



### Final Report

#### Project Title

**Distribution of the glucose transporters (GLUTs) for spermatozoa and specific extender  
for semen cryopreservation in Asian elephant**

By

**Somchai Sajapitak**

December 2013

สำนักงานกองทุนสนับสนุนการวิจัย

Contract No. TRF- MRG5480238

**Final Report**

**Project Title**

**Distribution of the glucose transporters (GLUTs) for spermatozoa and specific extender  
for semen cryopreservation in Asian elephant**

Researcher; **Somchai Sajapitak**

Institute; **Department of Large Animal and Wildlife Clinical Sciences,  
Faculty of Veterinary Medicine, Kasetsart University**

**This project granted by the Thailand Research Fund**

## LIST OF CONTENT

| <b>Chapter</b>                                         | <b>Page</b> |
|--------------------------------------------------------|-------------|
| <b>Acknowledgements</b>                                | 1           |
| <b>Executive Summary</b>                               | 2           |
| <b>Abstract</b>                                        | 5           |
| <b>Introduction</b>                                    | 7           |
| Rational for the Study                                 | 7           |
| Statement of Problem                                   | 7           |
| Objectives of the Study                                | 8           |
| <b>Materials and Methods</b>                           | 8           |
| Animals and sample collections                         | 8           |
| Blood evaluation                                       | 8           |
| Sperm evaluation                                       | 9           |
| Immunocytochemistry                                    | 10          |
| Statistical analysis                                   | 10          |
| <b>Results</b>                                         | 10          |
| Experimental I                                         | 10          |
| Experimental II                                        | 11          |
| <b>Discussion</b>                                      | 12          |
| Discussion                                             | 12          |
| Conclusion                                             | 13          |
| Table 1                                                | 15          |
| Table 2                                                | 16          |
| Table 3                                                | 17          |
| Table 4                                                | 18          |
| Table 5                                                | 19          |
| Figure 1                                               | 20          |
| Figure 2                                               | 21          |
| Figure 3                                               | 22          |
| Figure 4                                               | 23          |
| Figure 5                                               | 24          |
| <b>References</b>                                      | 25          |
| <b>Output (Acknowledge the Thailand Research Fund)</b> | 28          |
| <b>Appendix</b>                                        | 29          |
| Appendix A                                             | 29          |
| Appendix B                                             | 30          |
| Appendix C                                             | 31          |

เอกสารแนบทมายเลข 2

### **Acknowledgements**

I would like to gratefully acknowledge all of the people. Special thanks must go to Dr. Anuchai Pinyopummin, my mentor, for sharing his enormous and tremendous knowledge of the field of animal reproduction and his invaluable advice, support, friendship and patience well beyond his academic duties. I am very grateful for Miss Orawan Boodde and Miss Sudtisa Laopiem, the expert technicians of kamphaengsaen Veterinary diagnostic center, who provide the test results. I would like to thank Dr. Sittidet Mahasawangkul, the director of the National Elephant Institute, Forest Industry Organization for his permission of sample collection and the Faculty of Veterinary Medicine at Kasetsart University for providing facilities. I would like to acknowledge the Thailand Research Fund and Kasetsart University Research and Development Institute for financial assistance of this study (TRF- MRG5480238).

**Executive Summary:**

**Report on Experiment to study of Distribution of the glucose transporters (GLUTs) for spermatozoa and specific extender for semen cryopreservation in Asian elephant**

Somchai Sajapitak

Department of Large Animal and Wildlife Clinical Sciences,

Faculty of Veterinary Medicine, Kasetsart University

E-mail Address: fvetscs@ku.ac.th

**Purpose of Experiment:**

To understand the function of the sperm of an elephant, the energy from hexose of elephant's sperm need to be used as energy. It is necessary to study transporter proteins, particularly Glucose transporter proteins (GLUTs) at the surface of the sperm cell. These GLUT proteins, as a whole, are mainly responsible for the transport of hexose across mammalian sperm membranes and play a major role in the regulation of sperm glucose and fructose metabolism, especially GLUT3. To our knowledge, there were a few reports about the GLUT proteins in the plasma membrane of elephant's spermatozoa. Therefore, the study of transporter proteins at the surface of the tissue as a kind of elephant sperm is essential for the development of the cooled elephant semen quality. In particular, the preparation was diluted semen containing the sperm of elephant energy for sperm to extend the life and performance quality of sperm after thawing of cooled semen. Therefore, this study aims to investigate the presence and localization of GLUT3 in freshly ejaculated Asian elephant spermatozoa with different quality of progressive motility to evaluate the effect of different Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen on the expression of GLUT3 on semen quality of spermatozoa motility. The present investigation was undertaken to study the effect of 3% glycerol in Tris-based extender on the variations in the temporal localization of the hexose specific transporters (GLUT3) after cold storage of elephant spermatozoa with respect to changes the GLUT3 in plasma membrane integrity and spermatozoa motility, both of which are indicators of sperm viability and metabolic intactness.

**Experiment Materials and Methods:**

Experimental I, The fresh semen samples were collected from 10 normal Asian elephants. The semen samples were classified according to the percentages of motile sperm by Group 1 ( $\leq 20\%$ ; n=4), Group 2 ( $> 20\% - 60\%$ ; n=3) and Group 3 ( $> 60\%$ ; n=3).

Experimental II, The semen samples were collected from 6 Asian elephant bulls that have greater than 60% individual motility. The samples were suspended in TG extender or T extender and chilled in refrigerator at  $4^{\circ}\text{C}$  for 48 h. The GLUT3 transporter was determined by immunocytochemical localization using the rabbit anti-GLUT3 polyclonal antibody. For the evaluation of sperm integrity and motility, statistical comparisons of the expression of immunolocalisation of GLUT3 samples were performed by STATA program. All results were expressed as mean with standard deviations (SD) and the level of significance was set at  $p<0.05$ .

### **Summary of Results:**

**Experimental I;** The expression of immunolocalisation of GLUT3 clearly showed that the spermatozoa expressed the GLUT3, strong GLUT3 immunoreactivity was observed at the principal piece and end piece of the sperm tail. Percentages of the expression of immunolocalisation of GLUT3 in the 3 type groups showed significant differences between the Group1 ( $21.46\pm10.25$ ) and Group2 ( $84.37\pm8.70$ ), Group1 and Group3 ( $99.40\pm0.69$ ) and Group2 and Group3.

**Experimental II;** This study revealed that GLUT3 expression after cold storage were found in all parts of the head, middle piece, principal piece and end piece of the sperm tail in the TG extender group, but while the T extender group were expressed at middle piece, principal piece and end piece of the sperm tail. Percentages of the expression of immunolocalisation of GLUT3 of the head, middle piece, principal piece and end piece of the sperm tail in the 2 type of the extender groups showed significant differences between the TG extender group and T extender group ( $p<0.05$ ). The percentages of the 3 type groups of motility in Asia elephant spermatozoa showed statistically significant difference at  $p<0.05$ .

### **Conclusion:**

The present study indicated that the expression of GLUT3 was localized at the principal and end piece of the sperm tail and the motility of fresh elephant spermatozoa were affected by

GLUT3 expression and its expression may involve energy production via the glycolytic pathway. In addition, this result confirmed the reduction of the expression of GLUT3 and motility in elephant spermatozoa after cold storage of the T extender group when compared the TG extender group and reveals that the effect of glycerol on sperm function in the TG extender improved by notice spermatozoa motility and the expression of GLUT3 of spermatozoa better than the T extender group. This substance glycerol may be a result of the sperm cell membrane strength after cold storage.

Somchai Sajapitak D.V.M. M.Sc., Ph.D.

Faculty of Veterinary Medicine, Kasetsart University

Distribution of the glucose transporters (GLUTs) for spermatozoa and specific extender for semen cryopreservation in Asian elephant

Somchai Sajapitak

Department of Large Animal and Wildlife Clinical Sciences,

Faculty of Veterinary Medicine, Kasetsart University

E-mail Address: fvetscs@ku.ac.th

Project Periods: July 2011 – August 2013 (2 year periods)

---

### **Abstract**

The objective of this study was to investigate the distribution of the glucose transporters (GLUTs) for spermatozoa and specific extender for semen cryopreservation in Asian elephant. Spermatozoa, as other eukaryotic cells, need hexoses to produce energy for moving along the female genital tract and maintaining membrane homeostasis. Glucose transporter 3 (GLUT3) proteins, as a whole, is mainly responsible for the transport of hexose across mammalian sperm membranes and play a major role in the regulation of sperm glucose and fructose metabolism. The aims of this study were to determine the localization of GLUT3 in freshly ejaculated Asian elephant sperm with different quality of progressive motility, and to evaluate the effect of different extenders in cooled semen on the expression of GLUT3. For experiment I, the fresh semen samples were collected from 10 Asian elephants bulls, and were classified according to the percentages of motile sperm: Group 1 ( $\leq 20\%$ ; n=4), Group 2 ( $> 20\% - 60\%$ ; n=3) and Group 3 ( $> 60\%$ ; n=3). In experiment II, six semen samples were collected from 3 Asian elephant bulls for 2 times, in which motile sperm were  $>60\%$ . The samples were suspended in Tris extender with 3% glycerol (TG) and without 3% glycerol (T) and kept in a refrigerator at  $4^{\circ}\text{C}$  for 48 h. The GLUT3 was determined by immunocytochemical localization using the rabbit anti-GLUT3 polyclonal antibody. The results of experiment I showed that the GLUT3 were localized at the principal and end piece of the sperm tail. The percentages of sperm with GLUT3 expression were highest in Group 3, and lowest in Group 1. In experiment II, the sperm GLUT3 expressions after cold storage in T and TG extenders were different. The sperm of T group showed the localization of GLUT3 similar to those of fresh semen, while the sperm of TG group showed GLUT3 expressions at the head, middle piece, principal piece and end piece. Therefore, the present study demonstrated that GLUT3

expression was related with sperm motility and was affected by 3% glycerol in extender after cold storage.

---

Keywords: GLUT, Elephant, Sperm

## Introduction

In recent years, the development of freezing techniques for semen cryopreservation has become a major resource for the preservation of genetic material in most wildlife and domestic species (Hickman et al., 1984; Morrell et al., 2006). Viability of spermatozoa of frozen-thaw semen depends on several factors, such as semen quality, type of extender/cryoprotectant (Nadir et al., 1993; Saacke et al., 1984) and storage condition (Parks and Graham, 1992; Graham et al., 2004). However, poor sperm motility is a common finding in domesticated Asian elephant bulls, which may restrict their suitability for semen preservation. In addition, the causes of poor sperm motility in Asian elephant remain un-clear, in other species glucose transporters (Gluts) has been proposed to play an important role in compromising sperm quality (Sancho et al., 2007). To understand the function of the sperm of an elephant, the energy from hexose of elephant's sperm need to be used as energy. It is necessary to study transporter proteins, particularly Glucose transporter proteins (GLUTs) at the surface of the sperm cell. These GLUT proteins, as a whole, are mainly responsible for the transport of hexose across mammalian sperm membranes and play a major role in the regulation of sperm glucose and fructose metabolism, especially GLUT3 (Angulo et al., 1998; Glander et al., 1978; Rigau et.al., 2001; Simson 2008; Thorens and Mueckler, 2010; Vera et al., 1993).

There were several possible pathways for the use of energy substrates, for example when compared with glycolytic and aerobic pathways, to maintain both the cells needs and the active physiology of the spermatozoa cells. The flagellar function was related to sperm motility and the ATP consuming process. Flagellar movement was related to the local ability to produce ATP anaerobically by glycolytic pathway of the principal and end piece of the sperm tail (Mukai and Okuno, 2004), while the aerobic (e.g. mitochondrial) producing ATP was used for cell metabolism in the middle piece of the spermatozoa (Miki et al., 2004; Silva and Gadella, 2006; Peña et al., 2009). To our knowledge, there is no report about the GLUT proteins in the plasma membrane of elephant's spermatozoa. Therefore, the study of transporter proteins at the surface of the tissue as a kind of elephant sperm is essential for the development of the cooled and frozen elephant semen quality. In particular, the preparation was diluted semen containing the sperm of elephant energy for sperm to extend the life and performance quality of sperm after thawing of cooled semen.

The objective of this study aims to investigate the localization of GLUT3 in freshly ejaculated Asian elephant spermatozoa with different quality of progressive motility to evaluate the effect of different Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen on the expression of GLUT3 on semen quality of spermatozoa motility. The present investigation was undertaken to study the effect of 3% glycerol in Tris-based extender on the variations in the temporal localization of the hexose specific transporters (GLUT3) after cooling and thawing of elephant spermatozoa with respect to changes in the GLUT3 in plasma membrane integrity and spermatozoa motility, both of which are indicators of sperm viability and metabolic intactness.

## Materials and Methods

## Animals and sample collections

Experimental I, Ten Asian elephants were used in this study. The experiment was carried out with the sperm-rich fraction of the ejaculation being manually collected once a week, using the long gloved-hand method, and analyzed to ensure the quality of the ejaculates. Two ejaculates were evaluated per elephant.

Experimental II, Six semen samples were collected from 3 Asian elephant bulls 2 times which individual motility over than 60%. Immediately after collection, Semen was brought into the laboratory within 3 min and the ejaculated spermatozoa were smeared to the slide glass and were fixed by 4% paraformaldehyde. Blood samples were collected from an ear vein approximately generally in the morning before semen collection. The blood samples were maintained at approximately 4°C by the tube containing ethylenediamine tetraacetic acid (EDTA), and then blood samples were stored at 4°C until analysis.

## Blood evaluation

All samples were analyzed with an automated analyzer for animal (XT-2000iV/XT-1800iV, SYSMEX, Kobe, Japan). All blood parameters composed of red blood cells (RBC), white blood cells (WBC), haemoglobin (Hb), haematocrit (Hct), platelets (PLT), mean corpuscular volume (MCV), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC) and plasma protein (PP) were assessed in whole of samples. Plasma

protein concentration analyzed with a refractometer (ATAGO portable hand held brix refractometer, Japan).

#### Sperm evaluation

Experimental I, ejaculates were immediately analyzed for volume, sperm concentration, progressive motility, sperm viability and pH (Kidd et al., 2001). Sperm concentration was determined by counting the sperm, with respect to the dilution and volume, in a counting chamber under a phase contrast microscope. Individual sperm motility was determined by phase contrast microscope examination by placing the slide on a drop of semen diluted sodium citrate (0.9%). A coverslip were then placed over them and observation performed under a phase contrast microscope with maximum magnification. The semen samples were classified according to the type of movement of the progressive individual sperm, as follows:

Group1: less than or equal to 20% progressive individual motility (n=4).

Group2: more than 20% to equal to 60% progressive individual motility (n=3).

Group3: greater than 60% progressive individual motility (n=3).

Experimental II, ejaculates were immediately analyzed for volume, sperm concentration, progressive motility, sperm viability and pH (Kidd et al., 2001). Sperm concentration was determined by counting the sperm, with respect to the dilution and volume, in a counting chamber under a phase contrast microscope. Individual sperm motility was determined by phase contrast microscope examination by placing the slide on a drop of semen diluted sodium citrate (0.9%). A coverslip were then placed over them and observation performed under a phase contrast microscope with maximum magnification. For the semen samples to be used for chilled semen were classified according to the type of individual sperm progressive motility by more than 60% progressive individual motility. The samples were suspended in Tris extender with 3% glycerol and without 3% glycerol and chilled in refrigerator at 4°C for 48 h.

