬁl 251

Then

-1
€= 37 In ppa(s) + h(s, 22).
Y2

-1
—1 2c501 /% p5/3 ] h(s).
€= o n ppo(s) + 2, ( csa ' p + @3(s) Inzp) + h(s)
One can assume that

C3 = 0.

Then

e=5—Inpps(s) +

3
——3(s)1n z9 + h(s).
37 251903() 2 (s)
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Consider {51X1 -+ Q1X2, Xg}
Then (38) becomes

661020 + 20195, = 2(f1 — q1)e — ' gi(p) + ¢1(s) — kip™ " (86)

and
10aeq + 3pe, = 4e + a1/292(ﬂ) — @a(8) + kop™! (87)

The characteristic system of equation (87) is

do_dp_ds _ iz
Wa  3p 0 de+allg:(p) = pals) + hap~
Then
21 =S
2 = ap 103

de 1

@ _ 1y 1/2 _ Lo

i 3p( €+ a7g2(p) — pa(s) + kap™)

e=Cp'?
, p~7/3 12 53 .
¢ = T(Zz P77 g2(p) — w2(21) + kap )
1 . 3pa(z1) _ 3ky
C = L&V alp) + 2 o iy e )
1 53 3po(z1) _ 3ky _
= 3(a"2p 7 g (p) + @24(1),0 V=20 4 b, )
Fhen 1 3ps(z) 3k
I~ z _
e = g(OLl/Zgz(p) + 3024 1) ?QP 1) + h(21722)p4/3
One can assume that
g2 = 07902 :OakQ 207
then
e = h(s, 29)p*>.
Equation (86) becomes
2 _ b 1/3/ . 1/2 —5/3 —8/3
Pzl =205+ a)h + p (2 gi(p) = p7Ppu(s) + 07 k1)
Dfferentiate this equation with respect to p one obtains
L(p"3(2"%g1(p) — p~Pp1(s) + =5 k1)) = 0. (88)

Dfferentiate this equation with respect to z, one obtains

ro 1
+2g1=0,
PI1 391
then
g1 =cap” .

Equation (88) becomes
dprp — Tk = 0.



Splitting this equation with respect to p one obtains
Y1 = 0, k’l =0.
Then equation (86) becomes
%ﬁlzghm = 2(61 + Q1)h + 6321/ .

For nonisentropic,3; # 0. The characteristic system of this equation is

ds  3dz dh
0 2012 2(ﬁ +q1)h+03z;/2'
dh 3 o3t 1/2
h
dZQ 2/3122( ( + QI) + €322 )
h=Cz\= f(ﬁ1 +q)
I
3c3 71 A+1/2
O = )
26,
Remark A # 0,
Case 1 A = 1/2, then
C=—-c3l h
2&03 nzy + h(s)
Then
h = (—c;), In 2y + h(s))2y
261
Then

£=((z5c3lnz+h 473,
(st e+ h(s))p
Case 2 A # 1/2, then
A+1/2
C— 3c32y +h(s)
2601 (=X +1/2)

—A+1/2

363
261 (=A + 1/2)
B 30321/2
C2B1(=A+1/2)
—5/3

h=( +h(s))z

B 3esalp
T 2B1(=A+1/2)

Then
363a1/2p_5/3

T 28(—A+1/2)

Then one can asuume c3 = 0, so

+ h(s)23)p"".

e = h(s)zp*?

Three-dimensional algebras.
Let the basis generators are

X=X+X,, Y=Y+X,, Z=2+X,,
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where
X = B Xy + 1 Xo + 1 Xs, Y = B X1 + g2 Xo + 72X, 7 = Bs X1 + g3 Xa + 73X3.

Notice that o o o
X,¥]=0, [X,Z]=0, [V,Z]=0. (39)

Let us study the Abelian Lie algebra. In this case one has
(X, Y]=0, [X,Z2] =0, [\, Z] =0,
which means that
ClCé - (i(z =0, ClC:ls - C{C:’, =0, CzC:/a - C§C3 =0, (90)

and
[X,Y]=0, [X,Z]=0, [YV,Z]=0.

If (2 + (2 + (2 = 0, then the basis of this Lie algebra is
X, Y Z
If, for example, (; # 0, then one can assume that ¢(; = 1 and, hence,
G=oc, (3= c

where ¢; and ¢y are constant. This gives the following

X3+ 0g, Xi4+ X3, Xo+ X3, (91)
BXo+0s, X1+ qXs, Xs, (92)

Xl + 857 X27 X37 (93)

657 X27 X37 (94)

where v, 8, qyand g9 are arbitrary constants.
X1+ X +7X3+0s, Xi+qXs, Xo+ X3,

X1+ X +7X3+0s, X1+ qaXa, X,
Xy + BXy +7X3+0s, Xoy, X,
Xo+7X3+30s, , Xi+qXz Xo+ @Xs,
Xo+9X3+0s, Xi+qXy, X,
Xo+7X5+0s, Xa, X,

Xz +0s, X1+ qXs Xo+ @Xs,
X3+ 0s, X1+ qXa, Xi,
X34+ 0s, X5, Xj,

Os, Xi+qX3, Xo+ @Xs,

Js, X1+ qXa, X,

Js, X2, Xs,
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All three-dimensional non-abelian algebras are classified:

‘ €1 €9 €3 ‘ €1 €2 €3
er| 0 0 O e1| 0 0 e
= = <
L= 21" o o Le2zp= 11T 0 o<l <,
€3 0 €3 0
‘ e1 es €3 ‘ €1 €2 €3
e1] 0 O e1 er | 0 0 pep—e
= = >
L(373) es 0 e+ e ) L(3,4,p) ey 0 e + pes y P = O,
€3 0 €3 0
‘ €1 €y €3 ‘ €1 €3 €3 ‘ €1 €2 €3
e | 0 e 2e e | 0 ez —e Ty €@al0 e 0
L<375> - €9 0 es ’ L(37 6) - €9 0 el ) L(37 1) - €9 0 0 °
€3 0 €3 0 €3 0

Here e;, (i = 1,2, 3) are basis vectors of a Lie algebra and equality is conditional in
order to define the commutator table. Let us study L(3,1). In this case one has

(X, Y]=0, [X,Z]=0, [V,Z] =X,
which means that

GG — GG =0, (G — G =0, G — (k= (. (95)
and o o o -
X,V]=0, [X,Z]=0, [V,Z] = X.

Because of (89), one has that X =0. Hence, ¢; # 0, and where one can assume
that ¢; = 1. Equations (95) become contradictive. Let us study L(3,2,p). In this
case one has

[Xv Y] =0, [Xv Z] =X, [K Z] =pY,

which means that

GG — GG =0, G¢G— G ==, @G — (GG = pée. (96)
and N N N
(X,Y]=0, [X,Z]=X, [Y,Z] =pY.

Because of (89), one has that X=0and Y = 0. Hence, (1(> # 0, and where one
can assume that ¢; = 1. Equations (96) give that ¢, is constant, which contradicts

to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3,3). In this case one has

(X, Y]=0, [X,Z]=X, [\,Z]=X+Y,
which means that
GG — GG =0, GG -G ="7C, Gl — Gk ==+ (97)

and

(X,Y]=0, [X,Z]=X, [V, Z]=X+Y.



Because of (89), one has that X =0and Y = 0. Hence, (1(> # 0, and where one
can assume that ¢; = 1. Equations (97) give that (, is constant, which contradicts
to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3,4,p). In this case one has

(X, Y]=0, [X,Z]=pX =Y, [V,Z]=X+pY, (p>0),
which means that

GG — GG =0, GG — G =pG — G, G — (= G + pl. (98)

and

[(X,Y]=0, [X,Z]=pX -V, [Y,Z] =X +pY.
Because of (89), one has that X = 0 and Y = 0. Hence, (1( # 0, and where one
can assume that ¢; = 1. Equations (98) give that ¢, is constant, which contradicts

to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3,5). In this case one has

(X,)Y|=X, [X,Z]=2Y, [V,Z]=Z,
which means that

GG — GG =G, GG — G =20, Gl — (G = (. (99)

and L o

(X,Y]=X, [X,Z]=2Y, [YV,Z]="Z.
Because of (89), one has that X = 0,Y =0and Z = 0. Hence, (;(C; # 0, and
where one can assume that (; = 1. Equations (99) become

G=1 =26, G=G (100)
G=S+c, (3=85"4+2¢,5+c (101)
Thus, the basis generators are
X =0s, Y =250, Z=_S50s.
Let us study L(3,6). In this case one has
(X, Y]=2, [X,Z]=-Y, [V, Z] = X,
which means that
GG =G =G, GG —(G=—C, GG —GE=C(. (102)

and o o -

(X,Y|=2, [X,Z]=-Y, [YV,Z]=X.
Because of (89), one has that X =0,Y =0and Z = 0. Hence, (1((3 # 0, and
where one can assume that ¢; = 1. Equations (102) become

G=G =0, —G-G=0C (103)
(o = ey sin(S) + cpcos(S), (3 = c1cos(S) — epsin(S), —cf — 5 = 1. (104)
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Which is a contradiction. Let us study L(3,—1). In this case one has
(X,Y]=X, [X,Z]=0, [Y,Z] =0,
which means that
GG — e =G, GG — G =0, GG—GG=0.

and
X,Y]=X, [X,Z]=0, [Y,Z]=0.

(105)

Because of (89), one has that X =0. Hence, ¢; # 0, and where one can assume

that ¢; = 1. Equations (105) become

Thus, the basis generators have the form

X =0s, Y =805+ X1+ @2Xo + 72 X3, Z = [3X1+ 3 X2 +13X5.
Thus, one needs only to study the following three-dimensional algebras

X =0s, Y =805, Z=_85%g;

and

X =05, Y =805+ X1+ @Xo +72X3, Z = [3X1+ 3 X +13X3.
The latter is

X =0s, Y =805+ @Xo+7%X3, Z=X+@X+13Xs.

X =05, Y =805+ X1 +7%X3, Z=X,+13Xs.
X =05, Y =805+ B X1 + @Xo, Z=X3.
Consider {’)/Xg, + 88, X1 + qug, X2 + QQX?,}.
Then (38) become
10yaeq + 3ype, — g5 = dye + a2g1(p) — @1(s) + kip™".

2(5q1 — 3)aca + (3q1 — 2)pe, = 2(2q1 — 1)e + a%ga(p) — pa(s) + kop™t.
and
10g2064 + 3gape, = 2(2g2 + 1) + a'Pg3(p) — @s(s) + ksp™".

Consider equation (112) if go = 0, then € = (—1/2)(a'/2g3(p) — @3(s) + ksp~

e(p, a, s) can be transformed to zero thus we will consider in case go # 0.
Case 1. 7 # 0 The characteristic system of equation (112) is

dae  dp ds de
10g2a 3g2p 0 2(2g2 + 1)e + a'2g3(p) — p3(s) + kzp™t

Then
21 =S

2 = ap~10/3

(106)

(107)

(108)
(109)

(110)

(111)

(112)

). So
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de 1
— = (2(2¢, + 1 1/2 — k
dp 3qu( (22 + 1)e +a " gs(p) — @3(s) + ksp™™)
2(2 1
e = Cpu,“ — ( g2 + )
3q2
CpT TR g 1
C = T%(% p°g3(p) — p3(z1) + ksp™ ")

Case 1.1 (u+ 1) #0, or (g2 + 1/2)(q2 + 2/7) # 0,

1 k
C (2" G3(p) + ¢3LZI)p_# — 2 p ) 4 b1, 22)

E 1+ p
1 _r/a . 3p3(21) _ 3ks
= 7<O‘1/2/) 5/393<P) + S03(71)/) A8 — 73/? 7/3) + h(z1, 22)
3¢9 4 7
Then
1 e 3ps3(z1) _ 3ks _
= (37]2(041/2/) 3 Gs(p) + 2(1)/) 43— 73/) 3) + h(21, 22)) "

One can assume that
gs = 07(;03 :O7k3 :()7
then
e = h(s, z)pH.
Equation (110) and equation (111) becomes

h, = 2p — p(q2—2)/(3qz)(25/291(p) — p‘5/3g01(8) + p_8/3/€1) (113)

q2

(SS2) becomes

2oha, = 2(72 + g 4 Db+ ple DGR (5525 (p) — p s (s) + p k).
(114)
Dfferentiate equation (113) and equation (114) with respect to p one obtains

(216 (23 g(p) — p5p(s) + p=/3k)) = 0. (115)

Where g1 = g = g2,501 = ¢ = @o,k1 = k = ko, Dfferentiate this equation with
respect to 2o one obtains

by — (22
3q2

)g =0,

then
Then

(2—42)/(3¢2)

(2—112)/(3112)792 = ¢op )

g1 =ap
Equation (115) becomes
2(1+ 2g2)pp — (2+ Tg2)k = 0.

Splitting this equation with respect to p one obtains

(14 2g2)p = 0.
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Then
(14+2¢2)p1 =0, (14 2¢2)ps = 0.
and
(2+ 7g2)k = 0.
Then

(24 Tg2)k1 = 0, (24 Tg2)ka = 0.

Since (p+ 1)u # 0, then p; = 0,09 = 0 and k; = 0,k = 0. Then equation (113)
and equation (114) becomes

he = 2h— ¢z (116)

Zaohsy = (2 4 2 4+ )b + 2 (117)

The characteristics of equation (144) is

ds _dn __ db

1 0 z—Zh — 0125/2

dh 2
Oy clzé/2
ds p)

2
h=Ce \=2"1
q2

! —\s 1/2
C'= —cie V2

1/2 _
6122/ e As

C=—

+ il(Zg)
Then

Then

Equation (145) become

2ophsy = (2L 4 1 4 D)+ y2y/ %) (118)

w

Dfferentiate this equation with respect to s one obtains

C2>\ =0.
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Since v # 0, then A # 0, so ¢co =0 . Then

2o, = (20 4 g + D

3q2
Thus
B = c725—3%—4-2—4-112)/!12
b — C7Z§_3q1+2+q2)/q26>‘5
Then

(—3q1+2+4¢2)/q2 _Xs
729 e™)

e=(c Pt

Case 1.2 p =0, 0r go = —1/2,

2 5 _
C = —=(2"@(p) — ps(z0) Inp — ksp™ V) + h(z1, 2)

3
2 4 s 1
= —5(04 P~ gs(p) — p3(z1) Inp — k3p™") + h(z1, 22)
Then 5
e = =3 (@™ gs(p) = y(21) mp — ksp™!) + b2, 2)

One can assume that
g3 = 07 k3 = 07

then 5
€= §g03(5) Inp+ h(s, 22).

Equation (110) and equation (111) becomes

he = —47h — %" pg1(p) — 2(4(s) — 47p3(s)) In p + 2yp3(s) (119)
)

(SS2) becomes

22ohs, = 2(2q1 — 1)h + 25/2/?5/392()0)

3(20 — 1)a(s) In p — 201 — 2)pa(s) — a(5) + kap) (120)

Dfferentiate equation (119) and equation (120) with respect to p one obtains

1/2 ' _
(205 g1(p) + 2(p}(s) — 47es(s)) Inp + krp~t) = 0. (121)
(50" ga(p) + 4201 — 1)gs(s) Inp + kap™!) = 0. (122)
Dfferentiate these equation with respect to zo one obtains
)
+-g=0,
PY 39
Where g; = g = go, then
g=cp .
Then
g1 =c1p " g2 = cop /7.



