

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ผลของฮอร์โมนโพรแลคตินต่อการเจริญของกระดูกอ่อนบริเวณโกรทเพลทในหนูที่กำลังให้นม
Effects of prolactin on development of growth plate cartilage in lactating rats

โดย

ผู้ช่วยศาสตราจารย์ ดร. บรรณิการ์ วงศ์ดี และคณะ

พฤษภาคม 2556

รายงานวิจัยฉบับสมบูรณ์

โครงการ

ผลของฮอร์โมนโพรแลคตินต่อการเจริญของกระดูกอ่อนบริเวณกราฟเพลทในหนูที่กำลังให้นม

Effects of prolactin on development of growth plate cartilage in lactating rats

คณาจารย์

1. ผศ. ดร. บรรณิการ วงศ์ดี	สังกัด
2. รศ. ดร. นรัตถพล เจริญพันธุ์	สำนักงานจัดการศึกษา คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา
3. น.ส. จีวรรณ ทองบุญชู	ภาควิชาสรีรวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย
และมหาวิทยาลัยบูรพา

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

	หน้า
บทคัดย่อภาษาไทย	2
บทคัดย่อภาษาอังกฤษ	3
บทสรุปผู้บริหาร (Executive Summary)	4
ความสำคัญและที่มาของปัญหา	4
วัตถุประสงค์	5
ระเบียบวิธีวิจัย	6
ผลการวิจัย	8
สรุปผลการวิจัย	22
เอกสารอ้างอิง	23
Output ที่ได้จากการ	26
ภาคผนวก	29
ผลงานตีพิมพ์ระดับนานาชาติที่เป็น output โดยตรงของโครงการ	

บทคัดย่อ

รหัสโครงการ : MRG5480230

ชื่อโครงการ : ผลของฮอร์โมนโพรแลคตินต่อการเจริญของกระดูกอ่อนบริเวณโกรทเพลทในหนูที่กำลังให้นม

ชื่อนักวิจัย : ผู้ช่วยศาสตราจารย์ ดร. กรรณิกา วงศ์ดี

อีเมลล์ : kannikar@buu.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ :

ภาวะโพรแลคตินสูงในเลือดดังเช่นในระยะให้นม การเจริญของกระดูกแบบเออนโดยอนดรอโลจเพิ่มขึ้นอย่างมาก ส่งผลให้เกิดการยึดยาวของกระดูก การให้นมที่ซักนำให้เกิดการยึดยาวของกระดูกนี้สามารถยับยั้งได้ด้วยยาบีร์โมคริปติน ซึ่งเป็นยาที่ยับยั้งการหลั่งฮอร์โมนโพรแลคติน แต่อย่างไรก็ตาม ผลของบีร์โมคริปตินที่มีต่อการแสดงออกของโพรตีนที่ควบคุมการเจริญของเซลล์กระดูกอ่อนบริเวณโกรทเพลทนั้น ยังไม่เป็นที่ทราบแน่ชัด ในการศึกษาครั้งนี้ ผู้วิจัยได้ใช้เทคนิคอิมมูโนฮิสโตเคมีร่วมกับวิเคราะห์ระดับการแสดงออกของโพรตีนในกลุ่มซีครีทอร์บีโพรตีน และทرانสคริปชัน แฟคเตอร์ [ได้แก่ พาราไทรอยด์ฮอร์โมน รีเลท เปปไทด์ (พีทีเอชอาร์พี), ตัวรับของพีทีเอชอาร์พี, อินเดียน เอเดจซ์อก (ไอเอชเอช), รัน รีเลท ทرانสคริปชัน แฟคเตอร์ (รันเอ็กซ์ทู) และ เอสอาร์วาย บอกซ์ คอนเทนนิ่ง ยีน 9 (ซอกซ์9)] ในหนูกลุ่มให้นมที่ได้รับบีร์โมคริปติน ผลการศึกษาพบว่าบีร์โมคริปตินสามารถเพิ่มการแสดงออกของอินเดียน เอเดจซ์อก ในกระดูกอ่อนระยะไฮเปอร์โทรอฟี ในช่วงให้นมระยะต้นและระยะกลาง ในขณะที่ตัวรับของพีทีเอชอาร์พี เพิ่มการแสดงออกในโซนโพรลิเฟอเรทีฟและไฮเปอร์โทรอฟิก ในช่วงให้นมระยะต้นและระยะกลาง เช่นกัน แต่กลับไม่พบการเปลี่ยนแปลงของพีทีเอชอาร์พีในทุกโซนตลอดระยะเวลาการให้นม ส่วนการแสดงออกของรันเอ็กซ์ทู ซึ่งเป็นทرانสคริปชัน แฟคเตอร์ที่สำคัญต่อการเจริญของเซลล์กระดูกอ่อนนั้น พบว่ามีระดับลดลงในโซนไฮเปอร์โทรอฟิก ของหนูกลุ่มให้นมที่ได้รับบีร์โมคริปติน จากผลการศึกษาสามารถสรุปได้ว่า บีร์โมคริปตินเพิ่มการแสดงออกของอินเดียน เอเดจซ์อก และตัวรับของพีทีเอชอาร์พี ในขณะที่ลดการแสดงออกของรันเอ็กซ์ทู ซึ่งการเปลี่ยนแปลงดังกล่าวนี้อาจส่งผลให้เพิ่มการแบ่งเซลล์กระดูกอ่อนบริเวณโกรทเพลทและชัลล์ของการบวนการไฮเปอร์โทรอฟี ซึ่งจะช่วยชัลล์ของการเจริญของกระดูกแบบเออนโดยอนดรอโลจ สิ่งที่ค้นพบนี้สามารถช่วยอธิบายถึงบทบาทของบีร์โมคริปติน ต่อการชัลล์ของการยึดยาวของกระดูก

คำหลัก : บีร์โมคริปติน, โกรทเพลท, อินเดียน เอเดจซ์อก, แฟคเตชน, พีทีเอชอาร์พี

Abstract

Project Code : MRG5480230

Project Title : Effects of prolactin on development of growth plate cartilage in lactating rats

Investigator : Assistant Professor Kannikar Wongdee

E-mail Address : kannikar@buu.ac.th

Project Period : 2 years

Abstract :

In physiological hyperprolactinemia as in lactation, the endochondral bone growth is markedly enhanced, leading to elongation of long bone. This lactation-induced bone elongation could be abolished by inhibitor of prolactin—bromocriptine. However, how bromocriptine altered the expression of chondroregulatory proteins in the growth plate cartilage was not known. In the current study, we used a quantitative immunohistochemical analysis to determine the expression of secretory proteins and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), runt-related transcription factor 2 (Runx2) and SRY-box containing gene 9 (Sox-9)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid- and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.

Keywords : Bromocriptine, Growth plate, Indian hedgehog, Lactation, PTHrP

บทสรุปผู้บริหาร (Executive Summary)

1. ชื่อโครงการ

(ภาษาไทย): ผลของฮอร์โมนโพรแลคตินต่อการเจริญของกระดูกอ่อนบริเวณโกรทเพลทในหนูที่กำลังให้นม

(ภาษาอังกฤษ): Effects of prolactin on development of growth plate cartilage in lactating rats

2. ชื่อหัวหน้าโครงการและที่อยู่

ชื่อ-นามสกุล	ผู้ช่วยศาสตราจารย์ ดร.กรรณิการ์ วงศ์ดี
หน่วยงานที่สังกัด	สำนักงานจัดการศึกษา คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา
ที่อยู่	คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา ถ.ลงหาดบางแสน ต.แสนสุข อ.เมือง จ.ชลบุรี 20131
โทรศัพท์	038-103166
โทรสาร	038-393497
E-mail	kannikar@buu.ac.th

3. งบประมาณทั้งโครงการ

480,000 บาท

4. ระยะเวลาดำเนินงาน

2 ปี

5. ความสำคัญและที่มาของปัญหา

ในระยะตั้งครรภ์และให้นม แม่สูญเสียแคลเซียมปริมาณมากจากการสลายแคลเซียมที่กระดูก เพื่อนำไปใช้ในการเจริญเติบโตของทารกและสร้างน้ำนม ในระยะตั้งครรภ์กระดูกของแม่จะมีการสะสมแคลเซียมเพิ่มขึ้นทั้งในส่วน cortical และ trabecular bone เพื่อเตรียมพร้อมในการนำแคลเซียมไปใช้ในระยะให้นม ซึ่งในระยะให้นมจะพบการสลายกระดูกของแม่เพิ่มขึ้นอย่างมาก โดยเฉพาะอย่างยิ่งบริเวณ trabecular bone แม้ว่ากระดูกของแม่จะกลับมาเป็นปกติหลังหยุดให้นม แต่มีหลุมให้นมบุตรจำนวนหนึ่งที่มวลกระดูกลดลงอย่างต่อเนื่องจนเกิดภาวะกระดูกพรุนตามมาได้

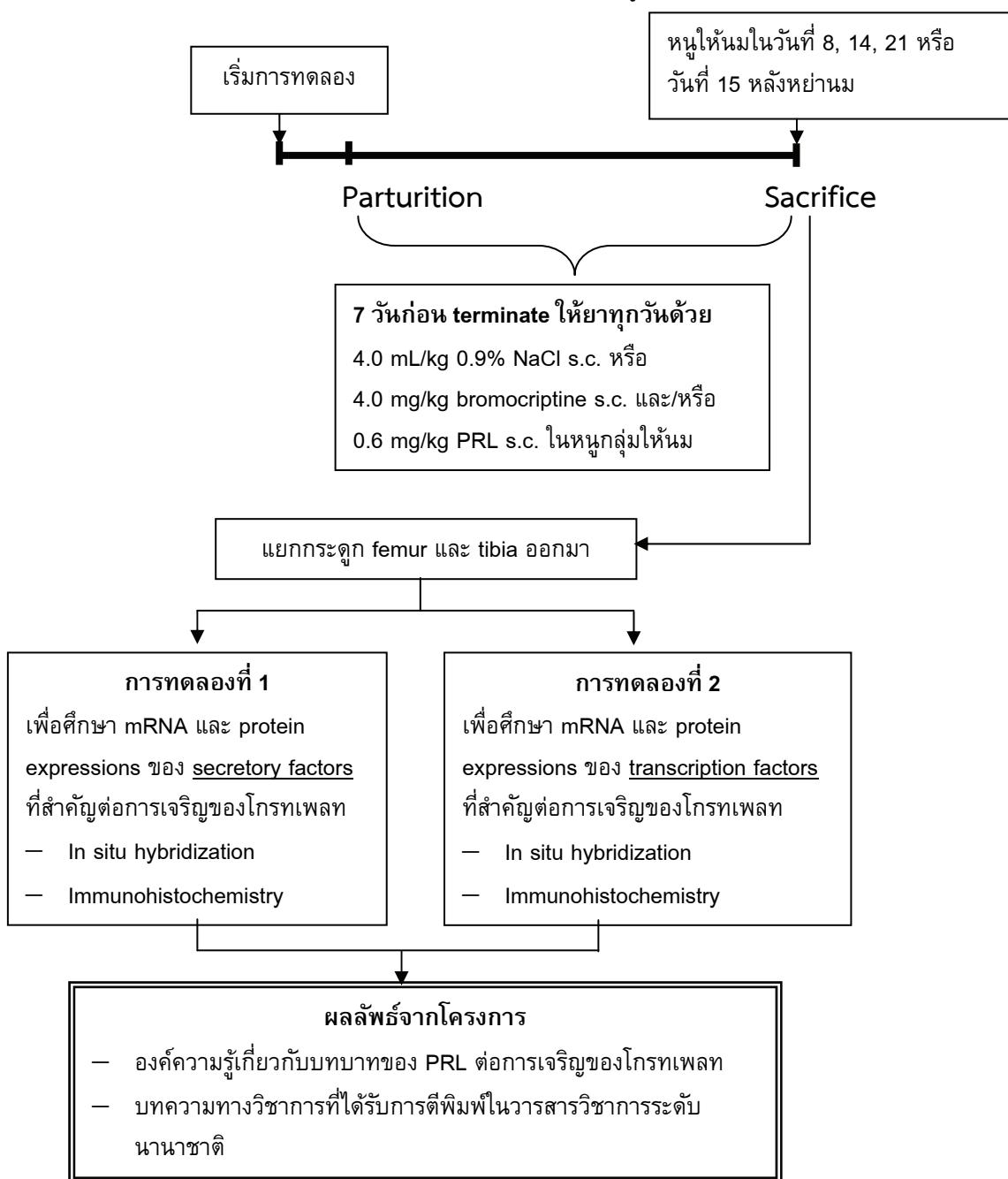
นอกจากผลกระทบต่อกระดูกแล้ว การตั้งครรภ์และให้นมยังส่งผลต่อกระดูกอ่อนบริเวณโกรทเพลทอีกด้วย ซึ่งบริเวณดังกล่าวมีความสำคัญในการควบคุมการเพิ่มความยาวของกระดูก จากงานวิจัยที่ผ่านมาพบว่ากระดูก femur และ tibia ของหนูขาวระยะให้นม มีความยาวเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับหนูปกติ ซึ่งความยาวที่เพิ่มขึ้นนี้มีความสัมพันธ์กับโกรทเพลทที่บางลงและอยู่ภายใต้การควบคุมของฮอร์โมนโพรแลคติน (prolactin;

PRL) การบางลงของกราฟเพลทนี้อาจมีสาเหตุมาจากการเซลล์กระดูกอ่อน (chondrocyte) เร่งการแบ่งตัวเพิ่มจำนวน (proliferation) และเปลี่ยนสภาพ (differentiation) เพื่อสร้างกระดูกให้มากขึ้น ซึ่งเป็นกระบวนการชุดของการเสียมวลกระดูกในระหว่างให้นม

อย่างไรก็ตามมียินและโปรตีนจำนวนมากที่ควบคุมกระบวนการ proliferation และ differentiation ของเซลล์กระดูกอ่อน โดยเฉพาะในระยะ hypertrophic differentiation เช่น Sox-9, Runx2, HDAC4, MEF2C และ Nkx3/Bapx1 เป็นต้น ยืนในกลุ่ม transcription factor เหล่านี้ ตอบสนองต่อฮอร์โมนต่างกัน (เช่น PRL ลดการแสดงออกของยืน Runx2 ในเซลล์เพาะเลี้ยง primary osteoblast เป็นต้น) โดยผลลัพธ์ที่ได้มักทำให้เกิดการเพิ่มหรือลดการสร้าง local factor ที่ชื่อ Indian hedgehog (Ihh) ตลอดจนชนิดของ collagen ที่สร้างขึ้นจากเซลล์กระดูกอ่อน ดังนั้นจึงมีความเป็นไปได้ว่า PRL อาจเปลี่ยนแปลงกระบวนการ proliferation และ differentiation ของกราฟเพลท โดยอาศัยการทำงานของ transcription factor และ local factor เหล่านี้ เช่นกัน

6. วัตถุประสงค์

6.1 เพื่อศึกษาผลของ PRL ต่อการแสดงออกของ secretory factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณกราฟเพลทในหนูให้นม โดยศึกษาทั้งในระดับยืนและโปรตีนดังต่อไปนี้


- Indian hedgehog (Ihh)
- Type II collagen (Coll II)
- Type X collagen (Coll X)

6.2 เพื่อศึกษาผลของ PRL ต่อการแสดงออกของ transcription factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณกราฟเพลทในหนูให้นม โดยศึกษาทั้งในระดับยืนและโปรตีนดังต่อไปนี้

- SRY-box containing gene 9 (Sox-9)
- Runt-related transcription factor 2 (Runx2)
- Myocyte enhancer factor-2C (MEF2C)
- Histone deacetylase-4 (HDAC4)
- Nk homeobox 3/ Bagpipe homeobox protein homolog 1 (Nkx3/Bapx1)

7. ระเบียบวิธีวิจัย

โครงการวิจัยในช่วง 2 ปีนี้ ได้แบ่งการทดลองออกเป็น 2 ส่วน ดังรูป

7.1 การทดลองส่วนที่ 1

วัตถุประสงค์ เพื่อศึกษาผลของ PRL ต่อการแสดงออกของ secretory factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณโครงเพลทในหนูให้นม โดยศึกษาทั้งในระดับยีนและโปรตีนของ Ihh, Coll II และ Coll X

สมมุติฐาน PRL เปลี่ยนแปลงการแสดงออกของ mRNA และ protein ของ secretory factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณโครงเพลทในหนูให้นม

รายละเอียดของแผนการทดลอง

1. หนูทดลองจะถูกแบ่งออกเป็น 3 กลุ่มได้แก่ กลุ่มควบคุม (age-matched control group), กลุ่มให้นม (lactating group) และกลุ่มหลังหย่านม 15 วัน (postweaning; PW) หนูกลุ่มให้นมถูกแบ่งเป็นกลุ่มย่อย 3 กลุ่ม ได้แก่ กลุ่มให้นมระยะเริ่มต้น (day 8; L8), กลุ่มให้นมระยะกลาง (day 14; L14) และกลุ่มให้นมระยะท้าย (day 21; L21)

2. เมื่อครบตามกำหนดเวลา หลังจากสลบหนู กระดูก femur และ tibia จะถูกแยกออกจากหนูทุกกลุ่ม และนำไปผ่านกระบวนการทางเนื้อเยื่อและตัดเป็นแผ่น

3. การศึกษาในระดับ mRNA และโปรตีน ผู้วิจัยใช้เทคนิค in situ hybridization และ immunohistochemistry ตามลำดับ เพื่อศึกษาตำแหน่งที่มีการแสดงออกของ secretory factors ได้แก่ Ihh, Coll II และ Coll X ในเนื้อเยื่อกระดูก จากนั้นวัดระดับความเข้มของการแสดงออกโดยใช้โปรแกรม NIH image analysis

7.2 การทดลองส่วนที่ 2

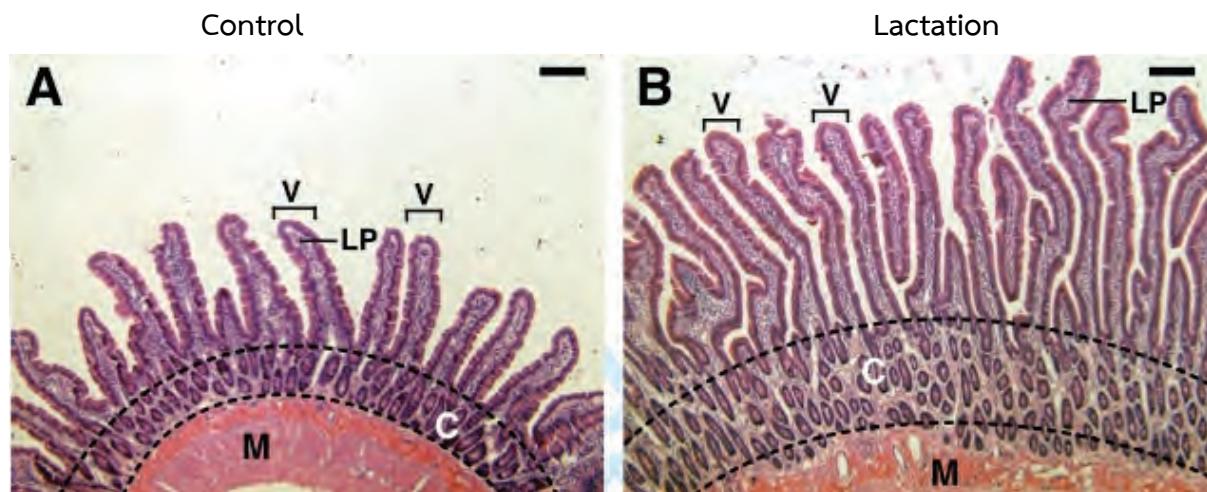
วัตถุประสงค์ เพื่อศึกษาผลของ PRL ต่อการแสดงออกของ transcription factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณโกรทเพลทในหนูให้นม โดยศึกษาทั้งในระดับยีนและโปรตีนของ Sox-9, Runx2, MEF2C, HDAC4 และ Nkx3/Bapx1

สมมุติฐาน PRL เป็นตัวเปลี่ยนแปลงการแสดงออกของ mRNA และ protein ของ transcription factors ที่สำคัญต่อการเพิ่มจำนวนและการเจริญของเซลล์กระดูกอ่อนบริเวณโกรทเพลทในหนูให้นม

