

รายงานวิจัยฉบับสมบูรณ์

โครงการ

"การจำแนกลักษณะทางกายภาพและพันธุกรรมของ เชื้อ Staphylococcus aureus ที่ดื้อต่อยาเมทธิซิลิน ที่เพาะแยกได้จากสุกรและคน"

โดย

ผศ.น.สพ.ดร. ประภาส พัชนี

มิถุนายน 2556

สัญญาเลขที่ : MRG5480258

รายงานวิจัยฉบับสมบูรณ์

โครงการ

"การจำแนกลักษณะทางกายภาพและพันธุกรรมของ เชื้อ Staphylococcus aureus ที่ดื้อต่อยาเมทธิซิลิน ที่เพาะแยกได้จากสุกรและคน"

"Phenotypic and Genotypic Characterization of Methicillin

Resistant Staphylococcus aureus (MRSA) Isolated

from Swine and Human"

ผู้วิจัย สังกัด

นายประภาส พัชนี มหาวิทยาลัยเชียงใหม่

สหับสนุนโดยสำหักงานคณะกรรมการการอุดมศึกษา สำหักงานกองทุนสหับสนุนการวิจัยและมหาวิทยาลัยเชียงใหม่

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ. และ สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

สารบัญ

บทคัดย่อ	ก
ABSTRACT	ନ
บทสรุปผู้บริหาร	1
วัตถุประสงค์งานวิจัย	3
ระเบียบวิธีวิจัย	4
ผลการวิจัย	12
สรุปผลและอภิปรายผล	27
ผลผลิตที่ได้จากโครงการ	30
เอกสารอ้างอิง	31
ภาคผนวก	36

บทคัดย่อ

รหัสโครงการ: MRG5480258

ชื่อโครงการ: การจำแนกลักษณะทางกายภาพและพันธุกรรมของเชื้อ Staphylococcus aureus

ที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกรและคน

ชื่อนักวิจัย: ผศ.น.สพ.ดร.ประภาส พัชนี

อีเมลล์: patprapas@gmail.com

ระยะเวลาโครงการ: กรกฎาคม พ.ศ. 2554 – มิถุนายน พ.ศ. 2556

เชื้อ Staphylococcus aureus ที่เกี่ยวข้องกับปศุสัตว์ที่ดื้อต่อยาเมทธิซิลลิน (LAMRSA) เป็นปัญหาโรคอุบัติใหม่ที่สำคัญที่มักพบในสุกรและผู้เลี้ยงสุกร มีรายงานการพบเชื้อ LAMRSA sequence type (ST) 9 ในสุกรที่ภาคเหนือของประเทศไทย แต่ยังไม่มีการศึกษาถึงความชุก ของเชื้อดังกล่าวในสุกร ผู้เลี้ยงและสิ่งแวดล้อม ซึ่งการศึกษาในครั้งนี้มีวัตถุประสงค์เพื่อหาความ ชุกของเชื้อ LAMRSA ในสุกรผู้เลี้ยงและสิ่งแวดล้อมในฟาร์มสุกรที่ภาคเหนือของประเทศไทย รวมถึงศึกษาลักษณะทางพันธุกรรมและลักษณะทางกายภาพของเชื้อ

ทำการศึกษาแบบตัดขวางในพื้นที่จังหวัดเชียงใหม่และจังหวัดลำพูนโดยสุ่มเลือกฟาร์ม สุกรจำนวน 104 ฟาร์มจากฟาร์มสุกรทั้งหมดจำนวน 21,152 ฟาร์มในปี 2555 ทำการเก็บ ตัวอย่าง nasal และ skin swab จากสุกรจำนวน 5 ตัว และผู้เลี้ยงสุกรจำนวน 2 คนในแต่ละ ฟาร์ม รวมถึงทำการ swab ตัวอย่างจากสิ่งแวดล้อม (พื้นคอก, รางน้ำ และรางอาหาร) อย่างละ 5 จุด จากนั้นทำการเพาะแยกเชื้อและยืนยันเชื้อด้วยวิธี multiplex PCR จาก pooled samples ของตัวอย่างจากสุกรและสิ่งแวดล้อม ทำการศึกษาลักษณะของเชื้อด้วยวิธี SCCmec typing, MLST และ antimicrobial susceptibility testing

ทำการเก็บจากฟาร์มสุกรทั้งหมด 104 ฟาร์มและจากผู้เลี้ยงสุกรจำนวน 138 คน พบ ความชุกรายฟาร์มของ MRSA เป็น 8.65% (9 จาก 104 ฟาร์ม) ความชุกของ MRSA ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมมีค่าเป็น 0.96%, 4.34% และ 2.88% ตามลำดับ สามารถเพาะแยกเชื้อ MRSA ได้จำนวน 13 isolates จากผู้เลี้ยง 8 คน จากสิ่งแวดล้อม 4 isolates และจากสุกร 1 isolate ซึ่ง 5 จาก 13 isolates นำไปแยกชนิดของเชื้อ MRSA และพบว่าเป็นชนิด SCCmeclV-ST9 ส่วนการวิเคราะห์ความไวต่อยาปฏิชีวนะทำใน 10 จาก 13 MRSA isolates พบว่าทุก isolates ดื้อต่อยา clindamycin, cefoxitin, tetracycline, penicillin และ sulfa-trimethoprim และ

ดื้อต่อยาปฏิชีวนะหลายชนิด พบฟาร์มสุกรจำนวน 1 ฟาร์มที่สามารถเพาะแยกเชื้อ MRSA ได้ จากสุกรและสิ่งแวดล้อม

การศึกษาครั้งนี้เป็นครั้งแรกในการศึกษา MRSA ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมใน ประเทศไทย แต่พบว่าความชุกของ MRSA มีค่าต่ำทั้งในสุกร ผู้เลี้ยงและสิ่งแวดล้อมเมื่อ เปรียบเทียบกับประเทศอื่นๆ โดยชนิดของเชื้อ MRSA ที่พบคือ ST9-SCCmec IV จากผู้เลี้ยง และสิ่งแวดล้อม และเชื้อดื้อต่อยาปฏิชีวนะหลายชนิด ดังนั้นควรมีศึกษาการเฝ้าระวังเชื้อชนิดนี้ ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมอย่างต่อเนื่องเพื่อติดตามการเปลี่ยนแปลงทางระบาดวิทยาและ นำมาใช้ในการวางมาตรการในการควบคุมโรคที่มีประสิทธิภาพ

ABSTRACT

Project Code: MRG5480258

Project Title: Phenotypic and Genotypic Characterization of Methicillin Resistant

Staphylococcus aureus (MRSA) Isolated from Swine and Human

Investigator: Prapas Patchanee DVM., PhD.

E-mail Address: patprapas@gmail.com

Project Period: July 2011-June 2013

Livestock Associated- Methicillin-Resistant Staphylococcus aureus(LA-MRSA) has been emerging among pigs and pig handlers worldwide. This study aimed to determine the prevalence of LA-MRSA in pigs, workers and the environment in Northern Thailand and to investigate phenotypic characteristics of LA-MRSA isolates. One hundred and four pig farms were randomly selected from the total of 21,152 pig farms in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from five pigs and two workers in each farm. As well, five environmental samples (pig stable floor, faucet and feeder) were collected using cotton swabs. MRSA was identified and confirmed by multiplex PCR from pooled samples of pigs, pig worker and farm environment. Phenotypic characterization of MRSA isolates were performed by SCCmec typing, MLST and Kirby-Bauer disk diffusion susceptibility test. The total of 104 pig farms and 138 workers were collected. The herd prevalence of MRSA was 8.65% (9 of 104 farms). The prevalence of MRSA in pigs, workers and the farm environment was 0.96%, 4.34% and 2.88%, respectively. Thirteen MRSA isolates were identified from eight workers, four isolates from environmental samples and one isolate from pigs. Six of thirteen MRSA isolates were typed, and they were identified as SCCmecIV-ST9. Ten of thirteen MRSA isolates were tested for antimicrobial resistance; these isolates were 100% resistant to clindamycin, cefoxitin, tetracycline and penicillin and 100% of all isolates showed multidrug resistant phenotype. This survey provided the first evidence of interrelationships for LA-MRSA among pigs, workers and the farm environment in Thailand. There was a low prevalence of MRSA in pigs, workers and the

environment compared to other countries. Isolates were typed as MRSA-ST9-SCCmec

IV from workers and the environment and multi-drug resistant of MRSA isolates was

observed. Further monitoring studies of MRSA in pig associated environment are

required to detect changes in epidemiology and to implement effective control

measures.

Keywords: MRSA, prevalence, characterization, pigs, workers, environment

บทสรุปผู้บริหาร (Executive Summary)

เชื้อ Staphylococcus aureus เป็นเชื้อแบคทีเรียก่อโรคที่ปัจจุบันพบว่ามีความสำคัญ มากขึ้นเป็นลำดับ เนื่องจากเป็นเชื้อที่พบว่ามีการพัฒนากลไกในการดื้อต่อยาปฏิชีวนะและมี ความสามารถในการส่งผ่านยืนที่ควบคุมคุณสมบัติในการดื้อต่อยาปฏิชีวนะได้ โดยปัจจุบัน พบว่าเชื้อ Staphylococcus aureus มีการพัฒนาจนดื้อต่อกลุ่มยาปฏิชีวนะระดับสูง (high class antibiotic) กลุ่มเบต้าแลคแตม เช่น methicillin เรียกเชื้อดื้อยาดังกล่าวว่าเชื้อ Methicillin Resistant Staphylococcus aureus (MRSA) คุณสมบัติในการดื้อต่อยาปฏิชีวนะนี้ก่อให้เกิด ปัญหาในการรักษาผู้ป่วยในโรงพยาบาล โดยพบว่าเป็นหนึ่งในสาเหตุที่ทำให้ผู้ป่วยที่เข้ารับการ รักษาในโรงพยาบาลเสียชีวิต เนื่องจากทำให้เกิดอาการปอดบวม (pneumonia) และการติดเชื้อ ในกระแสเลือดอย่างรุนแรง (septicemia) และพบว่าเชื้อดังกล่าวมีการแพร่กระจายอยู่ภายในโรงพยาบาลหลายแห่งทำให้เกิดปัญหาการติดเชื้อภายในโรงพยาบาล (nosocomial infection) ซึ่งพบว่ากำลังเป็นปัญหาอยู่ทั่วโลก

รายงานการวิจัยเกี่ยวกับเชื้อ MRSA ในปศุสัตว์และสัตว์เลี้ยงเป็นเพื่อนในช่วงทศวรรษ ที่ผ่านมา พบว่า MRSA ที่เพาะแยกได้จากสัตว์ ส่วนใหญ่จะเป็นเชื้อที่มีตันกำเนิดมาจากคน (human origin) และการศึกษาจากช่วงเวลาดังกล่าวไม่พบว่ามีหลักฐานที่แสดงถึงความ เชื่อมโยงกันระหว่างเชื้อ MRSA ที่มีแหล่งกำเนิดมาจากคนและเชื้อ MRSA ที่มีแหล่งกำเนิดมาจากลัตว์ (animal origin) ในปัจจุบัน ถึงแม้ว่าจำนวนการศึกษาวิจัยเกี่ยวกับเชื้อ MRSA ที่มีตัน กำเนิดจากสัตว์ และความเชื่อมโยงของการเป็นแหล่งพักเชื้อ (reservoir) ในสัตว์ต่อการติดเชื้อ ในคนจะมีมากขึ้นก็ตาม หลักฐานและความเข้าใจต่อสถานการณ์ดังกล่าวโดยเฉพาะสถานการณ์ ในประเทศไทย ยังคงมีจำนวนไม่เพียงพอในการเป็นข้อมูลพื้นฐาน เพื่อจุดประสงค์ในการรักษา การควบคุมป้องกันและเฝ้าระวัง โดยเฉพาะอย่างยิ่งเชื้อ Staphylococcus aureus ดื้อต่อ Methicillin ซึ่งเป็นยาปฏิชีวนะอันดับแรก (drug of choice) ที่เลือกใช้ในการรักษาอาการของ การติดเชื้อ Staphylococcus spp. ในคน

นอกจากนี้ การศึกษาทางระบาดวิทยารวมทั้งการหาหลักฐานทางอณูชีววิทยาของ เชื้อ MRSA ในปศุสัตว์และสัตว์เลี้ยงที่มีความสัมพันธ์เกี่ยวข้องกับการติดเชื้อ MRSA ในคนนั้น ยังไม่เป็นที่แพร่หลายกว้างขวางนัก การศึกษาครั้งนี้จึงมุ่งเน้นให้เกิดความเข้าใจถึงระบาดวิทยา และความสัมพันธ์ของคน สัตว์ และสิ่งแวดล้อม ในแง่ของการสัมผัสและการแพร่กระจายของ

เชื้อ MRSA รวมถึงการให้ข้อมูลพื้นฐานและหลักฐานเชิงลึก ซึ่งจะส่งผลให้เกิดความเข้าใจในการ ควบคุมและป้องกัน รวมถึงการใช้ยาปฏิชีวนะในการรักษาการติดเชื้อ Staphylococcus spp. อย่างมีประสิทธิภาพมากยิ่งขึ้น

งานศึกษาวิจัยนี้ มุ่งเน้นถึงการศึกษาเชื้อ MRSA ที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกร ซึ่งเป็นการปนเปื้อนเชื้อตามธรรมชาติในฟาร์มสุกร โดยการศึกษาจะได้เน้นถึงความชุก ความสัมพันธ์ในการติดเชื้อในปศุสัตว์และคน โดยใช้สุกรเป็นแบบอย่างในการศึกษา ผู้วิจัยจะได้ ทำการตรวจเพื่อหาสัดส่วนของประชากรที่มีการติดเชื้อ ภาวะของการดื้อต่อยาปฏิชีวนะของ เชื้อ Staphylococcus aureus ที่เพาะแยกได้จากตัวอย่าง การจำแนกความหลายหลายทางสาย พันธุ์ (genotypic diversity) ของเชื้อ MRSA โดยเทคนิคปฏิกิริยาลูกโซ่โพลิเมอเรส ชนิด Multiplex และเทคนิค MLST เพื่อเป็นฐานข้อมูลในการวิเคราะห์ข้อมูลในการเชื่อมโยง ทางด้านระบาดวิทยาระหว่างคนและสุกร

จากผู้เลี้ยงสุกรจำนวน 138 คน พบความชุกรายฟาร์มของ MRSA เป็น 8.65% (9 จาก 104 ฟาร์ม) ความชุกของ MRSA ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมมีค่าเป็น 0.96%, 4.34% และ 2.88% ตามลำดับ สามารถเพาะแยกเชื้อ MRSA ได้จำนวน 13 isolates จากผู้เลี้ยง 8 คน จาก สิ่งแวดล้อม 4 isolates และจากสุกร 1 isolate ซึ่ง 5 จาก 13 isolates นำไปแยกชนิดของเชื้อ MRSA และพบว่าเป็นชนิด SCCmecIV-ST9 ส่วนการวิเคราะห์ความไวต่อยาปฏิชีวนะทำใน 11 จาก 13 MRSA isolates พบว่าทุก isolates ดื้อต่อยา clindamycin, cefoxitin, tetracycline และ penicillin และดื้อต่อยาปฏิชีวนะหลายชนิด พบฟาร์มสุกรจำนวน 1 ฟาร์มที่สามารถเพาะแยก เชื้อ MRSA ได้จากสุกรและสิ่งแวดล้อม ซึ่งการศึกษาครั้งนี้เป็นครั้งแรกในการศึกษา MRSA ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมในประเทศไทย แต่พบว่าความชุกของ MRSA มีค่าต่ำทั้งในสุกร ผู้เลี้ยงและสิ่งแวดล้อมเมื่อเปรียบเทียบกับประเทศอื่นๆ โดยชนิดของเชื้อ MRSA ที่พบคือ ST9-SCCmec IV จากผู้เลี้ยงและสิ่งแวดล้อม และเชื้อดื้อต่อยาปฏิชีวนะหลายชนิด ดังนั้นควรมี ศึกษาการเฝ้าระวังเชื้อชนิดนี้ในสุกร ผู้เลี้ยงและสิ่งแวดล้อมอย่างต่อเนื่องเพื่อติดตามการ เปลี่ยนแปลงทางระบาดวิทยาและนำมาใช้ในการวางมาตรการในการควบคุมโรคที่มี ประสิทธิภาพ

งานศึกษาวิจัยนี้ มุ่งเน้นถึงการศึกษาเชื้อ MRSA ที่เพาะแยกได้จากสุกรขุน สุกรแม่ พันธุ์ คนงานเลี้ยงสุกรและสิ่งแวดล้อมภายในฟาร์มเลี้ยงสุกร ซึ่งเป็นการปนเปื้อนเชื้อตาม ธรรมชาติในฟาร์มสุกร โดยการศึกษาจะได้เน้นถึงความสัมพันธ์ในการติดเชื้อในปศุสัตว์และคน โดยใช้สุกรเป็นแบบอย่างในการศึกษา ผู้วิจัยจะได้ทำการตรวจเพื่อหาสัดส่วนของประชากรที่มี การติดเชื้อ ภาวการณ์ดื้อต่อยาปฏิชีวนะของเชื้อ Staphylococcus aureusที่เพาะแยกได้จาก ตัวอย่าง การจำแนกความหลายหลายทางสายพันธ์ (genotypic diversity) ของเชื้อ MRSA โดย เทคนิคปฏิกิริยาลูกโซ่โพลิเมอเรส ชนิด Multiplex และเทคนิค MLST เพื่อเป็นฐานข้อมูลในการ วิเคราะห์ข้อมูลในการเชื่อมโยงทางด้านระบาดวิทยาระหว่างคนและสุกร

วัตถุประสงค์งานวิจัย

- 1. เพื่อหาความชุก (prevalence) ของการปนเปื้อนเชื้อ *Staphylococcal* spp. ในฟาร์ม สุกร และคนงานเลี้ยงสุกรที่เกี่ยวข้อง
- 2. เพื่อพัฒนาเทคนิคการตรวจสอบและการจำแนก Methicillin Resistant *Staphylococcus* aureus (MRSA) ออกจาก Methicillin Susceptible *Staphylococcus* aureus (MSSA) ด้วยเทคนิค Multiplex PCR
- เพื่อจำแนกชนิด (SCC mec type) และ allotypes ของ CCR gene complex ของเชื้อ
 MRSA ที่เพาะแยกได้จากสุกรและคน
- 4. เพื่อหา Sequence type ของ MRSA ที่สำคัญและข้อมูลดังกล่าวจะเป็นข้อสารสนเทศที่ สำคัญในการเปรียบเทียบและเข้าใจลักษณะทางระบาดวิทยาของ MRSA รวมทั้ง ปฏิสัมพันธ์ (Interaction) ระหว่างการติดเชื้อระหว่างปศุสัตว์และคน
- 5. เพื่อสามารถเลือกใช้ยาปฏิชีวนะในการควบคุมการติดเชื้อ Staphylococcal spp. ในสัตว์ ได้อย่างมีประสิทธิภาพ
- 6. เพื่อเป็นข้อมูลสารสนเทศที่สำคัญในการควบคุมและป้องกันการแพร่กระจายของเชื้อ MRSA จากสัตว์สู่คนต่อไป

ระเบียบวิธีวิจัย

เทคนิคการเลือกตัวอย่างและขนาดตัวอย่าง (Sampling Technique and Sample Size Determination)

ทำการเก็บตัวอย่างจากตัวสุกรและ คนงานเลี้ยงสุกรในฟาร์มสุกรจากเขตจังหวัด เชียงใหม่และจังหวัดลำพูน โดยทำ การเก็บตัวอย่างจากสุกรขุนระยะสุดท้าย สุกรแม่พันธุ์ และ คนงานเลี้ยงสุกร รวมถึงสิ่งแวดล้อมในฟาร์มสุกร ได้แก่ ตัวอย่างอาหารสุกร และน้ำที่ใช้ในการ เลี้ยงสุกร ซึ่งการคำนวณขนาดตัวอย่าง โดยการใช้โปรแกรมทางสถิติ Win Episcope® (Thrusfield et al.,2001) และทำการคำนวณจากกลุ่มประชากรเป้าหมาย (Target population) ได้แก่ ฟาร์มสุกรในจังหวัดชียงใหม่ และ ลำพูน จำนวน 21,152 ฟาร์ม ด้วยค่าความชุกที่ คาดหวังที่ 50% ค่าความผิดพลาดที่ยอมรับได้ที่ 10% และที่ระดับความเชื่อมั่น 95%ทำการเก็บ ตัวอย่างจากฟาร์มสุกรจำนวน 104 ฟาร์ม ทำการเก็บตัวอย่างจากสุกร สิ่งแวดล้อมในฟาร์มสุกร และผู้เลี้ยงสุกรในพื้นที่จังหวัดเชียงใหม่ (40 ฟาร์ม) และ จังหวัดลำพูน (64 ฟาร์ม) รวมเป็น จำนวน 880 ตัวอย่าง สรุปจำนวนตัวอย่างเป็นดังนี้