Equation (121) and (122) becomes

2

g( 5(8) + dvps(s))p — ki = 0.

4
5(291 — 1)ps(s)p — ko = 0.

Splitting these equation with respect to p one obtains k; = 0, ky = 0 and
(i03(5) + 47eps(s)) = 0.

(2q1 — 1)ps(s) = 0.

Case 1.2.1 2¢; — 1 =0 then
©3(s) = ce™ 7%,

Equation (120) and equation (120) becomes
hs = —dyh — za"% ¢y + 2yeze ™ + ©1(8)

1/2

2 _ 4vs
S22l = 2 v

o+ 5c3e 4% — o(s)

The characteristics of first equation is

ds  dz dh
1 0 —dyh — 252 cy + 2y + p1(s)

dh
o= —4~h — zé/ch + 2veze % 4 1 (s)

h=Ce 4
I (. 1/2 —4vys dys 1/2 4rys 4vys
C'=(—2"c1 + 27c3e + 01(8))e™ = =25/ 717 + 2y¢3 + pi1(s)e

2
T E L o(s) + h(z)

Then
+ o(s) + h(z))e

= + (s)e™® + 3(22)6_475

-5/3 -
= 1 p(s)e™ + h(z)e

Since

€= §03e_478 Inp+ h(s, 2z2)
one can assume that ¢; =0, = 0,9, = 0, then
h = h(z)e "
Equation (145) become

1/2

2aohzy = (2 0o — a(s))eM®
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Dfferentiate this equation with respect to s one obtains

/

dyzy% ey — py(8) — dypa(s) = 0.

Dfferentiate this equation with respect to z, one obtains

vyeo = 0.

Since v # 0 then ¢y = 0 , then

(g = cze”
and )

§Z2h22 =G5
Then .

h = —%c5 Inzy + ¢y

Then

3
h = <—§C5 In 2o + C7)€74’ys

2 3
€= gcge’475 Inp+ (—565 In 2 + cr)e
One can assume that ¢; = 0 then

2

3
4vs 4~s
g = —C3¢€ lnp—fc In ze
3 3 2 b 2

Case 1.2.2 2q; — 1 # 0 then p3 = 0,k; = 0, ky = 0, Equation (120) and equation
(120) becomes
he = —4vh — 25/261 + ¢1(9)
$22ha, = 220 — 1)k + /%, — a(s)

The characteristics of first equation is

ds _dos _ i
1 0 —4~vh — z;/ch + p1(s)
dh
= —4~h — 221/2C1 + 1(s)
h = Ce %
C'= (—Z;/ch + <P1(5))€4v8 = —25/2016475 + 901(5)6478
_ 1/2 4ys B
C= 6124276 +(s) + h(22)
Then 12
_ dys -
h= (— 2+ p(s) + =)™
2
e S/2 )
= iyz + o(8)e™® + h(z9)e 1
cral/? 513
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Since

e = h(s, 22)
one can assume that ¢; = 0, = 0, then
h = h(z)e 1

Equation (145) become

2oh,, = (z;/2c2 — @2(5))6475

W

Dfferentiate this equation with respect to s one obtains

/

dyzy% ey — py(s) — dypa(s) = 0.

Dfferentiate this equation with respect to zo one obtains

yeo = 0.
Since v # 0 then ¢, = 0 , then
g = cse T
and .
%ZQhZQ = 2(2(]1 — 1)h — Cp
dh 3
= 2 202¢ — D —
= 52— Dh— )
Then .
h=Cz,\=302q —1)
/ _365 _1—
C = 5 2 =2
Since A # 0 then
—3c5 25
C = 5 > _27)\ + c7
~ —3c5 23 3cs
h:( 9 _27)\4—07)25:54—0725\
3
h = (% + crzy)e e
Since
e = h(s, z2).
One can assume that c5 # 0 ,then
£ = crzpe ®

Case 1.3 u=—1, or go = —2/7,

PRTR
C = —2(2"Gs(p) = ea(z1)p + kalnp) + h(z1, 22)

7 .
= —6(041/2/)75/593(,0) —3(z1)p + klnp) + h(z, 22)
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Then
7 1/2 —5/3 ~

e = (=5 "p™"g(p) = pa(s)p + kylnp) + (s, 22))p

One can assume that

-1

g3 = 07 Y3 = 07
then

7
£ = (_6k3 Inp+h(s,2))p "

Equation (110) and equation (111) becomes

hs = —Tvh — 22091 (p) + 2In pks — Tyks + 1(s)p — k1) (123)

(SS2) becomes

%ZQhZQ = (Tq1 —4)h + Z;/ng)/gg?(p) - (%gql - 13*4) In pk3 + (%‘h - %)k@ (124)
—pa2(s)p + k2)

Dfferentiate equation (123) and equation (124) with respect to p one obtains

%(25/2/)5/391 (p) + §vInpks + @1(s)p) = 0. (125)
@0 ga(p) = (a1 — ) I phs — s (s)p) = 0. (126)

Dfferentiate these equation with respect to z, one obtains

;8
—g=0,
pg + 39
Where g1 = g = ¢, then
g=cp¥3.
Then
g1 =cap g2 = c5p%.

Equation (125) and (126) becomes

49
@1(S>p + g’ykg =0.

49 14

—(—=—q1 — = )ks = 0.
p2(s)p — ( 6 1 3 )k3
Splitting these equation with respect to p one obtains ¢ = 0,9 = 0 and
"}/kg =0.
49 14
—q — —)k3 = 0.
( 6 il 3 )k

Since 7 # 0 then k3 = 0 Equation (123) and equation (124) becomes
hs = —T7vh — z;/204 — kq

2oohsy = (Tq1 — 4)h + 25 % cs + ko
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The characteristics of first equation is

ds_@ dh

1 0 —T7vh — z;/2c4 — ky

dh
— = —Tyh— 2 — Kk
ds

h=Ce ™
O = (-2, — k)™
(—25/204 — /{31>€778

C = T

+ ﬁ(zg)

Then
(—25/204 — ky)e™®

7y

LMk .
_ ( 22 70;1/ 1) _i_h(ZQ)e—?'ys

—al/2,75/3,, — -
_ ( [0 p 77 Cy k:l) + h(ZQ)e—Tys

h = ( + h(zy))e

Since
€= h(S, 22)p_1

one can assume that ¢4, = 0, k; = 0, then
h = h(z)e ™
Equation (124) become

2 0., = (Tqn — 4)h + 25/2056775 + ko™

w

Dfferentiate this equation with respect to s one obtains
7’yz§/zc5 + Tvky = 0.
Dfferentiate this equation with respect to z5 one obtains
ves = 0.
Since v # 0 then ¢5 = 0,ky = 0 , then

%752%22 = (7Q1 - 4)h

Then .
h=crz3, A= 3(Tq1 — 4)
Then
h= c7z2’\6_773
So,
£ =crzpe p!
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Case 2. 7 =0 Then (38) becomes
es = —a'Pgi(p) +pi(s) —kip™". (127)

2(5q1 — 3)aca + (3q1 — 2)pe, = 2(2q1 — Ve + a2g5(p) — pa(s) + kap™t.  (128)
and
10g2024 + 3q2pe, = 2(2g2 + 1)e + a/2g3(p) — @a(s) + kzp~™. (129)

Consider equation (129) if go = 0, then ¢ = (—1/2)(a'/2g3(p) — @3(s) + ksp™'). So
e(p, a, s) can be transformed to zero thus we will consider in case g, # 0. Equation
(127) gives

e = ("?qi(p) +kip™")s + h(a, p)

Dfferentiate equation (128) and equation (129) with respect to s one obtains
g1(p) = cyp?=2)/Ba2)

(44 +5) =0

Case 2.1 _q—gl + % + % = (0 one obtains @y = ¢, 3 = c3 and
ki(§a+3)=0
ki (Tga +2) =0

Case 2.1.1 1gs + 2 = 0 Equation (128) and equation (129) becomes

iaha + 3php = —ih —a'?gy — kop™' 4 ¢y (130)
The characteristics of first equation is
Tda  Tdp dh
20 20 —%h—al/Qgg—kgp—1+CQ
z=ap!

dh 7T, 2
ap %(‘%h — gy — kap™ + )
h=Cp!
7 _
C'= 5(—041/292 — kap™! 4 c2)

r T _
¢ = 5(—21/2[)1/292 — kap™! + )

7 B ~
C = 5(—21/292 —kolnp+ cop) + h(2)
Then

7
h=(=
3

One can assume that g = 0,c = 0, then

(—2"2G2 — kalnp + c2p) + h(2))p ™"

7 -
h=(~gkalnp+(z)p
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Equation (129) gives
g3 = cgp”?
and
Thky —c3p=10
Splitting this equation with respect to p one obtains c¢3 = 0, ko = 0. Equation (129)
becomes

Azh, = 2h — 2/%c5 — ks (131)

Then ~

dh 1

E = @(2]1 — 21/206 — kg)

h=CzY?
;1
C = Zz_l_lm(—zlﬂcﬁ —ks3)
1
C = Z(—cﬁ Inz+ 2]{32’1/2) + cr

Then

1 1
h = (Z(—cﬁ Inz + 2kszY2) 4 ¢7) 22 = Z(_Cﬁ In 222 + 2k;) + c2'/?

Then 1
h = <<Z(_CG In 222 + 2k3) + cr21/2)p !

e =(aPep™? + kip™h)s + ((1(—coln22"/? + 2ks) + c72'/%)p!

One can assume that k3 = 0, c; = 0 then
e = (a2cip732 + kip')s — teg(Inz) 21/ 2p !
Case 2.1.2 %qg + % # 0, then k; = 0, Equation (128) and equation (129) becomes
10g20thy + 3q2ph, = 2(2g2 + 1)h + a/2gs + kap™' — c3 (132)

The characteristics of first equation is

da dp dh
10g20 3gap  2(2q2 + 1)l + al/2g3(p) — c3 + kzp™

Then
o ap’w/?’
dh 1
- = 2(2 h+ ao'/? — ksp !
a0 3qu( (2¢2 + D)h+ ' g3(p) —cs+ ksp™)
2(2 1
h:Op#,M: (q2+)
3q2

, M
¢ = pT(al/nga(P) —cs+ksp )
q2

Case 2.1.2.1 (u+1)u#0, or (g2 +1/2)(g2 +2/7) # 0,
G _ ks

1 -
C=—(a"Pg(p)+=pH——2_pl=my 4 )
(/% g3(p) G T’ )+ h(z)
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Loy ¢ 31— A
= 4+ 2o "+ h
30 (/% gs(p) P T’ )+ h(z)
Then
h= (0G0 + Do — F oy 4 )
3q2 I+ p

One can assume that
g3 :O7C3 = 07k3 = 07

then
h = h(z)p".

One obtains

k’g(2 + 7(]2) =0

and
e2(1+2¢2) =0

Since (u+ 1) # 0, then ko = 0, co = 0, Equation (128) becomes

2 - 1-
3= 3h+ M2y (133)
Then -
dh 3 1-
w9 h 1/2
dz 22(3 2176)
h = (22
3
C = 527171/2(2,1/20 )
C==-cslnz+cy
Then 5
h = (505 Inz+ 07)21/2
Then

3
h = (505 Inz + ¢7)2'/2pt
£ = (a}2¢,p2—92)/(Ba2)) 5 4 (305 In z 4 ¢7)2/2pk
One can assume that ¢; = 0 then

Case 2.1.2.2 =0, 0r g = —1/2
2 1 - -1
C= —g(a Gs(p) —eslnp —ksp™) + h(2)
Then 5
h = —g(a1/29~3(/)> —c3lnp —kgp™") + h(2)

One can assume that
gs = 07 kS = 07
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then

One obtains

g2 = csp
ko =0
and
c3=0
Equation (128) becomes
gzﬁz = ;}Nl + 220 — ¢y (134)
Then -
Z]; = 232(;;1 + 22¢5 — ¢y)
h=CzY?
o — 22—1—1/2(21/205 — &)
C= 205 Inz+ 202 Y% + cr
Then i 5
h = (505 Inz+ 2cy2 2 + 07)21/2
Then

3
h = (505 Inz + 2272 4 ¢7) 212
One can assume that ¢; = 0,c¢; = 0 then
e = (al/2c,p?m2)/Be2))s 4 3¢5 (In z) 212
Case 2.1.2.3 = —1, or go = —2/7,
7

¢= —6(041/2@3(/’) — c3p+ ksInp) + h(2)
Then

_ _Z 1/2 ~ _ 1 7 -1

h = ( 6(04 Gs(p) — csp + kslnp) + h(z))p
One can assume that
gs = 07 C3 = 07
Then
7

h=(=ghsinp+ h(z))p

One obtains

and



Equation (128) becomes
2 - 1-
gth = gh + 21/205 + ]{32

Then ~

W DGRt 2P+ k)

h=Cz'/?

C = 22_1_1/2(z1/205 + ko)

C= 205 Inz— 2k 2 4 ¢r
Then ) 5

h = (505 Inz— 2kyz /2 + 67)21/2

Then

3
h = ((505 Inz — 2ky2 2 4 ¢7)2Y2)p !
One can assume that ky = 0,¢; = 0 then
e = (al/2e,p?®2)/Be2))s 4 3c5(In z) 21/ 2p!
Case 2.2 _q—‘;l—i—%—l—%;éOthenQ:Othen
e = (kip™")s + h(a, p)

ki(Tqr —4) =0

For nonisentropic k; # 0 then
Tg1—4=0, T2 +2=0

Equation (128) and equation (129) becomes

3ozha + iphp = —ih —al/ g2 k:gp + co
The characteristics of first equation is
Tda  Tdp dh
200 2p —%h —al2gy — kop=t + ¢y
z = ozp_1
(cilz = 27p(_§h —a'2gy —kop™t + )
h=Cp™*

7 _
' = 5(—041/292 —kopt )

/

7 .
C = 2( 1/2p1/2g ka 1+C2)

(135)

(136)
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7 -
C= 5(_21/2572 — kolnp + cop) + h(2)

Then 7
h= (5(=2"2s = kalnp+ cap) + h(=))p ™"

One can assume that go = 0,c = 0, then

7 = _
h = (—§k2 Inp+ h(z))p™

One obtains
gs = cgp”?
and
C3 = 0
Equation (129) becomes

22h, = —2"%cq + 3ko — ks

Then -
2}: = 22(—21/206 + 3ko — k3)
B — ;/z—l(_zl/%6 + ky)dz + ¢7 = ;(20621/2 +kyInz) + ¢
Then

7 1
h = (—§k2 Inp + 5(20621/2 +kslnz) + c7)p !
One can assume that ¢g = 0,c; = 0 then

e=(kipt)s — (Zkolnp — skslnz)p~!

Consider {fX; + 05, X1 + 1 X2, X3}
Then (SS1) becomes

s = =28 — a2g1(p) + pi1(s) — kip .

(SS2) becomes

6acy + 20, = —2(q1 — 1)e — a2ga(p) + pa(s) — kop™t.

