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Abstract

Project Code : MRG5480245

Project Title : On isomorphisms of Cayley digraphs of Clifford semigroups and of completely simple
semigroups

Investigator : Mr. Sayan Panma

E-mail Address : panmayan@yahoo.com

Project Period : 2 years

Abstract: Let S be a semigroup, Ac S and Cay(S, A) the Cayley digraph of S with respect
to A. The digraph Cay(S, A) is called a Cl-graph of S if, forany T < S, Cay(S, A) = Cay(S,T)
implies a(A)=T for some o € Aut(S). In this research, we determine the Clifford semigroups and

Completely simple semigroups which their Cayley digraphs are Cl-graphs.

Keywords : Cayley digraph, Clifford semigroup, Completely simple semigroup, rectangular group,

Cl-graph
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1. Introduction

Let S be a semigroup and let A be a subset of S. The Cayley graph Cay(S, A)
of S relative to A is defined as the graph with the vertex set S and the arc set
E(Cay(S, A)) consisting of those ordered pairs (x,y) such that za = y for some
a € A. Clearly, if A is an empty set, then Cay(S, A) is an empty graph.

Arthur Cayley (1821-1895) introduced Cayley graphs of groups in 1878.
One of the first investigations on Cayley graphs of algebraic structures can be
found in Maschke’s Theorem from 1896 about groups of genus zero, that is,
groups which possess a generating system such that the Cayley graph is planar,
see [17].
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Cayley graphs of groups have been extensively studied and many interesting
results have been obtained, see for examples [1], [2], [3], [5], [7], [8], [9], [10], and
[11]. The Cayley graphs of semigroups have been considered by many authors.
Many new interesting results on Cayley graphs of semigroups have appeared in
various journals recently, see for examples [3], [4], [5], [6], [12], and [13]. In the
investigation of the Cayley graphs of semigroups, the first of all interesting is
finding the analogous of natural conditions which have been used in the group
case.

A Cayley graph Cay(S, A) is called a CI-graph of S, CI stands for Cayley
Isomorphism, if whenever B is a subset of S which Cay(S,A) = Cay(S, B),
there exists an automorphism o of S such that o(A) = B. A semigroup S is
called a Cl-semigroup if all of its Cayley graphs are Cl-graphs. The family of
cyclic groups Z,, where p is prime, is the first known infinite family of CI-groups,
see [11].

Necessary and sufficient conditions have been found for Cayley graphs of
groups to be Cl-graphs and for groups to be CI-groups, see for examples [9], [10],
and [11]. After that it is natural to investigate Cayley graphs for semigroups
which are unions of groups. A Clifford semigroup is such a union of groups. Here
we investigate the conditions for Cayley graphs of Clifford semigroups enjoy the
property of being Cl-graphs and the conditions for Clifford semigroups enjoy
the property of being Cl-semigroups.

2. Basic Definitions and Results

All sets in this paper are assumed to be finite. Let S be a semigroup. The set
C(S)={ce S|cs=scforalls e S}is called the center of S. The set of
all idempotents of S is denoted by E(S). An element s € S is called a regular
element if sxs = s for some = € S. One calls S a regular semigroup if all of its
elements are regular. A regular semigroup S is called a Clifford semigroup if
E(S) C C(S), i.e. idempotents of S commute with all elements of S.

If (Y, <) is a nonempty partially ordered set such that the meet a A b of a
and b exists for every a,b in Y, then we say that (Y, <) is a (lower) semilattice.
A semilattice Y is called a chain if, for all x,y € Y, x <y or y < x. Suppose
that we have a semilattice Y and a set of groups G, indexed by Y, and for all
B < ain Y, there exists a group homomorphism f, 5 : Go — Gg such that
fa,a = idg, is the identity mapping and for all «, 5,y with v < 8 < a, we
have fg.fa,3 = fa,y Where the multiplication on S = |J,cy Ga is defined, for
x € Go,y € Gg, by 2y = faang(®)fs.ans(y). It is easy to check that S is a
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semigroup, and called a strong semilattice of groups. We write S = [Y; G, fa.g)-
In 1941, A. H. Clifford proved that a semigroup is a Cilfford semigroup if and
only if it is a strong semilattice of groups, see [16]. In the sequel, we will mainly
use the term Cilfford semigroup instead of strong semilattice of groups.

The following proposition describes all automorphisms on Clifford semi-
groups [Y; Ga, fa,s]-

Proposition 1. [15] Let S = [Y; G4, fo,3] be a Clifford semigroup. Let

n:Y — Y be an automorphism, for each o € Y, let xo : Go = G be an
isomorphism, and assume that for any § < «, the diagram

n(e)

Ga e Gn(a)

fo,p IIORIG))
XpB
G —— Gn(ﬁ)

commutes. Define a mapping x on S by x(a) = xa(a) ifa € G4. Then x
is an automorphism on S. Conversely, every automorphism on S can be so
constructed.

Let (Vi1,Eq) and (Va, E9) be digraphs. A mapping ¢ : V1 — V5 is called a
(digraph) homomorphism if (u,v) € E7 implies (¢(u), ¢(v))
€ Ey, i.e. ¢ preserves arcs. We write ¢ : (V1, E1) — (Va, Es). A (digraph)
homomorphism ¢ : (V. E) — (V, E) is called an (digraph) endomorphism. If
o : (Vi,By) — (Va,E3) is a bijective (digraph) homomorphism and ¢! is
also a (digraph) homomorphism, then ¢ is called an (digraph) isomorphism, we
write (V1, E1) = (Va, Es) and say that (Vi, Ey) and (Va, E2) are isomorphic. An
(digraph) isomorphism ¢ : (V, E) — (V, E) is called an (digraph) automorphism.

The following lemmas describe the structure of Cayley graphs of a given
Clifford semigroup.

Lemma 2. [14] Let S = [Y; G4, fa,g] be a Clifford semigroup and A C S.
Let x;, € G, yj € Gg. If (2,,y5) is an arc in Cay(S, A), then f < «a and for
each z, € G, there exists yg € Gg such that (z,,yg) is an arc in Cay(S, A).

Lemma 3. [14] Let Y be a chain, S = [Y;Gq, fa,p] a Clifford semigroup
and A C S. Then

1. the Cayley graph Cay(S, A) contains |Y'| disjoint induced subdigraphs
(Ga, Eo), a €Y where (G, Eq) = Cay(Ga, Aa) and Aq = {fya(a) | a €
ANG,, a<~}, aeY.
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2. for a # 8, xq € Go, yg € Gg, (xq,yg) is an arc in the Cayley graph
Cay(S, A) if and only if f < o and yg = fo3(xa)a for some a € ANGp.

By Lemma 3(1) and the definition of an induced subdigraph, for each x €
Ga, |Aqa| is the number of s in Gy such that (s,z) is an arc in Cay(S, A).
Let (V,E) be a digraph. Recall that a directed cycle of order n in (V, E) is
a sequence of vertices (z1, 22, ....,Zpn,x1) in V such that (z1,z2), ..., (Tp—1,Tn),
(xn, 1) € E. Denote the identity element of a group G, by eq,.

Now we prove several preparatory lemmas about the Cayley graphs of Clif-
ford semigroups.

Lemma 4. Let S = [Y;G,, fa] be a Clifford semigroup and A C S. If
(z1,22, ..., Tn,x1) is a directed cycle of order n in Cay(S, A), then x1, 2, ..., Ty, €
Gy for some o € Y such that |G,| > n. Moreover, A, \ {en} # 0 where
Ao ={fyala) |ac ANG,, v> a}.

Proof. Suppose that x; € G,, for all i = 1,...,n. By Lemma 2, a1 > ap >
.. > apn > aq, that is, o = ag = ... = ay,. Thus x1, 29, ..., 2, € Gy, . It follows
immediately that |Gy, | > n. By Lemma 3(1), (21,2, ...,Zn,21) is a directed
cycle of order n in Cay (G, , Aq, ). Then there exists a € A,, such that x1a = x2
by the definition. Since x1 # x9, a # e,,. Hence Ay, \ {€qa, } # 0. O

Given two groups G, and Gpg, the group homomorphism f : G, — Gg such
that f(g) = ep for all g € G, is called a zero-mapping.
Let S = [Y;Gq, fa,s] be a Clifford semigroup, A C S and p € Y. Then we

put

Ap={frpla) |a€ ANG,, v = p}
Yo={yeY|y>p}

Ypo ={yeY,| fy,: Gy — G, is a zero-mapping}
Ypl ={yeY,| fy,: Gy — G, is an isomorphism}.

The indegree 7(:0) of a vertex x of a digraph D is the number of vertices
of D that end in z.

Lemma 5. Let S = [Y;G,, fap] be a Clifford semigroup and A C S. If
Y is a chain and all groups G, are cyclic groups of order prime p,, then, for
all x € G,

(z) = [ Aol + Y2 [IAN Gal + 2763/3 |G|, ifzeA
|Aa|+|Yal||AﬁGa|a 1f.’E¢A
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Proof. Let x € G. By the definition, 7(:0) is the number of s in S such
that (s,z) is an arc in Cay(S, A). By Lemma 2, we get that all those s must
belong to G, for some v > . We denote by d.(z), di(z), d—g(x) the number of s
in Go, U,yey1 Gys U, eyo Gy, respectively such that (s, z) is an arc in Cay(S, A).
Since {a} UYL UY? = {v | v > a} and {a}, Y., Y? are pairwise disjoint,
7(1’) = d—:(x) + d—1>(x) + dp(z). Let v € Y. Consider 3 cases:

Casel. v = a. By Lemma 3(1), d_:(:c) = |Aal

Case2. v € Y.!. Then v > a and [y, is an isomorphism. Let s € G,. By
Lemma 3(2), we get that (s, ) is an arc in Cay(S, A) if and only if z = f, o(s)a
for some a € AN G,. Hence (s,x) is an arc in Cay(S, A) if and only if s =

fra@) frala™) = f7i(za™"). Then the number of those s in G is [AN Gyl.

Therefore, di(x) = |[Y2||AN Gyl

Case3. 7 € YV. Then v > a and [y, is a zero-mapping. Let s € G,.
By Lemma 3(2), we get that (s,z) is an arc in Cay(S, A) if and only if z =
fra(s)a = eqa = a for some a € AN G,. Therefore, for v € G,, (s,2) is an
arc in Cay(S, A) if and only if z € A. Then

G|, ifzeA
%(CC) _ Z'YGYC? ‘ 'Y’ 1 T
0, if v ¢ A.

O

For the Clifford semigroup S = [Y'; G4, fo 5] which Y is a chain, all groups
G, are cyclic groups of order prime p, and all group homomorphisms f, g are
zero-mappings, we have Y =Y, and Y, = for all « € Y.

Lemma 6. Let S = [Y;Gy, fo8] be a Clifford semigroup where Y is
a chain, all groups G, are cyclic groups of order prime p, and all group ho-
momorphisms f, 3 are zero-mappings. Let A, B C S and g : Cay(S,A) —
Cay(S, B) be a graph isomorphism. Then g(G,) = G, for all « € Y such that
(AN Ga) \ {ea} £ 0.

