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บทคัดยอ 

การวิเคราะหเชิงกลุมเกี่ยวของกับการหาผลเฉลยแทจริงของแบบจําลองทางคณิตศาสตรท่ีมีฟงกชัน

ไมทราบคาใดๆ อยูในแบบจาํลอง โดยการวิเคราะหเชิงกลุมจะจําแนกแบบจําลองออกแบบหมวดหมูตาม

กลุมยอมรับของลี การวิจัยคร้ังท่ีจะใชการวิเคราะหเชิงกลุมจําแนกแบบจําลองท่ีเปนสมการของไหลหน่ึงมิติ

ท่ีมีพลังงานภายในข้ึนอยูกับ ความหนาแนน เกรเดยีนตของความหนาแนน และเอนโทรป : 
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t  คือเวลา , xρ  เกรเดียนตของ ρ ท่ีข้ึนกับ x, s คือ เอนโทรป, ߝ ൌ ,ߩሺߝ ,ߙ ሻ พลังงานภายใน, P คือݏ

ความดัน การวิจัยคร้ังนี้ได กลุมสมมูลของลี กลุมยอมรับของลี และไดจําแนกแบบจําลองได 82 กลุมท่ี

สอดคลองกับกลุมยอมรับของลี 

คําสําคัญ : สมการของไหลหนึ่งมิติ กลุมยอมรับของลี กลุมสมมูลของลี การจําแนกประเภทเชิงกลุม 

 

 

 

 

 

 



 

Abstract 

Group analysis provides a regular procedure for mathematical modeling by classifying 
differential equations with respect to arbitrary elements. This research presents the group classification of 
one-dimensional equations of fluids with internal inertia where the specific energy is a function of density, 
density gradient and entropy : 
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t  is the time , xρ  is the gradient of ρ with respect to x, s is the entropy, ߝ ൌ ,ߩሺߝ ,ߙ  ሻ is theݏ

specific energy, P is the pressure. The equivalence Lie group and the admitted Lie group are provided. 

The group classification will separate all models into 82 classes according to the admitted Lie group. 

Keywords: One-dimensional equations of fluids; admitted lie group; equivalence Lie group; group 

classification 
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 Let us consider the governing equations of a medium whose 
specific internal energy  is a function of density , density gradient 

, and entropy s. (Ref: Gavrilyuk, S.L. Shugrin, S.M. Media with 
equations of state that depend on derivatives. Journal of Applied 
Mechanics and Technical Physics, Val.37, No.2, Page 177-189  
(1996)) 
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where, 
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ρ ρ
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This research deals with one-dimensional equations (1.1), which are 
as follows: 
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Using (1.2) one obtains 
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 ( ) 0t x xu uuρ + +∏ =  

Consider (1.3), 

 ( ) 0t t x xs s us s uρ ρ ρ ρ+ + + =  

By (1.2) one obtains 

 0t xs us+ =  

Consider  

One obtains  
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Then we have new equations like this 

 ( ) 0t xuρ ρ+ =  (1.5) 

 0t xs us+ =  (1.6) 

 ( ) 0t x xu uuρ + +∏ =  (1.7) 

where,                      ( )22 2 2 ( ) .x x xρ α αρ ε ρε ρ ρ ρε ρΠ = + −  

 

Equivalence Lie group 

 New we obtained an equivalence Lie group for equations (1.2)-
(1.4) , which is the following: 

An infinitesimal operator  of the equivalence Lie group is 
sought in the form 

 ,e x t u s
x t u sX ρ α ε

ρ α εξ ξ ζ ζ ζ ζ ζ= ∂ + ∂ + ∂ + ∂ + ∂ + ∂ + ∂  

2 2
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Where all coefficients  , , , , , ,x t u sρ α εξ ξ ζ ζ ζ ζ ζ are functions of , , , , , ,x t u sρ α ε . 

The prolonged generator is 
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The operators ,e e
x tD D are operators of the total derivatives with respect 

to x and t , respectively in the space of the independent variables x 
and t : 
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The operator , , , , ,e e e e e e
x t u sD D D D D Dρ α  are operators of the total derivative 

with respect to , , , , ,x t u sρ α in the space of the independent variables 
, , , , ,x t u sρ α  : 
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Now  we obtain 
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Next all necessary calculations were carried on a computer using the 
symbolic manipulation program REDUCE 

(Ref : 1.Hearn, A.C. : 1987 , REDUCE Users Mannual, ver. 3.3. 
Santa Moica: The Rand Corporation CP 78.) 
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We obtain 

 1 1 2 2 3 3 4 4 5 5 6 6 7 8 9 10
e e e e e e e e e e eX C X C X C X C X C X C X X X X X= + + + + + + + + +  

where, 
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Next Consider Lie Equations  

1.  1 2eX ρ αρ α= ∂ + ∂  

Lie equations: 

 0dx
da

=  (1.8) 

 0dt
da

=  (1.9) 

 d
da
ρ ρ=  (1.10) 

 0du
da

=  (1.11) 

 2d
da
α α=  (1.12) 

 0ds
da

=  (1.13) 
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 0d
da
ε
=  (1.14) 

 0; , , , , , ,a x x t t u u s sρ ρ α α ε ε= = = = = = = =  

Consider (1.8)  

0

   0

dx da

x a c

=

= +
∫ ∫  

Because of 0;a x x= =  one obtain 

x c=  

Then 

x x=  

Consider (1.9),(1.11),(1.13) and (1.14) similar to (1.8) one obtain 

 , , ,t t u u s s ε ε= = = =  

consider (1.10) 
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Since 0;a ρ ρ= =  one obtain 

 0ceρ =  

So,             c ρ=  

Then,  

 aeρ ρ=  
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From (1.12)  
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1    2
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Since 0;a α α= =  one obtain 

 0ceα =  

Then,  

 2aeα α=  

So, one obtain  the  transformation 

 1 2
:

a
e
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e
X

e
ρ ρ

α α

⎧ =⎪
⎨

=⎪⎩
 (1.15) 

New we check it is an equivalence transformation 
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So,                      2

1 1, , ,
x x t t b bρ ρ α α
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
. 

Consider (1.2) 

 ( ) ( ) ( ) ( ) [ ( ) ]x t x t x t xt u b bu b b u b uρ ρ ρ ρ ρ ρ ρ ρ+ = + = + = +  

Consider (1.3) 

 ( ) ( ) ( ) ( ) ( ) ( ) [( ) ( ) ]x t x t x t xts su bs bsu b s b su b s suρ ρ ρ ρ ρ ρ ρ ρ+ = + = + = +  

Since 

2 2

2
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2
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∂ ∂
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∂ ∂ ∂

= −
∂ ∂ ∂
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∂ ∂ ∂
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2
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2

1    +   +

b
x
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b x x
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ρ ρρ λ ρλ

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= = = ∏⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦  

Consider (1.4) 
2 2 2( ) ( ) ( ) ( ) [( ) ( ) ]x t x t xtu u bu bu b b u uρ ρ ρ ρ ρ ρ+ +Π = + + Π = + +Π  

Hench (1.15) is an equivalence transformation. 

2. 2 2e
t uX t u εε= ∂ − ∂ − ∂  

Consider Lie equations:   

 dt t
da

=  (1.16) 
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 du u
da

= −  (1.17) 

 2d
da
ε ε= −  (1.18)

 0; , ,a t t u u ε ε= = = =  

Consider (1.16) 
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Since 0;a t t= =  one obtain 

 0t ce=  

Then,  

 at te=  

Consider (1.17) 
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a
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c
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c
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Since 0;a u u= =  one obtain 
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Then,  

 au ue−=  

Consider (1.18) 
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2

1    2
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a c
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a
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ε
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ε
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Since 0;a ε ε= =  one obtain 

 0ceε =  

Then,  

 2aeε ε −=  

So, one obtain  the  transformation 

 2
2

:

a

e a

a

t te
X u ue

eε ε

−

−

⎧ =
⎪

=⎨
⎪ =⎩

 (1.19) 

New we check it is an equivalence transformation 

Let ab e=  so, 

2

2

1:

1

e

t tb

X u u
b

b
ε ε

⎧
⎪ =
⎪
⎪ =⎨
⎪
⎪ =⎪⎩

 

Since  , , ,x x s sρ ρ α α= = = =   then 
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f f t f bt fb
t t t t t t

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
 

So, 

 1
t b t
∂ ∂
=

∂ ∂
 

Consider (1.2) 

1
1 1 1 ( ) [ ( ) ]x t xt

u ubu u
b t x b t b x b

ρρ ρ ρρ ρ ρ ρ
∂∂ ∂ ∂

+ = + = + = +
∂ ∂ ∂ ∂

 

Consider (1.3) 

1
1 1 1 ( ) ( ) [( ) ( ) ]x t xt

sus s subs su s su
b t x b t b x b

ρρ ρ ρρ ρ ρ ρ
∂∂ ∂ ∂

+ = + = + = +
∂ ∂ ∂ ∂

 

Since 

2

2 2

2
2 2

2

2 2
2 2 2 2

2

2 2

1
12 2 = 2 =  

1
1( ) ( ) 

1 1 1 1  ( ) ( )

1 1=   +

b
b b

bP
x x x b x

P
b b x x b x x b

P P
x b b x

εε ελ λ
α α α

εε ρ ρρ ρ ρλ ρ ρ ρ λ
ρ ρ

ε ρ ε ρρ ρ ρλ ρ ρ ρλ
ρ ρ

ρ ρρλ ρ λ

∂∂ ∂
= =

∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
= − = − =⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞Π = + ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2 2

2 2

1 1  +P
b x b

ρρλ
⎡ ⎤∂⎛ ⎞= = ∏⎢ ⎥⎜ ⎟∂⎝ ⎠⎢ ⎥⎣ ⎦

 

Consider (1.4) 

( )
2

22
2

2 2

2
2

1 11
1 1 1( ) ( )

1                             [( ) ( ) ]

xt

t x

uu ub b ubu u
b t x b t b x

u u
b

ρρ ρρρ ρ

ρ ρ

⎛ ⎞⎛ ⎞∂ + Π⎜ ⎟⎜ ⎟∂ ⎜ ⎟ ∂ +Π⎝ ⎠ ∂⎝ ⎠+ +Π = + = +
∂ ∂ ∂ ∂

= + +Π

 

Hench (1.19) is an equivalence transformation 
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3. 3
e

tX = ∂  

Consider Lie equations:   

 1dt
da

=  (1.20) 

0;a t t= =  

Consider (1.20) 

   

dt da

t a c

=

= +
∫ ∫  

Since 0;a t t= =  one obtain 

 0t c= +  

Then 

 t a t= +  

So, one obtain  the  transformation 

3 :eX t a t= +  

New we check it is an equivalence transformation 

Since  , , , , ,x x u u s sρ ρ α α ε ε= = = = = =   then 

( )f f t f a t f
t t t t t t

∂ ∂ ∂ ∂ ∂ + ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
 

So, 

 
t t
∂ ∂
=

∂ ∂
 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 
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 ( ) ( ) ( ) ( )x t xts su s suρ ρ ρ ρ+ = +  

Since 

2 2

2 2

2 2 =  

( ) ( )  

=   +

P P
x x x x

P P
x x

ε ελ λ
α α
ε ρ ε ρρ ρ ρλ ρ ρ ρλ
ρ ρ

ρ ρρλ ρλ

∂ ∂
= =

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞Π = + = ∏⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

Consider (1.4) 
2 2( ) ( ) ( ) ( )x t xtu u u uρ ρ ρ ρ+ +Π = + +Π  

Hench 3
eX  is an equivalence transformation 

4. 4
e

x uX t= ∂ + ∂  

Consider Lie equations:   

 dx t
da

=  (1.21) 

 1du
da

=  (1.22) 

0; ,a x x u u= = =  

Since  

t t=  

Consider (1.21) 

 
               

dx tda tda

x ta c

= =

= +
∫ ∫ ∫  

Because of 0;a x x= =  one obtain 

0x t c= +  

Then 
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x ta x= +  

Consider (1.22) 

 1

   

du da

u a c

=

= +
∫ ∫  

Because of 0;a u u= =  one obtain 

0u c= +  

Then 

u a u= +  

So, one obtain  the  transformation 

4 :e x ta x
X

u u a
= +⎧

⎨ = +⎩
 

New we check it is an equivalence transformation 

Since  , , , ,t t s sρ ρ α α ε ε= = = = =   then 

f f x f ta x f
x x x x x x
f f x f t f ta x f t f f f fa a
t x t t t x t t t x t x t

∂ ∂ ∂ ∂ ∂ + ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ ∂ ∂

= + = + = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

So, 

 x x

a
t t x

∂ ∂
=

∂ ∂
∂ ∂ ∂
= −

∂ ∂ ∂

 

Consider (1.2) 

( )( ) ( )x t xt
u au a u

t x x
ρ ρ ρρ ρ ρ ρ∂ ∂ ∂ +

+ = − + = +
∂ ∂ ∂

 

Consider (1.3) 
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( ) ( ) ( ) ( ) ( )x t xt
s s s u as su a s su

t x x
ρ ρ ρρ ρ ρ ρ∂ ∂ ∂ +

+ = − + = +
∂ ∂ ∂

 

Since 

2 2

2 2

2 2 =  

( ) ( )  

=   +

P P
x x x x

P P
x x

ε ελ λ
α α
ε ρ ε ρρ ρ ρλ ρ ρ ρλ
ρ ρ

ρ ρρλ ρλ

∂ ∂
= =

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞Π = + = ∏⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

Consider (1.4) 

( )2
2 2

( )( ) ( )( ) ( ) ( ) ( )x t xt

u au a u au u a u u
t x x

ρρ ρρ ρ ρ ρ
∂ + +Π∂ + ∂ +

+ +Π = − + = + +Π
∂ ∂ ∂

 

because of  ( ) 0t xuρ ρ+ = . 

Hench  4
eX  is an equivalence transformation. 

5. 5
e

xX = ∂  

Consider Lie equations:  

 1x
a
∂

=
∂

 (1.23) 

0;a x x= =  

Consider (1.23) 

 
   

dx da

x a c

=

= +
∫ ∫  

Because of 0;a x x= =  one obtain 

0x c= +  

Then 

5 :eX x a x= +  
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New we check it is an equivalence transformation 

Since  , , , , ,t t u u s sρ ρ α α ε ε= = = = = =   then 

f f x f x a f
x x x x x x
∂ ∂ ∂ ∂ ∂ + ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

 

So, 

 
x x
∂ ∂
=

∂ ∂
 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 

 ( ) ( ) ( ) ( )x t xts su s suρ ρ ρ ρ+ = +  

Since 

2 2

2 2

2 2 =  

( ) ( )  

=   +

P P
x x x x

P P
x x

ε ελ λ
α α
ε ρ ε ρρ ρ ρλ ρ ρ ρλ
ρ ρ

ρ ρρλ ρλ

∂ ∂
= =

∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= − = − =
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞Π = + = ∏⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 

Consider (1.4) 
2 2( ) ( ) ( ) ( )x t xtu u u uρ ρ ρ ρ+ +Π = + +Π  

Hench 5
eX  is an equivalence transformation. 

6. 6 2 2e
x uX x u α εα ε= ∂ + ∂ − ∂ + ∂  

Consider Lie equations:  

 dx x
da

=  (1.24) 
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 du u
da

=  (1.25) 

 2d
da
α α= −  (1.26) 

 2d
da
ε ε=  (1.27) 

0; , , ,a x x u u α α ε ε= = = = =  

Consider (1.24) 

1    

       ln ln
ln ln

        ln

            

            

a

a

dx da
x

x a c
x c a

x a
c
x e
c
x ce

=

= +
− =

=

=

=

∫ ∫

 

Because of 0;a x x= =  one obtain 

0x ce=  

Then 

ax xe=  

Consider (1.25) 

 

1    

       ln ln
ln ln

        ln

            

            

a

a

du da
u

u a c
u c a

u a
c
u e
c
u ce

=

= +
− =

=

=

=

∫ ∫
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Since 0;a u u= =  one obtain 

 0u ce=  

Then,  

 au ue=  

Consider (1.26) 

2

2

1    2

       ln 2 ln
ln ln 2

        ln 2

            

            

a

a

d da

a c
c a

a
c

e
c

ce

α
α

α
α

α

α

α

−

−

= −

= − +
− = −

= −

=

=

∫ ∫

 

Since 0;a α α= =  one obtain 

 0ceα =  

Then,  

 2aeα α −=  

Consider (1.27) 

 

2

2

1    2

       ln 2 ln
ln ln 2

        ln 2

            

            

a

a

d da

a c
c a

a
c

e
c

ce

ε
ε

ε
ε

ε

ε

ε

=

= +
− =

=

=

=

∫ ∫

 

Since 0;a ε ε= =  one obtain 
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 0ceε =  

Then,  

 2aeε ε=  

So, one obtain  the  transformation 

6 2

2

:

a

a
e

a

a

x xe
u ue

X
e
e

α α

ε ε

−

⎧ =
⎪

=⎪
⎨

=⎪
⎪ =⎩

 

Let ab e=  then 

6
2

2

: 1e

x xb
u ub

X
b

b

α α

ε ε

=⎧
⎪ =⎪⎪
⎨ =⎪
⎪

=⎪⎩

 

New we check it is an equivalence transformation 

Since  , ,t t s sρ ρ= = =   then 

2

2

1
1

f f x f xb b f
x x x x x x

f f f fb
b

αα
α α α α α α

∂ ∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂

 

So, 

 
2

1
x b x

b
α α

∂ ∂
=

∂ ∂
∂ ∂

=
∂ ∂

 

 

Consider (1.2) 
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1 ( ) ( )x t xt
ub b uu u

t b x t b x
ρ ρ ρ ρρ ρ ρ ρ∂ ∂ ∂ ∂

+ = + = + = +
∂ ∂ ∂ ∂

 

Consider (1.3) 

1 ( ) ( ) ( ) ( )x t xt
s sub s b sus su s su

t b x t b x
ρ ρ ρ ρρ ρ ρ ρ∂ ∂ ∂ ∂

+ = + = + = +
∂ ∂ ∂ ∂

 

Since 
2 4

2 4

2
2 2 4

2 2
2 4 2 2 2

2 2
2 4 2

2 2 =2  

1 1( ) ( )

  ( ) ( )  

=    

b bb b

bP b
x x b x b x

b bb b b P
b x b x x x

P b P b b P
x xb

ε ε ελ λ
α α α
ε ρ ε ρρ ρ ρλ ρ ρ ρ λ
ρ ρ
ε ρ ε ρρ ρ ρ λ ρ ρ ρλ
ρ ρ

ρ ρρλ ρ λ

∂ ∂ ∂
= = =

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= − = −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂⎛ ⎞ ⎛ ⎞Π = + + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

2
4 2

2

1 b b
b x

ρρ λ ∂⎛ ⎞+ = ∏⎜ ⎟∂⎝ ⎠

 

Consider (1.4) 

( ) ( )2 2 2 2
2 2

( )
( ) ( ) ( ) ( )

( )x t xt

ub b b uub b uu u b u u
t xb t b x

ρ ρρ ρρ ρ ρ ρ
∂ + Π ∂ +Π∂ ∂

+ +Π = + = + = + +Π
∂ ∂ ∂ ∂

 

Hench 6
eX  is an equivalence transformation. 

7. 7 ( )eX f ερ α= ∂  

Consider Lie equations:  

 ( )d f
da
ε ρ α=  (1.28) 

 0;a ε ε= =  

Because of ,ρ ρ α α= =  then (1.28) becomes 

( )

    ( )

d f da

f a c

ε ρ α

ε ρ α

=

= +

∫ ∫  

Since 0;a ε ε= =  one obtain 



22 
 

 ( ) 0f cε ρ α= +  

Then,  

 ( )f aε ρ α ε= +  

New we check it is an equivalence transformation. 

Since  , , , , ,x x t t u u s sρ ρ α α= = = = = =   then 

( ( ) ) ( )

( ( ) ) 1 ( )
2

( ( ) )

f f f f f f a f ff a

f f f f f f a f ff a

f f f f a f

ρ ε ρ α ε ρ α
ρ ρ ρ ε ρ ρ ε ρ ρ ε

α ε ρ α ε ρ
α α α ε α α ε α α εα

ε ρ α ε
ε ε ε ε ε ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂′= + = + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂
= + = + = +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ + ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂

 

So, 

 ( )

1 ( )
2

f a

f a

ε ε

ρ α
ρ ρ ε

ρ
α α εα

∂ ∂
=

∂ ∂
∂ ∂ ∂′= −
∂ ∂ ∂
∂ ∂ ∂

= −
∂ ∂ ∂

 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 

 ( ) ( ) ( ) ( )x t xts su s suρ ρ ρ ρ+ = +  

Since 
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[ ]

( ) ( )

2 2

2

2 2

12 2 2 ( ( ) ) ( ) ( ( ) ) =2  
2

( ) ( ( ) ) ( ) ( ( ) )

  ( )
  

   

x x x x

x x

x x

f a f a f a

P f a f a f a

P

P P

α α

ρ

ρ

ελ ε ρ α ε ρ ρ α ε ε λ
α α εα

ρ ε ρ ρλρ ρ ρ α ε ρ α ρ α ε ρ ρλρ
ρ ε

ρ ε ρ ρλρ

ρλ ρ ρλ ρ

∂ ∂ ∂⎡ ⎤
= = = + − + =⎢ ⎥∂ ∂ ∂⎣ ⎦

⎡ ⎤∂ ∂′= − = + − + −⎢ ⎥∂ ∂⎣ ⎦
= −

=

Π = + = + = ∏

 

Consider (1.4) 
2 2( ) ( ) ( ) ( )x t xtu u u uρ ρ ρ ρ+ +Π = + +Π  

Hench 7
eX  is an equivalence transformation. 

8. 8 ( )eX g s ε= ∂  

Consider Lie equations: 

 ( )d g s
da
ε
=  (1.29)

 0;a ε ε= =  

Because of s s=  then(1.29)  becomes 

( )

    ( )

d g s da

g s a c

ε

ε

=

= +
∫ ∫  

Since 0;a ε ε= =  one obtain 

 ( )0g s cε = +  

Then,  

 ( )g s aε ε= +  

New we check it is an equivalence transformation. 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 
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 ( ) ( ) ( ) ( )x t xts su s suρ ρ ρ ρ+ = +  

Since 

( ) ( )

2 2

2

2 2

2 2( ( ) ) =2  

( ) ( ( ) ) ( )

  ( )

=

x x x x

x x

x x

g s a

P g s a

P

P P

α α α

ρ ρ

ρ

λ ε ε ε λ

ρ ε ρ ρλρ ρ ε ρ ρλρ

ρ ε ρ ρλρ

ρλ ρ ρλ ρ

= = + =

= − = + −

= − =

Π = + + = ∏

 

Consider (1.4) 
2 2( ) ( ) ( ) ( )x t xtu u u uρ ρ ρ ρ+ +Π = + +Π  

Hench 8
eX  is an equivalence transformation. 

9. 9
1eX ερ

= ∂  

Consider Lie equations: 

 1d
da
ε

ρ
=  (1.30) 

 0;a ε ε= =  

Because of ρ ρ=  then (1.30)  becomes 

1

1    

d da

a c

ε
ρ

ε
ρ

=

= +

∫ ∫
 

Since 0;a ε ε= =  one obtain 

 1 0 cε
ρ

= +  

Then,  

 1 aε ε
ρ

= +  

New we check it is an equivalence transformation. 
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Since  , , , , ,x x t t u u s sρ ρ α α= = = = = =   then 

2

1( )
1

1( )

a
f f f f f f f

a
f f f f

ε
ρ ε ρ

ρ ρ ρ ε ρ ρ ε ρ ρ ρ ε

ε
ε ρ

ε ε ε ε ε ε

∂ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + = + = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ +
∂ ∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

 

So, 

2

1
ε ε

ρ ρ ρ ε

∂ ∂
=

∂ ∂
∂ ∂ ∂

= +
∂ ∂ ∂

 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 

 ( ) ( ) ( ) ( )x t xts su s suρ ρ ρ ρ+ = +  

Since 

( ) ( )

2 2
2

2

2 2

12 2( ) =2  

1 1 1( ) ( ) ( ) ( )

  ( )

=

x x x x

x x

x x

a

P a a

P

P P

α α α

ρ

ρ

λ ε ε ε λ
ρ

ρ ε ρ ρλρ ρ ε ε ρ ρλρ
ρ ρ ρ ε ρ

ρ ε ρ ρλρ

ρλ ρ ρλ ρ

= = + =

⎡ ⎤∂ ∂
= − = + + + −⎢ ⎥∂ ∂⎣ ⎦
= − =

Π = + + = ∏

 

Consider (1.4) 
2 2 2( ) ( ) ( ) ( ) ( ) ( )x t x t xtu u u u a u uρ ρ ρ ρ ρ ρ+ +Π = + +Π − = + +Π  

Hench 9
eX  is an equivalence transformation. 

10. 10 ( )e
sX h s= ∂  

Consider Lie equations: 
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 ( )ds h s
da

=  (1.31)

 0;a s s= =  

Consider (1.31)   

1
( )

( )

    ( )

ds da
h s

H s ds da

H s a c

=

=

= +

∫ ∫

∫ ∫  

Since 0;a s s= =  one obtain 

 ( ) 0H s c= +  

Then,  

 ( ) ( )H s a H s= +  

If  

 ( )  then ( )H s s H s s= =  

So, 

s a s= +  

New we check it is an equivalence transformation. 

Consider (1.2) 

 ( ) ( )x t xt u uρ ρ ρ ρ+ = +  

Consider (1.3) 

 ( ) ( ) ( ( )) ( ( ) ) ( ) ( ) ( )
                        ( ) ( )  ,since ( ) 0

x t x t t x xt

t x t x

s su a s a s u a s a u su
s su a a u

ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ

+ = + + + = + + +

= + + =
 

Since 
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2 2

2

2 2  

( ) ( )x x x x

x

P P

P

α α

ρ ρ

λ ε ε λ

ρ ε ρ ρλρ ρ ε ρ ρλρ

ρλρ

= = =

= − = − =

∏ = + = ∏

 

Consider (1.4) 
2 2( ) ( ) ( ) ( )x t xtu u u uρ ρ ρ ρ+ +Π = + +Π  

Hench 10
eX  is an equivalence transformation. 

So the equivalence Lie group are 

1

2

3

4

5

6

7

8

9

10

2

2

2 2

( )

( )
1

( )

e

e
t u

e
t

e
x u

e
x

e
x u

e

e

e

e
s

X

X t u

X

X t

X

X x u

X f

X g s

X

X h s

ρ α

ε

α ε

ε

ε

ε

ρ α

ε

α ε

ρ α

ρ

= ∂ + ∂

= ∂ − ∂ − ∂

= ∂

= ∂ + ∂

= ∂

= ∂ + ∂ − ∂ + ∂

= ∂

= ∂

= ∂

= ∂

 



Admitted Lie group

Consider the original equations

ρt + (ρu)x = 0, (ρu)t + (ρu2 + Π)x = 0, (ρs)t + (ρsu)x = 0,

Π = ρ δ(ρε)
δρ
− ρε = ρ2ερ − 2ρ(ρρxεα)x + 2ρρ2xεα, α = |∇ρ|2, (1)

Since an equivalence Lie group allows changing arbitrary elements conserving the
structure of the studied equations. An infinitesimal operator Xe of the equivalence
Lie group is sought in the form

Xe = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α + ζs∂s + ζε∂ε,

where the coefficients ξx, ξt, ζρ, ζu, ζα, ζs and ζε are all functions of (x, t, ρ, u, α, s, ε).
Calculations give the following basis of generators of the equivalence Lie group,

Xe
1 = ρ∂ρ + 2α∂α, X

e
2 = t∂t + x∂x − 2α∂α,

Xe
3 = t∂x − u∂u − 2ε∂ε, X

e
4 = f(s)∂s,

Y e
1 = ∂t, Y

e
2 = ∂x, Y

e
3 = t∂x + ∂u, Z

e
1 = ρ−1∂ε,

Ze
2 = f(s)∂ε, Z

e
3 = g(ρ)

√
α∂ε,

where the functions f(s) and g(ρ) are arbitrary.
Since the equivalence transformations corresponding to the operators Xe

3 , Xe
4 ,

Ze
1 , Ze

2 and Ze
3 are applied for simplifying the function ε in the classification process,

let us present these transformations. Because the function ε depends on ρ, α and s,
only the transformations of these variables are presented:

Xe
3 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = e−2aε,

Xe
4 : ρ̃ = ρ, α̃ = α, s̃ = h(s, a) ε̃ = ε,

Ze
1 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+ ρ−1a,

Ze
2 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+ f(s)a,

Ze
3 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+

√
αg(ρ)a

where a is the group parameter. Using the equivalence transformations correspond-
ing to the generators Ze

1 and Ze
2 , the term C1ρ

−1+C2, which appears in the function
ε(ρ, α, s) can be omitted. Here C1 and C2 are constants. By virtue of the equiv-
alence transformations corresponding to the generator Ze

3 , the function ε(ρ, α, s) is
considered up to the term

√
αg(ρ).

An admitted generator X of equations (1) is sought in the form

X = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α + ζs∂s,

where the coefficients ξx, ξt, ζρ, ζu, ζα and ζs are functions of the variables
(x, t, ρ, u, α, s). Calculations show that

ξx = k4tx− k̃3x− k̃1x+ k5t
3 + k6t

2 + k8t+ k9, ξ
t = k4t

2 − 2k̃3t− 2k̃1t+ k2t+ k7,

ζρ = 2k̃1ρ− k4tρ+ k̃3ρ, ζ
u = k4(x− tu) + k̃3u+ k̃1u− k2u+ 3k5t

2 + 2k6t+ k8,

ζα = 6k̃1α− 4k4tα + 4k̃3α, ζ
s = ζ(s),

where k1 = k̃1 − k̃3, k3 = −k̃3, ki, (i = 1, 2, ..., 8) are constant. The constants and
the function ζ(s) satisfy the equations

ζ(2εsαρραρ+ 4εsαρα− εsρρρ− 2εsρ) + 2k̃1(2εαρρραρ
2 + 9εαρραρ

+6εαρα + 6εααρρα
2ρ+ 12εααρα

2 − ερρρρ2 − 3ερρρ) + 2k2(2εαρραρ+ 4εαρα

−ερρρ− 2ερ) + k̃3(2εαρρραρ
2 + 8εαρραρ+ 4εαρα + 8εααρρα

2ρ
+16εααρα

2 − ερρρρ2 − 2ερρρ+ 2ερ)− 2k6q(α) = 0,

(2)
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ζ ′(4εsαραρ+ 4εsαα− εsρρ) + ζ(4εssαραρ+ 4εssαα− εssρρ) + 2k̃1(4εsαρραρ
2

+13εsαραρ+ 12εsααρα
2ρ+ 12εsααα

2 + 8εsαα− εsρρρ2) + 2k2(4εsαραρ

+4εsαα− εsρρ) + k̃3(4εsαρραρ
2 + 12εsαραρ+ 16εsααρα

2ρ+ 16εsααα
2

+8εsαα− εsρρρ2 + εsρρ) = 0,

(3)

ζsssεsα + 2ζ ′εssα + ζεsssα + 2k̃1(εssαρρ+ 3εssααα + 2εssα) + 2k2εssα
+k̃3(εssαρρ+ 4εssααα + 2εssα) = 0,

(4)

ζ(εsαρρ+ 2εsααραρ+ 2εsααα + εsα) + 2k̃1(εαρρρ
2 + 4εαρρ+ 6εαααρα

2ρ
+6εαααα

2 + 2εααρραρ
2 + 17εααραρ+ 13εααα + 2εα)

+2k2(εαρρ+ 2εααραρ+ 2εααα + εα)

+k̃3(εαρρρ
2 + 4εαρρ+ 8εαααρα

2ρ+ 8εαααα
2 + 2εααρραρ

2 + 20εααραρ
+16εααα + 2εα) = 0,

(5)

ζ(2εsαααα + 3εsαα) + 2k̃1(6εααααα
2 + 2εαααραρ+ 25εαααα + 3εααρρ

+15εαα) + 2k2(2εαααα + 3εαα) + k̃3(8εααααα
2 + 2εαααραρ+ 32εαααα

+3εααρρ+ 18εαα) = 0,

(6)

ζ ′(2εsααα + εsα) + ζ(2εssααα + εssα) + 2k̃1(εsαρρ+ 6εsαααα
2 + 2εsααραρ

+13εsααα + 2εsα) + 2k2(2εsααα + εsα)

+k̃3(εsαρρ+ 8εsαααα
2 + 2εsααραρ+ 16εsααα + 2εsα) = 0,

(7)

ζ ′εsα + ζεssα + 2k̃1(εsαρρ+ 3εsααα + 2εsα) + 2k2εsα + k̃3(εsαρρ
+4εsααα + 2εsα) = 0,

(8)

ζ(2εsααα + εsα) + 2k̃1(εαρρ+ 6εαααα
2 + 2εααραρ+ 13εααα + 2εα)

+2k2(2εααα + εα) + k̃3(εαρρ+ 8εαααα
2 + 2εααραρ+ 16εααα + 2εα) = 0,

(9)

k4(2εαρρραρ
2 + 8εαρραρ+ 4εαρα + 8εααρρα

2ρ
+16εααρα

2 − ερρρρ2 − 2ερρρ+ 2ερ) + 6k5q(α) = 0,
(10)

k4(4εsαρραρ
2 + 12εsαραρ+ 16εsααρα

2ρ
+16εsααα

2 + 8εsαα− εsρρρ2 + εsρρ) = 0,
(11)

k4(εssαρρ+ 4εssααα + 2εssα) = 0, (12)

k4(εαρρρ
2 + 4εαρρ+ 8εαααρα

2ρ+ 8εαααα
2 + 2εααρραρ

2 + 20εααραρ
+16εααα + 2εα) = 0,

(13)

k4(8εααααα
2 + 2εαααραρ+ 32εαααα + 3εααρρ+ 18εαα) = 0, (14)

k4(εsαρρ+ 8εsαααα
2 + 2εsααραρ+ 16εsααα + 2εsα) = 0, (15)

k4(εsαρρ+ 4εsααα + 2εsα) = 0, (16)

k4(εαρρ+ 8εαααα
2 + 2αρεααρ + 16εααα + 2εα) = 0. (17)

where q = a/
√
α and a2 = 1. The determining equations (2)-(17) define the kernel

of admitted Lie algebras and its extensions. The kernel of admitted Lie algebras
consists of the generators which are admitted by equations (1) for any function
ε(ρ, α, s) and it is defined by the generators

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u.