(SS3) becomes
10ag, + 3pe, = 4e + a'/%g3(p) — @3(s) + ksp™L.

Case 1. (§ # 0 The characteristic system of equation (112) is

da_@_ds de

10a  3p 0 de+a'g3(p) — @s(s) + ksp "

Then
VAR

2 = ap~10/3
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de 1 _
gy = 3,045 0 g0) = @als) + kep™)
e =Cp'?
,pY 1/2
C' =" (20" g5(p) — p3(z1) + ksp™")

1 e 3v3(z1) 3ks
= g(al/zp 5/393(p)+¢?’i1)p 43— 73,0 3 + h(z1, 2)

Then

1 R/ 3p3(s) _ 3ky
e=(3(a"?p 5/393(p)+z(>p V= =20 b, 22))p?

One can assume that
g3 :07803 :O7k3 :()7

then
e = h(s, z)p*>.
Equation (110) and equation (111) becomes
hy = =261 — 2,/%p"Pg1(p) + p~Pp1(s) — p ks (141)
F2oha, = 20+ 3)h + Zé/Zﬂl/g’gz(P) — p3pa(s) + p~¥Pky (142)

Dfferentiate equation (141) and equation (142) with respect to p one obtains

AL (ple=2/G) (2,2 g(p) — p=>p(s) + p~*/°k)) = 0. (143)

Where g1 = g = g2,01 = ¢ = @o,k1 = k = ky, Dfferentiate this equation with
respect to zo one obtains

pg + ;g =0,
then
g=cp
Then
g1 =cap P gy = csp” 2.
Equation (115) becomes
icpp — ;k; =0.

Splitting this equation with respect to p one obtains
p=0k=0

Then
01 =0,00=0,k; =0,k =0.

Then equation (141) and equation (142) becomes
hy = 28h — c123/* (144)

%ZthQ = (2(]1 + %)h + CQZ;/2 (145)
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The characteristics of equation (144) is

ds _dn __ db

10 _2Bh—01z§/2

dh

T 2B8h — 0125/2
h = Ce*Ps

C' = —cre 25,1/

1/2 _
6122/ e 2Bs

C= o

+ iL(Z’g)

Then

Then

Then one can asuume c¢; = 0, so

Equation (145) become
%zzi% = 2q11~l + 6225/26()‘8)
Dfferentiate this equation with respect to s one obtains
8 = 0.
Since 8 # 0, then ¢ = 0 . Then

%ZQBZQ = (2(]1 + %)B

Thus

5 1

h = ¢zt

3q1+1
h = C7Z2¢11+ eZﬁs
Then
3q1+1
e = 6722q1+ eQ,BspéL/S.

Case 2. =0

Then (38) become
es = —a'?g1(p) + ¢1(s) — kap~".

6aey + 2pe, = —2(q1 — 1)e — a/2ga(p) + pa(s) — kap™™.

(146)

(147)
(148)

101



102

and
10ag, + 3pe, = 4e + a'/%g3(p) — @3(s) + ksp™L. (149)

Equation (147) gives
e = ("?q1(p) + k1p™")s + h(a, p)

Dfferentiate equation (148) and equation (149) with respect to s one obtains

q1(p) = cap™/3

Equation (148) becomes
ca(qr + é) =0

If ¢ + % # 0 then ¢4 = 0. Splitting equation (148) and equation (149) with respect
to p one obtains
0o =2(q1 — 1) [ r1(s)ds + ¢z

Y3 = 4 f ng dS + c3
]{?1 == 0
Then is not nonisentropics, So ¢; + % = 0 Splitting equation (148) and equation
(149) with respect to p one obtains
—1 [ @1(s)ds + ¢

Y3 = 4 f (pl dS + c3
1{31 - 0
Equation (148) and equation (149) becomes

(150)

10ahy + 3ph, = 4h + a2gs + ksp™' — 3 (151)
The characteristics of first equation is

da dp dh

100 3p 4h+all?gs+ksp~! —

dh 1
dp %(‘Ub +a' g3+ ksp™! — c3)
h = Cp*/?

1
O/p4/3 _ SIO( 1/2g3 + kgp o CS)

A _
C = gp 7/3( 1/2p5/39 + kgp 1 03)
1 3. 3 _ =
C = 3( M2 — 7kp 7/34—031[) 3) 4+ 1(2)

Then ] 3 3
h= (G255 = Shop % + 3o %) + h(z)
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e = (a'eap™%)s + h(p, @)

One can assume that g3 = 0,k3 = 0,c3 =0, then
h = h(z)p"*
Dfferentiate (148) with respect to z one obtains

g2 =csp”'/?

and
7k2 — 402p =0

Splitting this equation with respect to p one obtains ¢y = 0, ks = 0. Equation (149)
becomes

2 - 1~
§zhz = §h + 212%¢q (152)
Then -
dh 3,1+
I e /2
dz 22(3h o)
h=Cz'/?
;3
C = 52—1—1/2(21/205)
3
C = 5(65 Inz)+ ¢
Then 3 3
h= (5(05 Inz) 4 ¢7)2? = 565 In 222 4 ¢721/2
Then

3
h = (505 Inzz'2 + c7z1/2)p4/3
e = (a'eyp™)s + (2esIn 22"/ + ¢721/%) p*/3
One can assume that ¢; = 0 then
e = (aM2ec,p7 ) s + Se5(In 2) 212 p"/3

Consider {X; + 05, Xa, X3}.
Then (38) become

6aey + 2pe, + &5 = 26 — a2, (p) + pu1(s) — kipL. (153)
2e = —a'2ga(p) + pa(s) — kap™". (154)

and
10ag, + 3pe, = 4e + a'/%g3(p) — @3(s) + kap™L. (155)

Consider equation (154) one obtains e = (1/2)(—a'?gy(p) + @a2(s) — kap™t). So
e(p, a, s) can be transformed to zero.
Consider {0;, X5, X3}.
Then (38) become
es = —a?gi(p) + pi(s) = kip™". (156)

2e = —a'Pgy(p) + pa(s) — kap™". (157)



and
10ag, + 3pe, = 4e + a'/%g3(p) — @3(s) + ksp™L. (158)

Consider equation (157) one obtains ¢ = (1/2)(—a'/2g2(p) + w2(s) — kap™'). So
e(p, a, s) can be transformed to zero.
Consider {0, s0s, s°0s}. Then (38) become

es = —a'?g1(p) + 1(s) — kaph. (159)

ses = —a'?go(p) + pa(s) — kap™ . (160)
and

s%es = —a?g3(p) + p3(s) — ksp". (161)

Equation (159) gives

e =—aqu(ps+ [ ea(s)ds ~ kup s + hipa).
One can assume that ¢; = 0. Equation (160) and equation (161) become
a'?(=g1(p)s + g2(p)) — @a(s) — (kis — ka)p~" = 0. (162)

a'(=g1(p)s* + g3(p)) — w3(s) — (k1s® — ks)p~' = 0. (163)

Dfferentiate equation (160) and equation (161) with respect to a one obtains ¢; =
0, go = 0. and g3 = 0. and dfferentiate equation (160) and equation (161) with
respect to p one obtains k& = 0, ky = 0. and k3 = 0. then ¢ = 0, and p3 = 0,
Then ¢ = h(p, ), which is gas dynamics.

Consider {0;, s0s + ¢2X2 + 72 X3, X1 + ¢3X2 +73X3}. Then (38) becomes

es = —a?g1(p) + pi(s) = kip™". (164)
10908, + 3720, — 565 = 2(272 + q2)e + a2ga(p) — pa(s) + kap™ L. (165)
and
2(573 — 3)ac, + (373 — 2)pe, = 2(273 + g3 — 1)e + a/2g3(p) — p3(s) (166)
-1
+ksp™".
Equation (164) gives
e =~ (p)s + [ (s)ds — kg s+ hp,a)
One can assume that ¢; = 0. then
e =—a'gi(p)s — kip~'s + h(p, ).
Case 1..1 75 # 0,73 # 2/3 then one obtains
P |
Y2P91 + g(% —2¢2—1)g1 =0 (167)
2., 1
(73 = 3)pgr + 5(v3 =23 = 1)g1 =0 (168)

3 3
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Then
g = C4p*ﬁ(’m*2%*1)
and 2 1 1
Y3492 3 q2
—t —— — — — — —q3— =) =0
4( 72 22 372 372 % 6)

Case 1.1.1%—1—%—%—%—%—%7&0,thenc4:OThen

e=—kip's+h(p, ).

equation (165) and equation (166) give ¢y = c3, @3 = c3 and for nonisentropics
k1 # 0 then

IO R S
42 = 272 9 43 = 273
The characteristic system of equation (165) is
dae  dp dh
102 3yap (=372 — D)h 4+ al/2gs(p) + kap™' — 2
Then
2= ap 0B
dh 1
dp 372p((—372 — Dh+a'g5(p) + kap™" — )
h=Cp = —3p-1
372
,opt 1/2 -1
C =—F—(a"g(p) +kap™" —c2)
372
=3, (2'2Ga(p) + kap ™27 — cp™' )
Remark p # —1

Case 1.1.1.1 pp# 0 or 75 # —1/3 then

1 1/2 ~ kg Ay Co —u =
=5 - —= h
c (2% ga(p) T +Mp )+ h(z)

1 1/2 ~ K “1—p , G2 _ 7
= — - + 20" +h
372(a G2(p) 7 F )+ h(z2)
Then
b= (o (0" 2galp) — 2 p i 2y ()
372 L+p Y

One can assume that
g2 =0,k =0,c0 =0,
then .
h = h(z)p"

g3 = C6p*(1+872)/(372)

]{33:0,0320



Equation (166) becomes

2 - 1 ~
3ohe =2 s = 3)h+ e (169)
2
Then _
dh 3,1 2 -
I —3h 1/2
~ 3 2
h=CH A= —"—(y3— =
C = §Z—1—>\+1/2C
5 6

Case 1.1.1.1.1 A =1/2 or 13 = (72 + 2)

3
C= §C61HZ+C7

Then 3
h=(Scglnz+cr)2'/?

Then 3
h = ((icﬁ Inz + c7) 2% p#

One can assume that ¢; = 0 then

3
e=—kip s+ 506(111 2) 22,

Case 1.1.1.1.2 A # 1/2 or 73 # L (12 + 2)

r3
o = 2,1 A+1/2C6

3 z—)\+1/2

O =" e
2 N yip T

Then A+1/2
~ 3  z

h=(zcg——— A

(206_>\ 1/2 + 7))z

3 Z—)\+1/2

= ((Zep— A)
h ((266_)\+1/2+C7)Z)p

One can assume that ¢g = 0 then
e=—kipts+ 2t

Case 1.1.1.2 ;1 =0 then 35 = —1/3
C' = =(z"2q@(p) + kap™® = cop™")

Then .
—(2"2Ga(p) = k2p™" = calnp) + h(2)

h = _(21/2§2(P) —kop™' — calnp) + iL(Z)
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One can assume that

then

Since 3y3 — 2 # 0 then
Then

Equation (166) becomes

Then

Remark A # 0

92:07/{52:07

h=cylnp+ h(z).

g3 = cep*?

kg - 0
(373 —2) =0

k3:0702:O

h = h(z)

92 . N
gzhz = (=373 + 2)h+z1/2(:6 —c3

dh 3

- = 7((—3’}/3 + 2)hti‘21/206 — Cg)

. 3
=02\ = 5(—373 +2)

>

Case 1.1.1.2.1 A=1/2 or 73 =5/9

Then

Then

One can assume that cs3

3
C = 5(06 Inz + 2c32Y2) + ¢;

~ 3
h = (i(cﬁ Inz + 2c32~ V%) + ¢7) 22

3
h = (i(cﬁ Inz + 2c327 %) + ¢7) 22

=0,c; =0 then

h= z;cﬁ(ln 2)z1/?

3
e=—kip s+ 506(1n 2)242.

Case 1.1.1.2.2 A # 1/2 or v3 #5/9

c==

3 Zf)\+1/2 c3
2(667—)\4—1/2—’_—7/\2 )+C7

(170)
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Then A+1/2

g 3 Z_ 63 )\ by

h= (2ot B

Gl apt o3 )t
One can assume that ¢g = 0, c3 = 0 then
il = C7Z)\
Then
€= —klp_ls + 2.

y3q2 4 Y3 _2¢2 1 1 _
Case 1.1.2 T 3y T3 T3, B s = 0 Then

e=—a'gi(p)s — kip~'s + h(p, )
equation (165) and equation (166) give ¢o = co, @3 = c3 and

Case 1.1.2.1 7y + 2q2 + 1 # 0 ,then k; = 0 then
e =—a'gi(p)s + h(p, )

The characteristic system of equation (165) is

da dp dh
102 3y2p 2272 + q2)h + a'2ga(p) + kap™! — ¢y
Then
2= ap 103
dh 1
CTP = 372,0(2(2’72 +q2)h + 041/292(0) + kopt — c2)
2(2
372
;pH 1/2 -1
C =——(a g2(p) + kop™ — ¢2)
372
1 N o 1
= 372(2’1/292(0)+k2p P —eypT T
Case 1.1.2.1.1 p(u+1) # 0 or (292 + g2)(7v2 + 2¢2) # 0 then
1 N ko Ca _ 7
C=_— 1/2 o 1—p T2 h
3%(z 92(p) = 1~ g + 7 )+ h(z)
= L@ 2gy(p) - 2yt 2y 4 ()
372 1+p 7
Then ) .
b= (— (a2 2l 2 -1y 1] "
(372(0 g2(p) Tt L7 )+ h(2))p
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then ~
h = h(z)p"
k?g = 07 C3 = 0
Equation (166) becomes
2 - 2 1 -
gth = :sz — 3772 + g)h + 21/206 (171)
Then _
dh 3 Y3 2 ~ 1
L (G o V4 /2
dz 2z( Yo o 3o + 3) 2 1)
= 3 Y3 2 1
h=C\==(2 - 4 -
° 2(’72 372 " 3)
o — §2717>\+1/2C6
2
Since 73 # 2/3 then A # 1/2
o - 22—1—)\—1—1/206

3 LAL/2
C= §CGT1/2 +c7
Then ~ 3 LAH1/2
h = (§Cﬁm
3 AH1/2
h = ((§CGT1/2
One can assume that ¢g = 0 then

+ C7)Z/\

+er)2?)p!

e = —a'%g1(p)s + cz27p.
Case 1.1.2.1.2 ;= 0 or gy = —27, then
1

€ = 5 (P(p) ko™ — sl p) ()
1 1/2 ~ -1 7
=3, (@' 2g2(p) — kap™" — c2lnp) + h(2)
Then 1
h = 372(041/293(/)) —kap™! = calnp) + h(z)

One can assume that
go = 07 k? - 07
then

1 .
h=—c¢1 h
37202 np+ h(z)

g3 = cep”*?
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kg == O
ca(v2+373—2)=0
Case 1.1.2.1.2.1 v, + 373 — 2 = 0 then Equation (166) becomes