Proof. Suppose that (ANG,) \{ea} #0. Let z € G, and a € (ANGq) \
{ea}, then (z,7a,za?, ..., xaP> = x) is a directed cycle of order p, = |G4| in
Cay(S, A) and (g(z), g(za), g(za?), ..., g(z)) is also a directed cycle of order p,,
in Cay(S, B). By Lemma 4, we have g(z),g(za), g(za?),...,g(zaP>=V) € G,
for some v € Y such that |G| = py > p, and there exists b € B, \ {e} = (BN
G,) \ {ey}. Thus (g9(z), g(x)b, g(x)b?, ..., g(x)bP* = g(z)) is a directed cycle of
order p, = |G| in Cay(S, B) and (g7 (¢(=)) = z, g~ (g(2)b), g~ (g9(2)b?), ..., x)
is also a directed cycle of order p, in Cay(S,A). Since x € G4, by Lemma 4,
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z,9~ (9(x)b), g~ (g(2)b?), ...

’g—l(g(x)b(pa,—l)) € G4 and py < |Ga| = pa < py, that is, po = py. Now
we have ¢(Go) = G,. Hence the induced subdigraph with vertex set G,
in Cay(S, A) is isomorphic to the induced subdigraph with vertex set G, in
Cay(S,B). By Lemma 3(1), we get that Cay(Ga,A.) = Cay(G4, B,) and
thus |As| = |B,|. Next we will show that a = v. If o # 7, let we as-
sume that @ < 7. By Lemma 5, in Cay(S, A), j(a) = [Aa| + 22 ey, |Gl =
[Aal + Xacper 1Gol + Gyl + ey, |Gol = [Aal +1G5| + X ey, 1Gpl > [Aal +
> pev, |Gol = By + 3 ey, |Gpl- By Lemma 5 again, in Cay(S, B), we have

1Byl + X pey, |Gol = j(w) for all w € G,. Then j(a) > d(w) for all
w € G, this contradicts our assumption that Cay(S, A) = Cay(S, B). There-
fore, a = ~. O

Lemma 7. Let S = [Y;Gy, fo,3) be a Clifford semigroup where Y is a
chain, all groups G, are cyclic groups of order prime p,, and all group homomor-
phisms f, g are zero-mappings. Let A, B C S and Cay(S, A) = Cay(S, B), then
Cay(Ga, ANG,) = Cay(Gy, BNG,) for all « € Y such that (ANGy)\{ea} # 0.

Proof. Let g : Cay(S,A) — Cay(S,B) be a graph isomorphism. Sup-
pose that (AN Gy) \ {ea} # 0. By Lemma 6, g(G,) = G,. We obtain
that Cay(Gqa,An) = Cay(Ga, Ba) and |Ay| = |Ba|- It follows easily that
Cay(Ga, Aa \ {ea}) = Cay(Ga, By \ {ea}). Since all group homomorphisms
fa,p are zero-mappings, A, \ {ea} = (AN Gy) \ {ea} and By \ {ea} = (BN
Ga) \ {ea}. Thus Cay(Ga,(ANGy)\ {ea}) = Cay(Ga, (BN Gy) \ {ea}) and
hence [(ANG,) \{ea}| = [(BNGy) \{ea}|- If @ is not the maximum of Y, then
> pevy |Gpl # 0. Let m = [Aa| = [Ba| and n = [Aa|+3_ cy,, |Gy, then m # n.

By Lemma 5, for all z € G, \ A4, j(x) =m and for all x € ANG,, j(x) =n.
The increasing sequence of indegree of all elements in G, in Cay(S, A) is

|Gal=|[(ANGa)\{ea}|—1 terms [(ANGa)\{ea}| terms
——N— —N—
( m,m,...,m , d(eq), n,n,..,n )

and the increasing sequence of indegree of all elements in G, in Cay(S, B) is

|Gal—|(BNGa)\{ea}t|—1 terms [((BNGa)\{ea}| terms
——— ———
( m,m,....m , d(eq), n,1m, ..., ).

Since [(ANG4)\{ea}| = [(BNG4)\{ea}| and m # n, indegree of e, in Cay(S, A)
and in Cay(S, B) must be equal. Thus e, € ANG, if and only if e, € BNG,,.
Hence Cay(Gqo, AN Gy) = Cay(Gq, BN G,). If a is the maximum of Y, then
A, = ANGy and B, = BNG,,. Hence Cay(G,, ANG,,) = Cay(Gqo, BNG,). O
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Lemma 8. Let S = [Y;Gy, fo3) be a Clifford semigroup where Y is a
chain, all groups G,, are cyclic groups of order prime p, and all group homo-
morphisms f, g are zero-mappings. Let A, B C S and Cay(S, A) = Cay(S, B),
then Cay(Gq, ANG,) = Cay(Ga, BNG,,) for all « € Y such that ANG,, # 0.

Proof. Let g : Cay(S, A) — Cay(S, B) be a graph isomorphism. Suppose
that AN G, # (), we need to prove only 2 cases:

Casel. (ANG,)\{en} # 0. By Lemma 7, Cay(Go, ANG,) = Cay(Gy, BN
Ga).

Case2. ANG, = {e,}. Clearly, A, = {es}. If ais the maximum element of
Y, then (s,se, = s) is a loop in Cay(S, A) for all s € S. It follows immediately
that every vertex in Cay(S, B) has a loop. By Lemma 3(1), e5 € Bs for all
§ € Y. Suppose that B, = BN G, # {ea}, then (BN Gy) \ {ea} # 0 and
|IBN G, > 1. By Lemma 7, Cay(Go, AN Gy) = Cay(G,, BN G,). Thus
|[ANG,| =|BNGy| >1=|{en}|, a contradiction. Hence BN G, = {ey}, that
is, Cay(Gao, ANG,) = Cay(Gy, BN G,). If « is not the maximum element of
Y, then Yy # 0 and thus 3° oy |G| # 0. By Lemma 5, in Cay(S, A), 7(601) =

1+3 ey, |Gyl and 7(1’) =1forall z € G, \ {en}. Thusg(e,) € BNGs C Bs
for some § € Y such that ZpEYa |Gpl = >_ ey, |Gyl and |Bs| = 1. Hence a=§
and {g(en)} = BN Gy = B,. Since AN Gy = {ea}, (€a,en) is a loop in
Cay(S, A). Obviously, (g(eq), (ea)) is a loop in Cay(S,B). Thus e, € B,,
that is, {eq} = {g(ea)} = BN G, Therefore, Cay(Gqo, AN G,) =
Cay(Ga, BN Gy). O

From now on, NZ! denotes the number of vertices u in a digraph H such
that 7 = 0. Clearly, for two given digraphs H and T, if H = T, then
Ng' = No

The next lemma is proved on the Clifford semigroup S = [Y'; G,
fa,p) which Y is a semilattice.

Lemma 9. Let S = [Y;G,, fag] be a Clifford semigroup, w the minimum
element of Y. If A C G, and Cay(S,A) = Cay(S,B), then B C G, and
Cay(G., A) = Cay (G, B).

Proof. Let g : Cay(S,A) — Cay(S, B) be a graph isomorphism. If A = {),
then Cay(S, A) is an empty graph. Obviously, Cay(S, B) is also an empty graph,
that is, B = () C G,. Hence Cay (G, A) = Cay(G., B). Let A # (). Then for all
s€ Sandac€ A, sa€G,. Thusin Cay(S,A), d(s)=0forall s€ S\G,. By

Lemma 5, 7(90) > |Ay| = |A| > 0 for all x € G,,. Hence Ncay(SA IS\ Gul-
Suppose that B ¢ G,,. Then there exists b € B N Gg for some f > w. Then
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B, # () for all @ < 8. By Lemma 5 again, 7(&0) > |By| >0 forall z € Go,a <
B. Hence Ny < |5\ U5 Gal < 1S\ {Gp,Gu}| < IS\ Gu| = Ny,
this contradicts our assumption that Cay(S, A) = Cay(S, B). Now we claim
that B C G,,. As in Cay(S, A), we can see that , in Cay(S, B), 7(3) = 0 for
all s € S\ G, and 7(:1:) > |Ay| = |A] > 0 for all z € G, so g(G,) = G,. By
Lemma 3(1), Cay(G., A) = Cay(Gy, B). O

Let S = [Y; G4, fa,] be a Clifford semigroup, A C S and z,y € G,, z €
Gy, o # 7. Suppose that (x,y) and (z,y) are arcs in Cay(S5, A). By Lemma
3(1), (z,y) is an arc in Cay(G,, Ay). Then there exists a € A, such that
y = xza. If a = ey, then y = z and thus (z,y) is a loop. If a # e, then
(z,za = y,za?, ..., xal” = z) is a directed cycle of order |a| in Cay(S, A). Thus
(x,y) is either a loop or an arc which is contained in a directed cycle. It is easily
seen that y # z, so (z,y) is not a loop. By Lemma 4, (z,y) is not contained in
any directed cycles. By Lemma 3(2), v > «, that is, v € Y,,. Let us denote by

7** (y) the number of vertices in |J .y, G, that end in y and N;BCW(S’A) the

number of vertices u in Cay(S, A) that 7**(11,) # 0.
Given two subsets A, B of S. Clearly, for a graph isomorphism g : Cay(S, A) —

Cay(S, B), it is not only d (y) = d (g(y)), but also d w(y) = d «(g(y)). More-
over, N;ECay(S,A) _ N*ECay(S,B).
Analysis similar to the proof of Lemma 5 shows that the following lemma

is hold.

Lemma 10. Let S = [Y;Ga, fag] be a Clifford semigroup and A C S. If
Y is a chain and all groups G, are cyclic groups of order prime p,, then, for
all x € G,

daula) = YallANGal + 3 ey |G, ], ifz e A
b Y2IANGal, ifz ¢ A.

Let S = [Y;Gq, fa,s] be a Clifford semigroup which there exists the max-
imum element 7 in a semilattice Y. Let A C G, and p < w. Suppose that
frp is a zero-mapping, then A, = {e,}. Thus the arc set E(Cay(G,,A,)) =
{(z,z)|x € G,}. Suppose that fr, is an isomorphism. Define a mapping
I1, : Cay(Gr, A) = Cay(G,, A,) by II,(x) = fr ,(x) for all € G. It is clear
that II, is a bijective. Let (z,y) be an arc in Cay(Gr, A), then there exists
a € A such that y = za. Since fr, is an isomorphism, II,(y) = II,(za) =
frp(a) = frp(@)frpla) = I,(2),(a). Becauce Il,(a) = fr,(a) € Ay,
(IT,(z),11,(y)) is an arc in Cay(G,, A,). Let (2,w) be an arc in Cay(G,, A,),
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then there exists a, € A, = fr ,(A) such that w = za,. Since f; , is an isomor-
phism, there exists unique ar € A such that fr ,(arx) = a,. Thus H;l(w) =
1, (2a,) = f5(za,) = fM(2) 5 h(ap) = ;" (ar. Hence (IL;1(2). 1, (w))
is an arc in Cay(Gr, A). Therefore, II, is a graph isomorphism. We thus get
Cay(Gr, A) = Cay(G)p, Ap) for all p < m such that fr , is an isomorphism.

Lemma 11. Let S = [Y;G,, fo] be a Clifford semigroup, m the maxi-
mum element of Y. If A C G, and Cay(S, A) = Cay(S, B), then B C G, and
Cay(Gr, A) = Cay(Gy, B).

Proof. Let g : Cay(S,A) — Cay(S, B) be a graph isomorphism. Since 7
be the maximum element of Y, ;! = Y2 = 0. If A C G, then ANG, =0
for all @« < 7. By Lemma 10, in Cay(S, A), 7**(90) = YIANGsl =0
for all # € Goya < 7 and d (@) < [V2IAN Gl + X cy0 |G| = 0 for all

x € Gr. Thus 7**(30) = 0 for all z € Cay(S,A). We must have 7**(30) =0
for all z € Cay(S, B). Suppose that B ¢ G, so there exists b € BN Gg for
some 3 < m. We have frg(er)b = egb = b. By Lemma 3(2), (er,b) is an
arc in Cay(S, B), that is, d..(b) # 0, this contradicts our assumption that
Cay(S,A) = Cay(S, B). Thus B C G,.