The transformations corresponding to Y1 and Y2 are shifts with respect to time
and space variable, and the transformations corresponding to Y3 are the Galilean
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transformations. Extensions of the kernel of admitted Lie algebras depend on the
value of the function ε(ρ, α, s). They can only be operators of the form

k1X1 + k2X2 + k3X3 + k4X4 + k5X5 + k6X6 + ζ∂s,

where

X1 = ρ∂ρ + α∂α, X2 = t∂t − u∂u, X3 = u∂u + 2α∂α − x∂x − 2t∂t,
X4 = ρt∂ρ + (ut− x)∂u + 4αt∂α − tx∂x − t2∂t, X5 = t3∂x + 3t2∂u, X6 = t2∂x + 2t∂u.

Case k4 6= 0 The functions ε(ρ, α, s) for which there exists an admitted generator
with k4 6= 0 are studied first. This generator can be rewritten in the form

X4 + k1X1 + k2X2 + k3X3 + k5X5 + k6X6 + ζ∂s,

where ζ = ζ(s). Using the equivalence transformation corresponding to the gen-
erator Xe

1 = ∂t, one can assume that for this generator k1 = 0. Notice also that
if ζ 6= 0, then using the equivalence transformation corresponding to Xe

4 , one can
assume that ζ = 1. From equation (16) one finds that Assume that there exists an
admitted generator with k4 6= 0. Using the equivalence transformation correspond-
ing to the generator Xe

1 = ∂t, one can assume that for this generator k1 = 0. Notice
also that if ζ ′ 6= 0, then using Xe

4 = h(S)∂S, one can assume that ζ = −S. From
(16)

εαS = ρ−2ψ(αρ−4, S).

εS = ρ2ψ(αρ−4, S) + φ(ρ, S).

ε = ρ2ψ(αρ−4, S) + φ(ρ, S) + ϕ(ρ, α).

Substituting in (17) one has

ρϕαρ + 8α2ϕααα + 2αρϕααρ + 16αϕαα + 2ϕα = 0

or introducing the function

g = 2αϕαα + ϕα = 2α1/2(α1/2ϕα)α

this equation becomes
ρgρ + 4αgα + 2g = 0.

Solution of this equation is

g(ρ, α) = ρ−2q(αρ−4),

hence,
ρ−2α−1/2q(αρ−4) = 2(α1/2ϕα)α�

ρ−2α−1/2q(αρ−4) dα = ρ2
�
α−1/2q(αρ−4) dz =

�
z−1/2q(z) dz = 2q̃(z)

α1/2ϕα = q̃(z) + h1(ρ)

ϕα = α−1/2q̃(z) + α−1/2h1(ρ)�
α−1/2q̃(z) dα = ρ4

�
α−1/2q̃(z) dz = ρ2

�
z−1/2q̃(z) dz = ρ2q̃(z)
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ϕ = ρ2q̃(z) + α1/2h1(ρ) + h2(ρ)

ε = ρ2ψ(αρ−4, S) + φ(ρ, S) + ρ2q(z) + α1/2h1(ρ) + h2(ρ).

One can assume that
q = 0, h1 = 0, h2 = 0.

Thus,
ε = ρ2ψ(αρ−4, S) + φ(ρ, S).

Differentiting equation ss10 with respect to α, one finds that k5 = 0. Equations ss10
and ss20 become

ρ2φρρρ + 2ρφρρ − 2φρ = 0.

ρφρρS − φρS = 0.

Solution of the first equation is

φ = ρ2φ1(S) + ρ−1φ2(S) + φ3(S).

Hence,
φρS = 2ρφ′1 − ρ−2φ′2,

and then the second equation becomes

φ′2 = 0⇒ φ2 = C = const

Thus,
ε = ρ2

(
ψ(αρ−4, S) + φ1(S)

)
+ ρ−1C + φ3(S).

By virtue of arbitrariness of the function ψ, one assigns φ1 = 0. Because of the
equivalence transformations corresponding to Ze

1 and Ze
2 one can assume that φ3 = 0

and C = 0. Thus, if there exists a generator with k4 6= 0, then the function ε(ρ, α, S)
has to be of the form

ε = ρ2ψ(z, S), z = αρ−4. (18)

Let us study group properties of equations (1) with the function ε(ρ, α, S) of the
form (18). Substituting the function ε(ρ, α, S) (18) into the determining equations
(..)-(...), and making some manipulations (differentiations and linear combinations)
one obtains that these equations are reduced to the equations k5 = 0, k6 = 0 and

2(k3 − k1)(2z2ψzz − zψz + ψ) + 2k2(2ψzz − ψ) + ζ(2ψzSz − ψS) = 0, (19)

(2(k3 − k1)(zψz − ψ) + 2k2ψ + ψSζ)S = 0. (20)

Integrating equation (20), one has

2(k3 − k1)(zψz − ψ) + 2k2ψ + ψSζ = λ, (21)

where the function λ(z) is an arbitrary function. Excluding k2 from (19) using (21),
one finds that

2zλz − λ = 0,

which means that the function λ = qz1/2 is an arbitrary function or

λ = kz1/2,
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where k is constant. Thus, for the group classification of equations (1) with the
function ε(ρ, α, S) of the form (18) one needs to analyze the only equation

2(k3 − k1)(zψz − ψ) + 2k2ψ + ψSζ = kz1/2. (22)

Since ψS 6= 0, one finds

ζ = ψ−1S
(
kz1/2 − 2 ((k3 − k1)(zψz − ψ) + k2ψ)

)
(23)

Because of that ζ = ζ(S) and differentiating (23) with respect to z, one has to
require that

ak + b(k3 − k1) + ck2 = 0, (24)

where
a =

(
z1/2ψ−1S

)
z
, b = −2

(
ψ−1S (zψz − ψ)

)
z
, c = −2

(
ψ−1S ψ

)
z
.

Equation (24) is a classifying equation. For arbitrary function ψ(z, S) one has

k3 = k1, k2 = 0, k = 0 (25)

or the kernel of admitted generators consists of the generators

Y1, Y2, Y3, X1 +X3, X4. (26)

An extension of this Lie algebra occurs if one of the constants

k3 − k1, k2, k

does not vanish. Operators of the extension have the form

γX2 + βX3 +Xh,

where h = h(S) and β, γ are constant such that

h2 + β2 + γ2 6= 0.

The table of commutators

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u, X1 = ρ∂ρ + α∂α, X2 = t∂t − u∂u,

X3 = u∂u + 2α∂α − x∂x − 2t∂t, X4 = t(ρ∂ρ + u∂u + 4α∂α − t∂t − x∂x)− x∂u
X5 = t3∂x + 3t2∂u, X6 = t2∂x + 2t∂u,

Y1 Y2 Y3 X1 X2 X3 X4 X5 X6

Y1 0 0 Y2 0 Y1 −2Y1 X1 +X3 3X6 2Y3
Y2 0 0 0 0 0 −Y2 −Y3 0 0
Y3 −Y2 0 0 0 −Y3 Y3 0 0 0
X1 0 0 0 0 0 0 0 0 0
X2 −Y1 0 Y3 0 0 0 X4 3X5 2X6

X3 2Y1 Y2 −Y3 0 0 0 −2X4 −5X5 −3X6

X4 −X1 −X3 Y3 0 0 −X4 2X4 0 −F −X5

X5 −3X6 0 0 0 −3X5 5X5 F 0 0
X6 −2Y3 0 0 0 −2X6 3X6 X5 0 0
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where F = 2t3(t∂x + 4∂u).

Y1 Y2 Y3 X1 X2 X3 X4

Y1 0 0 Y2 0 Y1 −2Y1 X1 +X3

Y2 0 0 0 0 0 −Y2 −Y3
Y3 −Y2 0 0 0 −Y3 Y3 0
X1 0 0 0 0 0 0 0
X2 −Y1 0 Y3 0 0 0 X4

X3 2Y1 Y2 −Y3 0 0 0 −2X4

X4 −X1 −X3 Y3 0 0 −X4 2X4 0

Y1 Y2 Y3 X1 +X3 X2 X3 X4

Y1 0 0 Y2 −2Y1 Y1 −2Y1 X1 +X3

Y2 0 0 0 −Y2 0 −Y2 −Y3
Y3 −Y2 0 0 Y3 −Y3 Y3 0

X1 +X3 2Y1 Y2 −Y3 0 0 0 −2X4

X2 −Y1 0 Y3 0 0 0 X4

X3 2Y1 Y2 −Y3 0 0 0 −2X4

X4 −X1 −X3 Y3 0 2X4 −X4 2X4 0

Notice that
Y1, Y2, Y3, X1 +X3, X4,

compose an ideal and
X2, X3

compose a subalgebra of

Y1, Y2, Y3, X1 +X3, X4, X2, X3

For classifying all possibilities, it is convenient to consider the functions a(z, S),
b(z, S) and c(z, S) as coordinates of the three-dimensional vector v = (a, b, c). For
analyzing relations between the constants k3−k1, k2 and k one can study the vector
space Span(V ), where the set V consists of the vectors v with z and S are changed.
Let dim(Span(V )) = 3, then

k3 = k1, k2 = 0, k = 0. (27)

There is no extensions in this case. Let dim(Span(V )) = 2, then there exists a
constant vector (γ, β, q) 6= 0 such that

γa+ βb+ qc = 0.

Assume that γ 6= 0

a = −βb− qc⇒ b[(k3 − k1)− βk] + c(k2 − qk) = 0

If one of the constants (k3−k1)−βk and k2− qk does not vanish, then dim(V ) < 2.
Hence,

(k3 − k1) = βk, k2 = qk

and
ζ = kh(S),
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where
h(S) = ψ−1S

(
z1/2 − 2 (βzψz + (q − β)ψ)

)
. (28)

The function h(S) can be also simplified: either h = 0 or h = 1 . The extension is
defined by the generator

βX3 + qX2 + h∂S.

Case h = 0, β 6= 0, q = βq̃, q̃ 6= 1/2:

ψ = z1−q̃H(S) + z1/2
1

β(2q̃ − 1)

It gives dim(V ) = 1. Case h = 0, β 6= 0, q = βq̃, q̃ = 1/2:

ψ = z1/2
(
H(S) +

1

2β
ln(z)

)
.

It gives dim(V ) = 1. Case h = 1, β = 0:

ψ = e−qSQ(z) +
1

2q
z1/2

qX2 + 2∂S.

Using equivalence transformation one can reduce the function

ψ = e−qSQ(z)

Case h = 1, β 6= 0, q = βq̃, q̃ 6= 1/2:

ψ = z1−q̃Q(ze−βS) + z1/2
1

β(2q̃ − 1)

β(X3 + q̃X2) + 2∂S.

Using equivalence transformation one can reduce the function

ψ = z1−q̃Q(ze−βS)

Case h = 1, β 6= 0, q = βq̃, q̃ = 1/2:

ψ = z1−q̃
(
Q(ze−βS) +

1

2β
ln(z)

)

β(X3 + (1/2)X2) + 2∂S.

It can be reduced to?
ψ = z1−q̃

(
Q(ze−S) + ln(z)

)
X3 + (1/2)X2 + 2∂S.

Assume that γ = 0, β 6= 0,

b = −qc⇒ ak + c(k2 − q(k3 − k1)) = 0

Similar to the previous case

k = 0, k2 = q(k3 − k1),
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and
ζ = −2(k3 − k1)h(S),

where
h(S) = ψ−1S (zψz + (q − 1)ψ) . (29)

The function h(S) can be also simplified: either h = 0 or h = 1. The extension is
defined by the generator

X3 + qX2 − 2h∂S.

Case h = 0:
ψ = z1−qH(S),

X3 + qX2.

It gives dim(V ) = 1. Case h = 1:

ψ = z1−qH(ze−S),

X3 + qX2 + 2∂S.

Assume that γ = 0, β = 0,

c = 0⇒ ak + b(k3 − k1) = 0

Similar to the previous case

k = 0, k3 − k1 = 0,

and
ζ = −2k2h(S),

where
h(S) = ψ−1S ψ. (30)

The function h(S) can be also simplified h = 1. In this case

ψ = e−SH(z),

and the extension is defined by the generator

X2 − 2∂S.

Let dim(Span(V )) = 1, then there exists a constant vector (γ, β, q) 6= 0 such that

a = γg, b = βg, c = qg,

with some function g(z, S) 6= 0 which is not constant. Assume that γ 6= 0

ak + b(k3 − k1) + ck2 = 0,

g = a, b = βa, c = qa⇒ k = −β(k3 − k1)− qk2,

and
ζ = −(k3 − k1)h1(S)− k2h2(S),

where
h1(S) = ψ−1S

(
βz1/2 + 2(zψz − ψ)

)
. (31)
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h2(S) = ψ−1S
(
qz1/2 + 2ψ

)
. (32)

The extension is defined by the generators

X3 − h1∂S, X2 − h2∂S.

Since, ψS 6= 0, one can assume that h2 = 1. Notice that the commutator

[X3 − h1∂S, X2 − h2∂S] = h′1∂S = 0.

Hence, h1 = λ, where λ is constant.

zψz − (λ+ 1)ψ =
(qλ− β)

2
z1/2. (33)

ψS = 2ψ + qz1/2. (34)

ψ = βz1/2 +Kz1+λe−2S

X3 − λ∂S, X2 + ∂S.

Using equivalence transformation

ψ = Kz1+λe−2S

Assume that γ = 0 and β 6= 0

ak + b(k3 − k1) + ck2 = 0,

g = b, a = 0, c = qb⇒ (k3 − k1) = −qk2,

and
ζ = ψ−1S

(
kz1/2 − 2 ((k3 − k1)zψz + (k2 − k3 + k1)ψ)

)
ζ = kh1(S) + 2k2h2(S),

where
h1(S) = ψ−1S z1/2,

h2(S) = ψ−1S (q(zψz − ψ)− ψ) .

The extension is defined by the generators

h1∂S, X2 − qX3 + 2h2∂S.

Here one has to assume that h1 6= 0 or h1 = 1. The commutator is

[h1∂S, X2 − qX3 + 2h2∂S] = 2h′2∂S = 2λ∂S.

Hence, h2 = λS and
ψS = z1/2,

λSψS = qzψz − (q + 1)ψ.
(35)

Case q = 0
ψ = z1/2S

X2 − 2S∂S, ∂S.
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It gives dim(V ) = 0. Case q 6= 0

ψ = Kz1+1/q + z1/2S

X2 − qX3 − 2S∂S, ∂S.

If K = 0, then dim(V ) = 0, hence K 6= 0. Assume that γ = 0 , β = 0 and q 6= 0

ak + b(k3 − k1) + ck2 = 0,

g = c, a = 0, b = 0, ⇒ k2 = 0

ζ = kh1(S)− 2(k3 − k1)h2(S),

where
h1(S) = ψ−1S z1/2,

h2(S) = ψ−1S (zψz − ψ).

The extension is defined by the generators

h1∂S, X3 − 2h2∂S.

As in the previous case one can assume that h1 = 1. The commutator is

[∂S, X3 − 2h2∂S] = 2h′2∂S = 2λ∂S.

Hence, h2 = λS and
ψS = z1/2,

λSz1/2 = zψz − ψ.
(36)

ψ = Kz + z1/2S

X3 + S∂S, ∂S.

If K = 0, then dim(V ) = 0, hence K 6= 0. Let dim(Span(V )) = 0, then there exists
a constant vector (γ, β, q) such that

a = γ, b = β, c = q.

γk + β(k3 − k1) + qk2 = 0,

ζ = ψ−1S
(
kz1/2 − 2 ((k3 − k1)zψz + (k2 − k3 + k1)ψ)

)
ζ = kh1(S) + (k3 − k1)h2(S) + k2h3(S),

a =
(
z1/2ψ−1S

)
z
, b = −2

(
ψ−1S (zψz − ψ)

)
z
, c = −2

(
ψ−1S ψ

)
z
.

where

h1(S) + γz = z1/2ψ−1S , h2(S) + βz = −2ψ−1S (zψz − ψ), h3(S) + qz = −2ψ−1S ψ.

The extension is defined by the generators

X3 + h2∂S, X2 + h3∂S, h1(S)∂S.

If h1 6= 0, then one can assume that h1 = 1, and

[∂S, X3 + h2∂S] = h′2∂S = λ2∂S,
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[∂S, X2 + h3∂S] = h′3∂S = λ3∂S,

where λ2 and λ3 are constant.

ψS =
z1/2

1 + γz
, λ2S

z1/2

1 + γz
+ βz = −2(zψz − ψ), λ3S

z1/2

1 + γz
+ qz = −2ψ. (37)

Case β = 0
ψ = z1/2S,

X3 + S∂S, X2 − 2S∂S, ∂S.

Case β 6= 0
ψ = z1/2(S − βz),

X2 − 2X3 − 4S∂S, ∂S.

If h1 = 0, then γ 6= 0
ψ = γ−1z−1/2S,

X3 + 3S∂S, X2 − 2S∂S.

Using equivalence transformation

ψ = z−1/2S,

Case k4 = 0

Case where all operators such that k4 = 0:

2(3k1−5k3)αεα+ (2k1−3k3)ρερ+ εSζ = 2(k1−k2−2k3)ε−α1/2g+ϕ−kρ−1, (38)

where g = g(ρ) and ϕ = ϕ(S).
One-dimensional case
Here we use the algebraic approach. This approach supposes that using algebraic
properties of admitted Lie algebras, during the first step of solving the determining
equations one defines unknown constants and functions of an admitted generator. In
particular, according to the last comment of the previous section, one-dimensional
Lie algebras can be reduced to one of two cases, either ζ = 0 or ζ = 1. The set of
possible basis generators containing the generators X1, X2 and X3 is exhausted by
the following generators

ζ = 0 ζ = 1
1. X1 + βX2 + γX3 4. X1 + βX2 + γX3 + ∂S
2. βX2 +X3 5. βX2 +X3 + ∂s
3. X2 6. X2 + ∂S

In the next step, one has to substitute the coefficients of each generator into the
determining equation (38) and solve it with respect to the function ε(ρ, α, s). Here
we present the calculations of the first case. Substituting

k1 = 1, k1 = β, k3 = γ, ζ = 0

into equation (38), one obtains

2(3− 5γ)αεα + (2− 3γ)ρερ = 2(1− β − 2γ)ε− α1/2g(ρ) + ϕ(s)− kρ−1. (39)
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The characteristic system of this equation is

dα

2(3− 5γ)α
=

dρ

(2− 3γ)ρ
=
ds

0
=

dε

2(1− β − 2γ)ε− α1/2g(ρ) + ϕ(s)− kρ−1
.

Invariants of the characteristic system depend on the vanishing of the expression

κ = (2− 3γ)(1− β − 2γ)(4− 2β − 7γ).

If κ 6= 0, then the solution of (39) is

ε(ρ, α, s) = α1/2g̃(s) + ϕ̃(s) + k̃ρ−1 + h(s, αρ−2(3−5γ)/(2−3γ))ρ2(1−β−2γ)/(2−3γ)

where g̃, ϕ̃, h and constant k̃ are arbitrary elements. Using the equivalence transfor-
mations corresponding to Ze

1 , Ze
2 and Ze

3 , one gets that

ε(ρ, α, s) = h(s, αρ−2(3−5γ)/(2−3γ))ρ2(1−β−2γ)/(2−3γ).

In this case the system of equations (1) admits the generator

X1 + βX2 + γX3, (2− 3γ)(1− β − 2γ)(4− 2β − 7γ) 6= 0.

Similar, one finds that If β = 1− 2γ, 2− 3γ 6= 0, then

ε(ρ, α, s) = φ(s) ln ρ+ h(s, αρ−2(3−5γ)/(2−3γ)),

X1 + (1− 2γ)X2 + γX3.

If β = 7γ−4
2
, 2− 3γ 6= 0, then

ε(ρ, α, s) = ρ−1
(
C ln ρ+ h(s, αρ−2(3−5γ)/(2−3γ))

)
,

X1 + (
7γ − 4

2
)X2 + γX3.

If γ = 2
3
, (1 + 3β)(1 + 6β) 6= 0, then

ε(ρ, α, s) = h(s, ρ)α1+3β,

X1 + βX2 +
2

3
X3, (1 + 3β)(1 + 6β) 6= 0.

If γ = 2
3
, β = −1

3
, then

ε(ρ, α, s) = (φ(s)− Cρ−1) lnα + h(ρ, s),

X1 −
1

3
X2 +

2

3
X3.

If γ = 2
3
, β = −1

6
, then

ε(ρ, α, s) = (ψ(ρ) lnα + h(ρ, s))α1/2,

X1 −
1

6
X2 +

2

3
X3.
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Here C, ψ, φ and h are arbitrary.
Two-dimensional case
Considering the basis generators

X = β1X1 + q1X2 + γ1X3 +Xζ1 , Y = β2X1 + q2X2 + γ2X3 +Xζ2 ,

and their commutator satisfies the equation

[X, Y ] = p1X + p2Y.

Hence,
[Xζ1 , Xζ2 ] = p1Xζ1 + p2Xζ2 ,

and
(p1β1 + p2β2)X1 + (p1q1 + p2q2)X2 + (p1γ1 + p2γ2)X3 = 0.

From these conditions one finds that

ζ ′2ζ1 − ζ ′1ζ2 = p1ζ1 + p2ζ2, (40)

and
p1β1 + p2β2 = 0, p1q1 + p2q2 = 0, p1γ1 + p2γ2 = 0. (41)

For two-dimensional algebras there are only two possibilities p1 6= 0, p2 = 0 and
p1 = 0, p2 = 0. Let us consider the case p1 6= 0, p2 = 0. For this case one finds
that the basis of the algebra consists of the generators

X = Xζ1 , Y = β2X1 + q2X2 + γ2X3 +Xζ2 .

Since the algebra is two-dimensional, one obtains that ζ1 6= 0. Using the equivalence
transformation, one can assume that ζ1 = 1. The general solution of equation (40)
is

ζ2 = p1S + c0,

where the constant c0 can be assumed to be zero. Thus, in the case p1 6= 0, p2 = 0
one the admitted algebra has the form (up to equivalence transformations):

{∂S, βX1 + qX2 + γX3 + S∂S}.

The list of such algebras is exausted by the following algebras

{∂S, X1 + βX2 + γX3 + S∂S}. (42)

{∂S, X2 + γX3 + S∂S}. (43)

{∂S, X3 + S∂S}. (44)

{∂S, S∂S}. (45)

Let us consider the case p1 = 0, p2 = 0. For this case eqation (40) becomes

ζ ′2ζ1 − ζ ′1ζ2 = 0. (46)

Notice that if ζ21 + ζ22 6= 0, then one can assume that ζ1 = 1. In this case equation
(46) gives that ζ2 = kζ1. Hence, one also can assume that ζ2 = 0. Thus, admitted
algebras in the case p1 = 0, p2 = 0 have the following forms

{β1X1 + q1X2 + γ1X3 + ∂S, β2X1 + q2X2 + γ2X3}, (47)
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{β1X1 + q1X2 + γ1X3, β2X1 + q2X2 + γ2X3}, (48)

The set of algebras of form (47) is exausted by the list

{q1X2 + γ1X3 + ∂S, X1 + q2X2 + γ2X3}, (49)

{β1X1 + γ1X3 + ∂S, X2 + γ2X3}, (50)

{β1X1 + q1X2 + ∂S, X3}. (51)

The set of algebras of form (48) is exausted by the list

{q1X2 + γ1X3, X1 + q2X2 + γ2X3}, (52)

{β1X1 + γ1X3, X2 + γ2X3}, (53)

{β1X1 + q1X2, X3}. (54)

Consider {∂s, X1 + βX2 + γX3 + s∂s}
The characteristic system of equation (38) is

dα

2(5γ2 − 3)α
=

dρ

(3γ2 − 2)ρ
=
ds

0
=

dε

2(2γ2 + q2 − 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

Case 1 γ2 6= 2/3, then
s = z1,

α = z2ρ
2(5γ2−3)/(3γ2−2),

z2 = αρ−2(5γ2−3)/(3γ2−2),

ε = Cρµ.

Where
µ = 2(2γ2 + q2 − 1)/(3γ2 − 2),

C
′
ρµ =

1

(3γ2 − 2)ρ
(α1/2g2(ρ)− ϕ2(s) + k2ρ

−1),

C =
1

(3γ2 − 2)

�
ρ−1−µ(z

1/2
2 ρ(5γ2−3)/(3γ2−2)g2(ρ)− ϕ2(z1) + k2ρ

−1)dρ+ h(z1, z2).

Case 1.1 (µ+ 1)µ 6= 0 or (7γ2 + 2q2 − 4)(2γ2 + q2 − 1) 6= 0 One can assume that

g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

µ.

Dfferentiate equation (38) with respect to ρ one obtains

d
dρ

(ρ(−7γ2−2q2+3)/(3γ2−2)(z
1/2
2 ρ(8γ2−5)/(3γ2−2)g1(ρ)− ϕ1(s)ρ+ k1)) = 0. (55)

Dfferentiate this equation with respect to z2 one obtains

ρg′1 +
(γ2 − 2q2 − 1)

(3γ2 − 2)
g1 = 0,

then
g1 = c3ρ

−(γ2−2q2−1)/(3γ2−2).
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Equation (38) becomes

2(2γ2 + q2 − 1)ϕ1ρ− (7γ2 + 2q2 − 4)k1 = 0.

Splitting this equation with respect to ρ one obtains

(2γ2 + q2 − 1)ϕ1 = 0.

and
(7γ2 + 2q2 − 4)k1 = 0.

Since (µ+ 1)µ 6= 0, then ϕ1 = 0 and k1 = 0. Then equation (38) becomes

hs + 2γ1
3γ2−2z2hz2 = 2( 3q2+1

3γ2−2γ1 − q1)h− c3z
1/2
2 .

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

2( 3q2+1
3γ2−2γ1 − q1)h− c3z

1/2
2

.

Then
z3 = z2e

−2γ1
3γ2−2

s
,

dh

ds
= 2(

3q2 + 1

3γ2 − 2
γ1 − q1)h− c3z1/23 e

γ1
3γ2−2

s

h = Ceλs, λ = 2(
3q2 + 1

3γ2 − 2
γ1 − q1)

C ′ = −c3e−λsz1/23 e
− γ1

3γ2−2
s

= −c3z1/23 e
−(λ− γ1

3γ2−2
)s

Case 1.1.1 λ− γ1
3γ2−2 = 0, then λ = γ1

3γ2−2 , or q1 = 6q2+1
2(3γ2−2) .

C = −c3z1/23

�
ds = −c3z1/23 s+ h(z3)

Then
h = (−c3z1/23 s+ h(z3))e

λs = (−c3z1/22 e
−γ1

3γ2−2
s
s+ h(z3))e

γ1
3γ2−2

s

h = −c3z1/22 s+ h(z3)e
γ1

3γ2−2
s
.

Then
ε = (−c3z1/22 s+ h(z3)e

γ1
3γ2−2

s
)ρµ.

Case 1.1.2 λ− γ1
3γ2−2) 6= 0, or q1 = 6q2+1

2(3γ2−2) , then

C = −c3z1/23

�
e
−(λ− γ1

3γ2−2
)s
ds =

c3z
1/2
3 e

−(λ− γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ h(z3)

Then

h = (
c3z

1/2
3 e

−(λ− γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ h(z3))e
λs

=
c3(z

1/2
2 e

−γ1
3γ2−2

s
)e

γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ h(z3)e
λs
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=
c3z

1/2
2

(λ− γ1
3γ2−2)

+ h(z3)e
λs

=
c3α

1/2ρ−(5γ2−3)/(3γ2−2)

(λ− γ1
3γ2−2)

+ h(z3)e
λs

Then one can asuume c3 = 0, then

h = h(z3)e
λs.

Then
ε = h(z3)e

λsρµ.

Consider {q1X2 + γ1X3 + ∂s, X1 + q2X2 + γ2X3}.
Then (38) becomes

10γ1αεα + 3γ1ρερ − εs = 2(2γ1 + q1)ε+ α1/2g1(ρ)− ϕ1 + k1ρ
−1 (56)

and

2(5γ2 − 3)αεα + (3γ2 − 2)ρερ = 2(2γ2 + q2 − 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ
−1.

(57)
The characteristic system of equation (57) is

dα

2(5γ2 − 3)α
=

dρ

(3γ2 − 2)ρ
=
ds

0
=

dε

2(2γ2 + q2 − 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

Case 1 γ2 6= 2/3, then
z1 = s

z2 = αρ−2(5γ2−3)/(3γ2−2)

dε

dρ
=

1

(3γ2 − 2)ρ
(2(2γ2 + q2 − 1)ε+ α1/2g2(ρ)− ϕ2(z1) + k2ρ

−1)

ε = Cρµ, µ =
2(2γ2 + q2 − 1)

(3γ2 − 2)

Where

C
′
ρµ =

1

(3γ2 − 2)ρ
(α1/2g2(ρ)− ϕ2(s) + k2ρ

−1),

C
′
=

1

(3γ2 − 2)
ρ−1−µ(z

1/2
2 ρ(5γ2−3)/(3γ2−2)g2(ρ)− ϕ2(z1) + k2ρ

−1).

Case 1.1 (µ+ 1)µ 6= 0 or (7γ2 + 2q2 − 4)(2γ2 + q2 − 1) 6= 0

C =
1

(3γ2 − 2)
(z

1/2
2 g̃2(ρ) +

ϕ2(z1)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(z1, z2)

C =
1

(3γ2 − 2)
(α1/2ρ−(5γ2−3)/(3γ2−2)g̃2(ρ) +

ϕ2(z1)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(z1, z2)

Then

ε =
1

(3γ2 − 2)
(α1/2 ˜̃g2(ρ) +

ϕ2(z1)

µ
− k2

1 + µ
ρ−1) + h(z1, z2)ρ

µ
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One can assume that
g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

µ.

Dfferentiate equation (56) with respect to ρ one obtains

d
dρ

(ρ(−7γ2−2q2+3)/(3γ2−2)(z
1/2
2 ρ(8γ2−5)/(3γ2−2)g1(ρ)− ϕ1(s)ρ+ k1)) = 0. (58)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 +
(γ2 − 2q2 − 1)

(3γ2 − 2)
g1 = 0,

then
g1 = c3ρ

−(γ2−2q2−1)/(3γ2−2).

Equation (58) becomes

2(2γ2 + q2 − 1)ϕ1ρ− (7γ2 + 2q2 − 4)k1 = 0.

Splitting this equation with respect to ρ one obtains

(2γ2 + q2 − 1)ϕ1 = 0.

and
(7γ2 + 2q2 − 4)k1 = 0.

Since (µ+ 1)µ 6= 0, then ϕ1 = 0 and k1 = 0. Then equation (56) becomes

hs + 2γ1
3γ2−2z2hz2 = 2( 3q2+1

3γ2−2γ1 − q1)h− c3z
1/2
2 .

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

2( 3q2+1
3γ2−2γ1 − q1)h− c3z

1/2
2

.

Then
z3 = z2e

−2γ1
3γ2−2

s

dh

ds
= 2(

3q2 + 1

3γ2 − 2
γ1 − q1)h− c3z1/23 e

γ1
3γ2−2

s

h = Ceλs, λ = 2(
3q2 + 1

3γ2 − 2
γ1 − q1)

C ′eλs = −c3z1/23 e
γ1

3γ2−2
s

C ′ = −c3e−λsz1/23 e
γ1

3γ2−2
s

= −c3z1/23 e
−(λ− γ1

3γ2−2
)s

Case 1.1.1 λ− γ1
3γ2−2 = 0,then

C = −c3z1/23 s+ h(z3)

Then
h = (−c3z1/23 s+ h(z3))e

λs = (−c3z1/22 e
−γ1

3γ2−2
s
s+ h(z3))e

λs
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h = −c3z1/22 s+ h(z3)e
λs.

Then
ε = (−c3z1/22 s+ h(z3)e

λs)ρµ.

Case 1.1.2 λ− γ1
3γ2−2 6= 0,then

C =
−c3z1/23 e−(λ−

β1
3
)s

−(λ− β1
3

)
+ h(z3)

h = (
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ h(z3))e
λs

=
c3(z

1/2
2 e

−γ1
3γ2−2

)s
)e

γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ h(z3)e
λs

=
c3z

1/2
2

(λ− γ1
3γ2−2)

+ h(z3)e
λs

=
c3α

1/2ρ−(5γ2−3)/(3γ2−2)

(λ− γ1
3γ2−2)

+ h(z3)e
λs

Then one can asuume c3 = 0, so

ε = h(z3)e
λsρµ.

Case 1.2 µ = −1, then q2 = 2− 7
2
γ2

C =
1

(3γ2 − 2)
(z

1/2
2 g̃2(ρ)− ϕ2(z1)ρ+ k2 ln ρ) + h(z1, z2).

Then

ε =
1

(3γ2 − 2)
(α1/2 ˜̃g2(ρ)− ϕ2(s) + k2ρ

−1 ln ρ) + h(s, z2)ρ
−1

One can assume that
g2 = 0, ϕ2 = 0,

then

ε = [
k2

(3γ2 − 2)
ln ρ+ h(s, z2)]ρ

−1.

So equation (56) becomes

hs + 2γ1
3γ2−2z2hz2 = −(7γ1 + 2q1)h− z1/22 ρ(8γ2−5)/(3γ2−2)g1(ρ)

+ϕ1(s)ρ− k2 7γ1+2q1
3γ2−2 ln ρ+ k2

3γ
3γ2−2 − k1.

(59)

Dfferentiate this equation with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ(8γ2−5)/(3γ2−2)g1(ρ)− ϕ1(s)ρ+ k2

7γ1+2q1
3γ2−2 ln ρ) = 0. (60)

Dfferentiate this equation with respect toz2 one obtains

ρg
′

1 +
(8γ2 − 5)

(3γ2 − 2)
g1 = 0,
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then
g1 = c3ρ

−(8γ2−5)/(3γ2−2).

Equation (60) becomes

ϕ1ρ−
(7γ1 + 2q1)

(3γ2 − 2)
k2 = 0.

Splitting this equation with respect to ρ one obtains

ϕ1 = 0,

and
(7γ1 + 2q1)

(3γ2 − 2)
k2 = 0.