- a. สุกรจำนวน 292 ตัวอย่าง แบ่งออกเป็น
 - i. ตัวอย่างจากสุกรขุน จำนวน 134 ตัวอย่าง (nasal swab และ skin swab)
 - ii. ตัวอย่างจากสุกรแม่พันธุ์ จำนวน 111 ตัวอย่าง (nasal swab และ skin swab)
 - iii. ตัวอย่างจากสุกรอนุบาล จำนวน 47 ตัวอย่าง (nasal swab และ skin swab)
- b. สิ่งแวดล้อมจำนวน 312 ตัวอย่าง
 - i. ตัวอย่างจากจุ๊บน้ำ จำนวน 104 ตัวอย่าง
 - ii. ตัวอย่างจากรางอาหาร จำนวน 104 ตัวอย่าง
 - iii. ตัวอย่างจากพื้นคอก จำนวน 104 ตัวอย่าง
- c. ผู้เลี้ยงสุกร จำนวน 276 ตัวอย่าง
 - i. ตัวอย่างจากNasal swab จำนวน 138 ตัวอย่าง
 - ii. ตัวอย่างจากSkin swab จำนวน 138 ตัวอย่าง

การเพาะแยกเชื้อจากตัวอย่างและการตรวจวิหิจฉัยทางห้องปฏิบัติการ (Microbiological Isolation and Laboratory Diagnosis)

การเพาะแยกเชื้อ MRSA

นำตัวอย่างการป้ายเชื้อจากสุกร คนงานเลี้ยงสุกร ตัวอย่างอาหารและน้ำ เพื่อตรวจหา และเพาะแยกเชื้อ MRSA ทาง ห้องปฏิบัติการจะทำการเพาะบ่มเชื้อตัวอย่างป้ายเชื้อ (sample swab) ในอาหารเลี้ยงเชื้อชนิดเหลว ที่มีส่วนผสมของ tryptone (1%) sodium chloride (7.5%) mannitol (1%) และ yeast extract (0.25%) บ่มที่อุณหภูมิ 37°C เป็นเวลา 22-24 ชั่วโมง จากนั้นทำการเพาะป้ายเชื้อ (inoculate) ลงในอาหารเลี้ยงเชื้อที่มีคุณสมบัติในการแยกแยะ MRSA (selective MRSA agar หรือ mannitol salt agar) แล้วนำไปบ่มที่อุณหภูมิ 37°C เป็น เวลา 24-28 ชั่วโมง จากนั้นทำการยืนยันผลด้วยการทดสอบทางชีวเคมีต่อไป

การทดสอบความไวต่อยาปฏิชีวนะ

การทดสอบความไวต่อยาปฏิชีวนะ (Antimicrobial susceptibility testing) ของ เชื้อ MRSA ที่เพาะแยกได้จากตัวอย่างในขั้นตอนที่ 1 ทำได้โดยการประยุกต์จาก Kirby-bauer disc diffusion assay และแปลผลตามมาตรฐานการแปลผลของ Clinical and Laboratory Standards Institute (CLSI, 2007) (ตารางที่ 1) การทดสอบความไวต่อยาปฏิชีวนะนี้ จะทำการ ทดสอบคุณลักษณะการแสดงออกทางกายภาพ (phenotype) ต่อการดื้อยาปฏิชีวนะ โดยยาปฏิชีวนะที่ใช้ในการทดสอบประกอบด้วยยาปฏิชีวนะ 5 กลุ่ม จำนวน 10 ชนิด ได้แก่ ยาปฏิชีวนะในกลุ่ม 1. Betalactam, 2. Chloramphenicol, 3. Aminoglycoside, 4. Tetracyclin, 5. Sulfamethozazole/ trimetroprim

ตารางที่ 1 การแปลความไวต่อยาปฏิชีวนะมาตรฐานการแปลผลของ Clinical and Laboratory Standards Institute (CLSI, 2007)

A #		Zone Diameter (mm.)	
Antimicrobial agents –	Resistant	Intermediate	Susceptible
Amoxicillin-clavulanic acid	≤ 19	-	≥ 20
Cephazolin	≤ 14	15 – 17	≥ 18
Cefoxitin	≤ 32	-	≥ 22
Ceftriaxone	≤ 13	14 –20	≥ 21
Chloramphenicol	≤ 12	13 – 17	≥ 18
Clindamycin	≤14	15-20	≥ 21
Cloxacillin	≤ 10	11 - 12	≥ 13
Doxycycline	≤ 12	13 – 15	≥ 16
Gentamycin	≤ 12	13 – 15	≥ ₁₆
Oxytetracycline	≤ 14	15 - 18	≥ 19
Penicillin	≤28	-	≥ 29
Tetracycline	≤14	15-18	≥ 19
Trimethoprim-sulfamethoxazoles	≤10	11 – 15	≥ 16
Vancomycin	≤ 9	10 - 11	≥ 12

การสกัด DNA ของเชื้อและปฏิกิริยาลูกโซ่โพลีเมอเรส ชนิด Multiplex

ในการทดลอง จะใช้เทคนิค Chelex 100 ในการสกัด DNA ของเชื้อ MRSA ที่เพาะแยก ได้ เนื่องจากเป็นวิธีที่สกัด DNA ได้อย่างมีประสิทธิภาพ ใช้เวลาน้อย และประหยัด โดยยึด เทคนิคปลอดเชื้ออย่างเคร่งครัด หลักของการสกัด DNA โดยใช้ Chelex 100 หรือ Chelating resin หรือ imminodiacetic acid เป็นสารที่มีคุณสมบัติในการจับกับโลหะหมู่ 2+ ใช้จับกับ cofactor ของเอนไซม์ต่างๆที่จะทำลาย DNA ใช้ 10% Chelex solution 300 ไมโครลิตร ใส่ลงไป ใน microcentifuge tube เขี่ย colony ของเชื้อแบคทีเรียที่ต้องการสกัด DNA ประมาณ 3-4 โคโลนี ใส่ลงไปใน microcentifuge tube เขย่าเข็มเขี่ย เพื่อให้เชื้อหลุดลงไปในของเหลวมาก ที่สุด ปิดฝาแล้วนำหลอดไปเขย่า vortex ประมาณ 15 วินาที หลังจากนั้นจะนำหลอดที่มีเชื้อและ เม็ด chelex ไปปั่น เครื่อง microcentrifuge ด้วยความเร็ว 8,000 รอบต่อนาที ประมาณ 15 วินาที จากนั้นนำหลอดไปตัมด้วย heating block ที่อุณหภูมิ 95 องศาเซลเซียส นาน 20 นาที

แล้วนำไป vortex แล้วป^{ั่}น microcentifuge อีกประมาณ 15 วินาที เพื่อให้ตะกอนตกลงล่าง หลอด จะใช้ส่วน supernatant ในการวิเคราะห์ DNA ต่อไป

การเพิ่มปริมาณ DNA จะใช้ PCR mixture ที่มีปริมาตรรวม 25 ไมโครลิตร ซึ่งจะ ประกอบด้วย Bacterial suspension ใน supernatant ปริมาตร 2 ไมโครลิตร, KCI ความเข้มข้น 50 มิลลิโมล, Tris-HCL (pH 8.4) ความเข้มข้น 20 มิลลิโมล, MgCl2 ความเข้มข้น 2.5 มิลลิโมล, dNTP ความเข้มข้น 0.2 มิลลิโมล, Taq DNA polymerase ความเข้มข้น 1.0 ยูนิต และ Primer 9 คู่ ความเข้มข้นต่างๆ ดังตารางที่ 2

นำ PCR mixture ที่เดรียมเข้าเครื่องปรับเปลี่ยนอุณหภูมิ (Thermal cycles) เริ่ม ปฏิกิริยาด้วย predenaturation อุณหภูมิ 94 องศาเซลเซียส เป็นเวลา 5 นาที ตามด้วยปฏิกิริยา 10 รอบของ denaturation อุณหภูมิ 94 องศาเซลเซียส เป็นเวลา 45 วินาที, annealing อุณหภูมิ 65 องศาเซลเซียส เป็นเวลา 45 วินาที และ primer extension อุณหภูมิ 72 องศา เซลเซียส เป็นเวลา 1.5 นาที และปฏิกิริยาอีก 25 รอบของ denaturation อุณหภูมิ 94 องศา เซลเซียส เป็นเวลา 45 วินาที, annealing อุณหภูมิ 55 องศาเซลเซียส เป็นเวลา 45 วินาที และ primer extension อุณหภูมิ 72 องศาเซลเซียส เป็นเวลา 1.5 นาที และสุดท้าย final extension อุณหภูมิ 72 องศาเซลเซียส เป็นเวลา 10 นาที แล้วเก็บ PCR product ไว้ที่อุณหภูมิ 4 องศา เซลเซียส นำ PCR product ที่ได้ทำ gel electrophoresis เพื่อแยกแถบ DNA บน 2% agarose gel ซึ่งย้อมด้วย ethidium bromide 0.5 µg/ml แล้วส่องใต้แสง UV เพื่อดูขนาดของ DNA amplicon ต่อไป ลำดับเบสของ primer และขนาดของผลผลิต PCR (PCR product) แสดงไว้ใน ตารางที่ 2

ตารางที่ 2 ลำดับเบสของ primer และขนาดของผลผลิต PCR (PCR product) โดยวิธีปฏิกิริยา ลูกโซ่โพลีเมอเรส ชนิด Multiplex

Primer	Oligonucleotide sequence (5'-3')	Amplicon	Specificity	Deference
Fillier	Oligoriacieotide sequence (5 - 5)	size (bp)	Specificity	Reference
Type I-F	GCTTTAAAGAGTGTCGTTACAGG	613	SCCmec I	(Zhang et al., 2005)
Type I-R	GTTCTCCATAGTATGACGTCC			
Type II-F	CGTTGAAGATGATGAAGCG	398	SCCmec II	(Zhang et al., 2005)
Type II-R	CGAAATCAATGGTTAATGGACC			
Type III-F	CCATATTGTGTACGATGCG	280	SCCmec III	(Zhang et al., 2005)
Type III-R	CCTTAGTTGTCGTAACAGATCG			
Type IVa-F	GCCTTATTCGAAGAAACCG	776	SCCmec IVa	(Zhang et al., 2005)
Type IVa-R	CTACTCTTCTGAAAAGCGTCG			
Type IVb-F	TCTGGAATTACTTCAGCTGC	493	SCCmec IVb	(Zhang et al., 2005)
Type IVb-R	AAACAATATTGCTCTCCCTC			
Type IVc-F	ACAATATTTGTATTATCGGAGAGC	200	SCCmec IVc	(Zhang et al., 2005)
Type IVc-R	TTGGTATGAGGTATTGCTGG			
Type IVd-F5	CTCAAAATACGGACCCCAATACA	881	SCCmec IVd	(Zhang et al., 2005)
Type IVd-R6	TGCTCCAGTAATTGCTAAAG			
Type V-F	GAACATTGTTACTTAAATGAGCG	325	SCCmec V	(Zhang et al., 2005)
Type V-R	TGAAAGTTGTACCCTTGACACC			
MecA147-F	GTG AAG ATA TAC CAA GTG ATT	147	mecA	(Zhang et al., 2005)
MecA147-R	ATG CGC TAT AGA TTG AAA GGA T			
mecl-F	CCCTTTTTATACAATCTCGTT	146	Class A mec	(Zhang et al., 2005)
mecl-R	ATATCATCTGCAGAATGGG			
IS1272-F	TATTTTTGGGTTTCACTCGG	1,305	Class B mec	(Zhang et al., 2005)
mecR1-R	CTCCACGTTAATTCCATTAATACC			
ccrAB2	ATTGCCTTGATAATAGCCITCT			(Ito et al., 2001)
ccrAB2	AACCTATATCATCAATCAGTACGT	700	Type 1 ccr	(Ito et al., 2001)
ccrAB3	TAAAGGCATCAATGCACAAACACT	1,000	Type 2 ccr	(Ito et al., 2001)
ccrAB4	AGCTCAAAAGCAAGCAATAGAAT	1,600	Type 3 ccr	(Ito et al., 2001)
ccrC-F	ATGAATTCAAAGAGCATGGC	336	Type 5 ccr	(Zhang et al., 2005)
ccrC-R	GATTTAGAATTGTCGTGATTGC			

ทำการตรวจสอบชนิดของ SCC mec และ CCR gene complex ได้โดยการเปรียบเทียบกับ ขนาดของผลิตภัณฑ์ที่ได้จากปฏิกิริยาลูกโซ่โพลีเมอเรสชนิด Multiplex ดังแสดงในรูปที่ 1

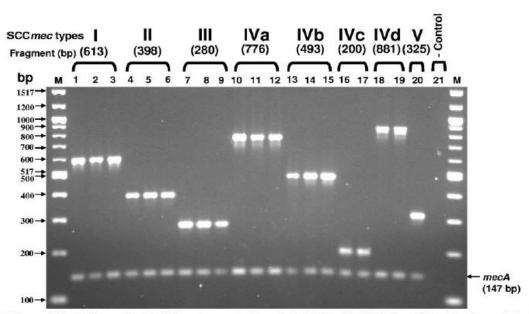


FIG. 1. New multiplex PCR assay identifies SCCmec types and subtypes I, II, III, IVa, IVb, IVc, IVd, and V, and simultaneously detects the methicillin resistance (mecA gene). Type I, lanes 1 to 3 (strains NCTC10442, COL, and PER34, respectively); type II, lanes 4 to 6 (strains N315, CLS-5153, and CLS-440, respectively); type III, lanes 7 to 9 (strains 85/2082, ANS46, and CMRSA-3, respectively); type IVa, lanes 10 to 12 (strains CA05, N02-590, and CLS-2207, respectively); type IVb, lanes 13 to 15 (strains 8/6-3P, CLS-4584, and CLS-5827, respectively); type IVc, lanes 16 and 17 (strains MR108 and CLS-1040, respectively); type IVd, lanes 18 and 19 (strains JCSC4469 and CMRSA-5, respectively); type V, lane 20 (strain WIS [WBG8318]-JCSC3624); lane 21, negative control; and lanes M, molecular size markers, 100-bp DNA ladder (BioLabs). Refer to Table 3 for details of each strain.

รูปที่ 1 ภาพแสดงตัวอย่างการวิเคราะห์ชนิดของ SCC mec type รวมถึง mecA gene โดยวิธี ปฏิกิริยาลูกโซโพลีเมอเรสชนิด Multiplex (Zhang et al., 2005)

Multilocus Sequence Typing

ใช้ชุด Primer ที่ใช้ในการหาลำดับเบสของ Housekeeping gene 7 ชนิด (ตารางที่ 3) ทำการส่งตัวอย่างเพื่อวิเคราะห์ลำดับเบสของยืน ทั้ง 7 ชนิดได้แก่ carbamate kinase (arcC), shikimate dehydrogenase (aroE), glycerol kinase (glp), guanylate kinase (gmk), phosphate acetyltransferase (pta), triosephosphate isomerase (tpi) และ acetyl coenzyme A acetyltransferase (yqiL) และนำผลการวิเคราะห์ลำดับเบสมาวิเคราะห์เพื่อกำหนด Alleic Profile และ Sequence type ของเชื้อ MRSA ที่เพาะแยกได้จากสุกร ผู้เลี้ยงสุกรและสิ่งแวดล้อม ภายในฟาร์ม ทำการส่งตัวอย่างเพื่อวิเคราะห์ลำดับเบสของยืน ทั้ง 7 ชนิด และนำผลการ วิเคราะห์ลำดับเบสมาวิเคราะห์เพื่อกำหนด Alleic Profile และ Sequence type ของเชื้อ MRSA ที่เพาะแยกได้จากสุกร ผู้เลี้ยงสุกรและสิ่งแวดล้อมภายในฟาร์ม และทำการวิเคราะห์แผนผัง พันธุกรรม (phylogenetic tree) โดยใช้โปรแกรม Burst (Burst upon related sequence type) จากฐานข้อมูล http://www.mlst.net เพื่อศึกษาความสัมพันธ์ทางด้านพันธุกรรมของเชื้อดังกล่าว

ตารางที่ 3 ลำดับเบสของ primer ที่ใช้ในการหา sequence ของ Housekeeping gene 7 ชนิด ในการศึกษาเพื่อหา Sequence Type โดยเทคนิค Multi-Locus Sequence Type (MLST)

Housekeeping genes		Sequencing primers
Carbamate kinase	Up	5' TTG ATT CAC CAG CGC GTA TTG TC -3'
(arcC)	Down	5' AGG TAT CTG CTT CAA TCA GCG -3'
Shikimate dehydrogenase	Up	5' ATC GGA AAT CCT ATT TCA CAT TC -3'
(aroE)	Down	5' GGT GTT GTA TTA ATA ACG ATA TC -3'
glycerol kinase	Up	5' CTA GGA ACT GCA ATC TTA ATC C -3'
(glp)	Down	5' TGG TAA AAT CGC ATG TCC AAT TC -3'
guanylate kinase	Up	5' ATC GTT TTA TCG GGA CCA TC -3'
(gmk)	Down	5' TCA TTA ACT ACA ACG TAA TCG TA -3'
Phosphate acetyltransferase (pta)	Up	5' GTT AAA ATC GTA TTA CCT GAA GG -3'
	Down	5' GAC CCT TTT GTT GAA AAG CTT AA -3'
triosephosphate isomerase (tpi)	Up	5' TCG TTC ATT CTG AAC GTC GTG AA -3'
	Down	5' TTT GCA CCT TCT AAC AAT TGT AC -3'
Acetyl coenzyme A	Up	5' CAG CAT ACA GGA CAC CTA TTG GC -3'
acetyltransferase (<i>yqi</i> L)	Down	5' CGT TGA GGA ATC GAT ACT GGA AC -3'

DATA ANALYSIS

Data management and all analyses were performed using Epi Info version2000 (Centers for Disease Control, Atlanta, GA). The farm was the unit of analysis. Descriptive statistics were analyzed including proportion, mean, median, prevalence ratio and 95% confidence interval. A farm was considered to be MRSA positive if MRSA was found in at least one swab sample (pigs, workers or the environment) in that farm.

การขอรับการพิจารณาจรรยาบรรณการใช้สัตว์ทดลอง และจริยธรรมการวิจัยในมนุษย์

ผู้วิจัยได้นำเสนอโครงร่างวิจัยต่อคณะกรรมการจรรยาบรรณการใช้สัตว์เพื่องานทาง วิทยาศาสตร์ (IACUC) คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ และคณะกรรมการ จริยธรรมการวิจัย กรมควบคุมโรค กระทรวงสาธารณสุข และผ่านการพิจารณาจากทั้ง 2 คณะกรรมการเรียบร้อยแล้ว

- > รหัสโครงการ R18/2554 (คณะกรรมการจรรยาบรรณการใช้สัตว์เพื่องานทาง วิทยาศาสตร์ (IACUC) คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่)
- > รหัสโครงการ 1/56-594 (คณะกรรมการจริยธรรมการวิจัย กรมควบคุมโรค กระทรวง สาธารณสุข)

ผลการวิจัย

In total, 104 farms (n=39 Chiang Mai province; n=65 Lamphun province) and 138 workers participated in this study. One farm was excluded because the business closed. Of the 208 workers on study farms, 138 workers were recruited for the study because they fit the definition of a worker with more than one year of experience on the farm.

PREVALENCE OF LA-MRSA

Pig farm characteristics in this study are presented in Table 4.

Table 4 Characteristics of pig farms (n=104) in the study.

Characteristics	% Frequency (n farms)	Mean (Range)		
Farm type				
Open	56.7 (59)	NA		
Close	43.3 (45)	NA		
Pig type				
Weaning	27.8 (29)	72.7 (12-400)		
Fattening	58.6 (61)	341.0 (9-999)		
Sow	50.9 (53)	89.6 (3-380)		
Pig herd size				
< 250	50.0 (52)	NA		
250-600	25.0 (26)	NA		
> 600	14.4 (15)	NA		
unknown	10.6 (11)	NA		
Years in operation	NA	10.9 (1-33)a		
Inject able antibiotics use in pigs	100 (104)	NA		
Personal protective equipment use in workers	100 (104)	NA		

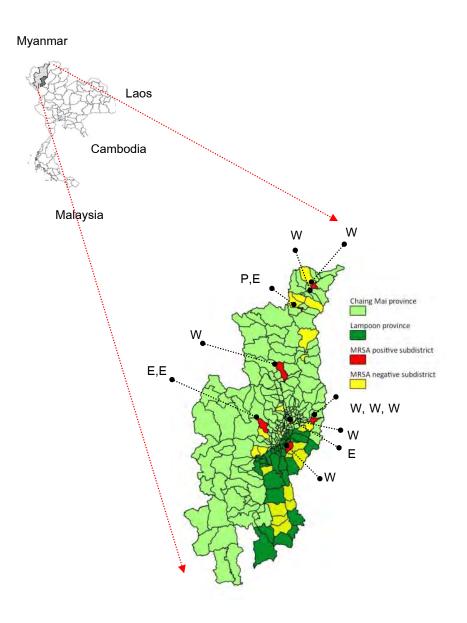
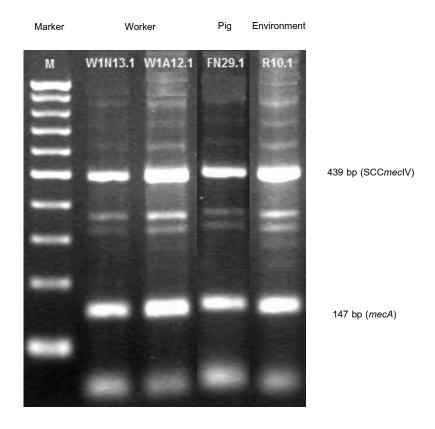

In total, 880 swabs were collected from pigs, workers and the environment. Isolation and identification of *S. aureus*, MSSA and MRSA are shown in Table 5.