Now we want to show that Cay(G,, A) = Cay(Gr,B). If A = {e,}, then
Ay = {eq} for all @ € Y. Thus the arc set E(Cay(S, A))
= {(z,z)|z € S}. Of course, E(Cay(S,B)) = {(z,z)|x € S}. Hence B =
{er}. Therefore, Cay(Gr, A) = Cay(Gr, B). If A\ {er} # 0, then there exists
a € A\ {ez}. Let x € Gy, then (x,za,xa?, ...,zaP™ = z) is a directed cycle
of order pr = |G| in Cay(S, A). Obviously, g(z) ¢ G, where fr, is a zero-
mapping. We have (g(z), g(xa), g(za?), ...,g(z)) is also directed cycle of order
pr in Cay(S, B). By Lemma 4, g(z), g(za), g(xa?), ..., g(xaP==1) € G, for some
v € Y such that |G| = py > pr. If py # pr, then fr . is a zero-mapping. Thus
9(Gx) € G, for some G, such that |G,| = p, = pr and fr , is an isomorphism.
Hence ¢(Gr) = G, for some G, such that fr, is an isomorphism, that is,
Cay(Gr, A) = Cay(G), B,) = Cay(Gr, B). O

Lemma 12. Let S = [Y;G,, fap] be a Clifford semigroup where Y is a
chain, all groups G, are cyclic groups of order prime p,. If A C G, for some
p €Y and Cay(S, A) = Cay(S, B), then B C G, and Cay(G,, A) = CayG,, B).

Proof. Let Cay(S,A) = Cay(S,B). If A =0, then Cay(S,A) is an empty
graph. Obviously, Cay(S, B) is also an empty graph and B = C G,. If p is
the maximum element of Y, then, by Lemma 11, B C G, and Cay(G,, A) =
CayG), B). Let A # () and p is not the maximum element of Y. We claim that
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ANG, =0 for all a # p, Ay # 0 for all a < p and A, = 0 for all & > p. By
Lemma 5, in Cay(S,A4), d(x) > |Ay| > 0 for all x € G4, < p and j(y) =
[Ay| + VAN G,| = 0 for all y € G,y > p. Thus Ny ™3 = 26,
By Lemma 10, in Cay(S, A), 7**(3/) =[V![ANG,|=0forally € G,,v # p,
that is, N;ECW(S’A) < |G,|. Moreover, 7**($) < V) IA] + Z'er,Q |G| for all
x € G,. Thus

in Cay(S, 4), d.u(s) < V1A + 3 |G, | for all s € S, (1)
WGYﬂO

IfB¢ G, then we need to consider 4 cases:

Casel. There exists b € BNGp for some 3 > p. then B, # () for all a < f.
By Lemma 5, in Cay(S, B), j(x) > |By| > 0 for all z € Go, a0 < 3. Thus

Cay(S,B Cay(S,A .
Ny < g 1Gal < s |Gal +1Gs] < Taey, [Gal = N, this
contradicts our assumption that Cay(S, A) = Cay(S, B).

Case2. BNG, = 0. By casel, BNG, = 0 for all v > p. Let z €
G, for some v > p and b € BN Gy, then o < p and 2b € G. Thus, in
Cay(8, B), d(z) = 0 for all = € .., Gy, that is, NS¥P) > 5 16, | =
D oney, G+ 1Gol > 3 ey, 1G] = Nocay(S’A), this contradicts our assumption
that Cay(S, A) = Cay(S, B).

Case3. There exists b € B N Gg for some § < p where f,5 is a zero-
mapping. Then f, g is s zero-mapping for all o € Y, that is, (Y, U {p}) C
Y9, By Lemma 10, in Cay(S,B), d..(b) = [V}||B N Gs| + > eve |G|
Z'erg G| = Z'yeyp Gyl +1Gp| > Zyeyp G, = Z’erpl |G+ 2 evo |Gy =
YHIG + Soerp Gol 2 VAL + Seys G5l By (1), we have d..(b) #
7**(8) for all s in Cay(S, A), this contradicts our assumption that Cay(S, A) =
Cay(S, B).

Case4. There exists b € BN Gg for some 3 < p where f, 3 is an iso-
morphism. Obviously, BN Gz # 0,Y4 # 0 and |Gg| = |G,|. We have
Ypo - Yﬁo , Yp1 - Yﬁl and f, g is an isomorphism for all 3 < o < p. Thus Ypo = Yﬁo
and (V] U{p}) C Y} By Lemma 10, in Cay($, B), d ..() > |V2||BNGj| > 0 for
all x € Gg. By case2, there exists by € BNG,. There exists e, € G,y > p such
that (ey,e b1 = fy p(e4)b1 = epb1 = b1) is an arc in Cay(S, B), so 7**(191) #0.
Hence N;BCW(S’B) > |Gl+1> |Gl = |Gyl = N;BCW(S’A), this contradicts our
assumption that Cay(S, A) = Cay(S, B).

Y
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These 4 cases give B C G. As in Cay(S, A), Lemma 5 gives, in Cay(S, B),
d(2) > |Ba| > 0 for all 2 € Go, o < pand d (y) = |By| + [YI|BNG,| = 0 for
all y € Gy,v > p. Thus 9(U,<, Ga) = Ua<, Ga, that is, Cay(U,<, Ga, 4) =
Cay(U,<, Ga, B). Since p is a maximum element of {aa < p}, analysis similar
to that in the proof of Theorem 11 shows that Cay(G,, A) = CayG,, B). O

3. Main Results

We first give an example of a Cayley graph of a Clifford semigroup which is not
a Cl-graph and that Clifford semigroup is also not a Cl-semigroup.

Example 13. Let Y be a semilattice {«a, 3,7} such that a A 8 = a A
Y= Bi\’Y_:_’Y_Le_t Go = Zay = {Oaala}v Gﬁ = Zs = {0ﬁ71572ﬁ}7 G’y =
Zs = {04,1,,2+,3,,4,} and let f,, fg~ be zero-mappings, i.e. fo~(Ga) =
f8~(Gg) ={0,}. Then S = [Y; G, fa,s] is a Clifford semigroup (see Figure 1).

Gg =73
Gy =1Ls
Figure 1: S =[Y;Ga, fa,s]

Consider two subsets A = {1,,13} and B = {1,,15,0,} of S. Then
Cay(S, A) = Cay(S, B) (see Figure 2).

Figure 2: Cay(S,A) = Cay(S, B)
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Since |A| # |B], there is no o € Aut(S) such that o(A) = B. Therefore,
Cay(S, A) and Cay(S, B) are not Cl-graphs, and S is not a Cl-semigroup.

Here we investigate the conditions for Clifford semigroups enjoy the prop-
erty of being Cl-semigroups.

Theorem 14. Let S = [Y;G,, fo3] be a Clifford semigroup. IfY is a
chain, all groups G, are cyclic groups of order prime p, and all group homo-
morphisms f, g are zero-mappings, then S is a Cl-semigroup.

Proof. Let A C S. Suppose that Cay(S,A) = Cay(S,B). By Lemma 8,
Cay(Ga, AN Gy) = Cay(Ga, BN G,) for all @ € Y such that AN G, # 0.
Since G = Zp, is a Cl-group for all o € Y, there exists g, € Aut(G,) such
that go (AN G,) = BN G, for all @ € Y such that AN Gy # 0. Now we
will construct an automorphism on S as Proposition 1. Let n: Y — Y be an
identity mapping idy and for each o € Y, let

{ga, if ANGg # 0
Xa =

idg,, otherwise.

Define a mapping x on S by x(z) = xa(z) if z € G,. Clearly, x(A) = B. To
show that x € Aut(5), it is sufficient to show that f, gxo = Xx5fa,8- Let x € G,.

Hence fo gXa(z) = fa,5(Xa(?)) = eg and xsfap(z) = xp(ep) = es. [

Corollary 15. Let S = [Y;G,, fas] be a Clifford semigroup. IfY is a
chain, all groups G, are different cyclic groups of order prime p,, then S is a
Cl-semigroup.

Proof. Since all groups G, are different cyclic groups of order prime pg,
all group homomorphisms f, g are zero-mappings. By Theorem 14, S is a
Cl-semigroup. O

Now we investigate the conditions for Cayley graphs of Clifford semigroups
enjoy the property of being Cl-graphs.
Theorem 16. Let S = [Y;G,, fo3] be a Clifford semigroup. IfY is a

chain, all groups G, are cyclic groups of order prime p, and A C G, for some
p €Y, then Cay(S, A) is a CIl-graph.

Proof. Let A C G, C S. Suppose that Cay(S, A) = Cay(S, B). By Lemma
12, B C G, and Cay(G,, A) = Cay(G,, B). Since G, = Zj, is a Cl-group, there
exists g, € Aut(G,) s.t. g,(A) = B. Now we will construct an automorphism
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on S as Proposition 1. Let n : Y — Y be the identity mapping idy and for
each a €Y, let

fp7agpfp_701¢(x), if « < pand f,, is an isomorphism
Xao(z) = foj,/},gpfohp(x), if p < a and f, , is an isomorphism

x, otherwise.

Define a mapping x on S by x(z) = xa(z) if z € G,. To show that x € Aut(S),
it is sufficient to show that f, gXa = Xgfa,3- Let © € G,. If @ = 3, then it is
easily seen that f, sXa(2) = xsfas(z). If B < a and f, g is a zero-mapping,
then f, sxa(r) = eg and xgfap(x) = xs5(eg) = eg. For f < a and f, 5 is an
isomorphism, we need to prove 5 cases:

Casel. 3 < a < p and f,, is an isomorphism. Then f, 5 is an isomor-
phism. Thus fo sXa (%) = fasfpadpfra(®) = fopgpfsa(®) and xsfas(z) =
o898, 5 fap(@) = frp90f5a(x).

Case2. 8 < a < pand f,, is a zero-mapping. Then f, 3 is a zero-mapping.
Thusfa,gXa () = fap(®) and Xpfaps(r) = fop(2)-

Case3. p < # < a and fg, is an isomorphism. Then f, , is an isomor-
phism. ThusfosXa(t) = fasfapdofar(®) = f5,90fap(z) and xsfas(z) =
fg_’ll;gpfﬁ,pfa,ﬁ(x) = fg_’ll;gpfa,p(x)'

Case4. p < 8 < aand fg , is a zero-mapping. Then f, , is a zero-mapping.
Thus fo,sXa(z) = fa,s(z) and xgfas(z) = fop(2).

Case5. 3 < p < . Then f, ,and f, g are isomorphisms. Thus fo gXa(x) =
fasfapdpfap(®) = fos9pfan(®) and Xsfas(@) = fop90f, 5fas(x) = Fop9

fap(@)-
O

Theorem 17. Let S = [Y;G,, fa] be a Clifford semigroup, w the min-
imum element of Y. If all groups G,, are cyclic groups of order prime p, and
A C Gy, then Cay(S, A) is a CI-graph.