2 - 1
*th = 21/206 + c3+ =co (172)
3 3
Then ~
dh 3 1
= %(21/266 +c3+ 302)
~ 3 ~1/2 1 _1 3 1/2
h = 5 (27 cg + (c3+ g@g)z Ydz + 7 = 5(22 ce + (c3 + 502) Inz)+cr
One can assume that
Ce = 07 Cr = 07
then 3 )
il = —5«03 + 502) In Z)
Then 1 3 )
h = 3—%02 Inp— 5((03 + 562) In 2)
-1 3 1
e = —alg (p)s + 3—7202 Inp— 5((03 + 502) In z)
Case 1.1.2.1.2.2 v, + 3y3 — 2 # 0 then ¢o = 0 Then
h = h(z)
Equation (166) becomes
2 - V3o 2 !
“zh, = (= - h+ 2 %cs — 173
(72 372—%3) + 2% — ¢ (173)
Then ~
dh 3 v 2 1.-
B (L T X 120, —
3 V3 2 1
B2,

3
e —1—)\(21/206 . 63)

C = 57
Sinceys # 2/3 then A # 1/2 and since v9 4+ 373 — 2 # 0 then A # 0

3
2Tl 2,

C =
2
3 Z—)\+1/2 Z—A
C=- -
Ph ey R O
Then /2 \
3 z- z-
) + C7)Z>\

h= Gl RS
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One can assume that
Cg = 0, C3 = O,
Then N
h = ¢z
h = ¢z
e=—a'gi(p)s + 22"

Case 1.1.2.1.3 py=—1lor ¢ = —%’yz then

1 3
C=g-( 22Ga(p) + k2 In p — cap) + ho(2)
Y2

1 ~
= 55,(@"%62(p) + ko Inp — cap) + h(2)
2
Then

1 -
h= (- (0" a(p) + kalnp = cap) + h()p”
2

One can assume that
go = 07 Co = 07

then 1
h=(—ksl + 71 -t

g3 = cop ®

A e o S L IS R e s
03:0

ka(y2 + 373 —2) =0
Case 1.1.2.1.3.1 v, + 373 — 2 = 0 then Equation (166) becomes

2 - 1
gzhz = 21/206 + k?3 + gk)g (174)
Then -
dh 3

( 1/206 + kg + Bkz)

h= 2/(2_1/206 + (ks + §k2)2_1)d2 +eor = 2(22 c6 + (ks + 3k2) Inz) +c7

dz 22

One can assume that
Cg = 0, C7 = O,
then
~ 3 1
h = 5((1@‘3 + §k2) In 2)
Then

3
h = (Tkﬁzlnp—i— ((k’g—l— ]{32)1112)) -1

3 _
€= —041/291(0)3 + (37%%2 Inp + 5((]?3 + gkz) Inz))p !
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Case 1.1.2.1.3.2 v + 3y3 — 2 # 0 then ks = 0 Then

h=h(z)p!
Equation (166) becomes
2 - Y3 2 1.~ 1/9
Soh = (B 2 e+ k 175
37 (72 372+3) + 2% + ks (175)

Then

3
C = 52_1_’\(21/266 + k3)

Sincevys; # 2/3 then A # 1/2 and since v5 + 373 — 2 # 0 then A # 0
3 A2 LA

¢= §<06—A+1/2 Tk

3_>\)+C7

Then A1/2 A
~ 3 2z~ z~
h=(=(cq————— + kg =— A
Gl ap th=) +a)
One can assume that
Cg = 0, k’g = O,

Then

h = c:2*

h=czp?
e=—a"gi(p)s+crzp!
Case 1.1.2.2 Ty, +2go + 1 =0 , then go = (—1 — 773)/2 then k; = 0. So

e =—a"g1(p)s + h(p,a)

The characteristic system of equation (165) is

dae dp dh
10ma 372p (=372 — Dh+a'2g(p) + kep™! — ¢
Then
2= ap 103
dh 1
— = —37, — 1)h 4 al/? kop™t —
i 3%[)(( Y2 — Dh+aZga(p) + kop™ — c2)
h=Cp' = —3r-1
372

’ p—l—,u,
C' ="——(a"g:(p) + kop™ — c2)



1 - a9 1
= 5, (3 0(0) + ko™ = cap™ )
Remark p # —1

Case 1.1.2.2.1 p # 0 or 75 # —1/3 then

1 k -
C = ——("Gy(p) — —2—p '+ 2y 4 ho(2)

372 T+mp Iz
Ly ke i, c2

= —(a -— + =p ")+ h(z
372( g2(p) T L7 )+ h(2)

Then

One can assume that

then .
h = h(z)p"
kg = 0, C3 — 0
Equation (166) becomes
2 - 2 1.
Then
dh 3 Y3 2 = 1
R (L h /2
dz 22(("}/2 372 +3) +27e)
3 2 1
h=CcAa=2(B - = 40
22 3 3
o - 32_1—A+1/206

Sincevys; # 2/3 then A # 1/2

;3
C — 52’_1_)‘“/206
3 zf)\+1/2
C="c——
2 N1
Then A+1/2
~ 3 -
h= (e
2901 1/2
3 Z—)\+1/2
h=((Ce——
(G417

One can assume that ¢g = 0 then

+ C7)Z>\

o))

e =—a'?g1(p)s + ez
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Case 1.1.2.2.2 y =0 or 75 = —1/3 then

¢= _(21/252(/7) — kap™t = coInp) + h(2)

= —(a'?Ga(p) — kop™" — c2ln p) + h(2)
Then

h=—(a'g(p) = kap™' = calnp) + h(2)

One can assume that
g2 =0,k =0,

then )

h=cylnp+ h(z)

gs = cop”?
ks =0

62(9’)/3 — 7) =0

Case 1.1.2.2.2.1 3 = 7/9 then Equation (166) becomes

2 1

gzﬁz = 225 — 5 — o (177)
Then ~
dh 3 1
E = %(21/2C6 — C3 — gk'Q)

~ 1 1
h = /g(z1/2cﬁ — (e3 + gkg)zil)dZ +cr = 2(221/206 — (e3 + §k2) Inz)+c;

One can assume that
Cg — 0, Cr = 0
then

= 3 1
h = 5(—(03 + gk’g) In 2)

Then 3 )
h=cylnp+ 5(—(03 + gkg) In z)
e=—a’gi(p)s+calnp+ 5(—(03+§k2)lnz).
Case 1.1.2.2.2.2 43 # 7/9 then ¢y = 0 then

h = h(z)
Equation (166) becomes
2 - 7.~ 1/9
gzhz = (=373 + g)h + 2Y%¢c5 — ¢y (178)
Then -
= (Bt D+ e — o)

= 3 7
h: A = —(— —
Cz ,)\ 2( 3’73+3)
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3
C = 52717)\(211/206 — Cg)

Remark A # 0
Sinceys # 2/3 then A # 1/2

3 S=A+1/2 A
c="= =
@1 ey

+ ¢
Then A1/2 A
~ 3 z~ z~

h=(2 -
Gz %=

One can assume that ¢g = 0, c3 = 0 then

) —+ C7)Z)\

h = ¢

e =—a?g(p)s + cr 2.
Consider {0;, s0s + (2 X1 + 12 X3, Xo + 73X3}. Then (38) becomes
s = —a'?g1(p) + @1(s) — kap. (179)

2(572 — 3B2)aca + (372 — 2B2)pe, — 585 = 2(272 — o) + a2 g3 (p) (180)
—pa(s) + kap~!

and
10730, + 37308, = 2(273 + 1)e + a/2g3(p) — wa(s) + kap~™. (181)

If v3 = 0, then ¢ = (—=1/2)(a'/?g3(p) — w3(s) + ksp™'). Then £(p,,s) can be
transformed to zero thus we will consider in case v3 # 0. Equation (179) gives

e=—a%g1(p)s + /gol(s)ds —kip~ts+ hip, ).
One can assume that ¢y = 0. then
e = —aM2gi(p)s — kup s + h(p, ).
Dfferentiate equation (180) and equation (181) with respect to s one obtains

a'2((372 = 2B2)pgy (p) + (v2 — Bo — 1)g1(p)) — ¢3(s)
+(4B2 — Tya — Dkyp~t = 0. (182)

(181) becomes
ol 2(373p91(p) + (93 — 2)91(p)) — @3(5) — (2+ Ta)kap™" = 0. (183)
Dfferentiate equation (182) and equation (183) with respect to a one obtains

(3 = B)par(p) + (% = 3 = D)an(p) = 0. (184)

(181) becomes
209, (p) + (% — Dar(p) = 0. (185)



Since 3 # 0, then

Then
e = _a1/2c4p—(73—2)/(373)8 _ klp—ls + h(p7 Oz).

Equation (184) becomes

e=—kip s+ h(pa).
Equation (182) and equation (183) becomes
pps(s) — (4B2 — Typ — 1)ky = 0.
ps(s) + (Tys + 2)ky = 0.
Splitting above equation with respect to p one obtains
Y2 = C2,P3 = C3.
(48 — Ty — 1)k = 0.

For nonisentropics
2

73:—§

A4y =Ty —1=0
Equation (180) and equation (181) becomes

%(ﬂQ +10)aha + %(262 + 3)ph, = _%(52 — 4)h — a'gy(p) — kep™' + ca.

(181) becomes
()aha + 2ph, = =2h — a'Pgs(p) — ksp™" + 3.

The characteristic system of equation (187) is

Tda  Tdp dh
200 6p  —Sh—algs(p) —ksp' +cs’
Then
2= ap 103
dh 7,6
- gp(—;h — a'?g3(p) — ksp™" + c3)
h=Cp!
. Tp?
¢ = % (—a'?g3(p) = ksp™" + c3)

(186)

(187)
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7 5
C= 6(21/293@) +

Then

k‘g _9 C3

2P - =P )+ h(2)

7 ~ _ C _
h=—(2"2G(p) + =p~' = 2)+ h(z)p™!

6

One can assume that
then

Equation (186) becomes

932071{;3:0763:07

h=h(z)p "

2Bozh. = —h + ky + p(2'2p* 3 g5(p) — c2). (188)
Dfferentiate this equation with respect to p one obtains
P22 ga(p) — e2) = 0. (189)
Dfferentiate this equation with respect to z one obtains
pgs(p) + 595 = 0.
Then
g2 = csp 3.
Equation (189) becomes
Cy = 0.
Equation (188) becomes
%BZZiLz =—h+ ko + 21/2cs.
Case 1.185 # 0, The characteristic system of this equation is
3dz dh
280z —h+ kg + 21/2¢5
Then ~
dh 3 ~
B —h+k 1/2
dz 2522( kot 2 )
h=C2\=—3/25
A P
C = ky + 212
25, (ko + 27%c5)
Remark A # 0,
Case 1.1.1 A = 1/2, then
3 —1/2
C=—(—2kyz +cslnz) + Cf.
203
Then
7 3 1/2 1/2 3 1/2 1/2 —5/2
h=—(=2ky+cslnzz/?)+Cr2/* = —(=2ky+ cslnz 2/%) + Cra “p~°/~.

2[5

2[5
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One can assume that
ke = 0.C; = 0.
Then

h (cslnz 2Y/%)p~1.

T 28,
Then

3
= —kip ts 4+ —(cs1 12y )=t
£ 1p s 252(65 nzz'<)p

Case 1.1.2 X\ # 1/2, then

;o 3z iA
— L /
C 2ﬁ2 ( 2 +z 05)
3 -2 —A+1/2
C=—(k Cy.

ST Wy iy e
Then
- 3 ks 21/2 \ 3 ke al/2p=5/2
h=_— C 2 o2 C 1/2 —5/2

ST T ey DRt Te N Sy Wy i iy D

One can assume that
Then
So

Which is not depend on « # 0,
Equation (188) becomes

2Byzh, = —h + ky + 21/ %c5.

Case 1. 28, = 0, then 3
h = ]{32 + 21/205.

h= (ko + 2%c5)p7 "

One can assume that

/{ZQ = 0, Cs = 0
Then
h =0.
So
e=—kipls.

Which is not depend on «a # 0,

Case 2. 2 — 282 _ 052 _ 1 _( then
73 373 6 2

e = _041/2040_(73_2)/(3%)8 _ klp—ls + h(p7 a).
Equation (182) and equation (183) gives

P2 = C2, P3 = C3.



Case 2.1 7y3 + 2 = 0, then fist equation gives #5 = 0,
The characteristic system of equation is

Tdoo  Tdp dh
200 6p  —%h—allgs(p) —kspt
Then
. ap_10/3
dh 7 6
L (—Zh— 1/2 —k -1
i 6p( 2h—ags(p) = ksp™)
h=Cp*
;o Tp2 B
¢ = L (—aV2g5(p) — kop™)
7 - ks _
CZBWW%@%Ffpﬂ+h@)
Then . L
h=c(26(0) + 507 + h(2)p™
One can assume that
gs = 0, k’5 = 0,
then i
h=h(z)p "
pg(p) + 592 =0.
Then
g2 = c5p 83,
Equation (189) becomes
Cy = 0.

Equation (188) becomes )
h = ky + 21 %cs.

Then
h = (k’z + 21/205)p_1.

One can assume that
k’g = 0, Cy = 0

£ = _a1/264p—(73—2)/(373)8 _ k‘lp_ls
Case 2.2 7y3 + 2 # 0, then k; = 0, then
The characteristic system of the equation is

da dp dh

10730 N 3y3p N 2(2v3 + 1)h + o' 2g5(p) + ksp™' — ¢
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Then

dh 1
dp %(2(2% + D)+ ags(p) + ksp™' — cs)

1
h=Cp' = —(2(2vs + 1
ey 373((73+)

’ piliu
C = 7(041/293(0) + kapt — c3)

—1—p
7[)3 (212G3(p) + ksp™ — c3)
V3

Remark p = —1,
Case 2.2.1 ;1 =0 orys = —1/2 then

1 . - .
C = —(2"Gs(p) = ksp™" — csInp) + h(2)

373
Then .
h= 2= (3s(p) —kap™ = csInp) + h(2)
V3
One can assume that
g3 = 0,ks =0,
then .
h=-—(—cl h
- (—ealnp) + (2
9o = csp 3.
Equation (189) becomes
ko = 0.
c3(%2 —1)=0.

Case 2.2.1.1 5 = 3 then Equation (188) becomes

2zh, = 22%c5 — ¢y + c3 = 2M%c5 + 7.

dh 1
E = 5(21/205 + C7>.
Then ]
h = 5(2,21/205 +crlnz) + cs
Then

1
h (—cslnp) + 5(221/205 +c7lnz) + cg

- 373
One can assume that
Cy = 0, Cg — 0.