Case 1.2.1 7γ1 + 2q1 6= 0 , or q1 6= −7γ1/2 then k2 = 0. Equation (59) becomes

hs + 2γ1
(3γ2−2)z2hz2 = −(7γ1 + 2q1)h− c3z1/22 − k1.

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

−(7γ1 + 2q1)h− c3z1/22 − k1
.

Then
z3 = z2e

−2γ1
3γ2−2

s

dh

ds
= −(7γ1 + 2q1)h− c3z1/23 e

γ1
3γ2−2

s − k1

h = Ceλs, λ = −(7γ1 + 2q1)

C ′eλs = −c3z1/23 e
γ1

3γ2−2
s − k1

C ′ = −c3e−λsz1/23 e
γ1

3γ2−2
s − k1e−λs = −c3z1/23 e

−(λ− γ1
3γ2−2

)s − k1e−λs

Case 1.2.1.1 λ− γ1
3γ2−2 = 0, or q1 = −1

2
(7 + 1

3γ2−2)γ1 then

C = −c3z1/23 s+ k1
e−λs

λ
+ h(z3)

Then

h = (−c3z1/23 s+ k1
e−λs

λ
+ h(z3))e

λs = (−c3z1/22 e
−γ1

3γ2−2
s
s+ k1

e−λs

λ
+ h(z3))e

λs

h = −c3z1/22 s+
k1
λ

+ h(z3)e
λs.

Then

ε = (−c3z1/22 s+
k1
λ

+ h(z3)e
λs)ρ−1.

One can assume that
k1 = 0,

then
ε = (−c3z1/22 s+ h(z3)e

λs)ρ−1.
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Case 1.2.1.2 λ− γ1
3γ2−2 6= 0, or q1 6= −1

2
(7 + 1

3γ2−2)γ1 then

C =
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ k1
e−λs

λ
+ h(z3)

h = (
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ k1
e−λs

λ
+ h(z3))e

λs

=
c3(z

1/2
2 e

−γ1
3γ2−2

)s
)e

γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+
k1
λ

+ h(z3)e
λs

=
c3z

1/2
2

(λ− γ1
3γ2−2)

+
k1
λ

+ h(z3)e
λs

=
c3α

1/2ρ−(5γ2−3)/(3γ2−2)

(λ− γ1
3γ2−2)

+
k1
λ

+ h(z3)e
λs

Then one can asuume c3 = 0, k1 = 0 so

ε = h(z3)e
λsρ−1.

Case 1.1.2 λ− γ1
3γ2−2 6= 0,then

C =
−c3z1/23 e−(λ−

β1
3
)s

−(λ− β1
3

)
+ h(z3)

h = (
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ h(z3))e
λs

=
c3(z

1/2
2 e

−γ1
3γ2−2

)s
)e

γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ h(z3)e
λs

=
c3z

1/2
2

(λ− γ1
3γ2−2)

+ h(z3)e
λs

=
c3α

1/2ρ−(5γ2−3)/(3γ2−2)

(λ− γ1
3γ2−2)

+ h(z3)e
λs

Then one can asuume c3 = 0, so

ε = h(z3)e
λsρµ.

Case 1.2.2 7γ1 + 2q1 = 0 or q1 = −7γ1/2 Then equation (59) becomes

hs + 2γ1
(3γ2−2)z2hz2 = −c3z1/22 − k1 + 3γ1

(3γ2−2)k2.

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

−c3z1/22 − k1 + 3γ1
(3γ2−2)k2

,
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Then
z3 = z2e

−2γ1
3γ2−2

s

dh

ds
= −c3z1/22 − k1 +

3γ1
(3γ2 − 2)

k2

h =

�
−c3z1/22 − k1 +

3γ1
(3γ2 − 2)

k2ds+ h(z3)

=

�
−c3z1/23 e

γ1
3γ2−2

s − k1 +
3γ1

(3γ2 − 2)
k2ds+ h(z3)

Case 1.2.2.1 γ1
3γ2−2 = 0 .

h = −c3z1/23 s− k1s+ h(z3).

Then

ε = [
k2

(3γ2 − 2)
ln ρ− c3z1/23 s− k1s+ h(z3)]ρ

−1.

Case 1.2.2.2 γ1
3γ2−2 6= 0 .

h = −c3z1/23

e
γ1

3γ2−2
s

γ1
3γ2−2

− k1s+
3γ1

(3γ2 − 2)
k2s+ h(z3)

Then

ε = [
k2

(3γ2 − 2)
ln ρ− c3z1/23

e
γ1

3γ2−2
s

γ1
3γ2−2

− k1s+
3γ1

(3γ2 − 2)
k2s+ h(z3)]ρ

−1.

Case 1.3 µ = 0 or q2 = 1− 2γ2

C =
1

(3γ2 − 2)
(z

1/2
2 g̃2(ρ)− ϕ2(z1) ln ρ− k2ρ−1) + h(z1, z2).

Then

ε =
1

(3γ2 − 2)
(z

1/2
2 g̃2(ρ)− ϕ2(z1) ln ρ− k2ρ−1) + h(z1, z2)

One can assume that
g2 = 0, k2 = 0,

then

ε =
−1

(3γ2 − 2)
ϕ2(s) ln ρ+ h(s, z2)

So equation (56) becomes

hs + 2γ1
3γ2−2z2hz2 = −2(2γ1 + q1)h− z1/22 ρ(5γ2−3)/(3γ2−2)g1(ρ)

−ϕ2(s)
−2(2γ1+q1) ln ρ+3γ1

3γ2−2 + ϕ1(s)− k1ρ−1.
(61)

Dfferentiate equation (61) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ(5γ2−3)/(3γ2−2)g1(ρ) + ϕ2(s)

(−4γ1−2q1) ln ρ+3γ1
3γ2−2 + k1ρ

−1) = 0. (62)
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Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 +
(5γ2 − 3)

(3γ2 − 2)
g1 = 0,

then
g1 = c3ρ

−(5γ−3)/(3γ2−2).

Equation (60) becomes
2(2γ1 + q1)

(3γ2 − 2)
ρϕ2 + k1 = 0.

Splitting this equation with respect to ρ one obtains

k1 = 0,

and
(2γ1 + q1)

(3γ2 − 2)
ϕ2 = 0.

Case 1.3.1 2γ1 + q1 6= 0, or q1 6= −2γ1then ϕ2 = 0. Then (61) becomes

hs + 2γ1
3γ2−2z2hz2 = −2(2γ1 + q1)h− z1/22 c3 + ϕ1(s).

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

−2(2γ1 + q1)h− c3z1/22 + ϕ1(s)
.

Then
z3 = z2e

−2γ1
3γ2−2

s

dh

ds
= −2(2γ1 + q1)h− z1/22 c3 + ϕ1(s)

h = Ceλs, λ = −2(2γ1 + q1)

C ′eλs = −c3z1/22 + ϕ1(s)

C ′ = −c3e−λsz1/23 e
γ1

3γ2−2
s

+ ϕ1(s)e
−λs = −c3z1/23 e

−(λ− γ1
3γ2−2

)s
+ ϕ̃1(s)

Case 1.3.1.1 λ− γ1
3γ2−2 = 0, or q1 = −(2 + 1

2(3γ2−2))γ1 then

C = −c3z1/23 s+ ˜̃ϕ1(s) + h(z3)

Then

h = (−c3z1/23 s+
˜̃

ϕ1(s) + h(z3))e
λs = (−c3z1/22 e

−γ1
3γ2−2

s
s+ ˜̃ϕ1(s) + h(z3))e

λs

h = −c3z1/22 s+ ˜̃̃ϕ1(s) + h(z3)e
λs.

ε = −c3z1/22 s+ ˜̃̃ϕ1(s) + h(z3)e
λs.

One can assume that
ϕ1 = 0,

then
ε = −c3z1/22 s+ h(z3)e

λs.
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Case 1.3.1.2 λ− γ1
3γ2−2 6= 0, or q1 6= −(2 + 1

2(3γ2−2))γ1 then

C =
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ ˜̃ϕ1(s) + h(z3)

h = (
−c3z1/23 e

−(λ− γ1
3γ2−2

)s

−(λ− γ1
3γ2−2)

+ ˜̃ϕ1(s) + h(z3))e
λs

=
c3(z

1/2
2 e

−γ1
3γ2−2

)s
)e

γ1
3γ2−2

)s

(λ− γ1
3γ2−2)

+ ˜̃̃ϕ1(s) + h(z3)e
λs

=
c3z

1/2
2

(λ− γ1
3γ2−2)

+ ˜̃̃ϕ1(s) + h(z3)e
λs

=
c3α

1/2ρ−(5γ2−3)/(3γ2−2)

(λ− γ1
3γ2−2)

+ ˜̃̃ϕ1(s) + h(z3)e
λs

Then one can asuume c3 = 0, ϕ1 = 0 so

ε = h(z3)e
λs.

Case 1.3.2 2γ1 + q1 = 0 or q1 = −2γ1 Then equation (61) becomes

hs + 2γ1
3γ2−2z2hz2 = −z1/22 c3 + ϕ1(s)− 3γ1

3γ2−2ϕ2(s).

The characteristic system of this equation is

ds

1
=

(3γ2 − 2)dz2
2γ1z2

=
dh

−z1/22 c3 + ϕ1(s)− 3γ1
3γ2−2ϕ2(s)

,

Then
z3 = z2e

−2γ1
3γ2−2

s

dh

ds
= −z1/22 c3 + ϕ1(s)−

3γ1
3γ2 − 2

ϕ2(s)

h =

�
−c3z1/22 + ϕ1(s)−

3γ1
3γ2 − 2

ϕ2(s)ds+ h(z3)

=

�
−c3z1/23 e

γ1
3γ2−2

s
+ ϕ(s)ds+ h(z3)

Case 1.2.2.1 γ1
3γ2−2 = 0 .

h = −c3z1/23 s+ ϕ̃(s) + h(z3).

Then

ε =
−1

(3γ2 − 2)
ϕ2(s) ln ρ− c3z1/23 s+ ϕ̃(s) + h(z3)

one can assume that ϕ = 0 .

ε =
−1

(3γ2 − 2)
ϕ2(s) ln ρ− c3z1/23 s+ h(z3)
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Case 1.3.2.2 γ1
3γ2−2 6= 0 .

h = −c3z1/23

e
γ1

3γ2−2
s

γ1
3γ2−2

− k1s+
3γ1

(3γ2 − 2)
k2s+ h(z3)

Then

ε = [
k2

(3γ2 − 2)
ln ρ− c3z1/23

e
γ1

3γ2−2
s

γ1
3γ2−2

− k1s+
3γ1

(3γ2 − 2)
k2s+ h(z3)]ρ

−1.

Case 1.3.2 2γ1 + q1 = 0, then equation (61) becomes

hz1 + 2γ1
3γ2−2z2hz2 = −z1/22 c3 + ϕ1(s)− 3γ1

3γ2−2ϕ2(s).

Dfferentiate this equation with respect to s one obtains

ϕ
′
1(s) = 3γ1

3γ2−2ϕ
′
2(s),

then
ϕ1(s) = 3γ1

3γ2−2ϕ2(s) + c1.

So equation (61) becomes

hz1 + 2γ1
3γ2−2z2hz2 = −c3z1/22 + c1.

The characteristic system of this equation is

dz1
1

=
(3γ2 − 2)dz2

2γ1z2
=

dh

−c3z1/22 + c1
,

Case 1.3.2.1 γ1 6= 0 then

ez1 = zz2
3γ2−2

2γ1 ,

h =
(3γ2 − 2)

2γ1

�
z−12 (−c3z1/22 −+c1)dz2 + h(z).

one can assume that
c3 = 0.

Then

h =
(3γ2 − 2)

2γ1
c1 ln z2 + h(z).

Case 1.3.2.2 γ1 = 0 then
z2 = z,

h =

�
(−c3z1/2 − c1)dz1 + h(z).

one can assume that
c1 = 0.

Then
h = (−c3z1/2)z1 + h(z).
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Case 2 γ2 = 2/3, then the characteristic is

3dα

2α
=
dρ

0
=
ds

0
=

dε

2(1/3 + q2)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

s = z1,

ρ = z2,

ε = Cα1+3q2 .

Where

C
′
α1+3q2 . =

3

2α
(α1/2g2(ρ)− ϕ2(s) + k2ρ

−1).

Then

C =
3

2

�
α−2−3q2(α1/2g2(z2)− ϕ2(z2) + k2z

−1
2 )dα + h(z1, z2).

Case 2.1 (q2 + 1/6)(q2 + 1/3) 6= 0. One can assume that

g2 = 0, ϕ2 = 0, k2 = 0.

Then,
ε = h(z1, z2)α

1+3q2 .

Dfferentiate equation (61) with respect to α one obtains

−(3q2 + 1/2)α(1/2)g1(ρ) + (3q2 + 1)ϕ1(s)− z−12 k1(3q2 + 1) = 0. (63)

Since (q2 + 1/6)(q2 + 1/3) 6= 0, then dfferentiate this equation with respect toα and
z2 one obtains

g1 = 0,k1 = 0.

Then equation (63) becomes

(3q2 + 1)ϕ1(s) = 0.

Since (q2 + 1/3) 6= 0, then ϕ1 = 0. So equation (56) becomes

hz1 − 3γ1z2hz2 = 2((15q2 + 3)γ1 − q1)h.

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

2((15q2 + 3)γ1 − q1)h
.

Case 2.1.1 γ1 6= 0 then

ez1 = zz2
−1
3γ1 ,

h = h(z)zλ2 .

Where
λ = −2((15q2 + 3)γ1 − q1)/3γ1,

Case 2.1.2 γ1 = 0 then
z2 = z,

h = h(z)e−2q1z1 ,
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Case 2.2 q2 = −1/6. One can assume that

ϕ2 = 0, k2 = 0.

Then,
ε = (3/2)g2(ρ) lnαα1/2 + h(z1, z2)α

1/2.

Dfferentiate equation (56) with respect to α one obtains

−(3γ1 − 6q1)g2(ρ) + α−1/2ϕ1(s)− α−1/2z−12 k1 = 0. (64)

Dfferentiate this equation with respect to z2 and α one obtains

k1 = 0,ϕ1 = 0.

Then equation (64) becomes

(γ1 − 2q1)g2(ρ) = 0.

Case 2.2.1 γ1 − 2q1 6= 0 , then g2 = 0. So equation (56) becomes

hz1 − 3γ1z2hz2 = (γ1 − 2q1)h− g1(ρ).

Dfferentiate this equation with respect toρ one obtains

g = c3.

Then equation (56) becomes

hz1 − 3γ1z2hz2 = (γ1 − 2q1)h− c3.

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

(γ1 − 2q1)h− c3
.

Case 2.2.1.1 γ1 6= 0 then

ez1 = zz2
−1
3γ1 ,

h = Czλ2 .

Where
λ = −(γ1 − 2q1)/3γ1,

C
′
zλ2 =

c3
3γ1z2

,

C
′
=

1

3γ1

�
z−1−λ2 c3dz2 + h(z).

Since γ1 − 2q1 6= 0 , then one can assume that

c3 = 0.

Then
h = h(z)zλ2 .
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Case 2.2.1.2 γ1 = 0 then
z2 = z,

h = Ce−2qz1 ,

where
C
′
e−2qz1 = −c3.

Then

C =

�
−c3e2q1z1dz1 + h(z),

Since γ1 − 2q1 6= 0 , then q1 6= 0 ,one can assume that

c3 = 0.

Then
h = h(z)e−2q1z1 .

Case 2.2.2 γ1 − 2q1 = 0 , then equation (56) becomes

hz1 − 3γ1z2hz2 = 15γ1g2(ρ)− g1(ρ).

Dfferentiate this equation with respect toρ one obtains

g
′

1(ρ) = 15γ1g
′

2(ρ).

Then
g1(ρ) = 15γ1g2(ρ) + c3.

Equation (56) becomes
hz1 − 3γ1z2hz2 = −c3.

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

−c3
.

Case 2.2.2.1 γ1 6= 0 then

ez1 = zz2
−1
3γ1 ,

h =
1

3γ1

�
z−12 c3dz2 + h(z).

Then

h = (
1

3γ1
c3 ln z2 + h(z))z

−1
3γ1
2 .

Case 2.2.2.2 γ1 = 0 then
z2 = z,

h =

�
−c3dz1 + h(z).

One can assume that
h(z) = 0.

Then
h = −c3z1.
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Case 2.3 q2 = −1/3. One can assume that

g2 = 0.

Then,
ε = −(3/2)(ϕ2(s)− k2ρ−1) lnα + h(z1, z2).

Dfferentiate equation (56) with respect to α one obtains

α1/2g1(ρ)− 2(6γ1 + 3q1)ϕ2(s) + z−12 3k2(7γ1 + 2q1) = 0. (65)

Dfferentiate this equation with respect toα one obtains

g1 = 0,

Dfferentiate equation (65) with respect to z2 one obtains

k2(21γ1 + 6q1) = 0.

Case 2.3.1 7γ1 + 2q1 6= 0, then k2 = 0. Then equation (65) becomes

(2γ1 + q1)ϕ2(s) = 0.

Case 2.3.1.1 2γ1 + q1 6= 0,then ϕ2 = 0. So equation (56) becomes

hz1 − 3γ1z2hz2 = −2(2γ1 + q1)h+ ϕ1 − k1z−12 .

Dfferentiate this equation with respect tos one obtains

ϕ1 = c1,

Then one obtains the equation

hz1 − 3γ1z2hz2 = −2(2γ1 + q1)h+ c1 − k1z−12 .

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

−2(2γ1 + q1)h+ c1 − k1z−12

.

Case 2.3.1.1.1 γ1 6= 0 then

ez1 = zz2
−1
3γ1 ,

h = Czλ2 .

Where
λ = 2(2γ1 + q1)/3γ1,

C
′
zλ2 =

−1

3γ1z2
(c1 − k1z−12 ).

C
′
=

1

3γ1

�
z−1−λ2 (−c1 + k1z

−1
2 )dz2 + h(z).

Remark λ 6= 0. and λ 6= −1, then One can assume that

c1 = 0, k1 = 0,
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then
h = h(z)zλ2 ,

Case 2.3.1.1.2 γ1 = 0 then
z2 = z,

h = Ce−2qz1 ,

where
C
′
e−2qz1 = c1 − k1z−12 .

Then

C =

�
(c1 − k1z−1)e2q1z1dz1 + h(z),

Since 2γ1 + q1 6= 0, and γ1 = 0 then q1 6= 0. One can assume that

c1 = 0, k1 = 0,

then
h = h(z)e−2qz1 .

Case 2.3.1.2 2γ1 + q1 = 0,then equation (56) becomes

hz1 − 3γ1z2hz2 = ϕ1 − 15γ1ϕ2 − k1z−12 .

Dfferentiate this equation with respect tos one obtains

ϕ
′

1 = 15γ1ϕ
′

2,

then
ϕ1 = 15γ1ϕ2 + c1,

Then equation (56) becomes

hz1 − 3γ1z2hz2 = c1 − k1z−12 .

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

c1 − k1z−12

.

Case 2.3.1.2.1 γ1 6= 0 then

ez1 = zz2
−1
3γ1 ,

h =
−1

3γ1

�
z−12 (c1 − k1z−12 )dz2 + h(z).

one can assume that
k1 = 0.

Then

h =
−1

3γ1
c1 ln z2 + h(z).

Case 2.3.1.2.2 γ1 = 0 then
z2 = z,

h =

�
(c1 − k1z−1)dz1 + h(z).
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one can assume that
c1 = 0.

Then
h = (−k1z−1)z1 + h(z).

Case 2.3.2 7γ1 + 2q1 = 0, then (65) becomes

γ1ϕ2 = 0,

Case 2.3.2.1 γ1 6= 0, then ϕ2 = 0. Then (56) becomes

hz1 − 3γ1z2hz2 = 3γ1h+ ϕ1 + (15γ1k2 − k1)z−12 .

Dfferentiate this equation with respect tos one obtains

ϕ1 = c1,

Then one obtains

hz1 − 3γ1z2hz2 = 3γ1h+ c1 + (15γ1k2 − k1)z−12 .

The characteristic system of this equation is

dz1
1

=
−dz2
3γ1z2

=
dh

3γ1h+ c1 + (15γ1k2 − k1)z−12

.

then
ez1 = zz2

−1
3γ1 ,

h = Cz−12 ,

where

C
′
z−12 =

−1

3γ1z2
(c1 + (15γ1k2 − k1)z−12 ).

Then

C =
−1

3γ1

�
(c1 + (15γ1k2 − k1)z−12 )dz2 + h(z).

Then

h =
−1

3γ1
(c1z2 + (15γ1k2 − k1) ln z2) + h(z).

Case 2.3.2.2 γ1 = 0, then (56) becomes

hz1 = ϕ1 − k1z−12 .

Dfferentiate this equation with respect tos one obtains

ϕ1 = c1,

then (56) becomes
hz1 = c1 − k1z−12 .

The characteristic system of this equation is

dz1
1

=
dz2
0

=
dh

c1 − k1z−12

.
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then
z2 = z,

h =

�
(c1 − k1z−1)dz1 + h(z).

one can assume that
c1 = 0.

Then
h = (−k1z−1)z1 + h(z).

Consider {β1X1 + γ1X3 + ∂s, X2 + γ2X3}.
Then (38) becomes

2(3β1 − 5γ1)αεα + (2β1 − 3γ1)ρερ + εs = 2(β1 − 2γ1)ε− α1/2g1(ρ)
+ϕ1(s) +−k1ρ−1

(66)

and
10γ2αεα + 3γ2ρερ = 2(2γ2 + 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1. (67)

If γ2 = 0, then ε = (−1/2)(α1/2g2(ρ) − ϕ2(s) + k2ρ
−1). So ε(ρ, α, s) can be trans-

formed to zero thus we will consider in case γ2 6= 0. The characteristic system of
equation (67) is

dα

10γ2α
=

dρ

3γ2ρ
=
ds

0
=

dε

2(2γ2 + 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

Then
z1 = s

z2 = αρ−10/3

dε

dρ
=

1

3γ2ρ
(2(2γ2 + 1)ε+ z

1/2
2 ρ5/3g2(ρ)− ϕ2(z1) + k2ρ

−1)

ε = Cρµ, µ = (2/3)(2 + 1/γ2)

C
′
=
ρ−1−µ

3γ2
(z

1/2
2 ρ5/3g2(ρ)− ϕ2(z1) + k2ρ

−1)

Case 1 (µ+ 1)µ 6= 0 or (γ2 + 1/2)(γ2 + 2/7) 6= 0. Then

C =
1

3γ2
(z

1/2
2 g̃2(ρ) +

ϕ2(z1)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(z1, z2)

Then

ε = (
1

3γ2
(z

1/2
2 g̃2(ρ) +

ϕ2(z1)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(s, z2))ρ

µ

One can assume that
g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

µ.

Dfferentiate equation (66) with respect to ρ one obtains

d
dρ

(ρ(γ2−2)/(3γ2)(z
1/2
2 g1(ρ)− ϕ1(s)ρ

−5/3 + k1ρ
−8/3)) = 0. (68)
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Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 + (3− 6/γ2)g1 = 0,

then
g1 = c3ρ

−3+6/γ2 .

Equation (68) becomes

2(1 + 2γ2)ϕ1ρ− (2 + 7γ2)k1 = 0.

Splitting this equation with respect to ρ one obtains

(1 + 2γ2)ϕ1 = 0.

and
(2 + 7γ2)k1 = 0.

Since (µ+ 1)µ 6= 0, then ϕ1 = 0 and k1 = 0. Then equation (66) becomes

hs − 2β1
3
z2hz2 = −(4β1/3γ2 + 2β1/3− 2γ1/γ2)h− c3z1/22 .

The characteristic system of this equation is

ds

1
=
−3dz2
2β1z2

=
dh

−(β1(4/γ2 + 2)/3− 2γ1/γ2)h− c3z1/22

.

Then
z3 = z2e

2β1
3
s

dh

ds
= −(β1(4/γ2 + 2)/3− 2γ1/γ2)h− c3z1/23 e−

β1
3
s

h = Ceλs, λ = −2(β1(2/γ2 + 1)/3− γ1/γ2)

C ′ = −c3e−λsz1/23 e−
β1
3
s = −c3z1/23 e−(λ+

β1
3
)s

Case 1.1 λ+ β1
3

= 0,then

C = −c3z1/23 s+ h(z3)

Then
h = (−c3z1/23 s+ h(z3))e

λs = (−c3z1/22 e
β1
3
ss+ h(z3))e

−β1
3
s

h = −c3z1/22 s+ h(z3)e
−β1

3
s.

Then
ε = (−c3z1/22 s+ h(z3)e

−β1
3
s)ρµ.

Case 1.2 λ+ β1
3
6= 0,then

C =
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ h(z3)

h = (
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ h(z3))e

λs
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=
c3(z

1/2
2 e

β1
3
s)e

−β1
3
s

(λ+ β1
3

)
+ h(z3)e

λs

=
c3z

1/2
2

(λ+ β1
3

)
+ h(z3)e

λs

=
c3α

1/2ρ−5/3

(λ+ β1
3

)
+ h(z3)e

λs

Then one can asuume c3 = 0, so

ε = h(z3)e
λsρµ.

Case 2 µ = −1, or γ2 = −2/7, then

C =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(z1)ρ+ k2 ln ρ) + h(z1, z2).

Then

ε = [
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(s)ρ+ k2 ln ρ) + h(s, z2)]ρ

−1.

One can assume that
g2 = 0, ϕ2 = 0,

then

ε = [
k2
3γ2

ln ρ+ h(s, z2)]ρ
−1.

Dfferentiate equation (66) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ8/3g1(ρ)− ϕ1(s)ρ+ k2

7(4β1−7γ1)
6

ln ρ) = 0. (69)

Dfferentiate this equation with respect toz2 one obtains

ρg
′

1 +
8

3
g1 = 0,

then
g1 = c3ρ

−8/3.

Equation (69) becomes

ϕ1ρ−
7(4β1 − 7γ1)

6
k2 = 0.

Splitting this equation with respect to ρ one obtains

ϕ1 = 0,

and
(4β1 − 7γ1)k2 = 0.

Case 2.1 4β1 − 7γ1 6= 0 , then k2 = 0. Equation (66) becomes

hs − 2β1
3
z2hz2 = (4β1 − 7γ1)h− c3z1/22 − k1.

The characteristic system of this equation is

ds

1
=
−3dz2
2β1z2

=
dh

(4β1 − 7γ1)h− c3z1/22 − k1
.
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Then
z3 = z2e

2β1
3
s

dh

ds
= (4β1 − 7γ1)h− c3z1/23 e−

β1
3
s − k1

h = Ceλs, λ = 4β1 − 7γ1

C ′ = (−c3z1/23 e−
β1
3
s − k1)e−λs = −c3z1/23 e−(λ+

β1
3
)s − k1e−λs

Case 2.1.1 λ+ β1
3

= 0, then λ = −β1
3

.

C = −c3z1/23 s+
k1e
−λs

λ
+ h(z3)

Then

h = (−c3z1/23 s+
k1e
−λs

λ
+ h(z3))e

λs = (−c3z1/22 e
β1
3
ss+

k1e
−λs

λ
+ h(z3))e

λs

h = −c3z1/22 e
β1
3
sseλs +

k1
λ

+ h(z3)e
λs = −c3z1/22 s+

k1
λ

+ h(z3)e
−β1

3
s.

Then

ε = [−c3z1/22 s+
k1
λ

+ h(z3)e
−β1

3
s]ρ−1.

One can assume that
k1 = 0,

Then
ε = (−c3z1/22 s+ h(z3)e

−β1
3
s)ρ−1.

Case 2.1.2 λ+ β1
3
6= 0,then

C =
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+
k1e
−λs

λ
+ h(z3)

h = (
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+
k1e
−λs

λ
+ h(z3))e

λs

=
c3(z

1/2
2 e

β1
3
s)e

−β1
3
s

(λ+ β1
3

)
+
k1
λ

+ h(z3)e
λs

=
c3z

1/2
2

(λ+ β1
3

)
+
k1
λ

+ h(z3)e
λs

=
c3α

1/2ρ−5/3

(λ+ β1
3

)
+
k1
λ

+ h(z3)e
λs

Then

ε = [
c3α

1/2ρ−5/3

(λ+ β1
3

)
+
k1
λ

+ h(z3)e
λs]ρ−1.

Then one can asuume c3 = 0, k1 = 0, so

ε = h(z3)e
λsρ−1.
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Case 2.2 4β1 − 7γ1 = 0. Then equation (66) becomes

hs − 2β1
3
z2hz2 = −c3z1/22 − k2 7γ12 − k1.

then

hs − 2β1
3
z2hz2 = −c3z1/22 + k3.

The characteristic system of this equation is

ds

1
=
−3dz2
2β1z2

=
dh

−c3z1/22 + k3
.

Then
z3 = z2e

2β1
3
s

dh

ds
= −c3z1/22 + k3

h =

�
−c3z1/23 e−

β1
3
s + k3ds+ h(z3)

Case 2.2.1 β1 6= 0 , then

h = 3c3z
1/2
3

e−
β1
3
s

β1
+ k3s+ h(z3)

= 3c3(z
1/2
2 e

β1
3
s)
e−

β1
3
s

β1
+ k3s+ h(z3)

= 3c3(α
1/2ρ−5/3)/β1 + k3s+ h(z3),

Then

ε = [
k2
3γ2

ln ρ+
3c3
β1

(α1/2ρ−5/3) + k3s+ h(z3)]ρ
−1.

then one can assume that c3 = 0. So

ε = [
k2
3γ2

ln ρ+ k3s+ h(z3)]ρ
−1.

Case 2.2.2 β1 = 0 , then
z3 = z2.

dh

ds
= −c3z1/22 − k1

h =

�
−c3z1/22 − k1ds+ h(z2) = (−c3z1/22 − k1)s+ h(z2) = (−c3z1/22 − k1)s+ h(z2),

Then

ε = [
k2
3γ2

ln ρ− (c3z
1/2
2 + k1)s+ h(z2)]ρ

−1.

Case 3 µ = 0. then

C =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(z1) ln ρ− k2ρ−1) + h(z1, z2).

ε =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(s) ln ρ− k2ρ−1) + h(s, z2).
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One can assume that
g2 = 0, k2 = 0,

then

ε =
1

3γ2
ϕ2(s) ln ρ+ h(s, z2).

Dfferentiate equation (66) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ5/3g1(ρ) + ln ρ((2/3)ϕ

′
2(s) + (8γ1

−4β1)/3)ϕ2(s))− ((4β1 − 6γ1)/3)ϕ2(s)− ϕ1(s) + kρ−1) = 0.
(70)

Dfferentiate this equation with respect to z2 one obtains

g
′

1 +
5

3
g1 = 0,

then
g1 = c3ρ

−5/3.

Equation (70) becomes

(2ϕ
′

2 + 2(4γ1 − 2β1)ϕ2)ρ− 3k1 = 0.

Splitting this equation with respect to ρ one obtains

k1 = 0,

and
ϕ
′

2 + (4γ1 − 2β1)ϕ2 = 0.

Then
ϕ2 = c2e

(2β1−4γ1)s.

Then equation (66) becomes

hs − 2β1
3
z2hz2 = 2(β1 − 2γ1)h− z1/22 c3 − 4β1c2

3−2γ1 e
(2β1−4γ1)s + ϕ1(s).

Then

hs − 2β1
3
z2hz2 = 2(β1 − 2γ1)h− z1/22 c3 + φ1(s).

The characteristic system of this equation is

ds

1
=
−3dz2
2β1z2

=
dh

2(β1 − 2γ1)h− c3z1/22 + φ1(s)
.

Then
z3 = z2e

2β1
3
s

dh

ds
= 2(β1 − 2γ1)h− c3z1/22 + φ1(s)

h = Ceλs, λ = 2(β1 − 2γ1)

C ′ = (−c3z1/22 + φ1(s))e
−λs = −c3z1/23 e−(λ+

β1
3
)s + φ2(s).

Case 3.1 λ+ β1
3

= 0 then λ = −β1
3

C = −c3z1/23 s+ φ3(s) + h(z3)
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Then

h = (−c3z1/23 s+ φ3(s) + h(z3))e
λs = (−c3z1/22 e

β1
3
ss+ φ3(s) + h(z3))e

λs

h = −c3z1/22 e
β1
3
sseλs + φ4(s) + h(z3)e

λs = −c3z1/22 s+ φ4(s) + h(z3)e
λs.

Then

ε =
1

3γ2
ϕ2(s) ln ρ− c3z1/22 s+ φ4(s) + h(z3)e

λs

One can assume that
φ4(s) = 0,

Then

ε =
1

3γ2
ϕ2(s) ln ρ− c3z1/22 s+ h(z3)e

λs

Case 3.2 λ+ β1
3
6= 0,then

C =
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ φ3(s) + h(z3)

h = (
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ φ3(s) + h(z3))e

λs

=
c3(z

1/2
2 e

β1
3
s)e

−β1
3
s

(λ+ β1
3

)
+ φ4(s) + h(z3)e

λs

=
c3z

1/2
2

(λ+ β1
3

)
+ φ4(s) + h(z3)e

λs

=
c3α

1/2ρ−5/3

(λ+ β1
3

)
+ φ4(s) + h(z3)e

λs

Then

ε =
1

3γ2
ϕ2(s) ln ρ+

c3α
1/2ρ−5/3

(λ+ β1
3

)
+ φ4(s) + h(z3)e

λs

One can asuume c3 = 0, φ4 = 0, so

ε =
1

3γ2
ϕ2(s) ln ρ+ h(z3)e

λs

Consider {β1X1 + q1X2 + ∂s, X3}.
Then (38) becomes

6β1αεα + 2β1ρερ + εs = 2(β1 − q1)ε− α1/2g1(ρ) + ϕ1(s)− k1ρ−1 (71)

and
10αεα + 3ρερ = 4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1. (72)

The characteristic system of equation (72) is

dα

10α
=
dρ

3ρ
=
ds

0
=

dε

4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.
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Then
z1 = s

z2 = αρ−10/3

dε

dρ
=

1

3ρ
(4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1)

ε = Cρ4/3

C
′
=
ρ−7/3

3
(z

1/2
2 ρ5/3g2(ρ)− ϕ2(z1) + k2ρ

−1)

C =
1

3
(z

1/2
2 g̃2(ρ)− 3

4
ϕ2(z1)ρ

−4/3 − k2ρ−7/3) + h(z1, z2).