Table 5 Prevalence of *S. aureus*, MSSA and MRSA among pigs, workers and environment.

		PREVALENCE								
	N=880	% S. aureus	95% CI	%MSSA (n)	95% CI	%MRSA (n)	95% CI			
Nursery pig										
Nasal swab	24	0.0 (0)	0.0-11.7	0.0 (0)	0.0-11.7	0.0 (0)	0.0-11.7			
Skin swab	23	0.0 (0)	0.0-12.2	0.0 (0)	0.0-12.2	0.0 (0)	0.0-12.2			
Fattening pig										
Nasal swab	65	1.5 (1)	0.0-7.3	0.0 (0)	0.0-4.5	1.5 (1)	0.0-7.3			
Skin swab	69	1.9 (2)	0.2-6.8	1.9 (2)	0.2-6.8	0.0 (0)	0.0-4.2			
Sow										
Nasal swab	57	0.0 (0)	0.0-5.1	0.0 (0) 0.0-5.1		0.0 (0)	0.0-5.1			
Skin swab	54	0.0 (0)	0.0-5.4	0.0 (0)	0.0-5.4	0.0 (0)	0.0-5.4			
Sub-total	292	1.0 (3)	0.2-2.7	5.4 (2)	3.2-8.5	0.3 (1)	0.0-1.6			
Environment										
Stable floor	104	0.0 (0)	0.0-2.8	0.0 (0)	0.0-2.8	0.0 (0)	0.0-2.8			
Faucet	104	2.9 (3)	0.6-8.2	1.9 (2)	0.2-6.8	1.0 (1)	0.0-5.2			
Feeder	104	2.8 (3)	0.2-6.8	0.0 (0)	0.0-2.8	2.8 (3)	0.6-8.2			
Sub-total	312	1.9 (6)	0.7-3.9	0.6 (2)	0.1-2.1	1.2 (4)	0.4-3.0			
Worker										
Nasal swab	138	8.6 (12)	4.7-14.3	5.0 (7)	2.2-9.7	3.6 (5)	1.3-7.8			
Skin swab	138	3.6 (5)	1.3-7.8	0.7 (1)	0.0-3.5	2.8 (4)	0.9-6.8			
Sub-total	276	6.1 (17)	3.7-9.4	2.8 (8)	1.3-5.4	3.2 (9)	1.6-5.8			

The overall MRSA prevalence at all farms was 0.96% in pigs (1 of 104 farms), 4.34% in workers (6 of 138 workers) and 2.88% in the environment (3 of 104 farms). Herd prevalence of LA-MRSA was 8.65% (9 of 104 farms). LA-MRSA isolates were found in 8 workers, 4 environmental samples and one pig. There was one farm in Chiang Mai where LA-MRSA was isolated from both a pig and the environment. MRSA was identified in 8 of 39 farms (20.5%) in Chiang Mai province and one farm (1.5%) in Lamphun province (Figure 2).


Figure 2 Map of MRSA isolates (n=13) by sub district in Chiang Mai and Lampoon provinces.

CHARACTERISTICS OF LA-MRSA

Molecular typing was performed on 11representing isolates, and these isolates (n=2 pig isolate; n=5 worker isolates; n=4 environment isolates) belonged to ST9 (alleic profile: 3-3-1-1-1-10)(table 6) (the sequence were shown below) and carried SCCmec IV in this study (Figure 3). A phylogenetic tree of MRSA ST9 isolates among pigs, workers and the environment is presented in Figure 4.1- 4.3

Figure 3 SCCmec Multiple PCR of pig, worker and the environment.

Downloaded alleles for trimming

>arcc

>aroe

AATTTTAATTCTTTAGGATTAGATGATACTTATGAAGCTTTAAATATTCCAATTGAAGAT
TTTCATTTAATTAAAGAAATTATTTCGAAAAAAGAATTAGATGGCTTTAATATCACAATT
CCTCATAAAGAACGTATCATACCGTATTTAGATCATGTTGATGAACAAGCGATTAATG
CAGGTGCAGTTAACACTGTTTTGATAAAAGATGACAAGTGGATAGGGTATAATACAGA
TGGTATTGGTTATGTTAAAGGATTGCACAGCGTTTATCCAGATTTAGAAAATGCATAC
ATTTTAATTTTGGGCGCAGGTGGTGCAAGTAAAGGTATTGCTTATGAATTAGCAAAAT
TTGTAAAGCCCAAATTAACTGTTGCGAATAGAACGATGCTCGTTTTGAATCTTGGAA
TTTAAATATAAACCAAATTTCATTAGCAGATGCTGAAAAGTATTTA//

>glpf

GGTGCTGATTGGATTGTCATCACAGCTGGATGGGGATTAGCGGTTACAATGGGTGTG
TATGCTGTTGGTCAATTCTCAGGTGCACATTTAAACCCAGCGGTGTCTTTAGCTCTTG
CATTAGACGGAAGTTTTGATTGGTCATTAGTTCCTGGTTATATTGTTGCTCAAATGTTA
GGTGCAATTGTCGGAGCAACAATTGTATGGTTAATGTACTTGCCACATTGGAAAGCG
ACAGAAGAAGCTGGCGCGAAATTAGGTGTTTTCTCTACAGCACCGGCTATTAAGAAT
TACTTTGCCAACTTTTTAAGTGAAATTATCGGAACAATGGCATTAACTTTAGGTATTTT
ATTTATCGGTGTAAACAAAATTGCTGATGGTTTAAATCCTTTAATTGTCGGAGCATTAA
TTGTTGCAATCGGATTAAGTTTAGGCGGTGCTACTGGTTATGCAATCAACCCAGCAC
GT//

>gmk

>pta

GCAACACAATTACAAGCAACAGATTATGTTACACCAATCGTGTTAGGTGATGAGACTA
AGGTTCAATCTTTAGCGCAAAAACTTGATCTTGATATTTCTAATATTGAATTAATC
CTGCGACAAGTGAATTGAAAGCTGAATTAGTTCAATCATTTGTTGAACGACGTAAAGG
TAAAGCGACTGAAGAACAAGCACAAGAATTATTAAACAATGTGAACTACTTCGGTACA
ATGCTTGTTTATGCTGGTAAAGCAGATGGTTTAGTTAGTGGTGCAGCACATTCAACAG
GAGACACTGTGCGTCCAGCTTTACAAATCATCAAAACGAAACCAGGTGTATCAAGAA
CATCAGGTATCTTCTTTATGATTAAAGGTGATGTACAATACATCTTTGGTGATTGTGCA
ATCAATCCAGAACTTGATTCACAAGGACTTGCAGAAATTGCAGTAGAAAGTGCAAAAT
CAGCATTA//

>tpi

 AACATTAAAGAATACATGGCACAAACTGATATTGATGGGGCCATTAGTAGGTGGCGCA/

>yqil

GCGTTTAAAGACGTGCCAGCCTATGATTTAGGTGCGACTTTAATAGAACATATTATTA
AAGAGACGGGTTTGAATCCAAGTGAGATTGATGAAGTTATCATCGGTAACGTACTAC
AAGCAGGACAAGGACAAAATCCAGCACGAATTGCTGCTATGAAAGGTGGCTTGCCA
GAAACAGTACCTGCATTTACAGTGAATAAAGTATGTGGTTCTGGGTTAAAGTCGATTC
AATTAGCATATCAATCTATTGTGACTGGTGAAAAATGACATCGTGCTAGCTGGCGGTAT
GGAGAATATGTCTCAGTCACCAATGCTTGTCAACAACAGTCGCTTCGGTTTTAAAATG
GGACATCAATCAATGGTTGATAGCATGGTATATGATGGTTTAACAGATGTATTTAATC
AATATCATATGGGTATTACTGCTGAAAAATTTAGTGGAGCAATATGGTATTTCAAGAGA
AGAACAAGATACATTTGCTGTAAACTCACAACAAAAAGCAGTACGTGCACAGCAA//

Table 6 Allele number and sequence type of swine, environment, and worker associated with swine industry in northern Thailand

Strain	arcc	aroe	glpf	gmk	pta	tpi	yqil	ST
FA60	3	3	1	1	1	1	10	9
FN29	3	3	1	1	1	1	10	9
R8.1	3	3	1	1	1	1	10	9
R8.2	3	3	1	1	1	1	10	9
R8.3	3	3	1	1	1	1	10	9
R10.1	3	3	1	1	1	1	10	9
W1A12.1	3	3	1	1	1	1	10	9
W1N6.1	3	3	1	1	1	1	10	9
W1N6.2	3	3	1	1	1	1	10	9
W1N6.3	3	3	1	1	1	1	10	9
W1N13.1	3	3	1	1	1	1	10	9

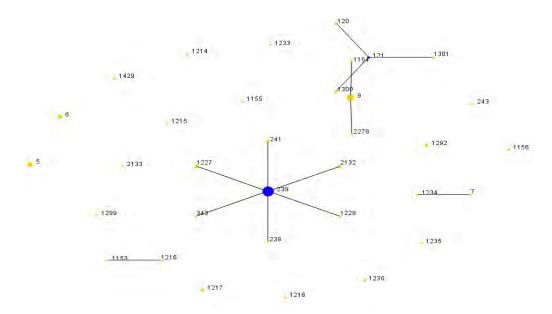
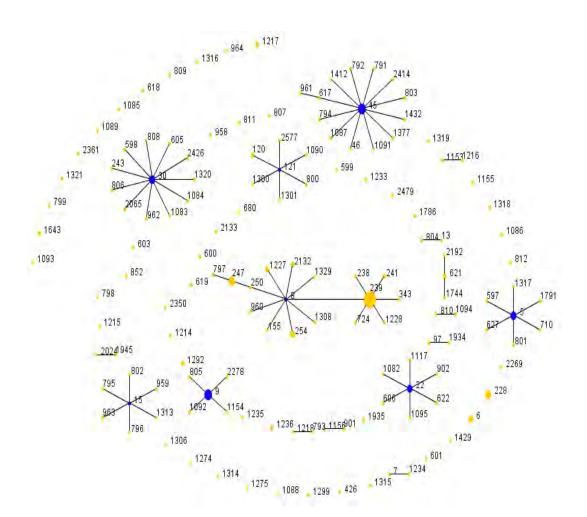



Figure 4.1 E-burst of MRSA ST9 among pig, workers and the environment in pig farms of Northern Thailand comparing with all Thai Isolates.

eBURST Report - Mon Feb 11 11:22:54 CET 2013

010up 1. 140.10	olates = 81 No. S1	s = 34 Pre	edicted Found	der = 239		
ST	FREQ	SLV	DLV	TLV	SAT	Average Distance
239	24	6 6	1	0	26	4.63
121	1	3	1	0	29	6.24
1227	3	2	4	1	26	4.81
241	2	2	4	1	26	4.96
2132	2	2	4	1	26	4.81
1228	1	2	4	1	26	4.90
	-		-	-		
238	1	2	4	1	26	4.87
343	1	2	4	1	26	4.90
9	10	2	1	3	27	4.72
1154	1	1	2	3	27	4.96
2278	1	1	2 2 2	3	27	4.84
120	1	1	2	1	29	6.30
1301	1	1	2	1	29	6.33
1300	1	1	2	1	29	6.33
1234	1	1	0	1	31	5.66
7	1	1	0	1	31	5.45
1153	1	1	0	0	32	5.27
1216	1	1	0	0	32	5.30
1292	2	0	3	3	27	5.12
1235	1	0	2	5	26	5.33
1218	1	0	2	4	27	5.33
5	6	0	2	0	31	5.33
1236	2	0	2	0	31	5.93
2133	1	0	1	6	26	5.09
1233	1	0	1	3	29	6.48
6	4	0	1	2	30	5.30
1429	1	0	1	1	31	5.24
1214	1	0	0	5	28	4.93
1156	1	0	0	1	32	5.57
1217	2	0	0	0	33	5.63
243	1	0	0	0	33	6.63
1299	1	Ö	0	Ō	33	6.33
1155	1	Ō	Ö	Ö	33	6.54
1215	i	Ö	o o	0	33	6.54

Figure 4.2 E-burst of MRSA ST9 among pig, workers and the environment in pig farms of Northern Thailand comparing with German Isolates.

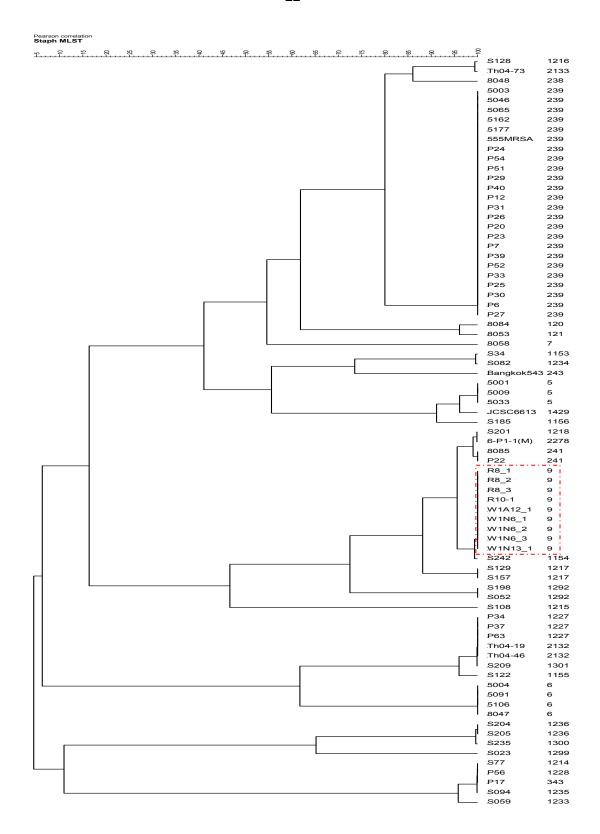
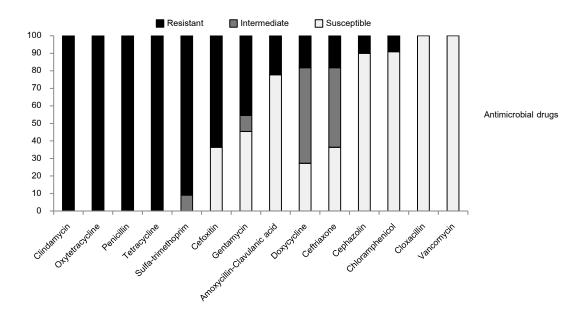


Figure 4.3 Phylogenetic tree of MRSA ST9 among pig, workers and the environment in pig farms of Northern Thailand.


Table 6 Antimicrobial Drugs sensivity testing for MRSA isolates

Strain ID	AMC	С	CN	CRO	DA	DO	FOX	KZ	ОВ	ОТ	Р	SXT	TE	VA	MDR
J8.1	S	S	S	I	R	I	R	S	S	R	R	R	R	S	6
R10.1	S	S	S	R	R	1	R	S	S	R	R	R	R	S	7
R8.1	*	S	S	S	R	1	S	S	*	R	R	R	R	s	5
R8.2	S	S	S	- 1	R	1	R	S	S	R	R	R	R	S	6
R8.3	*	S	S	1	R	R	R	S	*	R	R	R	R	S	7
W1A12.1	*	S	R	1	R	R	R	S	*	R	R	R	R	S	8
W1A4.1	S	S	R	S	R	1	S	S	S	R	R	R	R	S	6
W1A4.2	S	S	R	S	R	R	S	S	S	R	R	R	R	S	7
W1A4.3	S	S	R	S	R	R	S	S	S	R	R	R	R	S	7
W1N13.1	S	S	S	1	R	1	R	S	S	R	R	R	R	S	6
W1N43.2	R	S	R	R	R	R	R	R	S	R	R	R	R	S	11
W1N6.1	S	S	S	1	R	s	R	S	S	R	R	R	R	s	6
W1N6.2	S	S	S	R	R	s	R	S	S	R	R	R	R	s	7
W1N6.3	S	S	S	1	R	1	R	S	S	R	R	R	R	s	6
W2A4.1	S	S	R	S	R	s	S	S	S	R	R	R	R	s	6
W2A4.2	S	S	R	S	R	S	S	S	S	R	R	R	R	S	6
W2A4.3	S	S	R	S	R	1	S	S	S	R	R	R	R	s	6
W2N4.3	S	S	1	S	R	S	S	S	S	R	R	R	R	S	5
Total	15	18	18	18	18	18	18	18	15	18	18	18	18	18	
Sensitive	14	18	9	8	0	5	8	17	15	0	0	0	0	18	
Intermediate	0	0	1	7	0	8	0	0	0	0	0	0	0	0	
Resistance	1	0	8	3	18	5	10	1	0	18	18	18	18	0	

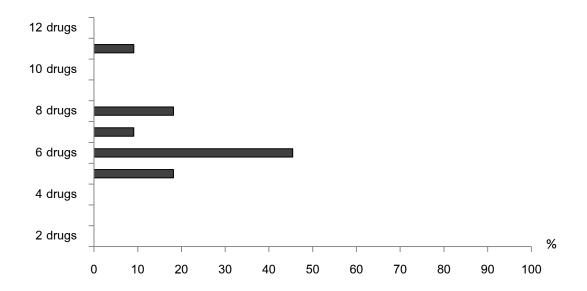
AMC; Amoxicillin-clavulanic acid, C; Chloramphenicol, CN; Gentamycin, CRO; Ceftriaxone, DA; Clindamycin, DO; Doxycycline, FOX; Cefoxitin, KZ; Cephazolin, OB; Cloxacillin, OT; Oxytetracycline, P: Penicillin, SXT; Sulfa-trimethoprim, TE; Tetracycline VA; Vancomycin

Antimicrobial drug resistant(R), susceptible(S) and intermediate(I) were show in table 6.Susceptibility testing revealed 100% resistance to clindamycin, cefoxitin, tetracycline and penicillin. No resistance was observed for cloxacillin and vancomycin (Figure 5).

Figure 5 Characteristics of antimicrobial susceptibility testing of MRSA isolates in pig farms.

There were seven different patterns of antimicrobial drug resistance in pig, workers and the environment isolates (Table7).

Table 7 Antimicrobial resistance patterns of MRSA isolates from workers and the environment at pig farms.


Origin	Resistance profile	Number of isolates (%)
Pig	DA-OT-P-TE-FOX-CN-C-AMC	1 (9)
Workers	DA-OT-P-SXT-TE	1 (9)
	DA-OT-P-SXT-TE-FOX	2 (18)
	DA-OT-P-SXT-TE-CN	2 (18)
	DA-OT-P-SXT-TE-FOX-CN-DO	1 (9)
	DA-OT-P-SXT-TE-FOX-CN-DO-CRO-AMC-KZ	1 (9)
Environment	DA-OT-P-SXT-TE	1 (9)
	DA-OT-P-SXT-TE-FOX	1 (9)
	DA-OT-P-SXT-TE-FOX-CRO	1 (9)

DA= clindamycin, OT= oxytetracycline, P= penicillin, SXT= sulfa-trimethoprim,

TE= tetracycline, FOX= cefoxitin, CN= gentamycin, DO= doxycycline, CRO= ceftriaxone, AMC= amoxicillin-clavulanic acid, C=chloramphenicol, KZ= cephazolin

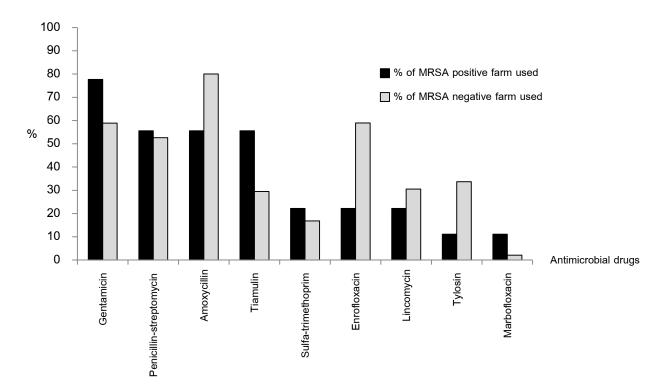

All isolates were resistant to at least five antimicrobials (Figure6). One isolate was resistant to 11 antimicrobial drugs (worker: DA-OT-P-SXT-TE-FOX-CN-DO-CRO-AMC-KZ).

Figure 6 Proportion of multi drug resistant of MRSA isolates in pig farm (n=11 isolates).