Sperm viability was determined by microscope observation of a smear of semen subjected to special staining fluids, eosin-nigrosin. The method involves placing a drop of approximately 10 microlitres of pure semen on a prepared slide (cleaned and degreased at a temperature of 37°C on the hot plate). The assessment of sperm viability was performed under

a phase contrast microscope at x100 magnification (Olympus CX31, Olympus, Japan). Two hundred spermatozoa were counted per slide (Björndahl et al., 2003).

#### Immunocytochemistry

Smears were prepared by spreading sperm suspensions of each sampling point on to superfrost polylysine coated slides, which immediately after being shortly air-dried, and fixed in buffered paraformaldehyde (0.5%) for 15 minutes at room temperature. The smears were then rinsed in PBS (pH 7.4) and incubated for 12 h at 4°C with rabbit anti-GLUT3 antibody (Gene Tex, Inc., Texas, USA) at a dilution of 1:50 (v/v) in TBS humid chambers. After extensive washing, sperm cells were incubated with a goat anti-rabbit GLUT3 (Gene Tex, Inc., Texas, USA) at a dilution 1:500 in TBS, Horseradish peroxidase (HRPO)-conjugated secondary antibody for 1 h under dark conditions at 37°C. Slides were then washed extensively with PBS and mounted with Vecta shield mounting medium with propidium iodide. Images were obtained using an Olympus digital camera installed on an Olympus microscope (Olympus BX51 and Digital camera DP50, Olympus, Japan).

#### Statistical analysis

For the evaluation of sperm integrity and motility, statistical comparisons of the expression of immunolocalisation of GLUT3 samples were performed by STATA program. The correlation between the expression of immunolocalisation of the GLUT3 in spermatozoa and percentage of sperm motility and live sperm of Asia elephants were analyzed by Pearson Correlation. All results were expressed as mean with standard deviations (SD) and the level of significance was set at  $p<0.05$ .

## Results

#### Experimental I;

The means and standard deviation (mean $\pm$ SD) of the haematological complete blood count (CBC) parameters and plasma protein concentration values of all elephant samples remained with in normal ranges as seen in the table 1.

The expression of immunolocalisation of GLUT3 clearly showed that the spermatozoa expressed the GLUT3. Strong GLUT3 immunoreactivity was observed at the principal piece of

the sperm tail (Fig 1). Percentages of the expression of immunolocalisation of GLUT3 in the 3 type groups showed significant differences between the Group1 ( $21.46\pm10.25$ ) and Group2 ( $84.37\pm8.70$ ), Group1 and Group3 ( $99.40\pm0.69$ ) and Group2 and Group3 (Fig 2). In addition, the results also showed the Mean $\pm$ SD of semen characteristics of percentages of sperm concentrations, volumes, pH, percentages of GLUT3 spermatozoa and percentages of live sperm were showed in the table 2. The correlation between the expression of immunolocalisation of the GLUT3 in spermatozoa and percentage of sperm motility and live sperm of Asia elephants showed the significant correlation between the expression of immunolocalisation of GLUT3 spermatozoa and percentage of sperm motility and live sperm ( $R=0.960$  and  $0.938$ ,  $p<0.05$ ) (Table 3).

#### Experimental II;

The means and standard deviation (mean $\pm$ SD) of the haematological CBC parameters and plasma protein concentration values of all elephant samples remained with in normal ranges as seen in the table 4.

The expression of immunolocalisation of GLUT3 clearly showed that the spermatozoa expressed the GLUT3. Strong GLUT3 immunoreactivity was observed at the principal piece of the sperm tail (Fig 3, A) before cooled semen. While this study revealed that GLUT3 expression after 48 h cooled semen were found in all parts of the head, middle piece and principal piece of the sperm tail in the TG extender group (Fig 3, B), but while the T extender group were expressed at middle piece and principal piece of the sperm tail (Fig 3, C). In addition, the results also showed the Mean $\pm$ SD of the percentages of immunolocalisation of the GLUT3 expression in Asia elephant spermatozoa in the fresh semen, T and TG extender cooled semen after 48 h group (Table 5). Percentages of the expression of immunolocalisation of GLUT3 of the head and middle piece include principal piece of the sperm tail in the 2 type of the extender groups showed significant differences between the TG extender group and T extender group ( $p <0.05$ , Fig 4). The percentages of the sperm motility in the 3 type groups showed significant differences between the fresh semen group ( $67.5\pm9.87$ ) and the cooled semen T extender group ( $33.0\pm18.02$ ), the fresh semen group and the cooled semen TG extender group ( $47.0\pm23.28$ ) and the cooled semen T extender group and the cooled semen TG extender group ( $p<0.05$ , Fig 5).

### Discussion

This study showed that the Asia elephant spermatozoa expressed the family members of the facilitative hexose transporters (GLUTs). These results demonstrated that the GLUT3 proteins were localized on specific cellular compartments at the level of the principal and end piece of the sperm tail, with the exclusion of the middle piece. However, the localization was different from the other mammals such as in boar spermatozoa, the positive was evident in the acrosome and in a band across the middle of the sperm head (Medrano et al., 2006; Sancho et al., 2007; Bucci et al., 2011). A strong signal of stallion sperm cells was evident in the sperm tail, with a particular emphasized neck spot (Bucci et al., 2011). In bull spermatozoa, the positive signal was present only in the middle piece of the spermatozoa (Vera et al., 1993; Glander and Dettmer, 1978; Bucci et al., 2011). Therefore, GLUT3 might be a very effective glucose transporter on their localization in Asia elephant spermatozoa, as reported in domestic animals such as boar, bull, stallion and human spermatozoa (Angulo et al., 1998; Burant et al., 1992; Rigau et al., 2002; Haber et al., 1993; Glander and Dettmer, 1978; Bucci et al., 2011). However, the localization of GLUT3 expression after 48 h cooled semen were found in all parts of the head, middle piece and principal piece of the sperm tail in the TG extender group than T extender group. Percentages of fresh spermatozoa motility and the expression of immunolocalisation of GLUT3 of the head, middle piece include principal piece of the sperm tail in the 2 type of the extender groups showed significant differences between the cooled semen TG extender group and cooled semen T extender group after cooled semen 48 h.

Our results indicated that fresh elephant spermatozoa express the family members of the facilitative hexose transporter, GLUT3. These proteins were localized on specific cellular compartments at the level of the principal and end piece of the sperm tail, and their distribution was characteristic. Additionally, GLUT3 position had a relationship with hexokinase distribution in cytoplasm (Medrano et al., 2006): being that glycolytic enzyme bound line of the tail's fibrous sheath in Asia elephant spermatozoa as in mouse sperm cells (Krifalus et al., 2006), the GLUT3 distribution was strictly related to enzymes involved in glycolytic chain, especially as related to their local in the sperm tail. This is logical, since the uptake of essential sugars, such as glucose and fructose, to maintain energy metabolism was mediated for both transporters. Thus, GLUT3 was a very effective glucose transporter, as has been already reported in bull (Angulo et al. 1998), boar (Medrano et al. 2006), dog (Rigau et al. 2002) and

human (Haber et al. 1993) spermatozoa. Therefore, this result indicated that the expression of GLUT3 was localized at the principal and end piece of the sperm tail and the motility of fresh elephant spermatozoa was affected by GLUT3 expression, and its expression may involve energy production via the glycolytic pathway.

One of the major findings in this study, in addition to the presence of GLUT3 on the plasma membrane and within the sperm of an elephant was the fact that the distribution of GLUT3 protein changes after the process of cooled semen, especially for the GLUT3 which reduced labeling after 48 h in the cooled semen T extender group. These changes occur simultaneously in the membrane will result in a reduction in the ability to use nutrients that causes a powerful movement that has been compromised and / or membrane integrity. It is very surprising after the cooled semen for 48 h with the expression of GLUT3 proteins were localized on specific cellular surface compartments of the sperm elephants, especially around the head, middle, principal and end piece by the expression of GLUT3 the entire header middle and end piece in the TG group compared with the T group after being chilled to 48 h may be due to the membrane of Glyceral, results in the preservation of the sperm with the effective function of the membrane (Wall and Foote, 1999) in elephant spermatozoa. This distribution of GLUT3 in the TG extender group of elephant spermatozoa differs from that seen in the T extender group, where GLUT3 was only moderately expressed on the principle piece of the tail region but strongly expressed along the tail and head region. Therefore, the expression of GLUT3 in the head, middle, principal and end piece of the sperm tail, which may be indicative of the presence of the inner workings of the sperm cells, which requires more energy by using the substance glucose or fructose (Bucci et al., 2011), resulting in the expression of GLUT3 on these area in the elephant spermatozoa of cooled semen TG extender group.

In conclusion, the study was strengthened by this result, demonstrating the importance of hexokinase I as a regulatory factor for glycolysis (Fernandez-Novell et al., 2004; Medrano et al., 2006) in Asia elephant sperm cells, together with the presence of GLUT3 that was localized on specific cellular compartments at the level of the principal and end piece of the sperm tail. In addition, the expression of GLUT3 spermatozoa numbers in each experimental groups were significantly different. The group with good progressive individual motility (group3) was the expression of GLUT3 spermatozoa numbers more than the others that were consistent with progressive motility of sperm. Therefore, this result indicated that the expression of GLUT3

was localized at the principal and end piece of the sperm tail and the motility of Asian elephant spermatozoa may be affected by GLUT3 expression, and its expression may involve energy production via the glycolytic pathway. In addition, this result confirmed the reduction of the expression of GLUT3 and motility in elephant spermatozoa after cooled semen 48 h of the T extender group when compared the TG extender group and reveals that the effect of glycerol on sperm function in the T extender improved by notice spermatozoa motility and the expression of GLUT3 of spermatozoa better than the T extender group. This substance glycerol may be a result of the sperm cell membrane strength after the cooled semen.

Table 1 Mean values ( $\pm$  SD) and range of the haematological parameters and plasma protein concentration of ten Asia elephants; Gr. 1 = the percentages of motile sperm ( $\leq 20\%$ ), Gr. 2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and Gr. 3 = the percentages of motile sperm ( $> 60\%$ )

| parameters                        | Ref. range* | Gr.1 (mean $\pm$ SD) | Gr.2 (mean $\pm$ SD) | Gr.3 (mean $\pm$ SD) |
|-----------------------------------|-------------|----------------------|----------------------|----------------------|
| HCT (%)                           | 29-49       | 35.67 $\pm$ 4.81     | 33.87 $\pm$ 2.44     | 32.55 $\pm$ 1.48     |
| Wbc ( $\times 10^3/\mu\text{l}$ ) | 11.1-16.1   | 12.65 $\pm$ 2.08     | 13.79 $\pm$ 2.57     | 14.62 $\pm$ 1.60     |
| Rbc ( $\times 10^6/\mu\text{l}$ ) | 2.13-3.85   | 3.26 $\pm$ 0.60      | 3.05 $\pm$ 0.32      | 2.8 $\pm$ 0.35       |
| HGB (g/dl)                        | 9.7-16.4    | 13.80 $\pm$ 2.45     | 12.83 $\pm$ 1.06     | 12.1 $\pm$ 0.99      |
| MCV (fl)                          | 81-158      | 110.23 $\pm$ 5.80    | 111.25 $\pm$ 4.11    | 117.0 $\pm$ 9.19     |
| MCH (pg/cell)                     | 40.0-45.5   | 42.47 $\pm$ 1.57     | 42.12 $\pm$ 1.23     | 43.4 $\pm$ 1.84      |
| MCHC (g/dl)                       | 27.7-40.0   | 38.17 $\pm$ 1.63     | 37.85 $\pm$ 0.46     | 37.15 $\pm$ 1.34     |
| PLT ( $\times 10^3/\mu\text{l}$ ) | 80-400      | 168.67 $\pm$ 27.74   | 209.75 $\pm$ 60.29   | 221.5 $\pm$ 6.36     |
| PP (mg/dl)                        | 6-11        | 7.6 $\pm$ 5.3        | 7.75 $\pm$ 0.3       | 8.8 $\pm$ 0.28       |

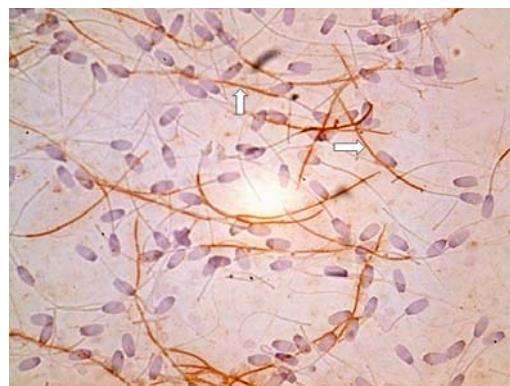
Reference range\* from (Silva and Kuruwita, 1993; Lewis et al., 1974)

Table 2 Mean values ( $\pm$ SD) of the semen characteristics and the expression of immunolocalisation of GLUT3 in the 3 type groups of Asia elephants; Group 1 = the percentages of motile sperm ( $\leq 20\%$ ), Group 2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and Group 3 = the percentages of motile sperm ( $> 60\%$ )

| Semen parameters                               | Mean $\pm$ SD        |                      |                     |
|------------------------------------------------|----------------------|----------------------|---------------------|
|                                                | Group 1              | Group 2              | Group 3             |
| Sperm motility (%)                             | 15 $\pm$ 4.08        | 48.33 $\pm$ 7.64     | 73.33 $\pm$ 5.77    |
| Sperm concentration ( $\times 10^6$ sperms/ml) | 1120.00 $\pm$ 254.66 | 1153.33 $\pm$ 244.56 | 1271.67 $\pm$ 95.04 |
| Volume (ml)                                    | 21.25 $\pm$ 13.00    | 16.67 $\pm$ 6.11     | 13.33 $\pm$ 4.16    |
| Semen pH                                       | 7.25 $\pm$ 0.5       | 7.17 $\pm$ 0.76      | 7.33 $\pm$ 0.58     |
| Live sperm (%)                                 | 20.75 $\pm$ 3.30     | 57.00 $\pm$ 4.58     | 82.00 $\pm$ 4.00    |
| GLUT3 sperm (%)                                | 21.46 $\pm$ 10.25    | 84.37 $\pm$ 8.70     | 99.40 $\pm$ 0.69    |

Table 3 Correlation between the expression of immunolocalisation of the glucose transporter3 (GLUT3) in spermatozoa and percentage of sperm motility and live sperm of Asia elephants

| Semen parameters             | R-squared | Correlation | P value |
|------------------------------|-----------|-------------|---------|
| Semen motility (%)<br>(n=10) | 0.960     | 0.9798      | 0.001   |
| Live sperm (%)<br>(n=10)     | 0.938     | 0.9685      | 0.001   |