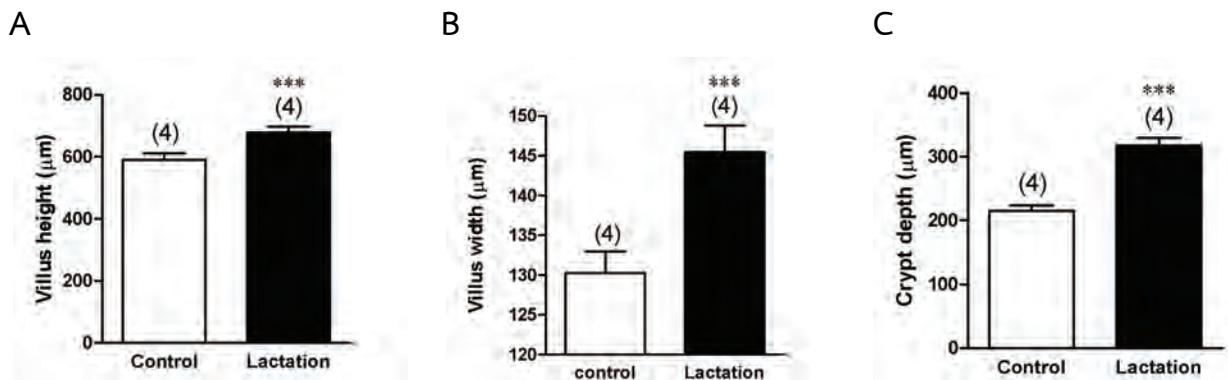
รายละเอียดของแผนการทดลอง

1. หนูทดลองจะถูกแบ่งออกเป็น 3 กลุ่มได้แก่ กลุ่มควบคุม (age-matched control group), กลุ่มให้นม (lactating group) และกลุ่มหลังหย่านม 15 วัน (postweaning; PW) หนูกลุ่มให้นมถูกแบ่งเป็นกลุ่มย่อย 3 กลุ่ม ได้แก่ กลุ่มให้นมระยะเริ่มต้น (day 8; L8), กลุ่มให้นมระยะกลาง (day 14; L14) และกลุ่มให้นมระยะท้าย (day 21; L21)

2. เมื่อครบตามกำหนดเวลา หลังจากสลบหนู กระดูก femur และ tibia จะถูกแยกออกจากหนูทุกกลุ่ม และนำไปผ่านกระบวนการทางเนื้อเยื่อและตัดเป็นแผ่น


3. การศึกษาในระดับ mRNA และโปรตีน ผู้วิจัยใช้เทคนิค in situ hybridization และ immunohistochemistry ตามลำดับ เพื่อศึกษาตำแหน่งที่มีการแสดงออกของ transcription factors ได้แก่ Sox-9, Runx2, MEF2C, HDAC4 และ Nkx3/Bapx1 ในเนื้อเยื่อกระดูก จากนั้นวัดระดับความเข้มของการแสดงออกโดยใช้โปรแกรม Adobe Photoshop

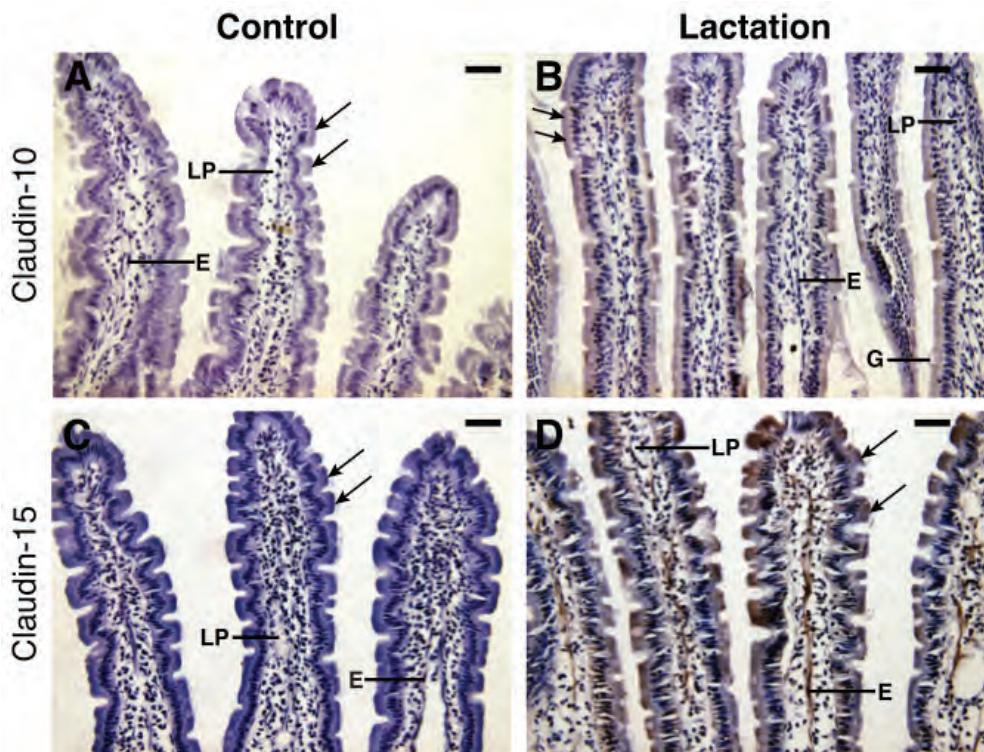
8. ผลการวิจัย


8.1 การพัฒนาเทคนิคmorphometry และอิมมูโนhistochemistry

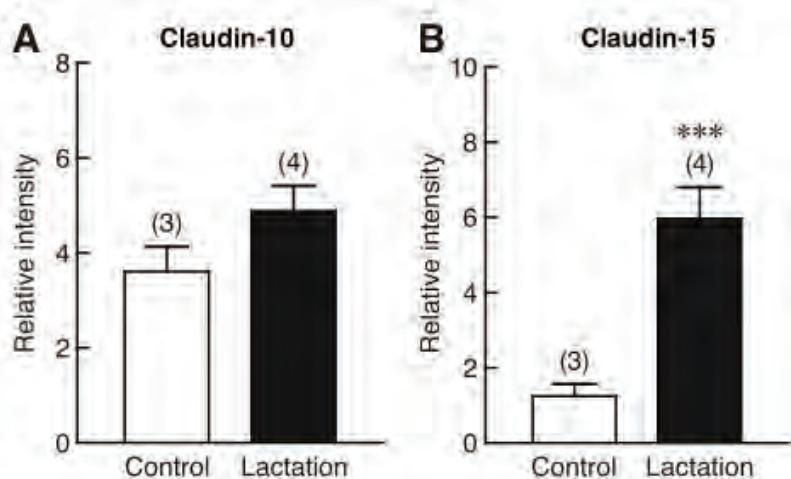
เนื่องจากโกรทเพลทของกระดูกเป็นส่วนที่มีพื้นที่น้อยมากเมื่อเทียบกับพื้นที่ทั้งหมดของกระดูก ประกอบกับกระดูกที่ใช้ในการทดลองเป็นกระดูกที่ผ่านกระบวนการดึงแคลเซียมออกแล้ว ทำให้กระดูกมีความอ่อนตัวสูญเสียโครงรูปได้ง่าย การตัดเนื้อเยื่อโดยเฉพาะอย่างยิ่งบริเวณโกรทเพลทที่ต้องอาศัยความระมัดระวังเป็นพิเศษ อีกทั้งการย้อมเนื้อเยื่อโกรทเพลทของหนูระยะให้นมจะมีค่าใช้จ่ายสูงกว่าการศึกษาในหนูปกติอย่างมาก ดังนั้นคณะผู้วิจัยจึงมีการศึกษานำร่องในเนื้อเยื่อสำลีสำลีของหนูกลุ่มปกติ (ไม่ได้ตั้งท้อง) และหนูให้นม 21 วัน และศึกษาการเปลี่ยนแปลงทางจุลกายวิภาคของสำลีสำลีส่วนดูอีนัมและการแสดงออกของโปรตีนคลอติน-10 และ -15 เพื่อพัฒนาเทคนิคอิมมูโนhistochemistryก่อนนำไปใช้จริงในการศึกษาโกรทเพลท จากการศึกษานำร่องพบว่า

8.1.1 สำลีส่วนดูอีนัมของหนูให้นม (lactation) มีความสูงและความกว้างของ villus และความหนาของชั้น crypt สูงขึ้นอย่างมีนัยสำคัญทางสถิติ เมื่อเปรียบเทียบกับหนูกลุ่มควบคุม (ภาพที่ 1 และ 2) โดยพบว่าหนูกลุ่มให้นมมีความสูงของ villus ความกว้างของ villus และความหนาของชั้น crypt เพิ่มขึ้นประมาณ 10%, 12% และ 40% ตามลำดับ (ตารางที่ 1) และแสดงให้เห็นว่า หนูระยะให้นมมีการเปลี่ยนแปลงทางจุลกายวิภาคของสำลีสำลี ทั้งนี้เพื่อปรับตัวให้เหมาะสมกับความต้องการสารอาหารที่เพิ่มขึ้นเพื่อใช้ในการผลิตน้ำนมให้แก่ลูก

ภาพที่ 1 แสดงการเปลี่ยนแปลงทางจุลกายวิภาคของสำลีสำลีส่วนดูอีนัมของหนูกลุ่มควบคุม (A) และหนูกลุ่มให้นม (B) และแสดงให้เห็นลักษณะการยึนยาวคล้ายน้ำมือของ villus (V) ซึ่งมีแกนกลางคือ lamina propria (LP) ด้านล่างของ villus คือชั้น crypt (C) และชั้นกล้ามเนื้อเรียบ (M) ตามลำดับ (scale bar เท่ากับ 200 ไมโครเมตร)


ภาพที่ 2 แสดงความสูงของ villus (villus height; A) ความกว้างของ villus (villus width; B) และความหนาของชั้น crypt (crypt depth; C) ในลำไส้เล็กส่วนดูดีนัมของหนูกลุ่มให้นม (lactation) เปรียบเทียบกับหนูกลุ่มควบคุม (control) ตัวเลขในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม *** $p < 0.001$ เปรียบเทียบกับกลุ่มควบคุม

ตารางที่ 1 ความสูงของ villus (villus height) ความกว้างของ villus (villus width) และความหนาของชั้น crypt (crypt depth) ระหว่างหนูปกติ (control) และหนูให้นม (lactation)


	Control	Lactation	p-value
Villus height (μm)	613.95 ± 27.49	676.29 ± 20.37	< 0.001
Villus width (μm)	130.78 ± 2.89	145.45 ± 3.33	< 0.001
Crypt depth (μm)	215.33 ± 8.47	307.93 ± 12.79	< 0.001

8.1.2 หนูให้นมเพิ่มการแสดงออกของโปรตีนคลอเดิน-15 ในเนื้อเยื่อดูดีนัม จากการศึกษาการแสดงออกของโปรตีนคลอเดิน-10 และ -15 ในเนื้อเยื่อดูดีนัมของหนูปกติและหนูให้นมด้วยเทคนิคอิมมูโนอิสโนโตเมิร์ฟ พบว่า หนูให้นมมีการเพิ่มการแสดงออกของคลอเดิน-15 ที่ villous epithelial cells ตลอดจน goblet cells และ endothelium ของ lacteal (ภาพที่ 3C, D และ 4B) แต่กลับไม่พบการเปลี่ยนแปลงการแสดงออกของคลอเดิน-10 (ภาพที่ 3A, B และ 4A) ซึ่งสอดคล้องกับงานวิจัยก่อนหน้านี้ จึงเป็นไปได้ว่าการเพิ่มการแสดงออกของคลอเดิน-15 อาจเพิ่มการดูดซึมแคลเซียมผ่านช่องระหว่างเซลล์ของ villous epithelial cells จากผลการศึกษาสามารถสรุปได้ว่าการให้นมสามารถเพิ่มพื้นที่ผิวของ villus เพื่อเพิ่มการดูดซึมสารอาหารให้เพียงพอแก่ความต้องการของแม่นอกจากนี้ยังเพิ่มการแสดงออกของโปรตีนคลอเดิน-15 ซึ่งอาจทำหน้าที่เพิ่มการขนส่งแคลเซียมหรือไอออนประจุบวกอื่นๆ ให้ผ่านช่องระหว่างเซลล์ เป็นการสนับสนุนงานวิจัยก่อนหน้านี้ของผู้วิจัย ที่พบว่าการให้นมสามารถเร่งการดูดซึมแคลเซียมโดยผ่านการเพิ่มระดับการแสดงออกของโปรตีนคลอเดิน-15 งานวิจัยส่วนนี้ได้รับการตีพิมพ์ในวารสารวิชาการระดับนานาชาติแล้วคือ

Wongdee K, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N. Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. Journal of Molecular Histology 2013;44:104–109.

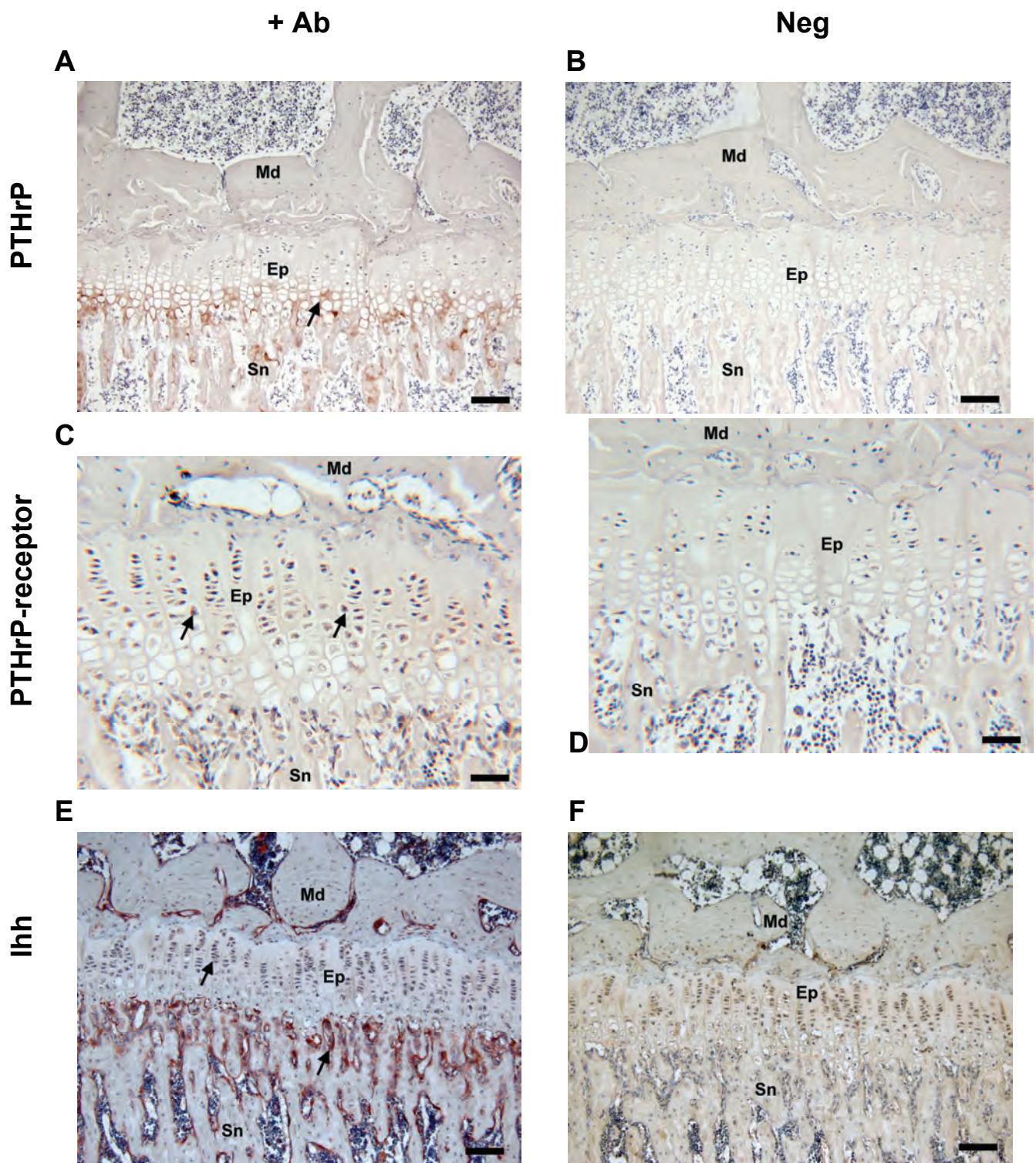
ภาพที่ 3 อิมมูโนอิสโตเคมีแสดงตำแหน่งการกระจายตัวของโปรตีนคลอดิน (claudin)-10 (A และ B) และ -15 (C และ D) ในเนื้อเยื่อลำไส้ส่วนคูโอดีนัมของหนูกลุ่มควบคุม (Control) และหนูกลุ่มให้นม (Lactation) สีน้ำตาลแทนจุดที่มีโปรตีนแสดงออก ส่วนใหญ่อยู่ที่ villous epithelial cells (ลูกศร), ด้านข้างของ goblet cells (G), endothelial cells (E) ของท่อน้ำเหลืองซึ่งอยู่ภายใน lamina propria (LP) (scale bar เท่ากับ 20 ไมโครเมตร)

ภาพที่ 4 ค่าความเข้มของการแสดงออกของโปรตีนคลอดิน (claudin)-10 (A) และ -15 (B) ในเนื้อเยื่อลำไส้ส่วนคูโอดีนัมของหนูกลุ่มควบคุม (Control) และหนูกลุ่มให้นม (Lactation) โดยปรับค่าความเข้มของ negative control ให้เท่ากับ 1 จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม (**p < 0.001 เมื่อเทียบกับกลุ่มควบคุม)

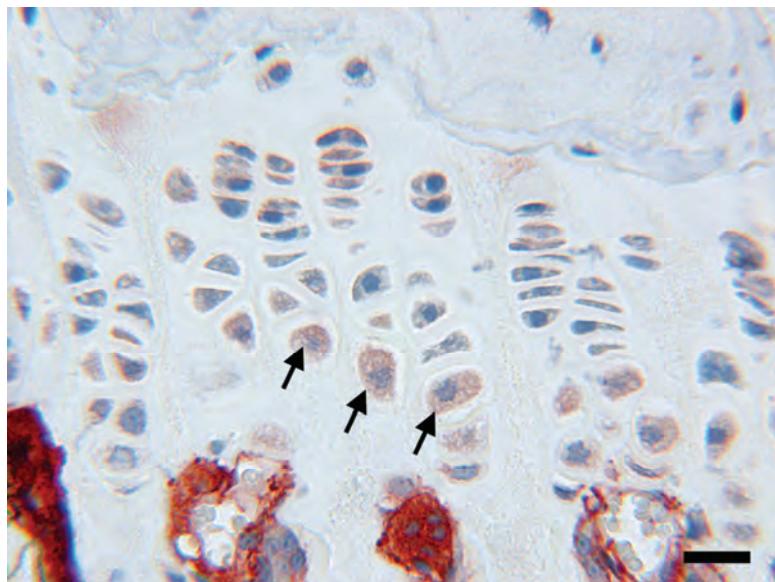
8.2 ศึกษาผลของโพร์แลคตินต่อการแสดงออกของ secretory proteins ในเซลล์กระดูกอ่อนบริเวณโกรทเพลทในหนูที่กำลังให้นม

การศึกษาการแสดงออกของ secretory factors ที่ควบคุมกระบวนการเจริญของเซลล์กระดูกอ่อนบริเวณโกรทเพลท คณะผู้วิจัยได้ศึกษาการแสดงออกของ indian hedgehog (Ihh) แต่เนื่องจาก Ihh เป็นโปรตีนที่ทำงานร่วมกับ parathyroid hormone-related protein (PTHrP) ผู้วิจัยจึงศึกษาโปรตีน Ihh ร่วมกับการแสดงออกของ PTHrP และ PTHrP receptor ควบคู่ไปพร้อมกัน