When comparing antimicrobial drug used between the MRSA positive farms and the MRSA negative farms, gentamycin, penicillin-streptomycin, amoxicillin and tiamulin were more likely to be used in the MRSA positive farms (Figure 7).

Figure 7 Frequency of injectable antimicrobial drug use in MRSA positive (n=9) and negative pig farms (n=95).

สรุปผลและอภิปรายผล

Findings from this study may be used as the basic information regarding the burden of MRSA associated with pig industries. The prevalence of LA-MRSA among pig farms in Northern Thailand was lower than in previous studies in other countries including 1.4% in Malaysia (Neela et al., 2009), 11.4% in China(Cui et al., 2009), 22.7% in Korea(Lim et. al., 2012) 26% in Canada(Khanna et al., 2008), 36% in USA(Smith et 2009), 39% in The Netherland(de Neeling et al., 2007), and 49% in Germany(Tenhagen et al., 2009) between 2008 and 2013. However, the prevalence variation is depending on many factors including geographical region, sampling methods, laboratory testing methods(Broens, 2011) and age of pigs tested(Khanna et al., 2008). Commercial large farm size in the US and in the European countries comparing with smaller farms settings in Thailand may cause more opportunities for pathogen transfer and higher prevalence of MRSA than in this study. MRSA colonization among pig workers in Northern Thailand was low (2.8%) comparing with other studies among pig workers in Europe(Morcillo et al., 2012, Denis et al., 2009) and the USA(Khanna et al., 2008). Other studies of MRSA prevalence in risk populations including slaughterhouse workers and veterinarians in Europe ranged between 3% and 12.5 %(Wulf et al., 2008, van Cleef et al., 2010, Huber et al., 2010). Our results revealed that pig workers in northern Thailand were at a lower risk of MRSA colonization than other countries, perhaps because of the prevalence of MRSA in pigs is lower.

MRSA was isolated from the environment in this study with the prevalence 2.88% which was lower than the results from the study in the USA (17.3%) (Frana et al., 2013). Staphylococci in the farming environment could serve as a source of MRSA type as it was generally easily detectable in both pig and the environmental samples (Hanssen and Ericson, 2006). Our results showed that only one farm had MRSA positive samples from both pigs and the farm environment, and no farms had MRSA positive samples from both pigs and pig workers.

Our study revealed that all LAMRSA isolates were ST9, which belonged to SCCmec IV. The ST9 represents the most common sequence types in Asia (Cui et al., 2009, Neela et al., 2008) and was a dominant clone among pig and pig-related workers (Armad et al., 2005). Recent reports indicate MRSA ST9 colonization in pigs and pork in Northern and Central part of Thailand with different SCCmec types(Anukool et al., 2011), Larsen et al., 2012 and Vestergaard et al., 2012). From our samples as shown in Figure 4, this sequence type was similar among workers and environment, which suggests a circulation of MRSA ST9 among workers and the environment. Interestingly, our study did not detect any MRSA ST398 isolates. This lack of MRSA ST398 may be due to the minimal exchange of sows between Europe, USA and Asia.

MRSA is a human bacterial pathogen that has emerged as a major threat in both a hospital setting (as a nosocomial infection) and as a community-acquired infection for high-risk groups such as slaughterhouse workers (Graveland et al., 2011). The use of antibiotics in livestock production has selected for multi-drug resistance. In this study, there were various resistance phenotype of MRSA isolates from farm workers and the environment with combined resistance to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim, whereas other studies of MRSA-ST9 in China showed similarity of MRSA resistance patterns in workers to clindamycin, cefoxitin, tetracycline and ciprofloxacin(Cui et al., 2009). These antibiotics are commonly used in both human medicine and food animal health management. Overuse or misuse of medically important antibiotics in animals is emerging as a public health concern due to community-associated antibiotic resistant infections (Silbergeld et al., 2008).

To our knowledge, this is the first study to demonstrate the prevalence of LA-MRSA among pigs, farm workers and the environment in Thailand. Therefore, continuous efforts to monitor of MRSA in these populations are required for detecting changes in epidemiology and for the implementation of effective control measures in livestock and human health. Meanwhile, conducting studies in different areas in

Thailand, such as the central or eastern part of the country where the highest pig population reside, should be performed. Limitation of this study were the sampling method did not use a stratified sampling technique to study a specific production system and the study was somewhat under-powered, because observed MRSA prevalence was lower than expected MRSA prevalence used in sample size calculations. Moreover, of 104, only one farm had MRSA positive samples from pigs. Techniques for isolation and detection of MRSA should be considered. Other works had demonstrated that the prevalence of MRSA in pigs in Thailand might be quite high according to the low number of samples had been tested.

In conclusion, this study provides the first evidence of MRSA prevalence among pigs, workers and environment in Thailand, although the prevalence was low in pig farms in Northern Thailand as compared to other countries. Characterized isolates from workers and environment were MRSA-ST9-SCCmec IV. In addition, multi-drug resistant MRSA isolates were observed. Continued efforts are required to monitor MRSA in at-risk populations including livestock and slaughterhouse workers to detect changes in epidemiology and to implement effective control measures.

ผลผลิตที่ได้จากโครงการ

- 1) Arjkumpa O, Love D, Hinjoy S, Chanachai K, Alter T, Kreausukon K, Rojanasthien S, Patchanee P. Interrelationship of Livestock Associated-Methicillin-Resistant *Staphylococcus aureus* (LA-MRSA) among Pigs, Workers and the Farm Environment in Northern Thailand. The proceedings of the 3rd Food Safety and Zoonoses Symposium for Asia Pacific 2013; July 3-6, Imperial Mae Ping Hotel, Chiang Mai, Thailand.
- 2) Arjkumpa O, Thantiworawit T, Samithsuwan P, Kumpapong K, Hinjoy S, Chanachai K, Alter T, Patchanee P. Prevalence and Characteristics of Livestock associated Methicillin-Resistant *Staphylococcus aureus* in Pig Farms, Workers and Environments in Pig Industries of Northern Thailand, The proceedings of 2nd International Congress on Pathogens at the Human-Animal Interface (ICOPHAI) 2013; August 14 17, Summerville Beach Resort, Porto de Galinhas, Brazil.

เอกสารอ้างอิง

- กรมปศุสัตว์. (2554) http://www.dld.go.th/ict/th/index.php?option= com_content&view =article&id= 89:-2552&catid=74:2009-11-01-07-43-07&Itemid=60" (2010) Multilocus sequence typing of *Staphylococcus aureus*. Date cite: 5 September 2010: Available from: http://saureus.mlst.net/misc/info.asp.
- ANON. Prudent use in animals, chapter 3. (1998) London, UK, House of Lords. Science and Technology-Seventh Report. [Resistance to antibiotics and other antimicrobial agents 3.14.1998],
- ASWAPOKEE, N., CHOKECHAROENRAT, S., ASWAPOKEE, P., KHONGSAMRAN, S. & TRISANANANDA, M. (1982) Prevalence of methicillin-resistant staphylococci in a university hospital. *J Med Assoc Thai*, 65, 28-32.
- CHOKESAJJAWATEE, N., PORNAEM, S., ZO, Y. G., KAMDEE, S., LUXANANIL, P., WANASEN, S. & VALYASEVI, R. (2009) Incidence of Staphylococcus aureus and associated risk factors in Nham, a Thai fermented pork product. *Food Microbiol*, 26, 547-51.
- CLSI (2007) Performance Standards for Antimicrobial Susceptibility Testing, PA, USA, Wayne.
- CUNY, C., KUEMMERLE, J., STANEK, C., WILLEY, B., STROMMENGER, B. & WITTE, W. (2006) Emergence of MRSA infections in horses in a veterinary hospital: strain characterisation and comparison with MRSA from humans. *Euro Surveill*, 11, 44-7.
- DE LENCASTRE, H., OLIVEIRA, D. & TOMASZ, A. (2007) Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. *Curr Opin Microbiol*, 10, 428-35.
- DE NEELING, A. J., VAN DEN BROEK, M. J., SPALBURG, E. C., VAN SANTEN-VERHEUVEL, M. G., DAM-DEISZ, W. D., BOSHUIZEN, H. C., VAN DE GIESSEN, A. W., VAN DUIJKEREN, E. & HUIJSDENS, X. W. (2007) High

- prevalence of methicillin resistant Staphylococcus aureus in pigs. *Vet Microbiol*, 122, 366-72.
- DENIS, O., SUETENS, C., HALLIN, M., CATRY, B., RAMBOER, I., DISPAS, M., WILLEMS, G., GORDTS, B., BUTAYE, P. & STRUELENS, M. J. (2009)

 Methicillin-resistant Staphylococcus aureus ST398 in swine farm personnel,

 Belgium. *Emerg Infect Dis*, 15, 1098-101.
- DEVRIESE, L. A., VAN DAMME, L. R. & FAMEREE, L. (1972) Methicillin (cloxacillin)resistant Staphylococcus aureus strains isolated from bovine mastitis cases.

 Zentralbl Veterinarmed B, 19, 598-605.
- EFSA.(2009) European Food Safety Authority. Assessment of the Public Health significance of methicillin resistant Staphylococcus aureus (MRSA) in animals and foods Scientific Opinion of the Panel on Biological Hazards.
- FOWLER, V. G., JR., OLSEN, M. K., COREY, G. R., WOODS, C. W., CABELL, C. H., RELLER, L. B., CHENG, A. C., DUDLEY, T. & ODDONE, E. Z. (2003) Clinical identifiers of complicated Staphylococcus aureus bacteremia. *Arch Intern Med*, 163, 2066-72.
- GRAVELAND H, et al. Methicillin-resistant Staphylococus aureus (MRSA) in veal calf farmers and veal calves in The Netherlands. ASM Conference on: Antimicrobial Resistance in Zoonotic Bacteria and Foodborne Pathogens, Copenhagen, Denmark, 15-18 June 2008, B84.
- GUARDABASSI, L., STEGGER, M. & SKOV, R. (2007) Retrospective detection of methicillin resistant and susceptible Staphylococcus aureus ST398 in Danish slaughter pigs. *Vet Microbiol*, 122, 384-6.
- HARTMAN, B. J. & TOMASZ, A. (1984) Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. *J Bacteriol*, 158, 513-6.
- HIRAMATSU, K., KATAYAMA, Y., YUZAWA, H. & ITO, T. (2002) Molecular genetics of methicillin-resistant Staphylococcus aureus. *Int J Med Microbiol*, 292, 67-74.

- ITO, T., KATAYAMA, Y., ASADA, K., MORI, N., TSUTSUMIMOTO, K., TIENSASITORN, C. & HIRAMATSU, K. (2001) Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. *Antimicrob Agents Chemother*, 45, 1323-36.
- JARIYASETHPONG, T., TRIBUDDHARAT, C., DEJSIRILERT, S., KERDSIN, A., TISHYADHIGAMA, P., RAHULE, S., SAWANPANYALERT, P., YOSAPOL, P. & ASWAPOKEE, N. (2010) MRSA carriage in a tertiary governmental hospital in Thailand: emphasis on prevalence and molecular epidemiology. *Eur J Clin Microbiol Infect Dis*, 29, 977-85.
- KHANNA, T., FRIENDSHIP, R., DEWEY, C. & WEESE, J. S. (2008) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. *Vet Microbiol*, 128, 298-303.
- Larsen J, Imanishi M, Hinjoy S, Tharavichitkul P, Duangsong K, et al. (2012) Methicillin-Resistant Staphylococcus aureus ST9 in Pigs in Thailand. PLoS ONE 7(2): e31245. doi:10.1371/journal.pone.0031245LE LOIR, Y., BARON, F. & GAUTIER, M. (2003) Staphylococcus aureus and food poisoning. *Genet Mol Res*, 2, 63-76.
- LEONARD, F. C. & MARKEY, B. K. (2008) Meticillin-resistant Staphylococcus aureus in animals: a review. *Vet J*, 175, 27-36.
- Lim, S.K., Nam, H. M., Jang, G.C., Lee, H.S., Jung, S. C., Kwak, H.S. (2012). The first detection of methicillin-resistant Staphylococcus aureus ST398 in pigs in Korea. Veterinary Microbiology 155 (2012) 88–92.
- MEEMKEN, D., CUNY, C., WITTE, W., EICHLER, U., STAUDT, R. & BLAHA, T. (2008). Occurrence of MRSA in pigs and in humans involved in pig production-preliminary results of a study in the northwest of Germany. *Dtsch Tierarztl Wochenschr*, 115, 132-9.
- Mermel, L. A., cartony, J. M., Covington, P., Maxey, G., Morse, D. (2011). Methicillin-Resistant *Staphylococcus aureus* Colonization at Different Body Sites: a

- Prospective, Quantitative Analysis.JOURNAL OF CLINICAL MICROBIOLOGY, Mar. 2011, p. 1119–1121 Vol. 49, No. 3
- MORGAN, M. (2008) Methicillin-resistant Staphylococcus aureus and animals: zoonosis or humanosis? *J Antimicrob Chemother*, 62, 1181-7.
- Multilocus sequence typing of *Staphylococcus aureus*. Journal [serial on the Internet].

 2010 Date 5 September 2010]: Available from: http://saureus.mlst.net/misc/info.asp.
- NICKERSON, E. K., WUTHIEKANUN, V., DAY, N. P., CHAOWAGUL, W. & PEACOCK, S. J. (2006) Meticillin-resistant Staphylococcus aureus in rural Asia. *Lancet Infect Dis*, 6, 70-1.
- OKUMA, K., IWAKAWA, K., TURNIDGE, J. D., GRUBB, W. B., BELL, J. M., O'BRIEN, F. G., COOMBS, G. W., PEARMAN, J. W., TENOVER, F. C., KAPI, M., TIENSASITORN, C., ITO, T. & HIRAMATSU, K. (2002) Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. *J Clin Microbiol*, 40, 4289-94.
- OLIVEIRA, D. C. & DE LENCASTRE, H. (2002) Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus.
- SAFDAR, N. & BRADLEY, E. A. (2008) The risk of infection after nasal colonization with Staphylococcus aureus. *Am J Med*, 121, 310-5.
- SALGADO, C. D., FARR, B. M. & CALFEE, D. P. (2003) Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. *Clin Infect Dis*, 36, 131-9.
- THRUSFIELD, M., ORTEGA, C., DE BLAS, I., NOORDHUIZEN, J.P.& FRANKENA,K.(2001) WIN EPISCOPE 2.0: improved epidemiological software for veterinary medicine. *Vet Rec*, 148, 567-72.
- VAN DUIJKEREN, E., JANSEN, M. D., FLEMMING, S. C., DE NEELING, H., WAGENAAR, J. A., SCHOORMANS, A. H., VAN NES, A. & FLUIT, A. C. (2007)

- Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. *Emerg Infect Dis*, 13, 1408-10.
- VOSS, A., LOEFFEN, F., BAKKER, J., KLAASSEN, C. & WULF, M. (2005) Methicillinresistant Staphylococcus aureus in pig farming. *Emerg Infect Dis,* 11, 1965-6.
- WEESE, J. S. (2008a) A review of multidrug resistant surgical site infections. *Vet Comp Orthop Traumatol*, 21, 1-7.
- WEESE, J. S. (2008b) A review of post-operative infections in veterinary orthopaedic surgery. *Vet Comp Orthop Traumatol*, 21, 99-105.
- ZHANG, K., MCCLURE, J. A., ELSAYED, S., LOUIE, T. & CONLY, J. M. (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. *J Clin Microbiol*, 43, 5026-33.

ภาคผนวกที่ 1

แบบสอบถามที่ใช้ในการวิจัย

แบบที่ 1 ข้อมูลฟาร์มสุกร

ฟาร์มที่วันที่	
แบบสอบถามโครงการความชุกและลักษณะทางกายภาพและพันธุกรรมของเชื้	, E
Staphylococcus aureus ที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกร	
ในภาคเหนือของประเทศไทย	

Q1 ที่ตั้งฟาร์ม

ที่อยู่หมู่หมู่	
ตำบล	
อำเภอ	
จังหวัด	
เบอร์โทรศัพท์ที่ติดต่อได้	
GPS – X coordinate	
GPS – Y coordinate	
ตำแหน่งผู้ให้สัมภาษณ์	
เจ้าของฟาร์ม	1
ผู้จัดการฟาร์ม	2
คนเลี้ยง	3
ระดับการศึกษา	
ปริญญาตรีขึ้นไป	1
อนุปริญญา	2
มัธยมศึกษา	3
ประถมศึกษา	4
อื่น ๆ ระบุ	5
	•

Q2 จำนวนผู้เลี้ยงสุกรในฟาร์ม

จำนวนผู้เลี้ยงสุกรในฟาร์ม	

	ด		0	9	9		aı.
$\mathbf{Q}3$	ระยะเวลาใ	นกา	เรดา	เหเ	นกจ	การ	(11)
~~							ι

Q4 จำนวนสุกร (ระบุจำนวน พร้อมทั้งให้รายละเอียดโครงสร้างโรงเรือน)

ชนิดสุกร	จำนวน	ชนิดโรงเรือน	
		แบบปิด	แบบเปิด
ต่ำกว่า 1 เดือน (สุกรดูดนม)		0	1
1 – 2 เดือน (สุกรหย่านม)		0	1
2 เดือนขึ้นไป (สุกรขุน)		0	1
พ่อสุกร		0	1
แม่สุกร		0	1
อื่นๆ		0	1
ระบุ			

Q5 ลักษณะการเลี้ยง

	ไม่	ใช่
เลี้ยงทั้งสุกรแม่พันธุ์และสุกรขุน	0	1
เลี้ยงเฉพาะสุกรแม่พันธุ์	0	1
เลี้ยงเฉพาะสุกรขุน	0	1

Q6 จำนวนสุกรเฉลี่ยต่อคอก (ห้อง)

	ตัว/คอก	พื้นที่คอก (ตรม.)
สุกรอนุบาล		
สุกรขุน		

Q7 ลักษณะโรงเรือน

สุกรอนุบาล	
ไม่ยกพื้น	1
ยกพื้น	2
สุกรขุน	
ไม่ยกพื้น	1
ยกพื้น	2
สุกรแม่พันธุ์	
ไม่ยกพื้น	1
ยกพื้น	2

Q8 ลักษณะผนังคอก

สุกรอนุบาล	
ไม่ปิดทึบ	1
ปิดทึบ	2
สุกรขุน	
ไม่ปิดทึบ	1
ปิดทึบ	2

Q9 การระบายอากาศในโรงเรือน (การควบคุมอุณหภูมิและความชื้น)

พัดลมหรือเครื่องระบายอากาศ	1
ลมธรรมชาติ	2

Q10 อาหารสุกร

	ไม่	ใช่
เจ้าของผสมอาหารเอง	0	1
ซื้อสำเร็จรูป	0	1

Q11 วิธีการให้อาหาร

ด้วยมือ	1
ด้วยเครื่อง	2

Q12 แหล่งน้ำสำหรับสุกร

น้ำประปา	1
น้ำบ่อ	2
น้ำบาดาล	3
คลอง แม่น้ำ	4
อื่นๆ	5

Q13 การทำความสะอาดคอก

	ไม่	ใช่
ใช้น้ำฉีดล้างตัวสัตว์	0	1
ความถื่ครั้งต่อ		

Q14 การใช้น้ำยาฆ่าเชื้อในการความสะอาดพื้นคอก

ไม่เคย	0
ใช้บ้างบางครั้ง	1
ใช้ทุกครั้ง	2

Q15 ท่านใช้อุปกรณ์ป้องกันเช่น รองเท้าบูท ถุงมือ หรือผ้ากันเปื้อน ขณะทำงานในฟาร์ม ด้วยหรือไม่

	ไม่	ใช่
สวมบูท	0	1
สวมผ้ากันเปื้อน	0	1
สวมถุงมือ	0	1

สวมหน้ากาก	0	1
มีบ่อน้ำยาฆ่าเชื้อหน้าฟาร์ม	0	1
มีอ่างจุ่มเท้าหน้าโรงเรือน	0	1

Q16 ท่านใช้อุปกรณ์ป้องกันบ่อยแค่ไหนเมื่อทำงานในฟาร์ม

ไม่เคย	0
ใช้บ้างบางครั้ง	1
ใช้ทุกครั้ง	2

Q17 สุขอนามัยการปฏิบัติต่อสุกร

	ไม่	ใช่
มีสัตวแพทย์ประจำฟาร์ม	0	1
ใช้เข็มหรือกระบอกฉีดยาซ้ำสำหรับหมูใน ฟาร์ม	0	1
ให้ยาฆ่าพยาธิและย่าฆ่าปรสิตรวมทั้งป้องกัน เห็บหมัดแก่หมู	0	1