Then

ε = (
1

3
(z

1/2
2 g̃2(ρ)− 3

4
ϕ2(z1)ρ

−4/3 − k2ρ−7/3) + h(z1, z2))ρ
4/3

One can assume that
g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

4/3.

Equation (71) becomes

hs −
2β1
3
z2hz2 = −2(

β1 + 3q1
3

)h− ρ1/3(z1/22 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1)

Dfferentiate equation (71) with respect to ρ one obtains

d
dρ

(ρ1/3(z
1/2
2 g1(ρ) + ρ−5/3ϕ1(s)− ρ−8/3k1)) = 0. (73)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 +
1

3
g1 = 0,

then
g1 = c3ρ

−1/3.

Equation (73) becomes
4ϕ1ρ− 7k1 = 0.

Splitting this equation with respect to ρ one obtains

ϕ1 = 0, k1 = 0.

Then equation (71) becomes

hs −
2β1
3
z2hz2 = −2(

β1 + 3q1
3

)h− z1/22 c3

The characteristic system of this equation is

ds

1
=
−3dz2
2β1z2

=
dh

−2(β1+3q1
3

)h− z1/22 c3
.
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Then
z3 = z2e

2β1
3
s

dh

ds
= −2(

β1 + 3q1
3

)h− z1/22 c3

h = Ceλs, λ =
−2(β1 + 3q1)

3

C ′ = −c3e−λsz1/23 e−
β1
3
s = −c3z1/23 e−(λ+

β1
3
)s

Case 1 λ+ β1
3

= 0,then

C = −c3z1/23 s+ h(z3)

Then
h = (−c3z1/23 s+ h(z3))e

λs = (−c3z1/22 e
β1
3
ss+ h(z3))e

−β1
3
s

h = −c3z1/22 s+ h(z3)e
−β1

3
s.

Then
ε = (−c3z1/22 s+ h(z3)e

−β1
3
s)ρ4/3.

Case 2 λ+ β1
3
6= 0, then

C =
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ h(z3)

h = (
−c3z1/23 e−(λ+

β1
3
)s

−(λ+ β1
3

)
+ h(z3))e

λs

=
c3(z

1/2
2 e

β1
3
s)e

−β1
3
s

(λ+ β1
3

)
+ h(z3)e

λs

=
c3z

1/2
2

(λ+ β1
3

)
+ h(z3)e

λs

=
c3α

1/2ρ−5/3

(λ+ β1
3

)
+ h(z3)e

λs

Then

ε = (
c3α

1/2ρ−5/3

(λ+ β1
3

)
+ h(z3)e

λs)ρ4/3.

Then one can asuume c3 = 0, so

ε = h(z3)e
λsρ4/3.

Consider {q1X2 + γ1X3, X1 + q2X2 + γ2X3}.
Then (38) becomes

10γ1αεα + 3γ1ρερ = 2(2γ1 + q1)ε+ α1/2g1(ρ)− ϕ1(s) + k1ρ
−1. (74)

and
2(3− 5γ2)αεα + (2− 3γ2)ρερ = 2(1− q2 − 2γ2)ε− α1/2g2(ρ)

+ϕ2(s)− k2ρ−1
(75)
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If γ1 = 0, then q1 6= 0. So ε = (−1/q1)(α
1/2g1(ρ) − ϕ1(s) + k1ρ

−1). Then ε(ρ, α, s)
can be transformed to zero thus we will consider in case γ1 6= 0. Then one can
assume that γ1 = 1 and γ2 = 0 Then (74) and (75) becomes

10αεα + 3ρερ = 2(2 + q1)ε+ α1/2g1(ρ)− ϕ1(s) + k1ρ
−1. (76)

6αεα + 2ρερ = 2(1− q2)ε− α1/2g2(ρ) + ϕ2(s)− k2ρ−1 (77)

The characteristic system of equation (74-1) is

dα

10α
=
dρ

3ρ
=
ds

0
=

dε

2(2 + q1)ε+ α1/2g1(ρ)− ϕ1(s) + k1ρ−1
.

Then
z1 = s

z2 = αρ−10/3

dε

dρ
=

1

3ρ
(2(2 + q1)ε+ α1/2g1(ρ)− ϕ1(s) + k1ρ

−1)

ε = Cρµ, µ =
2(2 + q1)

3

C
′
=
ρ−1−µ

3
(z

1/2
2 ρ5/3g1(ρ)− ϕ1(z1) + k1ρ

−1)

Case 1 (µ+ 1)µ 6= 0, then

C =
1

3
(z

1/2
2 g̃1(ρ) +

ϕ1(z1)

µ
ρ−µ − k1

1 + µ
ρ−1−µ) + h(z1, z2)

Then

ε = (
1

3
(z

1/2
2 g̃1(ρ) +

ϕ1(z1)

µ
ρ−µ − k1

1 + µ
ρ−1−µ) + h(z1, z2))ρ

µ

One can assume that
g1 = 0, ϕ1 = 0, k1 = 0,

then
ε = h(s, z2)ρ

µ.

Equation (75) becomes

2

3
z2hz2 = (

4q1
3

+ 2q2 +
2

3
)h+ ρ(1−2q1)/3(z

1/2
2 g2(ρ)− ρ−5/3ϕ2(s) + ρ−8/3k2)

Dfferentiate equation this equation with respect to ρ one obtains

d
dρ

(ρ(1−2q1)/3(z
1/2
2 g2(ρ)− ρ−5/3ϕ2(s) + ρ−8/3k2)) = 0. (78)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

2 + (1− 2q1)/(3)g2 = 0,

then
g2 = c3ρ

−(1−2q1)/(3).
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Equation (78) becomes

2(q1 + 2)ϕ2ρ− (2q1 + 7)k2 = 0.

Splitting this equation with respect to ρ one obtains

(q1 + 2)ϕ2 = 0.

and
(2q1 + 7)k2 = 0.

Since (µ+ 1)µ 6= 0, then ϕ2 = 0 and k2 = 0. Then equation (75) becomes

2

3
z2hz2 = (

4q1
3

+ 2q2 +
2

3
)h+ c3z

1/2
2

The characteristic system of this equation is

ds

0
=

3dz2
2z2

=
dh

(4q1
3

+ 2q2 + 2
3
)h+ c3z

1/2
2

.

Then
dh

dz2
=

3

2z2
((

4q1
3

+ 2q2 +
2

3
)h+ c3z

1/2
2 )

h = Czλ2 , λ =
3

2
(
4q1
3

+ 2q2 +
2

3
)

C
′
zλ2 =

3

2z2
(c3z

1/2
2 )

C ′ =
3

2
c3z
−1−λ+1/2
2

Case 1.1 λ = 1/2, then

C =
3

2
c3 ln z2 + h(s)

Then

h = (
3

2
c3 ln z2 + h(s))zλ2

Then

ε = ((
3

2
c3 ln z2 + h(s))zλ2 )ρµ.

Case 1.2 λ 6= 1/2, then

C =
3c3z

−λ+1/2
2

2(−λ+ 1/2)
+ h(s)

h = (
3c3z

−λ+1/2
2

2(−λ+ 1/2)
+ h(s))zλ2

=
3c3z

1/2
2

2(−λ+ 1/2)
+ h(s)zλ2

=
3c3α

1/2ρ−5/3

2(−λ+ 1/2)
+ h(s)zλ2

68



Then

ε = (
3c3α

1/2ρ−5/3

2(−λ+ 1/2)
+ h(s)zλ2 )ρµ.

Then one can asuume c3 = 0, so

ε = h(s)zλ2ρ
µ

Case 2 µ = −1, then

C =
1

3
(z

1/2
2 g̃1(ρ)− ϕ1(z1)ρ+ k1 ln ρ) + h(z1, z2).

Then

ε = [
1

3
(z

1/2
2 g̃21(ρ)− ϕ1(z1)ρ+ k1 ln ρ) + h(z1, z2)]ρ

−1.

One can assume that
g1 = 0, ϕ1 = 0,

then

ε = [
1

3
k1 ln ρ+ h(s, z2)]ρ

−1.

Dfferentiate equation (77) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ8/3g2(ρ)− ϕ2(s)ρ+ k1

2q2−4
3

ln ρ) = 0. (79)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

2 +
8

3
g2 = 0,

then
g2 = c3ρ

−8/3.

Equation (79) becomes

ϕ2ρ−
2(q2 − 2)

3
k1 = 0.

Splitting this equation with respect to ρ one obtains

ϕ2 = 0,

and
2(q2 − 2)k1 = 0.

Case 2.1 q2 − 2 6= 0 , then k1 = 0. Equation (77) becomes

2
3
z2hz2 = 2(q2 − 2)h+ c3z

1/2
2 + k2.

The characteristic system of this equation is

ds

0
=

3dz2
2z2

=
dh

2(q2 − 2)h+ c3z
1/2
2 + k2

.

Then
dh

dz2
=

3

2z2
(2(q2 − 2)h+ c3z

1/2
2 + k2)
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h = Czλ2 , λ = 3(q2 − 2)

C ′ =
3

2
z−1−λ2 (c3z

1/2
2 + k2).

Remark λ 6= 0,
Case 2.1.1 λ = 1/2, then

C =
3

2
(c3 ln z2 − 2k2z

−1/2
2 ) + h(s).

Then

h = (
3

2
(c3 ln z2 − 2k2z

−1/2
2 ) + h(s))z

1/2
2 =

3

2
(c3 ln z2z

1/2
2 − 2k2) + h(s)z

1/2
2

Then

ε = [
3

2
(c3 ln z2z

1/2
2 − 2k2) + h(s)z

1/2
2 ]ρ−1.

One can assume that
k2 = 0,

Then

ε = [
3

2
c3 ln z2 + h(s)]z

1/2
2 ρ−1.

Case 2.1.2 λ 6= 1/2, then

C =
3

2
(
c3z
−λ+1/2
2

−λ+ 1/2
+
k2z
−λ
2

−λ
) + h(s).

Then

h =
3

2
(

c3z
1/2
2

−λ+ 1/2
+

k2
−λ

) + h(s)zλ2 =
3

2
(
c3α

1/2ρ−5/3

−λ+ 1/2
+

k2
−λ

) + h(s)zλ2 .

Then

ε = [
3

2
(
c3α

1/2ρ−5/3

−λ+ 1/2
+

k2
−λ

) + h(s)zλ2 ]ρ−1.

One can assume that
c3 = 0, k2 = 0.

Then
ε = [h(s)zλ2 ]ρ−1.

Case 2.2 q2 − 2 = 0 then Then equation (77) becomes

2
3
z2hz2 = c3z

1/2
2 + k2 + 2

3
k1.

or
2
3
z2hz2 = c3z

1/2
2 + k3.

The characteristic system of this equation is

ds

0
=

3dz2
2z2

=
dh

c3z
1/2
2 + k3

.
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Then

h =
3

2

�
z−12 (c3z

1/2
2 + k3)dz2 + h(s)

h =
3

2
(2c3z

1/2
2 + k3 ln z2) + h(s) =

3

2
(2c3α

1/2ρ−5/3 + k3 ln z2) + h(s).

Then

ε = [
1

3
k1 ln ρ+

3

2
(2c3α

1/2ρ−5/3 + k3 ln z2) + h(s)]ρ−1.

One can assume that
c3 = 0.

Then

ε = [
1

3
k1 ln ρ+

3

2
k3 ln z2 + h(s)]ρ−1.

Case 3 µ = 0. then

C =
1

3
(z

1/2
2 g̃1(ρ)− ϕ1(z1) ln ρ− k1ρ−1) + h(z1, z2).

Then

ε =
1

3
(z

1/2
2 g̃1(ρ)− ϕ1(s) ln ρ− k1ρ−1) + h(s, z2).

One can assume that
g1 = 0, k1 = 0,

then

ε =
1

3
ln ρϕ1(s) + h(s, z2).

Dfferentiate equation (77) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ5/3g1(ρ) + ϕ1(s)(2(1− q2)/(3) ln ρ− 2/3)− ϕ2(s) + k2ρ

−1) = 0. (80)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

2 +
5

3
g2 = 0,

then
g2 = c3ρ

−5/3.

Equation (80) becomes
2

3
(1− q2)ρϕ1 − k2 = 0.

Splitting this equation with respect to ρ one obtains

k2 = 0,

and
(1− q2)ϕ1 = 0.

Case 3.1 1− q2 6= 0, then ϕ1 = 0. Equation (77) becomes

2
3
z2hz2 = −2(q2 − 1)h+ c3z

1/2
2 − ϕ2(s).

71



The characteristic system of this equation is

ds

0
=

3dz2
2z2

=
dh

−2(q2 − 1)h+ c3z
1/2
2 − ϕ2(s)

.

dh

dz2
=

3

2z2
(−2(q2 − 1)h+ c3z

1/2
2 − ϕ2(s))

h = Czλ2 , λ = 3(1− q2)

C ′ =
3

2
z−1−λ2 (c3z

1/2
2 − ϕ2(s)).

Remark λ 6= 0,
Case 3.1.1 λ = 1/2, then

C =
3

2
(c3 ln z2 − 2ϕ2(s)z

−1/2
2 ) + h(s).

Then

h = (
3

2
(c3 ln z2 − 2ϕ2(s)z

−1/2
2 ) + h(s))z

1/2
2 =

3

2
(c3 ln z2z

1/2
2 − 2ϕ2(s)) + h(s)z

1/2
2 ,

then

ε =
3

2
(c3 ln z2z

1/2
2 − 2ϕ2(s)) + h(s)z

1/2
2 .

One can assume that
ϕ2 = 0,

Then

ε = [
3

2
c3 ln z2 + h(s)]z

1/2
2 .

Case 3.1.2 λ 6= 1/2, then

C =
3

2
(
c3z
−λ+1/2
2

−λ+ 1/2
− ϕ2(s)z

−λ
2

−λ
) + h(s).

Then

h =
3

2
(

c3z
1/2
2

−λ+ 1/2
+
ϕ2(s)

λ
) + h(s)zλ2 =

3

2
(
c3α

1/2ρ−5/3

−λ+ 1/2
+
ϕ2(s)

λ
) + h(s)zλ2 .

Then

ε =
3

2
(
c3α

1/2ρ−5/3

−λ+ 1/2
+
ϕ2(s)

λ
) + h(s)zλ2 .

One can assume that
c3 = 0, ϕ2 = 0.

Then
ε = h(s)zλ2 .

Case 3.2 1− q2 = 0, then equation (77) becomes

2
3
z2hz2 = c3z

1/2
2 − (2/3)ϕ1(s)− ϕ2(s).
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or
2
3
z2hz2 = c3z

1/2
2 + ϕ3(s).

The characteristic system of this equation is

ds

0
=

3dz2
2z2

=
dh

c3z
1/2
2 + ϕ3(s)

.

h =
3

2

�
z−12 (c3z

1/2
2 + ϕ3(s))dz2 + h(s)

h =
3

2
(2c3z

1/2
2 + ϕ3(s) ln z2) + h(s) =

3

2
(2c3α

1/2ρ−5/3 + ϕ3(s) ln z2) + h(s).

Then

ε =
1

3
ln ρϕ1(s) +

3

2
(2c3α

1/2ρ−5/3 + ϕ3(s) ln z2) + h(s).

One can assume that
c3 = 0.

Then

ε =
1

3
ln ρϕ1(s) +

3

2
ϕ3(s) ln z2 + h(s).

Consider {β1X1 + γ1X3, X2 + γ2X3}.
Then (38) becomes

2(3β1 − 5γ1)αεα + (2β1 − 2γ1)ρερ = 2(β1 − 2γ1)ε− α1/2g1(ρ)
+ϕ1(s)− k1ρ−1.

(81)

and
10γ2αεα + 3γ2ρερ = 2(2γ2 + 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1 (82)

If γ2 = 0, then ε = (−1/2)(α1/2g2(ρ) − ϕ2(s) + k2ρ
−1). So ε(ρ, α, s) can be trans-

formed to zero thus we will consider in case γ2 6= 0. The characteristic system of
equation (82) is

dα

10γ2α
=

dρ

3γ2ρ
=
ds

0
=

dε

2(2γ2 + 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

Then
z1 = s

z2 = αρ−10/3

dε

dρ
=

1

3γ2ρ
(2(2γ2 + 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1)

ε = Cρµ, µ =
2

3γ2
(2γ2 + 1)

C
′
=
ρ−1−µ

3γ2
(z

1/2
2 ρ5/3g2(ρ)− ϕ2(z1) + k2ρ

−1)

Case 1 (µ+ 1)µ 6= 0, then

C =
1

3γ2
(z

1/2
2 g̃2(ρ) +

ϕ1(z1)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(z1, z2)
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Then

ε = (
1

3γ2
(z

1/2
2 g̃2(ρ) +

ϕ1(s)

µ
ρ−µ − k2

1 + µ
ρ−1−µ) + h(s, z2)ρ

µ

One can assume that
g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

µ.

Equation (81) becomes

2

3
β1z2hz2 = (

4β1
3γ2

+
2β1
3
− 2γ1

γ2
)h+ ρ(γ2−2)/(3γ2)(z

1/2
2 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1)

Dfferentiate this equation with respect to ρ one obtains

d
dρ

(ρ(γ2−2)/(3γ2)(z
1/2
2 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1)) = 0. (83)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 + (γ2 − 2)/(3γ2)g1 = 0,

then
g1 = c3ρ

−(γ2−2)/(3γ2).

Equation (83) becomes

2(1 + 2γ2)ϕ1ρ− (2 + 7γ2)k1 = 0.

Splitting this equation with respect to ρ one obtains

(1 + 2γ2)ϕ1 = 0.

and
(2 + 7γ2)k1 = 0.

Since (µ+ 1)µ 6= 0, then ϕ1 = 0 and k1 = 0. Then equation (81) becomes

2
3
β1z2hz2 = (4β1

3γ2
+ 2β1

3
− 2γ1

γ2
)h+ c3z

1/2
2 .

For nonisentropic,β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

(4β1
3γ2

+ 2β1
3
− 2γ1

γ2
)h+ c3z

1/2
2

.

Then
dh

dz2
=

3

2β1z2
((

4β1
3γ2

+
2β1
3
− 2γ1

γ2
)h+ c3z

1/2
2 )

h = Czλ2 , λ =
3

2β1
(
4β1
3γ2

+
2β1
3
− 2γ1

γ2
)

C ′zλ2 =
3

2β1z2
c3z

1/2
2

C ′ =
3c3
2β1

z
−1−λ+1/2
2
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Case 1.1 λ = 1/2, then

C =
3c3
2β1

ln z2 + h(s)

Then

h = (
3c3
2β1

ln z2 + h(s))zλ2

Then

ε = ((
3c3
2β1

ln z2 + h(s))zλ2 )ρµ.

Case 1.2 λ 6= 1/2, then

C =
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
+ h(s)

h = (
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
+ h(s))zλ2

=
3c3z

1/2
2

2β1(−λ+ 1/2)
+ h(s)zλ2

=
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
+ h(s)zλ2

Then

ε = (
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
+ h(s)zλ2 )ρµ.

Then one can asuume c3 = 0, so

ε = h(s)zλ2ρ
µ

Case 2 µ = −1, then

C =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(z1)ρ+ k2 ln ρ) + h(z1, z2).

=
1

3γ2
(α1/2ρ−5/3g̃2(ρ)− ϕ2(z1)ρ+ k2 ln ρ) + h(z1, z2).

Then

ε = [
1

3γ2
(α1/2ρ−5/3g̃2(ρ)− ϕ2(s)ρ+ k2 ln ρ) + h(s, z2)]ρ

−1.

One can assume that
g2 = 0, ϕ2 = 0,

then

ε = [(
1

3γ2
k2 ln ρ+ h(s, z2)]ρ

−1.

Dfferentiate equation (81) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ8/3g1(ρ)− ϕ1(s)ρ+ k2

7(4β1−7γ1)
6

ln ρ) = 0. (84)

Dfferentiate this equation with respect toz2 one obtains

ρg
′

1 +
8

3
g1 = 0,
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then
g1 = c3ρ

−8/3.

Equation (84) becomes

ϕ1ρ−
7(4β1 − 7γ1)

6
k2 = 0.

Splitting this equation with respect to ρ one obtains

ϕ1 = 0,

and
(4β1 − 7γ1)k2 = 0.

Case 2.1 4β1 − 7γ1 6= 0 , then k2 = 0. Equation (81) becomes

2
3
β1z2hz2 = −(4β1 − 7γ1)h+ c3z

1/2
2 + k1.

For nonisentropic,β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

−(4β1 − 7γ1)h+ c3z
1/2
2 + k1

.

Then
dh

dz2
=

3

2β1z2
(−(4β1 − 7γ1)h+ c3z

1/2
2 + k1)

h = Czλ2 , λ =
−3

2β1
(4β1 − 7γ1)

C ′zλ2 =
3

2β1z2
(c3z

1/2
2 + k1)

C ′ =
3c3
2β1

(z
−1−λ+1/2
2 + k1z

−1−λ
2 )

remark λ =6= 0,
Case 2.1.1 λ = 1/2, then

C =
3c3
2β1

(ln z2 −
k1z
−λ
2

λ
) + h(s)

Then

h = (
3c3
2β1

(ln z2 +
k1z
−λ
2

−λ
) + h(s))zλ2 =

3c3
2β1

(ln z2z
λ
2 −

k1
λ

) + h(s)zλ2

Then

ε = [
3c3
2β1

(ln z2z
λ
2 −

k1
λ

) + h(s)zλ2 ]ρ−1.

One can assume that k1 = 0, then

ε = [
3c3
2β1

ln z2 + h(s)]zλ2ρ
−1.

Case 2.1.2 λ 6= 1/2, then

C =
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
− k1z

−λ
2

λ
+ h(s)
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h = (
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
− k1z

−λ
2

λ
+ h(s))zλ2

=
3c3z

1/2
2

2β1(−λ+ 1/2)
− k1
λ

+ h(s)zλ2

=
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
− k1
λ

+ h(s)zλ2

Then

ε = [
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
− k1
λ

+ h(s)zλ2 ]ρ−1.

Then one can asuume c3 = 0, k1 = 0, so

ε = h(s)zλ2ρ
−1

Case 2.2 4β1 − 7γ1 = 0 , then Then equation (81) becomes

2
3
β1z2hz2 = c3z

1/2
2 − 7(γ1

2
− β1

3
)k2 + k1.

or
2
3
β1z2hz2 = c3z

1/2
2 + k3.

For 2 dimensional, β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

c3z
1/2
2 + k3

.

Then

h =
3

2β1

�
z−12 (c3z

1/2
2 + k3)dz2 + h(s)

h =
3

2β1
(2c3z

1/2
2 + k3 ln z2) + h(s) =

3

2β1
(2c3α

1/2ρ−5/3 + k3 ln z2) + h(s).

Then

ε = [
1

3γ2
k2 ln ρ+

3

2β1
(2c3α

1/2ρ−5/3 + k3 ln z2) + h(s)]ρ−1.

One can assume that c3 = 0,
c3 = 0.

Then

ε = [
1

3γ2
k2 ln ρ+

3

2β1
k3 ln z2 + h(s)]ρ−1.

Case 3 µ = 0 then

C =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(z1) ln ρ− k2ρ−1) + h(z1, z2).

Then

ε =
1

3γ2
(z

1/2
2 g̃2(ρ)− ϕ2(s) ln ρ− k2ρ−1) + h(s, z2).

One can assume that
g2 = 0, k2 = 0,
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then

ε =
−1

3γ2
ln ρϕ2(s) + h(s, z2).

Dfferentiate equation (81) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ5/3g1(ρ) + 4

3
(2γ1 − β1) ln ρϕ2(s) + k1ρ

−1) = 0. (85)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 +
5

3
g1 = 0,

then
g1 = c3ρ

−5/3.

Equation (85) becomes
4

3
(2γ1 − β1)ρϕ2 − k1 = 0.

Splitting this equation with respect to ρ one obtains

k1 = 0,

and
(2γ1 − β1)ϕ2 = 0.

Case 3.1 2γ1 − β1 6= 0, then ϕ2 = 0. Equation (81) becomes

2
3
β1z2hz2 = 2(2γ1 − β1)h+ c3z

1/2
2 − ϕ1(s).

For nonisentropic,β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

2(2γ1 − β1)h+ c3z
1/2
2 − ϕ1(s)

.

dh

dz2
=

3

2β1z2
(2(2γ1 − β1)h+ c3z

1/2
2 − ϕ1(s))

h = Czλ2 , λ =
3

β1
(2γ1 − β1)

C ′ =
3

2β1
z−1−λ2 (c3z

1/2
2 − ϕ1(s)).

Remark λ 6= 0, Case 3.1.1 λ = 1/2, then

C =
3

2β1
(c3 ln z2 + 2ϕ1(s)z

−1/2
2 ) + h(s).

Then

h = (
3

2β1
(c3 ln z2 + 2ϕ1(s)z

−1/2
2 ) + h(s))z

1/2
2 =

3

2β1
(c3 ln z2z

1/2
2 + 2ϕ1(s)) + h(s)z

1/2
2 ,

then

ε =
3

2β1
(c3 ln z2z

1/2
2 + 2ϕ1(s)) + h(s)z

1/2
2 .
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One can assume that
ϕ1 = 0,

Then

ε = [
3

2β1
c3 ln z2 + h(s)]z

1/2
2 .

Case 3.1.2 λ 6= 1/2, then

C =
3

2β1
(
c3z
−λ+1/2
2

−λ+ 1/2
− ϕ1(s)z

−λ
2

−λ
) + h(s).

Then

h =
3

2β1
(

c3z
1/2
2

−λ+ 1/2
+
ϕ1(s)

λ
) + h(s)zλ2 =

3

2β1
(
c3α

1/2ρ−5/3

−λ+ 1/2
+
ϕ1(s)

λ
) + h(s)zλ2 .

Then

ε =
3

2β1
(
c3α

1/2ρ−5/3

−λ+ 1/2
+
ϕ1(s)

λ
) + h(s)zλ2 .

One can assume that
c3 = 0, ϕ1 = 0.

Then
ε = h(s)zλ2 .

Case 3.2 2γ1 − β1 6= 0, then equation (81) becomes

2
3
β1z2hz2 = c3z

1/2
2 − 2(2

3
β1 − γ1)ϕ2(s)− ϕ1(s).

or
2
3
z2β1hz2 = c3z

1/2
2 + ϕ3(s).

For 2 dimensional, β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

c3z
1/2
2 + ϕ3(s)

.

h =
3

2β1

�
z−12 (c3z

1/2
2 + ϕ3(s))dz2 + h(s)

h =
3

2β1
(2c3z

1/2
2 + ϕ3(s) ln z2) + h(s) =

3

2β1
(2c3α

1/2ρ−5/3 + ϕ3(s) ln z2) + h(s).

Then

ε =
−1

3γ2
ln ρϕ2(s) + h(s, z2).

ε =
−1

3γ2
ln ρϕ2(s) +

3

2β1
(2c3α

1/2ρ−5/3 + ϕ3(s) ln z2) + h(s).

One can assume that
c3 = 0.

Then

ε =
−1

3γ2
ln ρϕ2(s) +

3

2β1
ϕ3(s) ln z2 + h(s).
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Consider {β1X1 + q1X2, X3}.
Then (38) becomes

6β1αεα + 2β1ρερ = 2(β1 − q1)ε− α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (86)

and
10αεα + 3ρερ = 4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1 (87)

The characteristic system of equation (87) is

dα

10α
=
dρ

3ρ
=
ds

0
=

dε

4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ−1
.

Then
z1 = s

z2 = αρ−10/3

dε

dρ
=

1

3ρ
(4ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ

−1)

ε = Cρ4/3

C
′
=
ρ−7/3

3
(z

1/2
2 ρ5/3g2(ρ)− ϕ2(z1) + k2ρ

−1)

C =
1

3
(z

1/2
2 g̃2(ρ) +

3ϕ2(z1)

4
ρ−4/3 − 3k2

7
ρ−7/3) + h(z1, z2)

=
1

3
(α1/2ρ−5/3g̃2(ρ) +

3ϕ2(z1)

4
ρ−4/3 − 3k2

7
ρ−7/3) + h(z1, z2)

Then

ε =
1

3
(α1/2 ˜̃g2(ρ) +

3ϕ2(z1)

4
− 3k2

7
ρ−1) + h(z1, z2)ρ

4/3

One can assume that
g2 = 0, ϕ2 = 0, k2 = 0,

then
ε = h(s, z2)ρ

4/3.

Equation (86) becomes

2

3
β1z2hz2 = 2(

β1
3

+ q1)h+ ρ1/3(z
1/2
2 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1)

Dfferentiate this equation with respect to ρ one obtains

d
dρ

(ρ1/3(z
1/2
2 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1)) = 0. (88)

Dfferentiate this equation with respect to z2 one obtains

ρg
′

1 +
1

3
g1 = 0,

then
g1 = c3ρ

−1/3.

Equation (88) becomes
4ϕ1ρ− 7k1 = 0.
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Splitting this equation with respect to ρ one obtains

ϕ1 = 0, k1 = 0.

Then equation (86) becomes

2
3
β1z2hz2 = 2(β1

3
+ q1)h+ c3z

1/2
2 .

For nonisentropic,β1 6= 0. The characteristic system of this equation is

ds

0
=

3dz2
2β1z2

=
dh

2(β1
3

+ q1)h+ c3z
1/2
2

.

dh

dz2
=

3

2β1z2
(2(

β1
3

+ q1)h+ c3z
1/2
2 )

h = Czλ2 , λ =
3

β1
(
β1
3

+ q1)

C ′ =
3c3
2β1

z
−1−λ+1/2
2 .

Remark λ 6= 0,
Case 1 λ = 1/2, then

C =
3

2β1
c3 ln z2 + h(s)

Then

h = (
3

2β1
c3 ln z2 + h(s))zλ2

Then

ε = ((
3

2β1
c3 ln z2 + h(s))zλ2 )ρ4/3.

Case 2 λ 6= 1/2, then

C =
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
+ h(s)

h = (
3c3z

−λ+1/2
2

2β1(−λ+ 1/2)
+ h(s))zλ2

=
3c3z

1/2
2

2β1(−λ+ 1/2)
+ h(s)zλ2

=
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
+ h(s)zλ2

Then

ε = (
3c3α

1/2ρ−5/3

2β1(−λ+ 1/2)
+ h(s)zλ2 )ρ4/3.

Then one can asuume c3 = 0, so

ε = h(s)zλ2ρ
4/3

Three-dimensional algebras.
Let the basis generators are

X = X̃ +Xζ1 , Y = Ỹ +Xζ2 , Z = Z̃ +Xζ3 ,
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where

X̃ = β1X1 + q1X2 + γ1X3, Ỹ = β2X1 + q2X2 + γ2X3, Z̃ = β3X1 + q3X2 + γ3X3.

Notice that
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0. (89)

Let us study the Abelian Lie algebra. In this case one has

[X, Y ] = 0, [X,Z] = 0, [Y, Z] = 0,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = 0, (90)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0.

If ζ21 + ζ22 + ζ23 = 0, then the basis of this Lie algebra is

X, Y, Z.

If, for example, ζ1 6= 0, then one can assume that ζ1 = 1 and, hence,

ζ2 = c1, ζ3 = c2,

where c1 and c2 are constant. This gives the following

γX3 + ∂S, X1 + q1X3, X2 + q2X3, (91)

βX2 + ∂S, X1 + q1X2, X3, (92)

X1 + ∂S, X2, X3, (93)

∂S, X2, X3, (94)

where γ, β, q1and q2 are arbitrary constants.

X1 + βX2 + γX3 + ∂S, X1 + q1X3, X2 + q2X3,

X1 + βX2 + γX3 + ∂S, X1 + q1X2, X3,

X1 + βX2 + γX3 + ∂S, X2, X3,

X2 + γX3 + ∂S, , X1 + q1X3, X2 + q2X3,

X2 + γX3 + ∂S, X1 + q1X2, X3,

X2 + γX3 + ∂S, X2, X3,

X3 + ∂S, X1 + q1X3, X2 + q2X3,

X3 + ∂S, X1 + q1X2, X3,

X3 + ∂S, X2, X3,

∂S, X1 + q1X3, X2 + q2X3,

∂S, X1 + q1X2, X3,

∂S, X2, X3,
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All three-dimensional non-abelian algebras are classified:

L(3, 1) =

e1 e2 e3
e1 0 0 0
e2 0 e1
e3 0

, L(3, 2, p) =

e1 e2 e3
e1 0 0 e1
e2 0 pe2
e3 0

, 0 < |p| ≤ 1,

L(3, 3) =

e1 e2 e3
e1 0 0 e1
e2 0 e1 + e2
e3 0

, L(3, 4, p) =

e1 e2 e3
e1 0 0 pe1 − e2
e2 0 e1 + pe2
e3 0

, p ≥ 0,

L(3, 5) =

e1 e2 e3
e1 0 e1 2e2
e2 0 e3
e3 0

, L(3, 6) =

e1 e2 e3
e1 0 e3 −e2
e2 0 e1
e3 0

, L(3,−1) =

e1 e2 e3
e1 0 e1 0
e2 0 0
e3 0

.

Here ei, (i = 1, 2, 3) are basis vectors of a Lie algebra and equality is conditional in
order to define the commutator table. Let us study L(3, 1). In this case one has

[X, Y ] = 0, [X,Z] = 0, [Y, Z] = X,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1. (95)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = X̃.

Because of (89), one has that X̃ = 0. Hence, ζ1 6= 0, and where one can assume
that ζ1 = 1. Equations (95) become contradictive. Let us study L(3, 2, p). In this
case one has

[X, Y ] = 0, [X,Z] = X, [Y, Z] = pY,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = ζ1, ζ2ζ

′
3 − ζ ′2ζ3 = pζ2. (96)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = pỸ .

Because of (89), one has that X̃ = 0 and Ỹ = 0. Hence, ζ1ζ2 6= 0, and where one
can assume that ζ1 = 1. Equations (96) give that ζ2 is constant, which contradicts
to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3, 3). In this case one has

[X, Y ] = 0, [X,Z] = X, [Y, Z] = X + Y,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = ζ1, ζ2ζ

′
3 − ζ ′2ζ3 = ζ1 + ζ2. (97)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = X̃ + Ỹ .
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Because of (89), one has that X̃ = 0 and Ỹ = 0. Hence, ζ1ζ2 6= 0, and where one
can assume that ζ1 = 1. Equations (97) give that ζ2 is constant, which contradicts
to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3, 4, p). In this case one has

[X, Y ] = 0, [X,Z] = pX − Y, [Y, Z] = X + pY, (p ≥ 0),

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = 0, ζ1ζ

′
3 − ζ ′1ζ3 = pζ1 − ζ2, ζ2ζ ′3 − ζ ′2ζ3 = ζ1 + pζ2. (98)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = pX̃ − Ỹ , [Ỹ , Z̃] = X̃ + pỸ .