Then ]
h = 3§lnp+207lnz
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e = —at2cp(372/Br)g 4 ;j; Inp+ ;c7 In 2.
Case 2.2.1.2 35 # 3 then ¢3 = 0 Then
h = h(z)
Equation (188) becomes
2ﬁ zh, = (lﬁ — Dh+22¢5 — ¢,
P27l = (32 5= C2

Case 2.2.1.2.1 5, # 0

dh 3 1 -
= (285 — Dh+2"2c5 — ).
dz 252z((362 Jhtz%es = ca)
~ 3 1
h=CA = —(=3—1
C' = i,7:_1_)‘(,2'1/20 —C9)
25, 5 2
Remark A # 0, A # 1/2 then
3 Z—/\+1/2 Z—)\
C=— - C
25, S s ey Tl
Then Ny \
~ 3 2~ 2~
h= (2 _ A
G e ey Ta)r
One can assume that
Cy = 0, Co — 0.
Then .
h = c:2*
Then
h = ¢z
e = _a1/264p—(’73—2)/(373)3 + C7Z)‘.
Case 2.2.1.2.2 3, =0 .
h=2"%c5 — cy.
One can assume that A = 0 then
Case 2.2.2 ;1 # 0 or 73 # —1/2 then
1 pH P s
C=_—(a'? k - h
33 (aZgs(p) + o — C3 —M) + h(z)

Then

1 pr e
h=(=—(a"? k - h(z))p"
(S%(O‘ 93(p) + o — C3 —/~L>+ (2))p
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One can assume that
g3 =0,k3 =0,c3 =0

then .
h = h(z)p"

g2 — C5p(2773)/(373)‘

Equation (189) becomes
c2(1+273) = 0.

ka(2+ Ty3) = 0.
Since 1+ 273 # 0,2 + 73 # 0 thency, = 0, ks = 0 Equation (188) becomes

2 . 1 .
gﬁgzhz - (552 — Dh+ 22¢;.

Case 2.2.2.1 5, #0

dh 3 1 -
— = = ((28y — Dh+2"?c).
dz 2B2z<(362 Jhtz%es)
~ 3 1
h=C A= (B —1
C«’ _ iz—l—)\(zl/Qc )
20, ;
Remark A # 1/2 then
3 Z*)\+1/2
C=—(c———+)+C
25, i) T O
Then A+1/2
~ 3 2~
h=(—(cs————— A
G s 1) Te)”
One can assume that
Cs; = 0.
Then .
h = ¢z
Then
h = ;2 pt
e = _a1/2c4p*(7372)/(3%)5 + 072)‘,0“.
Case 2.2.2.2.2 5, =0 3
h = 2"2c;.

One can assume that h = 0 then

e = _a1/264p—(73—2)/(373)3
Consider {0s, s0s + f2X1 + ¢2 X2, X3}. Then (38) becomes
es = —a'gi(p) + pi(s) — kip" (190)

652080 + 2B2pe, + ses = 2(B2 — q2)e — @ /2ga(p) + pa(s) — kop™? (191)
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and
10ag, + 3pe, = 4e + a'/%g3(p) — @3(s) + ksp™L. (192)

Equation (179) gives

e =—ag(p)s + [ p(s)ds = kg s+ o)
One can assume that ¢y = 0. then

e=—agi(p)s — kip's + hip, ).

q1(p) = cap /3

Then
e=—a%cipPs — kip~ts + hip, a)

Equation (191) becomes
ca(B2+6g2+3)=0

If 85+ 6¢2 + 3 # 0, then ¢4, = 0 so
e=—kip~'s+h(p, ).

P2 = C2, P3 = C3.
kl = O

Then
e = h(p, ).

Then for nonisentropics B + 6go +3 =0

P2 = Co, P3 = C3.

ky = 0.

Then
e=—a2ep V35 4+ hip, a)

The characteristic system of equation (192) is

da_dp _ dh
100 3p  4h+a'/2g3(p) + ksp=! — ¢35’
Then
s = ap_10/3

dh 1
- %(4’1 +a'2gs(p) + kap™ — cs)
h = Cp*?

, T
C = T(Oémga(P) +kapt — c3)

1 . 3ks _ 3c3
C =2 (Pg(0) = =207+ =207 + 2
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Then

1 ~ 3ks 3c3 ~
h=(5(z"2Gs(p) = =>p7"° + =707 + h(2)p"?

One can assume that
g3 :O;k3 :O,C3 :0

then i
h = h(z)p"?
g2 = czp~ /3
Cy = 0, k’z =0

2Byzh, = (1B — 1) + 21/2¢s.
Case 135 # 0 The characteristic system of the equation is

3dz dh

26z (502 — Dh + 21/2¢5

Then ~
dh 3 1 ~
— =——(~(=8,—=1)h 1/2
7 2522((352 Jh + 27 %cs)
~ 3 1
h=CA A =-——(5p—1
’ 32_1_/\ 1
C 7 (z7/%c5)
Since A\ # 1/2, then
3 Z—)\+1/2
C=—(cg—-— Cs.
25 S 1) T
Then A+1/2
. 3 2~
A P A
G 1) T
One can assume that
Cy; — 0.
Then
h = Cr2*p"/?
Then
e —al/204p*1/3s 4 C7z’\p4/3

Equation (191) becomes
%ﬁQZiLZ = (%ﬁg — 1)il + 21/2C5.

Case 205 = 0 then

h = 2Y2¢
One can assume that 7 = 0 then

c— —a1/204p_1/3s
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Executive Summary

Awv A Ao Ay < o a
NNUVVLETUD IATINTINGNAUBVONUITE VOUIUAYDINT ISV UM I MU TLANIF
' & and o A A
nguvesaumsued nanilsianwasaumelu e = {(p, s)vVa + @(p,Vp) + ¢(p, s) \ila p fa
] A a 6 ] A = | & o
ANMURWILUL, Vp ADINIRIRAUBIAUAWILWYL Uaz s AatawlnsD {(p, s) \uWangusad p, s

. o(p, Vp) \Duwariduses p, Vp uaz ¢(p, s) uilsnduves p, s

9 1
v =KX A

Aaov d‘ YA o a 1 ad‘ [ A
ﬂ"li’)%ﬂﬂi\i“l/lllﬂﬂ@ﬂ']'ifﬂuluﬂﬂiztﬂﬂl%\iﬂ@m‘u@\iﬁiJﬂﬁ‘U’t’Nll‘Viﬁﬁu\i annasnumelune

e = &(p, s, Vp) Fogluginall (general) uazgtuvvzasnssnumeluiiaualiluuuuiaue
F4 4

Aa o & 1 & Ao Aav A = [ ' =
Iﬂi(‘lﬂ’]i’)’%ﬂ LRI URIITINTINEATIN WaﬂTi’J%EJ‘JJS"IEJ@%L?JEJﬂ@Q@@]l‘]Ju

e

1. "lﬁ'ﬂfjilamgammﬁ (Equivalence Lie group) Ao
Xy =p0,+2a0,, X; =10, +Xx0,—2ad,, X; =10, —ud,—280,, X; =h(s)d
YS=0,Y,=0,Y, =t0,+0,
Z;=p70,,2; = 1(5)8,, Z; = 9(p)ad,

S

2. 1énqueon5uvesd (Admitted Lie group) Ao
X, = pd, +ad,, X, =18, —Ud,, X, = U, +2ad, - X3, - 213,
X, = ptd, +(ut—x)d, +4atd,, —txd, —t*0,
X, =19, +3t°0,, X, =1%0, +2t9,
Y,=0,,Y,=0,,Y,=10,+0,

9 ) a 1 1 Y] A o 1 dy
3. "lﬂmimuunﬂnmwmnqmmﬂqmammma mmﬁma"lﬂu

=p, o, 8) Extensions Remarks

My | pPhlap=Tefe)ere Xy, AXa 4+ (F+)Xs =4, I

My pth{ap=le=F* )28 L 5p=Tn1/2 Xy, Bl X g +2X,) + 9,

Ms | o P h{ap~Te™*) XN, Xa+ (1 —X)Xo 4 28, AFD

My pre—*h(ap=T) Xy, Xo =20,

My | Katp®Te—1s XNao, Na—(A+1)0,, Xo + 8.

Mg | Katp®=™ 4 5all? Xa(1—-MNXa+ Xa+ (2A— D)sfle, 8 | (A=K £ 0

M: | Kap™ +sall? X4, Xa + s, 8 K#0D

Mz | sall? Xy, Xa + 88, Xa — 280, O

My | (Kap= T+ s)ali? X4, Xo — 2X5 — 4dsd,, 5. K#0

Mg p‘it'l_l.-"'g.‘a Xy, Xa + 359y, Xo — 2sd,

Myt | P*his.ap™) (BAF+ 10X — (A 4+ p+ 2) X+ (p+1)p#0
2(A+3)Xs (3A+10) #0

Mia | p7tA(s, ap™) + Clugl (BA+10)X — A+ DX +2(A04+3)Xg | (3A4+10)#0

Mg | h(s,ap™) + @(s)Inp (BAF+ 10X —(A+2) N +2(A+3)X, | (3A+10)#0

My | a?his, p) 3N 4+ (A =1)X + 22X, A2A=1)#0

Mis | a'h(s, p) + ¢(s) Ina] 6X1 — Xo + 14X+

Mg | h(s,pi+ (o(s) + Cp~Tilna 3N — Xo +2X5
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My | ohis, ap~ 107 (3 —4)Xs 4+ 2X5 plp+1)#0
Mis | p~his.0p™ ") + Cln g —7Xa +2X5
Mia | his,ap~ ™) + o(s)lnp —2Xa+ X3
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+144,
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Ko llnp (A4 1) X+ (3) 4+ 10)s8, ChK #0
Maza | [o17g(p) + Co s+ o hp) e, 3X) +2Xs + (A - 1) X5 + sd: AZA-1)#0
Ch#0
M | [WVeagip) + Cp~ s+ hip)+ 8, 83X +2X3 — X3+ 3s0, hCK (K #0
(Ki+ FKep 'na
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a2 (p) + f(p) Ina)]
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(3e—4)Ch#£0
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Klnp
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o R(ap™ %) + K In g]
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p.d [3 J‘l(f.l’p_ 1-:-,-"3)
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An application of group analysis provides a regular procedure for mathematical modeling by
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1. Introduction

This manuscript is focused on the group classification of the governing equations whose
specific internal energy ¢ is a function of the density, the density gradient, and the entropy [1]*

pi + (pU()x)z 0, (pu)e + (pu? + 1)y =0, (ps): + (psu)e =0,
J

1
II=p=g> — pe = p’cp — 2p(ppaca)s + 2pp5€a, = [Vp|?, 1)

where ¢ is time, V is the gradient operator with respect to the space variables, p is the fluid

density, u is the velocity field, s is the entropy, £(p, @, s) is a given internal energy, and 5

p
denotes the variational derivative with respect to p at a fixed value of u. These models were
studied in [2, 3, 4, 5, 6]. A review of these models can be found in [7, 1] and references therein.

Equations (1) were obtained in [1] using the Lagrangian of the form
1
L=3lul* =, Vp,s).

Another set of models where the medium behavior depends not only on thermodynamical
variables but also on their derivatives with respect to space and time was constructed in [§]
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1See also references therein.
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using the Lagrangian of the form
1, ,
L= Slul"=Wp,p,s)

where "= 9/t + uV. These models are examples of a continuum where the behavior depends
not only on the thermodynamical variables but also on their derivatives with respect to space
and time.

One of the methods for studying properties of differential equations is group analysis [9,
10, 11]. This method is a basic method for constructing exact solutions of partial differential
equations. A wide range of applications of group analysis to partial differential equations are
collected in [12, 13, 14]. Group analysis, besides facilitating the construction of exact solutions,
provides a regular procedure for mathematical modeling by classifying differential equations
with respect to arbitrary elements. This feature of group analysis is the fundamental basis for
the mathematical modeling in the present paper.

An application of group analysis employs several steps. The first step is group classification
with respect to arbitrary elements. An algorithm of the group classification is applied in
cases where a system of differential equations has arbitrary elements in the form of undefined
parameters and functions. This step is necessary since a specialization of the arbitrary elements
can lead to different admitted Lie groups. In particular, group classification selects the functions
e(p,|Vpl, s) such that the fluid dynamics equations (1) possess additional symmetry properties
extending the kernel of the admitted Lie groups. Algorithms of finding equivalence and admitted
Lie groups are particular parts of the algorithm of the group classification.

A complete group classification of equations (1), where ¢ = €(p, |Vp|) is performed in [15].
Invariant solutions of some particular cases are considered there. Group classification of the
class of models describing the behavior of a dispersive continuum with W' = W (p, p) was studied
in [16] (one-dimensional case) and [17] (three-dimensional case). Invariant solutions of some
particular cases which are separated out by the group classification are considered in [16, 18].
The group classification performed in these studies [16, 15, 17] followed the classical method
developed by L.V.Ovsiannikov [11] for the group classification of the gas dynamics equations.
Notice that an exhaustive program of studying the models appearing in the group classification
of the gas dynamics equations was announced in [19]. Some results of this program were
summarized in [20]. It is also worth to notice that the classical gas dynamics model corresponds
to e(p, s) (or W(p,s)).

The classical approach [11] to nonisentropic equations of fluids with internal inertia is very
complicated. Even the study of particular cases leads to cumbersome investigations [21]. In
the present paper we use an algebraic approach for the group classification of nonisentropic
equations of fluids with internal inertia.

The algebraic approach takes the algebraic properties of an admitted Lie group and the
knowledge of the algebraic structure of admitted Lie algebras into account, and allows for
significant simplification of the group classification. In particular, the group classification of a
single second-order ordinary differential equation, done by the founder of the group analysis
method, S.Lie [22, 23], cannot be performed without using the algebraic structure of admitted
Lie groups. Recently, the algebraic properties were applied in for group classification [24, 25,
26, 27, 28, 29, 30, 31]. We also note that the use of the algebraic structure of admitted Lie
groups completely simplified the group classification of equations describing the behavior of
fluids with internal inertia in [32, 33].

The present paper is focused on the group classification of the one-dimensional equations
of fluids (1), where € = ¢(p, |Vp|, s) with ¢4 # 0.
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This paper is organized as follows. The equivalence Lie group of transformations is pre-
sented in section 2. The equivalence transformations are applied for simplifying the function
e(p,|Vpl,s) in the process of the classification. We classify all models with respect to the
admitted Lie groups in section 3, where we consider 2 cases. In the first case, where ks # 0,
the analysis is similar to the group classification of the gas dynamics equations. In the second
case, where ky = 0, the analysis uses the idea of the algebraic approach which separates the
study of group classification in two steps. In the first step, one makes a preliminary study of
possible coefficients of the basis generators using the requirement of admitted generators to
compose a Lie algebra. In the second step, one substitutes these coefficients of each generator
of the Lie algebra into the determining equation. Solving the obtained system of equations, the
function e(p, |Vp|, s) and additional restrictions for the coefficients of the basis generators are
obtained. The result of the group classification and the admitted Lie algebras of equation (1)
is summarized in Table 1.

2. Equivalence Lie group

An equivalence Lie group allows changing arbitrary elements conserving the structure of the
studied equations. An infinitesimal operator X¢ of the equivalence Lie group is sought in the
form [34]

X =€"0, + &0, + ("0 + "0y + ("0 + C°0 + (O,

where the coefficients £%, &', ¢*, (%, (%, and (° are all functions of (z,t, p, u, a, s, ).
Calculations give the following basis of generators of the equivalence Lie group,

X7 = p0, +200,, X§ =10, + 20, — 2a0,,
X§ =t0, —ud, — 20, X{ = f(s)0s,
YE =0, Y¥=20,, Y{=10,+ 0y, Z¢ = p1d.,
Z5 = [(8)0:, Z5 = g(p)v/ao.,

where the functions f(s) and g(p) are arbitrary.