Q18 การขายหรือนำเข้าสุกรสาวทดแทนในช่วง 3 เดือนที่ผ่านมา

ไม่	0
رم 1	1

Q19 ท่านใช้กรงดักจับหนู หรือยาฆ่าหนูใช้ภายในฟาร์มสุกรหรือไม่

ไม่	0
ใช่	1

Q20 ท่านมีการควบคุมแมลง เช่น เหลือบ แมลงวันคอกภายในฟาร์มสุกรหรือไม่

ไม่	0
ใช่	1

Q21 การใช้ยาปฏิชีวนะ

	ไม่	ใช่
อะมอกซี่ซิลลิน	0	1
แอมพิซิลลิน	0	1
คลอแรมเฟนิคอล	0	1
คลินดามัยซิน	0	1
อีรีโทรมัยซิน	0	1
เจนต้ามิซิน	0	1
ลินโคมัยซิน	0	1
เพนนิซิลิน สเตรปโตมัยซิน	0	1
เตตราซัยคลิน	0	1
ซัลฟานิลาไมด์	0	1
ซัลฟา-ไตรเมทโทรพริม	0	1
สเตรปโตมัยซิน	0	1
เอนโรฟอกซาซิน	0	1
ไทอามูลิน	0	1
ไทโลซิน	0	1
มาร์โบฟอกซาซิน	0	1
กลุ่มเชฟฟาโรสปอริน	0	1
อื่นๆ ระบุ	0	1

Q22 ถ้าท่านให้ยาปฏิชีวนะแก่สุกรด้วยตัวท่านเอง ท่านให้โดย

	ไม่	ใช่
ภายใต้การดูแลของสัตวแพทย์	0	1
ภายใต้การตัดสินใจของท่านเอง	0	1
โดยบุคคลภายนอก	0	1

แบบที่ 2 ข้อมูลผู้เลี้ยงสุกร

ฟาร์มที่วันที่
แบบสอบถามโครงการความชุกและลักษณะทางกายภาพและพันธุกรรมของเชื้อ
Staphylococcus aureusที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกร
ในภาคเหนือของประเทศไทย
Q1 ชื่อผู้เลี้ยงสุกรคนที่

บ้านเลขที่หมู่	
ตำบล	
อำเภอ	
จังหวัด	
เบอร์โทรศัพท์ที่ติดต่อ	
ได้	
เพศ	
ชาย	1
หญิง	2
ระดับการศึกษา	
ปริญญาตรีขึ้นไป	1
อนุปริญญา	2
มัธยมศึกษา	3
ประถมศึกษา	4
อื่น ๆ ระบุ	5

Q2ระยะเวลาในทำงานในฟาร์มสุกร (ปี)

	. ด	•	ค	. 6	٠ و	ء لہ
Q3	ช่วงเวลาใน	เการท้าง	านเนท	ไาร้มสก	ารต่อวน	(ชวเมง)

Q4 จำนวนสุกรที่ท่านสัมผัสหรือใกล้ชิดต่อวัน

< 50	1
50 – 100	2
101 – 200	3
> 200	4

Q5ท่านฉีดยาปฏิชีวนะให้กับสุกรด้วยตัวท่านเอง

ไม่	0
ใช่	1

Q6 ท่านทำความสะอาดสุกรหรือคอกสุกรดัวยตัวท่านเอง

ไม่	0
ใช่	1

Q7 ท่านเคยเก็บตัวอย่างเลือดหรือตัวอย่างอื่น ๆจากสุกรหรือไม่

ไม่	0
ใช่	1

Q8 ท่านเลี้ยงสุนัขหรือแมวที่บ้านหรือไม่

ไม่		0
ใช่		1
สุนัข	ตัว	
แมว	ตัว	

Q9 ในช่วง 1 ปีที่ผ่านมา ท่านสูบบุหรี่หรือไม่

ไม่	0
ใช่	1

Q10 ในช่วง 1 ปีที่ผ่านมา ท่านดื่มสุราหรือไม่

ไม่	0
ใช่	1

Q11 ในช่วง 1 ปีที่ผ่านมา ท่านมีปัญหาสุขภาพหรือไม่

	ไม่	ใช่
โรคปอด	0	1
โรคหัวใจ	0	1
ปัญหาสุขภาพเรื้อรังอื่นๆ	0	1

Q12 ในช่วง 3 เดือนที่ผ่านมา ท่านกินยาปฏิชีวนะหรือไม่

ไม่	0
ใช่	1

Q13 ในช่วง 1 ปีที่ผ่านมา ท่านเคยเป็นแผลเรื้อรัง (แผลหายโดยใช้เวลามากกว่า 2 สัปดาห์) หรือไม่

ไม่	0
ใช่	1

Q14 ในช่วง 1 ปีที่ผ่านมา ท่านเป็นโรคหวัดหรือไม่

ไม่	0
ใช่	1

Q15 ในช่วง 1 ปีที่ผ่านมา ท่านขาดงานเนื่องจากเป็นโรคหวัดหรือไม่

ไม่	0
ใช่	1

Q16 ในช่วง 1 ปีที่ผ่านมา ท่านเคยไปโรงพยาบาลหรือไม่

ไม่	0
ใช่	1

Q17 ในช่วง 1 ปีที่ผ่านมา ท่านเคยป่วยแล้วนอนพักฟิ้นที่โรงพยาบาลหรือไม่

ไม่	0
ใช่	1

Q18 ในช่วง 1 ปีที่ผ่านมา ท่านเคยไปเยี่ยมผู้ป่วยที่โรงพยาบาลหรือไม่

ไม่	0
ใช่	1

Q19 ในช่วง 1 ปีที่ผ่านมา คนในครอบครัวของท่านเคยทำงานในโรงพยาบาลหรือ สถานพยาบาลหรือไม่

ไม่	0
ใช่	1

ภาคผนวกที่ 2

เอกสารแนะนำอาสาสมัคร

และหนังสือแสดงความยินยอมของอาสาสมัครเพื่อเข้าร่วมโครงการ งานวิจัยเรื่อง

ความชุกและลักษณะทางกายภาพและพันธุกรรมของเชื้อ Staphylococcus aureusที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกร และผู้เลี้ยงสุกรในจังหวัดเชียงใหม่และลำพูน

เอกสารแนะนำสำหรับอาสาสมัครเจ้าของฟาร์มและผู้เลี้ยงสุกร

- 1. ชื่อโครงการวิจัยความชุกและลักษณะทางกายภาพและพันธุกรรมของเชื้อ Staphylococcus aureus ที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกรในจังหวัดเชียงใหม่และ ลำพูน
- 2. ชื่อผู้วิจัยนายสัตวแพทย์ ดร. ประภาส ตำแหน่ง ผู้ช่วยศาสตราจารย์
- 3. สถานที่ปฏิบัติงาน คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ หมายเลขโทรศัพท์

ที่ทำงาน 053-948023

ที่บ้าน 053-111058

โทรศัพท์มือถือ 085-8631973

โทรสาร 053-948062

- 4. เนื้อหาของโครงการวิจัยและความเกี่ยวข้องกับอาสาสมัคร
 - 4.1. เหตุผลและความจำเป็นที่ต้องทำการวิจัย

งานศึกษาวิจัยนี้มุ่งเน้นถึงการศึกษาเชื้อแบคทีเรียสแตปไฟโลคอกคัส ออเรียสที่ดื้อต่อ ยาเมธิซิลลินที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกร ซึ่งเป็นการปนเปื้อนเชื้อตามธรรมชาติใน ฟาร์มสุกร โดยการศึกษาจะได้เน้นถึงความสัมพันธ์ในการติดเชื้อในปศุสัตว์และคน โดยใช้สุกร เป็นแบบอย่างในการศึกษา ผู้วิจัยจะได้ทำการตรวจเพื่อหาสัดส่วนของประชากรที่มีการติดเชื้อ ภาวะการดื้อต่อยาปฏิชีวนะของเชื้อสแตปไฟโลคอกคัส ออเรียสที่เพาะแยกได้จากตัวอย่าง การ จำแนกความหลายหลายทางสายพันธุ์ของเชื้อดังกล่าว เพื่อเป็นฐานข้อมูลในการวิเคราะห์ข้อมูล ในการเชื่อมโยงทางด้านระบาดวิทยาระหว่างคนและสุกร

4.2 วัตถุประสงค์ของการศึกษา

การศึกษาวิจัยนี้มีวัตถุประสงค์หลักเพื่อหาความชุกของการปนเปื้อนเชื้อสแตปไฟโลคอกคัส ออ เรียสที่ดื้อต่อยาเมธิซิลลินในฟาร์มสุกร และมีวัตถุประสงค์รองเพื่อหาสมมุติฐานปัจจัยเลี่ยงของ การปนเปื้อนเชื้อในสุกรและเพื่อหาความชุกของการปนเปื้อนเชื้อดังกล่าวในผู้เลี้ยงสุกร ซึ่งผล การศึกษาที่ได้จะเป็นข้อมูลพื้นฐานด้านความชุกของการติดเชื้อสแตปไฟโลคอกคัส ออเรียสใน การประเมินและกำหนดแนวทางการจัดการและลดป ัจจัยเสี่ยงของการติดเชื้อในคนและสัตว์ และ สร้างให้เกิดความตระหนักในกลุ่มผู้เลี้ยงสุกรและประชาชนทั่วไป

4.3 วิธีการและระยะเวลาในการเก็บข้อมูล

ท่านได้รับเชิญให้ตอบแบบสอบถามเรื่องความชุกและลักษณะทางกายภาพและ พันธุกรรมของเชื้อสแตปไฟโลคอกคัส ออเรียสที่ดื้อต่อยาเมทธิซิลินที่เพาะแยกได้จากสุกรและผู้ เลี้ยงสุกรในภาคเหนือของประเทศไทย ซึ่งท่านจะได้รับเอกสารแนะนำงานวิจัยและใบยินยอม เพื่อแจ้งความยินยอมเข้าร่วมการศึกษาเป็นลายลักษณ์อักษร หลังจากทีมผู้วิจัยได้รับการตอบ แบบสอบถามของท่าน หากมีข้อสงสัยทีมผู้วิจัยจะทำการติดต่อสอบถามรายละเอียดเพื่อให้ได้ ข้อมูลที่ถูกต้องกับการแสดงความคิดเห็นของท่าน ท่านสามารถเลือกไม่ตอบคำถามหากไม่ ต้องการ โดยไม่ต้องให้เหตุผล นอกจากนี้ท่านสามารถเลือกที่จะไม่ถูกกล่าวอ้างการแสดงความคิดเห็นของตนในรายงานวิจัย หรือการกล่าวอ้างการแสดงความคิดเห็นแต่ไม่ระบุชื่อในรายงาน วิจัย และกรณีที่ท่านอนุญาตให้กล่าวอ้างการแสดงความคิดเห็นในรายงานวิจัยได้ ชื่อของท่านจะ ถูกปิดบัง หรือระบุเพียงตัวย่อ หรือระบุเป็นข้อมูลทั่วไป เช่น หน่วยงาน เป็นตัน การตอบ แบบสอบถามใช้เวลาประมาณ 30 นาที

ข้อมูลจากการตอบแบบสอบถามจะถูกรายงานในรูปแบบข้อมูลเชิงปริมาณ และจะถูก เก็บในสถานที่ที่ปลอดภัยและถูกทำลายภายหลังเสร็จสิ้นการศึกษาวิจัยเป็นระยะเวลา 3 ปี (หมายเหตุ: มีความจำเป็นต้องเก็บแบบสอบถามไว้เพื่อการตรวจสอบ)

4.4 เกณฑ์การเข้าร่วมเป็นอาสาสมัครในโครงการ

ท่านต้องทำงานในฟาร์มที่ทางทีมผู้วิจัยได้เลือกและเข้าใจวัตถุประสงค์ของการศึกษา วิธีการศึกษา ข้อดีหรือข้อเสียของการเข้าร่วมการศึกษา รวมทั้งประโยชน์ที่เกิดจากการศึกษา อย่างละเอียด และสามารถเซ็นต์ใบยินยอมเข้าร่วมการศึกษาได้

4.5 ขั้นตอนการดำเนินการ

หากท่านตัดสินใจเข้าร่วมเป็นอาสาสมัครในการศึกษา กรุณาตอบแบบสอบถามในวันที่ ทีมวิจัยเข้าไปเก็บตัวอย่างในฟาร์มของท่าน หลังจากทีมผู้วิจัยได้รับการตอบแบบสอบถามกลับ จากท่าน หากมีข้อสงสัยจะทำการติดต่อสอบถามรายละเอียดเพื่อให้ได้ข้อมูลที่ถูกต้องกับการ แสดงความคิดเห็นของท่าน ซึ่งผู้ที่ทำการติดต่อสอบถามรายละเอียดจากท่านเป็นผู้ได้รับการ อบรมมาเป็นอย่างดีจากสำนักระบาดวิทยา กระทรวงสาธารณสุข

4.6 ความเสี่ยงและความไม่สบาย

การตอบแบบสอบถามนี้อาจจะทำให้ท่านเสียเวลาบ้าง ท่านสามารถเลือกตอบเฉพาะ บางประเด็นหรือบางหัวข้อในแบบสอบถามได้ และสามารถปฏิเสธที่จะตอบประเด็นใด ๆ ใน แบบสอบถามที่อาจจะทำให้ท่านเกิดความไม่สบายใจหรือเกิดความเครียดได้

4.7 ประโยชน์ที่ได้รับ

ท่านได้รับโอกาสในการให้ข้อมูลของฟาร์มสุกรและผู้เลี้ยงสุกรเพื่อหาข้อมูลพื้นฐานด้าน ความชุกของการติดเชื้อสแตปไฟโลคอกคัส ออเรียสในการประเมินและกำหนดแนวทางการ จัดการและลดปจัจจัยเสี่ยงของการติดเชื้อในคนและสัตว์ และสร้างให้เกิดความตระหนักในกลุ่มผู้ เลี้ยงสุกรและประชาชนทั่วไป ซึ่งถือเป็นหนึ่งข้อมูลที่สำคัญในการเฝ้าระวังโรคอุบัติใหม่ทั้งใน สัตว์และคน

4.8 การรักษาความลับ

ข้อมูลใดๆ ในการศึกษาที่สามารถระบุตัวท่านได้จะถูกเก็บไว้เป็นความลับ คำตอบของ ท่านจะไม่ถูกเปิดเผยให้ผู้ใดที่มิใช่ทีมผู้วิจัย ก่อนตอบแบบสอบถามขอให้ท่านระบุชื่อเล่นหรือชื่อ อื่นๆ ที่ท่านต้องการให้ทีมผู้วิจัยใช้ในการติดต่อสอบถามข้อสงสัย ซึ่งทางทีมผู้วิจัยจะใช้ชื่อท่าน ไปตลอดการศึกษา

ข้อมูลของท่านจะถูกใช้สำหรับการศึกษาเท่านั้น ชื่อของท่านจะถูกแยกออกจากข้อมูล แบบสอบถาม ข้อมูลที่มีชื่อของท่านจะถูกเก็บแยกเป็นความลับ ข้อมูลแบบสอบถามของท่านจะ มีเพียงรหัสอาสาสมัครเท่านั้น ข้อมูลจะเก็บไว้ในคอมพิวเตอร์ที่สำนักงาน และเก็บไว้ในตู้ที่มี ล็อคและมีการจำกัดการเข้าถึงข้อมูลต่างๆ ที่ทีมผู้วิจัยใช้จะไม่มีข้อมูลที่ระบุถึงตัวท่าน

4.9 ระยะเวลาในการเก็บและทำลายเอกสาร

เอกสารและข้อมูลต่างๆ ที่สามารถระบุตัวท่านจะถูกเก็บรักษาเป็นความลับตลอด ระยะเวลาการศึกษา และจะทำลายภายหลังเสร็จสิ้นการศึกษาวิจัยเป็นระยะเวลา 3 ปี

4.10 การเข้าร่วมและการถอนตัวออกจากการศึกษา

การเข้าร่วมในการศึกษาของท่านถือเป็นความสมัครใจ ท่านสามารถถอนตัวออกจาก การศึกษาได้ทุกเมื่อและการตัดสินใจเข้าร่วมหรือไม่เข้าร่วมในการศึกษาท่านสามารถปฏิเสธไม่ ตอบประเด็นที่ท่านไม่ต้องการ และยังคงสามารถอยู่ในการศึกษาได้ต่อไป ทีมผู้วิจัยอาจให้ท่าน ออกจากการศึกษาได้หากมีเหตุอันสมควร ซึ่งทีมผู้วิจัยจะอธิบายให้ท่านได้รับทราบก่อนการ ดำเนินการ

4.11 สิทธิของอาสาสมัคร

ท่านสามารถถอนตัวออกจากการเป็นอาสาสมัครได้ตลอดเวลาโดยไม่มีผลกระทบ เสียหายใด ๆอย่างไรก็ตามหากท่านมีคำถามเกี่ยวกับเรื่องสิทธิของท่านในการเป็นอาสาสมัคร ท่านสามารถติดต่อกับทีมผู้วิจัยได้ตลอดเวลา

4.12 กรณีมีการเปลี่ยนแปลงการศึกษา

หากมีการเปลี่ยนแปลงรูปแบบหรือการใช้ข้อมูลที่ได้จากการศึกษา ทีมผู้วิจัยจะแจ้งให้ ทราบและให้ท่านแสดงความยินดียินยอมและสมัครใจเข้าร่วมการศึกษาอีกครั้ง

4.13 ขั้นตอนวิธีการทำสวอปรูจมูกและสวอปผิวหนัง

การเก็บตัวอย่างสวอปจากรูจมูก ทำได้โดยนำไม้พันสำลีที่ปลอดเชื้อ ป้ายในรูจมูกทั้ง สองข้างวนไปมา 2-3 รอบ จากนั้นนำก้านสำลีดังกล่าวใส่ลงในหลอดเก็บตัวอย่าง ส่วนตัวอย่าง สวอปจากผิวหนังบริเวณรักแร้ สามารถทำได้โดยนำไม้พันสำลีที่ปลอดเชื้อ ป้ายในบริเวณรักแร้ ทั้งสองข้างวนไปมา 2-3 รอบ จากนั้นนำก้านสำลีดังกล่าวใส่ลงในหลอดเก็บตัวอย่าง

คณะผู้วิจัย

ผู้วิจัยหลักในการศึกษานี้ได้แก่ ผู้ช่วยศาสตราจารย์นายสัตวแพทย์ ดร. ประภาส พัชนี
คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ หากท่านมีคำถามหรือมีข้อกังวลใด ๆเกี่ยวกับ
การศึกษา ท่านสามารถติดต่อกับทีมผู้วิจัยได้ตลอดเวลาตามที่อยู่และหมายเลขโทรศัพท์
ด้านล่างนี้

นายสัตวแพทย์ประภาส พัชนี	หมายเลขติดต่อ
คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่	โทร 053 948002, 085 8631973
หมู่ที่ 4 ตำบลแม่เหียะ อำเภอเมือง จังหวัดเชียงใหม่	แฟกซ์053 948065
50100	
สัตวแพทย์หญิงอรพรรณ อาจคำภา	หมายเลขติดต่อ
สำนักระบาดวิทยา อาคาร 6 ชั้น 6 ตึกสำนักงาน	โทร 02 5901734, 081 9798304
ปลัดกระทรวงสาธารณสุข ตำบลตลาดขวัญ อำเภอเมือง	แฟกซ์ 02 5918581
จังหวัดนนทบุรี 11000	
สัตวแพทย์หญิงเสาวพักตร์ ฮิ้นจ้อย	หมายเลขติดต่อ
สำนักระบาดวิทยา อาคาร 6 ชั้น 6 ตึกสำนักงาน	โทร 02 5901734, 081 8184722
ปลัดกระทรวงสาธารณสุข ตำบลตลาดขวัญ อำเภอเมือง	แฟกซ์ 02 5918581
จังหวัดนนทบุรี 11000	
น.สพ.การุณ ชนะชัย	หมายเลขติดต่อ
สำนักควบคุม ป้องกันและบำบัดโรคสัตว์	โทร02 653 4444 ต่อ 4133, 4136
กรมปศุสัตว์ถนนพญาไท เขตราชเทวี	แฟกซ์ 02 653 4921
กรุงเทพฯ 10400	

คำแสดงความยินยอมยินดีและสมัครใจของอาสาสมัคร

การวิจัยเรื่อง	ความชุกและลักษณะทางกายภาพและพันธุกรรมของเชื้อ <i>Staphylococcus</i>
aureus ที่ดื้อต่อยา	าเมทธิซิลินที่เพาะแยกได้จากสุกรและผู้เลี้ยงสุกรในจังหวัดเชียงใหม่และลำพูน
วันที่ให้คำยินยอม	วันที่เดือนพ.ศ

ก่อนที่จะลงนามในใบยินยอมให้ทำการศึกษาวิจัยครั้งนี้ ข้าพเจ้าได้รับทราบคำอธิบาย จากผู้วิจัยถึงวัตถุประสงค์ของการวิจัย วิธีการวิจัย ความเสี่ยงที่อาจเกิดขึ้นจากการวิจัยรวมทั้ง ประโยชน์ที่เกิดขึ้นจากการวิจัยอย่างละเอียด และมีความเข้าใจดีแล้ว ข้าพเจ้าเข้าใจว่า การมี ส่วนร่วมในการศึกษานี้ เป็นความสมัครใจโดยแท้จริง