Table 4 Mean values ( $\pm$  SD) and range of the haematological parameters and plasma protein concentration of six Asia elephants

| parameters                        | Ref. range* | Mean values ( $\pm$ SD) |
|-----------------------------------|-------------|-------------------------|
| HCT (%)                           | 29-49       | 32.47 $\pm$ 1.32        |
| Wbc ( $\times 10^3/\mu\text{l}$ ) | 11.1-16.1   | 14.4 $\pm$ 1.99         |
| Rbc ( $\times 10^6/\mu\text{l}$ ) | 2.13-3.85   | 2.83 $\pm$ 0.26         |
| HGB (g/dl)                        | 9.7-16.4    | 12.13 $\pm$ 0.73        |
| MCV (fl)                          | 81-158      | 115.25 $\pm$ 6.39       |
| MCH (pg/cell)                     | 40.0-45.5   | 43.00 $\pm$ 1.56        |
| MCHC (g/dl)                       | 27.7-40.0   | 37.32 $\pm$ 0.83        |
| PLT ( $\times 10^3/\mu\text{l}$ ) | 80-400      | 222.25 $\pm$ 55.99      |
| PP (mg/dl)                        | 6-11        | 8.1 $\pm$ 0.66          |

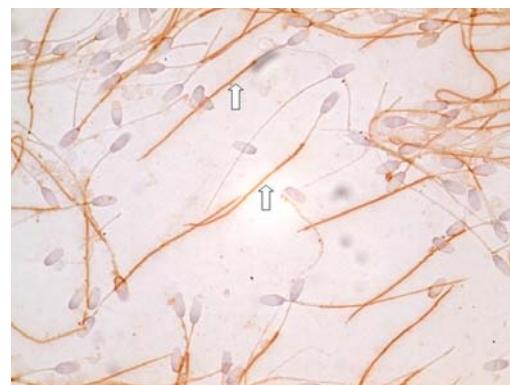

Reference range\* from (Silva and Kuruwita, 1993; Lewis et al., 1974)

Table 5 Mean values ( $\pm$ SD) of the percentages of immunolocalisation of the GLUT3 expression in Asia elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen after 48 h group; Head = head of spermatozoa, MP = middle piece of spermatozoa, PP = principal piece of spermatozoa, EP = end piece of spermatozoa, No = Negative expression of GLUT3 in spermatozoa


| Position of immunolocalisation of the GLUT3 expression in spermatozoa (%) | Mean $\pm$ SD    |                   |                  |
|---------------------------------------------------------------------------|------------------|-------------------|------------------|
|                                                                           | Fresh semen gr.  | T extender gr.    | TG extender gr.  |
| Head+MP+PP+EP                                                             | 0                | 0                 | 99.25 $\pm$ 7.71 |
| MP+PP+EP                                                                  | 0                | 9.10 $\pm$ 13.52  | 0                |
| PP+EP                                                                     | 99.35 $\pm$ 3.50 | 83.40 $\pm$ 16.54 | 0                |
| No                                                                        | 0.65 $\pm$ 0.82  | 7.50 $\pm$ 5.43   | 0.75 $\pm$ 0.52  |



A



B



C

Fig 1 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in Asia elephant spermatozoa (arrow); (A) group1 = the percentages of motile sperm ( $\leq 20\%$ ), (B) group2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and (C) group3 = the percentages of motile sperm ( $> 60\%$ )

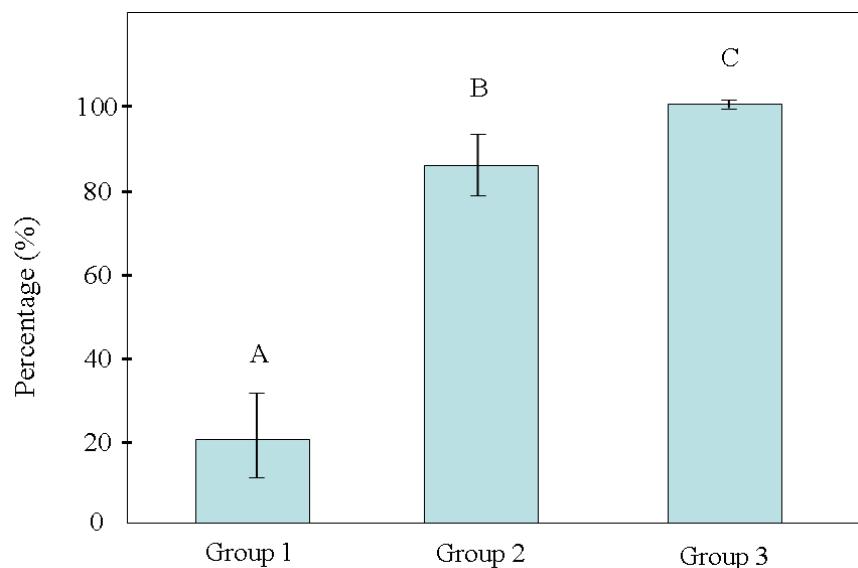



Fig 2 The graft showed percentages of the 3 type groups of immunolocalisation of the GLUT3 in Asia elephant spermatozoa; A, B, C values with the superscript show statistically significant difference at  $p<0.05$ ; Group 1 = the percentages of motile sperm ( $\leq 20\%$ ), Group 2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and Group 3 = the percentages of motile sperm ( $> 60\%$ )

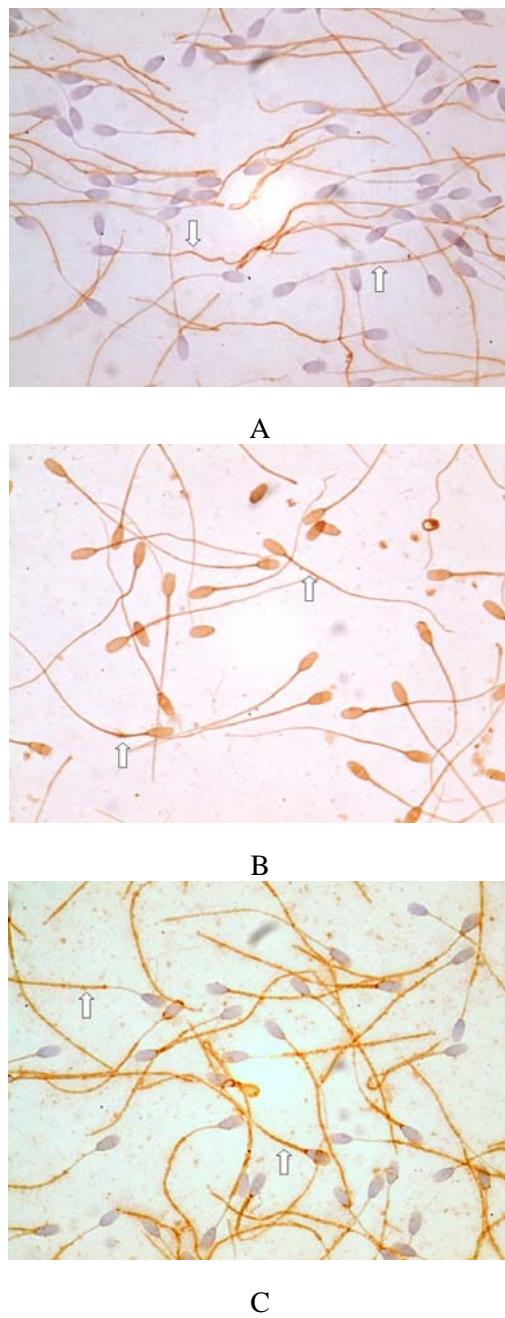



Fig 3 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in Asia elephant spermatozoa (arrow); (A) the GLUT3 immunoreactivity was observed at the principal piece and end piece of the sperm tail in the fresh semen, (B) the expression of immunolocalisation of GLUT3 of head and the middle piece include principal piece and end piece of the sperm tail in the Tris extender with 3% glycerol (TG) group and (C) the expression of immunolocalisation of GLUT3 of the middle piece, principal piece and end piece or the principal piece and end piece of the sperm tail in the Tris extender without 3% glycerol (T) group

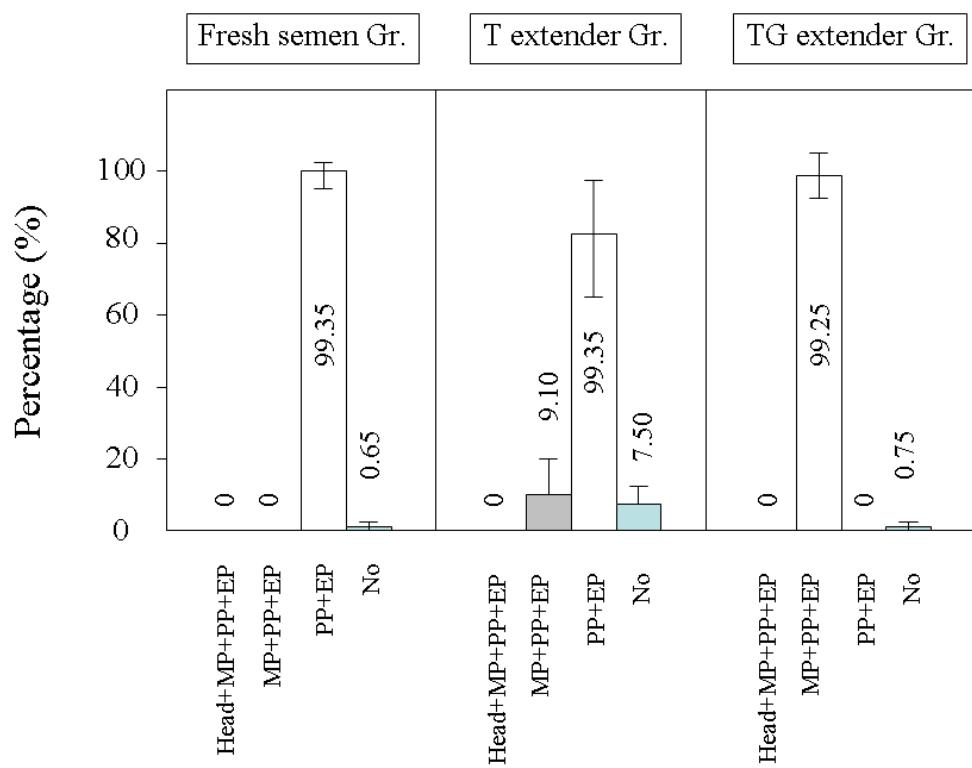



Fig 4 The graft showed percentages of immunolocalisation of the GLUT3 expression in Asia elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen after 48 h group; Head = head of spermatozoa, MP = middle piece of spermatozoa, PP = principal piece of spermatozoa, EP = end piece of spermatozoa, No = Negative expression of GLUT3 in spermatozoa

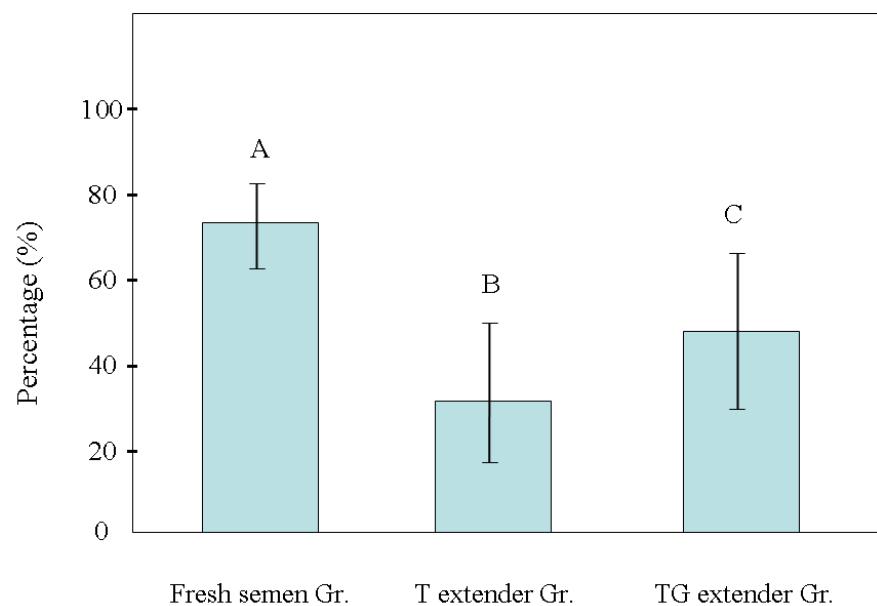



Fig 5 The graft showed percentages of the 3 type groups of motility in Asia elephant spermatozoa; A, B, C values with the superscript show statistically significant difference at  $p<0.05$ ; TG = Tris extender with 3% glycerol, T = Tris extender without 3% glycerol

### References

**Angulo C, Rauch MC, Dropelmann A, Reyes AM, Slebe JC, Delgado-Lopez F, Guaiquil VH, Vera JC, Concha II.** Hexose transporters expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. *Biochem Cell Biol* 1998; 71: 189-203.

**Björndahl L, Söderlund I, Kvist U.** Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. *Hum Reprod* 2003; 18: 813-816.

**Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C.** Review Gluts and Mammalian Sperm Metabolism. *Journal of Andrology* 2011; 32: 348-355.

**Burant CF, Bell GI.** Facilitative glucose transporters: evidence for similar substrate binding sites in functionally monomeric proteins. *Biochemistry* 1992; 31: 10414-10420.

**Fernandez-Novell JM, Ballester J, Medrano A, Otaegui PJ, Rigau T, Guinovart JJ, Rodriguez-Gil JE.** The presence of a high-Km hexokinase activity in dog, but not in boar, sperm. *FEBS letters* 2004; 570: 211-216.

**Glander HJ, Dettmer D.** Monosaccharide transport across membranes of human spermatozoa II. Basic properties of D-fructose and D-glucose uptake by spermatozoa. *Andrologia* 1978; 10: 273-277.

**Graham LH, Bando J, Gray C, Buhr MM.** Liquid storage of Asian (Elephas maximus) sperm at 4C. *Anim. Reprod. Sci* 2004; 80: 329-340.

**Haber RH, Weinstein SP, O'Boyle E, Morgello S.** Tissue distribution of the human GLUT 3 glucose transporter. *Endocrinology* 1993; 132: 2538-2543.

**Hickman CG, Istanbulluoglu E.** The use of artificial insemination in developing countries. Proc X Int Congr Anim Reprod Artif Insem; 1984: 369.

**Kidd SA, Eskenazi B, Wyrobek AJ.** Effects of male age on semen quality and fertility: A review of the literature. *Fertil Steril* 2001; 75: 237-248.

**Krifalusi M, Miki K, Magyar PL, O'Brien D.** Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. *Biol Reprod* 2006; 75: 270-278.

**Lewis JH.** Comparative hematoloy: studies on elephants, Elephas maximus. *Comparative Biochemistry and Physiology* 1974; 49: 175-181.

**Medrano A, Garcia-Gil N, Ramii L, Rivera MM, Fernandez-Novell JM, Ramirez A, Pena A, Briz MD, Pinart E, Concha II, Bonet S, Rigau T, Rodriguez-Gil JE.** Hexose-

specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. *Mol Reprod Dev* 2006; 73: 1179-1199.

**Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O'Brien DA.** Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. *Proc Natl Acad Sci* 2004; 101: 16501-16506.

**Morrell JM.** Update on semen technologies for animal breeding. *Reprod Dom Anim* 2006; 41: 63-67.

**Mukai C, Okuno M.** Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. *Biol Reprod* 2004; 71: 540-547.

**Nadir S, Saacke RG, Bame J, Mullins J, Degelos S.** Effect of freezing semen and dosage of sperm on number of accessory sperm, fertility, and embryo quality in artificially inseminated cattle. *J Anim Sci* 1993; 71: 199-204.