Because of (89), one has that X̃ = 0 and Ỹ = 0. Hence, ζ1ζ2 6= 0, and where one
can assume that ζ1 = 1. Equations (98) give that ζ2 is constant, which contradicts
to the property that X, Y and Z compose a basis of the Lie algebra. Let us study
L(3, 5). In this case one has

[X, Y ] = X, [X,Z] = 2Y, [Y, Z] = Z,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ1, ζ1ζ

′
3 − ζ ′1ζ3 = 2ζ2, ζ2ζ

′
3 − ζ ′2ζ3 = ζ3. (99)

and
[X̃, Ỹ ] = X̃, [X̃, Z̃] = 2Ỹ , [Ỹ , Z̃] = Z̃.

Because of (89), one has that X̃ = 0, Ỹ = 0 and Z̃ = 0. Hence, ζ1ζ2ζ3 6= 0, and
where one can assume that ζ1 = 1. Equations (99) become

ζ ′2 = 1, ζ ′3 = 2ζ2, ζ3 = ζ22 . (100)

ζ2 = S + c1, ζ3 = S2 + 2c1S + c21. (101)

Thus, the basis generators are

X = ∂S, Y = S∂S, Z = S2∂S.

Let us study L(3, 6). In this case one has

[X, Y ] = Z, [X,Z] = −Y, [Y, Z] = X,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ3, ζ1ζ

′
3 − ζ ′1ζ3 = −ζ2, ζ2ζ ′3 − ζ ′2ζ3 = ζ1. (102)

and
[X̃, Ỹ ] = Z̃, [X̃, Z̃] = −Ỹ , [Ỹ , Z̃] = X̃.

Because of (89), one has that X̃ = 0, Ỹ = 0 and Z̃ = 0. Hence, ζ1ζ2ζ3 6= 0, and
where one can assume that ζ1 = 1. Equations (102) become

ζ ′2 = ζ3, ζ
′
3 = −ζ2, −ζ22 − ζ23 = ζ1. (103)

ζ2 = c1 sin(S) + c2 cos(S), ζ3 = c1 cos(S)− c2 sin(S),−c21 − c22 = 1. (104)
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Which is a contradiction. Let us study L(3,−1). In this case one has

[X, Y ] = X, [X,Z] = 0, [Y, Z] = 0,

which means that

ζ1ζ
′
2 − ζ ′1ζ2 = ζ1, ζ1ζ

′
3 − ζ ′1ζ3 = 0, ζ2ζ

′
3 − ζ ′2ζ3 = 0. (105)

and
[X̃, Ỹ ] = X̃, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0.

Because of (89), one has that X̃ = 0. Hence, ζ1 6= 0, and where one can assume
that ζ1 = 1. Equations (105) become

ζ ′2 = 1, ζ ′3 = 0, ζ3 = 0.

Thus, the basis generators have the form

X = ∂S, Y = S∂S + β2X1 + q2X2 + γ2X3, Z = β3X1 + q3X2 + γ3X3.

Thus, one needs only to study the following three-dimensional algebras

X = ∂S, Y = S∂S, Z = S2∂S; (106)

and

X = ∂S, Y = S∂S + β2X1 + q2X2 + γ2X3, Z = β3X1 + q3X2 + γ3X3.

The latter is

X = ∂S, Y = S∂S + q2X2 + γ2X3, Z = X1 + q3X2 + γ3X3. (107)

X = ∂S, Y = S∂S + β2X1 + γ2X3, Z = X2 + γ3X3. (108)

X = ∂S, Y = S∂S + β2X1 + q2X2, Z = X3. (109)

Consider {γX3 + ∂s, X1 + q1X3, X2 + q2X3}.
Then (38) become

10γαεα + 3γρερ − εs = 4γε+ α1/2g1(ρ)− ϕ1(s) + k1ρ
−1. (110)

2(5q1 − 3)αεα + (3q1 − 2)ρερ = 2(2q1 − 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ
−1. (111)

and
10q2αεα + 3q2ρερ = 2(2q2 + 1)ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (112)

Consider equation (112) if q2 = 0, then ε = (−1/2)(α1/2g3(ρ) − ϕ3(s) + k3ρ
−1). So

ε(ρ, α, s) can be transformed to zero thus we will consider in case q2 6= 0.
Case 1. γ 6= 0 The characteristic system of equation (112) is

dα

10q2α
=

dρ

3q2ρ
=
ds

0
=

dε

2(2q2 + 1)ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ−1
.

Then
z1 = s

z2 = αρ−10/3
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dε

dρ
=

1

3q2ρ
(2(2q2 + 1)ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1)

ε = Cρµ, µ =
2(2q2 + 1)

3q2

C
′
=
ρ−1−µ

3q2
(z

1/2
2 ρ5/3g3(ρ)− ϕ3(z1) + k3ρ

−1)

Case 1.1 (µ+ 1)µ 6= 0, or (q2 + 1/2)(q2 + 2/7) 6= 0,

C =
1

3q2
(z

1/2
2 g̃3(ρ) +

ϕ3(z1)

µ
ρ−µ − k3

1 + µ
ρ−1−µ) + h(z1, z2)

=
1

3q2
(α1/2ρ−5/3g̃3(ρ) +

3ϕ3(z1)

4
ρ−4/3 − 3k3

7
ρ−7/3) + h(z1, z2)

Then

ε = (
1

3q2
(α1/2ρ−5/3g̃3(ρ) +

3ϕ3(z1)

4
ρ−4/3 − 3k3

7
ρ−7/3) + h(z1, z2))ρ

µ

One can assume that
g3 = 0, ϕ3 = 0, k3 = 0,

then
ε = h(s, z2)ρ

µ.

Equation (110) and equation (111) becomes

hs = 2γ
q2
h− ρ(q2−2)/(3q2)(z1/22 g1(ρ)− ρ−5/3ϕ1(s) + ρ−8/3k1) (113)

(SS2) becomes

2
3
z2hz2 = 2(−2q1

q2
+ 4

3q2
+ 2

3
)h+ ρ(q2−2)/(3q2)(z

1/2
2 g2(ρ)− ρ−5/3ϕ2(s) + ρ−8/3k2).

(114)
Dfferentiate equation (113) and equation (114) with respect to ρ one obtains

d
dρ

(ρ(q2−2)/(3q2)(z
1/2
2 g(ρ)− ρ−5/3ϕ(s) + ρ−8/3k)) = 0. (115)

Where g1 = g = g2, ϕ1 = ϕ = ϕ2, k1 = k = k2, Dfferentiate this equation with
respect to z2 one obtains

ρg
′ − (

2− q2
3q2

)g = 0,

then
g = cρ(2−q2)/(3q2).

Then
g1 = c1ρ

(2−q2)/(3q2), g2 = c2ρ
(2−q2)/(3q2).

Equation (115) becomes

2(1 + 2q2)ϕρ− (2 + 7q2)k = 0.

Splitting this equation with respect to ρ one obtains

(1 + 2q2)ϕ = 0.
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Then
(1 + 2q2)ϕ1 = 0, (1 + 2q2)ϕ2 = 0.

and
(2 + 7q2)k = 0.

Then
(2 + 7q2)k1 = 0, (2 + 7q2)k2 = 0.

Since (µ + 1)µ 6= 0, then ϕ1 = 0, ϕ2 = 0 and k1 = 0, k2 = 0. Then equation (113)
and equation (114) becomes

hs = 2γ
q2
h− c1z1/22 (116)

2
3
z2hz2 = (−2q1

q2
+ 4

3q2
+ 2

3
)h+ c2z

1/2
2 (117)

The characteristics of equation (144) is

ds

1
=
dz2
0

=
dh

2γ
q2
h− c1z1/22

dh

ds
=

2γ

q2
h− c1z1/22

h = Ceλs, λ =
2γ

q2

C ′ = −c1e−λsz1/22

C =
c1z

1/2
2 e−λs

λ
+ h̃(z2)

Then

h = (
c1z

1/2
2 e−λs

λ
+ h̃(z2))e

λs

=
c1z

1/2
2

λ
+ h̃(z2)e

λs

=
c1α

1/2ρ−5/3

λ
+ h̃(z2)e

λs

Then

ε = (
c1α

1/2ρ−5/3

λ
+ h̃(z2)e

λs)ρµ.

Then one can asuume c1 = 0, so

h = h̃(z2)e
λs

Equation (145) become

2
3
z2h̃z2 = (−2q1

q2
+ 4

3q2
+ 2

3
)h̃+ c2z

1/2
2 e(λs) (118)

Dfferentiate this equation with respect to s one obtains

c2λ = 0.
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Since γ 6= 0, then λ 6= 0, so c2 = 0 . Then

2
3
z2h̃z2 = (−2q1

q2
+ 4

3q2
+ 2

3
)h̃

Thus
h̃ = c7z

(−3q1+2+q2)/q2
2

h = c7z
(−3q1+2+q2)/q2
2 eλs

Then
ε = (c7z

(−3q1+2+q2)/q2
2 eλs)ρµ.

Case 1.2 µ = 0, or q2 = −1/2,

C = −2

3
(z

1/2
2 g̃3(ρ)− ϕ3(z1) ln ρ− k3ρ−1) + h(z1, z2)

= −2

3
(α1/2ρ−5/3g̃3(ρ)− ϕ3(z1) ln ρ− k3ρ−1) + h(z1, z2)

Then

ε = −2

3
(α1/2ρ−5/3g̃3(ρ)− ϕ3(z1) ln ρ− k3ρ−1) + h(z1, z2)

One can assume that
g3 = 0, k3 = 0,

then

ε =
2

3
ϕ3(s) ln ρ+ h(s, z2).

Equation (110) and equation (111) becomes

hs = −4γh− z1/22 ρ5/3g1(ρ)− 2
3
(ϕ
′
3(s)− 4γϕ3(s)) ln ρ+ 2γϕ3(s)

+ϕ1(s)− k1ρ−1)
(119)

(SS2) becomes

2
3
z2hz2 = 2(2q1 − 1)h+ z

1/2
2 ρ5/3g2(ρ)

+4
3
(2q1 − 1)ϕ3(s) ln ρ− 2(q1 − 2

3
)ϕ3(s)− ϕ2(s) + k2ρ

−1)
(120)

Dfferentiate equation (119) and equation (120) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ5/3g1(ρ) + 2

3
(ϕ
′
3(s)− 4γϕ3(s)) ln ρ+ k1ρ

−1) = 0. (121)

d
dρ

(z
1/2
2 ρ5/3g2(ρ) + 4

3
(2q1 − 1)ϕ3(s) ln ρ+ k2ρ

−1) = 0. (122)

Dfferentiate these equation with respect to z2 one obtains

ρg
′
+

5

3
g = 0,

Where g1 = g = g2, then
g = cρ−5/3.

Then
g1 = c1ρ

−5/3, g2 = c2ρ
−5/3.
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Equation (121) and (122) becomes

2

3
(ϕ
′

3(s) + 4γϕ3(s))ρ− k1 = 0.

4

3
(2q1 − 1)ϕ3(s)ρ− k2 = 0.

Splitting these equation with respect to ρ one obtains k1 = 0, k2 = 0 and

(ϕ
′

3(s) + 4γϕ3(s)) = 0.

(2q1 − 1)ϕ3(s) = 0.

Case 1.2.1 2q1 − 1 = 0 then
ϕ3(s) = c3e

−4γs.

Equation (120) and equation (120) becomes

hs = −4γh− z1/22 c1 + 2γc3e
−4γs + ϕ1(s)

2
3
z2hz2 = z

1/2
2 c2 + 1

3
c3e
−4γs − ϕ2(s)

The characteristics of first equation is

ds

1
=
dz2
0

=
dh

−4γh− z1/22 c1 + 2γc3e−4γs + ϕ1(s)

dh

ds
= −4γh− z1/22 c1 + 2γc3e

−4γs + ϕ1(s)

h = Ce−4γs

C ′ = (−z1/22 c1 + 2γc3e
−4γs + ϕ1(s))e

4γs = −z1/22 c1e
4γs + 2γc3 + ϕ1(s)e

4γs

C =
−c1z1/22 e4γs

4γ
+ ϕ(s) + h̃(z2)

Then

h = (
−c1z1/22 e4γs

4γ
+ ϕ(s) + h̃(z2))e

−4γs

=
−c1z1/22

4γ
+ ϕ(s)e−4γs + h̃(z2)e

−4γs

=
−c1α1/2ρ−5/3

4γ
+ ϕ(s)e−4γs + h̃(z2)e

−4γs

Since

ε =
2

3
c3e
−4γs ln ρ+ h(s, z2)

one can assume that c1 = 0, ϕ = 0, ϕ1 = 0, then

h = h̃(z2)e
−4γs

Equation (145) become

2
3
z2h̃z2 = (z

1/2
2 c2 − ϕ2(s))e

4γs
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Dfferentiate this equation with respect to s one obtains

4γz
1/2
2 c2 − ϕ

′

2(s)− 4γϕ2(s) = 0.

Dfferentiate this equation with respect to z2 one obtains

γc2 = 0.

Since γ 6= 0 then c2 = 0 , then
ϕ2 = c5e

−4γs

and
2
3
z2h̃z2 = c5

Then
h̃ = −3

2
c5 ln z2 + c7

Then

h = (−3

2
c5 ln z2 + c7)e

−4γs

ε =
2

3
c3e
−4γs ln ρ+ (−3

2
c5 ln z2 + c7)e

−4γs

One can assume that c7 = 0 then

ε =
2

3
c3e
−4γs ln ρ− 3

2
c5 ln z2e

−4γs

Case 1.2.2 2q1 − 1 6= 0 then ϕ3 = 0, k1 = 0, k2 = 0, Equation (120) and equation
(120) becomes

hs = −4γh− z1/22 c1 + ϕ1(s)

2
3
z2hz2 = 2(2q1 − 1)h+ z

1/2
2 c2 − ϕ2(s)

The characteristics of first equation is

ds

1
=
dz2
0

=
dh

−4γh− z1/22 c1 + ϕ1(s)

dh

ds
= −4γh− z1/22 c1 + ϕ1(s)

h = Ce−4γs

C ′ = (−z1/22 c1 + ϕ1(s))e
4γs = −z1/22 c1e

4γs + ϕ1(s)e
4γs

C =
−c1z1/22 e4γs

4γ
+ ϕ(s) + h̃(z2)

Then

h = (
−c1z1/22 e4γs

4γ
+ ϕ(s) + h̃(z2))e

−4γs

=
−c1z1/22

4γ
+ ϕ(s)e−4γs + h̃(z2)e

−4γs

=
−c1α1/2ρ−5/3

4γ
+ ϕ(s)e−4γs + h̃(z2)e

−4γs
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Since
ε = h(s, z2)

one can assume that c1 = 0, ϕ = 0, then

h = h̃(z2)e
−4γs

Equation (145) become

2
3
z2h̃z2 = (z

1/2
2 c2 − ϕ2(s))e

4γs

Dfferentiate this equation with respect to s one obtains

4γz
1/2
2 c2 − ϕ

′

2(s)− 4γϕ2(s) = 0.

Dfferentiate this equation with respect to z2 one obtains

γc2 = 0.

Since γ 6= 0 then c2 = 0 , then
ϕ2 = c5e

−4γs

and
2
3
z2h̃z2 = 2(2q1 − 1)h− c5

dh̃

dz2
=

3

2z2
(2(2q1 − 1)h− c5)

Then
h̃ = Czλ2 , λ = 3(2q1 − 1)

C
′
=
−3c5

2
z−1−λ2

Since λ 6= 0 then

C =
−3c5

2

z−λ2

−λ
+ c7

h̃ = (
−3c5

2

z−λ2

−λ
+ c7)z

λ
2 =

3c5
2λ

+ c7z
λ
2

h = (
3c5
2λ

+ c7z
λ
2 )e−4γs

Since
ε = h(s, z2).

One can assume that c5 6= 0 ,then

ε = c7z
λ
2 e
−4γs

Case 1.3 µ = −1, or q2 = −2/7,

C = −7

6
(z

1/2
2 g̃3(ρ)− ϕ3(z1)ρ+ k3 ln ρ) + h(z1, z2)

= −7

6
(α1/2ρ−5/3g̃3(ρ)− ϕ3(z1)ρ+ k ln ρ) + h(z1, z2)
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Then

ε = (−7

6
(α1/2ρ−5/3g̃3(ρ)− ϕ3(s)ρ+ k3 ln ρ) + h(s, z2))ρ

−1

One can assume that
g3 = 0, ϕ3 = 0,

then

ε = (−7

6
k3 ln ρ+ h(s, z2))ρ

−1

Equation (110) and equation (111) becomes

hs = −7γh− z1/22 ρ5/3g1(ρ) + 49
6
γ ln ρk3 − 7

2
γk3 + ϕ1(s)ρ− k1) (123)

(SS2) becomes

2
3
z2hz2 = (7q1 − 4)h+ z

1/2
2 ρ5/3g2(ρ)− (49

6
q1 − 14

3
) ln ρk3 + (7

2
q1 − 7

3
)k3

−ϕ2(s)ρ+ k2)
(124)

Dfferentiate equation (123) and equation (124) with respect to ρ one obtains

d
dρ

(z
1/2
2 ρ5/3g1(ρ) + 49

6
γ ln ρk3 + ϕ1(s)ρ) = 0. (125)

d
dρ

(z
1/2
2 ρ5/3g2(ρ)− (49

6
q1 − 14

3
) ln ρk3 − ϕ2(s)ρ) = 0. (126)

Dfferentiate these equation with respect to z2 one obtains

ρg
′
+

8

3
g = 0,

Where g1 = g = g2, then
g = cρ−8/3.

Then
g1 = c4ρ

−8/3, g2 = c5ρ
−8/3.

Equation (125) and (126) becomes

ϕ1(s)ρ+
49

6
γk3 = 0.

ϕ2(s)ρ− (
49

6
q1 −

14

3
)k3 = 0.

Splitting these equation with respect to ρ one obtains ϕ1 = 0, ϕ2 = 0 and

γk3 = 0.

(
49

6
q1 −

14

3
)k3 = 0.

Since γ 6= 0 then k3 = 0 Equation (123) and equation (124) becomes

hs = −7γh− z1/22 c4 − k1

2
3
z2hz2 = (7q1 − 4)h+ z

1/2
2 c5 + k2
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The characteristics of first equation is

ds

1
=
dz2
0

=
dh

−7γh− z1/22 c4 − k1

dh

ds
= −7γh− z1/22 c4 − k1

h = Ce−7γs

C ′ = (−z1/22 c4 − k1)e7γs

C =
(−z1/22 c4 − k1)e7γs

7γ
+ h̃(z2)

Then

h = (
(−z1/22 c4 − k1)e7γs

7γ
+ h̃(z2))e

−7γs

=
(−z1/22 c4 − k1)

7γ
+ h̃(z2)e

−7γs

=
(−α1/2ρ−5/3c4 − k1)

7γ
+ h̃(z2)e

−7γs

Since
ε = h(s, z2)ρ

−1

one can assume that c4 = 0, k1 = 0, then

h = h̃(z2)e
−7γs

Equation (124) become

2
3
z2h̃z2 = (7q1 − 4)h̃+ z

1/2
2 c5e

7γs + k2e
7γs

Dfferentiate this equation with respect to s one obtains

7γz
1/2
2 c5 + 7γk2 = 0.

Dfferentiate this equation with respect to z2 one obtains

γc5 = 0.

Since γ 6= 0 then c5 = 0, k2 = 0 , then

2
3
z2h̃z2 = (7q1 − 4)h̃

Then
h̃ = c7z

λ
2 , λ = 3

2
(7q1 − 4)

Then
h = c7z

λ
2 e
−7γs

So,
ε = c7z

λ
2 e
−7γsρ−1
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Case 2. γ = 0 Then (38) becomes

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (127)

2(5q1 − 3)αεα + (3q1 − 2)ρερ = 2(2q1 − 1)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ
−1. (128)

and
10q2αεα + 3q2ρερ = 2(2q2 + 1)ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (129)

Consider equation (129) if q2 = 0, then ε = (−1/2)(α1/2g3(ρ) − ϕ3(s) + k3ρ
−1). So

ε(ρ, α, s) can be transformed to zero thus we will consider in case q2 6= 0. Equation
(127) gives

ε = (α1/2g1(ρ) + k1ρ
−1)s+ h(α, ρ)

Dfferentiate equation (128) and equation (129) with respect to s one obtains

g1(ρ) = c4ρ
(2−q2)/(3q2)

c4(
−q1
q2

+ 2
3q2

+ 1
6
) = 0

Case 2.1 −q1
q2

+ 2
3q2

+ 1
6

= 0 one obtains ϕ2 = c2, ϕ3 = c3 and

k1(
7
6
q2 + 2

3
) = 0

k1(7q2 + 2) = 0

Case 2.1.1 7
6
q2 + 2

3
= 0 Equation (128) and equation (129) becomes

2

7
αhα +

2

7
ρhρ = −2

7
h− α1/2g2 − k2ρ−1 + c2 (130)

The characteristics of first equation is

7dα

2α
=

7dρ

2ρ
=

dh

−2
7
h− α1/2g2 − k2ρ−1 + c2

z = αρ−1

dh

dρ
=

7

2ρ
(−2

7
h− α1/2g2 − k2ρ−1 + c2)

h = Cρ−1

C ′ =
7

2
(−α1/2g2 − k2ρ−1 + c2)

C
′
=

7

2
(−z1/2ρ1/2g2 − k2ρ−1 + c2)

C =
7

2
(−z1/2g̃2 − k2 ln ρ+ c2ρ) + h̃(z)

Then

h = (
7

2
(−z1/2g̃2 − k2 ln ρ+ c2ρ) + h̃(z))ρ−1

One can assume that g2 = 0, c2 = 0 , then

h = (−7

2
k2 ln ρ+ h̃(z))ρ−1
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Equation (129) gives
g3 = c6ρ

−3/2

and
7k2 − c3ρ = 0

Splitting this equation with respect to ρ one obtains c3 = 0, k2 = 0. Equation (129)
becomes

4zh̃z = 2h̃− z1/2c6 − k3 (131)

Then
dh̃

dz
=

1

4z
(2h̃− z1/2c6 − k3)

h̃ = Cz1/2

C
′
=

1

4
z−1−1/2(−z1/2c6 − k3)

C =
1

4
(−c6 ln z + 2k3z

−1/2) + c7

Then

h̃ = (
1

4
(−c6 ln z + 2k3z

−1/2) + c7)z
1/2 =

1

4
(−c6 ln zz1/2 + 2k3) + c7z

1/2

Then

h = ((
1

4
(−c6 ln zz1/2 + 2k3) + c7z

1/2)ρ−1

ε = (α1/2c4ρ
−3/2 + k1ρ

−1)s+ ((1
4
(−c6 ln zz1/2 + 2k3) + c7z

1/2)ρ−1

One can assume that k3 = 0, c7 = 0 then

ε = (α1/2c4ρ
−3/2 + k1ρ

−1)s− 1
4
c6(ln z)z1/2ρ−1

Case 2.1.2 7
6
q2 + 2

3
6= 0, then k1 = 0, Equation (128) and equation (129) becomes

10q2αhα + 3q2ρhρ = 2(2q2 + 1)h+ α1/2g3 + k3ρ
−1 − c3 (132)

The characteristics of first equation is

dα

10q2α
=

dρ

3q2ρ
=

dh

2(2q2 + 1)h+ α1/2g3(ρ)− c3 + k3ρ−1
.

Then
z = αρ−10/3

dh

dρ
=

1

3q2ρ
(2(2q2 + 1)h+ α1/2g3(ρ)− c3 + k3ρ

−1)

h = Cρµ, µ =
2(2q2 + 1)

3q2

C
′
=
ρ−1−µ

3q2
(α1/2g3(ρ)− c3 + k3ρ

−1)

Case 2.1.2.1 (µ+ 1)µ 6= 0, or (q2 + 1/2)(q2 + 2/7) 6= 0,

C =
1

3q2
(α1/2g̃3(ρ) +

c3
µ
ρ−µ − k3

1 + µ
ρ−1−µ) + h̃(z)
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=
1

3q2
(α1/2g̃3(ρ) +

c3
µ
ρ−µ − k3

1 + µ
ρ−1−µ) + h̃(z)

Then

h = (
1

3q2
(α1/2g̃3(ρ) +

c3
µ
ρ−µ − k3

1 + µ
ρ−1−µ) + h̃(z))ρµ

One can assume that
g3 = 0, c3 = 0, k3 = 0,

then
h = h(z)ρµ.

One obtains
g2 = c5ρ

(−q2+2)/(3q2)

k2(2 + 7q2) = 0

and
c2(1 + 2q2) = 0

Since (µ+ 1)µ 6= 0, then k2 = 0, c2 = 0, Equation (128) becomes

2

3
zh̃z =

1

3
h̃+ z1/2c5 (133)

Then
dh̃

dz
=

3

2z
(
1

3
h̃+ z1/2c5)

h̃ = Cz1/2

C
′
=

3

2
z−1−1/2(z1/2c5)

C =
3

2
c5 ln z + c7

Then

h̃ = (
3

2
c5 ln z + c7)z

1/2

Then

h = (
3

2
c5 ln z + c7)z

1/2ρµ

ε = (α1/2c4ρ
(2−q2)/(3q2))s+ (3

2
c5 ln z + c7)z

1/2ρµ

One can assume that c7 = 0 then

ε = (α1/2c4ρ
(2−q2)/(3q2))s+ 3

2
c5(ln z)z1/2ρµ

Case 2.1.2.2 µ = 0, or q2 = −1/2

C = −2

3
(α1/2g̃3(ρ)− c3 ln ρ− k3ρ−1) + h(z)

Then

h = −2

3
(α1/2g̃3(ρ)− c3 ln ρ− k3ρ−1) + h(z)

One can assume that
g3 = 0, k3 = 0,

96



then

h =
2

3
c3 ln ρ+ h̃(z).

One obtains
g2 = c5ρ

−5/3

k2 = 0

and
c3 = 0

Equation (128) becomes
2

3
zh̃z =

1

3
h̃+ z1/2c5 − c2 (134)

Then
dh̃

dz
=

3

2z
(
1

3
h̃+ z1/2c5 − c2)

h̃ = Cz1/2

C
′
=

3

2
z−1−1/2(z1/2c5 − c2)

C =
3

2
c5 ln z + 2c2z

−1/2 + c7

Then

h̃ = (
3

2
c5 ln z + 2c2z

−1/2 + c7)z
1/2

Then

h = (
3

2
c5 ln z + 2c2z

−1/2 + c7)z
1/2

One can assume that c2 = 0, c7 = 0 then

ε = (α1/2c4ρ
(2−q2)/(3q2))s+ 3

2
c5(ln z)z1/2

Case 2.1.2.3 µ = −1, or q2 = −2/7,

C = −7

6
(α1/2g̃3(ρ)− c3ρ+ k3 ln ρ) + h̃(z)

Then

h = (−7

6
(α1/2g̃3(ρ)− c3ρ+ k3 ln ρ) + h̃(z))ρ−1

One can assume that
g3 = 0, c3 = 0,

Then

h = (−7

6
k3 ln ρ+ h̃(z))ρ−1

One obtains
g2 = c5ρ

−5/3

k3 = 0

and
c2 = 0
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Equation (128) becomes
2

3
zh̃z =

1

3
h̃+ z1/2c5 + k2 (135)

Then
dh̃

dz
=

3

2z
(
1

3
h̃+ z1/2c5 + k2)

h̃ = Cz1/2

C
′
=

3

2
z−1−1/2(z1/2c5 + k2)

C =
3

2
c5 ln z − 2k2z

−1/2 + c7

Then

h̃ = (
3

2
c5 ln z − 2k2z

−1/2 + c7)z
1/2

Then

h = ((
3

2
c5 ln z − 2k2z

−1/2 + c7)z
1/2)ρ−1

One can assume that k2 = 0, c7 = 0 then

ε = (α1/2c4ρ
(2−q2)/(3q2))s+ 3

2
c5(ln z)z1/2ρ−1

Case 2.2 −q1
q2

+ 2
3q2

+ 1
6
6= 0 then c4 = 0 then

ε = (k1ρ
−1)s+ h(α, ρ)

k1(7q1 − 4) = 0

k1(7q2 + 2) = 0

For nonisentropic k1 6= 0 then

7q1 − 4 = 0, 7q2 + 2 = 0

Equation (128) and equation (129) becomes

2

7
αhα +

2

7
ρhρ = −2

7
h− α1/2g2 − k2ρ−1 + c2 (136)

The characteristics of first equation is

7dα

2α
=

7dρ

2ρ
=

dh

−2
7
h− α1/2g2 − k2ρ−1 + c2

z = αρ−1

dh

dρ
=

7

2ρ
(−2

7
h− α1/2g2 − k2ρ−1 + c2)

h = Cρ−1

C ′ =
7

2
(−α1/2g2 − k2ρ−1 + c2)

C
′
=

7

2
(−z1/2ρ1/2g2 − k2ρ−1 + c2)
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C =
7

2
(−z1/2g̃2 − k2 ln ρ+ c2ρ) + h̃(z)

Then

h = (
7

2
(−z1/2g̃2 − k2 ln ρ+ c2ρ) + h̃(z))ρ−1

One can assume that g2 = 0, c2 = 0 , then

h = (−7

2
k2 ln ρ+ h̃(z))ρ−1

One obtains
g3 = c6ρ

−3/2

and
c3 = 0

Equation (129) becomes

2zh̃z = −z1/2c6 + 3k2 − k3 (137)

Then
dh̃

dz
=

1

2z
(−z1/2c6 + 3k2 − k3)

h̃ =
1

2

�
z−1(−z1/2c6 + k4)dz + c7 =

1

2
(2c6z

1/2 + k4 ln z) + c7

Then

h = (−7

2
k2 ln ρ+

1

2
(2c6z

1/2 + k4 ln z) + c7)ρ
−1

One can assume that c6 = 0, c7 = 0 then

ε = (k1ρ
−1)s− (7

2
k2 ln ρ− 1

2
k4 ln z)ρ−1

Consider {βX2 + ∂s, X1 + q1X2, X3}.
Then (SS1) becomes

εs = −2βε− α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (138)

(SS2) becomes

6αεα + 2ρερ = −2(q1 − 1)ε− α1/2g2(ρ) + ϕ2(s)− k2ρ−1. (139)

(SS3) becomes

10αεα + 3ρερ = 4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ
−1. (140)

Case 1. β 6= 0 The characteristic system of equation (112) is

dα

10α
=
dρ

3ρ
=
ds

0
=

dε

4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ−1
.

Then
z1 = s

z2 = αρ−10/3
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dε

dρ
=

1

3ρ
(4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1)

ε = Cρ4/3

C
′
=
ρ−1−4/3

3
(z

1/2
2 ρ5/3g3(ρ)− ϕ3(z1) + k3ρ

−1)

=
1

3
(α1/2ρ−5/3g̃3(ρ) +

3ϕ3(z1)

4
ρ−4/3 − 3k3

7
ρ−7/3) + h(z1, z2)

Then

ε = (
1

3
(α1/2ρ−5/3g̃3(ρ) +

3ϕ3(s)

4
ρ−4/3 − 3k3

7
ρ−7/3) + h(z1, z2))ρ

4/3

One can assume that
g3 = 0, ϕ3 = 0, k3 = 0,

then
ε = h(s, z2)ρ

4/3.

Equation (110) and equation (111) becomes

hs = −2βh− z1/22 ρ1/3g1(ρ) + ρ−4/3ϕ1(s)− ρ−7/3k1 (141)

2
3
z2hz2 = (2q1 + 2

3
)h+ z

1/2
2 ρ1/3g2(ρ)− ρ−4/3ϕ2(s) + ρ−87/3k2 (142)

Dfferentiate equation (141) and equation (142) with respect to ρ one obtains

d
dρ

(ρ(q2−2)/(3q2)(z
1/2
2 g(ρ)− ρ−5/3ϕ(s) + ρ−8/3k)) = 0. (143)

Where g1 = g = g2, ϕ1 = ϕ = ϕ2, k1 = k = k2, Dfferentiate this equation with
respect to z2 one obtains

ρg
′
+

1

3
g = 0,

then
g = cρ−1/3.

Then
g1 = c4ρ

−1/3, g2 = c5ρ
−1/3.

Equation (115) becomes
4

3
ϕρ− 7

3
k = 0.

Splitting this equation with respect to ρ one obtains

ϕ = 0.k = 0

Then
ϕ1 = 0, ϕ2 = 0, k1 = 0, k2 = 0.

Then equation (141) and equation (142) becomes

hs = 2βh− c1z1/22 (144)

2
3
z2hz2 = (2q1 + 2

3
)h+ c2z

1/2
2 (145)
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The characteristics of equation (144) is

ds

1
=
dz2
0

=
dh

2βh− c1z1/22

dh

ds
= 2βh− c1z1/22

h = Ce2βs

C ′ = −c1e−2βsz1/22

C =
c1z

1/2
2 e−2βs

−2β
+ h̃(z2)

Then

h = (
c1z

1/2
2 e−2βs

−2β
+ h̃(z2))e

2βs

=
c1z

1/2
2

−2β
+ h̃(z2)e

2βs

=
c1α

1/2ρ−5/3

−2β
+ h̃(z2)e

2βs

Then

ε = (
c1α

1/2ρ−5/3

−2β
+ h̃(z2)e

2βs)ρ4/3.

Then one can asuume c1 = 0, so

h = h̃(z2)e
2βs

Equation (145) become

2
3
z2h̃z2 = 2q1h̃+ c2z

1/2
2 e(λs) (146)

Dfferentiate this equation with respect to s one obtains

c2β = 0.

Since β 6= 0, then c2 = 0 . Then

2
3
z2h̃z2 = (2q1 + 2

3
)h̃

Thus
h̃ = c7z

3q1+1
2

h = c7z
3q1+1
2 e2βs

Then
ε = c7z

3q1+1
2 e2βsρ4/3.