โปรตีน Ihh เป็นโปรตีนที่พบในเซลล์กระดูกอ่อนโดยเฉพาะอย่างยิ่งในชั้น hypertrophic zone ทำหน้าที่ชัลลอกการ differentiation ของ proliferative chondrocytes ให้เปลี่ยนไปเป็น hypertrophic chondrocytes ซึ่งส่วนโปรตีน PTHrP เป็นโปรตีนที่มีการแสดงออกมากบริเวณ proliferative zone และ prehypertrophic zone ของโกรทเพลท มีความสำคัญในการกระตุ้นเซลล์กระดูกอ่อนของโกรทเพลทให้มีการแบ่งตัวเพิ่มจำนวน และยับยั้งการเกิด premature hypertrophy โปรตีน PTHrP ทำงานโดยจับกับ PTHrP receptor ซึ่งมีการแสดงออกทั่วไปในโกรทเพลท

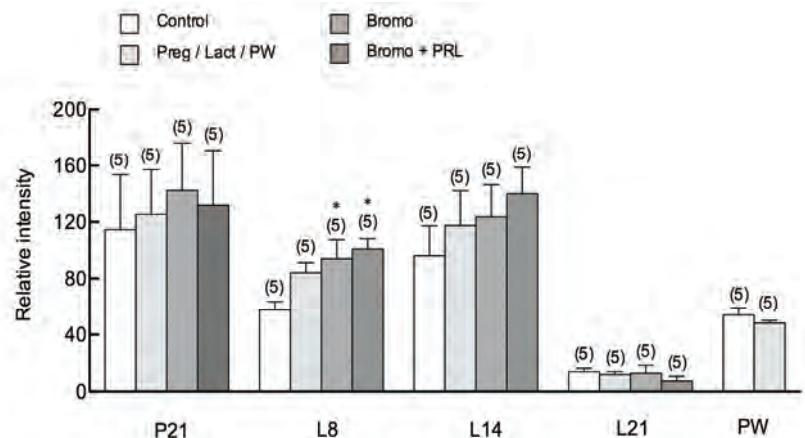
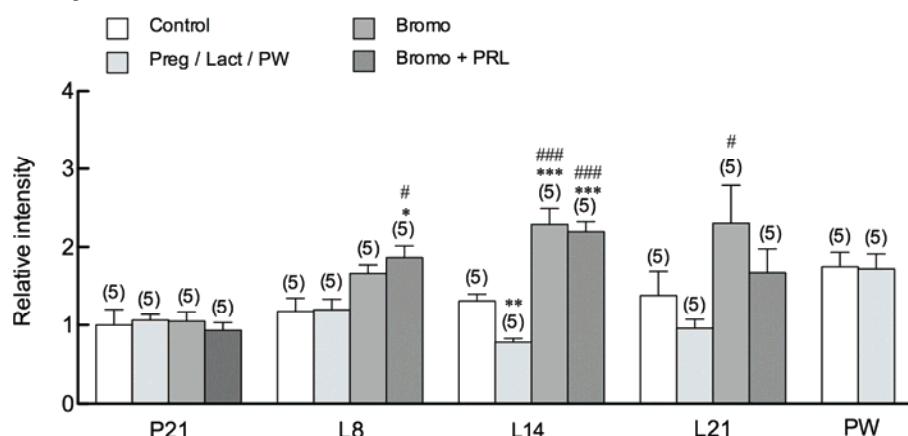
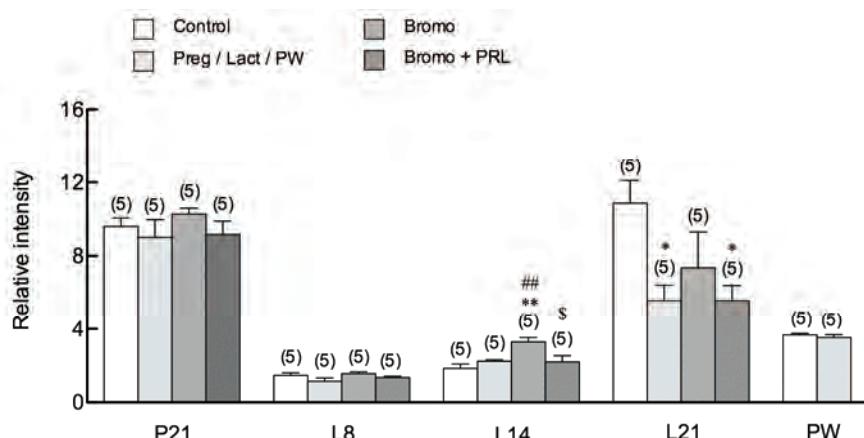

ตามแผนโครงการวิจัยฯ คณะผู้วิจัยได้แบ่งกลุ่มการทดลองออกเป็น 5 กลุ่มใหญ่ ดังนี้

1. Age-matched control (Control) เป็นหนูปกติที่ไม่ตั้งท้อง (และไม่ให้นม)
2. Lactating rats เป็นหนูที่ให้นม (L)
 - a. 8-day lactating rats เป็นหนูที่ให้นมวันที่ 8 (L8)
 - b. 14-day lactating rats เป็นหนูที่ให้นมวันที่ 14 (L14)
 - c. 21-day lactating rats เป็นหนูที่ให้นมวันที่ 21 (L21)
3. Lactating rats + Bromocriptine (Bromo) เป็นหนูให้นมที่ได้รับการฉีด 4 mg/kg bromocriptine (ยาที่ยับยั้งการหลั่งโพร์แลคติน) s.c. ทุกวันเป็นเวลา 1 สัปดาห์ก่อนเริ่มการทดลอง
 - a. 8-day lactating rats เป็นหนูที่ให้นมวันที่ 8 (L8 + Bromo)
 - b. 14-day lactating rats เป็นหนูที่ให้นมวันที่ 14 (L14 + Bromo)
 - c. 21-day lactating rats เป็นหนูที่ให้นมวันที่ 21 (L21 + Bromo)
4. Lactating rats + Bromocriptine + prolactin (Bromo + PRL) เป็นหนูให้นมที่ได้รับการฉีด 4 mg/kg bromocriptine s.c. และ 0.8 mg/kg PRL ทุกวันเป็นเวลา 1 สัปดาห์ก่อนเริ่มการทดลอง
 - a. 8-day lactating rats เป็นหนูที่ให้นมวันที่ 8 (L8 + Bromo + PRL)
 - b. 14-day lactating rats เป็นหนูที่ให้นมวันที่ 14 (L14 + Bromo + PRL)

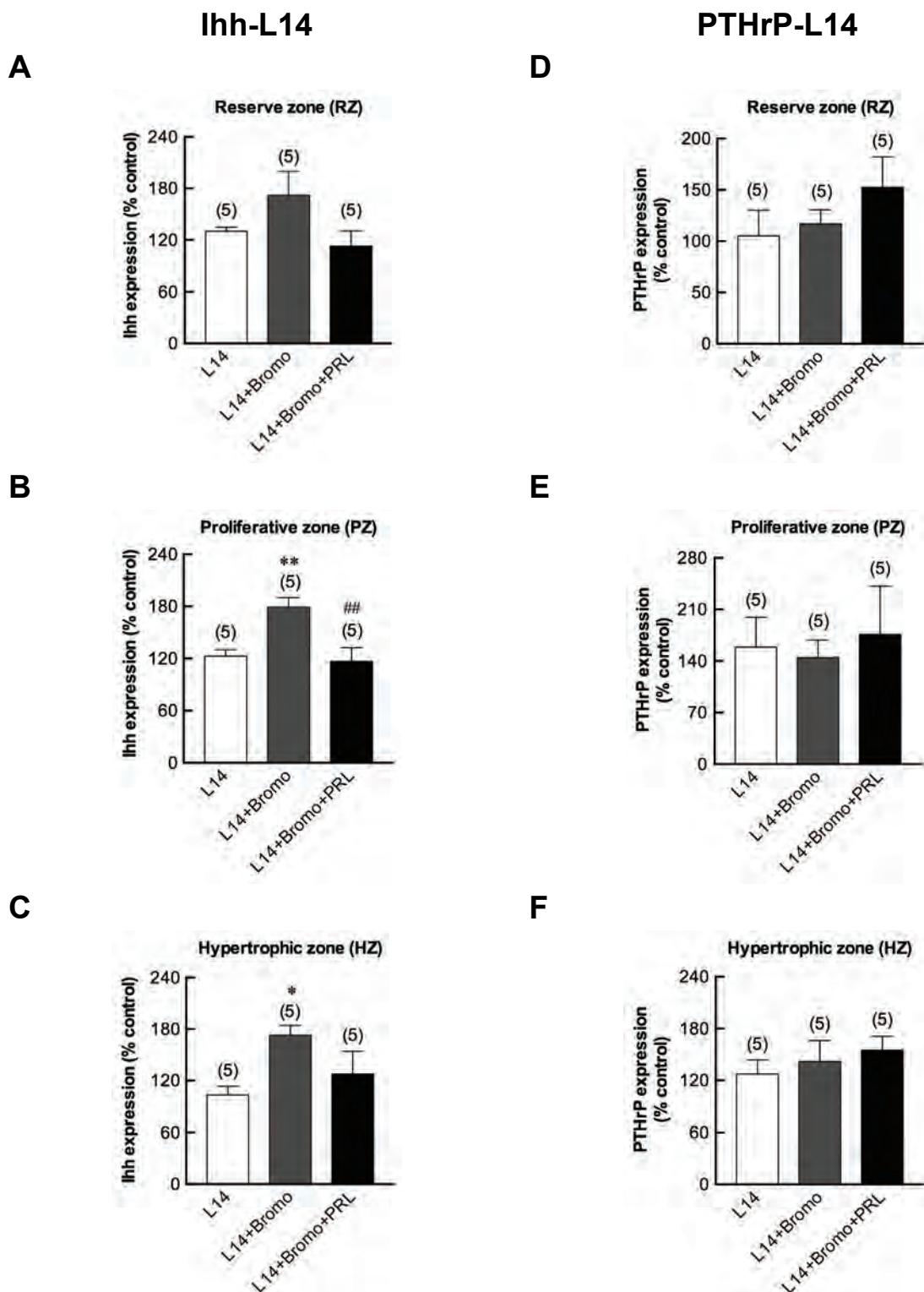

c. 21-day lactating rats เป็นหนูที่ให้นมวันที่ 21 (L21 + Bromo + PRL)

5. Postweaning rats เป็นแม่หนูที่หย่านมวันที่ 15 (PW) แต่เพื่อให้การเปลี่ยนแปลงที่กรoth เพลทมีการเปลี่ยนแปลงที่ชัดเจนมากขึ้น จึงปรับเปลี่ยนเป็น แม่หนูที่หย่านมวันที่ 30 แทน

จากการศึกษาการแสดงออกของ PTHrP, PTHrP receptor และ Ihh ด้วยเทคนิคอิมมูโนอิสโตเคมี พบ การแสดงออกของ secretory protein ทั้งสามชนิดภายในเซลล์กระดูกอ่อนและ matrix รอบๆ เซลล์บริเวณ proliferative zone ต่อเนื่องไปจนถึง hypertrophic zone นอกจากนี้ยังพบการแสดงออกที่ lining cells ของ calcified trabeculae บริเวณ primary spongiosa อีกด้วย (ภาพที่ 5, 6)

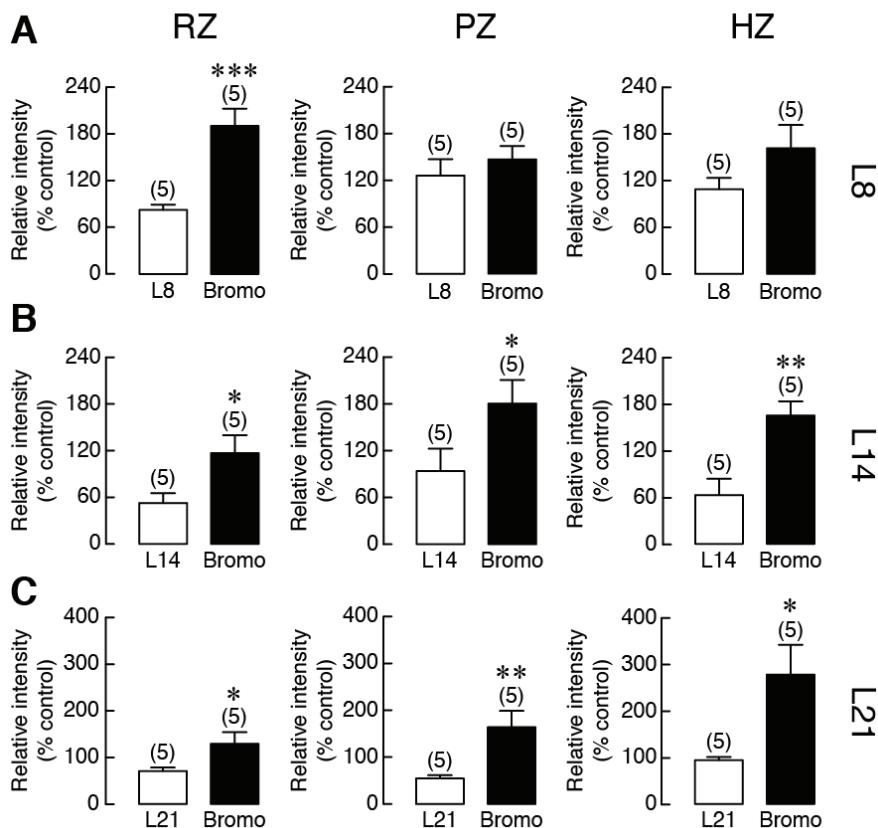




ภาพที่ 5 อิมมูโนอิสโตเคมีแสดงตำแหน่งการกระจายตัวของ PTHrP (A-B), PTHrP-receptor (C-D) Ihh (E-F) ในเนื้อเยื่อกระเพาะ (Ep) ของหนูทั้งนิ่ม เมื่อได้สัมผัส (+Ab) และไม่ได้สัมผัสกับ antibody (Neg) สีน้ำตาล (A-D) และสีแดง (E-F) แทนจุดที่มีโปรตีนแสดงออก (ลูกศร) ส่วนใหญ่อยู่ที่บริเวณรอยต่อระหว่าง proliferative zone และ hypertrophic zone และบางส่วนของ calcified trabeculae ที่บริเวณ primary spongiosa (Sn) แต่ไม่พบการแสดงออกที่ mineralized matrix (Md) เนื้อเยื่อกระเพาะ (A-B, E-F scale bar เท่ากับ 100 ไมโครเมตร; C-D scale bar เท่ากับ 50 ไมโครเมตร)



ภาพที่ 6 อิมมูโนอิสโตเคมีแสดงตำแหน่งการกระจายตัวของ Ihh ในเนื้อเยื่อกราฟท์เพลท โดยพบสีแดง (positive signal) ภายใน cytoplasm ของเซลล์กระดูกอ่อนบริเวณ proliferative ตลอดจนถึง hypertrophic zone (ลูกศร) นอกจากนี้ยังพบการแสดงออกอย่างมากใน bone lining cells บริเวณ primary spongiosa (scale bar เท่ากับ 25 ไมโครเมตร)

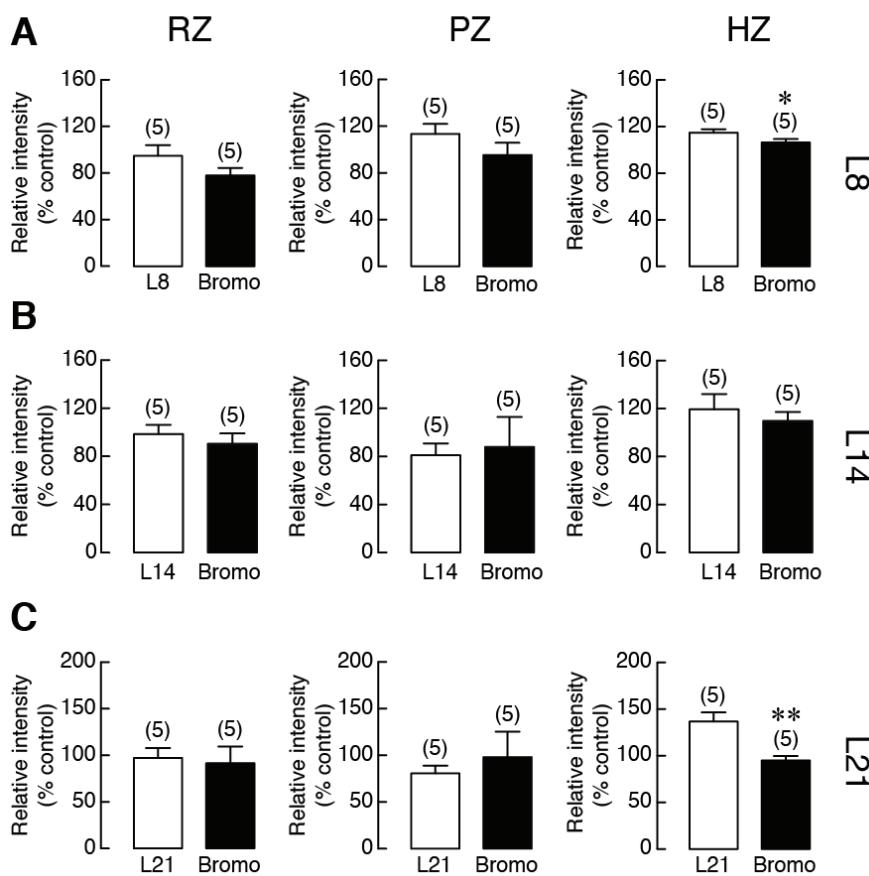
จากการวัดระดับการแสดงออกของโปรตีนทั้ง 3 ชนิด ด้วยวิธี densitometric analysis พบว่าแต่ละระยะของการให้นม secretory protein มีระดับการแสดงออกที่แตกต่างกัน (ภาพที่ 7) เมื่อวัดระดับการแสดงออกแยกเป็นโซนของกราฟท์เพลท ได้แก่ reserve zone (RZ), proliferative zone (PZ) และ hypertrophic zone (HZ) พบว่าส่วนใหญ่การแสดงออกของกราฟท์เพลทจะมีการเปลี่ยนแปลงชัดเจนในช่วงกลาง (L14) และช่วงท้าย (L21) ของการให้นม ผู้วิจัยพบการเปลี่ยนแปลงของ Ihh ในหนูให้นม 14 วันได้ชัดเจนที่สุด แบบขึ้นกับชอร์โมนโปรดักตินเมื่อเปรียบเทียบกับหนูกลุ่มควบคุม (ภาพที่ 8) ส่วนการแสดงออกของ PTHrP กลับไม่พบการเปลี่ยนแปลงในกราฟท์เพลททั้งสามโซน (ภาพที่ 8) ที่น่าสนใจคือในกลุ่มหนูให้นมช่วงกลางและช่วงท้าย การแสดงออกของ PTHrP receptor มีระดับเพิ่มสูงขึ้นในกราฟท์เพลททั้งสามโซนอย่างมีนัยสำคัญ (ภาพที่ 9) ซึ่งแสดงให้เห็นว่า ในภาวะที่ไม่มี endogenous prolactin กราฟท์เพลทมีการปรับตัวไปในแนวทางที่เพิ่มจำนวนเซลล์กระดูกอ่อน (proliferation) มากกว่ากระบวนการ differentiation


A. PTHrP**B. PTHrP-receptor****C. Ihh**

ภาพที่ 7 ค่าความเข้มของการแสดงออกของโปรตีน PTHrP (A), PTHrP-receptor (B) และ Ihh (C) PTHrP ในเนื้อเยื่อโกรทเพลทของกระดูกที่เบีย ที่ได้จากหนูตั้งท้อง 21 วัน (P21), ให้นม (L8, L14, L21) และหย่านม (PW) หนูให้นมบางกลุ่มได้รับการฉีด 4 mg/kg/day bromocriptine (L14 + Bromo) เข้าใต้ผิวหนังเป็นเวลา 1 สัปดาห์ หรือ Bromo และ 0.8 mg/kg/day PRL (L14 + Bromo + PRL) เข้าใต้ผิวหนังเป็นเวลา 1 สัปดาห์ ค่าที่แสดงในกราฟเป็นค่า mean \pm SE จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ เมื่อเทียบกับกลุ่มควบคุม; # $p < 0.05$, ## $p < 0.01$, ### $p < 0.001$ เมื่อเทียบกับกลุ่มตั้งท้อง/ให้นม