Proof. Let A C G, and Cay(S, A) = Cay(S, B). By Lemma 9, B C G, and
Cay(Gu, A) = Cay(Gy, B). Since G, = Zj,, is a Cl-group, then there exists
9w € Aut(Gy,) such that g,(A) = B. Now we will construct an automorphism
on S as Proposition 1. Let n: Y — Y be an identity mapping ¢dy and for each
a €Y, let

fod o faw(@), if fa. is an isomorphism
Xa(z) = ’ .
x, otherwise.
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Define a mapping x on S by x(z) = xa(z) if z € G,,. To show that x € Aut(S),
it is sufficient to show that f, gXa = Xgfa,3- Let € G,. If o = 3, then it is
easily seen that f, sXa(2) = xgfas(z). If B < a and f, g is a zero-mapping,
then fo gxa(z) = eg and x5fa5(x) = xg(eg) = eg. For the other cases that
B < a and f, g is an isomorphism see case3 and case4 in Theorem 16, with p
replaced by w. O

Theorem 18. Let S = [Y;G,, fo ] be a Clifford semigroup, 7 the max-
imum element of Y. If all group G, are cyclic groups of order prime p, and
A C G, then Cay(S, A) is a Cl-graph.

Proof. Let A C G, and Cay(S, A) = Cay(S,B). By Lemma 11, B C G,
and Cay(Gr,A) = Cay(Gr,B). Since G = Z,, is a Cl-group, there exists
gr € Aut(Gy) such that ¢g(A) = B. Now we will construct an automorphism
on S as Proposition 1. Let n: Y — Y be an identity mapping idy and for each
a €Y, let

frarfrk(x), if fra is an isomorphism
Xo(T) = ’ .
x, otherwise.

Define a mapping x on S by x(z) = xao(z) if € G. To show that x € Aut(5),
it is sufficient to show that f, gxa = Xgfa3- Let x € G,. If a = 3, then it is
easily seen that fo sXa(2) = x5fas(x). If B < a and f, g is a zero-mapping,
then f, gxa(z) = eg and xgfa5(z) = xg(eg) = eg. For the other cases that
B < a and f, g is an isomorphism see casel and case2 in Theorem 16, with p
replaced by 7. U
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1. Introduction

Let S be a semigroup and A a subset of S. The Cayley digraph Cay(S, A) of
S relative to a connection set A is defined as the graph with the vertex set S
and the arc set F(Cay(S, A)) consisting of those ordered pairs (x,y) such that
xa = y for some a € A. Clearly, if A is an empty set, then Cay(S, A) is an
empty graph.

Arthur Cayley (1821-1895) introduced Cayley graphs of groups in 1878.
One of the first investigations on Cayley graphs of algebraic structures can be
found in Maschke’s Theorem from 1896 about groups of genus zero, that is,
groups which possess a generating system such that the Cayley graph is planar.

Cayley graphs of groups have been extensively studied and many interesting
results have been obtained, see for examples [1], [8], [9], [10], [11], and [17]. The
Cayley graphs of semigroups have been considered by many authors. Many
new interesting results on Cayley graphs of semigroups have recently appeared
in various journals, see for examples [3], [4], [5], [6], [7], [8], [13], [14], [15], and
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[16]. In the investigation of the Cayley graphs of semigroups, it is first of all
interesting to find the analogous of natural conditions which have been used in
the group case.

A Cayley digraph Cay(S, A) is called a CI-graph of a semigroup S, CI stands
for Cayley Isomorphism, if whenever B is a subset of S for which Cay(S, A) =
Cay(S, B), there exists an automorphism o of S such that o¢(4) = B. A
semigroup S is called a Cl-semigroup if all of its Cayley digraphs are CI-graphs.

Necessary and sufficient conditions have been found for Cayley graphs of
groups to be Cl-graphs and for groups to be Cl-groups, see for examples [9],
[10], [11], and [12]. Such a problem is called Cayley isomorphism. Here we shall
investigate this problem on left and right groups which both of them are the
cartesian product between a group and a semigroup. Graphs considered in this
paper are directed graphs. The terminology and notation which related to our
paper will be defined in the next section.

2. Basic Definitions and Results

Let (V1, E1) and (Va, Es) be digraphs. A mapping ¢ : V4 — Vs is called a digraph
homomorphism if u,v € Ey implies ((¢(u)), (p(v))) € Ea, i.e. ¢ preserves arcs.
We write ¢ : (Vi,E1) — (Va, Es). A digraph homomorphism ¢ : (V,E) —
(V, E) is called a digraph endomorphism. If ¢ : (V1, E1) — (Va, E») is a bijective
digraph homomorphism and ¢~! is also a digraph homomorphism, then ¢ is
called a digraph isomorphism. A digraph isomorphism ¢ : (V, E) — (V, E) is
called a digraph automorphism.

A digraph (V, E) is called a semigroup (group) digraph or digraph of a
semigroup (group) if there exists a semigroup (group) S and a connection set
A C S such that (V, E) is isomorphic to the Cayley graph Cay(S, A).

A semigroup S is called a left (right) zero semigroup if, for any x,y € S,
zy = (zy =y).

A semigroup S is called a left (right) group if S = G x L, (S =G x R,,)
where G is a group and L,, (R,) is an n-element left (right) zero semigroup.
Then the operation on a left group S is defined by (g,1)(¢',!") = (g9¢',1) for
9,9 € G and I,l' € L,. Similarly, the operation on a right group S is defined
by (g,7)(¢',7") = (99',7") for g, ¢’ € G and r,r' € R,,.

Now we recall some lemmas and theorems which are needed in the sequel.

Theorem 2.1. [11] A cyclic group G is called a 2-DCI-group, that is, all
Cayley digraphs of G of valency at most 2 are Cl-graphs.

The following lemmas give the structure of the Cayley digraphs of left groups
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and right groups, respectively. From now on, p; denotes the projection map on
the i*" coordinate of an ordered pair.

Let (Vi, Ev), (Va, Es), ..., (Va, Ey) be graphs and V; NV, = 0 for all ¢ # j.
The disjoint union of (V1, Ey), (Va, Ea), ..., (Vu, Ey) is defined as J_, (Vi, E;) :=
(VulWU..UV,,E1UEyU...UE,).

Lemma 2.2. [16] Let S = G x L,, be a left group and A C S. Then the
following conditions hold:

1. for each i € {1,2,...,n},
Cay (G x {l;},p1(A) x {l;}) = Cay(G,p1(A4))
2. Cay(S, A) = Ui, Cay (G x {I;},p1(A) x {I;}).
Lemma 2.3. [16] Let S = G x R,, be a right group and A C S. If
A C G xA{r;} wherei e {1,2,...,n}, then Cay(G x {r;}, A) = Cay(G, p1(A4)).
The next lemma shows the condition when any two Cayley digraphs of a
given right group with a one-element connection set are isomorphic.

Lemma 2.4. [12] Let S = G x R,, be a right group, and (g,r),(¢',7') € S
where g,¢g' € G and r,r’ € R,,. Then Cay(S,{(g,7)})
= Cay(5,{(¢',")}) if and only if |g| = |¢'|.

3. Main Results

This section is divided into two parts. We first characterize Cl-graphs of left
groups. We will end the section by introducing about Cl-graphs of right groups
which the connection set is a subset of G x {r; } where {r;} is a singleton subset
of the n-element right zero semigroup R,,.

3.1. CI-Graphs of Left Groups

We start with the lemma that will be used in Theorem 3.2. The condition for
two Cayley digraphs of an arbitrary left group which can be isomorphic will be
given.

Lemma 3.1. Let S = G x L, be a left group and A,B C S. Then
Cay(S, A) = Cay(S, B) if and only if Cay(G,p1(A)) = Cay(G,p1(B)).

Proof. (=) Let Cay(5,A) = Cay(S,B) and i € {1,2,...,n}. By Lemma
2.2, we have | J,_,Cay(G x {l;},p1(A) x {l;}) = U,_,Cay(G x {l; },p1(B) x {l;})
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and Cay(G, p1(A)) = Cay(Gx{li}, p1(A) x{li}) = Cay (G x{li}, p1(B) x {li}) =
Cay(G,p1(B)) as required.

(=) Let Cay(G,p1(A)) = Cay(G,p1(B)). Then Cay(G x {l;},p1(A)
{lLi}) = Cay(G x {li},p1(B) x {{;}) for all i € {1 2,...,n} by Lemma 2.2 (

X
),
Therefore U, Cay(G x {Li},p1(4) x {1:}) = U 1CaY(G < {li}, p1(B) x {li})-
Thus we get Cay(S, A) = Cay(S, B) by Lemma 2.2 (2). O

The next result characterizes the Cl-graphs of left groups.

Theorem 3.2. Let S = Gx L, be a left group and A C S. Then Cay(S, A)
is a Cl-graph if and only if n = 1 and Cay(G,p1(A)) is a Cl-graph.

Proof. (=) Let ) # A C G x L,, and let Cay(S, A) be a Cl-graph and
n # 1. We start the proof by choosing an element (g,[;) € A to consider. Since
n # 1, so n > 2. Then there exists k € {1,2,...,n} such that k # ¢ and I, € L,.
We will consider the following two cases:

Case 1: if there exists (g,l;) € A, consider B = A\ {(g,lx)}. We will
see that p1(A) = pi1(B) and Cay(G,pi(A)) = Cay(G,pi(B)). Thus we have
Cay(S, A) = Cay(S, B) by Lemma 3.1, but |A| # |B|. So it is easy to see that
there is no any functions f € Aut(S) such that f(A) = B which satisfy the
definition of Cl-graph.

Case 2: if (g,lx) ¢ A, consider B = AU {(g,x)}. Similarly to the case 1,
Cay(S, A) = Cay(S, B), but we can’t find any functions f € Aut(S) such that
f(A) = B since |A| # |B|. It contradicts the assumption by these two cases.
Therefore n = 1.

Next, we will show that Cay(G,p1(A)) is a Cl-graph. Suppose that
Cay(G,p1(4)) = Cay(G, X).

Take B = X x {l1}, then p1(B) = X. By Lemma 3.1, we get Cay(S, A) =
Cay(S, B). Since Cay(S,A) is a Cl-graph, there exists o € Aut(.S) such that
a(A) = B. Define f: G — G by g — p1(a(g,l1)). Since a € Aut(G x L), we
have f is bijective. Therefore f is a group homomorphism since f(g1)f(g2) =
pi(a(gr, l))pi(a(ge: 1)) = pi(algr, h)a(gz, 1) = pi(a(gig2,11)) = f(g192) for
91,92 € G. Moreover, f(p1(A4)) = p1(a(A)) = p1(B) = X. Hence f € Aut(G)
and f(p1(A)) = p1(B) = X. Thus Cay(G,pi(A)) is a Cl-graph.

(«<=) Let Cay(G,p1(A)) be a Cl-graph. Let n = 1. Suppose that Cay(G x
Li,A) = Cay(G x L1,B). So, by Lemma 3.1, we have Cay(G,p1(A4)) =
Cay(G,p1(B)). Since Cay(G, p1(A)) is a Cl-graph, there exists a € Aut(G) such
that a(p1(A)) = p1(B). Then we define 5: G x {l1} — G x {l1} by 5(g,l1) =
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(a(g),11). Since a € Aut(G), it is easy to see that [ is also bijective. Therefore
f is a group homomorphism since B(g1,11)B(g2, 1) = (a(g1),l1)(a(g2),l1) =
(a(g1)a(g2), l) = (a(g192),l1) = B(g192,11) = B((g1, 1) (g2, 1)) for (g1, 1), (g2, 11)
€ G x {h}. In addition, B(A) = A((A) x {h}) = a(pi(4) x {h} =
p1(B) x {l1} = B. Hence Cay(S, A) is a Cl-graph. O

The next example shows that if n > 2, then Cay(S, A) is not a Cl-graph.