Case 2. β = 0
Then (38) become

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (147)

6αεα + 2ρερ = −2(q1 − 1)ε− α1/2g2(ρ) + ϕ2(s)− k2ρ−1. (148)
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and
10αεα + 3ρερ = 4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (149)

Equation (147) gives

ε = (α1/2g1(ρ) + k1ρ
−1)s+ h(α, ρ)

Dfferentiate equation (148) and equation (149) with respect to s one obtains

g1(ρ) = c4ρ
−1/3

Equation (148) becomes
c4(q1 + 1

6
) = 0

If q1 + 1
6
6= 0 then c4 = 0. Splitting equation (148) and equation (149) with respect

to ρ one obtains
ϕ2 = 2(q1 − 1)

�
ϕ1(s)ds+ c2

ϕ3 = 4
�
ϕ1(s)ds+ c3

k1 = 0

Then is not nonisentropics, So q1 + 1
6

= 0 Splitting equation (148) and equation
(149) with respect to ρ one obtains

ϕ2 = −1
7

�
ϕ1(s)ds+ c2

ϕ3 = 4
�
ϕ1(s)ds+ c3

k1 = 0

Equation (148) and equation (149) becomes

(150)

10αhα + 3ρhρ = 4h+ α1/2g3 + k3ρ
−1 − c3 (151)

The characteristics of first equation is

dα

10α
=
dρ

3ρ
=

dh

4h+ α1/2g3 + k3ρ−1 − c3

z = αρ−10/3

dh

dρ
=

1

3ρ
(4h+ α1/2g3 + k3ρ

−1 − c3)

h = Cρ4/3

C ′ρ4/3 =
1

3ρ
(α1/2g3 + k3ρ

−1 − c3)

C
′
=

1

3
ρ−7/3(z1/2ρ5/3g3 + k3ρ

−1 − c3)

C =
1

3
(z1/2g̃3 −

3

7
k3ρ
−7/3 + c3

3

4
ρ−4/3) + h̃(z)

Then

h = (
1

3
(z1/2g̃3 −

3

7
k3ρ
−7/3 + c3

3

4
ρ−4/3) + h̃(z))ρ4/3
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ε = (α1/2c4ρ
−1/3)s+ h(ρ, α)

One can assume that g3 = 0, k3 = 0, c3 = 0 , then

h = h̃(z)ρ4/3

Dfferentiate (148) with respect to z one obtains

g2 = c5ρ
−1/3

and
7k2 − 4c2ρ = 0

Splitting this equation with respect to ρ one obtains c2 = 0, k2 = 0. Equation (149)
becomes

2

3
zh̃z =

1

3
h̃+ z1/2c5 (152)

Then
dh̃

dz
=

3

2z
(
1

3
h̃+ z1/2c5)

h̃ = Cz1/2

C
′
=

3

2
z−1−1/2(z1/2c5)

C =
3

2
(c5 ln z) + c7

Then

h̃ = (
3

2
(c5 ln z) + c7)z

1/2 =
3

2
c5 ln zz1/2 + c7z

1/2

Then

h = (
3

2
c5 ln zz1/2 + c7z

1/2)ρ4/3

ε = (α1/2c4ρ
−1/3)s+ (3

2
c5 ln zz1/2 + c7z

1/2)ρ4/3

One can assume that c7 = 0 then

ε = (α1/2c4ρ
−1/3)s+ 3

2
c5(ln z)z1/2ρ4/3

Consider {X1 + ∂s, X2, X3}.
Then (38) become

6αεα + 2ρερ + εs = 2ε− α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (153)

2ε = −α1/2g2(ρ) + ϕ2(s)− k2ρ−1. (154)

and
10αεα + 3ρερ = 4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (155)

Consider equation (154) one obtains ε = (1/2)(−α1/2g2(ρ) + ϕ2(s) − k2ρ
−1). So

ε(ρ, α, s) can be transformed to zero.
Consider {∂s, X2, X3}.
Then (38) become

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (156)

2ε = −α1/2g2(ρ) + ϕ2(s)− k2ρ−1. (157)
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and
10αεα + 3ρερ = 4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (158)

Consider equation (157) one obtains ε = (1/2)(−α1/2g2(ρ) + ϕ2(s) − k2ρ
−1). So

ε(ρ, α, s) can be transformed to zero.
Consider {∂s, s∂s, s2∂s}. Then (38) become

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (159)

sεs = −α1/2g2(ρ) + ϕ2(s)− k2ρ−1. (160)

and
s2εs = −α1/2g3(ρ) + ϕ3(s)− k3ρ−1. (161)

Equation (159) gives

ε = −α1/2g1(ρ)s+

�
ϕ1(s)ds− k1ρ−1s+ h(ρ, α).

One can assume that ϕ1 = 0. Equation (160) and equation (161) become

α1/2(−g1(ρ)s+ g2(ρ))− ϕ2(s)− (k1s− k2)ρ−1 = 0. (162)

α1/2(−g1(ρ)s2 + g3(ρ))− ϕ3(s)− (k1s
2 − k3)ρ−1 = 0. (163)

Dfferentiate equation (160) and equation (161) with respect to α one obtains g1 =
0, g2 = 0. and g3 = 0. and dfferentiate equation (160) and equation (161) with
respect to ρ one obtains k1 = 0, k2 = 0. and k3 = 0. then ϕ2 = 0, and ϕ3 = 0,
Then ε = h(ρ, α), which is gas dynamics.
Consider {∂s, s∂s + q2X2 + γ2X3, X1 + q3X2 + γ3X3}. Then (38) becomes

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (164)

10γ2αεα + 3γ2ρερ − sεs = 2(2γ2 + q2)ε+ α1/2g2(ρ)− ϕ2(s) + k2ρ
−1. (165)

and

2(5γ3 − 3)αεα + (3γ3 − 2)ρερ = 2(2γ3 + q3 − 1)ε+ α1/2g3(ρ)− ϕ3(s)
+k3ρ

−1.
(166)

Equation (164) gives

ε = −α1/2g1(ρ)s+

�
ϕ1(s)ds− k1ρ−1s+ h(ρ, α).

One can assume that ϕ1 = 0. then

ε = −α1/2g1(ρ)s− k1ρ−1s+ h(ρ, α).

Case 1..1 γ2 6= 0, γ3 6= 2/3 then one obtains

γ2ρg
′

1 +
1

3
(γ2 − 2q2 − 1)g1 = 0 (167)

(γ3 −
2

3
)ρg

′

1 +
1

3
(γ3 − 2q3 − 1)g1 = 0 (168)
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Then
g1 = c4ρ

− 1
3γ2

(γ2−2q2−1)

and

c4(
γ3q2
γ2

+
γ3
2γ2
− 2q2

3γ2
− 1

3γ2
− q3 −

1

6
) = 0

Case 1.1.1γ3q2
γ2

+ γ3
2γ2
− 2q2

3γ2
− 1

3γ2
− q3 − 1

6
6= 0 , then c4 = 0 Then

ε = −k1ρ−1s+ h(ρ, α).

equation (165) and equation (166) give ϕ2 = c2, ϕ3 = c3 and for nonisentropics
k1 6= 0 then

q2 = −7

2
γ2 −

1

2
, q3 = −7

2
γ3 + 2

The characteristic system of equation (165) is

dα

10γ2α
=

dρ

3γ2ρ
=

dh

(−3γ2 − 1)h+ α1/2g2(ρ) + k2ρ−1 − c2

Then
z = αρ−10/3

dh

dρ
=

1

3γ2ρ
((−3γ2 − 1)h+ α1/2g2(ρ) + k2ρ

−1 − c2)

h = Cρµ, µ =
−3γ2 − 1

3γ2

C
′
=
ρ−1−µ

3γ2
(α1/2g2(ρ) + k2ρ

−1 − c2)

=
1

3γ2
(z1/2g̃2(ρ) + k2ρ

−2−µ − c2ρ−1−µ)

Remark µ 6= −1
Case 1.1.1.1 µ 6= 0 or γ2 6= −1/3 then

C =
1

3γ2
(z1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

=
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

Then

h = (
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z))ρµ

One can assume that
g2 = 0, k2 = 0, c2 = 0,

then
h = h̃(z)ρµ

g3 = c6ρ
−(1+8γ2)/(3γ2)

k3 = 0, c3 = 0
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Equation (166) becomes

2

3
zh̃z =

1

γ2
(γ3 −

2

3
)h̃+ z1/2c6 (169)

Then
dh̃

dz
=

3

2z
(

1

γ2
(γ3 −

2

3
)h̃+ z1/2c6)

h̃ = Czλ, λ =
3

2γ2
(γ3 −

2

3
)

C
′
=

3

2
z−1−λ+1/2c6

Case 1.1.1.1.1 λ = 1/2 or γ3 = 1
3
(γ2 + 2)

C =
3

2
c6 ln z + c7

Then

h̃ = (
3

2
c6 ln z + c7)z

1/2

Then

h = ((
3

2
c6 ln z + c7)z

1/2)ρµ

One can assume that c7 = 0 then

ε = −k1ρ−1s+
3

2
c6(ln z)z1/2ρµ.

Case 1.1.1.1.2 λ 6= 1/2 or γ3 6= 1
3
(γ2 + 2)

C
′
=

3

2
z−1−λ+1/2c6

C =
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7

Then

h̃ = (
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ

h = ((
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ)ρµ

One can assume that c6 = 0 then

ε = −k1ρ−1s+ c7z
λρµ.

Case 1.1.1.2 µ = 0 then γ2 = −1/3

C
′
= −(z1/2g̃2(ρ) + k2ρ

−2 − c2ρ−1)

Then
C = −(z1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

h = −(z1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)
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One can assume that
g2 = 0, k2 = 0,

then
h = c2 ln ρ+ h̃(z).

g3 = c6ρ
−5/3

k3 = 0

c2(3γ3 − 2) = 0

Since 3γ3 − 2 6= 0 then
k3 = 0, c2 = 0

Then
h = h̃(z)

Equation (166) becomes

2

3
zh̃z = (−3γ3 + 2)h̃+z1/2c6 − c3 (170)

Then
dh̃

dz
=

3

2z
((−3γ3 + 2)h̃+z1/2c6 − c3)

h̃ = Czλ, λ =
3

2
(−3γ3 + 2)

C
′
=

3

2
z−1−λ(z1/2c6 − c3)

=
3

2
(c6z

−1−λ+1/2 − c3z−1−λ)

Remark λ 6= 0
Case 1.1.1.2.1 λ = 1/2 or γ3 = 5/9

C =
3

2
(c6 ln z + 2c3z

−1/2) + c7

Then

h̃ = (
3

2
(c6 ln z + 2c3z

−1/2) + c7)z
1/2

Then

h = (
3

2
(c6 ln z + 2c3z

−1/2) + c7)z
1/2

One can assume that c3 = 0, c7 = 0 then

h̃ =
3

2
c6(ln z)z1/2

ε = −k1ρ−1s+
3

2
c6(ln z)z1/2.

Case 1.1.1.2.2 λ 6= 1/2 or γ3 6= 5/9

C =
3

2
(c6

z−λ+1/2

−λ+ 1/2
+

c3
−λ

z−λ) + c7
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Then

h̃ = (
3

2
(c6

z−λ+1/2

−λ+ 1/2
+

c3
−λ

z−λ) + c7)z
λ

One can assume that c6 = 0, c3 = 0 then

h̃ = c7z
λ

Then
ε = −k1ρ−1s+ c7z

λ.

Case 1.1.2 γ3q2
γ2

+ γ3
2γ2
− 2q2

3γ2
− 1

3γ2
− q3 − 1

6
= 0 Then

ε = −α1/2g1(ρ)s− k1ρ−1s+ h(ρ, α)

equation (165) and equation (166) give ϕ2 = c2, ϕ3 = c3 and

k1(7γ2 + 2q2 + 1) = 0

k1(.....) = 0

Case 1.1.2.1 7γ2 + 2q2 + 1 6= 0 ,then k1 = 0 then

ε = −α1/2g1(ρ)s+ h(ρ, α)

The characteristic system of equation (165) is

dα

10γ2α
=

dρ

3γ2ρ
=

dh

2(2γ2 + q2)h+ α1/2g2(ρ) + k2ρ−1 − c2

Then
z = αρ−10/3

dh

dρ
=

1

3γ2ρ
(2(2γ2 + q2)h+ α1/2g2(ρ) + k2ρ

−1 − c2)

h = Cρµ, µ =
2(2γ2 + q2)

3γ2

C
′
=
ρ−1−µ

3γ2
(α1/2g2(ρ) + k2ρ

−1 − c2)

=
1

3γ2
(z1/2g̃2(ρ) + k2ρ

−2−µ − c2ρ−1−µ)

Case 1.1.2.1.1 µ(µ+ 1) 6= 0 or (2γ2 + q2)(7γ2 + 2q2) 6= 0 then

C =
1

3γ2
(z1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

=
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

Then

h = (
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z))ρµ

One can assume that
g2 = 0, k2 = 0, c2 = 0,
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then
h = h̃(z)ρµ

g3 = c6ρ
(−γ2+2q2)/(3γ2)

k3 = 0, c3 = 0

Equation (166) becomes

2

3
zh̃z = (

γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 (171)

Then
dh̃

dz
=

3

2z
((
γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6)

h̃ = Czλ, λ =
3

2
(
γ3
γ2
− 2

3γ2
+

1

3
)

C
′
=

3

2
z−1−λ+1/2c6

Since γ3 6= 2/3 then λ 6= 1/2

C
′
=

3

2
z−1−λ+1/2c6

C =
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7

Then

h̃ = (
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ

h = ((
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ)ρµ

One can assume that c6 = 0 then

ε = −α1/2g1(ρ)s+ c7z
λρµ.

Case 1.1.2.1.2 µ = 0 or q2 = −2γ2 then

C =
1

3γ2
(z1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

=
1

3γ2
(α1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

Then

h =
1

3γ2
(α1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

One can assume that
g2 = 0, k2 = 0,

then

h =
−1

3γ2
c2 ln ρ+ h̃(z)

g3 = c6ρ
−5/3

109



k3 = 0

c2(γ2 + 3γ3 − 2) = 0

Case 1.1.2.1.2.1 γ2 + 3γ3 − 2 = 0 then Equation (166) becomes

2

3
zh̃z = z1/2c6 + c3 +

1

3
c2 (172)

Then
dh̃

dz
=

3

2z
(z1/2c6 + c3 +

1

3
c2)

h̃ =
3

2

�
(z−1/2c6 + (c3 +

1

3
c2)z

−1)dz + c7 =
3

2
(2z1/2c6 + (c3 +

1

3
c2) ln z) + c7

One can assume that
c6 = 0, c7 = 0,

then

h̃ = −3

2
((c3 +

1

3
c2) ln z)

Then

h =
−1

3γ2
c2 ln ρ− 3

2
((c3 +

1

3
c2) ln z)

ε = −α1/2g1(ρ)s+
−1

3γ2
c2 ln ρ− 3

2
((c3 +

1

3
c2) ln z)

Case 1.1.2.1.2.2 γ2 + 3γ3 − 2 6= 0 then c2 = 0 Then

h = h̃(z)

Equation (166) becomes

2

3
zh̃z = (

γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 − c3 (173)

Then
dh̃

dz
=

3

2z
((
γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 − c3)

h̃ = Czλ, λ =
3

2
(
γ3
γ2
− 2

3γ2
+

1

3
)

C
′
=

3

2
z−1−λ(z1/2c6 − c3)

Sinceγ3 6= 2/3 then λ 6= 1/2 and since γ2 + 3γ3 − 2 6= 0 then λ 6= 0

C
′
=

3

2
z−1−λ+1/2c6

C =
3

2
(c6

z−λ+1/2

−λ+ 1/2
− c3

z−λ

−λ
) + c7

Then

h̃ = (
3

2
(c6

z−λ+1/2

−λ+ 1/2
− c3

z−λ

−λ
) + c7)z

λ
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One can assume that
c6 = 0, c3 = 0,

Then
h̃ = c7z

λ

h = c7z
λ

ε = −α1/2g1(ρ)s+ c7z
λ

Case 1.1.2.1.3 µ = −1 or q2 = −7
2
γ2 then

C =
1

3γ2
(z1/2g̃2(ρ) + k2 ln ρ− c2ρ) + h̃(z)

=
1

3γ2
(α1/2g̃2(ρ) + k2 ln ρ− c2ρ) + h̃(z)

Then

h = (
1

3γ2
(α1/2g̃2(ρ) + k2 ln ρ− c2ρ) + h̃(z))ρ−1

One can assume that
g2 = 0, c2 = 0,

then

h = (
1

3γ2
k2 ln ρ+ h̃(z))ρ−1

g3 = c6ρ
−8/3

+++++++++++++++++++++++++++++++++

c3 = 0

k2(γ2 + 3γ3 − 2) = 0

Case 1.1.2.1.3.1 γ2 + 3γ3 − 2 = 0 then Equation (166) becomes

2

3
zh̃z = z1/2c6 + k3 +

1

3
k2 (174)

Then
dh̃

dz
=

3

2z
(z1/2c6 + k3 +

1

3
k2)

h̃ =
3

2

�
(z−1/2c6 + (k3 +

1

3
k2)z

−1)dz + c7 =
3

2
(2z1/2c6 + (k3 +

1

3
k2) ln z) + c7

One can assume that
c6 = 0, c7 = 0,

then

h̃ =
3

2
((k3 +

1

3
k2) ln z)

Then

h = (
1

3γ2
k2 ln ρ+

3

2
((k3 +

1

3
k2) ln z))ρ−1

ε = −α1/2g1(ρ)s+ (
1

3γ2
k2 ln ρ+

3

2
((k3 +

1

3
k2) ln z))ρ−1
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Case 1.1.2.1.3.2 γ2 + 3γ3 − 2 6= 0 then k2 = 0 Then

h = h̃(z)ρ−1

Equation (166) becomes

2

3
zh̃z = (

γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 + k3 (175)

Then
dh̃

dz
=

3

2z
((
γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 + k3)

h̃ = Czλ, λ =
3

2
(
γ3
γ2
− 2

3γ2
+

1

3
)

C
′
=

3

2
z−1−λ(z1/2c6 + k3)

Sinceγ3 6= 2/3 then λ 6= 1/2 and since γ2 + 3γ3 − 2 6= 0 then λ 6= 0

C =
3

2
(c6

z−λ+1/2

−λ+ 1/2
+ k3

z−λ

−λ
) + c7

Then

h̃ = (
3

2
(c6

z−λ+1/2

−λ+ 1/2
+ k3

z−λ

−λ
) + c7)z

λ

One can assume that
c6 = 0, k3 = 0,

Then
h̃ = c7z

λ

h = c7z
λρ−1

ε = −α1/2g1(ρ)s+ c7z
λρ−1

Case 1.1.2.2 7γ2 + 2q2 + 1 = 0 , then q2 = (−1− 7γ2)/2 then k1 = 0. So

ε = −α1/2g1(ρ)s+ h(ρ, α)

The characteristic system of equation (165) is

dα

10γ2α
=

dρ

3γ2ρ
=

dh

(−3γ2 − 1)h+ α1/2g2(ρ) + k2ρ−1 − c2

Then
z = αρ−10/3

dh

dρ
=

1

3γ2ρ
((−3γ2 − 1)h+ α1/2g2(ρ) + k2ρ

−1 − c2)

h = Cρµ, µ =
−3γ2 − 1

3γ2

C
′
=
ρ−1−µ

3γ2
(α1/2g2(ρ) + k2ρ

−1 − c2)
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=
1

3γ2
(z1/2g̃2(ρ) + k2ρ

−2−µ − c2ρ−1−µ)

Remark µ 6= −1
Case 1.1.2.2.1 µ 6= 0 or γ2 6= −1/3 then

C =
1

3γ2
(z1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

=
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z)

Then

h = (
1

3γ2
(α1/2g̃2(ρ)− k2

1 + µ
ρ−1−µ +

c2
µ
ρ−µ) + h̃(z))ρµ

One can assume that
g2 = 0, k2 = 0, c2 = 0,

then
h = h̃(z)ρµ

g3 = c6ρ
(−1−8γ2)/(3γ2)

k3 = 0, c3 = 0

Equation (166) becomes

2

3
zh̃z = (

γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6 (176)

Then
dh̃

dz
=

3

2z
((
γ3
γ2
− 2

3γ2
+

1

3
)h̃+ z1/2c6)

h̃ = Czλ, λ =
3

2
(
γ3
γ2
− 2

3γ2
+

1

3
)

C
′
=

3

2
z−1−λ+1/2c6

Sinceγ3 6= 2/3 then λ 6= 1/2

C
′
=

3

2
z−1−λ+1/2c6

C =
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7

Then

h̃ = (
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ

h = ((
3

2
c6

z−λ+1/2

−λ+ 1/2
+ c7)z

λ)ρµ

One can assume that c6 = 0 then

ε = −α1/2g1(ρ)s+ c7z
λρµ.
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Case 1.1.2.2.2 µ = 0 or γ2 = −1/3 then

C = −(z1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

= −(α1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

Then
h = −(α1/2g̃2(ρ)− k2ρ−1 − c2 ln ρ) + h̃(z)

One can assume that
g2 = 0, k2 = 0,

then
h = c2 ln ρ+ h̃(z)

g3 = c6ρ
−5/3

k3 = 0

c2(9γ3 − 7) = 0

Case 1.1.2.2.2.1 γ3 = 7/9 then Equation (166) becomes

2

3
zh̃z = z1/2c6 − c3 −

1

3
k2 (177)

Then
dh̃

dz
=

3

2z
(z1/2c6 − c3 −

1

3
k2)

h̃ =

�
3

2
(z−1/2c6 − (c3 +

1

3
k2)z

−1)dz + c7 =
3

2
(2z1/2c6 − (c3 +

1

3
k2) ln z) + c7

One can assume that
c6 = 0, c7 = 0

then

h̃ =
3

2
(−(c3 +

1

3
k2) ln z)

Then

h = c2 ln ρ+
3

2
(−(c3 +

1

3
k2) ln z)

ε = −α1/2g1(ρ)s+ c2 ln ρ+
3

2
(−(c3 +

1

3
k2) ln z).

Case 1.1.2.2.2.2 γ3 6= 7/9 then c2 = 0 then

h = h̃(z)

Equation (166) becomes

2

3
zh̃z = (−3γ3 +

7

3
)h̃+ z1/2c6 − c3 (178)

Then
dh̃

dz
=

3

2z
((−3γ3 +

7

3
)h̃+ z

1/2
3 c6 − c3)

h̃ = Czλ, λ =
3

2
(−3γ3 +

7

3
)
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C
′
=

3

2
z−1−λ(z

1/2
3 c6 − c3)

Remark λ 6= 0
Sinceγ3 6= 2/3 then λ 6= 1/2

C =
3

2
(c6

z−λ+1/2

−λ+ 1/2
− c3

z−λ

−λ
) + c7

Then

h̃ = (
3

2
(c6

z−λ+1/2

−λ+ 1/2
− c3

z−λ

−λ
) + c7)z

λ

One can assume that c6 = 0, c3 = 0 then

h̃ = c7z
λ

ε = −α1/2g1(ρ)s+ c7z
λ.

Consider {∂s, s∂s + β2X1 + γ2X3, X2 + γ3X3}. Then (38) becomes

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (179)

2(5γ2 − 3β2)αεα + (3γ2 − 2β2)ρερ − sεs = 2(2γ2 − β2)ε+ α1/2g2(ρ)
−ϕ2(s) + k2ρ

−1 (180)

and

10γ3αεα + 3γ3ρερ = 2(2γ3 + 1)ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ
−1. (181)

If γ3 = 0, then ε = (−1/2)(α1/2g3(ρ) − ϕ3(s) + k3ρ
−1). Then ε(ρ, α, s) can be

transformed to zero thus we will consider in case γ3 6= 0. Equation (179) gives

ε = −α1/2g1(ρ)s+

�
ϕ1(s)ds− k1ρ−1s+ h(ρ, α).

One can assume that ϕ1 = 0. then

ε = −α1/2g1(ρ)s− k1ρ−1s+ h(ρ, α).

Dfferentiate equation (180) and equation (181) with respect to s one obtains

α1/2((3γ2 − 2β2)ρg
′
1(ρ) + (γ2 − β2 − 1)g1(ρ))− ϕ′2(s)

+(4β2 − 7γ2 − 1)k1ρ
−1 = 0.

(182)

(181) becomes

α1/2(3γ3ρg
′
1(ρ) + (γ3 − 2)g1(ρ))− ϕ′3(s)− (2 + 7γ3)k1ρ

−1 = 0. (183)

Dfferentiate equation (182) and equation (183) with respect to α one obtains

(3γ2
2
− β2)ρg

′
1(ρ) + (γ2

2
− β2

2
− 1

2
)g1(ρ) = 0. (184)

(181) becomes
3γ3
2
ρg
′
1(ρ) + (γ3

2
− 1)g1(ρ) = 0. (185)
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Since γ3 6= 0, then
g1(ρ) = c4ρ

−(γ3−2)/(3γ3).

Then
ε = −α1/2c4ρ

−(γ3−2)/(3γ3)s− k1ρ−1s+ h(ρ, α).

Equation (184) becomes

c4(
γ2
γ3
− 2β2

3γ3
− β2

6
− 1

2
) = 0 = 0.

Case 1. γ2
γ3
− 2β2

3γ3
− β2

6
− 1

2
6= 0, so c4 = 0 then

ε = −k1ρ−1s+ h(ρ, α).

Equation (182) and equation (183) becomes

ρϕ
′

2(s)− (4β2 − 7γ2 − 1)k1 = 0.

ρϕ
′

3(s) + (7γ3 + 2)k1 = 0.

Splitting above equation with respect to ρ one obtains

ϕ2 = c2, ϕ3 = c3.

(4β2 − 7γ2 − 1)k1 = 0.

(7γ3 + 2)k1 = 0.

For nonisentropics

γ3 = −2

7

4β2 − 7γ2 − 1 = 0

Equation (180) and equation (181) becomes

1
7
(β2 + 10)αhα + 1

7
(2β2 + 3)ρhρ = −1

7
(β2 − 4)h− α1/2g2(ρ)− k2ρ−1 + c2. (186)

(181) becomes

(20
7

)αhα + 6
7
ρhρ = −6

7
h− α1/2g3(ρ)− k3ρ−1 + c3. (187)

The characteristic system of equation (187) is

7dα

20α
=

7dρ

6ρ
=

dh

−6
7
h− α1/2g3(ρ)− k3ρ−1 + c3

.

Then
z = αρ−10/3

dh

dρ
=

7

6ρ
(−6

7
h− α1/2g3(ρ)− k3ρ−1 + c3)

h = Cρ−1

C
′
=

7ρ−2

6
(−α1/2g3(ρ)− k3ρ−1 + c3)
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C =
7

6
(z1/2g̃3(ρ) +

k3
2
ρ−2 − c3

2
ρ−1) + h(z)

Then

h =
7

6
(z1/2 ˜̃g3(ρ) +

k3
2
ρ−1 − c3

2
) + h(z)ρ−1

One can assume that
g3 = 0, k3 = 0, c3 = 0,

then
h = h̃(z)ρ−1.

Equation (186) becomes

2
3
β2zh̃z = −h̃+ k2 + ρ(z1/2ρ5/3g2(ρ)− c2). (188)

Dfferentiate this equation with respect to ρ one obtains

d
dρ
ρ(z1/2ρ5/3g2(ρ)− c2) = 0. (189)

Dfferentiate this equation with respect to z one obtains

ρg
′
2(ρ) + 8

3
g2 = 0.

Then
g2 = c5ρ

−8/3.

Equation (189) becomes
c2 = 0.

Equation (188) becomes

2
3
β2zh̃z = −h̃+ k2 + z1/2c5.

Case 1.1β2 6= 0, The characteristic system of this equation is

3dz

2β2z
=

dh̃

−h̃+ k2 + z1/2c5
.

Then
dh̃

dz
=

3

2β2z
(−h̃+ k2 + z1/2c5)

h̃ = Czλ, λ = −3/2β2

C
′
=

3z−1−λ

2β2
(k2 + z1/2c5)

Remark λ 6= 0,
Case 1.1.1 λ = 1/2, then

C =
3

2β2
(−2k2z

−1/2 + c5 ln z) + C7.

Then

h̃ =
3

2β2
(−2k2 + c5 ln z z1/2) + C7z

1/2 =
3

2β2
(−2k2 + c5 ln z z1/2) + C7α

1/2ρ−5/2.
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One can assume that
k2 = 0.C7 = 0.

Then

h =
3

2β2
(c5 ln z z1/2)ρ−1.

Then

ε = −k1ρ−1s+
3

2β2
(c5 ln z z1/2)ρ−1.

Case 1.1.2 λ 6= 1/2, then

C
′
=

3z−1−λ

2β2
(k2 + z1/2c5)

C =
3

2β2
(k2

z−λ

−λ
+ c5

z−λ+1/2

(−λ+ 1/2)
) + C7.

Then

h̃ =
3

2β2
(
k2
−λ

+ c5
z1/2

(−λ+ 1/2)
) + C7z

λ =
3

2β2
(
k2
−λ

+ c5
α1/2ρ−5/2

(−λ+ 1/2)
) + C7α

1/2ρ−5/2.

One can assume that
k2 = 0, c5 = 0, C7 = 0

Then
h = 0.

So
ε = −k1ρ−1s.

Which is not depend on α 6= 0,
Equation (188) becomes

2
3
β2zh̃z = −h̃+ k2 + z1/2c5.

Case 1. 2β2 = 0, then
h̃ = k2 + z1/2c5.

h = (k2 + z1/2c5)ρ
−1.

One can assume that
k2 = 0, c5 = 0

Then
h = 0.

So
ε = −k1ρ−1s.

Which is not depend on α 6= 0,
Case 2. γ2

γ3
− 2β2

3γ3
− β2

6
− 1

2
= 0, then

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s− k1ρ−1s+ h(ρ, α).

Equation (182) and equation (183) gives

ϕ2 = c2, ϕ3 = c3.
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(7β2γ3 + 4β2 + 21γ3 + 6)k1 = 0.

(7γ3 + 2)k1 = 0.

Case 2.1 7γ3 + 2 = 0, then fist equation gives β2 = 0,
The characteristic system of equation is

7dα

20α
=

7dρ

6ρ
=

dh

−6
7
h− α1/2g3(ρ)− k3ρ−1

.

Then
z = αρ−10/3

dh

dρ
=

7

6ρ
(−6

7
h− α1/2g3(ρ)− k3ρ−1)

h = Cρ−1

C
′
=

7ρ−2

6
(−α1/2g3(ρ)− k3ρ−1)

C =
7

6
(z1/2g̃3(ρ) +

k3
2
ρ−2) + h(z)

Then

h =
7

6
(z1/2 ˜̃g3(ρ) +

k3
2
ρ−1) + h̃(z)ρ−1

One can assume that
g3 = 0, k3 = 0,

then
h = h̃(z)ρ−1.

ρg
′
2(ρ) + 8

3
g2 = 0.

Then
g2 = c5ρ

−8/3.

Equation (189) becomes
c2 = 0.

Equation (188) becomes
h̃ = k2 + z1/2c5.

Then
h = (k2 + z1/2c5)ρ

−1.

One can assume that
k2 = 0, c5 = 0

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s− k1ρ−1s

Case 2.2 7γ3 + 2 6= 0, then k1 = 0, then

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s+ h(ρ, α).

The characteristic system of the equation is

dα

10γ3α
=

dρ

3γ3ρ
=

dh

2(2γ3 + 1)h+ α1/2g3(ρ) + k3ρ−1 − c3
.
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Then
z = αρ−10/3

dh

dρ
=

1

3γ3ρ
(2(2γ3 + 1)h+ α1/2g3(ρ) + k3ρ

−1 − c3)

h = Cρµ, µ =
1

3γ3
(2(2γ3 + 1)

C
′
=
ρ−1−µ

3γ3
(α1/2g3(ρ) + k3ρ

−1 − c3)

=
ρ−1−µ

3γ3
(z1/2g̃3(ρ) + k3ρ

−1 − c3)

Remark µ = −1,
Case 2.2.1 µ = 0 orγ3 = −1/2 then

C =
1

3γ3
(z1/2g̃3(ρ)− k3ρ−1 − c3 ln ρ) + h̃(z)

Then

h =
1

3γ3
(z1/2g̃3(ρ)− k3ρ−1 − c3 ln ρ) + h̃(z)

One can assume that
g3 = 0, k3 = 0,

then

h =
1

3γ3
(−c3 ln ρ) + h̃(z)

g2 = c5ρ
−5/3.

Equation (189) becomes
k2 = 0.

c3(
β2
3
− 1) = 0.

Case 2.2.1.1 β2 = 3 then Equation (188) becomes

2zh̃z = z1/2c5 − c2 + c3 = z1/2c5 + c7.

dh̃

dz
=

1

2z
(z1/2c5 + c7).

Then

h̃ =
1

2
(2z1/2c5 + c7 ln z) + c8

Then

h =
1

3γ3
(−c3 ln ρ) +

1

2
(2z1/2c5 + c7 ln z) + c8

One can assume that
c5 = 0, c8 = 0.

Then

h =
−c3
3γ3

ln ρ+
1

2
c7 ln z
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ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s+

−c3
3γ3

ln ρ+
1

2
c7 ln z.

Case 2.2.1.2 β2 6= 3 then c3 = 0 Then

h = h̃(z)

Equation (188) becomes

2

3
β2zh̃z = (

1

3
β2 − 1)h̃+z1/2c5 − c2.

Case 2.2.1.2.1 β2 6= 0

dh̃

dz
=

3

2β2z
((

1

3
β2 − 1)h̃+z1/2c5 − c2).

h̃ = Czλ, λ =
3

2β2
(
1

3
β2 − 1)

C
′
=

3

2β2
z−1−λ(z1/2c5 − c2)

Remark λ 6= 0, λ 6= 1/2 then

C =
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
− c2

z−λ

−λ
) + Cc7

Then

h̃ = (
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
− c2

z−λ

−λ
) + c7)z

λ

One can assume that
c5 = 0, c2 = 0.

Then
h̃ = c7z

λ

Then
h = c7z

λ

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s+ c7z

λ.

Case 2.2.1.2.2 β2 = 0
h̃ = z1/2c5 − c2.