**Parks JK, Graham JK.** Effects of cryopreservation procedures on sperm membranes. *Theriogenology* 1992; 38: 209-222.

**Peña FJ, Rodriguez Martinez H, Tapia JA, Ortega Ferrusola C, Gonzalez Fernandez L, Macias Garcia B.** Mitochondria in mammalian sperm physiology and pathology: a review. *Reprod Domest Anim* 2009; 44: 345-349.

**Rigau T, Farrè M, Ballester J, Mogas T, Rodriguez-Gil JE.** Effects of glucose and fructose on mobility patterns of dog spermatozoa from fresh ejaculates. *Theriogenology* 2001; 56: 801-815.

**Rigau T, Rivera M, Palomo MJ, Fernández-Novell JM, Mogas T, Ballester J, Pena A, Otaegui PJ, Guinovart JJ, Rodríguez-Gil JE.** Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. *Reproduction* 2002; 123: 579-591.

**Saacke RG.** Semen quality: importance of and influencing factors. In: Proc. 10<sup>th</sup> NAAB Tech. Conf Artif Insem Repro; 1984; Milwaukee WI. 30-36.

**Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE, Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste M, Bonet S.** Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. *Reproduction* 2007; 134: 111-121.

**Silva ID, Kuruwita VY.** Hematology, plasma, and serum biochemistry values in free-ranging elephants (*Elephas maximus ceylonicus*) in Sri Lanka. *Journal of Zoo and Wildlife Medicine* 1993; 24: 434-439.

**Silva PFN, Gadella BM.** Detection of damage in mammalian. *Theriogenology* 2006; 65: 958-978.

**Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ.** The facilitative glucose transporter GLUT3: 20 years of distinction. *Am J Physiol Endocrinol Metab* 2008; 295: E242-E253.

**Thorens B, Mueckler M.** Glucose transporters in the 21st Century. *Am J Physiol Endocrinol Metab* 2010; 298: E141-E145.

**Vera JC, Rivas CI, Fischbarg J, Golde DW.** Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. *Nature* 1993; 364: 79–82.

**Wall RJ, Foote RH.** Fertility of bull sperm frozen and stored in clarified egg yolk-tris-glycerol extender. *Journal of dairy* 1999; 82: 842-849.

เอกสารแนบท้ายเลข 3

Output (Acknowledge the Thailand Research Fund)

- International Journal Publication

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. Distribution of the glucose transporter3 (GLUT3) in Asian elephant spermatozoa

Preparation for submit to Journal of Reproduction and Development.

(Appendix A)

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. The effect of different extenders of Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen on the expression of GLUT3 of Asian elephant spermatozoa

Preparation for submit to Journal of Reproduction and Development or Kasetart Journal.

(Appendix B)

- Application

- Others e.g. national journal publication, proceeding, international conference, book chapter, patent

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. Distribution of the glucose transporter-3 (GLUT3) for spermatozoa and the effect of different extenders of TG and T in cooled semen on the expression of GLUT3 in Asian elephant. Proceeding of The 13<sup>th</sup> การประชุมนักวิจัยรุ่นใหม่ พน แมธิจัชอาภิเษก ศกฯ. Conference, 16-18 October, 2013. Phetchaburi, Thailand.

(Appendix C)

### Appendix A

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. Distribution of the glucose transporter3 (GLUT3) in Asian elephant spermatozoa  
Preparation for submit to Journal of Reproduction and Development.

## Appendix B

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. The effect of different extenders of Tris extender with 3% glycerol (TG) and without 3% glycerol (T) in cooled semen on the expression of GLUT3 of Asian elephant spermatozoa

Preparation for submit to Journal of Reproduction and Development or Kasetsart Journal.

### Appendix C

Sajapitak, S., Kornkaewrat, K., Suthunmapinanta, P., Boodde, O., Mahasawangkul, S., Pinyopummin, A. Distribution of the glucose transporter-3 (GLUT3) for spermatozoa and the effect of different extenders of TG and T in cooled semen on the expression of GLUT3 in Asian elephant. Proceeding of The 13<sup>th</sup> การประชุมนักวิจัยรุ่นใหม่ พน เมธีวิจัยอาชญาศาสตร์ Conference, 16-18 October, 2013. Phetchaburi, Thailand.

1 Title: Distribution of the glucose transporter3 (GLUT3) in Asian elephant spermatozoa

2

3 Running head: GLUT3 in Asian elephant spermatozoa

4

5 Authors: Sajapitak Somchai<sup>1</sup>, Kornkaewrat Kornchai<sup>2</sup>, Suthunmapinanta Piyawan<sup>3</sup>, Boodde,

6 Orawan<sup>3</sup>, Mahasawangkul Sittidet<sup>4</sup> and Pinyopummin Anuchai<sup>1</sup>

7

8

9

10 1 -Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary  
11 Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

12 2 -Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine,  
13 Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

14 3 -Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine,  
15 Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

16 4 -Thai Elephant Conservation Centre, National Elephant Institute, Forest Industry  
17 Organization, Hang Chart, Lampang, 52000, Thailand.

18

19

20

21

22

23

24

25

26 Corresponding author - Pinyopummin Anuchai, [fvetacp@ku.ac.th](mailto:fvetacp@ku.ac.th)

27 **Abstract**

28 Spermatozoa, as other eukaryotic cells, need hexoses to produce energy for moving  
29 along the female genital tract and maintaining membrane homeostasis. Glucose transporter 3  
30 (GLUT3) proteins, as a whole, is mainly responsible for the transport of hexose across  
31 mammalian sperm membranes and play a major role in the regulation of sperm glucose and  
32 fructose metabolism. The aims of this study were to determine the presence of GLUT3 in  
33 freshly ejaculated Asian elephant spermatozoa with different quality of progressive motility  
34 and to describe its localization. The fresh semen samples were collected from 10 Asian  
35 elephants. The semen samples were classified according to the percentages of motile sperm  
36 by Group 1 ( $\leq 20\%$ ; n=4), Group 2 ( $> 20\% - 60\%$ ; n=3) and Group 3 ( $> 60\%$ ; n=3). The  
37 GLUT3 transporter was determined by immunocytochemical localization using the rabbit  
38 anti-GLUT3 polyclonal antibody. The results showed the presence of GLUT3, and were  
39 localized on specific cellular compartments at the principal and end piece of the sperm tail.  
40 GLUT3 expressions in each group were significantly different. The group with good sperm  
41 motility (Group 3) had more expression of GLUT3 than the others. Therefore, the motility of  
42 Asian elephant spermatozoa and percentage of live sperm may be affected by GLUT3  
43 expression, and its expression may involve energy production via the glycolytic pathway.

44

45 **Keywords:** GLUT, Elephant, Sperm

46

47 **Introduction**

48 In recent years, the development of freezing techniques for semen cryopreservation  
49 has become a major resource for the preservation of genetic material in most domestic species  
50 [9, 15]. Viability of spermatozoa of frozen-thaw semen depends on several factors, such as

51 semen quality, type of extender/cryoprotectant [17, 22] and storage condition [7, 18].  
52 However, poor sperm motility is a common finding in domesticated Asian elephant bulls,  
53 which may restrict their suitability for semen preservation. In addition, the causes of poor  
54 sperm motility in Asian elephant remain un-clear, in other species glucose transporters (Gluts)  
55 has been proposed to play an important role in compromising sperm quality [23]. These  
56 GLUT proteins, as a whole, are mainly responsible for the transport of hexose across  
57 mammalian sperm membranes and play a major role in the regulation of sperm glucose and  
58 fructose metabolism, especially GLUT3 [1, 6, 20, 26, 28]. To our knowledge, there is no  
59 report about the GLUT proteins in the plasma membrane of elephant's spermatozoa.  
60 Therefore, the aims of this study were to determine the presence of GLUT3, and any  
61 variations in the temporal localization of its expression in Asian elephant spermatozoa with  
62 different motile quality and percentage of live sperm. This study may provide some  
63 information on the cause of Asian elephant poor semen quality.

64

## 65 **Materials and Methods**

66 Animals and sample collections

67 Ten Asian elephants were used in this study. The experiment was carried out with the  
68 sperm-rich fraction of the ejaculation being manually collected once a week, using the long  
69 gloved-hand method, and analyzed to ensure the quality of the ejaculates. Two ejaculates  
70 were evaluated per elephant. Immediately after collection, Semen was brought into the  
71 laboratory within 3 min and the ejaculated spermatozoa were smeared to the slide glass and  
72 were fixed by 4% paraformaldehyde. Blood samples were collected from an ear vein  
73 approximately generally in the morning before semen collection. The blood samples were  
74 maintained at approximately 4°C by the tube containing ethylenediamine tetraacetic acid  
75 (EDTA), and then blood samples were stored at 4°C until analysis.

76

77 Blood evaluation

78 All samples were analyzed with an automated analyzer for animal (XT-2000iV/XT-  
79 1800iV, Sysmex, Kobe, Japan). All blood parameters consist of red blood cells (RBC),  
80 white blood cells (WBC), haemoglobin (Hb), haematocrit (Hct), platelets (PLT), mean  
81 corpuscular volume (MCV), mean cell haemoglobin (MCH), mean cell haemoglobin  
82 concentration (MCHC) and plasma protein (PP) were assessed in whole of samples. Plasma  
83 protein concentration analyzed with a refractometer (ATAGO portable hand held brix  
84 refractometer, Japan).

85

86 Sperm evaluation

87 Ejaculates were immediately analyzed for volume, sperm concentration, progressive  
88 motility, sperm viability and pH [10]. Sperm concentration was determined by counting the  
89 sperm, with respect to the dilution and volume, in a counting chamber under a phase contrast  
90 microscope. Individual sperm motility was determined by phase contrast microscope  
91 examination by placing the slide on a drop of semen diluted sodium citrate (0.9%). A  
92 coverslip were then placed over them and observation performed under a phase contrast  
93 microscope with maximum magnification. The semen samples were classified according to  
94 the type of movement of the progressive individual sperm, as follows:

95 Group1: less than or equal to 20% progressive individual motility (n=4).

96 Group2: more than 20% to equal to 60% progressive individual motility (n=3).

97 Group3: greater than 60% progressive individual motility (n=3).

98 Sperm viability was determined by microscope observation of a smear of semen  
99 subjected to special staining fluids, eosin-nigrosin. The method involves placing a drop of  
100 approximately 10 microlitres of pure semen on a prepared slide (cleaned and degreased at a

101 temperature of 37°C on the hot plate). The assessment of sperm viability was performed  
102 under a phase contrast microscope at x100 magnification (Olympus CX31, Olympus, Japan).  
103 Two hundred spermatozoa were counted per slide [2].

104

105 Immunocytochemistry

106 Smears were prepared by spreading sperm suspensions of each sampling point on to  
107 superfrost polylysine coated slides, which immediately after being shortly air-dried, and fixed  
108 in buffered paraformaldehyde (0.5%) for 15 minutes at room temperature. The smears were  
109 then rinsed in PBS (pH 7.4) and incubated for 12 hours at 4°C with rabbit anti-GLUT3  
110 antibody (Gene Tex, Inc., Texas, USA) at a dilution of 1:50 (v/v) in TBS humid chambers.  
111 After extensive washing, sperm cells were incubated with a goat anti-rabbit GLUT3 (Gene  
112 Tex, Inc., Texas, USA) at a dilution 1:500 in TBS, Horseradish peroxidase (HRPO)-  
113 conjugated secondary antibody for 1 hour under dark conditions at 37°C. Slides were then  
114 washed extensively with PBS and mounted with Vecta shield mounting medium with  
115 propidium iodide. Images were obtained using an Olympus digital camera installed on an  
116 Olympus microscope (Olympus BX51 and Digital camera DP50, Olympus, Japan).

117

118 Statistical analysis

119 For the evaluation of sperm integrity and motility, statistical comparisons of the  
120 expression of immunolocalisation of GLUT3 samples were performed by STATA program.  
121 The correlation between the expression of immunolocalisation of the GLUT3 in spermatozoa  
122 and percentage of sperm motility and live sperm of Asia elephants were analyzed by Pearson  
123 Correlation. All results were expressed as mean with standard deviations (SD) and the level of  
124 significance was set at  $p<0.05$ .

125

126 **Results**

127 The means and standard deviation (mean $\pm$ SD) of the haematological complete blood  
128 count (CBC) parameters and plasma protein concentration values of all elephant samples  
129 remained with in normal ranges as seen in the table 1.

130 The expression of immunolocalisation of GLUT3 clearly showed that the  
131 spermatozoa expressed the GLUT3. Strong GLUT3 immunoreactivity was observed at the  
132 principal piece and end piece of the sperm tail (Fig 1). Percentages of the expression of  
133 immunolocalisation of GLUT3 in the 3 type groups showed significant differences between  
134 the Group1 (21.46 $\pm$ 10.25) and Group2 (84.37 $\pm$ 8.70), Group1 and Group3 (99.40 $\pm$ 0.69) and  
135 Group2 and Group3 (Fig 2). In addition, the results also showed the Mean $\pm$ SD of semen  
136 characteristics of percentages of sperm concentrations, volumes, pH, percentages of GLUT3  
137 spermatozoa and percentages of live sperm were showed in the table 2. The correlation  
138 between the expression of immunolocalisation of the GLUT3 in spermatozoa and percentage  
139 of sperm motility and live sperm of Asia elephants showed the significant correlation between  
140 the expression of immunolocalisation of GLUT3 spermatozoa and percentage of sperm  
141 motility and live sperm ( $R=0.960$  and  $0.938$ ,  $p<0.05$ ) (Table 3).

142

143 **Discussion**

144 All elephants used in this study were apparently healthy as indicated by the  
145 hematological parameters. This study showed that the Asia elephant spermatozoa expressed  
146 the family members of the facilitative hexose transporters (GLUTs). These results  
147 demonstrated that the GLUT3 proteins were localized on specific cellular compartments at  
148 the level of the principal and end piece of the sperm tail, with the exclusion of the middle  
149 piece. However, the localization was different from the other mammals such as in boar  
150 spermatozoa, the positive was evident in the acrosome and in a band across the middle of the

151 sperm head [3, 13, 23]. A strong signal of stallion sperm cells was evident in the sperm tail,  
152 with a particular emphasized neck spot [3]. In bull spermatozoa, the positive signal was  
153 present only in the middle piece of the spermatozoa [3, 6, 28]. Therefore, GLUT3 might be a  
154 very effective glucose transporter on their localization in Asia elephant spermatozoa, as  
155 reported in domestic animals such as boar, bull, stallion and human spermatozoa [1, 3, 4, 6, 8,  
156 21].

157 There were several possible pathways for the use of energy substrates, for example  
158 when compared with glycolytic and aerobic pathways, to maintain both the cells needs and  
159 the active physiology of the spermatozoa cells. The flagellar function was related to sperm  
160 motility and the ATP consuming process. Flagellar movement was related to the local ability  
161 to produce ATP anaerobically by glycolytic pathway of the principal and end piece of the  
162 sperm tail [16], while the aerobic (e.g. mitochondrial) producing ATP was used for cell  
163 metabolism in the middle piece of the spermatozoa [14, 19, 25]. Additionally, GLUT3  
164 position had a relationship with hexokinase distribution in cytoplasm [13]: being that  
165 glycolytic enzyme bound line of the tail's fibrous sheath in Asia elephant spermatozoa as in  
166 mouse sperm cells [11], the GLUT3 distribution was strictly related to enzymes involved in  
167 glycolytic chain, especially as related to their local in the sperm tail. This fragmentation of  
168 GLUT3 was characteristic. This was logical since the absorption of sugars, such as glucose  
169 and fructose, which are important for maintaining energy metabolism mediated for this  
170 transporter [27]. This study was strengthened by this result, demonstrating the importance of  
171 hexokinase I as a regulatory factor for glycolysis [5, 13] in Asia elephant sperm cells, together  
172 with the presence of GLUT3 that was localized on specific cellular compartments at the level  
173 of the principal and end piece of the sperm tail. In addition, the expression of GLUT3  
174 spermatozoa numbers in each experimental groups were significantly different. The group  
175 with good progressive individual motility (group3) was the expression of GLUT3

176 spermatozoa numbers more than the others that were consistent with progressive motility of  
177 sperm and percentage of live sperm.