Example 1. Let S = Zs x Ly. Consider A = {(1,;),(1,l2)} and B =
{(@,0)}-

L) L )

(lel) (Ivll) (5711) (gvll) (Zvll) (6712) (Ile) (§7l2) (§7l2) (va)

Figure 1: Cay(S, A) = Cay(S, B)

By the definition of a Cayley digraph, we have Cay(S, A) = Cay(S, B), see
Figure 1. Since |A| # |B|, then we can’t find any automorphisms f in S such
that f(A) = B.

3.2. CI-Graphs of Right Groups

The next lemma will be useful for the proof of Lemma 3.4. We mention about
the degree of vertices of right groups. Let j(u) denote the in-degree of an
arbitrary vertex u of a given right group S.

Lemma 3.3. Let S = G x R, be a right group and A C S. Let i €
{1,2,...,n}. Then AN (G x {r;}) = 0 if and only if d(u) = 0 for all u €
(G x {r;}).

Proof. Let i € {1,2,...,n}.

(=) Assume that AN (G x {r;}) = 0. Suppose that there exists u €
(G x {r;}) such that 7(11,) # 0. Hence there exists an element a € A such that
za = u for some z € S. Since S is a right group, we have a € (G x {r;}). Then
a€ AN(G x {r;}), contrary to AN (G x {r;}) = (). Therefore j(u) = 0 for all
u € (G x{r}).

(<) Let u,v € (G x{r;}) and j(u) =0, 7(1}) = 0. Suppose that AN (G x
{r;}) # 0. So there exists an element a € AN(G x {r;}) such that (u,v) is an arc
in Cay(S, A), and then 7(1}) # 0, a contradiction. Hence AN(Gx{r;})=0. O
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The following lemma gives the conditions when any two Cayley digraphs
of an arbitrary right group which each of its connection set is a subset of the
cartesian product of a group G and a singleton subset of the n-element right
zero semigroup R,,. Throughout the proof, N} denotes the number of vertices

u in a graph H such that j(u) =0.

Lemma 3.4. Let S = G x R, be a right group. Let A C G x {r;}
where i € {1,2,...,n}. Then Cay(S, A) = Cay(S, B) if and only if the following
conditions hold:

1. B C G x {r;} for some j € {1,2,....,n},
2. there exists a graph isomorphism
f:Cay(G x {r;},A) — Cay(G x {r;}, B)
such that ((g,7%), (¢',1:)) € E(Cay(S, A)) if and only if

(f(g,mx), f(d',r:)) € E(Cay(S, B)) for any k € {1,2,....,n}.

Proof. (=) Let Cay(S, A) = Cay(S, B).

1. Suppose that B ¢ G x {r;} for all j € {1,2,..,n}. Then |{j|B N
(G x {r}) = 0} # [{J1AN (G x {r;}) = 0}]. By Lemma 3.3, Ng™* =
[GIB 0 (G % {rj}) = 0}|G] and Ng™Y = (AN (G x {r;}) = D}I|G.
Therefore NocaY(S’A) # NocaY(S’B), which contradicts Cay(S, A) = Cay(S, B).
Then B C G x {r;} for some j € {1,2,...,n}.

2. Since Cay(S,A) = Cay(S, B), there exists a graph isomorphism s :
Cay(S, A) — Cay(S, B). Next, we can define ¢ : Cay(G x {r;}, A) — Cay(G x
{rj}, B) as the restriction of s to G x {r;}, i.e. t = s|gx{y,} by Lemma 3.3.
It is obvious that ¢ is also a graph isomorphism by the definition of s. There-
fore Cay(G x {r;}, A) = Cay(G x {r;}, B). The statement ((g,7%),(¢',7:)) €
E(Cay(S,A)) if and only if (t(g,7%),t(¢',7i)) € E(Cay(S,B)) for any k €
{1,2,...,n} is also true by the assumption.

(<) We define ¢ : Cay(S, A) — Cay(S, B) by

(plf(g’ri))rj), if r=r;
(P(g,?") = (plf(gari)ari)v if r=ry
(p1f(g,ri), ), otherwise.

By the assumption, it is obviously concluded that ¢ is a graph isomorphism
from Cay(S, A) to Cay(S, B). Therefore Cay(S, A) = Cay(S, B). O
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Now we introduce the theorem about being Cl-graphs of any right groups
with a one-element connection set. Theorem 2.1 will be helpful in the proof.

Theorem 3.5. Let S = G x R, be a right group where G is a cyclic
group and R, is an n-element right zero semigroup. Let (a,r;) € S where
i€{1,2,...,n}. Then Cay(S,{(a,r;)}) is a CI-graph.

Proof. Suppose that Cay(S, {(a,;)}) = Cay(S,{(b,r;)}) where (b,r;) € S
for some j € {1,2,...,n}. By Theorem 2.1, we know that Cay(G,{a}) is a
Cl-graph. So for all b € G such that Cay(G, {b}) = Cay(G, {a}), there exists
a € Aut(G) such that a(a) = b. Then we define ¢t : S — S by

(a(g),75), it r=wr
t(g,r) = q (a(g),m:), if r=r;
(alg),7), otherwise.

It is obvious that ¢ is bijective. Let (g,7),(¢’,7’') € S. Since S is a right
group, there are only 3 cases to be considered depend on 7.

Case 1: r' = r;. Then t((g,7)(g',7i)) = t(gg’,ri) = (a(gg), ;) and

t(g, )t i) = (pr(t(g,m))alg), r5) = (alg)elg’), ) = (algg'),75)-

Case 2: 7" = r;. Then t((g,7)(¢',rj)) = t(gg’,rj) = (a(gg'),r:) and
t(g,r)t(g' 1) = (p1(t(g.7))eld') i) = (alg)alg'). i) = (e(gg), 72).

Case 3: 1" # ri # rj. Then t((g,7)(d',7")) = t(99'7")
= (a(gg'),r') and

t(g,m)t(g’,r") = (p1(t(g,7))alg'),r") = (alg)a(d’), ") = (a(gg’), 7).

Thus we have ¢ is a semigroup homomorphism. Since ¢ € Aut(S) and
t(a,r;) = (a(a),r;) = (b,r;), Cay(S,{(a,r;)}) is a Cl-graph. O

The following lemma is similar to Lemma 3.1. We give the condition for
two Cayley digraphs of a right group can be isomorphic. The connection set
which will be considered is a subset of the cartesian product of a group G and
a one-element subset of the right zero semigroup R,.

Lemma 3.6. Let S = G x R, be a right group, A C G x {r;} where
i € {1,2,..,n}, and B C S. Then Cay(S,A) = Cay(S,B) if and only if
CaY(G7p1 (A)) = CaY(G7p1 (B))
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Proof. Let i € {1,2,...,n} and A C G x {r;}.

(=) Let Cay(S, A) = Cay(S, B). By Lemma 3.4, there exists j € {1,2,...,n}
such that B C G x {r;} and Cay(G x {r;}, A)
= Cay(G x {r;}, B). Therefore, by Lemma 2.3, we have Cay(G,p1(A))
= Cay(G,p1(B)).

(«<=) Let Cay(G,pi1(A)) = Cay(G,p1(B)). Then there exists ¢ : Cay(G,
pi(A)) — Cay(G,p1(B)) which is a digraph isomorphism. We define f :
Cay(S, A) — Cay(S, B) by

)’ if r=Tr,
Z)v if r=rj,
(¢(9),7), otherwise.

It is obvious that f is bijective. Let (g,74), (¢',75) € Cay(S, A) and ((g,74),
(¢',7mp)) € E(Cay(S, A)). There exists (a,7;) € Asuchthat (¢', 1) = (g,74)(a, ;).
Then ¢ = ga and 1, = r;. Hence (g,¢") € E(Cay(G,p1(A))) and f(¢',7rp) =
£(g.71) = (9(g'),5). Thus we have (o(g), 9(g')) € E(Cay(G,p1(B))) by the
assumption. Then there exists b € p1(B) such that ¢(g¢') = ¢(g)b. Since

fg' o) = (0(d'),75) = ((9)b,75) = (¢(g),7a) (b, 75)
= f(9,7a)(b,75), (f(g,7a), F(¢',70)) € E(Cay(S, B)),

where (b,r;) € B. Thus we have f preserves arcs, and then f ~1 preserves arcs
can prove in the same way. Therefore Cay(S, A) = Cay(S, B). O

Here we come to our main theorem of the right group. The preceding lemma
will be used in the proof.

Theorem 3.7. Let S = G X R,, be a right group and A C G x {r;} where
i €{1,2,....,n}. Then Cay(S, A) is a Cl-graph if and only if Cay(G,p1(4)) is a
Cl-graph.

Proof. Let i € {1,2,...,n}.

(=) Let Cay(S, A) be a Cl-graph. Suppose that Cay(G,pi(4))
= Cay(G,B). Take X = B x {r;} for some j € {1,2,...,n}. By Lemma
3.6, we get Cay(S,A) = Cay(S,X). So there exists f € Aut(S) such that
f(A) = X. Define ¢ : G — G by g — p1(f(g,7i)). Clearly, ¢ is bijective. Then
¢ is also a group homomorphism since ¢ (g1)¢(g2) = p1(f(91,7:))p1(f (92, 73)) =
p1(f(g1,73)f(g2,73)) = p1f(g192,7mi) = ¢(g192). Let t € p(p1(A)), ie. t =
p1(f(z,r;)) for some (z,7;) € A. Then t € pi1(f(A)) = p1(X) = B. Conversely,
let t € B = pi(X), ie. t = pi(t,r;). Since f(A) = X, there exists (h,r;) €
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A such that f(h,r;) = (t,r;) and thus t = pi(f(h,7;)) € ©(pi1(A)). Hence
©(p1(A)) = B. Therefore Cay(G,pi(A)) is a Cl-graph.

(«<=) Let Cay(G,p1(A)) be a Cl-graph. Suppose that Cay(.S, A)
= Cay(S, B). By Lemma 3.6, we have Cay(G,p1(A)) = Cay(G,p1(B)) where
B C G x {r;} for some j € {1,2,...,n}. Then there exists f € Aut(G) such
that f(p1(A)) = p1(B). Define ¢ : S — S by

S
—~
K
3
N~—
I
~—~
By
—
s
N~—
=

(f(g),7), otherwise.

It is easy to check that ¢ is bijective. About to prove that ¢ is a semigroup
homomorphism is similar to Theorem 3.5. Next, we will prove that p(A) = B.
Let t € p(A) = ¢p(p1(A) x {r;}). Then t = p(z,r;) for some z € p1(A). So
t = (f(x),r;) € B. Therefore ¢(A) C B. Conversely, let ¢t € B. Suppose that
t = (g,7;) for some g € G. Since f(pi1(A)) = pi1(B), there exists h € p1(A),
ie. (h,r;) € A such that f(h) = g. Hence t = (f(h),r;) = ¢(h,r;) € p(A).
Therefore B C ¢(A). So we can conclude that Cay(.S, A) is a Cl-graph. O

We now show another example which can be concluded by Theorem 3.7.

Example 2. Let G =Zg and S = Zg x R,,. Consider A = {1,4,6,7} and
B=1{1,3,4,7}.

Define g : Cay(G,A) — Cay(G,B) by 0 — 6,1 — 1,2 — 2,3 — 3,4 —
7,5 — 8,6 — 0,7 — 4 and 8 — 5. We have Cay(G,A) = Cay(G, B), but
there is no Cayley isomorphisms mapping A to B, that is, Cay(G, A) is not a
Cl-graph. Therefore, by Theorem 3.7, we can conclude that Cay(S, A x {r;})
is not a Cl-graph for all i € {1,2,...,n}.
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ISOMORPHISM CONDITIONS FOR CAYLEY GRAPHS OF
RECTANGULAR GROUPS

S. PANMA, SR. ARWORN, AND J. MEKSAWANG

ABSTRACT. A semigroup S is called rectangular group if S is a cartesian prod-
uct of a group and left zero and right zero semigroup. This paper we introduce
the conditions for Cayley graphs of rectangular groups are isomorphic.