ผู้วิจัยรับรองว่าจะตอบคำถามต่างๆ ที่ข้าพเจ้าสงสัยด้วยความเต็มใจ ไม่ปิดบัง ซ้อน เร้นจนข้าพเจ้าพอใจและข้าพเจ้าเข้าร่วมโครงการวิจัยนี้โดยสมัครใจ และทราบดีว่าข้าพเจ้ามี สิทธิบอกเลิกการเข้าร่วมในโครงการนี้เมื่อใดก็ได้ โดยไม่ทำให้เกิดผลเสียหายใดๆ ต่อข้าพเจ้าใน อนาคต

ผู้วิจัยรับรองว่าจะเก็บข้อมูลเฉพาะเกี่ยวกับตัวข้าพเจ้าเป็นความลับและจะเปิดเผยได้ เฉพาะในลักษณะผลสรุปการวิจัยให้แก่ผู้ได้รับอนุญาตจากฝ่ายสนับสนุนการศึกษาวิจัยและ/หรือ ผู้ดูแลกำกับการศึกษาวิจัยนี้เท่านั้น

ผู้วิจัยรับรองว่าหากเกิดผลเสียหายใด ๆ ต่อข้าพเจ้า ข้าพเจ้าสามารถสอบถามข้อมูล หรือสิทธิและผลประโยชน์ของผู้เข้าร่วมการวิจัย ได้ที่ สำนักเลขานุการ คณะกรรมการจริยธรรม การวิจัย กรมควบคุมโรค อาคาร 2 ชั้น 3 ตึกกรมควบคุมโรค ถนนติวานนท์ อำเภอ เมือง จังหวัด นนทบุรี 11000หมายเลขโทรศัพท์ 02-5903251-3 โทรศัพท์มือถือ 081-9798304 โดย บุคคลที่รับผิดชอบเรื่องนี้คือ สัตวแพทย์หญิงอรพรรณ อาจคำภา

นอกเวลาราชการ สามารถติดต่อได้ที่เบอร์โทรศัพท์มือถือของคณะผู้วิจัยตามที่ได้ให้ รายละเอียดแล้วข้างต้น

ข้าพเจ้าได้อ่านหรือผู้วิจัยได้อ่าน คำอธิบายโครงการวิจัยหรือหนังสือยินยอมด้วยความ สมัครใจนี้ ให้ข้าพเจ้าได้ฟังแล้ว และได้รับคำตอบต่อทุกข้อสงสัยทั้งหมดแล้ว ข้าพเจ้ามีความ

เข้าใจดีทุกประการและได้ลงนามเพื่อยินยอมและตกลงเข้าร่วมในการศึกษาครั้งนี้ด้วยความเต็ม ใจ	
ลายเซ็นต์อาสาสมัคร	วันที่ให้คำยินยอม
()	
ชื่อตัวบรรจง	
ลายเซ็นต์ผู้วิจัยหลัก	วันที่ลงนาม
()	

ภาคผนวกที่ 3

ประวัติผู้วิจัย

ประวัติผู้วิจัย

1. ชื่อ-สกุล (ภาษาไทย) นายประภาส พัชนี

ชื่อสกุล (ภาษาอังกฤษ) Mr. Prapas Patchanee

หน่วยงานต้นสังกัด

ภาควิชาคลินิกสัตว์บริโภค คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่

ตำแหน่งปัจจุบัน

Assistant Professor, Swine Clinic, Faculty of Veterinary Medicine, Chiang Mai University

ประวัติการศึกษา

2008 Ph.D. (Veterinary Preventive Medicine), The Ohio State University, USA

1996 DVM. Kasetsart University, Thailand

- Soawapak Hinjoy, Kenrad E. Nelson, Robert V. Gibbons, Richard G. Jarman, Piyawan Chinnawirotpisan, Stefan Fernandez, Penporn Tablerk, Alain B. Labrique, and Prapas Patchanee. A cross sectional study of hepatitis E virus infection in pigs in different sized farms in Northern Thailand. Foodborne Pathogens and Disease. FPD-2012-1369
- S. Hinjoy, K.E. Nelson, R.V. Gibbons, R.G. Jarman, D. Mongkolsirichaikul, P., Smithsuwan, S. Fernandez, A.B. Labrique, and P. Patchanee. (2012). A cross sectional study of hepatitis E virus infection in healthy people directly exposed and unexposed to pigs in a rural community in Northern Thailand. Zoonoses and Public Health. ZPH-Sep-12-254.
- 3. C. Chokboonmongkol, **P. Patchanee**, G. Gölz, K.-H. Zessin, and T. Alter† (2012) Prevalence, quantitative load and antimicrobial resistance of Campylobacter spp. from broiler flocks and broiler carcasses in Thailand. Poultry Sciences (submitted)

- 4. Prapas Patchanee, Chomporn Chokboonmongkol, Karl-Hans Zessin, Thomas Alter, Sarinya Pornaem, and Nipa Chokesajjawatee (2012). Comparison of Multilocus Sequence Typing (MLST) and Repetitive sequence-based PCR (rep-PCR) fingerprinting for Differentiation of Campylobacter jejuni Isolated from Broiler in Chiang Mai, Thailand. Journal of Microbiology and Biotechnology First published online July 18, 2012 pISSN 1017-7825 eISSN 1738-8872
- Sompreeya Kongkaew, Kanruethai Wongsawan, Chamaiporn Pansumdang, Sasiprapa Takam, Terdsak Yano, Panuwat Yamsakul, and Prapas Patchanee (2012). Identification and Antimicrobial Susceptibility of Streptococcus suis Isolated from Pigs Tonsil Swabs. Journal of Kasetsart Veterinarians. Vol.22 No.1
- 6. Rejab, S.B., Zessin, K.H., Fries, F., **Patchanee**, **P**. (2011). Campylobacter in chicken carcasses and slaughterhouse in Malaysia. Southeast Asian J Trop Med Publ Health. Southeast Asian J Trop Med Publ Health, Jan 2012, 43(1): 96-104.
- 7. Rejab, S.B., Zessin, K.H., Fries, F., **Patchanee**, **P**. (2011). Comparison of Campylobacter contamination levels on chicken carcasses between modern and traditional types of slaughtering facilities in Malaysia. J Vet Med Sci. 2011 Sep 2. [Epub ahead of print]
- 8. **P.Patchanee**, B. Molla, N. White, D. E. Line and W. A. Gebreyes. (2010). Tracking Salmonella Contamination in Various Watersheds and Phenotypic and Genotypic Diversity. Foodborne Pathog Dis, September 2010, 7(9): 1113-1120.
- Srinivasan V. B., Rajamohan G., Pancholi P., Stevenson K., I Tadesse D.,
 Patchanee P., Marcon M., & Gebreyes W.A. (2009). Genetic relatedness and
 molecular characterization of multidrug resistant. Acinetobacter baumannii isolated
 in central Ohio, USA. Ann Clin Microbiol Antimicrob. 2009 Jun 17;8:21.
- P.J. Rajala-Schultz, A.H. Torres, F.J. DeGraves, W.A. Gebreyes, &P.Patchanee.
 (2009). Antimicrobial resistance and genotypic characterization of coagulase-negative staphylococci over the dry period. Vet Micro, 134(1-2):55-64
- 11. **Patchanee. P.**, Zewde B. M., Tadesse D. A., Hoet A., & Gebreyes WA. (2008). Characterization of multidrug-resistant Salmonella enterica serovar Heidelberg isolated from humans and animals. Foodborne Pathog Dis, 5(6):39-51
- 12. Wondwossen A. Gebreyes, Peter B. Bahnson, Julie A. Funk, James McKean,

- a. P. Patchanee. (2008). Seroprevalence of Trichinella, Toxoplasma and Salmonella in Antimicrobial-free and Conventional Swine Production Systems. Foodborne Pathog Dis, 5(2):199-203
- 13. **Patchanee**, **P.**, Crenshaw, T. D., & Bahnson, P. B. (2007). Oral sodium chlorate, topical disinfection, and younger weaning age reduce salmonella enterica shedding in pigs. Journal of food protection, 70(8), 1798-1803.
- 14. Strietzel, F. P., Khongkhunthian, P., Khattiya, R., Patchanee, P.,& Reichart, P. A. (2006). Healing pattern of bone defects covered by different membrane types--a histologic study in the porcine mandible. Journal of biomedical materials research. Part B, Applied biomaterials, 78(1), 35-46.
- 15. Patchanee, P., Zessin, K. H., Staak, C., Srikijakarn, L., Taravijitkul, P., & Tesaprateep, T. (2002). Pre-slaughter infection of salmonella spp. and consideration of using the Danish mix-elisa for monitoring salmonella in pigs. Chiang Mai Vet Journal 1, 33-38.
- 16. ประภาส พัชนี, ศุภชัย เนื้อนวลสุวรรณ, ภานุวัฒน์ แย้มสกุล, ดวงพร พิชผล และดนัย สินธุ ยะ (2555). ความชุกและปริมาณการปนเปื้อนเชื้อซัลโมเนลลาที่เพาะแยกได้จากฟาร์มสุกร พันธ์เปรียบเทียบลักษณะการเลี้ยงแบบสหกรณ์และครบวงจร ในเขตภาคเหนือตอนบนของ ประเทศไทย.การจัดประชุมทางวิชาการมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 50, วันที่ 31 มกราคม 2555 ถึง 2 กุมภาพันธ์ 2555 มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ.
- 17. ประภาส พัชนี, ดวงพร พิชผล, ภาณุวัฒน์ แย้มสกุล, ศุภชัย เนื้อนวลสุวรรณ และ กิตติพงษ์ กุมภาพงษ์ (2555). ความชุกและปริมาณการปนเปื้อนเชื้อซัลโมเนลลาในสุกรขุน เปรียบเทียบการเลี้ยงระหว่างฟาร์มรูปแบบสหกรณ์และฟาร์มครบวงจรในพื้นที่เชียงใหม่- ลำพูน. การจัดประชุมทางวิชาการ มหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 50, วันที่ 31 มกราคม 2555 ถึง 2 กุมภาพันธ์ 2555 มหาวิทยาลัยเกษตรศาสตร์ กรุงเทพฯ.
- 18. Nipa Chokesajjawatee, Sarinya Pornaem, Chomporn Chokboonmongkol, Karl-Hans Zessin, Thomas Alter, and Prapas Patchanee. COMPARISON OF MLST AND REP-PCR SYSTEM FOR DIFFERENTIATION OF CAMPYLOBACTER JEJUNI ISOLATED FROM BROILER IN CHIANG MAI, THAILAND. ICVS 37th Thailand. 29 Feb.-2 Mar.2012 IMPACT Forum, Bangkok, Thailand
- 19. Chomporn Chokboonmongkol, Karl-Hans Zessin, Thomas Alter, **Prapas Patchanee**, CHARACTERIZATION OF CAMPYLOBACTER SPP. ISOLATED FROM BROILER

- FLOCKS IN CHIANG MAI, THAILAND, ICVS 37th Thailand . 29 Feb.-2 Mar.2012 IMPACT Forum, Bangkok, Thailand
- 20. Chomporn Chokboonmongkol, Karl-Hans Zessin, Thomas Alter, Prapas Patchanee, Epidemiology and Genotypic Diversity of Campylobacter spp. Isolated from broiler flocks in Chiang Mai, Thailand. The 2nd International Food Safety and Zoonoses Symposium "One Health Initiative to Food Safety and Pathogen Threat in Asia Pacific" July 21-22, 2011 Chiang Mai, Thailand
- 21. Kamal Raj Acharya, Reinhard Fries, **Prapas Patchanee**, Poornima Manandhar. Antimicrobial Residue and Prevalence of Antimicrobial Resistance in Indicator Bacteria from Poultry in Kathmandu Valley. The 2nd International Food Safety and Zoonoses Symposium "One Health Initiative to Food Safety and Pathogen Threat in Asia Pacific" July 21-22, 2011 Chiang Mai, Thailand
- 22. **Prapas Patchanee** (2011). Molecular Paradigms of Foodborne Diseases: Bacterial Perspectives 1st International Animal and Food Hygiene Scientific Meeting "Food Safety in Globalization: The Approach Strategy for One World One Health?" January 20th 2011, Kashiwa Plaza, Obihiro University of Agriculture and Veterinary Medicine
- 23. Mathews, J., Tiao, N. Patchanee, P., and Gebreyes, W.A. 2010. Passive Surveillance and Genotyping of Methicillin Resistant Staphylococci at OSU Veterinary Medical Center. In: 2nd ASM Conference on Antimicrobial Resistance in Zoonotic Bacteria and Foodborne Pathogens in Animals, Humans and the Environment. Toronto, Canada [Peer Reviewed] (Published)
- 24. Maximillian P.O. Baumann, Prapas Patchanee, Lertrak Srikitjakarn and Karl-Hans Zessin. (2010) The accreditation and re-accreditation process for quality assurance of an international joint master programme in veterinary public health between Thailand and Germany. 13th Association of Institutions for Tropical Veterinary Medicine (AITVM) Conference. 23-26 August 2010 Bangkok, Thailand
- 25. Nion Boonprasert, Prapas Patchanee, Hafez Mohamed Hafez, and Karl-Hans Zessin(2009). Campylobacter Contamination in Modern Poultry Processing Plants and 12 Traditional Wet Markets in Malaysia. Food Safety and Zoonoses Symposium for Asia Pacific. 27-28 July 2009 Chiang Mai, Thailand

- 26. Saira Banu Mohamed Rejab, **Prapas Patchanee**, M.S. Muhmad Kamarulzaman, Reinhard Fries (2009). Prevalence of Salmonella spp. in Broiler Breeding Flocks during Production 13 in a Poultry Compartment in Northern Thailand. Food Safety and Zoonoses Symposium for Asia Pacific. 27-28 July 2009Chiang Mai, Thailand
- 27. J. Mathews, N. Tiao, P. Patchanee, J. Daniels, A. Hillier, C. Kohn and W.A. Gebreyes. 2009. Phenotypic and Genotypic Characterization of Staphylococci Isolates Collected from OSU Veterinary Teaching Hospital. In: 60th American College of Veterinary Pathologists Conference. Monterey, CA, USA [Peer Reviewed] (Published)
- 28. Wondwossen A. Gebreyes, **Prapas Patchanee**, Nancy White, Daniel E. Line, Damian Shea. (2008). Identification of Sources of Salmonella in Watersheds and Characterization of Multiple Antimicrobial Resistant Strains. The USDA-CSREES National Water Conference, Sparks, NV.
- 29. Gebreyes, W. A., Tadesse, A. D., **Patchanee, P.,** (2008). Phenotypic and genotypic characterization of multi-drug resistant salmonella serotype heidelberg isolated from humans and animals. 95th Annual Meeting IAFP 2008, Columbus, OH.
- 30. Wondwossen A. Gebreyes, Prapas Patchanee, Nancy White, Daniel E.Line, &Damian Shea. Identification of Sources of Salmonella in Watersheds associated with Swine Production and Characterization of Multiple Antimicrobial Resistant Strains. The 20th International Pig Veterinary Society Congress. June 22-26, 2008.Durban, South Africa. [Peer Reviewed] (Published)
- 31. **Patchanee**, **P.**, Tadesse, A. D., & Gebreyes, W. A. (2007). Phenotypic and genotypic characterization of multi-drug resistant salmonella serotype heidelberg isolated from humans and animals. The Center for Microbial Interface Biology: CMIB Retreat, Columbus, OH.
- 32. **Prapas Patchanee**, Thomas D. Crenshaw, & Peter B. Bahnson (2006).Oral sodium chlorate, topical disinfection and weaning age modify Salmonella enterica shedding in pigs. Allen D. Leman Swine Conference. St.Paul.,MN. [Peer Reviewed] (Published)
- 33. **Patchanee**, **P.**, Bahnson, P. B., & Crenshaw, T. D. (2005). Chlorate and disinfectant modify salmonella enterica shedding in weaned pigs. 6th International Symposium on the Epidemiology & Control of Foodborne Pathogens in Pork, Rohnert Park, California.

34. ภาณุวัฒน์ แย้มสกุล, **ประภาส พัชน**์, โกษา ปัญญาโกษา, สมปรียา แสงไฟ, ดวงพร พิชผล (2548) ศึกษาความเข้มข้นของยาสมุนไพรสกัดออลิกาโน ในการยับยั้งการเจริญเติบโตของ เชื้อ Escherichia coli ที่แยกได้จากอุจจาระสุกรหลังหย่านมที่มีอาการท้องเสียในฟาร์มเขต เชียงใหม่-ลำพูน ในห้องปฏิบัติการ. การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 43: สาขาสัตวแพทยศาสตร์ สาขาวิทยาศาสตร์. กรุงเทพฯ หน้า 34-40 (592 หน้า)

2. ชื่อ-สกุล (ภาษาไทย) นางสาว อรพรรณ อาจคำภา

ชื่อสกุล (ภาษาอังกฤษ) Miss Orapun Arjkumpa

หน่วยงานต้นสังกัด

สำนักระบาดวิทยา กรมควบคุมโรค กระทรวงสาธารณสุข

ตำแหน่งปัจจุบัน

นายสัตวแพทย์ชำนาญการ

ประวัติการศึกษา

พ.ศ. 2546 สัตวแพทยศาสตรบัณฑิต มหาวิทยาลัยขอนแก่น

- การสอบสวนโรคเซอร่าในช้างลากไม้ยางพารา อำเภอทุ่งสง จังหวัดนครศรีธรรมราช
 พ.ศ.2553
- 2. การสอบสวนโรคแท้งติดต่อในคนและปศุสัตว์ในพื้นที่อำเภอเทพา จังหวัดสงขลา พ.ศ.2554
- 3. การสอบสวนโรคคางทูมในโรงเรียน จังหวัดอุตรดิตถ์ พ.ศ.2554
- 4. การสอบสวนโรคเมลิออยโดซิสในคนในสวนสัตว์แห่งหนึ่งในจังหวัดสงขลา พ.ศ.2555

ชื่อ-สกุล (ภาษาไทย) นางสาวเสาวพักตร์ อิ้นจ้อย

ชื่อสกุล (ภาษาอังกฤษ) Miss Soawapak Hinjoy

หน่วยงานต้นสังกัด

สำนักระบาดวิทยา กรมควบคุมโรค กระทรวงสาธารณสุข

ตำแหน่งปัจจุบัน

นายสัตวแพทย์ชำนาญการพิเศษ

ประวัติการศึกษา

- 2012 The Johns Hopkins Bloomberg School of Public HealthDoctor of Public Health (Epidemiology)
- 2007 School of Public Health and Tropical Medicine, Tulane University

 Master of Public Health (Epidemiology)
- 2001 Faculty of Veterinary Medicine, Chulalongkorn UniversityMaster of Science (Veterinary Public Health)
- 1997 Doctor of Veterinary Medicine

- Unjit K, Wattanamethanon J, Mohkaew K, Ngamjiteua S, Tablerk P, Hinjoy S. Prevalence and risk factors of internal parasite among pigs in Nan province during January-April 2011. Thai-NIAH ejournal (2012) 7; 9-20.
- 2. Larsen J, Imanishi M, Hinjoy S, et al. Methicillin-Resisteant *Staphylococcus aureus* ST9 in Pigs in Thailand. Plos ONE (2012) 7; e31245.
- 3. Hinjoy S, Choomkasien P. Hepatitis E warning before next rainy season. WESR (2012) 18; 273-276.
- Hinjoy S, Puthavathana P, Laosiritaworn Y, et al. Low frequency of infection with Avian Influenza A (H5N1) virus among poultry farmers in Thailand, 2004. EID (2008) 14; 499-501.
- 5. **Hinjoy S**, Chuxnum T, Thongsakul P. Brucellosis. Thai Med Counc Bull (2005); 254-272.

- 6. **Hinjoy S** and Chuxnum T. Situation analysis of Avian Influenza in Thailand. Thai Med Counc Bull (2004); 261-272.
- 7. **Hinjoy S**, Damrongwattanapokin T, Laosiritaworn Y, et al. The serological conditions and maintenance hosts of leptospirosis around the human outbreak area, the International Leptospirosis Society scientific meeting (2002) 4; 13.
- Epidemiology Bo (1999-2007). Situation analysis of Anthrax, Leptospirosis, Rabies and Trichinosis in Thailand. Annual epidemiology surveillance report 1999-2007. Bangkok: Thailand Ministry of Public Health.
- Epidemiology Bo (2000). An Outbreak of Human Anthrax Infection Exposed with Infected Goat Carcasses, Pichit province, Thailand 2000, The outbreak Investigation, 2000. Bangkok: Thailand Ministry of Public Health.
- 10. **Hinjoy S**, Choomkasien P, Sanorsiang S. Enhancing Bioterrorism Preparedness Action for Public Health, Journal of Health Science (2001) 11.
- 11. Epidemiology Bo (2001).Definition for zoonotic surveillance and investigation, Definition of Infectious Diseases 2001. Bangkok: Thailand Ministry of Public Health.
- 12. **Hinjoy S**, Choomkasien P, Chuxnum T. Epidemiological of Human Rabies, 1997-2001, Thailand. Thai Med Counc Bull (2002) 31; 85-94.