One can assume that h̃ = 0 then

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s

Case 2.2.2 µ 6= 0 or γ3 6= −1/2 then

C =
1

3γ3
(α1/2g3(ρ) + k3

ρ−1−µ

−1− µ
− c3

ρ−µ

−µ
) + h̃(z)

Then

h = (
1

3γ3
(α1/2g3(ρ) + k3

ρ−1−µ

−1− µ
− c3

ρ−µ

−µ
) + h̃(z))ρµ
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One can assume that
g3 = 0, k3 = 0, c3 = 0

then
h = h̃(z)ρµ

g2 = c5ρ
(2−γ3)/(3γ3).

Equation (189) becomes
c2(1 + 2γ3) = 0.

k2(2 + 7γ3) = 0.

Since 1 + 2γ3 6= 0, 2 + 7γ3 6= 0 thenc2 = 0, k2 = 0 Equation (188) becomes

2

3
β2zh̃z = (

1

3
β2 − 1)h̃+ z1/2c5.

Case 2.2.2.1 β2 6= 0
dh̃

dz
=

3

2β2z
((

1

3
β2 − 1)h̃+z1/2c5).

h̃ = Czλ, λ =
3

2β2
(
1

3
β2 − 1)

C
′
=

3

2β2
z−1−λ(z1/2c5)

Remark λ 6= 1/2 then

C =
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
) + Cc7

Then

h̃ = (
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
) + c7)z

λ

One can assume that
c5 = 0.

Then
h̃ = c7z

λ

Then
h = c7z

λρµ

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s+ c7z

λρµ.

Case 2.2.2.2.2 β2 = 0
h̃ = z1/2c5.

One can assume that h̃ = 0 then

ε = −α1/2c4ρ
−(γ3−2)/(3γ3)s

Consider {∂s, s∂s + β2X1 + q2X2, X3}. Then (38) becomes

εs = −α1/2g1(ρ) + ϕ1(s)− k1ρ−1. (190)

6β2αεα + 2β2ρερ + sεs = 2(β2 − q2)ε− α1/2g2(ρ) + ϕ2(s)− k2ρ−1 (191)
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and
10αεα + 3ρερ = 4ε+ α1/2g3(ρ)− ϕ3(s) + k3ρ

−1. (192)

Equation (179) gives

ε = −α1/2g1(ρ)s+

�
ϕ1(s)ds− k1ρ−1s+ h(ρ, α).

One can assume that ϕ1 = 0. then

ε = −α1/2g1(ρ)s− k1ρ−1s+ h(ρ, α).

g1(ρ) = c4ρ
−1/3

Then
ε = −α1/2c4ρ

−1/3s− k1ρ−1s+ h(ρ, α)

Equation (191) becomes
c4(β2 + 6q2 + 3) = 0

If β2 + 6q2 + 3 6= 0, then c4 = 0 so

ε = −k1ρ−1s+ h(ρ, α).

ϕ2 = c2, ϕ3 = c3.

k1 = 0.

Then
ε = h(ρ, α).

Then for nonisentropics β2 + 6q2 + 3 = 0

ϕ2 = c2, ϕ3 = c3.

k1 = 0.

Then
ε = −α1/2c4ρ

−1/3s+ h(ρ, α)

The characteristic system of equation (192) is

dα

10α
=
dρ

3ρ
=

dh

4h+ α1/2g3(ρ) + k3ρ−1 − c3
.

Then
z = αρ−10/3

dh

dρ
=

1

3ρ
(4h+ α1/2g3(ρ) + k3ρ

−1 − c3)

h = Cρ4/3

C
′
=
ρ−7/3

3
(α1/2g3(ρ) + k3ρ

−1 − c3)

C =
1

3
(z1/2g̃3(ρ)− 3k3

7
ρ−7/3 +

3c3
4
ρ−4/3) + h̃(z)
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Then

h = (
1

3
(z1/2g̃3(ρ)− 3k3

7
ρ−7/3 +

3c3
4
ρ−4/3) + h̃(z))ρ4/3

One can assume that
g3 = 0, k3 = 0, c3 = 0

then
h = h̃(z)ρ4/3

g2 = c5ρ
−1/3

c2 = 0, k2 = 0

2
3
β2zh̃z = (1

3
β2 − 1)h̃+ z1/2c5.

Case 1β2 6= 0 The characteristic system of the equation is

3dz

2β2z
=

dh̃

(1
3
β2 − 1)h̃+ z1/2c5

.

Then
dh̃

dz
=

3

2β2z
((

1

3
β2 − 1)h̃+ z1/2c5)

h̃ = Czλ, λ =
3

2β2
(
1

3
β2 − 1)

C
′
=

3z−1−λ

2β2
(z1/2c5)

Since λ 6= 1/2, then

C =
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
) + C7.

Then

h̃ = (
3

2β2
(c5

z−λ+1/2

−λ+ 1/2
) + C7)z

λ

One can assume that
c5 = 0.

Then
h = C7z

λρ4/3

Then
ε = −α1/2c4ρ

−1/3s+ C7z
λρ4/3

Equation (191) becomes

2
3
β2zh̃z = (1

3
β2 − 1)h̃+ z1/2c5.

Case 2β2 = 0 then
h̃ = z1/2c5

One can assume that h̃ = 0 then

ε = −α1/2c4ρ
−1/3s
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Executive Summary 

 จากแบบเสนอโครงการวิจัยท่ีเสนอขอทุนวิจัย ขอบเขตของการวิจยัจะเปนการจําแนกประเภทเชิง

กลุมของสมการของไหลหนึ่งมิติท่ีพลังงานภายใน ߝ ൌ ,ߩሺߞ ߙ√ሻݏ ൅ ߮ሺߩ, ሻߩ׏ ൅ ߶ሺߩ, คือ ߩ ሻ เม่ือݏ

ความหนาแนน, ߩ׏ คือเกรเดียนตของความหนาแนน และ ݏ คือเอนโทรป ߞሺߩ, ,ߩ ሻ เปนฟงกชันของݏ  ݏ

, ߮ሺߩ, ,ߩ ሻ เปนฟงกชันของߩ׏ ,ߩและ ߶ሺ ߩ׏ ,ߩ ሻ เปนฟงกชันของݏ   ݏ

 การวิจยัคร้ังท่ีไดคือการจําแนกประเภทเชิงกลุมของสมการของไหลหนึ่งมิติท่ีพลังงานภายในคือ 

ߝ ൌ ,ߩሺߝ ,ݏ ሻ ซ่ึงอยูในรูปท่ัวไป (general) และรูปแบบของพลังงานภายในที่เสนอไวในแบบเสนอߩ׏

โครงการวิจัย เปนสวนหนึ่งของการวิจยัคร้ังนี้ ผลการวิจยัมีรายละเอียดดังตอไปนี ้

1. ไดกลุมสมมูลของลี (Equivalence Lie group) คือ 

 

 

2. ไดกลุมยอมรับของลี (Admitted Lie group) คือ 

 

 

 
 

3. ไดการจําแนกประเภทเชิงกลุมตามกลุมยอมรับของลี ดังตารางตอไปน้ี 
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4. ผลงานวิจัยไดสงเพื่อตีพิมพเผยแพร ช่ือเร่ือง Group classification of one-dimensional equations of 

fluids with internal inertia the specific energy is a function of density, density gradient and 

entropy.  ช่ือวารสาร  International Journal of Non-Linear Mechanics  โดยรายละเอียดตาม

ภาคผนวก 
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Abstract

An application of group analysis provides a regular procedure for mathematical modeling by
classifying differential equations with respect to arbitrary elements. This paper presents the
group classification of one-dimensional equations of fluids where the internal energy is a function
of the density, the gradient of the density and the entropy. The group classification separates
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1. Introduction

This manuscript is focused on the group classification of the governing equations whose
specific internal energy ε is a function of the density, the density gradient, and the entropy [1]1

ρt + (ρu)x = 0, (ρu)t + (ρu2 +Π)x = 0, (ρs)t + (ρsu)x = 0,

Π = ρ δ(ρε)
δρ

− ρε = ρ2ερ − 2ρ(ρρxεα)x + 2ρρ2xεα, α = |∇ρ|2, (1)

where t is time, ∇ is the gradient operator with respect to the space variables, ρ is the fluid

density, u is the velocity field, s is the entropy, ε(ρ, α, s) is a given internal energy, and
δ

δρ
denotes the variational derivative with respect to ρ at a fixed value of u. These models were
studied in [2, 3, 4, 5, 6]. A review of these models can be found in [7, 1] and references therein.
Equations (1) were obtained in [1] using the Lagrangian of the form

L =
1

2
|u|2 − ε(ρ,∇ρ, s).

Another set of models where the medium behavior depends not only on thermodynamical
variables but also on their derivatives with respect to space and time was constructed in [8]
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using the Lagrangian of the form

L =
1

2
|u|2 −W (ρ, ρ̇, s)

where ˙= ∂/∂t + u∇. These models are examples of a continuum where the behavior depends
not only on the thermodynamical variables but also on their derivatives with respect to space
and time.

One of the methods for studying properties of differential equations is group analysis [9,
10, 11]. This method is a basic method for constructing exact solutions of partial differential
equations. A wide range of applications of group analysis to partial differential equations are
collected in [12, 13, 14]. Group analysis, besides facilitating the construction of exact solutions,
provides a regular procedure for mathematical modeling by classifying differential equations
with respect to arbitrary elements. This feature of group analysis is the fundamental basis for
the mathematical modeling in the present paper.

An application of group analysis employs several steps. The first step is group classification
with respect to arbitrary elements. An algorithm of the group classification is applied in
cases where a system of differential equations has arbitrary elements in the form of undefined
parameters and functions. This step is necessary since a specialization of the arbitrary elements
can lead to different admitted Lie groups. In particular, group classification selects the functions
ε(ρ, |∇ρ|, s) such that the fluid dynamics equations (1) possess additional symmetry properties
extending the kernel of the admitted Lie groups. Algorithms of finding equivalence and admitted
Lie groups are particular parts of the algorithm of the group classification.

A complete group classification of equations (1), where ε = ε(ρ, |∇ρ|) is performed in [15].
Invariant solutions of some particular cases are considered there. Group classification of the
class of models describing the behavior of a dispersive continuum withW =W (ρ, ρ̇) was studied
in [16] (one-dimensional case) and [17] (three-dimensional case). Invariant solutions of some
particular cases which are separated out by the group classification are considered in [16, 18].
The group classification performed in these studies [16, 15, 17] followed the classical method
developed by L.V.Ovsiannikov [11] for the group classification of the gas dynamics equations.
Notice that an exhaustive program of studying the models appearing in the group classification
of the gas dynamics equations was announced in [19]. Some results of this program were
summarized in [20]. It is also worth to notice that the classical gas dynamics model corresponds
to ε(ρ, s) (or W (ρ, s)).

The classical approach [11] to nonisentropic equations of fluids with internal inertia is very
complicated. Even the study of particular cases leads to cumbersome investigations [21]. In
the present paper we use an algebraic approach for the group classification of nonisentropic
equations of fluids with internal inertia.

The algebraic approach takes the algebraic properties of an admitted Lie group and the
knowledge of the algebraic structure of admitted Lie algebras into account, and allows for
significant simplification of the group classification. In particular, the group classification of a
single second-order ordinary differential equation, done by the founder of the group analysis
method, S.Lie [22, 23], cannot be performed without using the algebraic structure of admitted
Lie groups. Recently, the algebraic properties were applied in for group classification [24, 25,
26, 27, 28, 29, 30, 31]. We also note that the use of the algebraic structure of admitted Lie
groups completely simplified the group classification of equations describing the behavior of
fluids with internal inertia in [32, 33].

The present paper is focused on the group classification of the one-dimensional equations
of fluids (1), where ε = ε(ρ, |∇ρ|, s) with εs 6= 0.
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This paper is organized as follows. The equivalence Lie group of transformations is pre-
sented in section 2. The equivalence transformations are applied for simplifying the function
ε(ρ, |∇ρ|, s) in the process of the classification. We classify all models with respect to the
admitted Lie groups in section 3, where we consider 2 cases. In the first case, where k4 6= 0,
the analysis is similar to the group classification of the gas dynamics equations. In the second
case, where k4 = 0, the analysis uses the idea of the algebraic approach which separates the
study of group classification in two steps. In the first step, one makes a preliminary study of
possible coefficients of the basis generators using the requirement of admitted generators to
compose a Lie algebra. In the second step, one substitutes these coefficients of each generator
of the Lie algebra into the determining equation. Solving the obtained system of equations, the
function ε(ρ, |∇ρ|, s) and additional restrictions for the coefficients of the basis generators are
obtained. The result of the group classification and the admitted Lie algebras of equation (1)
is summarized in Table 1.

2. Equivalence Lie group

An equivalence Lie group allows changing arbitrary elements conserving the structure of the
studied equations. An infinitesimal operator Xe of the equivalence Lie group is sought in the
form [34]

Xe = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α + ζs∂s + ζε∂ε,

where the coefficients ξx, ξt, ζρ, ζu, ζα, ζs and ζε are all functions of (x, t, ρ, u, α, s, ε).
Calculations give the following basis of generators of the equivalence Lie group,

Xe
1 = ρ∂ρ + 2α∂α, X

e
2 = t∂t + x∂x − 2α∂α,

Xe
3 = t∂x − u∂u − 2ε∂ε, X

e
4 = f(s)∂s,

Y e
1 = ∂t, Y

e
2 = ∂x, Y

e
3 = t∂x + ∂u, Z

e
1 = ρ−1∂ε,

Ze
2 = f(s)∂ε, Z

e
3 = g(ρ)

√
α∂ε,

where the functions f(s) and g(ρ) are arbitrary.
Since the equivalence transformations corresponding to the operators Xe

3 , X
e
4 , Z

e
1 , Z

e
2 and

Ze
3 are applied for simplifying the function ε in the classification process, let us present these

transformations. Because the function ε depends on ρ, α and s, only the transformations of
these variables are presented:

Xe
3 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = e−2aε,

Xe
4 : ρ̃ = ρ, α̃ = α, s̃ = h(s, a) ε̃ = ε,

Ze
1 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+ ρ−1a,

Ze
2 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+ f(s)a,

Ze
3 : ρ̃ = ρ, α̃ = α, s̃ = s ε̃ = ε+

√
αg(ρ)a

where a is the group parameter. Using the equivalence transformations corresponding to the
generators Ze

1 and Z
e
2 , the term C1ρ

−1+C2, which appears in the function ε(ρ, α, s) can be omit-
ted. Here C1 and C2 are constants. By virtue of the equivalence transformations corresponding
to the generator Ze

3, the function ε(ρ, α, s) is considered up to the term
√
αg(ρ).

3. Admitted Lie group

An admitted generator X of equations (1) is sought in the form

X = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζα∂α + ζs∂s,

3



where the coefficients ξx, ξt, ζρ, ζu, ζα and ζs are functions of the variables (x, t, ρ, u, α, s).
Calculations show that

ξx = k4tx− k̃3x− k̃1x+ k5t
3 + k6t

2 + k8t+ k9, ξ
t = k4t

2 − 2k̃3t− 2k̃1t+ k2t + k7,

ζρ = 2k̃1ρ− k4tρ+ k̃3ρ, ζ
u = k4(x− tu) + k̃3u+ k̃1u− k2u+ 3k5t

2 + 2k6t + k8,

ζα = 6k̃1α− 4k4tα + 4k̃3α, ζ
s = ζ(s),

where k1 = k̃1 − k̃3, k3 = −k̃3, ki, (i = 1, 2, ..., 8) are constant. The constants and the function
ζ(s) satisfy the equations

ζ(2εsαρραρ+ 4εsαρα− εsρρρ− 2εsρ) + 2k̃1(2εαρρραρ
2 + 9εαρραρ+ 6εαρα + 6εααρρα

2ρ

+12εααρα
2 − ερρρρ

2 − 3ερρρ) + 2k2(2εαρραρ+ 4εαρα− ερρρ− 2ερ) + k̃3(2εαρρραρ
2

+8εαρραρ+ 4εαρα + 8εααρρα
2ρ+ 16εααρα

2 − ερρρρ
2 − 2ερρρ+ 2ερ)− 2k6q(α) = 0,

(2)

ζ ′(4εsαραρ+ 4εsαα− εsρρ) + ζ(4εssαραρ+ 4εssαα− εssρρ) + 2k̃1(4εsαρραρ
2

+13εsαραρ+ 12εsααρα
2ρ+ 12εsααα

2 + 8εsαα− εsρρρ
2) + 2k2(4εsαραρ

+4εsαα− εsρρ) + k̃3(4εsαρραρ
2 + 12εsαραρ+ 16εsααρα

2ρ+ 16εsααα
2

+8εsαα− εsρρρ
2 + εsρρ) = 0,

(3)

ζsssεsα + 2ζ ′εssα + ζεsssα + 2k̃1(εssαρρ+ 3εssααα + 2εssα) + 2k2εssα
+k̃3(εssαρρ+ 4εssααα + 2εssα) = 0,

(4)

ζ(εsαρρ+ 2εsααραρ+ 2εsααα + εsα) + 2k̃1(εαρρρ
2 + 4εαρρ+ 6εαααρα

2ρ+ 6εαααα
2

+2εααρραρ
2 + 17εααραρ+ 13εααα + 2εα) + 2k2(εαρρ+ 2εααραρ+ 2εααα + εα)

+k̃3(εαρρρ
2 + 4εαρρ+ 8εαααρα

2ρ+ 8εαααα
2 + 2εααρραρ

2 + 20εααραρ
+16εααα + 2εα) = 0,

(5)

ζ(2εsαααα + 3εsαα) + 2k̃1(6εααααα
2 + 2εαααραρ+ 25εαααα + 3εααρρ+ 15εαα)

+2k2(2εαααα + 3εαα) + k̃3(8εααααα
2 + 2εαααραρ+ 32εαααα + 3εααρρ+ 18εαα) = 0,

(6)

ζ ′(2εsααα + εsα) + ζ(2εssααα + εssα) + 2k̃1(εsαρρ+ 6εsαααα
2 + 2εsααραρ+ 13εsααα

+2εsα) + 2k2(2εsααα+ εsα) + k̃3(εsαρρ+ 8εsαααα
2 + 2εsααραρ+ 16εsααα + 2εsα) = 0,

(7)

ζ ′εsα + ζεssα + 2k̃1(εsαρρ+ 3εsααα + 2εsα) + 2k2εsα + k̃3(εsαρρ+ 4εsααα + 2εsα) = 0, (8)

ζ(2εsααα + εsα) + 2k̃1(εαρρ+ 6εαααα
2 + 2εααραρ+ 13εααα + 2εα) + 2k2(2εααα + εα)

+k̃3(εαρρ+ 8εαααα
2 + 2εααραρ+ 16εααα + 2εα) = 0,

(9)

k4(2εαρρραρ
2 + 8εαρραρ+ 4εαρα + 8εααρρα

2ρ+ 16εααρα
2 − ερρρρ

2 − 2ερρρ+ 2ερ)
+6k5q(α) = 0,

(10)

k4(4εsαρραρ
2 + 12εsαραρ+ 16εsααρα

2ρ+ 16εsααα
2 + 8εsαα− εsρρρ

2 + εsρρ) = 0, (11)

k4(εssαρρ+ 4εssααα + 2εssα) = 0, (12)

k4(εαρρρ
2 + 4εαρρ+ 8εαααρα

2ρ+ 8εαααα
2 + 2εααρραρ

2 + 20εααραρ
+16εααα + 2εα) = 0,

(13)

k4(8εααααα
2 + 2εαααραρ+ 32εαααα+ 3εααρρ+ 18εαα) = 0, (14)

k4(εsαρρ+ 8εsαααα
2 + 2εsααραρ+ 16εsααα + 2εsα) = 0, (15)

k4(εsαρρ+ 4εsααα + 2εsα) = 0, (16)

k4(εαρρ+ 8εαααα
2 + 2αρεααρ + 16εααα + 2εα) = 0. (17)
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where q = a/
√
α and a2 = 1. The determining equations (2)-(17) define the kernel of admitted

Lie algebras and its extensions. The kernel of admitted Lie algebras consists of the generators
which are admitted by equations (1) for any function ε(ρ, α, s) and it is defined by the generators

Y1 = ∂t, Y2 = ∂x, Y3 = t∂x + ∂u.

The transformations corresponding to Y1 and Y2 are shifts with respect to time and space vari-
able, and the transformations corresponding to Y3 are the Galilean transformations. Extensions
of the kernel of admitted Lie algebras depend on the value of the function ε(ρ, α, s). They can
only be operators of the form

k1X1 + k2X2 + k3X3 + k4X4 + k5X5 + k6X6 + ζ∂s,

where

X1 = ρ∂ρ + α∂α, X2 = t∂t − u∂u, X3 = u∂u + 2α∂α − x∂x − 2t∂t,
X4 = ρt∂ρ + (ut− x)∂u + 4αt∂α − tx∂x − t2∂t, X5 = t3∂x + 3t2∂u, X6 = t2∂x + 2t∂u.

3.1. Case k4 6= 0

The functions ε(ρ, α, s) for which there exists an admitted generator with k4 6= 0 are studied
first. This generator can be rewritten in the form

X4 + k1X1 + k2X2 + k3X3 + k5X5 + k6X6 + ζ∂s,

where ζ = ζ(s). Using the equivalence transformation corresponding to the generator Xe
1 = ∂t,

one can assume that for this generator k1 = 0. Notice also that if ζ 6= 0, then using the
equivalence transformation corresponding to Xe

4 , one can assume that ζ = 1.
From equation (16) one finds that

ε(ρ, α, s) = ρ2ψ(αρ−4, s) + φ(ρ, s) + ϕ(ρ, α),

where φ(ρ, s) and ϕ(ρ, α) are arbitrary functions of the integration. Substituting ε into equation
(17) one has

ρϕαρ + 8α2ϕααα + 2αρϕααρ + 16αϕαα + 2ϕα = 0.

Introducing the function
g = 2αϕαα + ϕα = 2α1/2(α1/2ϕα)α

this equation becomes
ρgρ + 4αgα + 2g = 0.

Solving this equation, one obtains that

ε(ρ, α, s) = ρ2ψ(αρ−4, s) + φ(ρ, s) + α1/2h1(ρ) + h2(ρ).

Because of equivalence transformations one can assume that

h1 = 0, h2 = 0.

Differentiating equation (10) with respect to α, one finds that k5 = 0. Equations (10) and (11)
become

ρ2φρρρ + 2ρφρρ − 2φρ = 0, ρφρρs − φρs = 0.
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The general solution of this system of equations is

φ = ρ2φ1(s) + Cρ−1 + φ3(s),

where C is constant. Hence,

ε = ρ2
(
ψ(αρ−4, s) + φ1(s)

)
+ ρ−1C + φ3(s).

Since the function ψ is arbitrary, one can set φ1 = 0. Furthermore, because of the equivalence
transformations corresponding to Ze

1 and Ze
2 , one can assume that φ3 = 0 and C = 0. Thus, if

there exists a generator with k4 6= 0, then the function ε(ρ, α, s) has to be of the form

ε = ρ2ψ(z, s), z = αρ−4. (18)

Let us study group properties of equations (1) with the function ε(ρ, α, s) of the form (18).
Substituting the function ε(ρ, α, s) into the determining equations (2)-(17), and performing
some manipulations (differentiations and linear combinations) one obtains that these equations
are reduced to the equations k5 = 0, k6 = 0, and

2(k3 − k1)(2z
2ψzz − zψz + ψ) + 2k2(2ψzz − ψ) + ζ(2ψzsz − ψs) = 0, (19)

(2(k3 − k1)(zψz − ψ) + 2k2ψ + ψsζ)s = 0. (20)

Integrating equation (20), one has

2(k3 − k1)(zψz − ψ) + 2k2ψ + ψsζ = λ, (21)

where λ(z) is an arbitrary function. Excluding k2 from (19) using (21), one finds that

λ = kz1/2,

where k is constant. Thus, for the group classification of equations (1) with the function
ε(ρ, α, s) of the form (18), one needs to analyze only the equation

2(k3 − k1)(zψz − ψ) + 2k2ψ + ψsζ = kz1/2. (22)

Since ψs 6= 0, one finds

ζ = ψ−1
s

(
kz1/2 − 2 ((k3 − k1)(zψz − ψ) + k2ψ)

)
. (23)

Because ζ = ζ(s), differentiating (23) with respect to z one needs to impose the requirement
that

ak + b(k3 − k1) + ck2 = 0, (24)

where
a =

(
z1/2ψ−1

s

)
z
, b = −2

(
ψ−1
s (zψz − ψ)

)
z
, c = −2

(
ψ−1
s ψ

)
z
.

Equation (24) is a classifying equation.
For arbitrary function ψ(z, s) one has

k3 = k1, k2 = 0, k = 0, (25)
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that is, the generators
Y1, Y2, Y3, X1 +X3, X4 (26)

are admitted for any function ε(ρ, α, s) of the form (18). An extension of this Lie algebra L5

occurs if one of the constants
k3 − k1, k2, k

does not vanish. Operators of the extension have the form

γX2 + βX3 +Xh,

where β and γ are constant, Xh = h(s)∂s, and

h2 + β2 + γ2 6= 0.

For classifying all possibilities, it is convenient to consider the functions a(z, s), b(z, s) and
c(z, s) as coordinates of the three-dimensional vector v = (a, b, c). For analyzing relations
between the constants k3 − k1, k2 and k one can follow to the classical method developed by
L.V.Ovsiannikov [11] for the group classification of the gas dynamics equations: one studies
the vector space Span(V ), where the set V consists of the vectors v with z and s are varying.

3.1.1. Case dim(Span(V )) = 3

In this case
k3 = k1, k2 = 0, k = 0,

and hence, there is no extensions of L5.

3.1.2. Case dim(Span(V )) = 2

There exists a constant vector (γ, β, q) 6= 0 such that the vector field (a, b, c) is orthogonal
to the vector (γ, β, q):

γa+ βb+ qc = 0.

Assuming that γ 6= 0, one can set γ = 1. Then equation (24) becomes

b[(k3 − k1)− βk] + c(k2 − qk) = 0

If one of the constants (k3 − k1)− βk or k2 − qk does not vanish, then dim(V ) < 2. Hence,

(k3 − k1) = βk, k2 = qk

and
ζ(s) = kh(s),

where
h = ψ−1

s

(
z1/2 − 2 (βzψz + (q − β)ψ)

)
. (27)

The extension of L5 is defined by a single generator of the form

βX3 + qX2 + h∂s.

The function h(s) can also be simplified: either h = 0 or h = 1.
Assume that h = 0. Since for β = 0 one obtains that εs = 0, then β 6= 0 and

ψ = z1−q/βH + z1/2 1
2q−β

, (q 6= β/2),

ψ = z1/2
(
H + 1

2β
ln(z)

)
, (q = β/2),

7



where H = H(s). One can check that in this case dim(V ) = 1. Thus one needs only to consider
the case where h = 1. In this case the function

ψ(z, s) = f(ze−βs)e(β−q)s +

√
z

(2q − β)
, (q 6= 2β), (28)

ψ(z, s) = f(ze−βs)e2βs + s

√
z

2
, (q = 2β).

Notice that using equivalence transformations, one can reduce the function (28) to

ψ(z, s) = f(ze−βs)e(β−q)s, (q 6= 2β).

Assuming that γ = 0 and β 6= 0, one finds that b = −qc which gives

ak + c(k2 − q(k3 − k1)) = 0.

Similar to the previous case, one obtains

k = 0, k2 = q(k3 − k1),

and
ζ(s) = −2(k3 − k1)h(s),

where
h = ψ−1

s (zψz + (q − 1)ψ) . (29)

The function h(s) can be also simplified: either h = 0 or h = 1. The extension of L5 is defined
by the generator

X3 + qX2 − 2h∂s.

In the case h = 0 one finds that

ψ(z, s) = z1−qH(s).

It gives that dim(V ) = 1. Thus one only needs to consider h = 1 for which one finds that

ψ(z, s) = z1−qQ(ze−s),

and
X3 + qX2 + 2∂s.

Assuming that γ = 0, β = 0, one obtains c = 0 and

ak + b(k3 − k1) = 0,

which leads to
k = 0, k3 − k1 = 0,

and
ζ(s) = −2k2h(s),

where
h = ψ−1

s ψ. (30)

Using the equivalence transformation for simplifying the function h(s) to h = 1, one finds that

ψ(z, s) = e−sH(z),

and the extension is defined by the generator

X2 − 2∂s.
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3.1.3. Case dim(Span(V )) = 1.

There exists a constant vector (γ, β, q) 6= 0 such that

a = γg, b = βg, c = qg,

with some nonconstant function g(z, s) 6= 0.
If one assumes that γ 6= 0, then choosing γ = 1, one gets b = βa, c = qa,

k = −β(k3 − k1)− qk2,

and
ζ(s) = −(k3 − k1)h1(s)− k2h2(s),

where
h1 = ψ−1

s

(
βz1/2 + 2(zψz − ψ)

)
. (31)

h2 = ψ−1
s

(
qz1/2 + 2ψ

)
. (32)

The extension of L5 is defined by the generators

X3 − h1∂s, X2 − h2∂s.

Since ψs 6= 0, one can assume that h2 = 1. Notice that the commutator of the latter generators
has to vanish

[X3 − h1∂s, X2 − h2∂s] = h′1∂s = 0.

Hence, h1 = λ, where λ is constant, and the function ψ(z, s) has to satisfy the equations:

zψz − (λ+ 1)ψ =
(qλ− β)

2
z1/2, (33)

ψs = 2ψ + qz1/2. (34)

The general solution of these equations is

ψ = βz1/2 +Kz1+λe−2s,

where K is constant, and the admitted generators are

X3 − λ∂s, X2 + ∂s.

Using the equivalence transformation corresponding to Ze
3 , one obtains

ψ = Kz1+λe−2s.

Assuming that γ = 0 and β 6= 0, one sets g = b, and hence,

a = 0, c = qb, k3 − k1 = −qk2,

and
ζ = kh1(s) + 2k2h2(s),

where
h1 = ψ−1

s z1/2, h2 = ψ−1
s (q(zψz − ψ)− ψ) .

9



The extension of L5 is defined by the generators

h1∂s, X2 − qX3 + 2h2∂s.

Since h1 6= 0, one can assume that h1 = 1. The commutator of the latter generators is

[∂s, X2 − qX3 + 2h2∂s] = 2h′2∂s.

Hence, h2 = λs, where λ is constant, and

ψs = z1/2, qzψz = (q + 1)ψ + λsz1/2. (35)

If q = 0, then λ = −1 and
ψ = z1/2s.

This gives that dim(Span(V )) = 0. Thus, one has to assume that q 6= 0. In this case

ψ = Kz1+1/q + z1/2s, λ = −(1 + q/2),

and the admitted generator are

∂s, X2 − qX3 − (q + 2)s∂s.

Since for K = 0 one has dim(Span(V )) = 0, then K 6= 0.
Assuming that γ = 0 , β = 0 and q 6= 0, one has

a = 0, b = 0, k2 = 0

and
ζ(s) = kh1(s)− 2(k3 − k1)h2(s),

where
h1 = ψ−1

s z1/2, h2 = ψ−1
s (zψz − ψ).

The extension of L5 is defined by the generators

h1∂s, X3 − 2h2∂s.

As in the previous case one can assume that h1 = 1. Since the commutator is

[∂s, X3 − 2h2∂s] = −2h′2∂s

one has that h2 = λs, where λ is constant. Hence

ψs = z1/2, λsz1/2 = zψz − ψ. (36)

The general solution of these equations is λ = −1/2 and

ψ = Kz + z1/2s.

The admitted generators are
X3 + s∂s, ∂s.

Since for K = 0 one has that dim(Span(V )) = 0, then K 6= 0.

10



3.1.4. Case dim(Span(V )) = 0.

There exists a constant vector (γ, β, q) such that

a = γ, b = β, c = q.

In this case
γk + β(k3 − k1) + qk2 = 0, (37)

and
ζ(s) = kh1(s) + (k3 − k1)h2(s) + k2h3(s),

where
h1 = −γz + z1/2ψ−1

s , h2 = −βz − 2ψ−1
s (zψz − ψ), h3 = −qz − 2ψ−1

s ψ. (38)

The extension of L5 is defined by the generators of the form

(k3 − k1)(X3 + h2∂s) + k2(X2 + h3∂s) + k(h1∂s).

The compatibility conditions for the relations (38) are reduced to the equations

h1(2h2 + h3) = 0, h1(2β − q) + γ(2h2 + 3h3) = 0, γ(2β + q) = 0,
h1(h

′

3 + 2)− h′1h3 = 0, γ(h′3 + 2)− qh′1 = 0,
(39)

and

ψ = −(h3 + qz)z1/2

2(h1 + γz)
.

If h1 6= 0, then one can assume that h1 = 1. Conditions (39) give

γ = 0, q = 2β, h′2 = 1, h3 = −2h2. (40)

Equation (37) becomes
β((k3 − k1) + 2k2) = 0.

Since γ = 0, one can choose
h2 = s, h3 = −2s.

Hence
ψ = (s− βz)z1/2,

and the admitted generators are

β = 0 : X3 + s∂s, X2 − 2s∂s, ∂s,

β 6= 0 : X2 − 2X3 − 4s∂s, ∂s.

If h1 = 0, then γ 6= 0, and one can assume that γ = 1. Hence,

h3 = −2s, h2 = 3s, ψ = (s+ βz)z−1/2,

and the extension of L5 is defined by the admitted generators

X3 + 3s∂s, X2 − 2s∂s.

Notice that using the equivalence transformation corresponding to Ze
3, one has that

ψ = z−1/2s.

11



3.2. Case k4 = 0

Here we consider models for which k4 = 0. Differentiating equation (10) with respect to
α one also obtains that k5 = 0. Notice that similar to the previous section after performing
some manipulations (differentiations and linear combinations) one obtains that the determining
equations (2)-(17) are reduced to k6 = 0 and the equation

2(3k1 − 5k3)αεα + (2k1 − 3k3)ρερ + εsζ = 2(k1 − k2 − 2k3)ε− α1/2g + ϕ− kρ−1, (41)

where g = g(ρ), ϕ = ϕ(s) and the constant k are arbitrary elements obtained during the
integration.