ภาพที่ 8 (A-C) ค่าความเข้มของการแสดงออกของโปรตีน *Ihh* และ (D-F) PTHrP ในเนื้อเยื่อกราฟเพลทของกระดูกที่เบี้ยที่ได้จากหนูให้นม 14 วัน โดยแยกตามโซนของกระดูกอ่อน หนูให้นมบางกลุ่มได้รับการฉีด 4 mg/kg/day bromocriptine (L14 + Bromo) เข้าใต้ผิวนังเป็นเวลา 1 สัปดาห์ หรือ Bromo และ 0.8 mg/kg/day PRL (L14 + Bromo + PRL) เข้าใต้ผิวนังเป็นเวลา 1 สัปดาห์ ค่าที่แสดงในรูปเป็นค่า mean \pm SE จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม (* $p < 0.05$, ** $p < 0.01$ เมื่อเทียบกับกลุ่มควบคุม, ## $p < 0.01$ เมื่อเทียบกับ L14 + Bromo)

PTHrP receptor expression


ภาพที่ 9 ค่าความเข้มของการแสดงออกของโปรตีน PTHrP receptor ในเนื้อเยื่อกราฟเพลทของกระดูกที่เปลี่ยนไปจากหนูให้นม (A) 8 วัน, (B) 14 วัน และ (C) 21วัน โดยแยกตามโซนของกระดูกอ่อน ได้แก่ reserve zone (RZ), proliferative zone (PZ) และ hypertrophic zone (Hz) หนูให้นมบางกลุ่มได้รับการฉีด 4 mg/kg/day bromocriptine (Bromo) เข้าใต้ผิวหนังเป็นเวลา 1 สัปดาห์ ค่าที่แสดงในกราฟเป็นค่า mean \pm SE จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ เมื่อเทียบกับกลุ่มให้นม)

8.3 ศึกษาผลของการแสดงออกของ transcription factor ในเซลล์กระดูกอ่อนบริเวณ

กราฟเพลทในหนูที่กำลังให้นม

การศึกษาในส่วนนี้ ผู้วิจัยเลือกศึกษาการแสดงออกของ Sox-9 และ Runx2 ซึ่งเป็น marker สำคัญของเซลล์กระดูกอ่อนและ osteoblast ตามลำดับ Sox-9 เป็น transcription factor ตัวแรกที่มีการแสดงออกเมื่อ mesenchymal cell มีการ differentiate เป็นเซลล์กระดูกอ่อน ทำหน้าที่ในการขักกัดให้เซลล์กระดูกอ่อนในกราฟเพลทสร้าง collagen type II, IX, XI โดยปกติแล้วจะพบการแสดงออกของ Sox-9 ในบริเวณ reserve zone และ proliferative zone ส่วน Runx2 เป็น transcription factor ซึ่งถือเป็น marker สำคัญของ osteoblast โดย Runx2 จะมีการแสดงออกต่อเมื่อ mesenchymal cell หรือเซลล์กระดูกอ่อนจะ differentiate ไปเป็น osteoblast ในกระดูกอ่อน

Runx2 expression

ภาพที่ 10 ค่าความเข้มของการแสดงออกของโปรตีน Runx2 ในเนื้อเยื่อโกรทเพลทของกระดูกที่เบี้ยที่ได้จากหนูให้นม (A) 8 วัน, (B) 14 วัน และ (C) 21 วัน โดยแยกตามโซนของกระดูกอ่อน ได้แก่ reserve zone (RZ), proliferative zone (PZ) และ hypertrophic zone (HZ) หนูให้นมบางกลุ่มได้รับการฉีด 4 mg/kg/day bromocriptine (Bromo) เข้าใต้ผิวนังเป็นเวลา 1 สัปดาห์ ค่าที่แสดงในกราฟเป็นค่า mean \pm SE จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม ($^*p < 0.05$, $^{**}p < 0.01$ เมื่อเทียบกับกลุ่มให้นม)

ภาพที่ 11 ค่าความเข้มของการแสดงออกของโปรตีน Sox-9 ในเนื้อเยื่อกราฟเพลทของกระดูกที่เบี่ยที่ได้จากหนูให้nm (A) 8 วัน, (B) 14 วัน และ (C) 21วัน โดยแยกตามโซนของกระดูกอ่อน ได้แก่ reserve zone (RZ), proliferative zone (PZ) และ hypertrophic zone (HZ) หนูให้nmมีบางกลุ่มได้รับการฉีด 4 mg/kg/day bromocriptine (Bromo) เข้าใต้ผิวนังเป็นเวลา 1 สัปดาห์ ค่าที่แสดงในกราฟเป็นค่า mean \pm SE จำนวนในวงเล็บแทนจำนวนสัตว์ทดลองในแต่ละกลุ่ม (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ เมื่อเทียบกับกลุ่มให้nm)

การศึกษาในส่วนนี้ ผู้วิจัยใช้กลุ่มหนูที่ฉีด bromocriptine เป็นกลุ่มที่บ่งชี้ผลของโปรดักติน ผลการศึกษาพบว่าในภาวะขาด endogenous prolactin (กลุ่มหนูที่ฉีด bromocriptine) การแสดงออกของ Runx2 ใน HZ ของกลุ่มหนูให้nm 8 และ 21 วัน มีระดับลดลง (ภาพที่ 10) ในขณะที่เพิ่มการแสดงออกของ Sox-9 ใน HZ ของหนูให้nm 21 วัน แต่การแสดงออกของ Sox-9 กลับมีระดับลดลงใน PZ ของกลุ่มหนูให้nm 8 และ 21 วัน (ภาพที่ 11)

โดยปกติแล้วในระยะให้nm อัตราการสร้างกระดูกของแม่จะเพิ่มสูงขึ้นอย่างมาก ทั้งนี้เพื่อให้ได้แคลเซียมอันเป็นแร่ธาตุสำคัญเพื่อนำไปใช้ในการสร้างน้ำนม จากงานวิจัยของ Suntornsaratoon และคณะ (2010) ได้รายงานว่าความหนาของกราฟเพลทของหนูระยะให้nmลดลงนั้น อาจเนื่องมาจากการแสดงออกของแม่เมื่อactivity สูงขึ้น เพื่อสร้าง bone trabeculae ให้มากขึ้นเพียงพอต่อการดึงแคลเซียมไปใช้ในการสร้างน้ำนม จากการศึกษาครบทุกกลุ่ม

การทดลองพบว่า Ihh และ PTHrP (ผ่านทาง PTHrP receptor) ซึ่งมีหน้าที่บังคับ hypertrophic differentiation และกระตุ้นการแบ่งเซลล์กระดูกอ่อนใน PZ น่าจะเป็น secretory factor ตัวหลักที่ควบคุม differentiation ของ góรทเพลทแบบขึ้นกับฮอร์โมนโพรแลคติน จากผลการศึกษาที่พบว่าในระบบทกทางของการให้นม (L14) Ihh มีระดับการแสดงออกสูงขึ้นใน PZ และ HZ ในหนูกลุ่มที่ได้รับ bromocriptine (L14+Bromo) และกลับลดลงในกลุ่ม L14+Bromo+PRL14 (ภาพที่ 8) ซึ่งแสดงให้เห็นว่าโพรแลคตินนั้นเร่งกระบวนการ differentiation ของ proliferative chondrocytes และ hypertrophic chondrocytes มีการ differentiate ไปเป็นกระดูกแข็ง (bone trabeculae) ในภาวะที่ขาดโพรแลคตินอย่างเช่นการได้รับยา bromocriptine ได้ชี้ให้เห็นว่า bromocriptine ช่วยให้ hypertrophic differentiation ผ่านการ upregulate ของ Sox-9 และ downregulate Runx2 ผลการศึกษาในส่วนนี้ กำลังอยู่ระหว่างการแก้ไขเพื่อพิจารณาตีพิมพ์ (under revision)

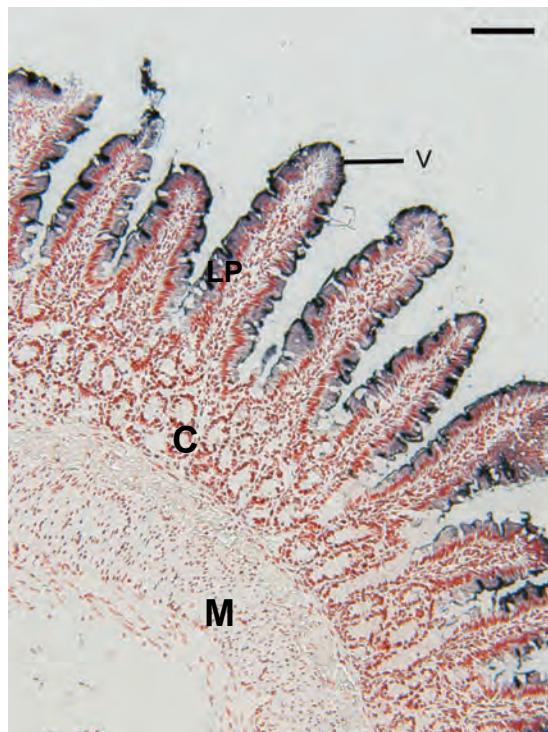
ส่วนด้านแนวคิดเกี่ยวกับการเปลี่ยนแปลงของ góรทเพลทในระยะต่าง ๆ ของร่างกายรวมถึงการตั้งครรภ์และให้นมนี้ ได้ตีพิมพ์ในวารสารวิชาการระดับนานาชาติแล้วจำนวน 1 เรื่อง คือ

Wongdee K, Krishnamra N, Charoenphandhu N. Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? *Journal of Physiological Sciences* 2012;62(4):299–307.

มีเนื้อหาโดยสังเขปดังนี้

การเจริญของกระดูกแบบเอโนไดคอนดรอลในสัตว์เลี้ยงลูกด้วยนมทั้งในระยะเติบโตและระยะผู้ใหญ่ เกิดขึ้นเป็นลำดับขั้นตอนเริ่มจากการแบ่งตัวเพิ่มจำนวนเซลล์กระดูกอ่อน การเจริญเป็นเซลล์เต็มวัย การขยายขนาดเซลล์ และการสะสมแคลเซียมที่แม่ทริกซ์จนกลายเป็นเนื้อกระดูกแข็ง กระบวนการที่ซับซ้อนเหล่านี้ถูกควบคุมด้วยหลักหลายปัจจัยด้วยอิทธิพลที่แตกต่างกัน เช่น พันธุกรรม ฮอร์โมนและสารออกฤทธิ์ต่อเซลล์ข้างเคียง (เช่น พาราไทรอยด์ฮอร์โมนรี-เลทต์เปปไทด์, วิตามินดี, ไอจีอีฟ-1, เอฟจีอีฟ และโพรแลคติน) และภาวะทางโภชนาการ (เช่น ปริมาณแคลเซียมและวิตามินดีในอาหาร) แม้จะเป็นที่ทราบกันดีถึงความสัมพันธ์ระหว่างการทำงานของ góรทเพลท และการยึดยาวของกระดูก ทว่าความสัมพันธ์ระหว่างการเจริญของกระดูกแบบเอโนไดคอนดรอล กับการเป็นเครื่องขับดัดการสะสมแคลเซียมที่กระดูก, ความหนาแน่นของกระดูก, และมวลกระดูกสูงสุด ยังไม่เป็นที่ทราบแน่ชัด อย่างไรก็ตามเนื่องจากกระบวนการเจริญของกระดูกแบบเอโนไดคอนดรอลสืบสุดลงเมื่อมีการสะสมแคลเซียมที่แม่ทริกซ์ ดังนั้นเมื่อการเจริญของกระดูกแบบเอโนไดคอนดรอลมากขึ้น จึงทำให้มีการสะสมแคลเซียมที่บริเวณไฟร์สปองจิโอชา และเพิ่มความหนาแน่นของกระดูกให้มากขึ้นตามไปด้วย แต่ในบางภาวะ เช่น ในหนูระยะให้นมซึ่งมีอัตราการสลายกระดูกที่สูง กลับพบว่าการยึดยาวของกระดูกมีความสัมพันธ์แบบผกผันกับความหนาแน่นของกระดูก แม้ว่าความหนาแน่นของกระดูกสามารถสูงขึ้นตามปัจจัยที่ส่งเสริมการเจริญของกระดูกแบบเอโนไดคอนดรอล แต่การเจริญของกระดูกแบบเอโนไดคอนดรอลกลับไม่ได้เป็นตัวกำหนดมวลกระดูกสูงสุดแต่อย่างใด เนื่องจากมวลกระดูกสูงสุดนั้น

ถูกกำหนดโดยพันธุกรรมเป็นหลัก ความสมพันธ์กับการสะสมแคลเซียมที่กระดูกเพียงบางบริเวณของกระดูกยawa แต่ไม่ได้เป็นตัวที่นำความหนาแน่นของกระดูกและมวลกระดูกสูงสุด


ดังนั้นการเจริญของกระดูกแบบเอนโดคอนดรอลและการยึดยาวของกระดูกมีความสัมพันธ์กับการสะสมแคลเซียมที่กระดูกเพียงบางบริเวณของกระดูกยawa แต่ไม่ได้เป็นตัวที่นำความหนาแน่นของกระดูกและมวลกระดูกสูงสุด

8.4 การสร้างprobe และติดฉลากprobe เพื่อใช้ในเทคนิค *in situ hybridization*

การศึกษาการแสดงออกของ mRNA ด้วยเทคนิค *in situ hybridization* คณผู้วิจัยได้เลือกใช้ DIG-label PCR probes โดยได้ออกแบบ PCR primer (ตารางที่ 2) คณผู้วิจัยได้มีการศึกษานำร่องถึงประสิทธิภาพในการสร้างและติดฉลากprobe โดยทดสอบติดฉลากprobeยืน calbindin-D_{9k} ซึ่งเป็นยืนที่ทำหน้าที่ขนส่งแคลเซียมภายใน villous epithelial cells และมีการแสดงออกมากในเซลล์ตั้งกล่าว จากนั้นผู้วิจัยได้ศึกษาการแสดงออกของยืนดังกล่าวในเนื้อเยื่อสำลักส่วนดูดอุดนัมของท่อน้ำ ผลการทดลองพบการแสดงออกของยืน calbindin-D_{9k} ที่ villous epithelial cells ตั้งแต่บริเวณฐานของ villus ไปจนถึงยอดของ villus แต่ไม่พบการแสดงออกในเนื้อเยื่อชั้นอื่นของดูดอุดนัม (ภาพที่ 12) ซึ่งช่วยยืนยันว่าเทคนิคการติดฉลากprobe และขั้นตอนของเทคนิค *in situ hybridization* ที่ผู้วิจัยได้ทดลองนั้นมีประสิทธิภาพเพียงพอ แต่เนื่องจากการใช้เทคนิค immunohistochemistry ร่วมกับ densitometric analysis สามารถ localize ตำแหน่งการแสดงออกของโปรตีนและวัดความเข้มของการแสดงออกได้ ผู้วิจัยจึงใช้ *in situ hybridization* เนพาะในการทดลองนำร่องท่านั้น

ตารางที่ 2 *Rattus norvegicus* PCR primers ที่ใช้ในการสร้าง *in situ hybridization* probes

Gene name (abbreviated name)	Accession no.	Primer (forward/reverse)	Product length (bp)
Indian hedgehog (Ihh)	NM_053384	5'-AAGAGAGCACCTTCCATCCA-3' 5'-ATGTCCTCCACTCTGGAGCAGA-3'	176
Type II collagen (Coll II)	NM_012929	5'-ATCGCCACGGTCTACAAT-3' 5'-TTGTCACCACGGTCACCTC-3'	164
Type X collagen (Coll X)	XM_001053056	5'-TCCTCCTGTAAGAGTGAGC-3' 5'-ATAAGGATGGGACGACAG-3'	113
Calbindin-D _{9k}	AF136283	5'-TGCTGTTCTGCTGACTCCT-3' 5'-GGGAACTCTGACTGAATCAG-3'	180

ภาพที่ 12 in situ hybridization ในเนื้อเยื่อลำไส้ส่วนคุโอดีนัม แสดงตำแหน่งการแสดงออกของยีน calbindin-D_{9k} (สีม่วงน้ำเงิน) ซึ่งแสดงออกบริเวณ villous epithelial cells ตั้งแต่ส่วนฐานของ villus (V) ไปจนถึงยอดของ villus นิวเคลียสของเซลล์ย้อมติดสีแดง (scale bar เท่ากับ 100 ไมโครเมตร) LP, lamina propria; C, crypt of Lieberkühn; M, smooth muscle layers

9. สรุปผลการวิจัย

เป็นที่ทราบกันว่า นอกจากการให้นมจะส่งผลกระทบต่อมวลกระดูกของแม่แล้ว การตั้งครรภ์และให้นมยังส่งผลต่อกกระดูกอ่อนบริเวณกรothเพลทอีกด้วย ซึ่งบริเวณดังกล่าวมีความสำคัญในการควบคุมการเพิ่มความยาวของกระดูก จากการวิจัยที่ผ่านมาพบว่ากระดูก femur และ tibia ของหนูขาวระยะให้นม มีความยาวเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติเมื่อเทียบกับหนูปกติ ซึ่งความยาวที่เพิ่มขึ้นนี้มีความสัมพันธ์กับกรothเพลทที่บังลงและอยู่ภายใต้การควบคุมของฮอร์โมนโพรแลคติน การบังลงของกรothเพลทนี้อาจมีสาเหตุมาจากการเซลล์กระดูกอ่อน (chondrocyte) เร่งการแบ่งตัวเพิ่มจำนวน (proliferation) และเปลี่ยนสภาพ (differentiation) เพื่อสร้างกระดูกใหม่ขึ้น ซึ่งเป็นกระบวนการขยายการเสียมวลกระดูกในระหว่างให้นม

ผลจากการวิจัยนี้พบว่าโพรแลคตินมีบทบาทควบคุมการเจริญของกรothเพลท จากการที่ผู้วิจัยได้จำลองสภาวะที่ขาด endogenous prolactin เช่นได้รับยาบอร์โนมิคริปติน ผลการศึกษาพบว่ากรothเพลทมีการเปลี่ยนแปลงไปในทิศทาง proliferation มากกว่าการ differentiation โดยพบว่าในหนูกลุ่มที่ได้รับบอร์โนมิคริปตินมีการแสดงออกของ Ihh และ PTHrP receptor เพิ่มสูงขึ้น ซึ่งโปรตีนทั้งสองชนิดนั้นมีหน้าที่ในการเร่งการแบ่งเซลล์กระดูกอ่อนและช่วยกระบวนการ differentiation ในกลุ่มโปรตีน transcription factor พบว่า Runx2 มีการแสดงออกลดลง ซึ่ง Runx2 เป็นโปรตีนที่กระตุ้นกระบวนการ differentiation จึงสามารถสรุปได้ว่าภาวะขาดฮอร์โมนโพรแลคตินในระยะให้นมสามารถช่วยลดการเจ็บปวดของกระดูกได้ โดยเพิ่มการแบ่งเซลล์กระดูกอ่อนบริเวณกรothเพลทแต่ช่วยกระบวนการ differentiation เพื่อพัฒนาไปเป็นกระดูก ผลการวิจัยในส่วนนี้ยังสามารถช่วยอธิบายผลผลกระทบของยาบอร์โนมิคริปตินต่อการเจริญของกระดูกแบบเอ็นโดค่อนดรอลได้อีกด้วย

10. เอกสารอ้างอิง

1. Lieberman AN, Goldstein M (1985) Bromocriptine in Parkinson disease. *Pharmacol Rev* 37:217–227
2. Bhattacharyya A, Basra SS, Sen P, Kar B (2012) Peripartum cardiomyopathy: a review. *Tex Heart Inst J* 39:8–16
3. Crosignani PG (2006) Current treatment issues in female hyperprolactinaemia. *Eur J Obstet Gynecol Reprod Biol* 125:152–164
4. Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N (2010) Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. *Am J Physiol Endocrinol Metab* 299:E426–E436
5. Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Possible chondroregulatory role of prolactin on the tibial growth plate of lactating rats. *Histochem Cell Biol* 134:483–491
6. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T (2013) Chondrocyte-alginate constructs with or without TGF-beta1 produces superior extracellular matrix expression than monolayer cultures. *Mol Cell Biochem* 376:11–20
7. Burdan F, Szumiło J, Korobowicz A, Farooquee R, Patel S, Patel A, Dave A, Szumiło M, Solecki M, Klepacz R, Dudka J (2009) Morphology and physiology of the epiphyseal growth plate. *Folia Histochem Cytobiol* 47:5–16
8. Kierszenbaum AL, Tres LL (2012) Osteogenesis. In: Kierszenbaum AL, Tres LL (eds) *Histology and cell biology: an introduction to pathology*, 3rd edn. Elsevier–Saunders, Philadelphia, pp 151–167
9. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. *Int J Biochem Cell Biol* 40:46–62
10. Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? *J Physiol Sci* 62:299–307
11. Kronenberg HM (2006) PTHrP and skeletal development. *Ann N Y Acad Sci* 1068:1–13
12. Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. *Pediatr Nephrol* 25:625–631
13. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes

chondrodysplasia and delayed endochondral bone formation. *Proc Natl Acad Sci USA* 93:10240–10245