178 In conclusion, the correlation between the expression of immunolocalisation of the  
179 GLUT3 in spermatozoa and percentage of sperm motility and live sperm of Asia elephant  
180 semen could help indicate the effect of the expression of GLUT3 on Asia elephant semen  
181 quality. In addition, this result showed that the expression of GLUT3 was localized at the  
182 principal and end piece of the sperm tail. The motility of Asian elephant spermatozoa may be  
183 affected by GLUT3 expression, and its expression may involve energy production via the  
184 glycolytic pathway.

185

## 186 **Acknowledgements**

187 I would like to gratefully acknowledge all of the people. Special thanks must go to Dr.  
188 Anuchai Pinyopummin, my mentor, for sharing his enormous and tremendous knowledge of  
189 the field of animal reproduction and his invaluable advice, support, friendship and patience  
190 well beyond his academic duties. I am very grateful for Miss Orawan Boodde and Miss  
191 Sudtisa Laopiem, the expert technicians of kamphaengsaen Veterinary diagnostic center, who  
192 provide the test results. I would like to thank the National Elephant Institute, Forest Industry  
193 Organization for his permission of sample collection and the Faculty of Veterinary Medicine  
194 at Kasetsart University for providing facilities. I would like to acknowledge the Thailand  
195 Research Fund and Kasetsart University Research and Development Institute for financial  
196 assistance of this study (TRF- MRG5480238).

197

## 198 **References**

199 1. **Angulo C, Rauch MC, Dropelmann A, Reyes AM, Slebe JC, Delgado-Lopez F,**  
200 **Guaiquil VH, Vera JC, Concha II.** Hexose transporters expression and function in

201 mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.  
202 *Biochem Cell Biol* 1998; 71: 189-203.

203 2. **Björndahl L, Söderlund I, Kvist U.** Evaluation of the one-step eosin-nigrosin staining  
204 technique for human sperm vitality assessment. *Hum Reprod* 2003; 18: 813-816.

205 3. **Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C.** Review  
206 Gluts and Mammalian Sperm Metabolism. *Journal of Andrology* 2011; 32: 348-355.

207 4. **Burant CF, Bell GI.** Facilitative glucose transporters: evidence for similar substrate  
208 binding sites in functionally monomeric proteins. *Biochemistry* 1992; 31: 10414-10420.

209 5. **Fernandez-Novell JM, Ballester J, Medrano A, Otaegui PJ, Rigau T, Guinovart JJ,**  
210 **Rodriguez-Gil JE.** The presence of a high-K<sub>m</sub> hexokinase activity in dog, but not in boar,  
211 sperm. *FEBS letters* 2004; 570: 211-216.

212 6. **Glander HJ, Dettmer D.** Monosaccharide transport across membranes of human  
213 spermatozoa II. Basic properties of D-fructose and D-glucose uptake by spermatozoa.  
214 *Andrologia* 1978; 10: 273-277.

215 7. **Graham LH, Bando J, Gray C, Buhr MM.** Liquid storage of Asian (*Elephas maximus*)  
216 sperm at 4C. *Anim. Reprod. Sci* 2004; 80: 329-340.

217 8. **Haber RH, Wienstein SP, O'Boyle E, Morgello S.** Tissue distribution of the human  
218 GLUT 3 glucose transporter. *Endocrinology* 1993; 132: 2538-2543.

219 9. **Hickman CG, Istanbulluoglu E.** The use of artificial insemination in developing  
220 countries. Proc X Int Congr Anim Reprod Artif Insem; 1984: 369.

221 10. **Kidd SA, Eskenazi B, Wyrobek AJ.** Effects of male age on semen quality and fertility:  
222 A review of the literature. *Fertil Steril* 2001; 75: 237-248.

223 11. **Krifalus M, Miki K, Magyar PL, O'Brien D.** Multiple glycolytic enzymes are tightly  
224 bound to the fibrous sheat of mouse spermatozoa. *Biol Reprod* 2006; 75: 270-278.

225 12. **Lewis JH.** Comparative hematology: studies on elephants, *Elephas maximus*.  
226 *Comparative Biochemistry and Physiology* 1974; 49: 175-181.

227 13. **Medrano A, Garcia-Gil N, Ramii L, Rivera MM, Fernandez-Novell JM, Ramirez A, Pena A, Briz MD, Pinart E, Concha II, Bonet S, Rigau T, Rodriguez-Gil JE.** Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in  
228 the control of monosaccharide utilization in freshly diluted boar spermatozoa. *Mol  
229 Reprod Dev* 2006; 73: 1179-1199.

230 14. **Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O'Brien DA.** Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific  
231 glycolytic enzyme, is required for sperm motility and male fertility. *Proc Natl Acad Sci  
232 2004; 101: 16501-16506.*

233 15. **Morrell JM.** Update on semen technologies for animal breeding. *Reprod Dom Anim  
234 2006; 41: 63-67.*

235 16. **Mukai C, Okuno M.** Glycolysis plays a major role for adenosine triphosphate  
236 supplementation in mouse sperm flagellar movement. *Biol Reprod* 2004; 71: 540-547.

237 17. **Nadir S, Saacke RG, Bame J, Mullins J, Degelos S.** Effect of freezing semen and  
238 dosage of sperm on number of accessory sperm, fertility, and embryo quality in  
239 artificially inseminated cattle. *J Anim Sci* 1993; 71: 199-204.

240 18. **Parks JK, Graham JK.** Effects of cryopreservation procedures on sperm membranes.  
241 *Theriogenology* 1992; 38: 209-222.

242 19. **Peña FJ, Rodriguez Martinez H, Tapia JA, Ortega Ferrusola C, Gonzalez  
243 Fernandez L, Macias Garcia B.** Mitochondria in mammalian sperm physiology and  
244 pathology: a review. *Reprod Domest Anim* 2009; 44: 345-349.

248 20. **Rigau T, Farrè M, Ballester J, Mogas T, Rodriguez-Gil JE.** Effects of glucose and  
249 fructose on mobility patterns of dog spermatozoa from fresh ejaculates. *Theriogenology*  
250 2001; 56: 801-815.

251 21. **Rigau T, Rivera M, Palomo MJ, Fernández-Novell JM, Mogas T, Ballester J, Pena  
252 A, Otaegui PJ, Guinovart JJ, Rodríguez-Gil JE.** Differential effects of glucose and  
253 fructose on hexose metabolism in dog spermatozoa. *Reproduction* 2002; 123: 579-591.

254 22. **Saacke RG.** Semen quality: importance of and influencing factors. In: Proc. 10<sup>th</sup> NAAB  
255 Tech. Conf Artif Insem Repro; 1984; Milwaukee WI. 30-36.

256 23. **Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE,  
257 Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste  
258 M, Bonet S.** Effects of cryopreservation on semen quality and the expression of sperm  
259 membrane hexose transporters in the spermatozoa of Iberian pigs. *Reproduction* 2007;  
260 134: 111-121.

261 24. **Silva ID, Kuruwita VY.** Hematology, plasma, and serum biochemistry values in free-  
262 ranging elephants (*Elephas maximus ceylonicus*) in Sri Lanka. *Journal of Zoo and  
263 Wildlife Medicine* 1993; 24: 434-439.

264 25. **Silva PFN, Gadella BM.** Detection of damage in mammalian. *Theriogenology* 2006; 65:  
265 958-978.

266 26. **Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ.** The facilitative  
267 glucose transporter GLUT3: 20 years of distinction. *Am J Physiol Endocrinol Metab*  
268 2008; 295: E242-E253.

269 27. **Thorens B, Mueckler M.** Glucose transporters in the 21st Century. *Am J Physiol  
270 Endocrinol Metab* 2010; 298: E141-E145.

271 28. **Vera JC, Rivas CI, Fischbarg J, Golde DW.** Mammalian facilitative hexose  
272 transporters mediate the transport of dehydroascorbic acid. *Nature* 1993; 364: 79–82.

273 Table 1 Mean values ( $\pm$  SD) and range of the haematological parameters and plasma protein  
274 concentration of ten Asia elephants; Gr. 1 = the percentages of motile sperm ( $\leq 20\%$ ), Gr. 2 =  
275 the percentages of motile sperm ( $> 20\% - 60\%$ ) and Gr. 3 = the percentages of motile sperm  
276 ( $> 60\%$ ).

277

278 Table 2 Mean values ( $\pm$ SD) of the semen characteristics and the expression of  
279 immunolocalisation of GLUT3 in the 3 type groups of Asia elephants; Group 1 = the  
280 percentages of motile sperm ( $\leq 20\%$ ), Group 2 = the percentages of motile sperm ( $> 20\% -$   
281  $60\%$ ) and Group 3 = the percentages of motile sperm ( $> 60\%$ ).

282

283 Table 3 Correlation between the expression of immunolocalisation of the glucose transporter3  
284 (GLUT3) in spermatozoa and percentage of sperm motility and live sperm of Asia elephants.

285

286 Fig 1 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3)  
287 in Asia elephant spermatozoa (arrow); (A) group1 = the percentages of motile sperm ( $\leq 20\%$ ),  
288 (B) group2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and (C) group3 = the  
289 percentages of motile sperm ( $> 60\%$ ).

290

291 Fig 2 The graft showed percentages of the 3 type groups of immunolocalisation of the  
292 GLUT3 in Asia elephant spermatozoa; A, B, C values with the superscript show statistically  
293 significant difference at  $p<0.05$ ; Group 1 = the percentages of motile sperm ( $\leq 20\%$ ), Group 2  
294 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and Group 3 = the percentages of motile  
295 sperm ( $> 60\%$ ).

296

297

298 Table 1 Mean values ( $\pm$  SD) and range of the haematological parameters and plasma protein  
299 concentration of ten Asia elephants; Gr. 1 = the percentages of motile sperm ( $\leq 20\%$ ), Gr. 2 =  
300 the percentages of motile sperm ( $> 20\% - 60\%$ ) and Gr. 3 = the percentages of motile sperm  
301 ( $> 60\%$ )

302

---

| parameters                        | Ref. range* | Gr.1 (mean $\pm$ SD) | Gr.2 (mean $\pm$ SD) | Gr.3 (mean $\pm$ SD) |
|-----------------------------------|-------------|----------------------|----------------------|----------------------|
| HCT (%)                           | 29-49       | 35.67 $\pm$ 4.81     | 33.87 $\pm$ 2.44     | 32.55 $\pm$ 1.48     |
| Wbc ( $\times 10^3/\mu\text{l}$ ) | 11.1-16.1   | 12.65 $\pm$ 2.08     | 13.79 $\pm$ 2.57     | 14.62 $\pm$ 1.60     |
| Rbc ( $\times 10^6/\mu\text{l}$ ) | 2.13-3.85   | 3.26 $\pm$ 0.60      | 3.05 $\pm$ 0.32      | 2.8 $\pm$ 0.35       |
| HGB (g/dl)                        | 9.7-16.4    | 13.80 $\pm$ 2.45     | 12.83 $\pm$ 1.06     | 12.1 $\pm$ 0.99      |
| MCV (fl)                          | 81-158      | 110.23 $\pm$ 5.80    | 111.25 $\pm$ 4.11    | 117.0 $\pm$ 9.19     |
| MCH (pg/cell)                     | 40.0-45.5   | 42.47 $\pm$ 1.57     | 42.12 $\pm$ 1.23     | 43.4 $\pm$ 1.84      |
| MCHC (g/dl)                       | 27.7-40.0   | 38.17 $\pm$ 1.63     | 37.85 $\pm$ 0.46     | 37.15 $\pm$ 1.34     |
| PLT ( $\times 10^3/\mu\text{l}$ ) | 80-400      | 168.67 $\pm$ 27.74   | 209.75 $\pm$ 60.29   | 221.5 $\pm$ 6.36     |
| PP (mg/dl)                        | 6-11        | 7.6 $\pm$ 5.3        | 7.75 $\pm$ 0.3       | 8.8 $\pm$ 0.28       |

---

303 Reference range\* from (Silva and Kuruwita, 1993; Lewis et al., 1974)

304

305

306

307

308

309

310

311

312 Table 2 Mean values ( $\pm$ SD) of the semen characteristics and the expression of  
313 immunolocalisation of GLUT3 in the 3 type groups of Asia elephants; Group 1 = the  
314 percentages of motile sperm ( $\leq 20\%$ ), Group 2 = the percentages of motile sperm ( $> 20\% -$   
315  $60\%$ ) and Group 3 = the percentages of motile sperm ( $> 60\%$ )

316

---

| Semen parameters                               | Mean $\pm$ SD        |                      |                     |
|------------------------------------------------|----------------------|----------------------|---------------------|
|                                                | Group 1              | Group 2              | Group 3             |
| Sperm motility (%)                             | 15 $\pm$ 4.08        | 48.33 $\pm$ 7.64     | 73.33 $\pm$ 5.77    |
| Sperm concentration ( $\times 10^6$ sperms/ml) | 1120.00 $\pm$ 254.66 | 1153.33 $\pm$ 244.56 | 1271.67 $\pm$ 95.04 |
| Volume (ml)                                    | 21.25 $\pm$ 13.00    | 16.67 $\pm$ 6.11     | 13.33 $\pm$ 4.16    |
| Semen pH                                       | 7.25 $\pm$ 0.5       | 7.17 $\pm$ 0.76      | 7.33 $\pm$ 0.58     |
| Live sperm (%)                                 | 20.75 $\pm$ 3.30     | 57.00 $\pm$ 4.58     | 82.00 $\pm$ 4.00    |
| GLUT3 sperm (%)                                | 21.46 $\pm$ 10.25    | 84.37 $\pm$ 8.70     | 99.40 $\pm$ 0.69    |

---

317

318

319

320

321

322

323

324

325

326

327

328

329

330 Table 3 Correlation between the expression of immunolocalisation of the glucose transporter3  
331 (GLUT3) in spermatozoa and percentage of sperm motility and live sperm of Asia elephants  
332

| Semen parameters             | <i>R</i> -squared | Correlation | <i>P</i> value |
|------------------------------|-------------------|-------------|----------------|
| Semen motility (%)<br>(n=10) | 0.960             | 0.9798      | 0.001          |
| Live sperm (%)<br>(n=10)     | 0.938             | 0.9685      | 0.001          |