1. PRELIMINARIES

One of the first investigations on Cayley graphs of algebraic structures can be
found in Maschke’s Theorem from 1896 about groups of genus zero, that is, groups
G which possess a generating system A such that the Cayley graph Cay(G, A) is
planar, see for example [19]. In [18] Cayley graphs which represent groups are de-
scribed. The result for groups originates from [18] and is meanwhile folklore, see
for example [2]. After this it is natural to investigate Cayley graphs for semigroups
which are unions of groups, so-called completely regular semigroups, see for ex-
ample [14]. In [1],[10] and [11] Cayley graphs which represent completely regular
semigroups with are right(left) groups, rectangular group and finite simple semi-
groups, respectively are characterized. We now introduce the conditions for Cayley
graphs of rectangular groups are isomorphic.

All sets in this paper are assume to be finite. An element z of a semigroup S
is a left(right) zero of S if zs = z(sz = z) for all s € S, z is a zero of S if it is
both a left and right zero of S. A semigroup all of whose elements are left(right)
zeros is a left(right) zero semigroup. A direct product of a group and a left(right)
zero semigroup is called a left(right) group. A direct product of a left zero and a
right zero semigroup is called a rectangular band. A rectangular groups is a direct
product of a group and a rectangular band.

Let (Vi1,E7) and (Va, E3) be digraphs. A mapping ¢ : V3 — Vh is called a
digraph homomorphism if (u,v) € Eq implies (p(u), p(v)) € Es, i.e. ¢ preserves
arcs. We write ¢ : (V1, E1) — (Va, E2). A digraph homomorphism ¢ : (V, E) —
(V,E) is called a digraph endomorphism. If ¢ : (V1,E1) — (Va, E3) is a bijective
digraph homomorphism and ¢! is also a digraph homomorphism, then ¢ is called
a digraph isomorphism. If a digraph isomorphism ¢ : (V1, E1) — (Va, E2) exists,
then the graphs are called isomorphic and we write (V1, F1) = (Va, Es). A digraph
isomorphism ¢ : (V, E) — (V, E) is called a digraph automorphism.

Let S be a semigroup and A C S. We define the Cayley graph Cay(S,A) as
follows: S is the vertex set and (u,v), u,v € S, is an arc in Cay(S, A) if there
exists an element a € A such that v = ua. The set A is called the connection set of
Cay(S, A).

Key words and phrases. Cayley graph, digraph, rectangular band, right group, rectangular
group.
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A digraph (V, E) is called a semigroup digraph or digraph of a semigroup if there
exists a semigroup S and a connection set A C S such that (V| F) is isomorphic to
the Cayley graph Cay(S, A).

A subdigraph F of a digraph G is called a strong subdigraph of G if and only if
whenever u and v are vertices of F' and (u,v) is an arc in G, then (u,v) is an arc
in F' as well.

2. CAYLEY GRAPHS OF RECTANGULAR BAND

We consider a isomorphism of Cayley graphs of rectangular bands in this section.
By the definition of right zero semigroup, we get the following lemma.

Lemma 2.1. Let v € V(Cay(R,,A)) where R, is right zero semigroup, and let
ACR,. Then

(1) 7(1}) = |Ry,| if and only if v € A;
(2) d(v) =0 if and only if v & A.

From above lemma, we have the following theorem.

Theorem 2.2. Let R, be a right zero semigroup and A,B C R,. Then
Cay(R,, A) = Cay(Ry, B) if and only if |A| = |B].

Since a rectangular band .S = L,,, X R,, isomorphic to the finite simple semigroup
M(G, I, A, P), where G = {e} is the trivial group, m = || and n = |A|. By Lemma
2 in [12] , we have the following lemma.

Lemma 2.3. Let S = L,, X R, be a rectangular band, L, = {l1,la ..., ln} a
left zero semigroup, R, = {r1,7m2 ..., n} a right zero semigroup, and A C S. Then
Cay(S, A) is the disjoint union of m isomorphic strong subdigraphs Cay({l;} x
R, {li} x p2(A)) forie {1,2,...,m}.

Theorem 2.4. Let S = L, x R, be a rectangular band and A,B C S. Then
Cay(S, A) = Cay(S, B) if and only if |p2(A)| = |p2(B)|.

Proof. (=) Let Cay(S, A) = Cay(S, B). By Lemma 2.3, we get Cay(S, A) =
U Cay({li} X Ry, {1} x pa(A)) 2 UL, Cay({l;} x Ry, {1;} x p2(B)) = Cay(S, B).
Then Cay({l;} X Rn, {li} xp2(A)) = Cay({l;} X Ry, {l;} X p2(B)) and thus Cay(R,,
p2(A)) =2 Cay(R,,p2(B)). By Theorem 2.2, we get |p2(A)| = |p2(B)].

(<) Let |p2(A)| = |p2(B)|. By Theorem 2.2, we get Cay(R,,p2(A)) = Cay(R,,
p2(B)). Then U, Cay({l;} x Ry, {l;} xp2(A)) = UL, Cay({l;} x Ry, {l;} xp2(B)).
By Theorem 2.3, we get Cay(S, A) = Cay(S, B). O

3. CAYLEY GRAPHS OF RIGHT GROUPS

In this section, we introduce the condition for Cayley graphs of a given right
group are isomorphic.
By the definition of a right group we get the following lemma.

Lemma 3.1. Let S = G x R, be a right group where G is a group, R, =
{r1,7r2,...,rn} a right zero semigroup, and A a nonempty subset of S. Then, for
9.9 € G and r,v" € Ry, ((g,7),(¢',7")) is an arc in Cay(S, A) if and only if there
exists (a,7") € A such that ¢’ = ga and ((g,7"),(¢’,7")) is an arc in Cay(S, A).
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The next result gives some description for cayley graphs of right groups.

Theorem 3.2. Let S = G x R, be a right group where G is a group and R, =
{r1,r2,...,rn} a right zero semigroup. Let A be a nonempty subset of S,
G/p1(A)) = {91(p1(A)) g1 (A)), . gulpr (A} @ set of distinct left coset of
(p1(A)) in G , and (gi(p1(A)) x p2(A4) , E;) a strong subdigraph of Cay(S ,A).
Then Cay(S, A) = U 1(gi{p1(A)) x pa(A), E;) U (S, E4), where Ea = {((s,1),
(u,v)) | t & p2(A), ((s,v ,(u,v)) € E; for all i}.

Proof. We define f : Cay(S, A) — Ui (g:(p1(A)) x p2(A), E;) U (S, Ea,) by
the identity mapping. Since S = U;";(g:(p1(A)) x p2(A))U S, f is a bijection.
We will prove that f and f~! are homomorphisms. Let ((g,7),(g’,7’)) be an arc
in Cay(S,A). By Lemma 3.1, there exists (a,7’) € A and ¢’ = ga. Hence ¢’ €
9k, (P1(A)), 9 € gk, (P1(A)) for some kq, ke € I. We need only consider two cases:

(casel) If r € p2(A), then (g,7),(g',r") € Ui1(gi(p1(A)) x p2(A)). Since
Uil 1 (gilp1(A)) xpa(A), wE ) is a strong subdigraph of Cay(S, A), ((g,r),
(¢',7")) is an arc in U;_;(gi(p1(4)) x p?éA)’Ei)' Therefore ((g,7),
(g',) = (f(g,7), f(g',')) is an arc in U;_, (gi(p1(A)) X p2(A), Ei) U
(S, Ea).

(case2) If r & pa(A), then ((g,7'),(¢’,r")) is also an arc in Cay(S,A) b
Lemma 3.1 and ((g,7), ( r’)) is an arc in Cay(S, A). This implied
that ((g,7'),(¢’,7")) € E;. Then ((g,7), (g ")) € E4. Hence ((g,7),

(g,7") = (f(g,7), f(g's7")) is an arc in UL, (9i(p1(A)) X p2(A), E;) U
(S, EA)

Therefore f is a homomorphism.
Let (f(g,7), f(¢',7")) be an arc in U;Z;(gi(p1(A)) x pa(A), E;) U (S, Ea). We
consider two cases.
(casel) If (f(g,7), f(g',7")) is an arc in U;_;(gi(p1(A)) x pa(A), E;), then it
is an arc in Cay(S, A) because U (gi(p1(A)) x pa(A), E;) is strong
subdigraph of Cay(S, A).
(case2) If (f(g,7), f(g’,r")) is an arc in (S, E4), then ((g,7),(¢’,7")) € Ea.
We get that ((g,7), (¢’,7")) € E; for some i € I and this implied that
((g,7"), (¢’y7")) is an arc in Cay(S, A). By Lemma 3.1, we have ((g,7),
(¢',7")) is also an arc in Cay(S, A).
Then f~! is a homomorphism. Hence we prove that Cay(S,A)
Uiz1(gi(p1(A)) x pa(A), Bi) U (S, Ea).

o

By Lemma 3.1 and the definition of F4 in Theorem 3.2 we have the next lemma.

Lemma 3.3. Let S = G x R, be a right group where G is a group, R, =
{r1,r2,...,rn} aright zero semigroup. Let A be a nonempty subset of S, (g:(p1(A)
p2(A) , E;) a strong subdigraph of Cay(S , A) and r' € Ry, \p2(A). If ((u,r), (v,r
is an arc in Ujer(gj(p1(A)) x pa(A), E;), then ((u,r'), (v,7)) € Ea.

Theorem 3.4. Let S = G x R, be a right group where G is a group, R, =
{ri,r2,...,rn} a right zero semigroup. Let A be a nonempty subset of S,
G/p1(A) = {g1(p1(A)) +g2(p1(A), - gulpr (A)} the set of distinct left coset
of (p1(A)) in G and (g:(p1(A)) X p2(A) , E;) a strong subdigraph of Cay(S ,A).
Then (gi(p1(A)) x p2(A), E;) = Cay({A), A) fori=1,2,...,w
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Proof. We define f : (gi(p1(A)) X p2(A), E;) = Cay({A), A) by (gia,r) — (a,r)
for all a € (p1(A)) and r € pa(A). Clearly, f is a bijection. We will prove that f
and f~! are homomorphisms.

For (g;a,r),(gid’,r") € gi(p1(A)) x p2(A), let ((gia,r),(gia’, ")) be an arc in
(9i(p1(A)) x p2(A), E;). Since (g;(p1(A4)) x p2(A), E;) is a strong subdigraph o
Cay(S,A), ((gia,7"),(g:a’,r")) is an arc in Cay(S, A). There exist (a”,7') € A

A).

=

such that g;a’ = g;aad” so o/ = aa”. Since f(g;a’,7") = (a',7") = (aad”,r’)
(@)@, ) = [(gia,r)(@",r"), (F(giarr), flgia, ")) s an arc in Cay((A),
Therefore f is a homomorphism.