14. Guo J, Chung UI, Yang D, Karsenty G, Bringhurst FR, Kronenberg HM (2006) PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. *Dev Biol* 292:116–128

15. Charoenphandhu N, Nakkrasae LI, Kraikit K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca^{2+} absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. *Am J Physiol Endocrinol Metab* 297:E609–E619

16. Wongdee K, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2010) Claudin expression in the bone-lining cells of female rats exposed to long-standing acidemia. *Exp Mol Pathol* 88:305–310

17. Wongdee K, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N (2013) Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. *J Mol Histol* 44:103–109

18. Lehr HA, van der Loos CM, Teeling P, Gown AM (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. *J Histochem Cytochem* 47:119–126

19. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. *J Clin Invest* 110:771–781

20. Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009) Sox9 directly promotes *Bapx1* gene expression to repress Runx2 in chondrocytes. *Exp Cell Res* 315:2231–2240

21. Vignon E, Broquet P, Mathieu P, Louisot P, Richard M (1990) Histaminergic H1, serotonergic, beta adrenergic and dopaminergic receptors in human osteoarthritic cartilage. *Biochem Int* 20:251–255

22. Höglunger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. *Nat Neurosci* 7:726–735

23. Wasko R, Wolun-Cholewa M, Bolko P, Kotwicka M (2004) Effect of bromocriptine on cell apoptosis and proliferation in GH3 cell culture. *Neuro Endocrinol Lett* 25:223–228

24. Zhang Y, Cincotta AH (1997) Inhibitory effects of bromocriptine on vascular smooth muscle cell proliferation. *Atherosclerosis* 133:37–44

25. Huseman CA, Hassing JM (1984) Evidence for dopaminergic stimulation of growth velocity in some hypopituitary children. *J Clin Endocrinol Metab* 58:419–425
26. Huseman CA (1985) Growth enhancement by dopaminergic therapy in children with intrauterine growth retardation. *J Clin Endocrinol Metab* 61:514–519
27. Huseman CA, Hassing JM, Sibilia MG (1986) Endogenous dopaminergic dysfunction: a novel form of human growth hormone deficiency and short stature. *J Clin Endocrinol Metab* 62:484–490
28. van der Eerden BC, Karperien M, Gevers EF, Löwik CW, Wit JM (2000) Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. *J Bone Miner Res* 15:1045–1055
29. van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. *Endocr Rev* 24:782–801
30. Sanchez CP, He YZ (2007) Bone growth during daily or intermittent calcitriol treatment during renal failure with advanced secondary hyperparathyroidism. *Kidney Int* 72:582–591
31. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of *Indian hedgehog*. *Genes Dev* 18:952–963
32. Schipani E, Lanske B, Hunzeman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, Jüppner H (1997) Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. *Proc Natl Acad Sci USA* 94:13689–13694
33. Cheng A, Genever PG (2010) SOX9 determines RUNX2 transactivity by directing intracellular degradation. *J Bone Miner Res* 25:2680–2689
34. Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, O'Keefe RJ, Drissi H (2004) Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. *Exp Cell Res* 299:128–136

Output ที่ได้จากการ

1. รางวัลที่ได้รับ

รางวัลผลงานตีพิมพ์ในวารสารวิชาการนานาชาติสูงสุด (สาขาวิทยาศาสตร์ชีวภาพ) ประจำปี 2555 ในการประชุมวิชาการของสำนักงานคณะกรรมการการอุดมศึกษา ครั้งที่ 5: เครื่อข่ายเชิงกลยุทธ์เพื่อการพัฒนาบุคลากร มหาวิทยาลัย จัดโดยสำนักงานคณะกรรมการการอุดมศึกษา เมื่อวันที่ 16 พฤศจิกายน พ.ศ. 2555 โรงแรมแอมบาสซ่าเดอร์ ชั้น 5 จอมเทียน จ.ชลบุรี

2. ผลงานตีพิมพ์ระดับนานาชาติที่เป็น output โดยตรงของโครงการ จำนวน 2 เรื่อง และอยู่ในระหว่างแก้ไขเพื่อพิจารณาตีพิมพ์ (under revision) จำนวน 1 เรื่อง

1. Wongdee K*, Thonapan N, Krishnamra N, Charoenphandhu N**. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats. *Molecular and Cellular Biochemistry* (under revision)

* หัวหน้าโครงการวิจัยผู้รับทุน ** นักวิจัยที่ปรึกษา

บทความที่ได้รับการตีพิมพ์จะนำส่ง สกว. ในภายหลัง

2. Wongdee K*, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N**. Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. *Journal of Molecular Histology* 2013;44:104–109.

* หัวหน้าโครงการวิจัยผู้รับทุน ** นักวิจัยที่ปรึกษา

Impact Factor 2011: 1.484

SJR quartile: 2nd Quartile (Q2) ดังภาพด้านล่าง

Journal of Molecular Histology

Country: Netherlands

Subject Area: Biochemistry, Genetics and Molecular Biology | Medicine

Subject Category: Anatomy , Cell Biology

Publisher: Springer Netherlands. Publication type: Journals. ISSN: 15672379

Coverage: 2004-2012

H Index: 40

3. Wongdee K*, Krishnamra N, Charoenphandhu N**. Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? *Journal of Physiological Sciences* 2012;62(4):299–307.

* หัวหน้าโครงการวิจัยผู้รับทุน ** นักวิจัยที่ปรึกษา

Impact Factor 2011: 1.606

SJR quartile: 1st Quartile (Q1) ดังภาพด้านล่าง

Journal of Physiological Sciences

Country: Japan

Subject Area: Medicine

Subject Category: Medicine (miscellaneous)

Publisher: Physiological Society of Japan. Publication type: Journals. ISSN: 18806562, 18806546

Coverage: 1996-2011

H Index: 30

3. การบรรยายพิเศษ จำนวน 1 เรื่อง

ได้รับเชิญให้บรรยายพิเศษเรื่อง “Adaptive changes of maternal bone and intestine during lactation” ในการประชุมวิชาการของสำนักงานคณะกรรมการการอุดมศึกษา ครั้งที่ 5: เครือข่ายเชิงกลยุทธ์เพื่อการพัฒนาบุคลากรมหาวิทยาลัย จัดโดยสำนักงานคณะกรรมการการอุดมศึกษา เมื่อวันที่ 16 พฤษภาคม พ.ศ. 2555 โรงแรมแอมบาสเดอร์ ชิตี้ จอมเทียน จ.ชลบุรี

4. การเสนอผลงานแบบโปสเตอร์ในงานประชุมวิชาการระดับนานาชาติจำนวน 3 เรื่อง

1. Wongdee K, Thonapan N, Krishnamra N, Charoenphandhu N. Changes in the expression of Indian hedgehog in the tibial growth plate of lactating rats. At the 2nd Joint Meeting of the International Bone and Mineral Society (IBMS) and the Japanese Society for Bone and Mineral Research (JSBMR), Kobe, Japan, May 28 – June 1, 2013.
2. Wongdee K, Siangpro C, Chaipai S, Charoenphandhu N. Immunolocalization of claudin-15 in the duodenum of lactating rats: possible role in duodenal calcium hyperabsorption. At the 14th International Congress of Histochemistry and Cytochemistry, Kyoto, Japan, August 26-29, 2012.
3. Wongdee K, Sanumeun S, Yodseranee S, Charoenphandhu N. Expression of developmental regulatory proteins in growth plate chondrocytes of lactating rats. At the

7th Asia and Oceania Society for Comparative Endocrinology (AOSCE) Congress 2012, Kuala Lumpur, Malaysia, March 3-7, 2012.

ภาคผนวก

Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats

Kannikar Wongdee · Jarinthorn Teerapornpuntakit · Chitchamai Siangpro · Sunitra Chaipai · Narattaphol Charoenphandhu

Received: 8 August 2012/Accepted: 14 September 2012/Published online: 22 September 2012
© Springer Science+Business Media Dordrecht 2012

Abstract In lactation, the intestinal absorption of nutrients and minerals, especially calcium, is markedly enhanced to supply precursors for milk production. Little is known regarding the mechanism of this lactation-induced intestinal hyperabsorption. However, it has been postulated to result from villous hypertrophy with enlarged absorptive area and the upregulation of the cation-selective tight junction protein claudin-15, which could form calcium-permeable paracellular pores, thereby enhancing the paracellular calcium absorption. Here, we demonstrated in the duodenum of 21-day lactating rats that there were increases in the villous height, villous width and crypt depth, which together led to expansion of absorptive surface area. Quantitative real-time PCR further showed that the mRNA levels of claudin-10 and -15 were increased in the duodenal mucosal cells of lactating rats as compared to age-matched unmated control rats. However, immunohistochemical analysis revealed the lactation-induced upregulation of claudin-15, but not claudin-10 protein expression in the duodenal villous cells. The present results, therefore,

corroborated the previous hypothesis that lactation induced intestinal absorption of calcium and perhaps other cation minerals, in part, by increasing villous absorptive area and claudin-15 protein expression.

Keywords Claudin · Duodenum · Intestinal hypertrophy · Lactation · Tight junction

Introduction

In lactating mammals, the enhanced intestinal absorption of nutrients and minerals, such as calcium, is crucial for milk production (Prentice 2000; Kovacs 2005; Charoenphandhu et al. 2010). Without adequate intestinal calcium supply, bone resorption is markedly enhanced to provide free-ionized calcium, thereby leading to osteoporosis and increased fracture risk (Prentice 2000; Kovacs 2005; Ofluoglu and Ofluoglu 2008). However, the mechanism of the lactation-induced intestinal nutrient and mineral absorption is not completely understood. One of the possible adaptive mechanisms includes hypertrophy and hyperplasia of the intestinal villi to increase the villous height, thereby enlarging the absorptive surface area (Fell et al. 1963; Hammond 1997). Although several histological studies in lactating mammals, such as rodents, pigs and sheep, revealed hypertrophy of the intestinal mucosa (Fell et al. 1963; Pelletier et al. 1987; Hammond 1997), the histomorphometric determination along the crypt-villous axis has never been performed in late lactating rats.

In addition to intestinal villous hypertrophy, the intestinal epithelial cells may increase the expression of certain proteins responsible for nutrient and mineral absorption under the regulation of specific hormones (Charoenphandhu et al. 2009; Breves et al. 2010). For example, we recently reported

K. Wongdee · J. Teerapornpuntakit · N. Charoenphandhu
Center of Calcium and Bone Research (COCAB),
Faculty of Science, Mahidol University, Bangkok, Thailand

K. Wongdee
Office of Academic Management, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand

J. Teerapornpuntakit · N. Charoenphandhu (✉)
Department of Physiology, Faculty of Science,
Mahidol University, Rama VI Road, Bangkok 10400, Thailand
e-mail: naratt@narattsys.com

C. Siangpro · S. Chaipai
Medical Science Program, Faculty of Allied Health Sciences,
Burapha University, Chonburi, Thailand

that the lactogenic hormone prolactin was an important maternal hormone that stimulated transcellular and paracellular duodenal calcium absorption (Charoenphandhu et al. 2009, 2010). Since paracellular calcium flux is about 3 times greater than transcellular calcium flux, the lactation-enhanced paracellular calcium transport is of greater physiological significance (Charoenphandhu et al. 2009). Normally, the paracellular ion transport is regulated by the tight junction integral membrane proteins of the claudin family, which consists of ~20 members (for reviews, please see Tsukita et al. 2001; Anderson and Van Itallie 2009). Some claudins, such as claudin-2, -12 and -15, are capable of forming calcium-permeable paracellular pores for the paracellular calcium transport (Fujita et al. 2008; Charoenphandhu et al. 2009). Our recent in vitro study in intestinal epithelium-like Caco-2 monolayer showed that claudin-15, but not claudin-2 or -12, was essential for the stimulatory effect of lactogenic hormone prolactin on the paracellular calcium transport (Charoenphandhu et al. 2009). It is thus possible that, under a physiological hyperprolactinemic state as in lactation, the expression of claudin-15 protein should be markedly increased in the villous epithelial cells, which are the principal cells for calcium absorption (Walters and Weiser 1987).

Moreover, some tight junction proteins, e.g., claudin-10, are expressed at the early stage of epithelial cell differentiation, and have been recognized as an early marker of some differentiating epithelial cells, such as bronchiolar epithelial cells (Zemke et al. 2009). Since increases in intestinal cell proliferation and differentiation should occur during lactation, the expression of claudin-10 protein might be altered in the duodenal villous epithelial cells.

Therefore, the present study aimed to perform a histomorphometric analysis of maternal villous and crypt changes during late lactation. The expressions of claudin-10 and -15 proteins were also investigated in the duodenal epithelial cells of lactating rats. Duodenum was used in the present study because it normally absorbs dietary calcium with a relatively high rate as compared to the jejunum and ileum (Hoenderop et al. 2005). Moreover, the duodenum is well responsive to prolactin, which is the important regulator of paracellular calcium transport in lactation (Jantarajit et al. 2007; Charoenphandhu et al. 2009).

Materials and methods

Animals

Female non-mated (age-matched non-pregnant control) and pregnant Sprague–Dawley rats (*Rattus norvegicus*; 8-week-old, weighing 210–220 g) were obtained from the National Laboratory Animal Center, Salaya, Nakhon Pathom, Thailand.

They were housed in standard stainless steel cages under 12:12 h light:dark cycle (light on at 06:00 h; average illuminance of 200 lx), and fed standard chow containing 1.0 % wt/wt calcium, 0.9 % wt/wt phosphorus, and 4,000 IU/kg vitamin D (CP, Bangkok, Thailand) and reverse osmosis water ad libitum. Room temperature was controlled at 22–24 °C with relative humidity of ~50–60 %. After delivery, the litter size was adjusted to eight pups per dam. The dams were sacrificed for tissue collection on day 21 of lactation. Tissues were also collected from the age-matched non-pregnant control rats. This study has been approved by the Institutional Animal Care and Use Committee (IACUC) of the Faculty of Science, Mahidol University, Thailand.

Tissue preparation

Under 40 mg/kg sodium pentobarbitone i.p. (Ceva Santé Animale, Libourne, France) anesthesia, a 1.5-cm median laparotomy was performed with a pair of sterile surgical scissors. The fat pad and connective tissues were retracted for a clear operative field. A duodenal segment was dissected from the lactating rat or age-matched control rat, and then subjected to total RNA extraction and histological examination. All duodenal segments were obtained from the same location (~0.5–1 cm distal to the pylorus). Regarding histological examination, after removal of luminal content and adhering connective tissues, the tissues were immediately fixed and preserved at 4 °C for 24 h in 0.1 M phosphate-buffered saline (PBS) containing 4 % w/v paraformaldehyde. Thereafter, they were dehydrated and cleared by graded ethanol (70, 80, 90, 95 and 100 % ethanol) and xylene, respectively, for 30 min at each step. After being embedded in paraffin, these 1-cm specimens were longitudinally cut into 5-μm sections. The examined sections were located ~0.5–1 cm from the pylorus. After deparaffinization, the sections were stained with hematoxylin & eosin (H&E) for histomorphometric analysis. In some experiments, sections were subjected to immunohistochemical analyses of claudin-10 and -15 expression.

Immunohistochemistry

After deparaffinization, sections were incubated at 37 °C for 30 min in antigen retrieval solution [0.01 mg/mL proteinase K, 50 mM Tris–HCl pH 8.0 and 5 mM ethylenediaminetetraacetic acid (EDTA)] to expose the antigenic sites, thus facilitating binding between target proteins and antibodies. Thereafter, the sections were incubated for 1 h with 3 % H₂O₂ to inhibit endogenous peroxidase activity. Non-specific bindings were blocked by 2-h incubation with 4 % bovine serum albumin, 5 % normal goat serum, and 0.1 % Tween-20 in PBS before being incubated at 4 °C

overnight with 1:100 rabbit polyclonal primary antibodies against claudin-10 (catalog no. sc-25710) and -15 (catalog no. sc-25712; Santa Cruz Biotechnology, CA, USA). As for the “negative controls”, the sections were incubated with blocking solution in the absence of claudin-10 or -15 primary antibodies. After being washed with 0.1 % Tween-20 in PBS, the sections were incubated for 1 h at room temperature with 1:500 biotinylated goat anti-rabbit IgG (catalog no. 81-6140; Zymed, South San Francisco, CA, USA), followed by 60-min incubation with streptavidin-conjugated horseradish peroxidase solution (Zymed) and 3,3'-diaminobenzidine chromogen (DAB; Pierce, Rockford, IL, USA). Finally, the sections were counterstained with hematoxylin and examined under a light microscope (model DP50; Olympus, Tokyo, Japan).

Histomorphometric analysis

To minimize an error due to the area of measurement (e.g., proximal vs. distal parts of the duodenum), the specimens were obtained from the same area relative to the pylorus, and were examined in a double-blind fashion. Prior to the histomorphometric analysis, the sections were first verified for the presence of Brunner's glands, which is a histological marker for the duodenum (Paulsen 2010). Villous height, villous width and crypt depth were obtained from the same section (4 animals per group; 10 sections per animal; 100 \times magnification), according to the modified method of Thulesen et al. (1999). Each villus that was cut along its longitudinal axis was used to determine both villous height and width. Villous height was measured from the tip to the base of each villus. Villous width was the width of the villous base. Crypt depth was measured from the base of each villus down to the junction between crypt and smooth muscle layer. All three parameters were determined at 5 sites from each figure, and each examined villus was cut through its center which was perpendicular to the long axis of the intestine in order that the villous height and width were accurately measured.

Quantitative determination of immunohistochemical signals was modified from the methods of Wongdee et al. (2010) and Lehr et al. (1999). Selection of DAB-positive signals (brownish color) was performed by Adobe Photoshop CS3 (Adobe System, San Jose, CA, USA) by filtering the specific color shade [in red–green–blue (RGB) mode] and color intensity in the regions of interest (ROI), which covered each intact intestinal villus or crypt. The RGB color ranges were red = 86, green = 53, and blue = 40, and the fuzziness value was adjusted to 95 %. All pixels with DAB-positive color on the ROI were automatically highlighted by the software, while other pixels outside the defined color range were not included. Pixel counting was performed by the Histogram command, which showed the

numbers of the total and DAB-positive pixels in the ROI. Relative signal intensity was normalized by the average of negative control signals (i.e., the DAB-positive signals from the negative control sections). The relative signal intensity was calculated as followed.

$$\text{Relative intensity} = (\text{Positive pixels}/\text{Total pixels})_{\text{Age-matched control or lactation}} / (\text{Positive pixels}/\text{Total pixels})_{\text{Negative control}}$$

Total RNA preparation

Total RNA was prepared from duodenal mucosal scraping by using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instruction. Purity of the total RNA was determined by NanoDrop-2000c spectrophotometer (Thermo Scientific, Waltham, MA, USA) reading at 260 and 280 nm, the ratio of which ranged between 1.8 and 2.0. Thereafter, total RNA (1 μ g) was reverse-transcribed to cDNA with iScript cDNA synthesis kit (Bio-rad, Hercules, CA, USA) by a conventional thermal cycler (model MyCycler; Bio-rad). Rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control to check the consistency of the reverse transcription (percent coefficient of variation <5 %; n = 10).