Since the equivalence transformations corresponding to the operators Xg, X¢, Z7, Z§ and
75 are applied for simplifying the function ¢ in the classification process, let us present these
transformations. Because the function £ depends on p,a and s, only the transformations of
these variables are presented:

X5 p=p, a=0a, 5=5s € =€ "%,

X{: p=p, a=a, §=h(s,a) é=¢,

¢ p=p, a=a, 5=5 E=c+pla,
Z5: p=p, a=a«a, §=s E=c+ f(s)a,
ZS: p=p, a=a, §=s £=c+vag(p)a

where a is the group parameter. Using the equivalence transformations corresponding to the
generators Z¢ and Z5, the term C)p~'+Cy, which appears in the function &(p, a, s) can be omit-
ted. Here C} and Cs are constants. By virtue of the equivalence transformations corresponding
to the generator Z§, the function £(p, o, s) is considered up to the term /ag(p).

3. Admitted Lie group

An admitted generator X of equations (1) is sought in the form

X = gxax + gtat + Cpap + Cuau + Caaoz + <8857
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where the coefficients £%, &%, (P, (%, ¢* and (* are functions of the variables (z,t, p, u, a, s).
Calculations show that

gm = ]{Z4tSL’ — ];73517 — ]%11’ + ]{35t3 + kﬁtz + ]{th + ]fg, §t = ]{Z4t2 - 2];33t — 2];31t + ]fgt + ]{77,
P = lep — ]{74tp + kgp, Cu = ]{34(LU — tU) + ]{?3’& + ]ﬁu — ]{ZQU + 3k5t2 + 2]{56t + k87
(" = 6k — dkyta + dksar, ¢ = ((s),
where k| = 1251 — ];53, ks = —1253, ki, (i=1,2,...,8) are constant. The constants and the function
((s) satisfy the equations

C(2€50pp0tp + A€s0p0 — E5ppp — 2€5,) + 212;1(25apppozp2 + 9eapparp + beaper + 6 anpp@’p
+12200p0% — €pppP? — 3,ppp) + 2k2(280pp0p + AE0p — €,pp — 2€,) + k3(2€apppap? (2)
+8appp + 4€0pQ + 820app0?p + 16€0a,0% — €pppp? — 26,50 + 22,) — 2kgq(ar) = 0,

(' (4250pap + 4es00 — £5pp) + C(4€s5app + 455000 — E55pP) + 2k (4 sappaep?
+13e50pap + 1258a9pa2p + 12650007 4 8250t — £5ppp?) + 2k2(4250p0tp 3)
42500 — E5pp) + k3(4€sappp® + 128 50p0p + 16€500,0% p + 166 000>
+85at — E5ppp® + Espp) = 0,

ssgsa + 2clgssa + Cgsssa + 2];;1 (5ssapp + 35330«105 + 25350{) + 2k2€ssa
+k3(5ssapp + 4<€ssaaa + 253304) = O,

C(Esapp + 2€s00p@P + 285000 + Eca) + 2k1(Eapp? + 4eapp + 6Canapd®p + 6200’
+2€00pp0P° + 1700p0p + 13600 + 224) 4 2k2(Eapp + 2€00pQp + 2€000 + €4)
+l~c;3(5appp2 + 4€app + 820aap@? P + 82aaa® + 200pptp* + 208 0ap0p
+16eq0a + 22,) = 0,

( (250000 + 3210a) + 2k1(6200000 + 2acap@P + 2520aa + 32aapp + 1520a)
+2k2(2€ 400 + 32aa) + k3(82anaa®® + 2€00ap0P + 32000 + 3€aapp + 1824a) = 0,

C/(Qgsaoea + 880!) + C(2585aaa + Essa) + 2]%1(55app + 658ao¢aa2 + 255aapap + 13880!(Xa
_'_253(1) + 2k2(2€saaa + 530{) + k3 (gsapp + 85saaaa2 + 2<€saapap + 16530:0405 + 25804) = 07

C/gsa _I' Csssa _I' 2];;1(55app _I' 355&0105 _I' 255&) + 2k258a _I' ];;3(5sapp _I' 4550caa + 2880!) = 07 (8)

C(26 s000r + €50) + 2k1 (Eapp + 6200a0® + 2€00p0p + 13000 + 264) + 2k2(280000 + €4)
+k3(Eapp + 8Caaa@® + 2€0apap + 1624000 + 22,) = 0,

k1(2€0ppp@p? 4 8Eapptp + 420p0 + 8Eaapp@®p + 16€0ap0* — €pppp* — 26,50 + 22,)

+6ksq(a) = 0, (10)

k1(4€sapp0p® + 128 50p0p + 16€500p0° p 4 1650007 + 8500t — E5ppp* + €5pp) = 0, (11)

ki(Essapp + 4€ssaa + 26550) = 0, (12)

k1(CappP?® 4 4€app + 82aaap@®p + 820aa® + 2 00pp0p* + 20€0ap0p (13)
+16eq0a + 22,) = 0,

k1(82an0a® + 2200ap0P + 322000 + 3eaapp + 1824a) = 0, (14)

k1(€sapp + 8s0000® + 28500pp + 16650000 + 285,) = 0, (15)

ki(€sapp + 45000 + 26454) = 0, (16)

k1(2app + 82000 + 20pE aap + 166000 + 26,) = 0. (17)

4



where ¢ = a/+/a and a*> = 1. The determining equations (2)-(17) define the kernel of admitted
Lie algebras and its extensions. The kernel of admitted Lie algebras consists of the generators
which are admitted by equations (1) for any function €(p, «, s) and it is defined by the generators

}/1:81‘/7 }/é:am, Yéztﬁx_'_au

The transformations corresponding to Y; and Y3 are shifts with respect to time and space vari-
able, and the transformations corresponding to Y3 are the Galilean transformations. Extensions
of the kernel of admitted Lie algebras depend on the value of the function £(p, a, s). They can
only be operators of the form

k1 Xy + koXo + ks X + ks Xy + ks X5 + ke Xe + COs,

where

X1 = p0, + a0y, Xy = t0; — u0,, X3 = ud, + 200, — x0, — 2t0,,
X, = ptd, + (ut — x)0, + 4atd, — txd, — 120, X5 = t30, + 3t20y, X = 120, + 2t0,,.

3.1. Case ky #0

The functions e(p, «, s) for which there exists an admitted generator with ks # 0 are studied
first. This generator can be rewritten in the form

Xy + k1 Xy + ko Xo + ks Xs + k5 X5 + ke Xe + COs,

where ¢ = ((s). Using the equivalence transformation corresponding to the generator X{ = 0,
one can assume that for this generator k1 = 0. Notice also that if ( # 0, then using the
equivalence transformation corresponding to Xy, one can assume that ( = 1.

From equation (16) one finds that

e(p,a,s) = p"v(ap™",s) + d(p, s) + ¢(p, a),

where ¢(p, s) and p(p, ) are arbitrary functions of the integration. Substituting € into equation
(17) one has

PPap + 8a2g0ma + 20pPaap + 160000 + 200 = 0.

Introducing the function
9 =20Paa + Pa = 2a1/2(a1/2¢a)a

this equation becomes
PYp + 4ag, +2g = 0.

Solving this equation, one obtains that
e(p, o, 8) = p*lap™, s) + d(p, s) + ' *ha(p) + ha(p).
Because of equivalence transformations one can assume that
hi =0, hy=0.

Differentiating equation (10) with respect to «, one finds that k5 = 0. Equations (10) and (11)
become

p2¢ppp + 2p¢pp - 2¢p =0, p¢pps - ¢ps = 0.



The general solution of this system of equations is

¢ =p°o1(s) + Cp~" + ¢s(s),

where C' is constant. Hence,

e=p" (Vlap™, )+ ¢i(s)) + p'C + ¢s(s).

Since the function 1 is arbitrary, one can set ¢; = 0. Furthermore, because of the equivalence
transformations corresponding to Z{ and Z§, one can assume that ¢35 = 0 and C' = 0. Thus, if
there exists a generator with k4 # 0, then the function £(p, «, s) has to be of the form

e =p*(z,s), z=ap " (18)

Let us study group properties of equations (1) with the function £(p, a, s) of the form (18).
Substituting the function e(p, o, s) into the determining equations (2)-(17), and performing
some manipulations (differentiations and linear combinations) one obtains that these equations
are reduced to the equations ks = 0, kg = 0, and

2(k3 - kl)(2z2wzz - sz + w) + 2k52(2¢zz - ’17/)) + C(2wzsz - 'lvbs) = 07 (19)
(2(ks = k1)(2¢= — ¥) + 2kt + (), = 0. (20)

Integrating equation (20), one has
2(ks — k1) (20, — ) 4 2kath + s = A, (21)

where A(z) is an arbitrary function. Excluding ks from (19) using (21), one finds that
A= k2",

where k is constant. Thus, for the group classification of equations (1) with the function
e(p, a, s) of the form (18), one needs to analyze only the equation

(ks — k1) (20, — V) + 2koth + ¢ = k22, (22)
Since ¥, # 0, one finds

C =" (k2" =2 ((ks — k1) (20, — ¥) + ko)) . (23)

Because ¢ = ((s), differentiating (23) with respect to z one needs to impose the requirement
that
ak + b(k‘g — k‘l) + Ck’g = 0, (24)

where
a= (""", b= =2 (2. — )., c=-2(Y7), .
Equation (24) is a classifying equation.
For arbitrary function ¢(z, s) one has

ks =ki, ko =0, k=0, (25)



that is, the generators
}/17 }/27 }/37 Xl + X37 X4 (26>

are admitted for any function (p, «, s) of the form (18). An extension of this Lie algebra Lj
occurs if one of the constants
ks — ki, ko, k

does not vanish. Operators of the extension have the form
v X2 + BX5 + X,
where 8 and v are constant, X; = h(s)ds, and
h? + 3%+ % #0.

For classifying all possibilities, it is convenient to consider the functions a(z, s), b(z, s) and
c(z,s) as coordinates of the three-dimensional vector v = (a,b,c). For analyzing relations
between the constants k3 — kq, ko and k£ one can follow to the classical method developed by
L.V.Ovsiannikov [11] for the group classification of the gas dynamics equations: one studies
the vector space Span(V'), where the set V' consists of the vectors v with z and s are varying.

3.1.1. Case dim(Span(V)) =3
In this case
ks =ki, ke=0, k=0,

and hence, there is no extensions of Ls.

3.1.2. Case dim(Span(V')) = 2
There exists a constant vector (v, 8, q) # 0 such that the vector field (a, b, ¢) is orthogonal
to the vector (v, 5, q):
vya+ Bb+ qc = 0.

Assuming that v # 0, one can set v = 1. Then equation (24) becomes
b[(ks — k1) — Bk] + c(k2 — k) = 0
If one of the constants (k3 — k1) — 5k or ks — gk does not vanish, then dim(V') < 2. Hence,
(ks — k1) = Bk, ks = qk

and
((s) = kh(s),
where

h=y;t (2% =2 (B2, + (¢ — B)Y)) - (27)

The extension of Lj is defined by a single generator of the form
ﬁXg + ng + h&s

The function h(s) can also be simplified: either h =0 or h = 1.
Assume that h = 0. Since for § = 0 one obtains that ¢, = 0, then g # 0 and
= VH £ 2L (g # B)2),

W = 212 (H + %ln(z)) , (g=p/2),
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where H = H(s). One can check that in this case dim(V) = 1. Thus one needs only to consider
the case where h = 1. In this case the function

\/E
(29— B)’

B(e) = [+ s (= 28)

Notice that using equivalence transformations, one can reduce the function (28) to
U(z,8) = f(ze )75 (g # 2p).
Assuming that v = 0 and 8 # 0, one finds that b = —qgc which gives
ak + c(ky — q(ks — k1)) = 0.

Ulzs) = flze el

(¢ #25), (28)

Similar to the previous case, one obtains
k= 0, k’g = q(k‘g - k’l),
and
((5) = =2(ks = k1)h(s),
where
h=¢7" (20 + (g = 1)¥). (29)
The function h(s) can be also simplified: either h = 0 or h = 1. The extension of Ls is defined

by the generator
X3 + ng — 2h88.

In the case h = 0 one finds that
U(z,8) = 2" 7UH(s).
It gives that dim (V') = 1. Thus one only needs to consider h = 1 for which one finds that
U(z,5) = 21 71Q(ze™),

and
X3 + ng + 283

Assuming that v = 0, § = 0, one obtains ¢ = 0 and
ak + b(l{ig - ]ﬁ) = 0,
which leads to
k=0, ks—Fk =0,
and
((s) = —2kah(s),
where
h=; . (30)
Using the equivalence transformation for simplifying the function h(s) to h = 1, one finds that
U(z,8) = e H(z),
and the extension is defined by the generator

Xo — 20s.



3.1.3. Case dim(Span(V)) = 1.
There exists a constant vector (v, 5, ¢q) # 0 such that

a=r~g, b=pBg, c=qg,

with some nonconstant function g(z, s) # 0.
If one assumes that « # 0, then choosing v = 1, one gets b = fSa, ¢ = qa,

k= —ﬁ(k?) - ]ﬁ) - qk2,

and
((s) = —(k3 — k1)h1(s) — kaha(s),
where
hy =7 (827 + 2(2h, — 1)) . (31)
hy =97 (g2 +2¢) . (32)

The extension of Ly is defined by the generators
X3 — hlﬁs, X2 — hgas.

Since ¥ # 0, one can assume that hy = 1. Notice that the commutator of the latter generators
has to vanish

[Xg - hlﬁs, X2 - hg&s] = h/lﬁs = 0

Hence, hy = A, where ) is constant, and the function v(z, s) has to satisfy the equations:

2h, — (AN + 1)y = wzlﬂ, (33)

by = 2 + qz'2. (34)

The general solution of these equations is
b = B 4 KA,
where K is constant, and the admitted generators are
X3 — A0s, Xy + 0.
Using the equivalence transformation corresponding to Z, one obtains
b= K212
Assuming that v = 0 and S # 0, one sets g = b, and hence,
a=0, c=qb, ks— ki = —qks,

and
C = k’hl(S) + 2]{?2}12(8),

where

hy =9 22, by = ;1 (g2, — ) — ).
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The extension of Ls is defined by the generators
hi10s, X5 — qX3+ 2hs0;.
Since hy # 0, one can assume that h; = 1. The commutator of the latter generators is
(05, Xo — q X3 + 2hy0,] = 21h450;.
Hence, hy = As, where A is constant, and
Ve = 22 qzp, = (g + Dap + As2'/2. (35)

If g=0, then A\ = —1 and
= 2.

This gives that dim(Span(V')) = 0. Thus, one has to assume that ¢ # 0. In this case
=K 4 20 N = —(14¢/2),
and the admitted generator are
Os, Xo —qX3— (q+2)80s.

Since for K = 0 one has dim(Span(V')) = 0, then K # 0.
Assuming that v =0, 8 =0 and ¢ # 0, one has

and
C(s) = khi(s) — 2(ks — k1)ha(s),
where

hy =7 220 by = (b, — ).