Let (f(gia,r), f(g:a’,7")) isan arcin Cay((A), A). Then there exist (a”,7") €
A such that f(g;d’,r") = f(gia,r)(a”,r"”). Therefore (a’,r') = (a,r)(a”,r") =
(ad”;r"), @’ = aa” and v = r”. Hence (g;a’,7") = (giaad”,r") = (gia,r) (a”,r")
o ((gia,r), (gia',r")) is an arc in Cay(S, A). Since (g;a,r), (gid’, ') € gi(p1(A)) x
p2(A) and (g;(p1(A)) x p2(A), E;) is a strong subdigraph of Cay(S, A), then
((gia,7), (gia’,7")) is an arc in (g;(p1(A)) x p2(A), E;). Therefore f~! is a homo-
morphism. This mean that (g;(p1(A4)) x p2(A), E;) = Cay((A), A). O

Lemma 3.5. Let S = G x R, be a right group where G is a group and R, =

{ri,re,...,rn} a m’ght zero semigmup Let A be a nonempty subset of S,

G () = (o0 (A o g AN the st of it Lt cose of
(p1(A)) in G and (g:{p1 Ag x p2(A), E;) a strong subdigraph of Cay(S, A). Then

for all v € V(Cay(S, A)) )#0 zf and only if v € U; 1(gl<p1(A)>) x pa(A).

Proof. (=) Let v = (g1,71) € S and 7(1}) # 0. Then there exist u = (g2,72) € S
such that (u,v) is an arc in Cay(S, A). Hence there exist a = (¢’,7’) € A such that
v = wa. Therefore (g1,71) = (g92,72)(¢", ") = (g29',7'), we have r1 =1’ € py(A).
Since g1 € G = U, (gi<p1 (A))), then v = (g1,7m1) € U;, (gi<p1 (A)>) X po(A).

(<) Letv = (g1,7) € L'Jiwzl(gi<p1 (A)>) xp2(A), we get that g1 € G and r € pa(A).
We need consider the two cases.

(casel) If v € A, since G is a group ,then there exist identity e of G such that
(e,r) € S and (e,r)(91,7) = (eg1,7) = (g1,7) = v. Hence there is an
edge from (e, r) to v. Therefore 7(1}) # 0.

(case2) If v ¢ A, then there exists (g2,7) € A for some g2 € G. Because G
is a group and g1, g2 € G, this implies that g, * € G and glgz_1 e q.
Then we have (9195, 7) € S. Since (9192 ) (92,7) = (9195 92,7 )
(g1,7) = v, there exist an arc from (g1g5 *,7) to v. Therefore 7

D

Lemma 3.6. Let S = G x R, be a right group where G is a group, R, =
{ri,r2,...,rn} a right zero semigroup, and let A and B be nonempty subsets of S.

If Ulfve.z(gz‘<p1(z4)> x p2(A), Ei) U (S, Ba) = Ujer(g;(p1(B)) x p2(B), E;) U (S, Ep),
then Uier (9i(p1(A)) X p2(A), Ei) 2 Ujc (g5 (p1(B)) x p2(B), Ej).

Proof. et U (gi(p1(A)) x pa(4), Bi) U (S, Fa) = UL (g5 (B)) x pa(B),
E;)U (S, Eg). Then there exists an isomorphism f : Ujc;(g:(p1(A)) x p2(A), E;) U
(S,Ea) = Ujer(g5(p(B)) x p2(B), E;) U (S, Ep). By Lemma 3.5, we get that
Uier (9:(p1(A) x pa(A)| = |Ujer(9;(p1(B))) x pa(B)| and  we  have
f(U;TUeI (gi<p1 (A))) x p2(A)) = U;“-UGI (gj (p1 (B))) X pa(B). Since f is an isomorphism,
the restrictions of f on U;Uel(gi<p1 (A))) x pa(A) is an isomorphism from U;Uel
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(9i(p1(A)) xp2(A), E;) to Uje (g (p1(B)) x p2(B), Ej). Therefore Ujcr (g:(p1(A)) x
p2(A), Eq) = Uje (95 (p1(B)) x p2(B), E). O
Lemma 3.7. Let S = G X R, be a right group, A and B nonempty subsets of S.
If Cay(S, A) = Cay(S, B), then |p2(A)| = |p2(B)].

Proof. Let Cay(S, A) = Cay(S, B). By Lemma 3.5, we get that [Uierg: (p1(A)) x

A)‘ = ‘Ujejgj<p1(B)> X pQ(B)‘ for all g;,g; € G. Since U;ergi(p1(A)) = G =
Ujerg;{p1(B)), |G xpg(A)} = |G><p2(B)}. Therefore }G| X }pQ(A)| = }G| X }pQ(B)}.
Hence |p2(A)| = |p2(B)|. O

By Theorem 4 in [12], we have the next lemma.

Lemma 3.8. Let S = G X R,, be right group and let (g, \), (h, 8) € S where g,h € G
and A\, B € R,,. Then Cay(S,{(g9,\)}) = Cay(S,{(h,B)} if and only if |g| = |h|.

Theorem 3.9. Let S = G x R, be a right group, A and B nonempty subsets of S.
Let A, = {v € (pr(A)) x {r}|r € pa(A)}, B, = {v € ((B)) x {r}|r € pa(B)},
A:={A|A, = ANA,} and B := {B |B = BNB,}. If Cay((A), A) = Cay((B), B)

then |A| = |B| and |(p1(A))] = | (p1(B))]-

Proof. Let Cay((A),A) = Cay((B),B). By Lemma 37 we have ’pg ‘ =
’pg ‘ and then ’A’ B|. Since Cay((A), A) = Cay((B ‘ = ’ ‘
Therefore

!<p1< )| = (B x (a(B))]
‘( ’X’P2A>‘ = ’<P1(3)>’X‘<P2(3)>‘
|(p1(A))] x ‘p2 Al = [(;m(B)]| x |p2(B)|
(PN = [(ma(B))]-

O

Theorem 3.10. Let S = G X R, be a right group, A and B nonempty subsets of
S. Let A, :={v € (p1(A)) x {r}|r € p2(A)}, B, := {v € (p1(B)) x {r}|r € p2(B)},
A i,|A ; 3.|B, = BN B,}. Then Cay((A),A) =
Cay(( ) ) if the following conditions hold
(1) |A |B| Cmd|p1 |—|p1 >|
(2) There exists a bijection f: A — B such that |A | = |f | forall A, € A;
(3) For each A, € A, there exists a bijection h : A, — f(A,) such that |p1(a)| =
|p1 | for all a € A,.

Proof. By (1) we get that |(A)] )|- By Lemma 3.8 and (3), we get

= [(B
that Cay((A),{a}) = Cay((B),{h(a)}) for all a € A,. Then Cay((A),A,) =
©oe4,Cay({4),{a}) 2 @,c4 Cay((B), {h(a)}) = Cay({B), h(4,)).
By (2), we get that Cay((A), A,) = Cay((B), f(A,)) for all A, € A. Then
@4 caCay((A),4,) = @y ;Cay((B), f(4,))
an(<A>’UAT€AAT) =~ Cay(<B>’UAT€Af(AT))
Cay((A),A) = Cay((B),B).
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Theorem 3.11. Let S = G x R, be a right group where G is a group, R, =
{r1,r2,...,rn} a right zero semigroup, and let A and B be nonempty subsets of S.
Then Cay(S, A) = Cay(S, B) if and only if Cay({A), A) = Cay((B), B).

Proof. (=) Let Cay(S,A) = Cay(S, B), then there exists an isomorphism
f:Cay(S, A) — Cay(S, B). It then follows by Theorem 3.2 that Uz, (g;(p1(A)) x
pg(A) DU(S, Eq) = U;ﬂe[(gﬂpl( )) xp2(B), E;)U(S, Eg). By Lemma 3.6, we get

Uier (9:(p1(A)) xp2(A), Ei) 2= Uje (g (p1(B)) X pa(B), E;). Therefore (g;(p1(A)) x
p2(A), E;) = (g;(p1(B)) x p2(B), E;). By Theorem 3.4, we get Cay((A), A) =
Cay((B), B).

Let Cay((A), A) = Cay((B), B). By Theorem 3.4, we get Uy (g;(p1(A)) x
p2(A), E;) = Ujcr(9;(p1(B)) x p2(B), E;). Then there exist an isomorphism f :
xpa(A), E

Uier(gi (p1(A))xp2(A), Ei) = Uje; (9;(p1(B)) xp2(B), Ej). Then [Uic/(gi (p1(A)) x
p2(A)| = [Ujes (95(p1(B)) x p2(B)|. Since Uic1gi(p1(A)) = G = Uje19;(p1(B)),

| = |G x p2(B)|. Therefore |G| x |p2(A)| = |G| x |p2(B)| and thus
p2(B } Suppose that R, \ p2(4A) = {q1,¢2,---,qm} and R, \ p2(B) =
{ql, @y dt Let 7 € pa(A). Define T : Ui (gi(p1(A)) x p2(A), E;) U (S, E4) —
Ujer(95(p1(B)) x p2(B), E;) U (S, Eg) by

— fls,m) if 1 € p2(4)
T(s,ri) = { (p1(f(s,7),q,) if r; = gi for some g € Ry, \ p2(A4)

Clearly, T is well defined and bijective. We will prove that 7" and T—! are homo-
morphisms.

Assume that ((x,7¢), (y,74)) is an arc in User(g:(p1(A))x pa(A), E;) U (S, Ea).
Then (y,rq) = (z,7¢)(a,r) for some (a,rm) € A. Hence (y,7q4) = (za,r) and thus
rqg =715 € p2(A) and y = xza. We need only consider 2 cases:

(casel) rc € pa(A). Then (T'(z,7c),T(y,rq)) = (f(z,7e), f(y,74)) is an arc in
Ujer(g5(p1(B)) x p2(B), E;) U (S, Ep) since f is an isomorphism.

(case2) 1. € Ry \ p2(A). Then r. = ¢ for some k € {1,2,...,n}. Hence
((x,rc), (y,7rq)) € Ea. Then ((z,7q),(y,rq)) is an arc in
Uscr(g: (01 (A)) X po(A), Er). By Lemma 3.1, ((#, ), (4,ra)) is also an
arcin U;er(gi(p1(A))xpa(A), E;), it follows that (f(z,r), f(y,r4)) is an
arcin Ujer(g;(p1(B)) xp2(B), E;). Let f(z,r) = (2/,r") and f(y,rq) =
(v',7)). Therefore ((:v',r'),(y’,rél)) is an arc in Ujer(g;(p1(B)) x
p2(B), E;) and thus ((:v' ), (Y, r&)) is also an arc in
Ujer(g;(p1(B)) x p2(B), E;). By Lemma 3.3, ((z/,q;,), (¥, })) € EB.
This mean (T(x,7.),T(y,ra)) = ((pl(f(7 ) q,), (Y1) € Ep.
Hence (T'(z,r.),T(y,rq)) is an arc in Uy)el(gj<p1(B)> X p2(B), E;) U
(S,EpR).

Then we prove that T is a homomorphism.

Assume that (T'(z,rc), T(y,rq)) is an arc in Ui (g;(p1(B)) x p2(B), Ej;) U
(S, Eg), we have (T'(z,7.),T(y,rq)) € E(S,Ep). Let T'(y,rq) = f(y,7q) = (¥, 7).
Then ((p(f(x,7)),4;), (W', rg)) € E(S,Ep) and so ((pr(f(,7)),75), (¥',75)) is
an arc in Ujc;(g;(p1(B)) x p2(B), E;). Hence there exists (b)) € B such that



ISOMORPHISM CONDITIONS FOR CAYLEY GRAPHS OF RECTANGULAR GROUPS 7

(', 7)) = (p1(f(x,7)),7)(b,7),). Then

f(y,rd) = (‘TI 7{1)

This means that (f(z,7), f(y,74)) is an arc in Ujc (g (p1(B)) xp2(B), E;). Then
((x,7), (y,7a)) is anarcin Ui (gi(p1(A))xp2(A), E;). Therefore ((z,7.), (y,74)) €
E4 and it is also an arc in Uje;(gi(p1(A)) x p2(A), E;) U (S, E4). Thus T~ is a
homomorphism. Hence Ujc;(gi(p1(A)) x pa(A), E;) U (S, Ea) = Ui (g;(p1(B)) x
p2(B), E;) U (S, Eg). By Theorem 3.2, we have Cay(S, A) = Cay(S, B). O

Example 1. Let S = Z4 x Ry be a right group, A, B C § where Z4 = {0,1,2,3},
}?2 = {Tl,’f’g} and A = {(O7T1)7 (17T1)7 (2,T1), (1,7"2)}, B = {(37T1)7 (O7T2)7 (27T2)7
(377“2)}.