Quantitative real-time PCR (qRT-PCR)

PCR primers used in qRT-PCR study (Table 1) were first checked for specificity and efficiency by conventional RT-PCR, as previously described (Nuntapornsak et al. 2010; Wongdee et al. 2011). Conventional RT-PCR was performed with GoTaq Green Master Mix (Promega, Madison, WI, USA) and Bio-Rad MyCycler. qRT-PCR and melting curve analyses were operated by Bio-rad MiniOpticon system with SsoFast EvaGreen Supermix (Bio-rad). Amplification reaction was performed for 45 cycles at 95 °C for 5 s and 55 °C annealing temperature for 10 s. PCR products were also visualized on 2 % agarose gel stained with 1 μ g/mL ethidium bromide (Sigma) under a UV transilluminator (Alpha Innotech, San Leandro, USA). In addition, PCR products were extracted by DNA extraction kit (catalog no. K0513; Fermentas, Thermo Scientific) and verified for the correct sequences by ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Gene expression levels were normalized by GAPDH expression.

Statistical analysis

Unless otherwise specify, the results are expressed as mean \pm SE. Comparisons between lactating group and age-matched non-pregnant control group were performed by nonparametric Mann–Whitney test. The level of significance

Table 1 *Rattus norvegicus* primers used in the qRT-PCR experiment

Gene name	Accession no.	Primer (forward/reverse)	Product length (bp)
Tight junction-related genes			
Claudin-10	XM_001074876	5'-CATATTGTCAGGTCTGTGTT-3' 5'-GGGGTGTGTTGTTGTC-3'	200
Claudin-15	XM_222085	5'-GCTGTGCCACCGACTCCC-3' 5'-CAGAGCCCAGTTCATACTTG-3'	330
Housekeeping gene			
GAPDH	NM_017008	5'-AGTCTACTGGCGTCTTCAC-3' 5'-TCATATTCTCGTGGTTCAC-3'	133

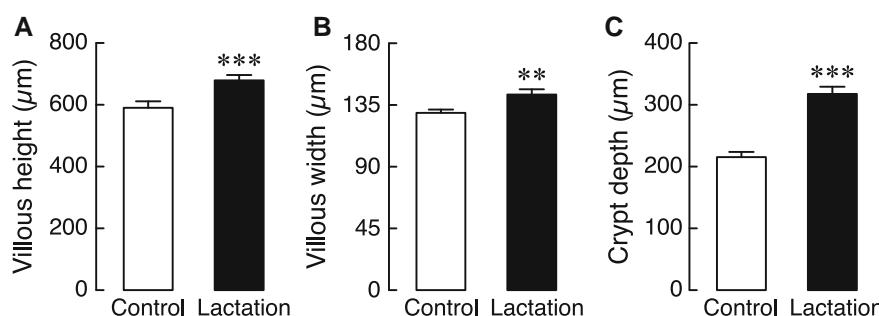
GAPDH glyceraldehyde-3-phosphate dehydrogenase

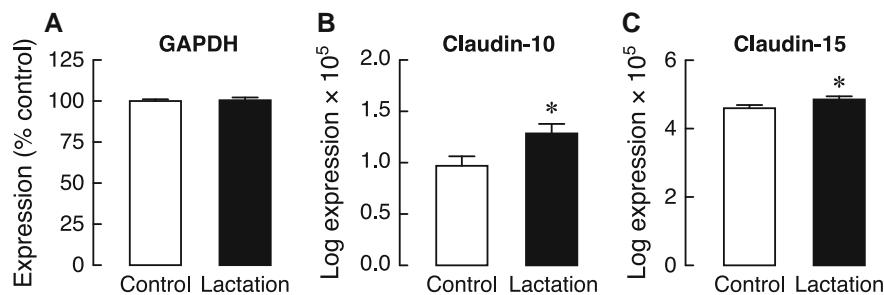
was $p < 0.05$. Means, standard error of the mean, and statistical tests were analyzed by GraphPad Prism 5.0 for Windows (GraphPad Software, San Diego, CA, USA).

Results

As shown in Fig. 1, histomorphometric analysis of duodenal mucosa in the control and lactating rats revealed that lactation significantly increased the villous height and width by ~ 10 and ~ 11 %, respectively, thereby increasing the surface area of a single villus for nutrient absorption by roughly at least 23 % (assuming that the villus has a cylindrical shape with one closed end). Thus, the lamina propria, a loose connective tissue forming the core of the villus, was enlarged during lactation. Crypt depth was markedly increased by ~ 43 % in lactating rats. These results suggested the compensatory adaptation of the maternal intestine to increase nutrient and mineral absorption.

As determined by qRT-PCR, the mRNA expression of GAPDH was not altered in lactation (Fig. 2a). The mRNA levels of claudin-10 and -15 were significantly increased in lactating rats compared to those in age-matched control rats (Fig. 2). Immunohistochemical analysis revealed that claudin-10 and -15 proteins were natively expressed in the duodenal villous cells, including villous absorptive cells and goblet cells, in age-matched control rats (Fig. 3). In lactating rats, the expression of claudin-15 proteins was apparently enhanced in both goblet and absorptive cells. In the absorptive cells, claudin-15 expression was intense near the apical part of the cells, corresponding to the tight


junction region. Some signals could be observed in the cytoplasm and other parts of the basolateral membrane (data not shown). Besides the villous epithelium, claudin-15 expression was also upregulated in the endothelial linings of the central lacteals in the villous cores (Fig. 3c, d). Quantitative immunohistochemical analysis confirmed an increase in claudin-15 expression by ~ 5 -fold in the duodenum of lactating rats (Fig. 4). On the other hand, lactation did not significantly alter claudin-10 expression ($p = 0.067$) in the duodenal villous cells or cells in the lamina propria (Figs. 3a, b and 4).


Discussion

During lactation, hyperabsorption of nutrients and minerals is an important adaptive mechanism of the intestine to supply sufficient precursors for milk production (Prentice 2000; Kovacs 2005; Charoenphandhu et al. 2010). Calcium is one of the major minerals absorbed by the small intestine in greater amount during this reproductive period (Prentice 2000; Kovacs 2005). However, the mechanisms responsible for lactation-induced intestinal nutrient and calcium absorption remain elusive. Since the nutrient and mineral absorptions usually occur at the tip and/or middle one-third of the villus (Bikle et al. 1984; Walters and Weiser 1987), it was hypothesized that the lactation-induced villous hypertrophy with enlarged absorptive surface area contributed significantly to the hyperabsorption.

In the present study, the duodenal adaptation in the crypt-villous axis was demonstrated in 21-day lactating

Fig. 1 **a** Villous height, **b** villous width, and **c** crypt depth in the duodenum of 21-day lactating and age-matched control rats ($n = 4$ per group). ** $p < 0.01$, *** $p < 0.001$ compared with its respective control group

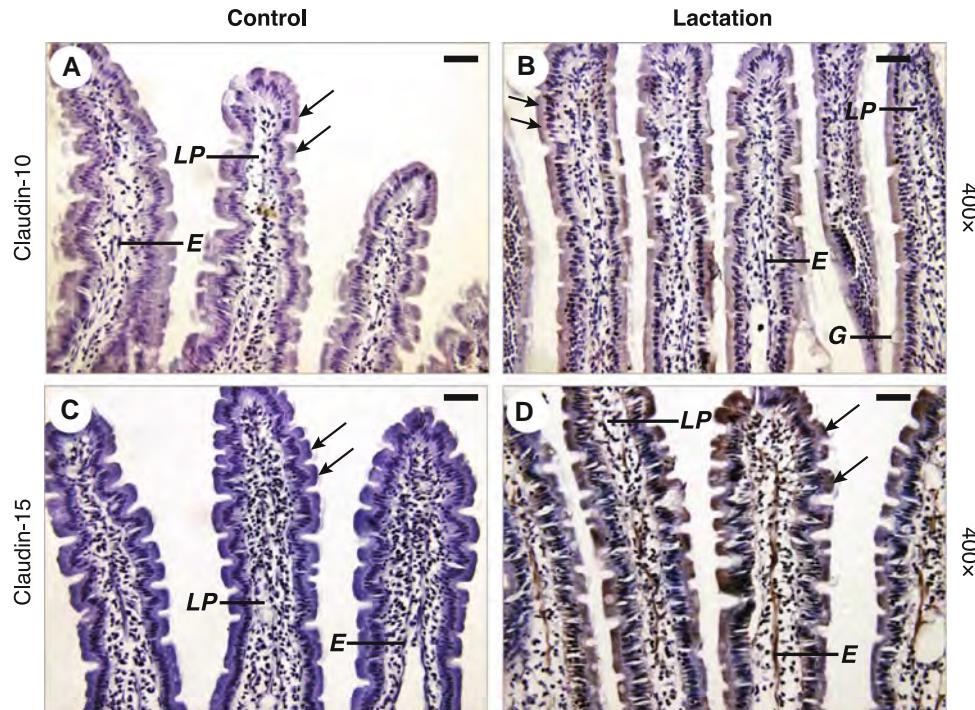
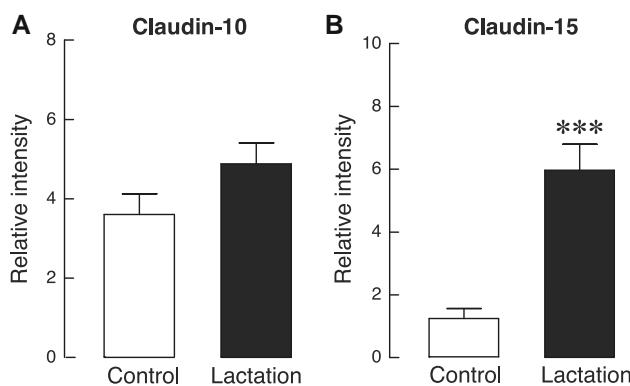


Fig. 2 The levels of **a** GAPDH, **b** claudin-10 and **c** claudin-15 transcripts in the duodenal mucosal cells of age-matched control and 21-day lactating rats ($n = 10$ per group). The mRNA levels of

claudins were determined by qRT-PCR and normalized by GAPDH mRNA expression. * $p < 0.05$ compared with the control group


Fig. 3 Representative immunohistochemical photomicrographs of **a–b** claudin-10 and **c–d** claudin-15 protein expression in the duodenum of age-matched control and 21-day lactating rats (400 \times magnification; bars, 50 μ m). The positive brownish signals of claudin proteins are localized predominantly in the villous absorptive cells (arrows), lateral membrane of goblet cells (G), and endothelial cells (E) of central lacteals in the lamina propria (LP)

rats. Specifically, the duodenal mucosal adaptation showed marked elongation and widening of the villi, resulting in expansive absorptive surface area, consistent with the previous histological findings in rats, pigs and sheep (Fell et al. 1963; Pelletier et al. 1987; Hammond 1997). Such an increase in the absorptive surface area was also accompanied by increased thickness of the intestinal crypts. Evidently, the intestinal crypt also serves as a reserve pool of progenitor cells to replace the sloughed-off absorptive cells in the villous tip (Pinto and Clevers 2005). Despite an upregulation of claudin-10 mRNA expression, lactation did not alter the duodenal expression level of claudin-10 protein, which is an early marker in some differentiating epithelia, such as the airway epithelia during development and repair (Zemke et al. 2009). Therefore, claudin-10 may not be a good marker for intestinal cell differentiation. In addition, similar to other members of the claudin family,

claudin-10 proteins also form paracellular pores with size- and charge-selective properties (Van Itallie et al. 2006). Thus, claudin-10 may not be involved in the lactation-induced increase in paracellular permeability to minerals.

On the other hand, we demonstrated the lactation-induced upregulation of cation-selective claudin-15 protein expression predominantly in the apical part of the villous absorptive cells, as well as in some other cells in the intestinal mucosa, such as goblet cells and endothelium of central lacteals. In the villous absorptive cells, claudin-15 signals could also be observed in the cytoplasm since claudins are dynamic tight junction proteins, which could be endocytosed and re-inserted into the plasma membrane during dynamic tight junction remodeling (Matsuda et al. 2004). Nevertheless, the present results were consistent with the previous report in the intestinal epithelium-like Caco-2 monolayer that claudin-15 was essential for the

Fig. 4 Relative signal intensities (arbitrary unit) of (a) claudin-10 and (b) claudin-15 proteins in the duodenum of age-matched control and 21-day lactating rats ($n = 4$ per group). The intensities of the negative control sections were normalized to 1. *** $p < 0.001$ compared with the control group

prolactin- or lactation-enhanced paracellular calcium absorption (Charoenphandhu et al. 2009, 2010). Therefore, we have provided further evidence for the physiological significance of cation-selective tight junction protein claudin-15, which may form calcium-permeable paracellular pores in the duodenal absorptive epithelium of lactating rats. In addition, claudin-15 also plays an important role in the maintenance of proper intestinal microstructure (Tamura et al. 2008, 2011). Claudin-15-deficient mice manifested a conspicuous intestinal anomaly known as megaintestine, in which the upper small intestine was ~ 2 -fold larger than normal in the length and diameter with impaired sodium and glucose absorptions (Tamura et al. 2008, 2011). Furthermore, since claudin-15 expression in the absorptive villous cells facilitated sodium-dependent glucose absorption (Tamura et al. 2011), the present claudin-15 upregulation may also contribute to the enhancement of intestinal glucose absorption in lactating mothers.

The exact explanation as to why claudin-15 expression was upregulated in the endothelial cells of lacteals has not been known. Under normal conditions, endothelial expression of claudin-15 is predominantly observed in the vasa recta of the renal medulla (Inai et al. 2005). Since the central lacteals are essential for the maintenance of villous hydrostatic pressure as well as for the lipid (chylomicron) absorption (Tso and Balint 1986), an increase in claudin-15 protein expression might alter lacteal endothelial permeability to facilitate both functions. Perin et al. (1997) also reported that intestinal lipid absorption was significantly enhanced in lactating rats.

In conclusion, the lactation-induced expansion of villous absorptive area resulted from increases in the villous height and width, probably to help enhance nutrient and mineral absorption. During this reproductive period, the protein

expression of claudin-15, but not claudin-10, was markedly elevated, which could in turn augment the paracellular calcium absorption across the villous epithelium (Charoenphandhu et al. 2009). The present evidence thus supports the previous hypothesis that lactation induces the intestinal absorption of calcium and perhaps other cation minerals, in part, by increasing villous absorptive surface area and claudin-15 protein expression (Charoenphandhu et al. 2010).

Acknowledgments This work was supported by grants from the Discovery-based Development Grant, National Science and Technology Development Agency (P-10-11281 to N. Charoenphandhu), the Faculty of Allied Health Sciences, Burapha University, the Office of the Higher Education Commission, the Thailand Research Fund (MRG5480230 to K. Wongdee), and the Senior Project Grant, Faculty of Allied Health Sciences, Burapha University (to K. Wongdee). C. Siangpro and S. Chaipai performed the senior project under supervision of K. Wongdee.

Conflict of interest The authors declare that there are no conflicts of interest.

References

- Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. *Cold Spring Harb Perspect Biol* 1(2):a002584. doi:10.1101/cshperspect.a002584
- Bikle DD, Zolock DT, Munson S (1984) Differential response of duodenal epithelial cells to 1,25-dihydroxyvitamin D₃ according to position on the villus: a comparison of calcium uptake, calcium-binding protein, and alkaline phosphatase activity. *Endocrinology* 115(6):2077–2084
- Breves G, Schröder B, Muscher A (2010) Luminal and endocrine factors for regulation of intestinal monosaccharide and Ca²⁺ transport. *Livest Sci* 134(1–3):4–10. doi:10.1016/j.livsci.2010.06.081
- Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca²⁺ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. *Am J Physiol Endocrinol Metab* 297(3):E609–E619. doi:10.1152/ajpendo.00347.2009
- Charoenphandhu N, Wongdee K, Krishnamra N (2010) Is prolactin the cardinal calciotropic maternal hormone? *Trends Endocrinol Metab* 21(7):395–401. doi:10.1016/j.tem.2010.02.002
- Fell BF, Smith KA, Campbell RM (1963) Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. *J Pathol Bacteriol* 85:179–188
- Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H (2008) Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca²⁺ absorption between enterocytes. *Mol Biol Cell* 19(5):1912–1921. doi:10.1091/mbc.E07-09-0973
- Hammond KA (1997) Adaptation of the maternal intestine during lactation. *J Mammary Gland Biol Neoplasia* 2(3):243–252
- Hoenderop JG, Nilius B, Bindels RJ (2005) Calcium absorption across epithelia. *Physiol Rev* 85(1):373–422. doi:10.1152/physrev.00003.2004

Inai T, Sengoku A, Guan X, Hirose E, Iida H, Shibata Y (2005) Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and -15, examined by RT-PCR and immunofluorescence microscopy. *Arch Histol Cytol* 68(5):349–360. doi:10.1679/aohc.68.349

Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N (2007) Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. *Am J Physiol Endocrinol Metab* 293(1):E372–E384. doi:10.1152/ajpendo.00142.2007

Kovacs CS (2005) Calcium and bone metabolism during pregnancy and lactation. *J Mammary Gland Biol Neoplasia* 10(2):105–118. doi:10.1007/s10911-005-5394-0

Lehr HA, van der Loos CM, Teeling P, Gown AM (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. *J Histochem Cytochem* 47(1):119–126. doi:10.1177/002215549904700113

Matsuda M, Kubo A, Furuse M, Tsukita S (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. *J Cell Sci* 117(Pt 7):1247–1257. doi:10.1242/jcs.00972

Nuntapornsak A, Wongdee K, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Changes in the mRNA expression of osteoblast-related genes in response to β_3 -adrenergic agonist in UMR106 cells. *Cell Biochem Funct* 28(1):45–51. doi:10.1002/cbf.1617

Ofluoglu O, Ofluoglu D (2008) A case report: pregnancy-induced severe osteoporosis with eight vertebral fractures. *Rheumatol Int* 29(2):197–201. doi:10.1007/s00296-008-0641-5

Paulsen DF (2010) Digestive tract. In: Paulsen DF (ed) *Histology and cell biology: examination and board review*. McGraw-Hill companies, Singapore, pp 207–228

Pelletier G, de Passillé AM, Bernier-Cardou M, Morisset J (1987) Influence of pregnancy, lactation, litter size and diet energy density on the stomach and intestine of sows. *J Nutr* 117(10):1759–1766

Perin N, Keelan M, Jarocka-Cyrt E, Clandinin MT, Thomson AB (1997) Ontogeny of intestinal adaptation in rats in response to isocaloric changes in dietary lipids. *Am J Physiol* 273(3 Pt 1):G713–G720

Pinto D, Clevers H (2005) Wnt control of stem cells and differentiation in the intestinal epithelium. *Exp Cell Res* 306(2):357–363. doi:10.1016/j.yexcr.2005.02.022

Prentice A (2000) Calcium in pregnancy and lactation. *Annu Rev Nutr* 20:249–272. doi:10.1146/annurev.nutr.20.1.249

Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, Sasaki H, Hayashi H, Suzuki Y, Noda T, Furuse M, Tsukita S (2008) Megaintestine in claudin-15-deficient mice. *Gastroenterology* 134(2):523–534. doi:10.1053/j.gastro.2007.11.040

Tamura A, Hayashi H, Imasato M, Yamazaki Y, Hagiwara A, Wada M, Noda T, Watanabe M, Suzuki Y, Tsukita S (2011) Loss of claudin-15, but not claudin-2, causes Na^+ deficiency and glucose malabsorption in mouse small intestine. *Gastroenterology* 140(3):913–923. doi:10.1053/j.gastro.2010.08.006

Thulesen J, Hartmann B, Nielsen C, Holst JJ, Poulsen SS (1999) Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: effects of dietary fibre. *Gut* 45(5):672–678. doi:10.1136/gut.45.5.672

Tso P, Balint JA (1986) Formation and transport of chylomicrons by enterocytes to the lymphatics. *Am J Physiol* 250(6 Pt 1):G715–G726

Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. *Nat Rev Mol Cell Biol* 2(4):285–293. doi:10.1038/35067088

Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. *Am J Physiol Renal Physiol* 291(6):F1288–F1299. doi:10.1152/ajprenal.00138.2006

Walters JR, Weiser MM (1987) Calcium transport by rat duodenal villus and crypt basolateral membranes. *Am J Physiol* 252(2 Pt 1):G170–G177

Wongdee K, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2010) Claudin expression in the bone-lining cells of female rats exposed to long-standing acidemia. *Exp Mol Pathol* 88(2):305–310. doi:10.1016/j.yexmp.2009.12.005

Wongdee K, Tulalamba W, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2011) Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. *Mol Cell Biochem* 349(1–2):195–204. doi:10.1007/s11010-010-0674-4

Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR (2009) Molecular staging of epithelial maturation using secretory cell-specific genes as markers. *Am J Respir Cell Mol Biol* 40(3):340–348. doi:10.1165/rcmb.2007-0380OC

Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related?