333

334

335

336

337

338

339

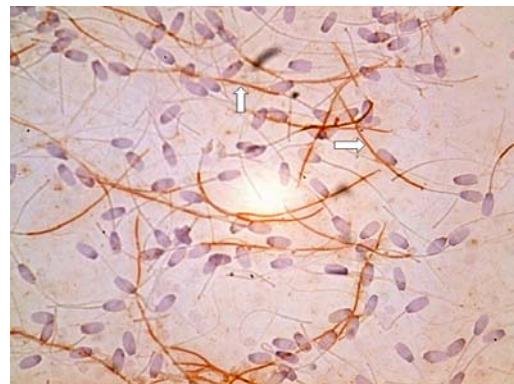
340

341

342

343

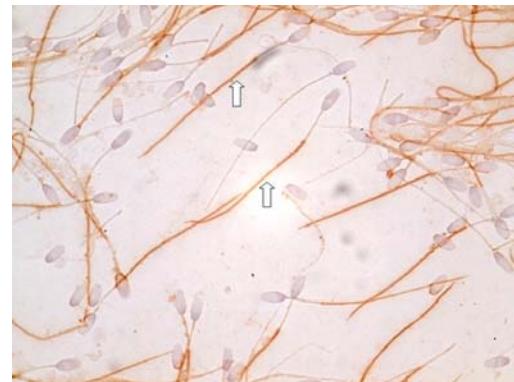
344


345

346

347

348


349



350

A

351



352

B

353

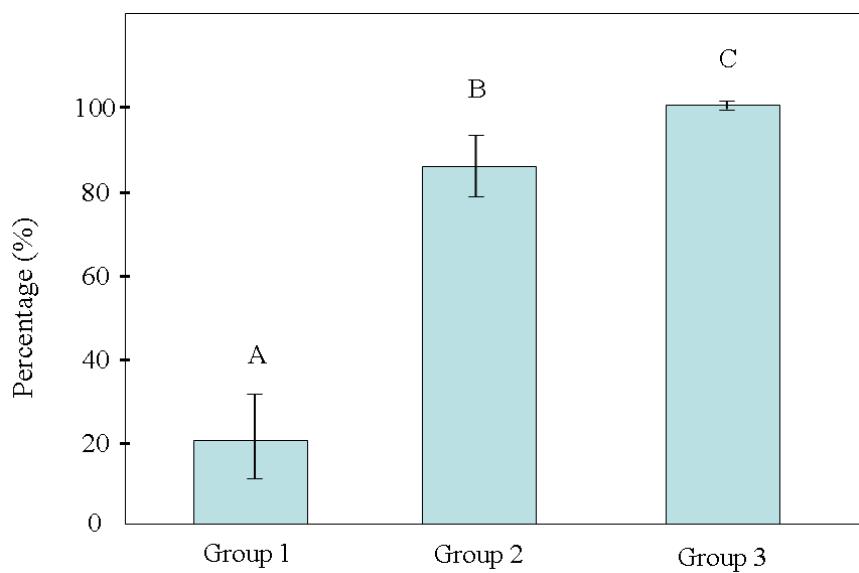


354

C

355

356 Fig 1 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in Asia elephant spermatozoa (arrow); (A) group1 = the percentages of motile sperm ( $\leq 20\%$ ),  
357 (B) Group 2 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and (C) Group 3 = the  
358 percentages of motile sperm ( $> 60\%$ )


359

360

361

362

363



364

365

366

367 Fig 2 The graft showed percentages of the 3 type groups of immunolocalisation of the  
368 GLUT3 in Asia elephant spermatozoa; A, B, C values with the superscript show statistically  
369 significant difference at  $p<0.05$ ; Group 1 = the percentages of motile sperm ( $\leq 20\%$ ), Group 2  
370 = the percentages of motile sperm ( $> 20\% - 60\%$ ) and Group 3 = the percentages of motile  
371 sperm ( $> 60\%$ )

372

373

374

375

376

377

378

379

380

381

1      Title: The effect of different extenders of Tris extender with 3% glycerol (TG) and without  
2      3% glycerol (T) in cooled semen on the expression of GLUT3 of Asian elephant spermatozoa  
3  
4      Running head: GLUT3 in Asian elephant spermatozoa

5  
6      Authors: Sajapitak Somchai<sup>1</sup>, Kornkaewrat Kornchai<sup>2</sup>, Suthunmapinanta Piyawan<sup>3</sup>, Boodde,  
7      Orawan<sup>3</sup>, Mahasawangkul Sittidet<sup>4</sup> and Pinyopummin Anuchai<sup>1</sup>  
8  
9

10  
11     1 -Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary  
12     Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

13     2 -Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine,  
14     Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

15     3 -Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine,  
16     Kasetsart University, Kamphaengsaen Campus, Nakhon-Pathom 73140, Thailand

17     4 -Thai Elephant Conservation Centre, National Elephant Institute, Forest Industry  
18     Organization, Hang Chart, Lampang, 52000, Thailand.

19

20

21

22

23

24

25

26 Corresponding author - Pinyopummin Anuchai, [fvetacp@ku.ac.th](mailto:fvetacp@ku.ac.th)

27 **Abstract**

28 The aims of this study were to evaluated the effect of cooled semen on semen quality  
29 of spermatozoa motility, expression of glucose transporter 3 (GLUT3) and to describe its  
30 localization in spermatozoa from Asian elephant. The semen samples were collected twice  
31 weekly from 6 Asian elephants bulls. The samples were suspended in Tris extender with 3%  
32 glycerol (TG) and without 3% glycerol (T) and chilled in refrigerator at 4°C for 48 hours. The  
33 GLUT3 transporter was determined by immunocytochemical localization using the rabbit  
34 anti-GLUT3 polyclonal antibody. The results showed the presence of GLUT3, and were  
35 localized on specific cellular compartments at the principal and end piece of the sperm tail  
36 before the refrigerator. GLUT3 expressions in T and TG extender groups were significantly  
37 different. The TG extender group showed the presence of GLUT3 that were localized on  
38 specific cellular compartments at the head, end piece and the middle piece of the sperm tail  
39 after chilled in refrigerator at 4°C for 48 hours when compared with the T extender group.  
40 Therefore, the expression and localization of GLUT3 in Asian elephant spermatozoa may be  
41 affected by T with 3% glycerol in the extender, and its localization may involve energy  
42 production via the oxidative phosphorylation and glycolytic pathway.

43

44 **Keywords:** GLUT, Elephant, Sperm

45

46 **Introduction**

47 To understand the function of the sperm of an elephant, the energy from hexose of  
48 elephant's sperm need to be used as energy. It is necessary to study transporter proteins,  
49 particularly Glucose transporter proteins (GLUTs) at the surface of the sperm cell. These  
50 GLUT proteins, as a whole, are mainly responsible for the transport of hexose across

51 mammalian sperm membranes and play a major role in the regulation of sperm glucose and  
52 fructose metabolism, especially GLUT3 [1, 4, 6, 15, 20, 21, 22]. To our knowledge, there  
53 were a few reports about the GLUT proteins in the plasma membrane of elephant's  
54 spermatozoa. Therefore, the study of transporter proteins at the surface of the tissue as a kind  
55 of elephant sperm is essential for the development of the cooled elephant semen quality. In  
56 particular, the preparation was diluted semen containing the sperm of elephant energy for  
57 sperm to extend the life and performance quality of sperm after thawing of cooled semen.  
58 Therefore, this study aims to investigate the transporter proteins on the surface of the tissue  
59 that is responsible for sperm elephant energy into the sperm cells. The present investigation  
60 was undertaken to study the effect of 3% glycerol in Tris-based extender on the variations in  
61 the temporal localization of the hexose specific transporters (GLUT3) after cooling and  
62 thawing of elephant spermatozoa with respect to changes the GLUT3 in plasma membrane  
63 integrity and spermatozoa motility, both of which are indicators of sperm viability and  
64 metabolic intactness.

65

## 66 **Materials and Methods**

67 Animals and sample collections

68 Six semen samples were collected from 3 Asian elephant bulls 2 times which  
69 individual motility over than 60%. The experiment was carried out with the sperm-rich  
70 fraction of the ejaculation being manually collected once a week, using the long gloved-hand  
71 method, and analyzed to ensure the quality of the ejaculates. Two ejaculates were evaluated  
72 per elephant. Immediately after collection, Semen was brought into the laboratory within 3  
73 min and the ejaculated spermatozoa were smeared to the slide glass and were fixed by 4%  
74 paraformaldehyde. Blood samples were collected from an ear vein approximately generally in  
75 the morning before semen collection. The blood samples were maintained at approximately

76 4°C by the tube containing ethylenediamine tetraacetic acid (EDTA), and then blood samples  
77 were stored at 4°C until analysis.

78

79 Blood evaluation

80 All samples were analyzed with an automated analyzer for animal (XT-2000iV/XT-  
81 1800iV, Sysmex, Kobe, Japan). All blood parameters composed of red blood cells (RBC),  
82 white blood cells (WBC), haemoglobin (Hb), haematocrit (Hct), platelets (PLT), mean  
83 corpuscular volume (MCV), mean cell haemoglobin (MCH), mean cell haemoglobin  
84 concentration (MCHC) and plasma protein (PP) were assessed in whole of samples. Plasma  
85 protein concentration analyzed with a refractometer (ATAGO portable hand held brix  
86 refractometer, Japan).

87

88 Sperm evaluation

89 Ejaculates were immediately analyzed for volume, sperm concentration, progressive  
90 motility, sperm viability and pH [7]. Sperm concentration was determined by counting the  
91 sperm, with respect to the dilution and volume, in a counting chamber under a phase contrast  
92 microscope. Individual sperm motility was determined by phase contrast microscope  
93 examination by placing the slide on a drop of semen diluted sodium citrate (0.9%). A  
94 coverslip were then placed over them and observation performed under a phase contrast  
95 microscope with maximum magnification. For the semen samples to be used for chilled  
96 semen were classified according to the type of individual sperm progressive motility by more  
97 than 60% progressive individual motility. The samples were suspended in a Tris extender  
98 with and without of 3% glycerol and chilled in refrigerator at 4°C for 48 hours.

99 Sperm viability was determined by microscope observation of a smear of semen  
100 subjected to special staining fluids, eosin-nigrosin. The method involves placing a drop of

101 approximately 10 microlitres of pure semen on a prepared slide (cleaned and degreased at a  
102 temperature of 37°C on the hot plate). The assessment of sperm viability was performed  
103 under a phase contrast microscope at x100 magnification (Olympus CX31, Olympus, Japan).

104 Two hundred spermatozoa were counted per slide [2].

105

106 Immunocytochemistry

107 Smears were prepared by spreading sperm suspensions of each sampling point on to  
108 superfrost polylysine coated slides, which immediately after being shortly air-dried, and fixed  
109 in buffered paraformaldehyde (0.5%) for 15 minutes at room temperature. The smears were  
110 then rinsed in PBS (pH 7.4) and incubated for 12 hours at 4°C with rabbit anti-GLUT3  
111 antibody (Gene Tex, Inc., Texas, USA) at a dilution of 1:50 (v/v) in TBS humid chambers.

112 After extensive washing, sperm cells were incubated with a goat anti-rabbit GLUT3 (Gene  
113 Tex, Inc., Texas, USA) at a dilution 1:500 in TBS, Horseradish peroxidase (HRPO)-  
114 conjugated secondary antibody for 1 hour under dark conditions at 37°C. Slides were then  
115 washed extensively with PBS and mounted with Vecta shield mounting medium with  
116 propidium iodide. Images were obtained using an Olympus digital camera installed on an  
117 Olympus microscope (Olympus BX51 and Digital camera DP50, Olympus, Japan).

118

119 Statistical analysis

120 For the evaluation of sperm integrity and motility, statistical comparisons of the  
121 expression of immunolocalisation of GLUT3 samples were performed by STATA program.  
122 All results were expressed as mean with standard deviations (SD) and the level of  
123 significance was set at  $p<0.05$ .

124

125 **Results**

126 The means and standard deviation (mean $\pm$ SD) of the haematological complete blood  
127 count (CBC) parameters and plasma protein concentration values of all elephant samples  
128 remained with in normal ranges as seen in the table 1.

129 The expression of immunolocalisation of GLUT3 clearly showed that the  
130 spermatozoa expressed the GLUT3. Strong GLUT3 immunoreactivity was observed at the  
131 principal piece of the sperm tail (Fig 1, A) before cooled semen. While this study revealed  
132 that GLUT3 expression after 48 hours cooled semen were found in all parts of the head,  
133 middle piece and principal piece of the sperm tail in the TG extender group (Fig 1, B), but  
134 while the T extender group were expressed at middle piece and principal piece of the sperm  
135 tail (Fig 1, C). In addition, the results also showed the Mean $\pm$ SD of the percentages of  
136 immunolocalisation of the GLUT3 expression in Asia elephant spermatozoa in the fresh  
137 semen, T and TG extender cooled semen after 48 hours group (Table 2). Percentages of the  
138 expression of immunolocalisation of GLUT3 of the head and middle piece include principal  
139 piece of the sperm tail in the 2 type of the extender groups showed significant differences  
140 between the TG extender group and T extender group ( $p < 0.05$ , Fig 2). The percentages of the  
141 sperm motility in the 3 type groups showed significant differences between the fresh semen  
142 group ( $67.5 \pm 9.87$ ) and the cooled semen T extender group ( $33.0 \pm 18.02$ ), the fresh semen  
143 group and the cooled semen TG extender group ( $47.0 \pm 23.28$ ) and the cooled semen T  
144 extender group and the cooled semen TG extender group ( $p < 0.05$ , Fig 3).

145

#### 146 **Discussion**

147 All elephants used in this study were apparently healthy as indicated by the  
148 hematological parameters. This study showed that the Asia elephant spermatozoa expressed  
149 the family members of the facilitative hexose transporters (GLUTs). These results  
150 demonstrated that the GLUT3 proteins were localized on specific cellular compartments at

151 the level of the principal and end piece of the sperm tail, with the exclusion of the middle  
152 piece before cooled semen. However, the localization of GLUT3 expression after 48 hours  
153 cooled semen were found in all parts of the head, middle piece, principal piece and end piece  
154 of the sperm tail in the TG extender group than T extender group. Percentages of fresh  
155 spermatozoa motility and the expression of immunolocalisation of GLUT3 of the head,  
156 middle piece include principal piece and end piece of the sperm tail in the 2 type of the  
157 extender groups showed significant differences between the cooled semen TG extender group  
158 and cooled semen T extender group after cooled semen 48 hours.

159 Our results indicated that fresh elephant spermatozoa express the family members of  
160 the facilitative hexose transporter, GLUT3. These proteins were localized on specific cellular  
161 compartments at the level of the principal and end piece of the sperm tail, and their  
162 distribution was characteristic. This is logical, since the uptake of essential sugars, such as  
163 glucose and fructose, to maintain energy metabolism was mediated for both transporters.  
164 Thus, GLUT3 was a very effective glucose transporter, as has been already reported in bull  
165 [1], boar [10], dog [16] and human [6] spermatozoa. Therefore, this result indicated that the  
166 expression of GLUT3 was localized at the principal and end piece of the sperm tail and the  
167 motility of fresh elephant spermatozoa was affected by GLUT3 expression (un-public  
168 observation), and its expression may involve energy production via the glycolytic pathway.