Let us consider the Lie algebra L6 = {Y1, Y2, Y3, X1, X2, X3}. Its commutator table is

Y1 Y2 Y3 X1 X2 X3

Y1 0 0 Y2 0 Y1 −2Y1
Y2 0 0 0 0 0 −Y2
Y3 −Y2 0 0 0 −Y3 Y3
X1 0 0 0 0 0 0
X2 −Y1 0 Y3 0 0 0
X3 2Y1 Y2 −Y3 0 0 0

Notice that the subalgebra {Y1, Y2, Y3} is a kernel of admitted Lie algebras, and the Lie algebra
{X1, X2, X3} is an Abelian subalgebra.

Since the Lie algebra {Y1, Y2, Y3} composes the kernel of admitted Lie algebras, then the
basis generators of an admitted Lie algebra related with the generators X1, X2, X3, and Xζ

can be chosen in the form
qX1 + βX2 + γX3 +Xζ , (42)

where Xζ = ζ(s)∂s. The generators X1, X2, X3, and Xζ also compose a Lie algebra, where the
generator Xζ is the center.

Notice that if ζ 6= 0 for one of the basis generators, then by virtue of the equivalence
transformation corresponding to the generator Xe

4 , the function ζ(s) in this basis generator2

can be reduced to ζ = 1.

3.3. Strategy of the further study

It is well known that the set of admitted generators composes a Lie algebra [11]: the property
to compose a Lie algebra is automatically satisfied for solutions of the determining equations.
The idea of the algebraic approach used in the present paper is to separate the study of group
classification to two steps. In the first step one makes a preliminary study of possible coefficients
of the basis generators using the requirement that admitted generators compose a Lie algebra.
In the second step, one substitutes the coefficients of each generator of the Lie algebra into
the determining equation (41). Solving the system of equations thus obtained, the function
ε(ρ, α, s) and additional restrictions for the coefficients of the basis generators are found.

Let us also notice that if one can choose the basis generators such that two of them have
the form

ζ1(s)∂s, ζ2(s)∂s, (43)

then this case is reduced to εs = 0. Indeed, since the generators (43) are basis generators, then
ζi 6= 0 and ζ1ζ

′

2 − ζ ′1ζ2 6= 0. By virtue of the equivalence transformation related with Xe
4 , one

2Only for one basis generator: for other basis generators, ζ = ζ(s).
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can assume that ζ1 = 1, and then ζ ′2 6= 0. Substituting the coefficients of the generators (43)
into (41) one obtains the equations

εs = −α1/2g1 + ϕ1 − k1ρ
−1, (44)

ζ2(−α1/2g1 + ϕ1 − k1ρ
−1) = −α1/2g2 + ϕ2 − k2ρ

−1, (45)

where gi = gi(ρ) and ϕi = ϕi(s), (i = 1, 2). Splitting equation (45), one finds that

k1 = 0, k2 = 0, g1 = 0, g2 = 0, ϕ2 = ζ2ϕ1,

which means that
ε(ρ, α, s) = H1(s) +H2(ρ, α),

Using the equivalence transformation corresponding to the generator Ze
2 , one can reduce the

function ε(ρ, α, s) to the case where H1(s) = 0.
The latter study also allows to conclude that: (a) there are no admitted Lie algebras where

an extension of the kernel is more than four-dimensional; (b) there is only one possible admitted
Lie algebra which has a four-dimensional extension: the basis generators of this extension have
the form

X1 + ζ1(s)∂s, X2 + ζ2(s)∂s, X3 + ζ3(s)∂s, ∂s. (46)

In the preliminary study of Lie algebras of dimension greater than 1, it is sufficient for our
purposes to use classifications of two- and three dimensional Lie algebras. These classifications
are well-known 3. For the sake of completeness they are presented here.

All two-dimensional Lie algebras have one of the following commutator tables:

L(2, 1) :

∣∣∣∣∣∣

e1 e2
e1 0 0
e2 0

∣∣∣∣∣∣
, L(2, 2) :

∣∣∣∣∣∣

e1 e2
e1 0 e1
e2 0

∣∣∣∣∣∣
.

Here ei are suitably chosen basis vectors of the Lie algebra.
All three-dimensional Lie algebras have in suitably chosen basis, the commutator tables

L(3, 1) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 0 0
e2 0 e1
e3 0

∣∣∣∣∣∣∣∣
, L(3, 2, p) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 0 e1
e2 0 pe2
e3 0

∣∣∣∣∣∣∣∣
, 0 < |p| ≤ 1,

L(3, 3) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 0 e1
e2 0 e1 + e2
e3 0

∣∣∣∣∣∣∣∣
, L(3, 4, p) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 0 pe1 − e2
e2 0 e1 + pe2
e3 0

∣∣∣∣∣∣∣∣
=, p ≥ 0,

L(3, 5) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 e1 2e2
e2 0 e3
e3 0

∣∣∣∣∣∣∣∣
, L(3, 6) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 e3 −e2
e2 0 e1
e3 0

∣∣∣∣∣∣∣∣
,

3See for example in [14].
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L(3, 7) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 e1 0
e2 0 0
e3 0

∣∣∣∣∣∣∣∣
, L(3, 0) :

∣∣∣∣∣∣∣∣

e1 e2 e3
e1 0 0 0
e2 0 0
e3 0

∣∣∣∣∣∣∣∣
.

Further study depends on the dimension of a Lie algebra composed by the generators of the
form (42).

3.3.1. One-dimensional extension

Here we use the algebraic approach. This approach supposes that using algebraic properties
of admitted Lie algebras, during the first step of solving the determining equations one defines
unknown constants and functions of an admitted generator. In particular, according to the last
comment of the previous section, one-dimensional Lie algebras can be reduced to one of two
cases, either ζ = 0 or ζ = 1. The set of possible basis generators containing the generators X1,
X2 and X3 is exhausted by the following generators

ζ = 0 ζ = 1
1. X1 + βX2 + γX3 4. X1 + βX2 + γX3 + ∂S
2. βX2 +X3 5. βX2 +X3 + ∂s
3. X2 6. X2 + ∂S

In the next step, one has to substitute the coefficients of each generator into the determining
equation (41) and solve it with respect to the function ε(ρ, α, s). Here we present the calcula-
tions of the first case, where an extension of the kernel of admitted generators Y1, Y2 and Y3
consists of the generator X1+βX2+ γX3. The study of the remaining cases is similar, and the
final result is presented in Table 1.

Substituting
k1 = 1, k1 = β, k3 = γ, ζ = 0

into equation (41), one obtains

2(3− 5γ)αεα + (2− 3γ)ρερ = 2(1− β − 2γ)ε− α1/2g(ρ) + ϕ(s)− kρ−1. (47)

The characteristic system of this equation is

dα

2(3− 5γ)α
=

dρ

(2− 3γ)ρ
=
ds

0
=

dε

2(1− β − 2γ)ε− α1/2g(ρ) + ϕ(s)− kρ−1
.

Invariants of the characteristic system depend on the vanishing of the expression

κ = (2− 3γ)(1− β − 2γ)(4− 2β − 7γ).

If κ 6= 0, then the solution of (47) is

ε(ρ, α, s) = α1/2g̃(s) + ϕ̃(s) + k̃ρ−1 + h(s, αρ−2(3−5γ)/(2−3γ))ρ2(1−β−2γ)/(2−3γ)

where g̃, ϕ̃, h and constant k̃ are arbitrary elements. Using the equivalence transformations
corresponding to Ze

1, Z
e
2 and Ze

3 , one gets that

ε(ρ, α, s) = h(s, αρ−2(3−5γ)/(2−3γ))ρ2(1−β−2γ)/(2−3γ) .

In this case the system of equations (1) admits the generator

X1 + βX2 + γX3, (2− 3γ)(1− β − 2γ)(4− 2β − 7γ) 6= 0.
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Similar, one finds that
If β = 1− 2γ, 2− 3γ 6= 0, then

ε(ρ, α, s) = φ(s) ln ρ+ h(s, αρ−2(3−5γ)/(2−3γ)),

X1 + (1− 2γ)X2 + γX3.

If β = 7γ−4
2
, 2− 3γ 6= 0, then

ε(ρ, α, s) = ρ−1
(
C ln ρ+ h(s, αρ−2(3−5γ)/(2−3γ))

)
,

X1 + (
7γ − 4

2
)X2 + γX3.

If γ = 2
3
, (1 + 3β)(1 + 6β) 6= 0, then

ε(ρ, α, s) = h(s, ρ)α1+3β,

X1 + βX2 +
2

3
X3, (1 + 3β)(1 + 6β) 6= 0.

If γ = 2
3
, β = −1

3
, then

ε(ρ, α, s) = (φ(s)− Cρ−1) lnα + h(ρ, s),

X1 −
1

3
X2 +

2

3
X3.

If γ = 2
3
, β = −1

6
, then

ε(ρ, α, s) = (ψ(ρ) lnα + h(ρ, s))α1/2,

X1 −
1

6
X2 +

2

3
X3.

Here C, ψ, φ and h are arbitrary.

3.3.2. Two-dimensional extensions

Let the basis generators of an admitted Lie algebra with two-dimensional extension of the
kernel be

X = β1X1 + q1X2 + γ1X3 +Xζ1 , Y = β2X1 + q2X2 + γ2X3 +Xζ2.

Their commutator is [X, Y ] = [Xζ1 , Xζ2 ].
For the Lie algebra L(2, 2) one finds that

[X, Y ] = [Xζ1 , Xζ2] = (ζ1ζ
′

2 − ζ ′1ζ2)∂s = X,

which means that
ζ1ζ

′

2 − ζ ′1ζ2 = ζ1, β1 = 0, q1 = 0, γ1 = 0.

Hence, ζ1 6= 0 or one can assume that ζ1 = 1. The list of such algebras is exhausted by the
following Lie algebras

1. ∂s, X1 + βX2 + γX3 + s∂s
2. ∂s, X2 + γX3 + s∂s
3. ∂s, X3 + s∂s

15



For the Lie algebra L(2, 1) one finds that

[X, Y ] = [Xζ1 , Xζ2 ] = (ζ1ζ
′

2 − ζ ′1ζ2)∂s = 0,

which means that
ζ1ζ

′

2 − ζ ′1ζ2 = 0. (48)

Notice that if ζ21 + ζ22 6= 0, then one can assume that ζ1 = 1. In this case equation (48) gives
that ζ2 = kζ1. Hence, one can also assume that ζ2 = 0. Thus, an extension of the kernel of
admitted Lie algebras in the case of L(2, 1) has one of the following forms,

{β1X1 + q1X2 + γ1X3 + ∂s, β2X1 + q2X2 + γ2X3}, (49)

or
{β1X1 + q1X2 + γ1X3, β2X1 + q2X2 + γ2X3}. (50)

The set of algebras of form (49) and (50) is exhausted by the list

ζ21 + ζ22 6= 0 ζ21 + ζ22 = 0
4. q1X2 + γ1X3 + ∂s, X1 + q2X2 + γ2X3 7. q1X2 + γ1X3, X1 + q2X2 + γ2X3

5. β1X1 + γ1X3 + ∂s, X2 + γ2X3 8. β1X1 + γ1X3, X2 + γ2X3

6. β1X1 + q1X2 + ∂s, X3 9. β1X1 + q1X2, X3

Similar to the one-dimensional case, in the next step one has to substitute the coefficients
of each generator into the determining equation (41), and solve the obtained overdetermined
system of equations with respect to the function ε(ρ, α, s). The final result of calculations is
presented in Table 1 (models M26 −M62).

3.3.3. Three-dimensional extensions

Let the basis generators be

X = X̃ +Xζ1, Y = Ỹ +Xζ2, Z = Z̃ +Xζ3 ,

where

X̃ = β1X1 + q1X2 + γ1X3, Ỹ = β2X1 + q2X2 + γ2X3, Z̃ = β3X1 + q3X2 + γ3X3.

Notice that
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0. (51)

First let us study the Abelian Lie algebra L(3, 0). In this case one has

[X, Y ] = 0, [X,Z] = 0, [Y, Z] = 0,

which means that
ζ1ζ

′

2 − ζ ′1ζ2 = 0, ζ1ζ
′

3 − ζ ′1ζ3 = 0, ζ2ζ
′

3 − ζ ′2ζ3 = 0, (52)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0.

If ζ21 + ζ22 + ζ23 = 0, then the basis of this Lie algebra is

X1, X2, X3.
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If, for example, ζ1 6= 0, then one can assume that ζ1 = 1 and ζ2 = 0, ζ3 = 0. The list of Abelian
Lie algebras is exhausted by the following set

1. γX3 + ∂s, X1 + q1X3, X2 + q2X3,
2. βX2 + ∂s, X1 + q1X2, X3,
3. βX1 + ∂s, X2, X3,

where γ, β, q1and q2 are arbitrary constants.
For L(3, 1) one has

[X, Y ] = 0, [X,Z] = 0, [Y, Z] = X,

which means that

ζ1ζ
′

2 − ζ ′1ζ2 = 0, ζ1ζ
′

3 − ζ ′1ζ3 = 0, ζ2ζ
′

3 − ζ ′2ζ3 = ζ1, (53)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = 0, [Ỹ , Z̃] = X̃.

Because of (51), one has that X̃ = 0. Hence, ζ1 6= 0, and one can assume that ζ1 = 1. Equations
(53) become contradictive.

Let us study L(3, 2, p). In this case one has

[X, Y ] = 0, [X,Z] = X, [Y, Z] = pY,

which means that

ζ1ζ
′

2 − ζ ′1ζ2 = 0, ζ1ζ
′

3 − ζ ′1ζ3 = ζ1, ζ2ζ
′

3 − ζ ′2ζ3 = pζ2, (54)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = pỸ .

Because of (51) and p 6= 0, one has that X̃ = 0 and Ỹ = 0. Since in this case there are two
basis generators of the form (43), this case is excluded for further consideration4.

In the case L(3, 3) one has

[X, Y ] = 0, [X,Z] = X, [Y, Z] = X + Y,

which means that

ζ1ζ
′

2 − ζ ′1ζ2 = 0, ζ1ζ
′

3 − ζ ′1ζ3 = ζ1, ζ2ζ
′

3 − ζ ′2ζ3 = ζ1 + ζ2, (55)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = X̃, [Ỹ , Z̃] = X̃ + Ỹ .

Because of (51), one has that X̃ = 0 and Ỹ = 0. Similar to L(3, 3) one also has to exclude this
case from the study.

Let us study L(3, 4, p). In this case one has

[X, Y ] = 0, [X,Z] = pX − Y, [Y, Z] = X + pY, (p ≥ 0),

4Moreover one can obtain a contradiction to the property that X , Y and Z compose a basis of the Lie
algebra.
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which means that

ζ1ζ
′

2 − ζ ′1ζ2 = 0, ζ1ζ
′

3 − ζ ′1ζ3 = pζ1 − ζ2, ζ2ζ
′

3 − ζ ′2ζ3 = ζ1 + pζ2, (56)

and
[X̃, Ỹ ] = 0, [X̃, Z̃] = pX̃ − Ỹ , [Ỹ , Z̃] = X̃ + pỸ .

Because of (51), one has that X̃ = 0 and Ỹ = 0. Hence, this case is also similar to the previous
case.

The same result is obtained for L(3, 5) and L(3, 6). Indeed, in the case L(3, 5) one has

[X, Y ] = X, [X,Z] = 2Y, [Y, Z] = Z,

which means that

ζ1ζ
′

2 − ζ ′1ζ2 = ζ1, ζ1ζ
′

3 − ζ ′1ζ3 = 2ζ2, ζ2ζ
′

3 − ζ ′2ζ3 = ζ3, (57)

and
[X̃, Ỹ ] = X̃, [X̃, Z̃] = 2Ỹ , [Ỹ , Z̃] = Z̃.

Because of (51), one has that X̃ = 0, Ỹ = 0 and Z̃ = 0.
In the case of L(3, 6) one has

[X, Y ] = Z, [X,Z] = −Y, [Y, Z] = X,

which gives that X̃ = 0, Ỹ = 0 and Z̃ = 0.
Let us study L(3,−1). In this case one has

[X, Y ] = X, [X,Z] = 0, [Y, Z] = 0,

which means that

ζ1ζ
′

2 − ζ ′1ζ2 = ζ1, ζ1ζ
′

3 − ζ ′1ζ3 = 0, ζ2ζ
′

3 − ζ ′2ζ3 = 0. (58)

and
[X̃, Ỹ ] = X̃, [X̃, Z̃] = 0, [Ỹ , Z̃] = 0.

Because of (51), one has that X̃ = 0. Hence, ζ1 6= 0, and one can assume that ζ1 = 1. Equations
(58) become

ζ ′2 = 1, ζ ′3 = 0, ζ3 = 0.

Thus, the basis generators have the form

X = ∂s, Y = s∂s + β2X1 + q2X2 + γ2X3, Z = β3X1 + q3X2 + γ3X3.

Thus, the set of non-Abelian three-dimensional Lie algebras is exhausted the following list

4. ∂s, s∂s + q2X2 + γ2X3, X1 + q3X2 + γ3X3

5. ∂s, s∂s + β2X1 + γ2X3, X2 + γ3X3

6. ∂s, s∂s + β2X1 + q2X2, X3

Similar to the one- and two-dimensional cases, in the next step one has to substitute the
coefficients of each generator into the determining equation (41), and solve the obtained overde-
termined system of equations with respect to the function ε(ρ, α, s). The final result of the
calculations is presented in Table 1 (models M63 −M82).
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3.3.4. Extensions of dimension greater than 3

If the dimension of the extension is greater or equal to 4, then either one can choose a basis
of generators such that two of them are of the form (43):

ζ1(s)∂s, ζ2(s)∂s,

or the admitted Lie algebra is four-dimensional and the basis generators can be chosen such as

X1 + ζ1(s)∂s, X2 + ζ2(s)∂s, X3 + ζ3(s)∂s, ∂s. (59)

Substituting the coefficients of the generators (59) into (41) one obtains reduction to the case
where εs = 0.

Thus, there is no case where an extension of the kernel of admitted Lie algebras is of
dimension greater than three.

4. Results of the group classification

Results of the group classification of equations (1) are summarized in Table 1, where repre-
sentations of the function ε(ρ, |∇ρ|, s) are simplified by equivalence transformations.

The first column in Table 1 presents the number of the extension, forms of the function
ε(ρ, |∇ρ|, s) are presented in the second column, extensions of the kernel of admitted Lie al-
gebras are given in the third column, and restrictions for functions and constants are in the
fourth column.

5. Conclusion

Classifying equations of fluids with internal inertia with respect to the internal energy
ε(ρ, |∇ρ|, s), group analysis provides a regular procedure for mathematical modeling. In this
paper we give a group classification of equations (1), where the function ε(ρ, |∇ρ|, s) substan-
tially depends on the entropy s: εs 6= 0. The group classification separates all models into 82
classes, which are presented in Table 1.
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Table 1. Group classification
ε(ρ, α, s) Extensions Remarks

M1 ρ2h(αρ−4eβs)eγs X4, βX3 + (β + γ)X2 − ∂s β 6= γ

M2 ρ2h(αρ−4e−βs)e2βs + sρ−2α1/2 X4, β(X3 + 2X2) + ∂s
M3 αλρ2−4λh(αρ−4e−s) X4, X3 + (1− λ)X2 + 2∂s λ 6= 0
M4 ρ2e−sh(αρ−4) X4, X2 − 2∂s
M5 Kαλρ2−4λe−2s X4, X3 − (λ+ 1)∂s, X2 + ∂s
M6 Kαλρ2−4λ + sα1/2 X4, (1− λ)X2 +X3 + (2λ− 1)s∂s, ∂s (λ− 1)K 6= 0

M7 Kαρ−2 + sα1/2 X4, X3 + s∂s, ∂s K 6= 0

M8 sα1/2 X4, X3 + s∂s, X2 − 2s∂s, ∂s
M9 (Kαρ−4 + s)α1/2 X4, X2 − 2X3 − 4s∂s, ∂s K 6= 0

M10 ρ4α−1/2s X4, X3 + 3s∂s, X2 − 2s∂s
M11 ρµh(s, αρλ) (3λ+ 10)X1 − (λ+ µ+ 2)X2+ (µ+ 1)µ 6= 0

2(λ+ 3)X3 (3λ+ 10) 6= 0

M12 ρ−1[h(s, αρλ) + C ln ρ] (3λ+ 10)X1 − (λ+ 1)X2 + 2(λ+ 3)X3 (3λ+ 10) 6= 0

M13 h(s, αρλ) + ϕ(s) ln ρ (3λ+ 10)X1 − (λ+ 2)X2 + 2(λ+ 3)X3 (3λ+ 10) 6= 0
M14 αλh(s, ρ) 3X1 + (λ− 1)X2 + 2X3 λ(2λ− 1) 6= 0

M15 α1/2[h(s, ρ) + ϕ(s) lnα] 6X1 −X2 + 4X3

M16 h(s, ρ) + (ϕ(s) + Cρ−1) lnα 3X1 −X2 + 2X3

M17 ρµh(s, αρ−10/3) (3µ− 4)X2 + 2X3 µ(µ+ 1) 6= 0

M18 ρ−1[h(s, αρ−10/3) + C ln ρ] −7X2 + 2X3

M19 h(s, αρ−10/3) + ϕ(s) ln ρ −2X2 +X3

M20 h(ρ, αsλ)sµ 14X1 − (λ+ 7µ+ 4)X2 + 2(λ+ 4)X3 7µ 6= 2(3λ− 2)
+14∂s

M21 h(ρ, αsλ)s2(3λ−2)/7 + Cρ−1s 14X1 − 7λX2 + 2(λ+ 4)X3 + ∂s
M22 h(ρ, αs2)s−1 + g(ρ)α1/2s2 6X1 −X2 + 4X3 + ∂s
M23 h(αe10s, ρe3s)eλ −(λ+ 4)X2 + 2X3 + 2∂s (λ− 3) 6= 0
M24 h(αe10s, ρe3s)e3s +Kρ−1s −7X2 + 2X3 + 2∂s
M25 h(ρ, α)s−2 X2 + ∂s
M26 [α1/2g(ρ) + Cρ−1]s+ ρµh(αρλ) ∂s, (3λ+ 10)X1 + 2(λ+ 3)X2− (3λ+ 10)C 6= 0

(λ+ µ+ 2)X3 + (3λ+ 10)s∂s µ(µ+ 1)h 6= 0

M27 [α1/2g(ρ) + Cρ−1]s+ h(αρλ) +K ln ρ ∂s, (3λ+ 10)X1 + 2(λ+ 3)X2− (3λ+ 10) 6= 0
(λ+ 2)X3 + (3λ+ 10)s∂s ChK 6= 0

M28 [α1/2g(ρ) + Cρ−1]s+ ρ−1h(αρλ)+ ∂s, (3λ+ 10)X1 + 2(λ+ 3)X2− (3λ+ 10) 6= 0
Kρ−1 ln ρ (λ+ 1)X3 + (3λ+ 10)s∂s ChK 6= 0

M29 [α1/2g(ρ) + Cρ−1]s+ αλh(ρ) ∂s, 3X1 + 2X2 + (λ− 1)X3 + s∂s λ(2λ− 1) 6= 0
Ch 6= 0

M30 [
√
αg(ρ) + Cρ−1]s+ h(ρ)+ ∂s, 3X1 + 2X2 −X3 + 3s∂s hCK1K2 6= 0

(K1 +K2ρ
−1) lnα

M31 [
√
αg(ρ) + Cρ−1]s+ ∂s, 6X1 + 4X2 −X3 + 6s∂s Chf 6= 0

α1/2[h(ρ) + f(ρ) lnα)]

M32 [
√
αg(ρ) + Cρ−1]s+ ρµh(αρ−10/3) ∂s, (3µ− 4)X2 + 2X3 + (3µ− 4)s∂s µ(µ+ 1) 6= 0

(3µ− 4)Ch 6= 0

M33 [
√
αg(ρ) + Cρ−1]s+ h(αρ−10/3)+ ∂s, 2X2 −X3 + 2s∂s ChK 6= 0

K ln ρ
M34 [

√
αg(ρ) + Cρ−1]s+ ∂s, 7X2 − 2X3 + 7s∂s ChK 6= 0

ρ−1[h(αρ−10/3) +K ln ρ]
M35 [

√
αg(ρ) + Cρ−1]s+ ∂s, X3 + s∂s Ch 6= 0

ρ4/3h(αρ−10/3)
M36 [

√
αg(ρ) + Cρ−1]s ∂s, X2 + s∂s Cg 6= 0

M37 [K lnα+ C ln ρ+ h(s)]
√
αρµ (3µ+ 1)X2 + 2X3, 2X1 − (2µ+ 1)X2 (3µ+ 1)C 6= 0

M38 h(αργ) + ϕ(s) ln ρ+ ∂s, (3γ + 10)X1 − (γ + 2)X2 (3γ + 10) 6= 0

K
√
αργ/2s +2(γ + 3)X3

M39 ρ−1[K2
√
αργ/2 +K1 ln ρ]+ ∂s, (3γ + 10)X1 − (γ + 1)X2+ (3γ + 10) 6= 0

ρ−1h(αργ) + Cρ−1s 2(γ + 3)X3
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Table 1. Continue
ε(ρ, α, s) Extensions Remarks

M40 ρ−1[K1 ln ρ+K2
√
αρ−5/3]+ ∂s, 7X2 − 2X3

ρ−1h(αρ−10/3) + Cρ−1s

M41 ρ−1[K lnα+ C ln ρ] + ρ−1h(s) 7X1 + 4X3, 7X2 − 2X3

M42 h(ρeγs) + [Ke3γs + C lnα]ρ−1 7γX2 − 2γX3 + 2∂s, 3X1 −X2 + 2X3 γ 6= 0
M43 αµ[h(ρeγs)eqs + C] −qX2 − 2γX3 + 2∂s, µ(2µ− 1) 6= 0

3X1 + (µ− 1)X2 + 2X3

M44
√
αh(ρeγs)eλs −(λ+ γ)X2 − 2γX3 + 2∂s, λ 6= 0

6X1 −X2 + 4X3

M45
√
α[f(ρ) lnα+ g(ρ)s] +

√
α[h(ρeγs)] -γX2 − 2γX3 + 2∂s, 6X1 −X2 + 4X3

M46 Cρ−1s+ h(ρeγs) + ϕ(s) lnα 2γX2 − γX3 + ∂s, 6X1 −X2 + 4X3

M47 h(ρ) + [Ks+ C lnα]ρ−1+ ∂s, 3X1 −X2 + 2X3

ϕ(s) lnα

M48 [K1s+K2 ln ρ+ C
√
αργ/2 −7βX2 + 2βX3 + (2(3γ + 10))∂s, (3γ + 10)β 6= 0

h(αργeβs)]ρ−1 (3γ + 10)X1 − (γ + 1)X2 + 2(γ + 3)X3

M49 ϕ(s) ln ρ+ C
√
αργ/2 + h(αργeβs) −2βX2 + βX3 + (3γ + 10)∂s, (3γ + 10)β 6= 0

(3γ + 10)X1 − (γ + 2)X2 + 2(γ + 3)X3

M50 ρ−1[K ln ρ+ Cs]+ 21βX1 + 12βX3 + 14∂s, 7X2 − 2X3 β 6= 0
ρ−1[h(αρ−10/3eβs)]

M51 g(s) ln ρ+ f(s) lnα 2X1 +X3, 2X2 −X3 (g −K1e
λs) 6= 0

(f −K2e
λs) 6= 0

M52 ρµeλsh(αργeβs) (β(3µ− 4)− λ(3γ + 10))X2 + 2βX3 (3γ + 10) 6= 0
+(2(3γ + 10))∂s, (3γ + 10)X1 (2λ+ β) 6= 0
−(γ + µ+ 2)X2 + 2(γ + 3)X3

M53 h(s)αλρµ−10λ/3 3(3µ− 4)X1 + 2((3µ− 3)− λ)X3, µ(3µ− 4) 6= 0
(3µ− 4)X2 + 2X3 (h−Keβs) 6= 0

λ(2λ− 1) 6= 0

M54 h(s)αλρ(4−10λ)/3 3X1 + (λ− 1)X2, X3 λ(2λ− 1) 6= 0
(h−Keβs) 6= 0

M55 h(s)αλρ−10λ)/3 −2X2 +X3, 3X1 + (3− λ)X2 λ(2λ− 1) 6= 0
(h−Keβs) 6= 0

M56 ρµe−βs/2h(αργeβs)+ β(3γ + 6µ+ 2)X2 + 4βX3 (3γ + 10) 6= 0

C
√
αρµ+γ/2s +4(3γ + 10)∂s, (3γ + 10)X1−

(γ + µ+ 2)X2 + 2(γ + 3)X3

M57 ρµeλsh(αρ−10/3eβs) 3β(3µ− 4)X1 + 2(3β(µ− 1) + λ)X3 (3µ− 4)µ 6= 0
+2(3µ− 4)∂s, (3µ− 4)X2 + 2X3 (2λ+ β) 6= 0

M58 ρ4/3eλsh(αρ−10/3eβs) 6βX1 − (2β + 3λ)X2 + 6∂s, X3 β 6= 0

M59 eλsh(αρ−10/3eβs) + ϕ(s) ln ρ 6βX1 + (3β − λ)X3 + 4∂s, 2X2 −X3 λ 6= 0

M60 ρµe−βs/2h(αρ−10/3eβs)+ 3β(3µ− 4)X1 + β(6µ− 7)X3 (3µ− 4)µ 6= 0
C
√
αρµ−5/3s +2(3µ− 4)∂s, (3µ− 4)X2 + 2X3

M61 ρ4/3e−βs/2h(αρ−10/3eβs)+ 6βX1 − βX2 + 4∂s, X3

C
√
αρ−1/3s

M62 e−βs/2h(αρ−10/3eβs)+ 12βX1 + 7βX3 + 8∂s, 2X2 −X3 β 6= 0
M63 eλs[K ln ρ+ C lnα] −λX3 + 4∂s, 2X1 +X3, 2X2 −X3 λ 6= 0

M64 [K
√
αρ−3/2 + Cρ−1]s+ ∂s, 7X1 + 4X3, 7X2 − 4X3

α1/2ρ−3/2(K lnα+ C ln ρ)

M65 K(αρ−10/3)γρq +
√
αg(ρ)s ∂s, 2s∂s + β(3q − 4)X2 + 2βX3, β(2γ − 1) 6= 0

6X1 + 2(β(2γ − 1) + 2)X3+ q(q + 1) 6= 0
(2γ + 9βq − 12β − 6q + 6)X2 3β(q + 1) + 1 6= 0

M66 K(αρ−10/3)γ +
√
αg(ρ)s ∂s, s∂s − 2βX2 + βX3, β(2γ − 1) 6= 0

3X1 + (β(2γ − 1) + 2)X3+ γK 6= 0
(2β(1− 2γ) + γ − 1)X2

M67 K(αρ−10/3)γρ−1 +
√
αg(ρ)s ∂s, 2s∂s − 7βX2 + 2βX3, β(2γ − 1) 6= 0

3X1 + (β(2γ − 1) + 2)X3+ K 6= 0
(7β(1− 2γ) + 2γ − 2)X2
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Table 1. Continue
ε(ρ, α, s) Extensions Remarks

M68 Kαλρ(8−10λ)/3 + C
√
αρµs ∂s, (2λ− 1)(3µ+ 1)s∂s− (3µ+ 5) 6= 0

3(3µ+ 1)X2 + 2(λ− 9µ− 4)X3, (3µ+ 8) 6= 0
(3µ+ 1)X2 + 2X3 (3µ+ 1) 6= 0

(2λ− 1)K 6= 0

M69 Kαλρβ +
√
αg(ρ)s ∂s, 2(3β + 10λ+ 3)s∂s+ 3β 6= −10λ− 3

(4− 3β − 10λ)X2 − 6X3, (2λ− 1)K 6= 0
X1 + (4λ− 3β − 10)X2+
2(7− 6β − 22λ)X3

M70 ρ−1[K lnα+ C ln ρ] +
√
αg(ρ)s ∂s, 2s∂s − 7X2 + 2X3, KCg 6= 0

6X1 + 5X2 + 2X3

M71 K lnα+ C ln ρ+
√
αg(ρ)s ∂s, 3s∂s + 2X2 −X3, KCg 6= 0

9X1 − 8X2 + 7X3

M72
√
αg(ρ)s ∂s, 2s∂s −X2, 6X1 −X2 + 4X3 g

′ 6= 0

M73 [K lnα+ C ln ρ
√
αρ−1/3+ ∂s, 6X1 −X2, X3 C 6= 0

C1s
√
αρ−1/3

M74 [K lnα+ C ln ρ]
√
αρµ+2/3+ ∂s, (6µ− 1)X1 + 4µX3, (6µ− 1)C 6= 0

C1ρ
µs

√
αρµ+2/3 (6µ− 1)X2 + 4X3

M75 [K lnα+ Cρβs]
√
αργβ−1/2 ∂s, 6βs∂s + 3βγX2 + 2X3, βC 6= 0

6X1 −X2 + 4X3

M76 (K lnα+ C ln ρ)
√
αρµ−5/3 + C1ρ

−1s ∂s, 6(µ+ 1)s∂s + (3µ− 4)X2− (µ+ 1) 6= 0
2X3, 18(µ+ 1)X1 + (1− 6µ)X2+
2(6µ+ 5)X3

M77 (K lnα+ C ln ρ)
√
αρ−8/3 + Cρ−1s ∂s, 7s∂s − 21X1 − 13X3, 7X2 − 2X3 K 6= 0

M78 Kαλρµ−10λ/3 + Cρ−1s ∂s, 6(µ+ 1)s∂s + (3µ− 4)X2 − 2X3, (µ+ 1)) 6= 0
9(µ+ 1)X1 + (7λ− 3µ− 3)X2+ λ(2λ− 1) 6= 0
(2(3µ+ 3− λ))X3

M79 ρ−1[K1 lnα+K2 ln ρ] + Cρ−1s ∂s, 7X1 + 4X3, 7X2 − 2X3

M80 K lnα+ C ln ρ+ C1ρ
−1s ∂s, 3s∂s + 2X2 −X3,

3X1 −X2 + 2X3

M81 Ceβsαλρµ−10λ/3 βX3 + (3µ− 4)∂s, 3(3µ− 4)X1+ βλ(3µ− 4) 6= 0
2(3µ− λ− 3)X3, (3µ− 4)X2 + 2X3

M82 Ceβsαλρ(4−10λ)/3 βX2 + 2∂s, 3X1 + (λ− 1)X2, X3 βλ 6= 0
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