Kannikar Wongdee · Nateetip Krishnamra ·
Narattaphol Charoenphandhu

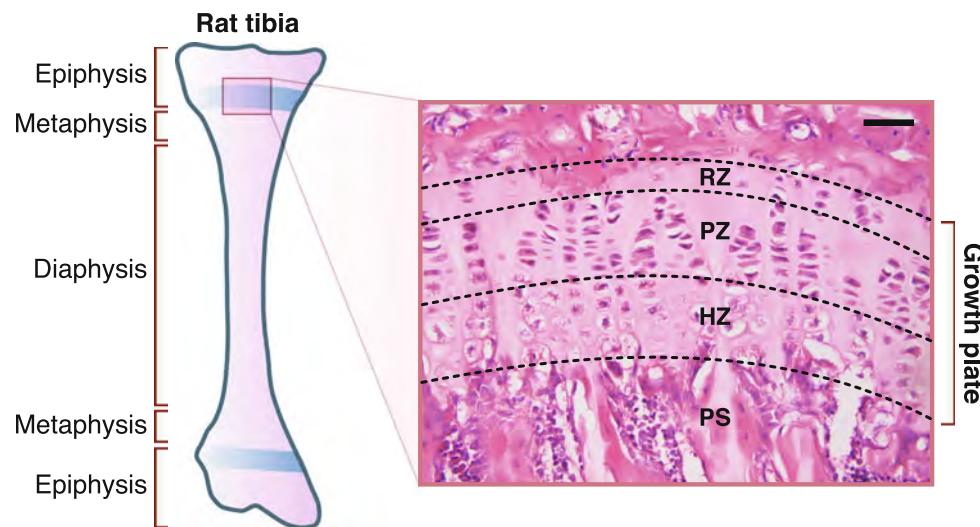
Received: 6 February 2012/Accepted: 8 May 2012/Published online: 25 May 2012
© The Physiological Society of Japan and Springer 2012

Abstract Endochondral bone growth in young growing mammals or adult mammals with persistent growth plates progresses from proliferation, maturation and hypertrophy of growth plate chondrocytes to mineralization of cartilaginous matrix to form an osseous tissue. This complex process is tightly regulated by a number of factors with different impacts, such as genetics, endocrine/paracrine factors [e.g., PTHrP, 1,25(OH)₂D₃, IGF-1, FGFs, and prolactin], and nutritional status (e.g., dietary calcium and vitamin D). Despite a strong link between growth plate function and elongation of the long bone, little is known whether endochondral bone growth indeed determines bone calcium accretion, bone mineral density (BMD), and/or peak bone mass. Since the process ends with cartilaginous matrix calcification, an increase in endochondral bone growth typically leads to more calcium accretion in the primary spongiosa and thus higher BMD. However, in lactating rats with enhanced trabecular bone resorption, bone elongation is inversely correlated with BMD. Although BMD can be increased by factors that enhance endochondral bone growth, the endochondral bone growth itself is unlikely to be an important determinant of peak bone mass since it is strongly determined by genetics.

K. Wongdee · N. Krishnamra · N. Charoenphandhu
Center of Calcium and Bone Research (COCAB),
Faculty of Science, Mahidol University, Bangkok, Thailand

K. Wongdee
Office of Academic Management,
Faculty of Allied Health Sciences, Burapha University,
Chonburi, Thailand

N. Krishnamra · N. Charoenphandhu (✉)
Department of Physiology, Faculty of Science,
Mahidol University, Rama VI Road, Bangkok 10400, Thailand
e-mail: naratt@narattsys.com


Therefore, endochondral bone growth and bone elongation are associated with calcium accretion only in a particular subregion of the long bone, but do not necessarily predict BMD and peak bone mass.

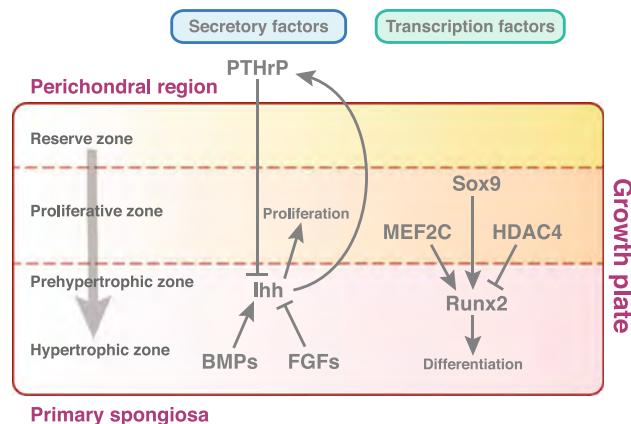
Keywords Bone mineral density (BMD) · Exercise · Intestinal calcium absorption · Peak bone mass · Pregnancy · Vitamin D

Introduction

As a primary structural framework of the body, bone formation takes place by two distinct mechanisms, i.e., intramembranous and endochondral ossifications. Most flat bones such as the skull are formed by intramembranous bone formation, in which bone tissue is laid down directly in primitive connective tissue or mesenchymes without being preceded by the formation of cartilage template [1–3]. On the other hand, long bones such as the tibia and femur are formed by endochondral bone formation, in which bone tissue replaces the preexisting cartilage template. Thus, endochondral bone growth requires precise timing of the sequential steps of proliferation and differentiation of growth plate chondrocytes [1–3]. Despite a considerable amount of information regarding endochondral bone growth, evidence of its influence over the subsequent bone calcium accretion, bone mineral density (BMD; mineral amount per a unit area of bone) or peak bone mass is sparse. In this review, we elaborate that the process of endochondral bone growth does affect bone calcium accumulation in the primary spongiosa near the growth plate as well as an increase in total bone length. Thus, under normal conditions, the resultant BMD should exhibit a positive correlation with bone elongation. However, under certain

Fig. 1 Longitudinal section of the growth plate (epiphyseal plate) of the proximal tibial metaphysis. The growth plate separates the epiphysis from the metaphysis, and is important for endochondral bone formation. The growth plate is divided into reserve zone (RZ), proliferative zone (PZ) and the hypertrophic zone (HZ), which is next by the primary spongiosa (PS)—the initial trabecular network formed after vascular invasion and matrix calcification (hematoxylin–eosin staining; scale bar 30 μ m)

physiological conditions, such as in lactation, a correlation between bone elongation and BMD may be inverted.


Growth plate chondrocytes and endochondral bone growth

The growth plates located in the proximal and distal epiphyses near the ends of the long bone contain chondrocytes at different stages of development. Proliferation and differentiation of growth plate chondrocytes lead to growth and elongation of the bone [1, 2, 4]. Histologically, the growth plate is divided into 3 zones from metaphysis to diaphysis, i.e., reserve or resting zone, proliferative zone, and hypertrophic zone (Fig. 1) [1–3]. The reserve zone is rich in extracellular matrix proteins, e.g., proteoglycans and type-IIb collagen with embedded small, uniform, low mitotically active chondroblasts [2]. The reserved chondroblasts, in turn, go through the proliferative zone, where chondrocytes have highly proliferative capacity and are packed into parallel vertical columns. The synthesis of type-II and -XI collagens is increased in this zone [1, 2]. Towards the end of the proliferation phase, chondrocytes which progressively differentiate into mature cells, by increasing cell size (hypertrophy) and accumulating glycogen in their cytoplasm, start to secrete type-X collagen in abundance. This zone is called a hypertrophic zone [2]. Ultrastructurally, the mature chondrocytes contain abundant rough endoplasmic reticulum and developing Golgi apparatus with numerous filopodia on the plasma membrane [2, 4]. Mature chondrocytes then undergo degeneration by apoptosis, and the matrix is later invaded by capillaries, osteoblasts, and hematopoietic cells from the marrow [1, 2]. Cartilaginous matrix also acts as a scaffold for hydroxyapatite formation, and matrix calcification ensues. The rate of matrix production by hypertrophic chondrocytes and

calcification are important determinants of bone elongation [1, 2, 4]. The endochondral bone growth is thus the primary mechanism that determines the skeletal framework, bone morphology, and bone mineral accretion, while other factors, such as nutritional status, (patho)physiological conditions (e.g., lactation), physical activity, or exercise can impact the degree of calcium accumulation and bone microstructure. Exercise training is also capable of inducing chondrocyte proliferation and osteoblast-mediated bone formation in humans and rodents [5, 6]. Having said that, is it reasonable to propose that endochondral bone growth is an important determinant of bone calcium accretion, and thus BMD? Supporting evidence comes from Gafni and colleagues [7] who investigated bone recovery in dexamethasone-treated 5-week-old rabbits, and found that, although dexamethasone induced growth retardation and severe osteoporosis (low BMD), after stopping such a treatment, endochondral bone growth (represented by bone length), and cortical and trabecular bone mass were concurrently recovered within 16 weeks, with endochondral bone growth and BMD finally showing no difference between control and dexamethasone-treated groups. Therefore, endochondral bone growth and bone calcium accretion as represented by bone elongation and BMD, respectively, should generally show positive correlation. However, under certain physiological conditions, such as lactation, these two parameters may be inversely correlated (see below).

Local regulators of growth plate development and endochondral bone growth

Development of growth plate chondrocytes, i.e., proliferation, differentiation, maturation, and apoptosis, is tightly regulated by several factors, e.g., genetics, hormones, local

Fig. 2 An overview of the regulation of growth plate chondrocyte development by secretory and transcriptional factors. Parathyroid hormone-related peptide (PTHRP) synthesized from the perichondral cells in the epiphysis and growth plate chondrocytes acts directly on PTHRP receptor in the proliferative chondrocytes to keep chondrocytes in the proliferative stage. The prehypertrophic chondrocytes express Indian hedgehog homolog (Ihh) which acts as a negative feedback regulator that suppresses its own synthesis by stimulating PTHRP production, thereby preventing further differentiation of proliferative chondrocytes. Bone morphogenetic proteins (BMPs) promote Ihh production, whereas fibroblast growth factors (FGFs) decrease Ihh production. A proper chondrocyte development also requires regulation from transcription factors, such as Sox9, Runx2, and MEF2C, which induce chondrocyte proliferation and maturation. On the other hand, chondrocyte maturation is suppressed by the enzyme HDAC4

cytokines, and nutritional status, as well as individual lifestyle [1, 8, 9]. In addition to circulating hormones known to have crucial roles in the regulation of endochondral bone growth [e.g., growth hormone, insulin-like growth factor (IGF)-1, thyroid hormone, estrogen and androgens], transcription factors (e.g., Sox9 and Runx2), and secretory local factors, e.g., Indian hedgehog protein (Ihh), parathyroid hormone-related peptide (PTHRP), fibroblast growth factors (FGFs), and bone morphogenetic proteins (BMPs) produced by chondrocytes are also important for proper development and regulation of morphological heterogeneity of growth plate chondrocytes [1, 8–10]. An overview of important local factors and their interactions is depicted in Fig. 2.

In the proliferative zone, an obligatory protein for chondrocyte development is PTHRP. PTHRP is expressed and secreted by periarticular perichondrium and proliferative growth plate chondrocytes, which can bind to PTH/PTHRP receptor on both late proliferative and hypertrophic chondrocytes [1, 8, 11]. Binding of PTHRP and its receptor maintains chondrocytes in their proliferative state and prevents progression of proliferative chondrocytes to hypertrophic chondrocytes [1, 12]. However, the proliferative chondrocytes distant from the site of PTHRP production are able to escape from the influence of PTHRP,

thereby transforming into prehypertrophic and hypertrophic cells [1, 8, 9]. Meanwhile, the prehypertrophic chondrocytes begin to express Ihh as a negative feedback regulator to prevent proliferative chondrocyte progression into the hypertrophic stage [1, 8, 9, 11]. Ihh belongs to the family of hedgehog proteins, which play roles in embryonic patterning and development [1, 9, 10]. Once released, Ihh maintains PTHRP expression in proliferative chondrocytes, which in turn, slows down or inhibits Ihh production in a negative feedback manner [1, 2, 8]. When the prehypertrophic chondrocytes undergo hypertrophy, they produce type-X collagen, alkaline phosphatase, and transglutaminase (TG), which can be used as markers of hypertrophic chondrocytes [2, 13]. It is noteworthy that this is the first zone that produces alkaline phosphatase, an essential enzyme for the matrix calcification process [2]. TG2 produced by prehypertrophic chondrocytes acts partly to promote chondrocyte hypertrophy [2, 14].

In addition to PTHRP/Ihh, other important local secretory proteins that regulate growth plate development are FGFs and BMPs. BMPs are members of the transforming growth factor (TGF)- β family that have diverse roles in bone development (for review, see [9]). BMP-7 is expressed in proliferative chondrocytes, whereas BMP-6 is expressed in prehypertrophic and hypertrophic chondrocytes [1, 9, 15]. BMP signaling appears to promote Ihh production in prehypertrophic and hypertrophic chondrocytes, thereby increasing the number of proliferative chondrocytes and the thickness of the proliferative zone [9, 16]. On the other hand, FGF signaling through four isoforms of FGF receptors (FGFR) has an opposite effect to BMPs. For example, activation of FGFR3, which is expressed in proliferative and hypertrophic chondrocytes, inhibits chondrocyte proliferation and accelerates chondrocyte hypertrophy [1, 17]. The reciprocal effects of BMPs and FGFs on terminal differentiation of hypertrophic chondrocytes are essential for proper matrix calcification [9].

Besides the secretory proteins, an important transcription factor required for maturation of chondrocytes is the sex-determining region Y-box 9 (Sox9), one of the earliest markers of chondrocyte condensation, which is expressed in chondroprogenitors and proliferating chondrocytes [1, 9, 18]. Sox9 is essential for chondrocyte proliferation and delays the onset of chondrocyte hypertrophy [1, 19]. Inactivation of Sox9 in limb buds prior to mesenchymal condensation led to a complete absence of cartilage and bone formation. The embryo also manifested severe generalized chondrodysplasia and dwarfism [19]. Downstream to Sox9 is *runt*-related transcription factor (Runx)-2, an essential transcription factor that drives differentiation and hypertrophy of proliferative chondrocytes [2, 20, 21]. Runx2 is also an early transcription factor for commitment

of osteoblast lineage; therefore, an absence of Runx2 expression results in no osteoblast formation [9, 22]. In vivo evidence of delayed chondrocyte hypertrophy in Runx2 null mice confirmed its function by showing a delayed chondrocyte hypertrophy [15, 21]. Another evidence in Runx2/Runx3 double knockout mice showed a complete absence of chondrocyte maturation [21]. An in vitro study in prechondrogenic ATDC5 cells also suggested that Runx2 induced chondrogenic differentiation and hypertrophy [20]. Moreover, the function of Runx2 could be modulated by several intracellular proteins, such as myocyte enhancer factor-2C (MEF2C, a transcription factor) [23] and histone deacetylase-4 (HDAC4, an enzyme that removes acetyl groups from a histone), which enhances Runx2 expression and inhibits Runx2 activity, respectively [24]. Runx2 also promotes vascular invasion and initiates commitment of mesenchymal stem cell differentiation into osteoblasts [22, 25].

Anomalous up- or downregulation of Ihh and PTHrP expressions not only impair growth plate development but also affect whole body osteogenesis [26–29]. Target deletion of PTHrP or its receptor in mice was lethal and the fetus showed premature chondrocyte differentiation, leading to abnormally excessive bone formation at birth [27]. In contrast, overexpressed PTHrP mice showed chondrodysplasia, characterized by short-limbed dwarfism and delayed chondrocyte differentiation, leading to retardation of endochondral bone growth [28, 29]. Similarly, Ihh null mice showed dwarfism of all appendicular and axial skeletal elements, decreased chondrocyte proliferation, maturation of chondrocyte at inappropriate location, and failure of osteoblast development in cortical and trabecular parts of the long bones [26]. Although BMD was not directly determined in the aforementioned studies, deletion or overexpression of Ihh and PTHrP could have deleterious effect on bone structure and bone formation.

Endochondral bone growth and bone calcium accretion in vitamin deficiency

It is widely accepted that genetic background is a major factor controlling endochondral bone growth [8, 30]. However, nutritional status can also have effects on endochondral bone growth and calcium accretion [8, 31, 32]. A number of nutrients, e.g., vitamins, calcium, phosphate, and lactose, cooperatively provide sufficient amount of precursors required for bone growth [32–35].

Regarding the roles of vitamins in normal bone growth and development, vitamins A and D regulate endochondral bone growth presumably through their actions on growth plate chondrocytes [32, 36, 37]. The biologically active metabolite of vitamin D [i.e., 1,25-dihydroxyvitamin D₃;

1,25(OH)₂D₃] also indirectly induces matrix mineralization, calcium accretion, and bone growth by enhancing intestinal calcium absorption [38]. However, the direct roles of 1,25(OH)₂D₃ on growth plate chondrocyte proliferation and differentiation are not completely understood. Vitamin D deficiency can induce abnormal bone growth known as rickets in the young and osteomalacia in adults. In rickets, failure of two separate processes are evident: (1) the growth plate chondrocytes fail to complete a sequential process of proliferation, differentiation and degeneration; and (2) the matured chondrocytes persist in the hypertrophic state without undergoing degeneration; therefore, there is no capillary invasion and matrix mineralization [34, 39–41]. An investigation in vitamin D receptor (VDR) knockout mice revealed the rachitic changes throughout the body. The growth plate of VDR knockout mice showed extensive disorganization of the chondrocyte column with an increase in the growth plate thickness [42]. Without proper bone formation, the accumulated osteoid (non-mineralized matrix) and cartilage are distorted by the pressure from weight bearing, thus producing pathological features such as bowed legs [34, 39, 41]. The severity depends on duration and degree of vitamin D deficiency.

In vivo studies of 8-day-old vitamin D-deficient chick showed an absence of PTH/PTHrP receptor expression in the growth plate chondrocytes [43]. This reduction of PTH/PTHrP receptor expression in the rachitic chicks was apparently due to compensatory high plasma PTH, which downregulated PTH/PTHrP receptor expression [43]. In addition to the effect on the growth plate, local vitamin D deficiency also affects vascular invasion [37, 44]. Chondrocyte-specific inactivation of Cyp27b1 which is the 1,25(OH)₂D₃-synthesizing enzyme in mice led to decreased mRNA expression of vascular endothelial growth factor (VEGF), an essential growth factor for vascular invasion [37, 44]. Such a decrease in angiogenesis may partly contribute to growth plate deformity and stunt growth. Although rickets may also lead to abnormal endosteal and periosteal ossification, low BMD in the patients partly results from impaired endochondral bone formation [39]. It is possible that, regardless of the calcipenic or phosphopenic causes of rickets, failure of apoptosis of the growth plate hypertrophic chondrocytes, which is a common underlying mechanism of rickets, may lead to a reduction in the space of primary spongiosa for calcification of the cartilaginous matrix, thereby resulting in impaired osteogenesis and reduced bone elongation. This might, in turn, result in low bone mass in rachitic individuals.

Vitamin A deficiency can have profound deleterious effects on endochondral bone growth. Deficiency of vitamin A suppresses all stages of growth plate chondrocyte development, resulting in thin bony trabeculae formed

across the face of the growth plate [34]. Thus, the long bones of vitamin A-deficient animals are shorter and thicker than normal. The shortness of long bone is caused by failure of endochondral bone growth, whereas an increase in bone thickness results from an imbalance between bone calcium apposition and remodeling process, the former of which appears to be predominant [34]. An in vitro study in primary growth plate chondrocyte culture revealed that retinoic acid (a metabolite of vitamin A) is important for growth plate maturation by modulating Ihh and PTHrP receptors and increasing Runx2 mRNA expression [45, 46].

Vitamin K deficiency also potentially attenuates endochondral bone growth [47, 48]. Price and colleagues [47] reported that rats treated with vitamin K antagonist warfarin for 8 months exhibited a severe growth plate disorder characterized by complete fusion of the tibial growth plate and cessation of longitudinal bone growth, resembling fetal warfarin syndrome in human. Such a growth plate defect appeared to result from impaired production of vitamin K-dependent proteins, namely osteocalcin and matrix Gla protein (MGP) [48]. In general, osteocalcin, a protein with a binding capacity with calcium, is expressed and secreted not only by mature osteoblasts, but also by hypertrophic chondrocytes, and thus may serve as a scaffold for calcification of cartilaginous matrix [49, 50]. MGP also has a high affinity for calcium, and mutations in MGP gene are responsible for Keutel syndrome, an autosomal recessive disorder with abnormal cartilage calcification [51].