169 One of the major findings in this study, in addition to the presence of GLUT3 on the  
170 plasma membrane and within the sperm of an elephant was the fact that the distribution of  
171 GLUT3 protein changes after the process of cooled semen, especially for the GLUT3 which  
172 reduced labeling after 48 hours in the cooled semen T extender group. These changes occur  
173 simultaneously in the membrane will result in a reduction in the ability to use nutrients that  
174 causes a powerful movement that has been compromised and / or membrane integrity. It is  
175 very surprising after the cooled semen for 48 hours with the expression of GLUT3 proteins

176 were localized on specific cellular surface compartments of the sperm elephants, especially  
177 around the head, middle, principal and end piece by the expression of GLUT3 the entire  
178 header middle principal and end piece in the TG group compared with the T group after being  
179 chilled to 48 hours may be due to the membrane of Glyceral, results in the preservation of the  
180 sperm with the effective function of the membrane [5, 13, 23] in elephant spermatozoa. This  
181 distribution of GLUT3 in the TG extender group of elephant spermatozoa differs from that  
182 seen in the T extender group, where GLUT3 was only moderately expressed on the principle  
183 piece and end piece of the tail region but strongly expressed along the tail and head region.  
184 Therefore, the expression of GLUT3 in the head, middle and tail pieces of the spermatozoa,  
185 which may be indicative of the presence of the inner workings of the sperm cells [1, 3, 8, 11,  
186 12, 14, 17, 19], which requires more energy by using the substance glucose or fructose [3],  
187 resulting in the expression of GLUT3 on these area in the elephant spermatozoa of cooled  
188 semen TG extender group.

189 In conclusion, the present study indicated that the expression of GLUT3 was  
190 localized at the principal and end piece of the sperm tail and the motility of fresh elephant  
191 spermatozoa were affected by GLUT3 expression and its expression may involve energy  
192 production via the glycolytic pathway. In addition, this result confirmed the reduction of the  
193 expression of GLUT3 and motility in elephant spermatozoa after cooled semen 48 hours of  
194 the T extender group when compared the TG extender group and reveals that the effect of  
195 glycerol on sperm function in the T extender improved by notice spermatozoa motility and  
196 the expression of GLUT3 of spermatozoa better than the T extender group. This substance  
197 glycerol may be a result of the sperm cell membrane strength after the cooled semen.

198

199 **Acknowledgements**

200 I would like to gratefully acknowledge all of the people. Special thanks must go to  
201 Dr. Anuchai Pinyopummin, my mentor, for sharing his enormous and tremendous knowledge  
202 of the field of animal reproduction and his invaluable advice, support, friendship and patience  
203 well beyond his academic duties. I am very grateful for Miss Sudtisa Laopiem, the expert  
204 technicians of kamphaengsaen Veterinary diagnostic center, who provide the test results. I  
205 would like to thank the National Elephant Institute, Forest Industry Organization for their  
206 permission of sample collection and the Faculty of Veterinary Medicine at Kasetsart  
207 University for providing facilities. I would like to acknowledge the Thailand Research Fund  
208 and Kasetsart University Research and Development Institute for financial assistance of this  
209 study (TRF- MRG5480238).

210

## 211 **References**

- 212 1. **Angulo C, Rauch MC, Dropelmann A, Reyes AM, Slebe JC, Delgado-Lopez F, Guaiquil VH, Vera JC, Concha II.** Hexose transporters expression and function in  
213 mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C.  
214 *Biochem Cell Biol* 1998; 71: 189-203.
- 216 2. **Björndahl L, Söderlund I, Kvist U.** Evaluation of the one-step eosin-nigrosin staining  
217 technique for human sperm vitality assessment. *Hum Reprod* 2003; 18: 813-816.
- 218 3. **Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C.** Review  
219 Gluts and Mammalian Sperm Metabolism. *Journal of Andrology* 2011; 32: 348-355.
- 220 4. **Glander HJ, Dettmer D.** Monosaccharide transport across membranes of human  
221 spermatozoa II. Basic properties of D-fructose and D-glucose uptake by spermatozoa.  
222 *Andrologia* 1978; 10: 273–277.
- 223 5. **Graham LH, Bando J, Gray C, Buhr MM.** Liquid storage of Asian (*Elephas maximus*)  
224 sperm at 4C. *Anim. Reprod. Sci* 2004; 80: 329–340.

225 6. **Haber RH, Wienstein SP, O'Boyle E, Morgello S.** Tissue distribution of the human  
226 GLUT 3 glucose transporter. *Endocrinology* 1993; 132: 2538-2543.

227 7. **Kidd SA, Eskenazi B, Wyrobek AJ.** Effects of male age on semen quality and fertility:  
228 A review of the literature. *Fertil Steril* 2001; 75: 237-248.

229 8. **Krifalusi M, Miki K, Magyar PL, O'Brien D.** Multiple glycolytic enzymes are tightly  
230 bound to the fibrous sheath of mouse spermatozoa. *Biol Reprod* 2006; 75: 270-278.

231 9. **Lewis JH.** Comparative hematology: studies on elephants, *Elephas maximus*.  
232 *Comparative Biochemistry and Physiology* 1974; 49: 175-181.

233 10. **Medrano A, Garcia-Gil N, Ramii L, Rivera MM, Fernandez-Novell JM, Ramirez A,**  
234 **Pena A, Briz MD, Pinart E, Concha II, Bonet S, Rigau T, Rodriguez-Gil JE.** Hexose-  
235 specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in  
236 the control of monosaccharide utilization in freshly diluted boar spermatozoa. *Mol*  
237 *Reprod Dev* 2006; 73: 1179-1199.

238 11. **Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD,**  
239 **Eddy EM, O'Brien DA.** Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific  
240 glycolytic enzyme, is required for sperm motility and male fertility. *Proc Natl Acad Sci*  
241 2004; 101: 16501-16506.

242 12. **Mukai C, Okuno M.** Glycolysis plays a major role for adenosine triphosphate  
243 supplementation in mouse sperm flagellar movement. *Biol Reprod* 2004; 71: 540-547.

244 13. **Parks JK, Graham JK.** Effects of cryopreservation procedures on sperm membranes.  
245 *Theriogenology* 1992; 38: 209-222.

246 14. **Peña FJ, Rodriguez Martinez H, Tapia JA, Ortega Ferrusola C, Gonzalez**  
247 **Fernandez L, Macias Garcia B.** Mitochondria in mammalian sperm physiology and  
248 pathology: a review. *Reprod Domest Anim* 2009; 44: 345-349.

249 15. **Rigau T, Farrè M, Ballester J, Mogas T, Rodriguez-Gil JE.** Effects of glucose and  
250 fructose on mobility patterns of dog spermatozoa from fresh ejaculates. *Theriogenology*  
251 2001; 56: 801-815.

252 16. **Rigau T, Rivera M, Palomo MJ, Fernández-Novell JM, Mogas T, Ballester J, Pena  
253 A, Otaegui PJ, Guinovart JJ, Rodríguez-Gil JE.** Differential effects of glucose and  
254 fructose on hexose metabolism in dog spermatozoa. *Reproduction* 2002; 123: 579-591.

255 17. **Sancho S, Casas I, Ekwall H, Saravia F, Rodriguez-Martinez H, Rodriguez-Gil JE,  
256 Flores E, Pinart E, Briz M, Garcia-Gil N, Bassols J, Pruneda A, Bussalleu E, Yeste  
257 M, Bonet S.** Effects of cryopreservation on semen quality and the expression of sperm  
258 membrane hexose transporters in the spermatozoa of Iberian pigs. *Reproduction* 2007;  
259 134: 111-121.

260 18. **Silva ID, Kuruwita VY.** Hematology, plasma, and serum biochemistry values in free-  
261 ranging elephants (*Elephas maximus ceylonicus*) in Sri Lanka. *Journal of Zoo and  
262 Wildlife Medicine* 1993; 24: 434-439.

263 19. **Silva PFN, Gadella BM.** Detection of damage in mammalian. *Theriogenology* 2006; 65:  
264 958-978.

265 20. **Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ.** The facilitative  
266 glucose transporter GLUT3: 20 years of distinction. *Am J Physiol Endocrinol Metab*  
267 2008; 295: E242-E253.

268 21. **Thorens B, Mueckler M.** Glucose transporters in the 21st Century. *Am J Physiol  
269 Endocrinol Metab* 2010; 298: E141-E145.

270 22. **Vera JC, Rivas CI, Fischbarg J, Golde DW.** Mammalian facilitative hexose  
271 transporters mediate the transport of dehydroascorbic acid. *Nature* 1993; 364: 79–82.

272 23. **Wall RJ, Foote RH.** Fertility of bull sperm frozen and stored in clarified egg yolk-tris-  
273 glycerol extender. *Journal of dairy* 1999; 82: 842-849.

274 Table 1 Mean values ( $\pm$  SD) and range of the haematological complete blood count (CBC)  
275 parameters and plasma protein concentration of six Asia elephants.

276

277 Table 2 Mean values ( $\pm$ SD) of the percentages of immunolocalisation of the GLUT3  
278 expression in Asia elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol  
279 (TG) and without 3% glycerol (T) in cooled semen after 48 hours group; Head = head of  
280 spermatozoa, MP = middle piece of spermatozoa, PP = principal piece of spermatozoa, EP =  
281 end piece of spermatozoa, No = Negative expression of GLUT3 in spermatozoa.

282

283 Fig 1 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3)  
284 in Asia elephant spermatozoa (arrow); (A) the GLUT3 immunoreactivity was observed at the  
285 principal piece of the sperm tail, (B) the expression of immunolocalisation of GLUT3 of head  
286 and the middle piece include principal piece and end piece of the sperm tail in the TG  
287 extender group and (C) the expression of immunolocalisation of GLUT3 of the middle piece,  
288 principal piece and end piece or the principal piece and end piece of the sperm tail in the T  
289 extender group.

290

291 Fig 2 The graft showed percentages of immunolocalisation of the GLUT3 expression in Asia  
292 elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol (TG) and without  
293 3% glycerol (T) in cooled semen after 48 hours group; Head = head of spermatozoa, MP =  
294 middle piece of spermatozoa, PP = principal piece of spermatozoa, EP = end piece of  
295 spermatozoa, No = Negative expression of GLUT3 in spermatozoa.

296

297 Fig 3 The graft showed percentages of the 3 type groups of motility in Asia elephant  
298 spermatozoa; A, B, C values with the superscript show statistically significant difference at  
299  $p<0.05$ ; T = Tris extender without 3% glycerol, TG = Tris extender with 3% glycerol.

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321 Table 1 Mean values ( $\pm$  SD) and range of the haematological parameters and plasma protein  
322 concentration of six Asia elephants

323

| parameters                        | Ref. range* | Mean values ( $\pm$ SD) |
|-----------------------------------|-------------|-------------------------|
| HCT (%)                           | 29-49       | 32.47 $\pm$ 1.32        |
| Wbc ( $\times 10^3/\mu\text{l}$ ) | 11.1-16.1   | 14.4 $\pm$ 1.99         |
| Rbc ( $\times 10^6/\mu\text{l}$ ) | 2.13-3.85   | 2.83 $\pm$ 0.26         |
| HGB (g/dl)                        | 9.7-16.4    | 12.13 $\pm$ 0.73        |
| MCV (fl)                          | 81-158      | 115.25 $\pm$ 6.39       |
| MCH (pg/cell)                     | 40.0-45.5   | 43.00 $\pm$ 1.56        |
| MCHC (g/dl)                       | 27.7-40.0   | 37.32 $\pm$ 0.83        |
| PLT ( $\times 10^3/\mu\text{l}$ ) | 80-400      | 222.25 $\pm$ 55.99      |
| PP (mg/dl)                        | 6-11        | 8.1 $\pm$ 0.66          |

324 Reference range\* from [9, 18]

325

326

327

328

329

330

331

332

333

334

335 Table 2 Mean values ( $\pm$ SD) of the percentages of immunolocalisation of the GLUT3  
336 expression in Asia elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol  
337 (TG) and without 3% glycerol (T) in cooled semen after 48 hours group; Head = head of  
338 spermatozoa, MP = middle piece of spermatozoa, PP = principal piece of spermatozoa, EP =  
339 end piece of spermatozoa, No = Negative expression of GLUT3 in spermatozoa

340

| Position of immunolocalisation of the GLUT3 expression in spermatozoa (%) | Mean $\pm$ SD    |                   |                  |
|---------------------------------------------------------------------------|------------------|-------------------|------------------|
|                                                                           | Fresh semen gr.  | T extender gr.    | TG extender gr.  |
| Head+MP+PP+EP                                                             | 0                | 0                 | 99.25 $\pm$ 7.71 |
| MP+PP+EP                                                                  | 0                | 9.10 $\pm$ 13.52  | 0                |
| PP+EP                                                                     | 99.35 $\pm$ 3.50 | 83.40 $\pm$ 16.54 | 0                |
| No                                                                        | 0.65 $\pm$ 0.82  | 7.50 $\pm$ 5.43   | 0.75 $\pm$ 0.52  |