4. ชื่อ-สกุล (ภาษาไทย) นายการุณ ชนะชัย

ชื่อสกุล (ภาษาอังกฤษ) Mr. Karoon Chanachai

หน่วยงานต้นสังกัด

สำนักควบคุม ป้องกัน และบำบัดโรคสัตว์ กรมปศุสัตว์

ตำแหน่งปัจจุบัน

- Chief of Veterinary Epidemiology Development Center, Bureau of Disease

 Control and Veterinary Services, Department of Livestock Development, Ministry

 of Agriculture and Cooperative, Thailand
- Field Epidemiology Training Program for Veterinarian Manager

ประวัติการศึกษา

2012 Master degree of International Animal Health University of Edinburgh
 2007 Field Epidemiology Training Program Bureau of Epidemiology,
 Ministry of Public Health, Thailand
 1993 Doctor of Veterinary Medicine, Faculty of Veterinary Sciences,
 Chulalongkorn University

- Karoon Chanachai and Prapas Pinyocheep. 2001. Outbreak of Trichinosis in pigs belonging to Mu Zer villages, 1999, Chiangrai. Northern region Livestock Journal, Thailand
- Karoon Chanachai and Sorn Teepatimakorn. 2001. Evaluation of Some Reproductive Efficiency Values in Chiangrai Dairy Cows During Year 1995-2000. Artificial insemination journal, Thailand
- Sangchai Thitichankamol and Karoon Chanachai. 2005. Antibody titer against
 Foot and Mouth Disease Virus in Cattle in Thailand after vaccinated with Foot and
 Mouth Disease trivalent vaccine during 2001-2003, Veterinary Epidemiological
 Report 11(special).
- Kongkaew W, Siriarayaporn P, Leelayoova S, Supparatpinyo K, Areechokchai D, Duang-ngern P, Chanachai K, Sukmee T, Samung Y, and Sridurongkathum P, The Southeast Asian journal of tropical medicine and public health. 2007 Jan;38(1):8-12.
- 5. Tiensin T, Gilbert M, Chaitaweesub P, Songserm T, Kalpravidh W, Chotiprasatintara S, Chaisingh A, Wongkasemjit S, Amonsin A, Chanachai K, Noimoh T, Thanapongtham W, Premashthira S, Pfeiffer DU, Nielen M, Stegeman JA. Geographic and temporal distribution of highly pathogenic avian influenza A virus (H5N1) in Thailand, 2004-2005: an overview., Avian diseases 51(1 Suppl):182-8, 2007 Mar
- K. Chanachai, T. Parakgamawongsa, W. Kongkaew, S. Chotiprasartin-thara and
 C. Jiraphongsa. Avian Influenza outbreaks in poultry of high risk areas in

- Thailand, June-December 2005, GIS for Health and the Environment. 2007, page 288-297
- Tiensin T, Nielen M, Vernooij H, Songserm T, Kalpravidh W, Chotiprasatintara S, Chaisingh A, Wongkasemjit S, Chanachai K, Thanapongtham W, Srisuvan T, and Stegeman A, Transmission of the Highly Pathogenic Avian Influenza Virus H5N1 within Flocks during the 2004 Epidemic in Thailand, The Journal of infectious diseases. 2007 Dec;196(11):1679-84
- 8. **Karoon Chanachai**, Pairoj Hengsaengchai, Thaweesak Songserm, Bangkok International Conference on Avian Influenza 2008: Integration from Knowledge to Control, 23-25 January 2008, Bangkok, Thailand. (Oral presentation)
- Chanachai K, Pittayawonganon C, Areechokchai D, Suchatsoonthorn C, Pokawattana L, and Jiraphongsa C. A food borne outbreak of gastroenteritis due to shigella and possibly salmonella in a school, The Southeast Asian journal of tropical medicine and public health. 2008 Mar;39(2):297-302.
- 10. Sukmee T, Siripattanapipong S, Mungthin M, Worapong J, Rangsin R, Samung Y, Kongkaew W, Bumrungsana K, Chanachai K, Apiwathanasorn C, Rujirojindakul P, Wattanasri S, Ungchusak K, and Leelayoova S, A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. International journal for parasitology. 2008 May;38(6):617-22.
- 11. Tiensin T, Ahmed SS, Rojanasthien S, Songserm T, Ratanakorn P, Chaichoun K, Kalpravidh W, Wongkasemjit S, Patchimasiri T, Chanachai K, Thanapongtham W, Chotinan S, Stegeman A, and Nielen M, Ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand, The Journal of infectious diseases. 2009 Jun;199(12):1735-43.
- 12. S. Kasemsuwan, C. Poolkhet, T. Patanasatienkul, N. Buameetoop, M. Watanakul, K. Chanachai, K. Wongsathapornchai, R. Métras, C. Marcé, A. Prakarnkamanant, J. Otte and D. Pfeiffer, Qualitative Risk Assessment of the Risk of Introduction and Transmission of H5N1 HPAI Virus for 1-km Buffer Zones Surrounding Compartmentalised Poultry Farms in Thailand, Pro-Poor HPAI Risk Reduction 2009.(http://www.dfid.gov.uk/r4d/SearchResearchDatabase.asp?OutPutId=185834)
- 13. **Karoon Chanachai**, David Castellan, Sopon lamsirithaworn, Tippawon Prarakamawongsa, Kachen Wongsathapornchai, Komchaluch Taweeseneepitch,

- Wantanee Kalpravidh, Chuleeporn Jiraphongsa and Subhash Morzaria, Strengthening Animal-Human Network through Field Epidemiology Training Program for Thailand, Southeast and East Asia, poster presentation in The 1st International One Health Congress 2011, 14-16 February 2011, Melbourne, Australia. (poster presentation)
- 14. A. Sommanustaweechai, B. Sangkarak, D. K. Nugroho, F. Wu, H. Sinel, L. L. Bo, N. Kiry, P. Boosom1, P. Wongnark, S. I. Jayme, S. Sinthasak, S. Urbenjapol, S. Khuhapan, T. Lamaisri, T. Kedkhuntod, T. Srisuvan, V. T. Le, W. Posuya, S. Theraverapanya, K. Unjit, K. Taweeseneepitch, K. Wongsathapornchai, K. Chanachai, Prevalence Survey of Intestinal and Blood Parasites in Dairy Cattle in Kaeng Ka Jan District, Petchaburi Province, Thailand, Oral presentation in The 37th International Conference on Veterinary Science 2012, 29 January -2 February 2012, Thailand

ภาคผนวกที่ 4

Manuscript and Proceedings

Prevalence and Characteristics of Livestock associated Methicillin-Resistant *Staphylococcus aureus* in Pig Farms, Workers and Environments in Pig Industries of Northern Thailand

Orapun Arjkumpa^{1,2}, Thanawadee Thantiworawit¹, Pannarai Samithsuwan³, Kittipong Kumpapong¹, Soawapak Hinjoy³, Karoon Chanachai⁴, Thomas Alter⁵, Prapas Patchanee^{6*}

Abstract

Introduction:

Meticillin-resistant *Staphylococcus aureus* associated with livestock (LAMRSA) has been emerged among pigs and pig handlers worldwide. LAMRSA was reported in the Northern Thailand, which belonged to sequence type (ST) 9 and associated with pigs, whereas exactly prevalence of LAMRSA colonization among pigs, workers and environment were unknown. This study aims to determine the prevalence of LAMRSA in pigs, workers and environment in Northern Thailand and to investigate genotypic and phenotypic characteristics of LAMRSA isolates.

Methods:

A cross-sectional study was conducted in Chaing Mai and Lampoon provinces in 2012. One hundred and five pig farms were randomly sampled from all 21,152 pig herds in two provinces. Nasal and skin swabs were collected from 5 pigs and 2 workers in each farm. Also, five sites such stable floor, faucet and feeder were collected by using cotton swabs. MRSA was identified from pooled samples of pigs and environment, and single swab of worker then confirmed by multiplex PCR. Characterization of MRSA isolates was done by SCCmec typing, MLST and antimicrobial susceptibility test. The workers were interviewed in person about pig farm management by using a questionnaire

Results:

Totally, 104 pig farms and 138 workers were participated. A herd prevalence of MRSA was 8.65% (9 of 104 farms). The prevalence of MRSA in pigs, workers and environment were 0.96%, 5.07% and 1.20%, respectively. Thirteen MRSA isolates were found in 8 workers, 4 specimens from environment and one pig. They were typed as SCCmecIV-ST9. All MRSA isolates were 100% resistant to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim and 100% showed multidrug resistant phenotype. However, only one farm was isolated MRSA from pigs and environment in the same farm. None of MRSA isolated was found in both of pigs and workers in the same farms. Using fan or ventilators in the pig farms was associated with MRSA (PR=12, 95%CI 1.47-541.48).

Conclusions:

This survey provided the first evidence of MRSA among pigs, workers and environment in Thailand. However, there were low prevalence of MRSA in pigs, workers and environment when compared to other countries. Characteristics of isolates were MRSA-ST9-SCCmec IV from workers and environment and multi-antimicrobial resistance of MRSA isolates were observed. Therefore, further studies in monitoring of MRSA in the pig populations, pig workers and environment in the farms in Thailand are required to detect changes in epidemiology and to implement effective control measures.

Keywords: MRSA, prevalence, characteristics, pig, worker, environment, Thailand

¹Field Epidemiology Training Program (FETP), Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Thailand

²Veterinary Research and Development Center (Southern Region), Department of Livestock Development, Ministry of agriculture and cooperation, Thailand

³Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Thailand

⁴Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Ministry of agriculture and cooperation, Thailand

⁵Institute of Food Hygiene, Freie Universitaet Berlin, 14163 Berlin, Germany

⁶Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiangmai University, Chiangmai, Thailand

^{*}Corresponding author; Tel +6653948023, E-mail: patprapas@gmail.com

2nd International Congress on Pathogens at the Human-Animal Interface (ICOPHAI): One Health for Sustainable Development

August 14-17, 2013

Summerville Beach Resort, Porto de Galinhas, Brazil-

June 21, 2013

http://icophai2013.org

Re: The International Congress on Pathogens at the Human-Animal Interface (ICOPHAI), 2013

Dear: Dr. Prapas Patchanee,

On behalf of the ICOPHAI 2013 Organizing body, I would like to extend this invitation for you to participate in this congress and for funding and Brazilian Visa purposes. Through the support of our sponsors, we are able to cover your expenses for air flight and hotel accommodation by the specific sponsor (USAID PREDICT).

Please be aware that we must receive your registration payment for the congress by June 15, 2013 in order to guarantee your position.

For details and up-to-date information on the congress, please visit http://icophai2013.org/.

Once again, thank you very much for your commitment and looking forward to welcoming you to the congress in Porto de Galinhas.

Regards,

Wondwossen A. Gebreyes, DVM, Ph.D., DACVPM

cc: Prof. Celso B. Oliveira Secretary General

President, ICOPHAI2013

Congress Date and Venue *August 14-17, 2013*

Summerville Beach Resort Porto de Galinhas,

Brazil

Congress Chairperson

Wondwossen A. Gebreyes The Ohio State University (USA)

Int'l Organizing committee

Sumalee Boonmar (Global Health Ministry of Public Health, Thailand)

Mateus Matiuzzi (Univ. of Sao Francisco Valley, Brazil) Prapas Patchanee (Chiang Mai

Univ., Thailand) Lauro Santos Filho (Federal Univ.

Paraiba, Brazil) Prapas Patchanee (Chiang Mai Univ., Thailand)

Tania Raso (Federal Univ. Paraiba, Brazil)

Bayleyegn Molla (The Ohio State University, USA)

Armando Hoet (The Ohio State University, USA)

Congress Secretariat/ contacts

USA

VPH-Biotech Consortium +1-614-292-9559 (Tel.) +1-614-292-4142 (Fax) info@icophai2013.org

Brazil

Assessor giselaatache@assessor-pe.com.br 55 81 3423. 1300

Congress Website

Veterinary Public Health Centre for Asia Pacific

- Alumni meeting on "ASEAN: Stepping forward into One Health Society"
- "The 3rd Food Safety and Zoonoses Symposium for Asia Pacific"
- "The 1st Regional EcoHealth (EH) Symposium: Social and Environmental Dynamic on Human and Animal Health"

Published by Veterinary Public Health Centre for Asia Pacific (VPHCAP)
Faculty of Veterinary Medicine,
Chiang Mai University,
Mae Hia, Muang, Chiang Mai 50100
Thailand
Phone: + 66 5394 8073
Fax: + 66 5394 8072
E-mail: vphcap@gmail.com
vphcap.vet.cmu.ac.th

Printed at Big Ad Company Limited, 2013 www.bigad1999.com Chiang Mai, Thailand

255 pages Veterinary Medicine A CIP catalogue record for this book is available from the National Library of Thailand ISBN 978-974-672-799-0

จัดพิมพ์โดย ศูนยสัตวแพทย์สาธารณสุขเอเชียแปซิฟิก คณะสัตวแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ หมู่ที่ 4 ตำบลแม่เหียะ อำเภอเมือง จังหวัดเชียงใหม่ 50100 ประเทศไทย โทรศัพท์ 0-5394-8002 แฟกซ์ 0-5394-8065 อีเมล์: vphcap@gmail.com vphcap.vet.cmu.ac.th

พิมพ์ที่ บริษัท นิ๊กแอด จำกัด, 2556 www.bigad1999.com จังหวัดเชียงใหม่ ประเทศไทย

255 หน้า สัตวแพทยศาสตร์ ข้อมูลทางบรรณานุกรมของสำนักหอสมุดแห่งชาติ ISBN 978-974-672-799-0

10th Year Anniversary of Veterinary Public Health Centre for Asia Pacific

Organizing committee

Chairperson

Members

Assist, Prof. Dr. Kwanchai Kreausukon

Assist. Prof. Dr. Duangporn Pichpol

Dr. Tongkorn Meeyam

Dr. Warangkhana Chaisowwong

Dr. Anucha Sathanawongs

Chalita Jainonthee

Kamonchanok Patchawit

Charatkae Cheawthunyakit

Thitirat Kosanasanti

Thanapun Kanaonsue

Sittipong Arinkaew

Amornrat Khattiyot

Thongpool Ongchai

mongpoor ongen

Suladda Aimmak

Thirdsak Chaithep

Torranin Charuensuk

Phairin Khunset

Jaranya Sankaow

Siroch Sittisombut

Paweena Thajai

Khwanchanok Suriyawong

Chutimon Kumlor

Editorial committee

Assist. Prof. Dr. Duangporn Pichpol

Dr. Tongkorn Meeyam

Chalita Jainonthee

Kamonchanok Patchawit

Paweena Thajai

Khwanchanok Suriyawong

Chutimon Kumlor

Interrelationship of Livestock Associated-Methicillin-Resistant Staphylococcus aureus (LA-MRSA) among Pigs, Workers and the Farm Environment in Northern Thailand

Orapun Arjkumpa^{1,2,3} David Love⁴ Soawapak Hinjoy⁵ Karoon Chanachai⁶ Thomas Alter⁷ Khwanchai Kreausukon³ Suvichai Rojanasthien³ Prapas Patchanee^{3,*}

ABSTRACT Livestock associated-methicillin-resistant *Staphylococcus aureus* (LA-MRSA) has been emerging among pigs and pig handlers worldwide. This study aimed to determine the prevalence of LA-MRSA in pigs, workers and environment in Northern Thailand and to investigate phenotypic characteristics of LA-MRSA isolates. One hundred and four pig farms were randomly selected from the total of 21,152 pig farms in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from five pigs and two workers in each farm. As well, five environmental samples (pig stable floor, faucet and feeder) were collected using cotton swabs. MRSA was identified and confirmed by multiplex PCR from pooled samples of pigs, pig worker and farm environment. Phenotypic characterization of MRSA isolates were performed by Kirby-Bauer disk diffusion susceptibility test. The total of 104 pig farms and 138 workers were collected. The herd prevalence of MRSA was 8.65% (9 of 104 farms). The prevalence of MRSA in pigs, workers and the farm environment was 0.96%, 4.34% and 2.88%, respectively. Thirteen MRSA isolates were identified from eight workers, four isolates from environmental samples and one isolate from pigs. Ten of thirteen MRSA isolates were tested for antimicrobial resistance; these isolates were 100% resistant to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim and 100% of all isolates showed multidrug resistant phenotype. This survey provided the first evidence of interrelationships for LA-MRSA among pigs, workers and the farm environment in Thailand. There was a low prevalence of MRSA in pigs, workers and the environment compared to other countries. Multi-drug resistant of MRSA isolates was observed. Further monitoring studies of MRSA in pig associated environment are required to detect changes in epidemiology and to implement effective control measures.

KEYWORDS: Interrelationship, LA-MRSA, pig, worker, environment

¹ Field Epidemiology Training Program (FETP), Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health. Thailand

² Veterinary Research and Development Center (Southern Region), Department of Livestock Development, Ministry of Agriculture and Cooperation, Thailand

³ Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand

⁴ Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

⁵ Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand

⁶ Bureau of Disease Control and Veterinary Services, Department of Livestock Development, Ministry of agriculture and cooperation, Bangkok, Thailand

⁷ Department of Veterinary Medicine, Panel "Veterinary Public Health", Institute of Food Hygiene, Free University Berlin, Berlin, Germany

^{*}Corresponding author; Email: patprapas@gmail.com, prapas.pat@cmu.ac.th

INTRODUCTION

Staphylococcus aureus is an opportunistic bacterium that is considered as microflora of human and various animals (1). It frequently colonizes in the anterior nares (2), which may cause infections when the host immune system becomes compromised. This organism developed resistance to the antibiotic methicillin (i.e., methicillin resistant Staphylococcus aureus; MRSA) through the mecA gene that is part of a large mobile genetic element (1), as first reported by Robinson and Enright in 2003 (3). MRSA has become a pathogen of increasing importance in hospitals, the community and livestock operations (4). To date, livestock associated MRSA (LA-MRSA) had been distributed worldwide, particularly among people who are involved with livestock farming (5, 6, 7). These bacteria can be transmitted to humans in close contact with MRSA colonized animals (8) meanwhile livestock, especially pigs; can serve as a reservoir for LA-MRSA (9). The prevalence of LA-MRSA among pigs, workers and the environment varies by geographic areas. The majority of strains of LA-MRSA belong to the sequence type (ST) 398 in Europe and America, while ST9 is found in Asia (5, 10, 11, 12). In Thailand, MRSA has been isolated from healthy pigs (13, 14) and pork (15). However, investigation of LA-MRSA prevalence and importance in livestock, especially from pigs in Thailand is unknown. The aims of this study were to determine the prevalence of MRSA in pig farms and farm workers in Northern Thailand as well as to investigate genotypic and phenotypic characteristics of MRSA for potential relationship between humans, animal and the farm environment.

MATERIALS AND METHODS

Study design and study population:

A cross-sectional study was conducted among pigs, workers and the environment in pig farms of Chiang Mai and Lamphun provinces of Northern Thailand in 2012. Farm operations are varied from large industrial facilities to small holding settings. Target populations of pig farms located in both

provinces were 21,152 farms, based on a 2012 pig farm registry list from the Department of Development, Livestock Ministry Agriculture, Thailand (16). Sample size was calculated from pig farms with an expected prevalence of 20% (17), accepted error of 10% and a 95% confidence level using Win Episcope 2.0. One hundred and five pig farms were determined, then proportional sampling was conducted with a 7:1 ratio of Chiang Mai farm (n=18,508) to Lamphun farms (n=2,644). This resulted in 62 farms and 53 farms sampled in Chiang Mai and Lamphun provinces, respectively, for a total of 105 farms.

Sample collection:

Demographic data of farm and information on farm management including farm type, number of pigs, herd size, period of operation, antibiotics used and personnel protective equipment used in workers were collected as well as swab samples from pigs, workers and the environment;

Pig: At each farm, groups of weaning pigs, fattening pigs and sows were sampled, if presented. From each group, nasal and skin swabs were collected from 5 randomly selected pigs by a veterinarian. The nasal and skin samples were collected from both sides of external nares and auxillary regions. Samples were collected using sterile cotton swabs. Swab samples from each group of 5 pigs were pooled and stored in Stuart transport medium and kept cool in an ice box.

Worker: Farm workers were invited to participate in the study if they work on farm at least one year. A maximum of two workers were recruited each farm. All eligible participants were asked to sign a written informed consent document. Samples from both sides of participants' external nares and the axillary regions were collected using sterile cotton swabs.

Environment: Environmental samples were collected from pig stables. Five sites including stable floor, faucet and feeder were collected by using cotton swabs. Swab samples were stored separately in transport media. All swab

samples were transported to the central laboratory, Chiang Mai University, Faculty of Veterinary Medicine within 24 hours for further investigation.

MRSA isolation and identification:

All swab samples were incubated for 48 hours at 37°C in pre-enrichment media containing tryptic soy broth with 10 ml of 10% NaCl. Then, samples were inoculated onto mannitol salt agar with 6 mg/l of oxacillin and incubated at 37°C overnight. Three suspected single colonies of S. aureus from each sample were selected and identified by Gram's staining with gram positive cocci and biochemical test as catalase test positive. Colonies were then re-streaked on tryptic soy agar plates overnight for colonies duplication. A coagulase test was carried out and the positive samples were further screened for methicillin resistance by disc diffusion of oxacillin 1 µg. MRSA isolates were further investigated by multiplex PCR screening for detecting of the presence of mecA gene. All MRSA isolates were kept in brain-heart infusion broth with 15% glycerol and sent for molecular testing.