Endochondral bone growth and bone calcium accretion in pregnancy and lactation

Interestingly, an increase in endochondral bone growth is also observed during pregnancy and lactation in humans, sheep, and rodents, of which the growth plate cartilage is intact [52–55]. High BMD is usually observed in pregnant rats, whereas lactating rats have low BMD [54, 56], suggesting that endochondral bone growth is not always positively correlated with BMD. An investigation in female mole rats revealed that the femur and lumbar vertebral lengths were increased during pregnancy [57, 58]. Similarly, femoral and tibial lengths of pregnant and lactating rats were increased from mid-pregnancy until the end of lactation [54, 55]. This elongation of the long bones was inversely correlated with the thickness of the total growth plate and the hypertrophic zone [55]. Although the underlying cellular mechanism of the growth plate changes during lactation remains elusive, an absence of bone elongation and a reduction in the hypertrophic zone height in lactating rats treated with an inhibitor of prolactin release, bromocriptine, suggests that the lactogenic

hormone prolactin from the pituitary gland could be an important regulatory factor responsible for the reduction of the hypertrophic zone height during lactation [55]. Besides prolactin, PTHrP secreted from the mammary gland during lactation and suckling may also contribute to the lactation-induced growth plate changes, since PTHrP can modulate Ihh production [10, 26]. Normally, growth plate height is an outcome of a balance between chondrogenesis and osteogenesis. It is, therefore, possible that prolactin might induce hypertrophic chondrocyte apoptosis to accelerate matrix calcification, which leads to bone elongation [54, 55]. It is noted that, to provide adequate calcium for milk production during lactation, prolactin also stimulates the intestinal calcium absorption and trabecular bone resorption [54, 59], the latter of which culminates in low BMD in lactating mothers [56, 59]. It is reasonable to speculate that, with bone loss from enhanced bone resorption, the process of bone elongation (a product of endochondral bone formation) may help replenish the maternal bone trabeculae so as to retain bone mass and to compensate for the reduction in BMD.

Long-term exposure to prolactin not only regulates maternal bones but, during the neonatal period, may contribute to longitudinal bone growth in the newborn. Several investigators have reported that the serum prolactin levels in the newborn ranging between 140–500 ng/mL are much higher than that in non-pregnant adults (~7–10 ng/mL) [60–62]. Hwang and co-workers [61] investigated changes in serum prolactin in pregnancy, postpartum, newborn infants, and children, and found that serum prolactin concentrations in the newborn at term were comparable to the maternal levels. After delivery, prolactin levels in the newborn progressively declined to the adult levels within 6 weeks. However, since ~16 % of the ingested prolactin subsequently appeared in the plasma of the rat neonate, the infants still continuously received exogenous prolactin through breast milk [63]. Since an in vitro experiment in human mesenchymal stem cells demonstrated that prolactin stimulated differentiation of these cells into chondrocytes [64], prolactin might act in concert with other hormones to enhance endochondral bone growth in newborns.

Relationship between endochondral bone growth and peak bone mass: does endochondral bone growth determine peak bone mass?

Peak bone mass is defined as BMD during the stable period following growth and accrual of bone mass prior to subsequent age-related bone loss [65]. In normal intrauterine development, a high rate of longitudinal bone growth is observed during the third trimester of fetal life, and bone

growth gradually decelerates until 3 years of age [8, 52]. In early puberty, the rate of longitudinal bone growth is substantially increased again reaching a plateau peak bone mass in adulthood [8, 31]. It is believed that early attainment of high peak bone mass is protective against osteoporosis later in life [7, 30]. However, besides the genetic factor, whether endochondral bone growth determines peak bone mass is controversial.

There are only a few studies on the relationship between endochondral bone growth and peak bone mass. Some investigations suggest that peak bone mass is not directly dependent on endochondral bone growth. Johnston and co-workers [66] performed a 3-year, double blind placebo-controlled trial to see the effect of calcium supplement on bone mineral density in identical twins. After a 3-year follow-up, they found that dietary calcium supplement could induce gain of bone mass in prepubertal twins and potentially resulted in high peak bone mass. However, although bone gain was evident, the heights of the children were not different. In another cohort study, male subjects who experienced short breastfeeding duration (≤ 3 months) during their infancy had higher peak bone mass in adult life, but the height was not different as compared to subjects with long breastfeeding duration [67].

Gain of bone mass without height change (or endochondral bone growth) and vice versa suggest that endochondral bone growth is not a direct determinant of peak bone mass. Nevertheless, some growth factors or hormones, such as FGF-2 and progesterone, may interact with the genetic background to affect bone mass, rather than endochondral bone growth [68, 69]. FGF-2, a pleiotropic mitogen of the FGF family, is expressed in several cell types, e.g., heart, lung, spleen, and osteoblasts [70, 71]. Previous *in vivo* investigation revealed that overexpression of FGF-2 caused achondrodysplasia of the growth plate and shortening of the long bones. The growth plate height was increased by hyperplasia of the reserve and proliferative zones, but the hypertrophic zone was nearly absent [70]. Similarly, systemic FGF-2 administration in rats also decreased longitudinal growth rate and growth plate chondrocyte proliferation, but increased bone formation through an increase in osteoprogenitor cell proliferation [68, 72].

Besides FGF-2, progesterone is another hormone that may control both endochondral bone growth and peak bone mass through progesterone receptor in osteoblasts and osteoclasts [69, 73]. Recent investigation in progesterone receptor knockout (PRKO) mice showed increases in total, cancellous, and cortical bone mass, without changes in the tibial longitudinal bone growth [69]. Yao and colleagues [73] performed a longitudinal study in 1- to 12-month-old PRKO mice and found that these mice developed higher peak bone mass at both cancellous and cortical sites.

However, this higher bone mass was not associated with endochondral bone growth, i.e., no difference in femoral lengths of PRKO versus wild-type littermates.

Perspective and concluding remarks

It could be concluded that endochondral bone growth and bone elongation are associated with bone calcium accretion, at least in a subregion of the spongiosa. In most cases, this calcium accretion leads to an increase in BMD. Interestingly, in lactation, trabecular bone resorption results in decreased BMD concurrently with bone elongation. However, the endochondral bone growth and the resultant bone elongation do not directly determine peak bone mass, which is presumably predetermined by genetic factors.

Is there any factor that can increase both endochondral bone growth and peak bone mass? It is reasonable to propose that one of the potential factors could be exercise, which has been known to induce chondrocyte proliferation and osteoblast-mediated bone formation [5, 6]. Although physical activity and exercise are the major lifestyle determinants of BMD and body height [74], types, duration, or intensity of exercise, or the exercise training protocol, that most efficiently improve endochondral bone growth and peak bone mass require more investigation. Weight-bearing impact exercises, e.g., jogging and gymnastics, usually increase bone mass [75–78], whereas non-impact exercises, e.g., swimming, increase bone length and body height [79, 80]. It is also possible that endochondral bone growth as represented by bone length primarily determines the size of the skeletal framework, whereas certain regular exercise may increase calcium accretion and mineral density within the skeletal structure, thereby positively correlating the endochondral bone growth with peak bone mass especially in young growing individuals.

Acknowledgments The authors thank Siriluk Sanumuen and Supaporn Yodseranee for their excellent assistance. This work was supported by grants from the Faculty of Allied Health Sciences, Burapha University, the Office of the Higher Education Commission, the Thailand Research Fund (MRG5480230 to K. Wongdee), the Discovery-based Development Grant, National Science and Technology Development Agency (P-10-11281 to N. Charoenphandhu), the Mahidol University research grant (to N. Charoenphandhu), and the Faculty of Science, Mahidol University (to N. Charoenphandhu).

Conflict of interest None.

References

1. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. *Int J Biochem Cell Biol* 40:46–62

2. Burdan F, Szumiło J, Korobowicz A, Farooque R, Patel S, Patel A, Dave A, Szumiło M, Solecki M, Klepacz R, Dudka J (2009) Morphology and physiology of the epiphyseal growth plate. *Folia Histochem Cytophysiol* 47:5–16
3. Villemure I, Stokes IAF (2009) Growth plate mechanics and mechanobiology. A survey of present understanding. *J Biomech* 42:1793–1803
4. Kierszenbaum AL, Tres LL (2012) Osteogenesis. In: Kierszenbaum AL, Tres LL (eds) *Histology and cell biology: an introduction to pathology*, 3rd edn. Saunders, Philadelphia, pp 151–168
5. Plochocki JH, Riscigno CJ, Garcia M (2006) Functional adaptation of the femoral head to voluntary exercise. *Anat Rec A Discov Mol Cell Evol Biol* 288:776–781
6. Fujimura R, Ashizawa N, Watanabe M, Mukai N, Amagai H, Fukubayashi T, Hayashi K, Tokuyama K, Suzuki M (1997) Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism. *J Bone Miner Res* 12:656–662
7. Gafni RI, McCarthy EF, Hatcher T, Meyers JL, Inoue N, Reddy C, Weise M, Barnes KM, Abad V, Baron J (2002) Recovery from osteoporosis through skeletal growth: early bone mass acquisition has little effect on adult bone density. *FASEB J* 16:736–738
8. van der Eerden BCJ, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. *Endocr Rev* 24:782–801
9. Kronenberg HM (2003) Developmental regulation of the growth plate. *Nature* 423:332–336
10. Lai LP, Mitchell J (2005) Indian hedgehog: its roles and regulation in endochondral bone development. *J Cell Biochem* 96:1163–1173
11. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. *Science* 273:613–622
12. Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissensohn RA, Kronenberg HM, Segre GV (1996) Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. *Endocrinology* 137:5109–5118
13. Nurminskaya M, Linsenmayer TF (1996) Identification and characterization of up-regulated genes during chondrocyte hypertrophy. *Dev Dyn* 206:260–271
14. Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. *Osteoarthr Cartil* 17:1056–1064
15. Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, Sato M, Yamagiwa H, Kimura T, Yasui N, Ochi T, Endo N, Kitamura Y, Kishimoto T, Komori T (1999) Maturational disturbance of chondrocytes in Cbfa1-deficient mice. *Dev Dyn* 214:279–290
16. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, Vortkamp A (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. *Development* 128:4523–4534
17. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. *Dev Cell* 3:439–449
18. Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. *Pediatr Nephrol* 25:625–631
19. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. *Genes Dev* 16:2813–2828
20. Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. *J Cell Biol* 166:85–95
21. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. *Genes Dev* 18:952–963
22. Ducey P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. *Science* 289:1501–1504
23. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. *Dev Cell* 12:377–389
24. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. *Cell* 119:555–566
25. Himeno M, Enomoto H, Liu W, Ishizeki K, Nomura S, Kitamura Y, Komori T (2002) Impaired vascular invasion of Cbfa1-deficient cartilage engrafted in the spleen. *J Bone Miner Res* 17:1297–1305
26. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. *Genes Dev* 13:2072–2086
27. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VLJ, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. *Genes Dev* 8:277–289
28. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. *Proc Natl Acad Sci USA* 93:10240–10245
29. Toribio RE, Brown HA, Novince CM, Marlow B, Hernon K, Lanigan LG, Hildreth BE 3rd, Werbeck JL, Shu ST, Lorch G, Carlton M, Foley J, Boyaka P, McCauley LK, Rosol TJ (2010) The midregion, nuclear localization sequence, and C terminus of PTHrP regulate skeletal development, hematopoiesis, and survival in mice. *FASEB J* 24:1947–1957
30. Gafni RI, Baron J (2007) Childhood bone mass acquisition and peak bone mass may not be important determinants of bone mass in late adulthood. *Pediatrics* 119(Suppl 2):S131–S136
31. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. *Osteoporos Int* 11:985–1009
32. Goldberg G (2006) Nutrition and bone. *Women Health Med* 3:157–159
33. Itakura C, Yamasaki K, Goto M, Takahashi M (1978) Pathology of experimental vitamin D deficiency rickets in growing chickens. I. Bone. *Avian Pathol* 7:491–513
34. Wolbach SB (1947) Vitamin-A deficiency and excess in relation to skeletal growth. *J Bone Joint Surg Am* 29:171–192
35. Miller SC, Miller MA, Omura TH (1988) Dietary lactose improves endochondral growth and bone development and mineralization in rats fed a vitamin D-deficient diet. *J Nutr* 118:72–77
36. Prentice A, Schoenmakers I, Laskey MA, de Bono S, Ginty F, Goldberg GR (2006) Nutrition and bone growth and development. *Proc Nutr Soc* 65:348–360
37. St-Arnaud R, Naja RP (2011) Vitamin D metabolism, cartilage and bone fracture repair. *Mol Cell Endocrinol* 347:48–54
38. Christakos S (2012) Mechanism of action of 1,25-dihydroxyvitamin D₃ on intestinal calcium absorption. *Rev Endocr Metab Disord* 13:39–44

39. Berry JL, Davies M, Mee AP (2002) Vitamin D metabolism, rickets, and osteomalacia. *Semin Musculoskelet Radiol* 6:173–181
40. Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. *J Bone Miner Metab* 27:392–401
41. Mughal MZ (2011) Rickets. *Curr Osteoporos Rep* 9:291–299
42. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. *Endocrinology* 140:4982–4987
43. Ben-Bassat S, Genina O, Lavelin I, Leach RM, Pines M (1999) Parathyroid receptor gene expression by epiphyseal growth plates in rickets and tibial dyschondroplasia. *Mol Cell Endocrinol* 149:185–195
44. Naja RP, Dardenne O, Arabian A, St Arnaud R (2009) Chondrocyte-specific modulation of Cyp27b1 expression supports a role for local synthesis of 1,25-dihydroxyvitamin D₃ in growth plate development. *Endocrinology* 150:4024–4032
45. Yoshida E, Noshiro M, Kawamoto T, Tsutsumi S, Kuruta Y, Kato Y (2001) Direct inhibition of Indian hedgehog expression by parathyroid hormone (PTH)/PTH-related peptide and up-regulation by retinoic acid in growth plate chondrocyte cultures. *Exp Cell Res* 265:64–72
46. Kirimoto A, Takagi Y, Ohya K, Shimokawa H (2005) Effects of retinoic acid on the differentiation of chondrogenic progenitor cells, ATDC5. *J Med Dent Sci* 52:153–162
47. Price PA, Williamson MK, Haba T, Dell RB, Jee WSS (1982) Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. *Proc Natl Acad Sci USA* 79:7734–7738
48. Feteih R, Tassinari MS, Lian JB (1990) Effect of sodium warfarin on vitamin K-dependent proteins and skeletal development in the rat fetus. *J Bone Miner Res* 5:885–894
49. Pullig O, Weseloh G, Ronneberger D, Käkönen S, Swoboda B (2000) Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. *Calcif Tissue Int* 67:230–240
50. Gerstenfeld LC, Shapiro FD (1996) Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endochondral bone development. *J Cell Biochem* 62:1–9
51. Munroe PB, Olgunturk RO, Fryns JP, Van Maldergem L, Ziereisen F, Yuksel B, Gardiner RM, Chung E (1999) Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. *Nat Genet* 21:142–144
52. Bowman BM, Miller SC (2001) Skeletal adaptations during mammalian reproduction. *J Musculoskelet Neuronal Interact* 1:347–355
53. Dengler-Crish CM, Catania KC (2009) Cessation of reproduction-related spine elongation after multiple breeding cycles in female naked mole-rats. *Anat Rec (Hoboken)* 292:131–137
54. Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N (2010) Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. *Am J Physiol Endocrinol Metab* 299:E426–E436
55. Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Possible chondroregulatory role of prolactin on the tibial growth plate of lactating rats. *Histochem Cell Biol* 134:483–491
56. Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Femoral bone mineral density and bone mineral content in bromocriptine-treated pregnant and lactating rats. *J Physiol Sci* 60:1–8
57. Henry EC, Dengler-Crish CM, Catania KC (2007) Growing out of a caste—reproduction and the making of the queen mole-rat. *J Exp Biol* 210:261–268
58. Redd EH, Miller SC, Jee WSS (1984) Changes in endochondral bone elongation rates during pregnancy and lactation in rats. *Calcif Tissue Int* 36:697–701
59. Nakkrasae LI, Thongon N, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2010) Transepithelial calcium transport in prolactin-exposed intestine-like Caco-2 monolayer after combinatorial knockdown of TRPV5, TRPV6 and Ca_v1.3. *J Physiol Sci* 60:9–17
60. Badawi M, Van Exter C, Delogne-Desnoeck J, Van Meenen F, Robyn C (1978) Cord serum prolactin in relation to the time of the day, the sex of the neonate and the birth weight. *Acta Endocrinol (Copenh)* 87:241–247
61. Hwang P, Guyda H, Friesen H (1971) A radioimmunoassay for human prolactin. *Proc Natl Acad Sci USA* 68:1902–1906
62. Smith YF, Mullon DK, Hamosh M, Scanlon JW, Hamosh P (1979) Serum prolactin and respiratory distress syndrome in the newborn. *Pediatr Res* 14:93–95
63. Whitworth NS, Grosvenor CE (1978) Transfer of milk prolactin to the plasma of neonatal rats by intestinal absorption. *J Endocrinol* 79:191–199
64. Romero-Prado M, Blázquez C, Rodríguez-Navas C, Muñoz J, Guerrero I, Delgado-Baeza E, García-Ruiz JP (2006) Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. *J Cell Biochem* 98:1457–1470
65. Berger C, Goltzman D, Langsetmo L, Joseph L, Jackson S, Kreiger N, Tenenhouse A, Davison KS, Josse RG, Prior JC, Hanley DA, CaMos Research Group (2010) Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. *J Bone Miner Res* 25:1948–1957
66. Johnston CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. *N Engl J Med* 327:82–87
67. Pirilä S, Taskinen M, Viljakainen H, Kajosaari M, Turanlahti M, Saarinen-Pihkala UM, Mäkitie O (2011) Infant milk feeding influences adult bone health: a prospective study from birth to 32 years. *PLoS ONE* 6:e19068. doi:10.1371/journal.pone.0019068
68. Nagai H, Tsukuda R, Yamasaki H, Mayahara H (1999) Systemic injection of FGF-2 stimulates endocortical bone modelling in SAMP6, a murine model of low turnover osteopenia. *J Vet Med Sci* 61:869–875
69. Rickard DJ, Iwaniec UT, Evans G, Hefferan TE, Hunter JC, Waters KM, Lydon JP, O’Malley BW, Khosla S, Spelsberg TC, Turner RT (2008) Bone growth and turnover in progesterone receptor knockout mice. *Endocrinology* 149:2383–2390
70. Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW 2nd, Lightfoot P, German R, Howles PN, Kier A, O’Toole BA, Sasse J, Gonzalez AM, Baird A, Doetschman T (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. *Mol Biol Cell* 6:1861–1873
71. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, Doetschman T, Coffin JD, Hurley MM (2000) Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. *J Clin Invest* 105:1085–1093
72. Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Kato K (1993) In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. *Growth Factors* 9:73–80
73. Yao W, Dai W, Shahnazari M, Pham A, Chen Z, Chen H, Guan M, Lane NE (2010) Inhibition of the progesterone nuclear receptor during the bone linear growth phase increases peak bone mass in female mice. *PLoS ONE* 5:e11410. doi:10.1371/journal.pone.0011410

74. Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D (1995) Childhood growth, physical activity, and peak bone mass in women. *J Bone Miner Res* 10:940–947

75. Bauer DC, Browner WS, Cauley JA, Orwoll ES, Scott JC, Black DM, Tao JL, Cummings SR (1993) Factors associated with appendicular bone mass in older women. *Ann Intern Med* 118:657–665

76. Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E (1998) Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. *J Bone Miner Res* 13:1814–1821

77. Vainionpää A, Korpelainen R, Leppäluoto J, Jämsä T (2005) Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. *Osteoporos Int* 16:191–197

78. Welten DC, Kemper HC, Post GB, van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. *J Bone Miner Res* 9:1089–1096

79. Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R (1995) Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorrheic athletes. *J Bone Miner Res* 10:586–593

80. Swissa-Sivan A, Simkin A, Leichter I, Nyska A, Nyska M, Statter M, Bivas A, Menczel J, Samueloff S (1989) Effect of swimming on bone growth and development in young rats. *Bone Miner* 7:91–105