The extension of Ls is defined by the generators
h10s, X3 — 2hs0s.
As in the previous case one can assume that h; = 1. Since the commutator is
[0s, X3 — 2h90s] = —2h50

one has that ho = As, where )\ is constant. Hence

P =22, As2V2 =z, — . (36)
The general solution of these equations is A = —1/2 and
Y =Kz + 2%,
The admitted generators are
X3 + 585, 85.

Since for K = 0 one has that dim(Span(V')) = 0, then K # 0.
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3.1.4. Case dim(Span(V')) = 0.
There exists a constant vector (v, 3, q) such that
a=7 b=p, c=q

In this case
’yk’ + ﬁ(k‘g — ]{?1) + qu = 0,

and
g(S) = khl(S) -+ (1{53 — kl)h2(8> + ]{?2}1,3(8),

where

hi = —vyz+ 21/2@/)8_1, hy = —Bz — 2¢;1(z¢z — ), hy=—qz— 2¢s_1w'

The extension of Lj is defined by the generators of the form
(ks — k1)( X5 + ho0s) + ko( X2 + h30s) + k(hq0s).
The compatibility conditions for the relations (38) are reduced to the equations

hi(2hy + h3) =0, hi(28 —q) +v(2ha 4+ 3h3) =0, (26 +¢q) =0,
hi(hy +2) — hihs =0, ~(hy+2) —qh} =0,

and
(hs + qz)z1/2

V== 2(hy +7z2)
If hy # 0, then one can assume that h; = 1. Conditions (39) give
’)/:O, q:2ﬁ’ hézl, h3:—2h2.

Equation (37) becomes
B((ks — k1) + 2k9) = 0.

Since v = 0, one can choose
hg =S, hg = —2s.

Hence
¢ = (S - Bz>zl/27

and the admitted generators are

ﬁ =0: X3 + 508, X2 — 2885, 88,

5%0 : X2—2X3—4885, 85.
If hy =0, then v # 0, and one can assume that v = 1. Hence,

hs = —2s, hy =3s, 1 = (s + B2)z"1/2,
and the extension of Lj is defined by the admitted generators

X3 + 3808, Xg — 2808.

Notice that using the equivalence transformation corresponding to Z5, one has that

V= 212,

11
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3.2. Case ks =0

Here we consider models for which k; = 0. Differentiating equation (10) with respect to
« one also obtains that ks = 0. Notice that similar to the previous section after performing
some manipulations (differentiations and linear combinations) one obtains that the determining
equations (2)-(17) are reduced to kg = 0 and the equation

2(3]{71 — 5]{}3)0&80{ + (2]{71 — 3]{73)p€p + ESC = 2(1{31 — ]{32 — 2]€3)6 — a1/2g + » — ]fp_l, (41)

where g = g(p), ¢ = ¢(s) and the constant k are arbitrary elements obtained during the
integration.
Let us consider the Lie algebra Lg = {Y7, Y2, Y3, X, X, X3}. Its commutator table is

i Yo ¥V Xy Xy Xy
i|] 0o 0 Y, 0 Y -2V
Yo/ 0 0 0 0 0 =Y
Ys/=Y, 0 0 0 =Y Y3
Xi| 0 0 0 0 0 0
Xo|-Y1 0 Y3 0 0 0
Xs|2v, Yo =Y 0 0 0

Notice that the subalgebra {Y7, Y5, Y3} is a kernel of admitted Lie algebras, and the Lie algebra
{X1, Xo, X3} is an Abelian subalgebra.

Since the Lie algebra {Y,Ys, Y3} composes the kernel of admitted Lie algebras, then the
basis generators of an admitted Lie algebra related with the generators X;, Xy, X3, and X
can be chosen in the form

le + ﬁXg + ’}/Xg + XC’ (42)

where X = ((s)0;. The generators X7, X,, X3, and X, also compose a Lie algebra, where the
generator X¢ is the center.

Notice that if ¢ # 0 for one of the basis generators, then by virtue of the equivalence
transformation corresponding to the generator X, the function ((s) in this basis generator?
can be reduced to ( = 1.

3.3. Strategy of the further study

It is well known that the set of admitted generators composes a Lie algebra [11]: the property
to compose a Lie algebra is automatically satisfied for solutions of the determining equations.
The idea of the algebraic approach used in the present paper is to separate the study of group
classification to two steps. In the first step one makes a preliminary study of possible coefficients
of the basis generators using the requirement that admitted generators compose a Lie algebra.
In the second step, one substitutes the coefficients of each generator of the Lie algebra into
the determining equation (41). Solving the system of equations thus obtained, the function
e(p, a, s) and additional restrictions for the coefficients of the basis generators are found.

Let us also notice that if one can choose the basis generators such that two of them have
the form

C1(5)0s, (2(5)0s, (43)

then this case is reduced to e, = 0. Indeed, since the generators (43) are basis generators, then
G # 0 and (G¢5 — ((¢2 # 0. By virtue of the equivalence transformation related with X, one

20nly for one basis generator: for other basis generators, ¢ = ((s).
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can assume that (; = 1, and then ¢} # 0. Substituting the coefficients of the generators (43)
into (41) one obtains the equations

€s = —Oél/2gl +o1—kiph (44)

Cz(_al/291 +p1—kipt) = —a'2gy + @y — kop ™, (45)
where g; = g;(p) and ¢; = ;(s), (i = 1,2). Splitting equation (45), one finds that

ki=0, ko =0, g1=0, g2=0, 2 =1,

which means that
E(pa «, S) = Hl(s) + HQ(pa Oé),

Using the equivalence transformation corresponding to the generator Z$, one can reduce the
function e(p, a, s) to the case where Hy(s) = 0.

The latter study also allows to conclude that: (a) there are no admitted Lie algebras where
an extension of the kernel is more than four-dimensional; (b) there is only one possible admitted
Lie algebra which has a four-dimensional extension: the basis generators of this extension have

the form
X1+ Cl(S)as, Xo + <2(S)asa X3+ C3(3)857 85- (46)

In the preliminary study of Lie algebras of dimension greater than 1, it is sufficient for our
purposes to use classifications of two- and three dimensional Lie algebras. These classifications
are well-known 2. For the sake of completeness they are presented here.

All two-dimensional Lie algebras have one of the following commutator tables:

€1 €9 €1 €3
L(2, 1) : €1 0 0 s L(2, 2) : €1 0 €1
€2 0 €2 0

Here e; are suitably chosen basis vectors of the Lie algebra.
All three-dimensional Lie algebras have in suitably chosen basis, the commutator tables

‘ €1 €2 €3 ‘ €1 €2 €3
er |0 0 O er |0 0 e
: : <
LB 0 e |0 LB2p)) 0 pe, |© 0<IPIST
€3 0 €3 0
‘ e € es3 ‘ €1 €2 €3
€1 0 0 €1 €1 0 0 per — €9
L(3,3 L(3,4,p) : = >0
€3 0 €3 0
‘ €1 €2 €3 ‘ €1 €2 €3
€1 0 €1 262 €1 0 €3 —€3
Las): | 0 e e | 00
€3 0 €3 0

3See for example in [14].
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Further study depends on the dimension of a Lie algebra composed by the generators of the
form (42).

3.3.1. One-dimensional extension

Here we use the algebraic approach. This approach supposes that using algebraic properties
of admitted Lie algebras, during the first step of solving the determining equations one defines
unknown constants and functions of an admitted generator. In particular, according to the last
comment of the previous section, one-dimensional Lie algebras can be reduced to one of two
cases, either ( = 0 or ( = 1. The set of possible basis generators containing the generators X,
X5 and X3 is exhausted by the following generators

(=0 (=1

1. X1+BX2—|—’}/X3 4. X1+BX2+”}/X3+8S
. BXy + X3 D. BXs + X3+ 0

3. X5 6. Xy + 0Os

In the next step, one has to substitute the coefficients of each generator into the determining
equation (41) and solve it with respect to the function e(p, o, s). Here we present the calcula-
tions of the first case, where an extension of the kernel of admitted generators Y;, Y5 and Y;
consists of the generator X; + X5 +vX3. The study of the remaining cases is similar, and the
final result is presented in Table 1.

Substituting

]{?1:1, k1:ﬁ> k3:77 C:O

into equation (41), one obtains

2(3 — 57)aca + (2= 37)pg, = 2(1 — B — 27)e — ' Pg(p) + @(s) — kp ™. (47)
The characteristic system of this equation is
da dp ds de

2B3—57a  (2-37)p 0 20— B—2y)c—ag(p) + o(s) — kp~t
Invariants of the characteristic system depend on the vanishing of the expression
k=(2=37)(1—-8-27)(4-28~-Ty).
If k # 0, then the solution of (47) is

£(p, 1 8) = a2 (s) + Bls) + hp" + h(s, ap G-/ =3 20-8-29)/C=5)

where g, p, h and constant k are arbitrary elements. Using the equivalence transformations
corresponding to Z7, Z§ and Z%, one gets that

5(/0> a, 3) = h(S, ap_2(3_5'y)/(2—3'y))p2(1—5_2V)/(2_37).
In this case the system of equations (1) admits the generator
Xl +6X2 ‘l"}/Xg, (2 — 3*}/)(1 _ 5 _ 2,}/)(4 . 26 - 77) 7& 0.
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Similar, one finds that
If 3=1—-2y, 2—3y#0, then

S(p’ «, S) - Cb(S) lnp —+ h(g’ ap_2(3_5"/)/(2—3-y))’

X1 + (1 — 2’)/)X2 +’)/X3
If =22 23y +#£0, then

2 Y

e(p,a,s)=p* (C In p + h(s, ap_2(3_5'7)/(2—3’7))) ’

Ty —4
2

X1+ (

Ify=2 (1+38)(1+463)#0, then

)Xg + ’}/Xg

6(p7 «, S) = h(S, p)O&l+3B,

X1+ 6Xs + §X3, (1+38)(1+65) # 0.

Ify= %, b= —%,then

e(pa,5) = (¢(s) — Cp~" ) Ina + h(p, s),

1 2
X1 — §X2 + §X3
If y=2, f=—4%, then

e(p,a,s) = (¥(p) Ina+ hip, s))a'?,

1 2
X1 — éXg + §X3.

Here C, 1, ¢ and h are arbitrary.

3.3.2. Two-dimensional extensions
Let the basis generators of an admitted Lie algebra with two-dimensional extension of the
kernel be
X =08X1+aXo+nXs+X¢, YV =053X +¢@Xe+7Xs+ X,
Their commutator is [X, Y] = [ X, X¢,]-
For the Lie algebra L(2,2) one finds that

[X’ Y] = [XCNXCz] = (Clgé - C{Q)as =X,

which means that

Clgé - C{C2 = Clv Bl = 07 q1 = 07 M= 0.
Hence, (; # 0 or one can assume that {; = 1. The list of such algebras is exhausted by the
following Lie algebras

1. 83, X1+BX2+’7X3+883
2. 83, Xy + ’7X3 + 50s
3. 08, X3 + 388
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For the Lie algebra L(2,1) one finds that

[Xv Y] = [XCU XC2] = (Clg - C{CZ)as =0,

which means that
GG — (162 = 0. (48)

Notice that if (? + (2 # 0, then one can assume that ¢; = 1. In this case equation (48) gives
that (o = k(;. Hence, one can also assume that (; = 0. Thus, an extension of the kernel of
admitted Lie algebras in the case of L(2, 1) has one of the following forms,

{51 X0 + 1 Xo+ X3+ 05, Bo Xy + @2 Xo + 72 X3}, (49)
or
{51 X1 + 1 Xo + X3, BoXi + @2 X+ 72 X35} (50)
The set of algebras of form (49) and (50) is exhausted by the list
G+G#0 G+G=0
4| 1 Xo + X+ 05, X1+ @Xo+7Xs | 7. | 1 Xo+71X3, Xi+ ¢@Xo+7X;5
5. B X1 +7Xs+ 05, Xo+ 72X 8. B Xy + 711Xz, Xo+72X3
6. GiXa +qXo+ 05, X3 9. i1 Xh+qXo, X3

Similar to the one-dimensional case, in the next step one has to substitute the coefficients
of each generator into the determining equation (41), and solve the obtained overdetermined
system of equations with respect to the function &(p, , s). The final result of calculations is
presented in Table 1 (models Mys — Mgs).

3.3.8. Three-dimensional extensions
Let the basis generators be

X=X+X,, Y=Y+X, Z=7Z+Xg,
where
X = B X1 + 1 Xo + 71 X3, Y = B X1 + g2 Xo + 72X, 7 = Bs X1 + g3 Xa + Y3X5.

Notice that o o o
(X,Y]=0, [X,Z]=0, [Y,Z]=0. (51)

First let us study the Abelian Lie algebra L(3,0). In this case one has
(X, Y]=0, [X,Z]=0, [YV,Z] =0,

which means that
GG =G =0, GG—G=0, (G —GG=0, (52)

and
(X,Y]=0, [X,Z]=0, [Y,Z]=0.

If (2 + (3 + (2 = 0, then the basis of this Lie algebra is

X17 X27 X3’
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If, for example, (; # 0, then one can assume that (; = 1 and (, = 0, (3 = 0. The list of Abelian
Lie algebras is exhausted by the following set

Ly Xs+0s, Xi+aXs, Xo+ @Xs,
2. BXZ _'_887 Xl +Q1X27 X37
3. BXl"‘as; X27 X37

where v, (8, gyand ¢ are arbitrary constants.
For L(3,1) one has
(X,Y]=0, [X,Z]=0, [YV,Z] =X,

which means that
GG =G =0, GG —(eG=0, (-GG =G, (53)

and
[X,Y]=0, [X,Z]=0, [V,Z]=X.

Because of (51), one has that X =0. Hence, (; # 0, and one can assume that (; = 1. Equations
(53) become contradictive.
Let us study L(3,2,p). In this case one has

(X, Y]=0, [X,Z] =X, [Y,Z] =pY,
which means that

GG — GG =0, (¢ — GG ="=C, Gl — GG = pls, (54)

and o o L B
X,¥]=0, [X,2]= X, [V,7) =V

Because of (51) and p # 0, one has that X =0and Y = 0. Since in this case there are two
basis generators of the form (43), this case is excluded for further consideration®.
In the case L(3,3) one has

(X, Y]=0, [X,Z]=X, [YV,Z]=X+Y,
which means that

GG — GG =0, G¢— GG ="=C, GG — GG =G+ G, (55)

and o o L L
(X,Y]=0, X,Z]=X, [YV,Z]=X+Y.

Because of (51), one has that X = 0 and Y = 0. Similar to L(3, 3) one also has to exclude this
case from the study.
Let us study L(3,4,p). In this case one has

X,Y] =0, [X,2]=pX Y. [V.Z]= X +pY, (p=0).

4Moreover one can obtain a contradiction to the property that X, Y and Z compose a basis of the Lie
algebra.
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which means that

GGy — €16 =10, G —(1¢3=p — G2, a3 — (3¢s = (1 + pla, (56)

and
(X,Y]=0, [X,Z]=pX Y, [Y,Z] =X +pY.

Because of (51), one has that X = 0 and Y = 0. Hence, this case is also similar to the previous
case.