341

342

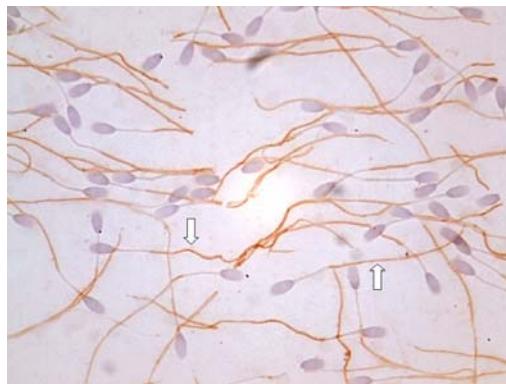
343

344

345

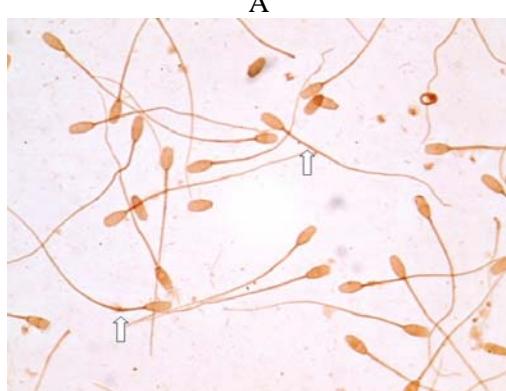
346

347


348

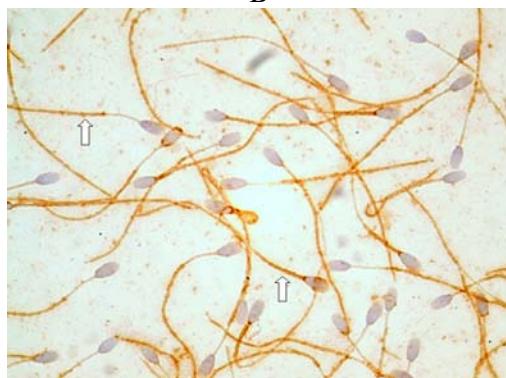
349

350


351

352




353

354

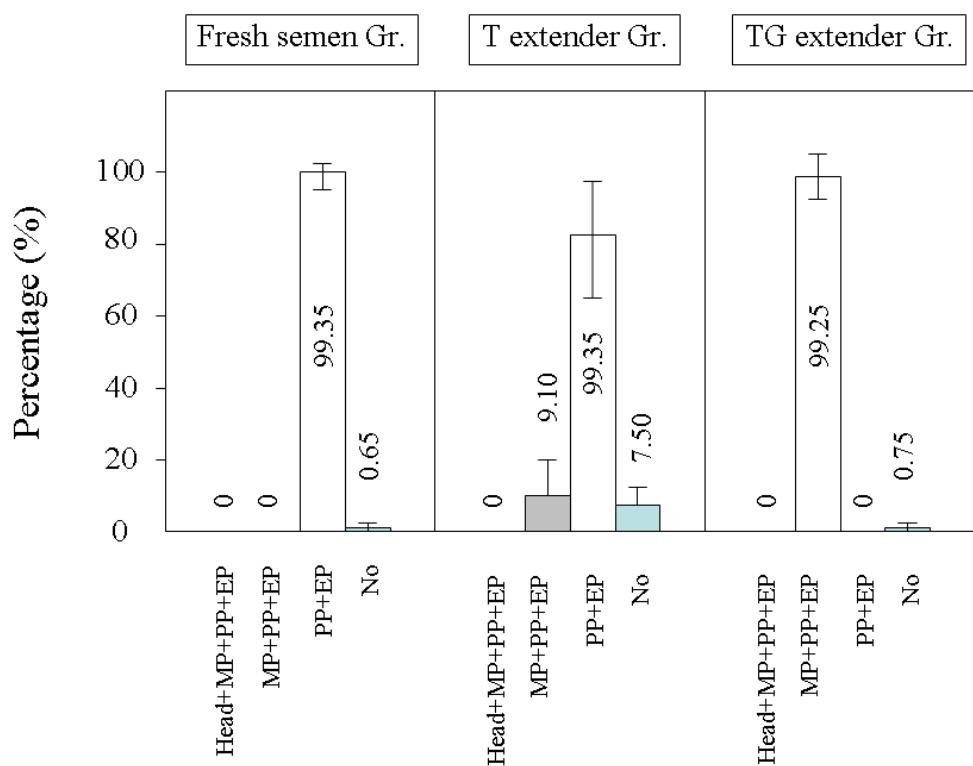


355

356



357


358

359

C

360 Fig 1 Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in  
361 Asia elephant spermatozoa (arrow); (A) the GLUT3 immunoreactivity was observed at the  
362 principal piece and end piece of the sperm tail in the fresh semen, (B) the expression of  
363 immunolocalisation of GLUT3 of head and the middle piece include principal piece and end  
364 piece of the sperm tail in the Tris extender with 3% glycerol (TG) group and (C) the expression  
365 of immunolocalisation of GLUT3 of the middle piece, principal piece and end piece or the  
366 principal piece and end piece of the sperm tail in the Tris extender without 3% glycerol (T)  
367 group

368



369

370

371

372 Fig 2 The graft showed percentages of immunolocalisation of the GLUT3 expression in Asia  
373 elephant spermatozoa in the fresh semen, Tris extender with 3% glycerol (TG) and without  
374 3% glycerol (T) in cooled semen after 48 hours group; Head = head of spermatozoa, MP =  
375 middle piece of spermatozoa, PP = principal piece of spermatozoa, EP = end piece of  
376 spermatozoa, No = Negative expression of GLUT3 in spermatozoa

377

378

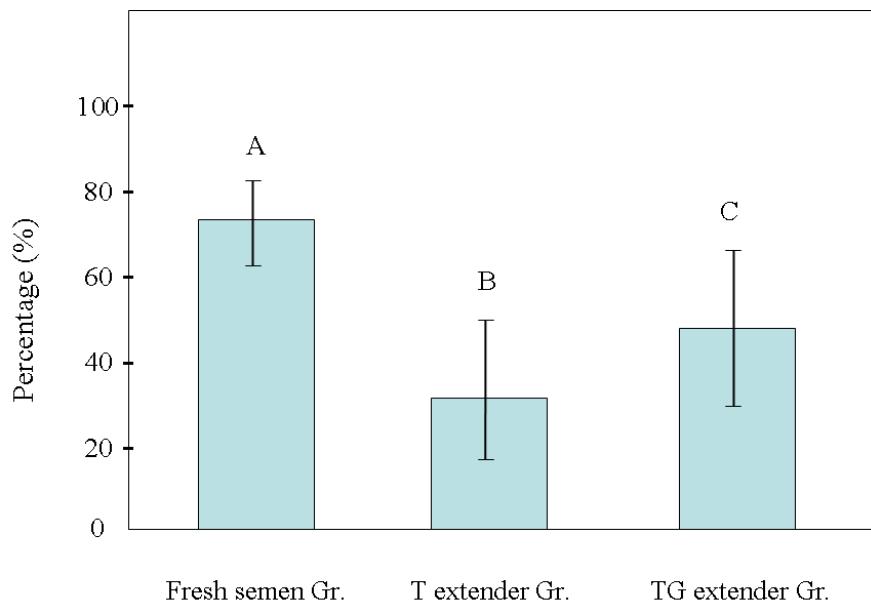
379

380

381

382

383


384

385

386

387

388



389

Fresh semen Gr.      T extender Gr.      TG extender Gr.

390

391

392      Fig 3 The graft showed percentages of the 3 type groups of motility in Asia elephant  
393      spermatozoa; A, B, C values with the superscript show statistically significant difference at  
394       $p<0.05$ ; T = Tris extender without 3% glycerol, TG = Tris extender with 3% glycerol

395

396

397

398

399

400

401

402

# Distribution of the glucose transporter-3 (GLUT3) for spermatozoa and the effect of different extenders of TG and T in cooled semen on the expression of GLUT3 in Asian elephant



Sajapitak, S.<sup>1</sup>, Kornkaewrat, K.<sup>2</sup>, Suthunmapinanta, P.<sup>3</sup>, Boodde, O.<sup>3</sup>, Mahasawangkul, S.<sup>4</sup>, Pinyopummin, A.<sup>1</sup>  
<sup>1</sup>Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand  
email address: fvtscs@ku.ac.th  
<sup>2</sup>Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand  
<sup>3</sup>Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand  
<sup>4</sup>Thai Elephant Conservation Centre, National Elephant Institute, Forest Industry Organization, Hang Chart, Lampang, 52000, Thailand.



## Abstract

The aims of this study were to determine the presence and localization of glucose transporter-3 (GLUT3) in freshly ejaculated Asian elephant sperm with different quality of progressive motility, and to evaluate the effect of different extenders in cooled semen on the expression of GLUT3. For experiment I, the fresh semen samples were collected from 10 Asian elephants bulls, and were classified according to the percentages of motile sperm: Group 1 ( $\leq 20\%$ ; n=4), Group 2 ( $> 20\% - 60\%$ ; n=3) and Group 3 ( $> 60\%$ ; n=3). In experiment II, six semen samples were collected from 3 Asian elephant bulls for 2 times, in which motile sperm were  $>60\%$ . The samples were suspended in Tris extender with (TG) and without (T) of 3% glycerol and kept in a refrigerator at  $4^{\circ}\text{C}$  for 48 h. The GLUT3 was determined by immunocytochemical localization using the rabbit anti-GLUT3 polyclonal antibody. The results of experiment I showed that the GLUT3 were localized at the principal and end piece of the sperm tail. The percentages of sperm with GLUT3 expression were highest in Group 3, and lowest in Group 1. In experiment II, the sperm GLUT3 expressions after cold storage in T and TG extenders were different. The sperm of T group showed the localization of GLUT3 similar to those of fresh semen, while the sperm of TG group showed GLUT3 expressions at the head, middle piece, principal piece and end piece. Therefore, the present study demonstrated that GLUT3 expression was related with sperm motility and was affected by glycerol in extender after cold storage.

Keywords: GLUT, Elephant, Sperm

## Introduction

To understand the function of the sperm of an elephant, the energy from hexose of elephant's sperm need to be used as energy. It is necessary to study transporter proteins, particularly Glucose transporter proteins (GLUTs) at the surface of the sperm cell. These GLUT proteins, as a whole, are mainly responsible for the transport of hexose across mammalian sperm membranes and play a major role in the regulation of sperm glucose and fructose metabolism, especially GLUT3 (1-5). To our knowledge, there were a few reports about the GLUT proteins in the plasma membrane of elephant's spermatozoa. Therefore, the study of transporter proteins at the surface of the tissue as a kind of elephant sperm is essential for the development of the cooled elephant semen quality. In particular, the preparation was diluted semen containing the sperm of elephant energy for sperm to extend the life and performance quality of sperm after thawing of cooled semen. Therefore, this study aims to investigate the presence and localization of GLUT3 in freshly ejaculated Asian elephant spermatozoa with different quality of progressive motility to evaluate the effect of different Tris extender with (TG) or without (T) of 3% glycerol in cooled semen on the expression of GLUT3 on semen quality of spermatozoa motility. The present investigation was undertaken to study the effect of 3% glycerol in Tris-based extender on the variations in the temporal localization of the hexose specific transporters (GLUT3) after cold storage of elephant spermatozoa with respect to changes the GLUT3 in plasma membrane integrity and spermatozoa motility, both of which are indicators of sperm viability and metabolic intactness.

## Methods

Experimental I, The fresh semen samples were collected from 10 normal Asian elephants. The semen samples were classified according to the percentages of motile sperm by Group 1 ( $\leq 20\%$ ; n=4), Group 2 ( $> 20\% - 60\%$ ; n=3) and Group 3 ( $> 60\%$ ; n=3). For the experimental II, The semen samples were collected from 6 Asian elephant bulls that have greater than 60% individual motility. The samples were suspended in TG extender or T extender and chilled in refrigerator at  $4^{\circ}\text{C}$  for 48 h. The GLUT3 transporter was determined by immunocytochemical localization using the rabbit anti-GLUT3 polyclonal antibody. For the evaluation of sperm integrity and motility, statistical comparisons of the expression of immunolocalisation of GLUT3 samples were performed by STATA program. All results were expressed as mean with standard deviations (SD) and the level of significance was set at  $p<0.05$ .

## Results

Experimental I; The expression of immunolocalisation of GLUT3 clearly showed that the spermatozoa expressed the GLUT3. Strong GLUT3 immunoreactivity was observed at the principal piece and end piece of the sperm tail (Fig 1). Percentages of the expression of immunolocalisation of GLUT3 in the 3 type groups showed significant differences between the Group1 (19.44 $\pm$ 10.57) and Group2 (84.39 $\pm$ 8.84), Group1 and Group3 (99.40 $\pm$ 0.07) and Group2 and Group3 (Fig 2).



Fig 1. Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in Asia elephant spermatozoa (arrow); (A) group1, (B) group2 and (C) group3

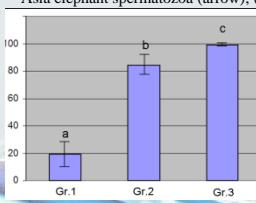



Fig 2. The percentages of the 3 type groups of immunolocalisation of the GLUT3 in Asia elephant spermatozoa; a, b, c values with the superscript show statistically significant difference at  $p<0.05$

Experimental II; this study revealed that GLUT3 expression after cold storage were found in all parts of the head, middle piece, principal piece and end piece of the sperm tail in the TG extender group (Fig 3, B), but while the T extender group were expressed at middle piece, principal piece and end piece of the sperm tail (Fig 3, C). Percentages of the expression of immunolocalisation of GLUT3 of the head, middle piece, principal piece and end piece of the sperm tail in the 2 type of the extender groups showed significant differences between the TG extender group and T extender group ( $p<0.05$ , Fig 4). The percentages of the 3 type groups of motility in Asia elephant spermatozoa showed statistically significant difference at  $p<0.05$  (Fig 5).

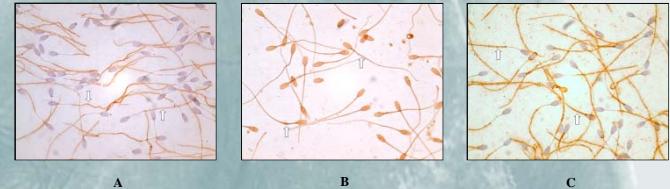



Fig 3. Representative photographs of immunolocalisation of the glucose transporter3 (GLUT3) in Asia elephant spermatozoa (arrow); (A) the GLUT3 immunoreactivity was observed at the principal piece and end piece of the sperm tail, (B) the expression of immunolocalisation of GLUT3 of head, middle piece principal piece and end piece of the sperm tail in the TG extender group and (C) the expression of immunolocalisation of GLUT3 of the middle piece, principal piece and end piece or the principal piece and end piece of the sperm tail in the T extender group

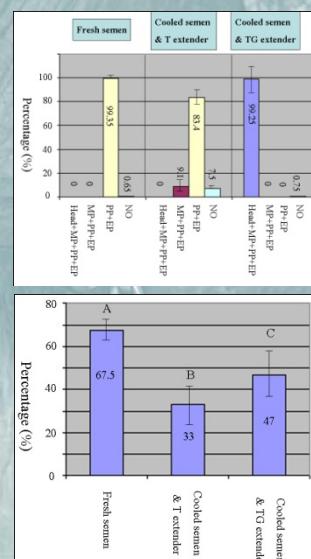



Fig 4. The percentages of immunolocalisation of the GLUT3 expression in Asia elephant spermatozoa in the fresh semen, TG and T extender after cold storage; Head = head of spermatozoa, MP = middle piece of spermatozoa, PP = principal piece of spermatozoa, EP = end piece of spermatozoa No = Negative expression of GLUT3 in spermatozoa



Fig 5. The percentages of the 3 type groups of motility in Asia elephant spermatozoa; A, B, C values with the superscript show statistically significant difference at  $p<0.05$

## Conclusions and Discussion

The present study indicated that the expression of GLUT3 was localized at the principal and end piece of the sperm tail and the motility of fresh elephant spermatozoa were affected by GLUT3 expression and its expression may involve energy production via the glycolytic pathway. In addition, this result confirmed the reduction of the expression of GLUT3 and motility in elephant spermatozoa after cold storage of the T extender group when compared the TG extender group and reveals that the effect of glycerol on sperm function in the TG extender improved by notice spermatozoa motility and the expression of GLUT3 of spermatozoa better than the T extender group. This substance glycerol may be a result of the sperm cell membrane strength after cold storage.

## Acknowledgements

I would like to acknowledge the Thailand Research Fund and Kasetsart University research and development institute for financial assistance of this study (TRF- MRG5480238). I am very grateful for Miss Sudtisa Laopiem, they belong to the technicians of kamphaengsaen Veterinary diagnostic center, who provide the test results. I would like to thank the National Elephant Institute, Forest Industry Organization for their permission of sample collection and the Faculty of Veterinary Medicine at Kasetsart University for providing facilities.

## References

1. Angulo C., Rauch M.C., Doppelmann A., Reyes A.M., Sieble J.C., Delgado-Lopez F., Guiuqui V.H., Vera J.C., Concha I.I. 1998. Hexose transporters expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. *Biochem Cell Biol.* 71, 189-203.
2. Glander H.J. and Detmer D. 1978. Monosaccharide transport across membranes of human spermatozoa II. Basic properties of D-fructose and D-glucose uptake by spermatozoa. *Andrologia.* 10, 273-277.
3. Rigan T., Farre M., Ballester J., Mogas T., Rodriguez-Gil J.E. 2001. Effects of glucose and fructose on mobility patterns of dog spermatozoa from fresh ejaculates. *Fertilogenology.* 56, 801-815.
4. Thorens B. and Mueckler M. 2010. Glucose transporters in the 21st Century. *Am J Physiol Endocrinol Metab.* 298, E141-E145.
5. Vera J.C., Rivas C.I., Fischbarg J., Golde D.W. 1993. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. *Nature.* 364, 79-82.