

Abstract

Project Code : MRG5480254

Project Title : Formation of nanorods for sensing: Hydrothermal conversion of nanoparticles films to arrays of nanorods

Investigator : 1. Prof. Dr. I Ming Tang

2. Prof. Dr. Jun Ding

E-mail Address : fscisjn@ku.ac.th

Project Period : 2 years

Abstract:

ซิงค์ออกไซด์และอะลูมิเนียมเจือซิงค์ออกไซด์สังเคราะห์โดยใช้เทคนิคไฮโดรเทอร์ลอมอล การเจืออะลูมิเนียมโดยใช้ความเข้มข้นที่แตกต่างกันทำให้โครงสร้างของซิงค์ออกไซด์เปลี่ยนไป ผลจาก XRD แสดงให้เห็นว่า สารตัวอย่างที่ได้มีโครงสร้างแบบเสกสะโภนอลซึ่งเป็นโครงสร้างของซิงค์ออกไซด์และไม่พบเฟสของอะลูมิเนียมและสารเจือปนอื่นที่เจือลงไปในซิงค์ออกไซด์เลย ค่าผลตทิชของ a และ c ของซิงค์ออกไซด์ที่คำนวณได้จากการทดลองมีค่าดังนี้ $a = 3.249 \text{ nm}$ และ $c = 5.207 \text{ nm}$ ตามลำดับ ผลจาก SEM พบว่า เส้นผ่าศูนย์กลางของซิงค์ออกไซด์มีค่า $200 - 300 \text{ nm}$ และความยาวของซิงค์ออกไซด์มีค่า $1-2 \mu\text{m}$ แต่เมื่อเจืออะลูมิเนียมลงไปในซิงค์ออกไซด์ทำให้โครงสร้างของซิงค์ออกไซด์เปลี่ยนไปโดยที่นาโนรอดจะมีขนาดเล็กและสั้นลง ส่วนผลของรามานนั้นแสดงให้เห็นว่า จะพบพีคที่เด่นชัดที่ตำแหน่ง 437 cm^{-1} ซึ่งสัมพันธ์กันกับ E2(high) โหมด และแสดงให้เห็นถึงโครงสร้างของซิงค์ออกไซด์ นอกจากนี้ยังพบพีคที่กว้างที่ตำแหน่ง 575 cm^{-1} ด้วย ส่วนผลของ PL จะแสดงพีคที่กว้างที่ตำแหน่ง 575 nm ซึ่งเป็นการแทนที่ของออกซิเจนและอีกพีคหนึ่งซึ่งมีลักษณะแคบและคมชัดนั้นจะอยู่ที่ตำแหน่ง 380 nm ซึ่งอยู่ใกล้กับการดูดกลืนของออกซิตอน เมื่ออะลูมิเนียมเจือเข้าไปในซิงค์ออกไซด์จะพบพีคที่ตำแหน่ง 574 nm ซึ่งเป็นการดูดกลืนในช่วงแสงสีเหลือง

Undoped and aluminum doped zinc oxide (ZnO) have been synthesized by using sodium hydroxide (NaOH) assisted hydrothermal technique. By doping and varying Al concentrations, the morphology of the Al doped ZnO nanostructures can be readily changed. The XRD patterns reveal well-developed reflections of hexagonal wurtzite ZnO without any indications of the phases related with Al or other impurities such as Al_2O_3 , ZnAl_2O_4 , NaOH etc. The lattice parameters a and c were 3.249 nm and 5.207 nm, respectively. The morphologies of the undoped and Al-doped ZnO nanorods were characterized by scanning electron microscopy (SEM). The results showed the morphology of pure ZnO nanorods with diameter of 200 - 300 nm and the lengths of 1-2 μm . When Al was doped into ZnO the morphologies of nanorods were changed a little bit by nanorods became shorter and smaller. The Raman results indicated the sharp peak located at 437 cm^{-1} corresponding to E2(high) mode indicates the typical wurtzite structure of ZnO and good crystallization and the broad peak centered at 575 cm^{-1} assigned to A1(LO) mode is also detected. The PL results showed that the broad emission band around 575 nm can be attributed to the interstitial oxygen ions and the one is the UV emission at 380 nm, which is the near-band edge exciton related emission and other is the deep level emission. The Al doped ZnO nanorods exhibits a yellow emission peak at 574 nm. The strong UV emission, which strongly relate to crystallite quality of ZnO, is contribute by conduction valence band combination (~ 375 nm). It is shallow donor (~ 395 nm) and Zn interstitial (~ 420 nm)

Keywords : ZnO nanorods, Al doped ZnO, hydrothermal, gas sensor