The same result is obtained for L(3,5) and L(3,6). Indeed, in the case L(3,5) one has
X,Y]=X, [X,Z]=2Y, [V.Z] = Z,
which means that

GG — GG =G, Gl — 6 =20, G — (G = G, (57)

and

X,Y]=X, [X.Z]=2Y, [Y,Z]=Z.

Because of (51), one has that X =0, Y =0 and Z = 0.
In the case of L(3,6) one has

[XvY] =7, [Xv Z] =Y, [K Z] = X,

which gives that X = 0, Y =0and Z = 0.
Let us study L(3,—1). In this case one has

(X,Y]=X, [X,Z]=0, [YV,Z]=0,
which means that
GGy — Gl =1, GG — (G =10, (o5 — (3¢3 = 0. (58)

and
X,Y]=X, [X,Z]=0, [YV,Z] =0.

Because of (51), one has that X =0. Hence, (; # 0, and one can assume that (; = 1. Equations
(58) become

=1 =0 G=0

Thus, the basis generators have the form
X =0, Y =50+ X1+ @Xo+7X3, Z=0X1+ X +73Xs.

Thus, the set of non-Abelian three-dimensional Lie algebras is exhausted the following list

4.1 05, 505 + @2 Xo + 72 X3, X1+ @3 X+ 73X3
3. Os, 805 + Bo X1 + 72 X3, Xo+ 13X3
6. 05, 805+ Lo X1 4+ X2, X3

Similar to the one- and two-dimensional cases, in the next step one has to substitute the
coefficients of each generator into the determining equation (41), and solve the obtained overde-
termined system of equations with respect to the function £(p,«,s). The final result of the
calculations is presented in Table 1 (models Mgz — Mgy).
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3.3.4. Extensions of dimension greater than 3
If the dimension of the extension is greater or equal to 4, then either one can choose a basis
of generators such that two of them are of the form (43):

C1(5)0s, Ca(5)0s,

or the admitted Lie algebra is four-dimensional and the basis generators can be chosen such as
X1 —+ Cl(S)as, X2 -+ CQ(S)&S, X3 + C3(S)8s, 33. (59)

Substituting the coefficients of the generators (59) into (41) one obtains reduction to the case
where ¢, = 0.

Thus, there is no case where an extension of the kernel of admitted Lie algebras is of
dimension greater than three.

4. Results of the group classification

Results of the group classification of equations (1) are summarized in Table 1, where repre-
sentations of the function e(p, |Vpl, s) are simplified by equivalence transformations.

The first column in Table 1 presents the number of the extension, forms of the function
e(p, |Vpl,s) are presented in the second column, extensions of the kernel of admitted Lie al-
gebras are given in the third column, and restrictions for functions and constants are in the
fourth column.

5. Conclusion

(Classifying equations of fluids with internal inertia with respect to the internal energy
e(p,|Vpl, s), group analysis provides a regular procedure for mathematical modeling. In this
paper we give a group classification of equations (1), where the function e(p, |Vp|, s) substan-
tially depends on the entropy s: €5 # 0. The group classification separates all models into 82
classes, which are presented in Table 1.
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Table 1. Group classification

e(p, a, s) Extensions Remarks
M, | p*h(ap~teP?)er® X4, BX3+ (B +7) X2 — 0s B #
My | p?h(ap=te=P%)e?Ps + sp~2al/? Xy, B(Xs + 2X2) + 0s
Mz | o?p>~ P h(ap=te®) X4, X3+ (1= N) X2 + 20, A#0
My | p?e*h(ap™™) X4, Xo — 20,
Ms KOL)\p274)\€725 X4, X3 — ()\ + 1)85, X + 0
Mg | Katp?>=* + sal/? Xy, (1 =N X3+ X5+ (2X —1)s0s, 0 A=1K #£0
M Kap=?2 + sal/? X4, X3+ 805, Os K#0
Mg sal/? X4, X3+ 505, Xo — 2580, O
My | (Kap=™+ s)al/? X4, Xo — 2X3 — 450, O K#0
My | pta1/2s X4, X3+ 3505, Xo — 250
My, | p*h(s,ap?) BA+10)X7 — A+ p+2)Xo+ (L+1)p#0
2(\ + 3) X3 (3A+10) £ 0
Mo | p~1h(s,ap) + ClInp] BA+10)X1 — A+ 1D)Xo+2(A+3)X3 | BA+10)#0
M3z | h(s,ap™) + o(s)Inp BA+10)X1 — (A +2)Xo+2(A+3)X3 | BA+10)#0
My | o h(s,p) 3X: + (A — 1)Xs 1 2X; A2h—1)£0
Ms | a'7?[h(s,p) + ¢(s) Ina] 6X1 — Xo +4X;
]\/[16 h( ) (cp S)+Cp )lna 3X1—X2+2X3
Mz | p*h(s,ap™ %) Bu—4) X5 +2X; plp+1) #0
Mg | p~t[h(s,ap=193) + C'ln p) —7Xo+2X3
Mig | h(s,ap=10/3) 4 o(s)Inp —2X5 + X3
My | h(p, as™)sH 14X — A+ Tp+ D)X+ 20 +4)X T #2031 —2)
+140;
Moy | h(p,as*)s?CA=2/T 1 Cp~1s 14X — TAX +2(\ + 4) X5 + 0s
Moy h(p s%)s~ +g() /242 6X1 — Xo+4X5+ 0s
Mos h(a61037 pess)el —(A+4) X5 + 2X3 + 20; A=3)#£0
May | h(cet%s pe?’s) 33 L Kp's —7Xo +2X3+ 20,
]\/[25 h(p, a) X2 + (95
Mas | [@729(p) + Cp s + pPh(ap™) By, (3 + 10)X; + 2(\ + 3) Xo— BT 10)C £0
(A + ju+ 2) X5 + (3X + 10)30, p(i+1)h #0
Moar | [a'72g(p) + Cp~Ys +h(ap?) + Klnp | Os, (3A+10)X1 + 2(\ + 3) Xo— (3M\+10)#0
(A +2) X3 + (3\ + 10)s0, ChK #0
Mos | [@2g(p) + Cp~t]s + p~th(ap)+ D5, (BA+10) X7 4+ 2(\ + 3) Xo— (3A+10) #0
Kp~tlnp (A+1)X3 + (3X + 10)s0, ChK #0
Mag | [@'2g(p) + Cp~ s + a*h(p) Ds, 3X1 +2Xo 4+ (A — 1) X3 + 50, A2A—=1)#0
Ch#0
M30 [\/ag(p) + C’pfl]s + h(p)+ 85, 3X1 + 2X2 — X3 + 3885 hCKlKQ 7§ 0
(K1 + Kgp_l) In o
M3 | [Vag(p) + Cp~ s+ Os, 6X71 +4X5 — X3 + 650, Chf #0
a'2[h(p) + f(p) Ina)]
Mss | [Vag(p) + Cp~ts + pth(ap=19/3) Ds, (B —4) X2 4+ 2X5 + (3u — 4)s0s plp+1)#0
Bu—4)Ch#0
Mss | [vag(p) + Cp~ts + h(ap=19/3)+ Dsy 2X5 — X3 + 2505 ChK #0
Klnp
Msy | [Vag(p) + Cp~ s+ 05, TXo — 2X3 + 7505 ChK #0
p~ [(ap™3) + KIn p]
Mss | [Vag(p) +Cp~ s+ 0s, X3+ 50 Ch#0
p4/3h(ap710/3)
Mss | [Vag(p) +Cp~ s Ds, Xo + 50 Cg+#0
Mss | h(apY) + ¢(s)Inp+ 05, (37 +10)X1 — (v +2) X (3v+10)#0
K\/ap'/?s +2(v+3)X3
Mz | p~ ' Ka/ap)’? + Ky Inp]+ s, (37 +10) X1 — (v + 1) Xo+ (3y +10) # 0
p h(ap?) + Cp~ts 2(y+3)X3
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Table 1. Continue

e(p, a, s) Extensions Remarks
My pil[Kl 1Ilp—|—K2\/ap75 3]+ 85, 7Xs —2X3
pflh(ozpilo/g) +Op718
My p_l[Klna—i-Clnp]—i—p_lh(s) 7X1+4X3, TXo —2X3
Mys | h(pe?®) + [Ke3* +Clnalp~! TvXo —2vX3 + 204,3X1 — Xo +2X3 v #0
Mys | o [h(pe?®)e?® + O] —qXo — 2vX3 + 20s, wu—1)#£0
3X1 + (,LL - 1)X2 + 2X3
My | Jah(pe'®)ers —(A+79) X2 — 27 X3 + 20, A#£0
6X) — Xy +4X;3
Mys | olf(p)Ina+ g(p)s] + Valh(pe™)] | -7 Xs —27X5 +20;, 6X1 — Xo +4X5
Mys | Cp~ s+ h(pe™) +¢(s)Ina 27X — v X3+ 0s, 6X1 — Xo +4X35
My7 | h(p) + [Ks+ Clnalp~ 1+ 0s, 3X1 — Xo +2X3
o(s) Ina
Myg | [Kis+ Kolnp + Cy/ap/? —7BX5 + 28X3 + (2(37 + 10))0s, (3y+10)8 #0
h(apeP*)]p~" 3y +10)X1 — (v + )Xo +2(y +3) X3
Myg | w(s)Inp+ Cy/ap?/? + h(ap¥el?) —25X5 + 5X3 4+ (3y + 10)0s, (3vy+10)8 #0
My p_l[K Inp+ CS]+ 218X1 + 125X + 1405, TX2 — 2X3 B 75 0
o hlap 12
Msy | g(s)Inp+ f(s)Ina 2X1 4 X3, 2X5 — X3 (g— K1) #0
(f - ng)‘s) 75 0
Msz | p'e**h(ap?e™) (BB —4) = M3y +10)) X2 + 28X5 (3v+10) #0
+(2(3v + 10))0s, (37 + 10)X; 2A+8)#0
(v +pu+2)Xo+2(v+3)X;3
W5 | A(s)a g O 30r— DX, + 201 —3) - N5, | pBr =1 Z0
(Bu—4)X2 +2X5 (h—Ke’BS) #0
A2 —1)£0
Msy | h(s)a? pA=100/3 3X: + (A= 1)Xa, X3 A2 —1)#0
(h— KeP%) £0
Mss | h(s)a?p=10N/3 —2Xo + X3, 3X1 + (3= N X> A2XA—1)#0
(h — KeP®) #£0
Mse | pte”P*2h(ap7el*)+ B3y +6p +2) X + 46X (37 +10) #0
C\/ap't1/2s +4(3v 4 10)0s, (37 4+ 10) X, —
(v +p+2)Xo +2(y+3)X5
Msq | pre**h(ap='93eP) 363 —4) X1 +2038(u - 1)+ X5 | Bu—4)u#0
+2(3p —4)0s, (B —4) X2 + 2X3 2X+B)#0
Msg | p*/3e*h(ap=10/3e59) 66X1 — (28 + 30\ X2 + 60, X3 B#0
Msg | e*h(ap=1073eP%) 4 o(s)Inp 68X1+ (38 —A\)X3+40,,2Xo — X3 | A#£0
Mo | pte P52h(ap=1073eP%)+ 3803 —4)X1 + B(6p — 7) X3 Bu—4Hp #0
C\/apt=5/3s +2(3p — 4)0s, (3 —4)X2 +2X;3
Mgy | p*3e=Ps2h(ap=10/3eP%) + 68X1 — BXo +40,, X3
Cap=1/3s
Mgy | e P32h(ap=10/3eP%) + 128X, + 78X3 + 80s, 2X2 — X3 B#0
]\/[63 e)‘S[Klnp—i—Clna] —/\)(34'4-.837 2X1 +X3, 2X2—X3 )\750
Mgy | [K\/ap™3/%2 + Cp~ s+ Oy, TX1 +4X3, TXo —4X3
a'2p=3/2(Kna + Clnp)
Mes | K(ap=t0/3)7pe + \/ag(p)s Ds, 2805 + B(3q — 4) X2 + 28X3, B2y —1)#0
61 +2(8(27 — 1) +2) Xt alg+1) £0
(2y + 98¢ — 128 — 6 + 6) X» 36(g+1)+14£0
Mes | K(ap=t073)7 + /ag(p)s 05, $0s — 28Xs + BXs3, B2y —1)#0
3X1+ (B(2y—1)+2) X3+ YK #0
(280 =27)+7y—-1)X,
Mer | K(ap= 19737 p=1 + Jag(p)s 0s, 2805 — 18X5 4+ 28X3, B(2y—-1)#0
3X1+ (B(2y—1)+2) X3+ K#0

(76(1 = 27) + 27 = 2) X5

24




Table 1. Continue

e(p, a, s) Extensions Remarks
Mg | Ko pB~10N/3 1 O\ /apts sy (A —1)(Bp+ 1)s0s— Bu+5)#0
3(3u+ 1)Xs + 2(A — 9 — 4) X3, (Bu+38)#£0
Bu+1)X2 +2X5 (Bu+1)#£0
2A—1)K #0
Mg | Ko pP + \/ag(p)s D5, 2(38 + 10\ + 3)s0,+ 38 # —10A—3
(4— 38— 10\)Xs — 6X5, (2 = 1)K #0
X1+ (4N —38—10) X+
2(7— 68— 22)0) X3
Mz | plKIna+ Clnp] +/ag(p)s 0,, 280, — 7Xo +2X3, KCg#0
6X1+5Xs +2X3
M7 | Klna+ Clnp+/ag(p)s 0s, 3505 +2X5 — X3, KCg+#0
9X7 —8Xs +7X3
Moy | ag(p)s s, 2505 — X, 6X1 — X + 4X3 g #0
M7z | [KIna+ Clnpy/ap= 173+ Js, 6X1 — Xo, X3 C+#0
Cisy/ap /3
Mzy | [KIna+ Clnply/ap't2/3+ Ds, (6 — 1) X1 + 4uXs, (6 —1)C #0
Cy pts/apht?/3 (6p— 1) X2 +4X3
Mz | [KIna+ CpPs]y/ap?P—1/2 05, 68505 + 3BvXo + 2X3, BC #0
6X1 — Xo+4X;5
Mzs | (KIna+ Clnp)y/ap" >3+ Cip~ts | Os, 6(p+1)s0s + (3 — 4) Xo— (u+1)#0
2X3, 18(/L + 1)X1 + (1 — 6,LL)X2+
M7 | (KIna+ Clnp)y/ap 873 +Cp~ls D, T50s — 21X, — 13X3,7X5 — 2X3 K#0
Mz | Karpt=1023 4 Cp=ls Osy 6(pn+1)s0s + (Bp — 4) X2 — 2X3, (n+1))#0
I+ 1)X1 + (TA—3u — 3) X+ A2A—=1)#£0
(2Bp+3-X)X;5
Mg pil[KlanL—FKthp]—FcpilS 85, 7X1+4X3, TXo —2X3
Mgy | Klna+Clnp+Cip's 05, 3505 +2Xo — X3,
3X1 — Xo+2X;5
My | O a? g 1073 BX3+ (31— 4)d,, 331 — 4 X1+ BABi—4) #0
2(3/L — A= 3)X3, (3,u — 4)X2 + 2X3
Mgo | CePsat pti—100/3 BXo+20,, 3X1 + (A —1)Xo, X3 BX#£0
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