We have A = {A,,A,,}, B = {B,,,B,,} and [A| = |B|. Since (p1(A)) =
{0,1,2,3} = (p1(B)), [{p1(A))] = [{ps( )>| makes condition (1) in Theorem 3.10
satisﬁed

We have A, = {(0,71),(1,71), (2, 1)}, A,, = {1, r2)} and B, = {(3,m)},
By, = {(0,72),(2,72),(3,72)}. Then |AT1| =3=|B,,| and |AT2| =1= |BT1| There
exists a bijective function f from A to B such that f(A,,) = B,, and f(A,,) = B,,
makes condition (2) in Theorem 3.10 satisfied.

Moreover, there are bijective functions

hy: A,, — B, such that hi(0,71) = (0,72)
hi(1,m) = (3,m2)

hi(2,71) = (2,72)

and hy : A,, — B,, such that ho(1,72) = (3,71)

makes condition (3) in Theorem 3.10 satisfied and it follows that Cay({A4), A) =
Cay({B), B). By Theorem 3.11, we get that Cay(S, A) = Cay(S, B). See Fig. 1
and Fig. 2
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67’1

(_)TQ

4. CAYLEY GRAPHS OF RECTANGULAR GROUPS

By [12], we have the conditions for two Cayley graphs of rectangular group
Cay(S,{a}) and Cay(S,{b}) being isomorphic.

Theorem 4.1. Let S = G x L,, X Ry, be a rectangular group, a = (g1,11,71),
b= (go2,l2,m2) € S. Then Cay(S,{a}) = Cay(S,{b}) if and only if |g1| = |g2|.

Lemma 4.2. Let S = G X Ly, X R, be a rectangular group, A nonempty subset of S,
and (g1,01,71), (92,12,72) € S. Then ((gl,ll,rl), (gg,lg,rg)) is an arc in Cay(S, A)
if and only if there exists (a,l,r2) € A such that g2 = gra and I3 = lz.

Proof. (=) Let ((g1,01,71), (g2,l2,72)) is an arc in Cay(S, A). Then there
is (a,l,7) € A such that (go,l2,72) = (g1,01,7m)(a,l,7) = (g1a,l1,7). We have
go = gia,ls =11 and r9 = r1.

(<) Let (a,l,r2) € A, g2 = gia and Iy = l3. Thus (g1,l1,71)(a,l, ) =
(qra,li,m2) = (g2,l2,72). Therefore ((gl,ll,rl), (gg,lg,rg)) is an arc in Cay(S, A).

O

Next, we describe the Cayley graph of rectangular group.

Lemma 4.3. Let S = G x L, x R, be a rectangular group, A nonempty subset
of S. Then Cay(S,A) is the disjoint union of n isomorphic strong subdigraphs
(G x {li} x Ry, E;) fori=1,2,....n.

Proof. For i =1,2,...,n,let V; := G x {l;} x R, and E; := E(Cay(S, A)) N

(V; x V;). Hence (V;, E;) is a strong subdigraph of Cay(S, A) and S = U} ,V;.
Since E; C E(Cay(S7 A)), Ur,E; C E(Cay(S, A)) Let ((g7lj,r),(g’,lk,r’)) €

N
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E(Cay(S, A). By Lemma 4.2, I; = I, and thus ((g,1;,7), (¢, lx,7’)) € Ej. Then
((9.15,7), (¢, le, 7)) € Ui E;.  Hence E(Cay(S,A)) € U._,E; and so
E(Cay(S,A)) = U;_, E;. Therefore Cay(S,A) = U;_, (V;, E;).

We show that (V;, E;), ¢ = 1,2,...,n, are isomorphic. Let p,q € {1,2,...,n},
p # q, define f : (‘/;DaE;D) - (Vq’Eq) by f((gvlpvr)) = (gaZQ7T)' Since |VP| = |‘/q|7
f is a bijection. To prove that f and f~! are digraph homomorphisms. Let
(g,1p,7), (¢, 1p,7") € V, and ((gJ,,,T),(g’,p,r')) € E,. Since E, C E(Cay(S,
A)), ((9,1p,7), (¢, 1p,7")) is an arc in Cay(S,A). By Lemma 4.2, there exists
(a,l,r") € Asuch that ¢’ = ga, v’ = 7", and thus (¢',lg, ") = (9a,1lq, ") = (g,14,7)
(a,l,7""). Then ((g7 lg;r), (¢ 1g, r')) is an arc in Cay(S, A). It follows that ((g, lgs7),
(¢’ g7 )) € E,. This shows that f is a digraph homomorphism. Similarly, f~! is
a digraph homomorphism. Hence f is a digraph isomorphism. O

Lemma 4.4. Let S = G X Ly, X Ry, be a rectangular group. Let A be nonempty
subset of S, G/ (1 (A)) = {g1(p1(A)} 9201 (AN, . ., gu(pr(A)} the set of distinct
left coset of (p1(A)) in G, and (gr{p1(A)) X {l;} X Rm, Eir) a strong subdigraph of
Cay(S , A). Then the following conditions hold:

(1) (G x {li} X R, E;) = Uy (g (p1(A)) x {li} X Rpn, Eig); _
(2) (gr{p1(A)) x {li} X Ry, Eit.) = Cay(gi(p1(A)) x {l;} X Ry, A?) where A® =
{(g,L:;,7)|(g,l,r) € A for alll € L,}.

Proof. (1) We define f : (G x {l;} X R, E;) — Up_;(gr{p1(A)) x {I;} x
R, Ei) by identity mapping. Since G = Up_,gx(p1(A4)), G x {l;} x R, =
Up—1 (gx(p1(A)) x {I;} x Ry,) it follows that f is a bijection. We will prove that f and
f~1 are homomorphisms. Let ((g, Li,m), (¢, L, r’)) € FE;. By Lemma 4.2, there exists
(a,l,r") € A such that ¢’ = ga. Hence g € gp(p1(A4)), ¢’ € gq(p1(A)) for some p,q €
{1,2,...,w}. We get that (g, ,1;,7), (¢, lis7") € Up_q(gr{p1(A)) x{li} X Ry,). Because
Up—1 (g1 (p1(A)) x {l;} X Ry, Eit,) is the union of strong subdigraph of Cay(S, A)
therefore  ((g,,li,7),(¢',1;,7")) is an arc in Uy_; (gr(p1(A)) x {l;} X R, Eix).
This show that f is a digraph homomorphism. Similarly, f~! is a digraph homo-
morphism. Hence f is a digraph isomorphism.

(2) We define h : (gr(p1(A)) x {li} X Rm, Eix) — Cay(gr(p1(A4)) x {l;} x
R, AY) by identity mapping. Clearly, h is a bijection. We will prove that h
and h~! are homomorphisms. Let ((g,li,r),(g',li,r’)) € FEj;. By Lemma 4.2,
there exists (a,l,7') € A such that ¢’ = ga. We get that (a,l;,r’) € A® and then
(¢ i) = (ga,li,r") = (g,1;,7")(a,l;,r") it follows that ((g,li,r), (g’,li,r’)) is an
arc in Cay(gx(p1(A)) x {l;} X R, A?). This show that h is a digraph homomor-
phism. Let ((g,%;,7), (¢, 1;,7")) is an arc in Cay(gr(p1(A)) x {l;} x Ry, A%). By
Lemma 4.2, there exists (a,l;,7") € A® such that ¢’ = ga. We get that (a,j,7’) € A
for some j € L,. Then (¢',1;,r") = (ga,l;,v") = (g,1;,7")(a, j,7") it follows that
((g.1i,7),(¢',li,7")) is an arc in Cay(S, A). Since (gx(p1(A)) X {l;} X Ry, Eit,) is
the strong subdigraph of Cay(S, A), ((g,4,7),(¢',1;,r")) is an arc in (gx(p1(A4)) x
{l;} X Ry, Ei;). This show that h~! is a digraph homomorphism. Hence h is a
digraph isomorphism. O

Since right groups are some kinds of rectangular groups, we get a condition
for Cayley graphs of rectangular groups are isomorphic.
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Theorem 4.5. Let S = GX L, X Ry, be a rectangular group, A, B nonempty subsets
of S. Then Cay(S, A) = Cay(S, B) if and only if Cay((A’), A") = Cay((B'), B’)
where A" ={(g,7) | (g9,1,7) € A} and B" ={(g',7") | (¢',I",r") € B}.

Proof. Let (G x {l;} X R, E{), A¥ = (g1.(p1(A)) x {l;} X Ry, Eix,) be a strong
subdigraphs of Cay(S, A) and (Gx {l;} X Ry, EB), Bt = (9:(p1(B)) x{l;} X Rin, Eit)
be a strong subdigraphs of Cay(S, B). By Lemma 4.3 and Lemma 4.4(1), we have
Cay(S, A) = Cay(S, B)

< Cay(G X Ly, X Ry, A) =2 Cay(G x Ly, X Ry, B)

e U (G x {l;} x Ry, EY) 2 U (G x {l;} X R, EP)

& Ui Ui AF = UL, U7 BY

Since A¥ and B! are connected subdigraphs, w = p. Then A¥ = B! Let
Dit = (gx(p1(4)) x pa(A'), Eg) and DF = (g:(p1(B)) x pa(B'), Er) be a strong
subdigraphs of Cay(gx(p1(A)) X R, A") and Cay(gi(p1(B)) X Ry, B’) respectively,
and let A" = {(g,1;,7)| (9,1,7) € A}, B® = {(g,l;,7)| (9,],7) € B}. By Lemma
4.4(2) and Theorem 3.2, we have

Cay(gi(p1(A)) x {li} x Rm, A") = Cay(g¢(p1(B)) x {l;} x Ry, B’)

& Cay(g{pr (A)) X R, A) = Cay(gi(p1 (B)) % Ron, B)

& UL, DI U (gb{p1(A)) % Runy Ear) = U2, DB U (gu{p1(B)) X R, Bi)

By Lemma 3.6 and Theorem 3.4, we have U,_, D = U)_DP & D{! 2 DF &
Cay((4'), ) = Cay((B"), B). O

Example 2. Let S = Z, x Ly x Ry be a rectangular group, A, B C S where
Z;4 = {0, 1_,273} 5 L3 = {l_l,lg}, R2_= {Tl,’r‘_g} and A_: {(0711,7‘1),(171277'1),
(2, lQ, ’I”l), (1, lQ, ’I”Q)}, B = {(3, ll, ’I”l), (O, ll, ’I”Q), (2, ZQ,TQ), (3, ZQ, ’I”Q)}.

We have A" = {(0,r1),(1,71),(2,71),(1,72)} and B = {(3,71),(0,72), (2,72
(3,72)}. By Example 1, Cay((A"),A") = Cay((B'),B’) therefore Cay(S, A) =
Cay(S, B). See Fig.3 and Fig.4.

6117‘ 6[17‘2

3127‘

Fig. 3. Cay(S, A)
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Fig. 4. Cay(S, B)
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