

บทคัดย่อ

รหัสโครงการ : MRG5480239

ชื่อโครงการ : การศึกษาโครงสร้างและกลไกการเกิดปฏิกิริยาของสารประกอบ oxiranes บน Nanoporous และ Mesoporous Zeolites

ชื่อนักวิจัย : อ.ดร.บุญเดช เปิกฟ้า

อีเมลล์ : bundet.b@ku.ac.th

ระยะเวลาโครงการ : 1 กุมภาพันธ์ 2554 – 30 มิถุนายน 2556

บทคัดย่อ:

ซีโอลิตมีความสำคัญเป็นอย่างมากในอุตสาหกรรม เนื่องจากความสามารถของตัวมันที่ใช้ในการเป็นตัวดูดซับ ตัวแยก และตัวเร่งปฏิกิริยา ซีโอลิตมีมากมายหลายชนิด ZSM-5 เป็นซีโอลิตชนิดหนึ่งที่สำคัญมาก และใช้ในปฏิกิริยาเคมีอินทรีย์มากmany อาทิ butene isomerization, propene oxide isomerization เป็นต้น

เริ่มแรกนั้นเราศึกษาการดูดซับและการเกิดปฏิกิริยาของ 1-butene ไปเป็น isobutene ด้วยตัวเร่งปฏิกิริยา H-ZSM-5 ด้วยการคำนวณแบบ ONIOM(MP2:M06-2X) พบว่าพลังงานการดูดซับของ 1-butene มีค่า -16.5 kcal/mol สำหรับปฏิกิริยานั้นทำการคำนวณกลไก 4 ขั้นตอน 1) การเกิด protonation ของตัวดูดซับ 1-butene ไปเป็น secondary alkoxide intermediate 2) การเกิด methyl shift จาก secondary alkoxide ไปเป็น primary alkoxide 3) การเกิด proton transfer ไปเป็น tert-butyl carbenium ion และ 4) ปฏิกิริยา deprotonation ไปเป็นผลิตภัณฑ์ isobutene พบร่วมกับการทดลองการเกิดปฏิกิริยาคือขั้นที่ 3 ด้วยค่าพลังงานกระตุ้น 34.7 kcal/mol สอดคล้องกับการทดลอง

ต่อมาได้ศึกษาการเกิดปฏิกิริยา isomerization ของ propene oxide (methyl oxirane) บนตัวเร่งปฏิกิริยา H-FER พลังงานการดูดซับของ propene oxide, propanal and propanone มีค่า -25.5, -24.5 and -26.0 kcal/mol ตามลำดับ สอดคล้องการค่าการทดลอง (propanone บน H-ZSM-5 -31.1 kcal/mol) กลไกการเกิดปฏิกิริยาแบ่งออกเป็น 2 ขั้นตอน คือ 1) ปฏิกิริยา protonation เพื่อเกิด ring-opening และ 2) เกิด 1,2-hydride shift ผลิตภัณฑ์ที่ได้มี 2 ประเภทคือ propanal และ propanone สำหรับ propanal นั้น ค่าพลังงานกระตุ้น 31.6 kcal/mol มีค่าต่ำกว่า propanone ที่มีค่าพลังงานกระตุ้น 48.9 kcal/mol

คำหลัก: Zeolite, H-ZSM-5, butene isomerization, propene oxide isomerization, M06-2X

Abstract

Project Code :	MRG5480239
Project Title :	Structure and Reaction Mechanism of Oxiranes over Nanoporous and Mesoporous Zeolites
Investigator :	Dr. Bundet Boekfa
E-mail Address :	bundet.b@ku.ac.th
Project Period :	1 July 2011 – 30 June 2013

Abstract:

Zeolites have a high impact in chemical industries because of their wide range of applications in adsorption, separation and particularly as they regarded as catalysts. Among the various pore zeolites, ZSM-5 is one of the most important zeolite for being used for many organic reactions such as butene isomerization and propene oxide isomerization.

Firstly, the adsorption and skeletal isomerization of 1-butene to isobutene on the nanoporous H-ZSM-5 catalyst has been studied by ONIOM calculations. The adsorption energy of 1-butene from ONIOM (MP2:M06-2X) calculations is -16.5 kcal/mol. This and other results obtained with the M06-2X functional are in better agreement with the experiment than corresponding ones from the **WB97X-D** functional. The reaction mechanism of the skeletal isomerization of 1-butene is proposed to proceed in four steps: 1) protonation of adsorbed 1-butene to a secondary alkoxide intermediate, 2) methyl shift between adjacent carbon-carbon atoms of the secondary alkoxide to form the primary alkoxide, 3) proton transfer to form the tert-butyl carbenium ion, and 4) deprotonation of the carbenium intermediate, leading to isobutene as the reaction product. The third step of the reaction is rate determining with an activation energy of 34.7 kcal/mol, in good agreement well with the experimental value of 30.0 kcal/mol.

Next, the reaction mechanism of propene oxide on H-FER has been studied with quantum calculation. The adsorption of propene oxide, propanal and propanone on H-FER zeolite are calculated and found to be -25.5, -24.5 and -26.0 kcal/mol, which agree well with experimental data for the propanone interacted with zeolite (-31.1 kcal/mol). The isomerization reaction mechanism of propene oxide is considered to proceed through a stepwise mechanism: (1) the epoxide ring protonation, and, concurrently, the ring-opening, and (2), the 1,2-hydride shift formatting the adsorbed carbonyl compound. Two different types of product, propanal and propanone, were observed. For the propanal product, the ring opening step is found to be the rate-determining step with an activation barrier of 31.6 kcal/mol, whereas for the propanone product, the hydride shift formatting step is found to be the rate-determining step with a higher activation barrier of 48.9 kcal/mol.

Keywords : Zeolite, H-ZSM-5, butene isomerization, propene oxide isomerization, M06-2X