Antimicrobial Susceptibility Test (AST):

AST was performed using disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (18). The following disks were used including amoxicillin-clavulanic acid, cefoxitin, ceftriaxone. chloramphenicol, cephazolin, clindamycin, penicillin, cloxacillin. doxycycline, oxytetracycline, gentamycin, sulfa-trimethoprim, tetracyclineand Vancomycin.

RESULTS

Prevalence of LA-MRSA:

Isolation and identification of *S. aureus*, MSSA and MRSA are shown in Table 1. The overall MRSA prevalence at all farms was 0.96% in pigs (1 of 104 farms), 4.34% in workers (6 of 138 workers) and 2.88% in the environment (3 of 104 farms). Herd prevalence of LA-MRSA was 8.65% (9 of 104 farms). LA-MRSA isolates were found in 8 workers, 4 environmental samples and one pig. There was one farm in Chiang Mai where

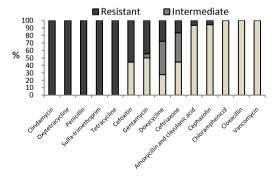

LA-MRSA was isolated from both a pig and the environment. MRSA was identified in 8 of 39 farms (20.5%) in Chiang Mai and one farm (1.5%) in Lamphun.

Table 1: Prevalence of S. aureus, MSSA and MRSA

Nursery Nasal swab 24 0.0 (0) 11.7 0.0 (0) 0.0								
Nursery Nasal 24 0.0 (0) 11.7 (0) (0.0			Prevalence					
Nursery Nasal 24 0.0 (0) 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0- 0.0 0.0-		N		05% CI	%MSSA		%MRSA	95%
Nasal swab swab swab swab swab swab swab swab		(880)		93 % CI	(n)	CI	(n)	CI
swab Skin swab 24 23 0.0 (0) 0.0 (0) 12.2 11.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Nursery							
Skin swab 23 0.0 (o) 0.0- 0.0 (o) 11.7 (o) 11.7 (o) 11.7 (o) 11.7 (o) 0.0 (o) 0.0 (o) 0.0 (o) 0.0 (o) 12.2 (o) <td></td> <td>24</td> <td>0.0 (0)</td> <td>0.0-</td> <td></td> <td>0.0-</td> <td>0.0 (0)</td> <td>0.0-</td>		24	0.0 (0)	0.0-		0.0-	0.0 (0)	0.0-
Swab 23 0.0 (0) 12.2 (0) 12.2 0.0 (0) 12.2 Fattening Nasal 65 1.5 (1) 0.0- 0.0 0.0- 1.5 (1) 7.3 Skin 69 1.9 (2) 6.8 (2) 6.8 0.0 (0) 4.2 Sow Sow V V V V V 0.0 (0) 0.0- 0.0 0.0- 0.0 (0) 0.0- 0.0	31140	2-7	0.0 (0)				0.0 (0)	
Swab 12.2 (0) 12.2 12.2 12.2 Fattening Nasal swab 65 1.5 (1) 0.0- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		23	0.0 (0)				0.0(0)	
Nasal swab 65 1.5 (1) 0.0- 7.3 0.0 0.0- 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 4.5 1.5 (1) 7.3 (0) 0.0 (0) 0.0- 1.9 (0) 0.0 (0)			,	12.2	(0)	12.2	(,	12.2
swab Skin swab 65 op 1.5 (1) op 7.3 op (0) op 4.5 op 1.5 (1) op 7.3 op Skin swab 69 op 1.9 (2) op 6.8 op (2) op 0.0 op								
Skin swab 69 1.9 (2) 0.2- (2) 1.9 (2) 0.2- (2) 1.9 (2) 0.0- (3) 0.0 (0) 0.0- (3) 0.0 (0) 4.2 Sow Nasal swab 57 0.0 (0) 5.1 (0) 5.1 0.0 (0) 5.1 Skin swab 54 0.0 (0) 5.4 (0) 5.4 0.0 (0) 5.4 Subswab 292 1.0 (3) 0.2- (2.7) 5.4 3.2- (2.2) 0.3 (1) 1.6 Environment Stable floor 104 0.0 (0) 0.0- (0.0) </td <td></td> <td>65</td> <td>1.5 (1)</td> <td></td> <td></td> <td></td> <td>1.5 (1)</td> <td></td>		65	1.5 (1)				1.5 (1)	
Swab 69 1.9 (2) 6.8 (2) 6.8 0.0 (0) 4.2 Sow Nasal swab 57 0.0 (0) 0.0- 0.0 0.0 (0) 5.1 0.0 (0) 5.1 Skin swab 54 0.0 (0) 5.4 (0) 5.4 0.0 (0) 5.4 Sub- total 292 1.0 (3) 0.2- 5.4 3.2- 0.3 (1) 0.0- total Environment 5 5.4 0.0 (0) 0.0- 0.0					,			
Sow Nasal swab 57 swab 0.0 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.1 (0) 5.4 (0		69	1.9 (2)				0.0 (0)	
swab Skin 57 0.0 (0) 5.1 (0) 5.1 0.0 (0) 5.1 st Skin swab 54 0.0 (0) 5.1 (0) 5.1 0.0 (0) 5.1 st Sub-total 292 1.0 (3) 0.2- st 5.4 3.2- st 0.3 (1) 1.6 Environment Stable floor 104 0.0 (0) 0.0- st 0.0 st 0.0- st 0.0 st Sub 312 st 1.9 (6)				0.0	(=)	0.0		
Swab 54 0.0 (0) 5.1 (0) 5.1 5.2 4 3.2 2.2 5.2 5.2 1.2 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 2.8 2.8 2.8 2.2 2.0 0.0 0.0 2.8 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 </td <td>Nasal</td> <td></td> <td></td> <td>0.0-</td> <td>0.0</td> <td>0.0-</td> <td></td> <td>0.0-</td>	Nasal			0.0-	0.0	0.0-		0.0-
Swab 54 0.0 (0) 5.4 (0) 5.4 0.0 (0) 5.4 Sub-total 292 1.0 (3) 0.2- 5.4 3.2- 0.3 (1) 0.0- Environment Stable floor 104 0.0 (0) 0.0- 0.0 0.0- 0.0 (0) 0.2- Faucet 104 2.9 (3) 0.6- 1.9 0.2- 1.0 (1) 5.2 Feeder 104 2.8 (3) 6.8 (0) 2.8 1.0 (1) 5.2 Sub-total 312 1.9 (6) 0.7- 0.6 0.1- 1.2 (4) 3.0 Worker Nasal 8.6 4.7- 5.0 2.2- 3.6 (5) 7.8 Skin 138 3.6 (5) 1.3- 0.7 0.0- 0.0- 2.8 (4) 0.9- swab 138 3.6 (5) 7.8 (1) 3.5 2.2- 3.6 (5) 7.8 Sub- 6.1 3.7- 2.8 1.3- 3.2 (8) 1.6-<	swab	57	0.0 (0)	5.1	(0)	5.1	0.0 (0)	5.1
Swab Swab 5.4 (0) 5.4 6.8 5.4 3.2 0.2 8.2 6.8 6.8 6.9 6.8 6.9 0.0 </td <td>Skin</td> <td></td> <td>0.0 (0)</td> <td>0.0-</td> <td>0.0</td> <td>0.0-</td> <td rowspan="2">0.0 (0)</td> <td>0.0-</td>	Skin		0.0 (0)	0.0-	0.0	0.0-	0.0 (0)	0.0-
total 292 1.0 (3) 2.7 (2) 8.5 0.3 (1) 1.6 Environment Stable floor 104 0.0 (0) 0.0- 0.0 0.0- <	swab	54	0.0 (0)	5.4	(0)	5.4		5.4
Environment 2.7 (2) 8.5 1.6 Environment 5table 0.0 (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 2.8 0.0 0.0 </td <td>Sub-</td> <td>202</td> <td>1 0 (2)</td> <td>0.2-</td> <td>5.4</td> <td>3.2-</td> <td>0.3 (1)</td> <td>0.0-</td>	Sub-	202	1 0 (2)	0.2-	5.4	3.2-	0.3 (1)	0.0-
Stable floor 104 0.0 (0) 0.0- 2.8 (0) 0.0- 0.0 (0) 0.0- 2.8 (0) 0.0 (0) 0.0- 2.8 (0) 0.0 (0) 0.0- 2.8 (0) 0.0 (0) 0.0- 2.8 (0) 0.0 (0) 0.0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0-			1.0 (3)	2.7	(2)	8.5	0.5 (1)	1.6
Floor 104 0.0 (0) 2.8 (0) 2.8 0.0 (0) 2.8 Faucet 104 2.9 (3) 0.6- 1.9 0.2- 1.0 (1) 5.2 Feeder 104 2.8 (3) 0.2- 0.0 0.0- 0.0- 0.6- 0.6 Subtotal 312 1.9 (6) 3.9 (2) 2.1 1.2 (4) 3.0 Worker Nasal swab 138 8.6 4.7- 5.0 2.2- 3.6 (5) 7.8 Skin swab 138 3.6 (5) 1.3- 0.7 0.0- 0.0- 2.8 (4) 0.9- Swab 138 3.6 (5) 1.3- 0.7 0.0- 0.0- 2.8 (4) 0.9- Swab 3.6 (5) 7.8 (1) 3.5 Sub- 3.7- 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6- Sub- 3.7- 5.0 2.2- 3.6 (5) 6.8 Sub- 3.7- 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6- Sub- 3.7- 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6- Sub- 3.7- 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		ent						
Faucet 104 2.9 (3) 0.6- 1.9 0.2- 0.0 0.0- 0.0- 0.0- 0.0- 0.0- 0.0-		104	0.0 (0)				0.0 (0)	
Faucet 104 2.9 (3) 8.2 (2) 6.8 1.0 (1) 5.2 Feeder 104 2.8 (3) 0.2- 0.0 0.0- 2.8 (3) 8.2 Sub-total 312 1.9 (6) 3.9 (2) 2.1 1.2 (4) 0.4- total 318 8.6 4.7- 5.0 2.2- 3.6 (5) 1.3- swab 138 8.6 4.7- 5.0 2.2- 3.6 (5) 7.8 Skin 138 3.6 (5) 1.3- 0.7 0.0- 2.8 (4) 0.9- swab 276 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6-	floor		0.0 (0)				0.0 (0)	
Feeder 104 2.8 (3) 0.2- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Faucet	104	2.9 (3)				1.0(1)	
Feeder 104 2.8 (3) 6.8 (0) 2.8 2.8 (3) 8.2 Sub-total 312 1.9 (6) 0.7- 0.6 0.1- 1.2 (4) 0.4- total 312 2.9 (6) 3.9 (2) 2.1 1.2 (4) 3.0 Worker Nasal 138 8.6 4.7- 5.0 2.2- 3.6 (5) 1.3- swab 138 (12) 14.3 (7) 9.7 3.6 (5) 7.8 Skin 138 3.6 (5) 1.3- 0.7 0.0- 0.0- 2.8 (4) 0.9- swab 5ub- 2.76 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6-					. ,			
Subtotal 312 1.9 (6) 0.7- 3.9 0.6 (2) 0.1- 1.2 (4) 0.4- 3.0 Worker Nasal swab 138 8.6 (12) 4.7- 5.0 2.2- 3.6 (5) 1.3- 7.8 Skin swab 138 3.6 (5) 1.3- 0.7 0.7 0.0- 0.0- 2.8 (4) 0.9- 0.9- 0.8 Swab 3.6 (5) 7.8 (1) 3.5 (6.8 0.8 0.8) 3.6 (8.8 0.8 0.8 0.8) Sub- 3.7- 2.8 1.3- 3.2 (9) 1.6- 3.2 (9)	Feeder	104	2.8 (3)				2.8 (3)	
total 312 1.9 (6) 3.9 (2) 2.1 1.2 (4) 3.0 Worker Nasal swab 138 8.6 4.7- 5.0 2.2- 3.6 (5) 7.8 Skin swab 138 3.6 (5) 1.3- 0.7 0.0- 2.8 (4) 0.9- Swab 3.6 (5) 7.8 (1) 3.5 2.8 (4) 6.8 Sub- 2.76 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6-	Sub-							
Worker Nasal swab 138 8.6 4.7- 5.0 2.2- 3.6 (5) 7.8 Skin swab 138 3.6 (5) 1.3- 0.7 0.0- 2.8 (4) 0.9- swab 138 3.6 (5) 7.8 (1) 3.5 2.8 (4) 6.8 Sub- 276 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6-		312	312 1.9 (6)				1.2 (4)	
Nasal swab 138 8.6 4.7- 5.0 2.2- 3.6 (5) 1.3- (12) 14.3 (7) 9.7 3.6 (5) 7.8 (13) 138 3.6 (5) 1.3- 0.7 0.0- 0.0- 2.8 (4) 0.9- (5.				3.7	(~)			5.0
swab 138 (12) 14.3 (7) 9.7 3.6 (5) 7.8 Skin swab 138 3.6 (5) 1.3- 0.7 0.0- 2.8 (4) 0.9- Sub- 276 6.1 3.7- 2.8 1.3- 3.2 (9) 1.6-			8.6	4.7-	5.0	2.2-		1.3-
swab 138 3.6 (5) 7.8 (1) 3.5 2.8 (4) 6.8 Sub- 276 6.1 3.7- 2.8 1.3- 2.7 (2) 1.6-	swab	138	(12)		(7)	9.7	3.6 (5)	7.8
Sub- 276 6.1 3.7- 2.8 1.3- 2.2(9) 1.6-	Skin	120	26(5)	1.3-	0.7	0.0-	2.0 (4)	0.9-
276	swab	138	3.6 (5)	7.8	(1)	3.5	2.8 (4)	6.8
total 270 (17) 9.4 (8) 5.4 3.2 (9) 5.8	Sub-	276	6.1	3.7-	2.8	1.3-	3 3 (0)	1.6-
	total	2/0	(17)	9.4	(8)	5.4	3.2 (9)	5.8

Characteristics of LA-MRSA:

Ten representative MRSA isolates were further analysed by antimicrobial susceptibility test. Sources of MRSA isolates were from workers (n=7 isolates) and environment (n=3 isolates). Susceptibility

Figure 1: Antimicrobial susceptibility testing of MRSA isolates.

testing revealed 100% resistance to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim. No resistance was observed for choramphenical, cloxacillin and vancomycin (Figure 1). There were six different patterns of antimicrobial drug resistance in workers and environment isolates (Table 2). All isolates were resistant to at least five antimicrobials. One isolate was resistant to 11 antimicrobial drugs (worker: DA-OT-P-SXT-TE-FOX-CN-DO-CRO-AMC-KZ).

Table 2: Antibiograms of worker and the environment MRSA isolates.

Sources	Resistance profiles	#isolates (%)
Worker	DA-OT-P-SXT-TE	1 (10)
	DA-OT-P-SXT-TE-FOX	2 (20)
	DA-OT-P-SXT-TE-CN	2 (20)
	DA-OT-P-SXT-TE-FOX-CN-DO DA-OT-P-SXT-TE-FOX-CN-DO-	1 (10)
	CRO-AMC-KZ	1 (10)
Environm		
ent	DA-OT-P-SXT-TE	1 (10)
	DA-OT-P-SXT-TE-FOX	1 (10)
	DA-OT-P-SXT-TE-FOX-CRO	1 (10)

DA= clindamycin, OT= oxytetracycline, P= penicillin, SXT= sulfatrimethoprim, TE= tetracycline, FOX= cefoxitin, CN= gentamycin, DO= doxycycline, CRO= ceftriaxone, AMC= amoxicillin-clavulanic acid, KZ= cephazolin

DISCUSSION

Findings from this study may be used as the basic information regarding the burden of MRSA associated with pig industries. The prevalence of LA-MRSA among pig farms in Northern Thailand was lower than in previous studies in other countries including 1.4% in Malaysia(12), 11.4% in China(11), 22.7% in Korea(17) 26% in Canada(19), 36% in USA(6), 39% Netherland(5). and 49% Germany(20) between 2008 and 2013. However, the prevalence variation depending on many factors including geographical region, sampling methods, laboratory testing methods(21) and age of pigs tested(19). Commercial large farm size in the US and in the European countries comparing with smaller farms settings in Thailand may cause more opportunities for pathogen transfer and higher prevalence of MRSA than in this study. MRSA colonization among pigs workers in Northern Thailand was low (2.8%) comparing with other studies among pig workers in Europe (22, 23) and the USA (19). Other studies of MRSA prevalence in risk populations including slaughterhouse workers and veterinarians in Europeranged between 3% and 12.5 %(24, 25, 26). Our results revealed that pig workers in northern Thailand were at a lower risk of MRSA colonization than other countries, perhaps because of the prevalence of MRSA in pigs is lower.

MRSA was isolated from the environment in this study with the prevalence 2.88% which was lower than the results from the study in the USA (17.3%) (27). Staphylococci in the farming environment could serve as a source of MRSA type as it was generally easily detectable in both pig and the environmental samples (28). Our results showed that only one farm had MRSA positive samples from both pigs and the farm environment, and no farms had MRSA positive samples from both pigs and pig workers. MRSA is a human bacterial pathogen that has emerged as a major threat in both a hospital setting (as a nosocomial infection) and as a communityacquired infection for high-risk groups such as slaughterhouse workers (4). The use of livestock production has antibiotics in selected for multi-drug resistance. In this there various study, were resistance phenotype of MRSA isolates from farm workers and the environment with combined resistance to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim, whereas other studies of MRSA-ST9 in China showed similarity of MRSA resistance patterns workers to clindamycin, cefoxitin, tetracycline and ciprofloxacin(11). These antibiotics are commonly used in both human medicine and food animal health management. Overuse or misuse of medically important antibiotics in animals is emerging as a public health concern due to communityassociated antibiotic resistant infections (29).

To our knowledge, this is the first study to demonstrate the prevalence of LA-MRSA among pigs, farm workers and the environment in Thailand. Therefore,

continuous efforts to monitor of MRSA in these populations are required for detecting changes in epidemiology and for the implementation of effective control measures in livestock and human health. Meanwhile, conducting studies in different areas in Thailand, such as the central or eastern part of the country where the highest pig population reside, should be performed. Limitation of this study were the sampling method did not use a stratified sampling technique to study a specific production system and the study was somewhat under-powered, because observed MRSA prevalence was lower than expected MRSA prevalence used in sample size calculations.

ACKNOWLEDGEMENT

This study was supported by a grant from the Thailand Research Fund Project (ID: MRG5480258) and the Ministry of Public Health. We would like to thank the staff of the Chiang Mai and Lamphun Provincial Livestock office for their assistance for sample collections. We gratefully acknowledge the pig production companies and the farmers for their cooperation in this study. Authors thank Dr. Kenrad E. Nelson, Bloomberg School of Public Health, and Johns Hopkins University for his manuscript revision.

REFERENCES

- Vanderhaeghen, W., K. Hermans, F. Haesebrouck, and P. Butaye. 2010. Methicillin-resistant Staphylococcusaureus (MRSA) in food production animals. Epidemiol. Infect. 138: 606–625.
- Wertheim, H.F., D.C. Melles, M.C. Vos, W. van Leeuwen, A. van Belkum, H.A. Verbrugh, and J.L. Nouwen. 2005. The role of nasal carriage in *Staphylococcus aureus* infections. Lancet Infect. Dis. 5:751–762.
- Robinson, D.A., and M.C. Enright. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47:2036-2024
- Graveland, H., J.A. Wagenaar, K. Bergs, H. Heesterbeek, and D. Heederik. 2011. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 6(2): e16830. doi:10.1371/journal.pone. 0016830.
- de Neeling, A.J., M.J. van den Broek, E.C. Spalburg, M.G. van Santen-Verheuvel, W.D. Dam-Deisz, H.C. Boshuizen, A.W. van de Giessen, E. van Duijkeren, and X.W. Huijsdens. 2007. High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet. Microbiol. 122:366– 372.
- Smith, T.C., M.J. Male, A.L. Harper, J.S. Kroeger, G.P. Tinkler, E.D. Moritz, A.W. Capuano, L.A. Herwaldt, and D.J. Diekema. 2009. Methicillin-Resistant Staphylococcus aureus (MRSA)

- strain ST398 is present in midwestern U.S. swine and swine workers. PLoS ONE 4(1): e4258.doi:10. 1371/journal.pone.0004258.
- Voss, A., F. Loeffen, J. Bakker, C. Klaassen, and M. Wulf. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg. Infect. Dis. 11:1965–1966.
- Smith, T.C., and N. Pearson. 2010. The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis. 11: 327–339.
- Lewis, H.C., K. Molbak, C. Reese, F.M. Aarestrup, M. Selchau, M. Sorum, and R.L. Skov. 2008. Pigs as source of methicillinresistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg. Infect. Dis. 14:1383–1389.
- Sergio, D.M., T.H. Koh, L.Y. Hsu, B.E. Ogden, A.L. Goh, and P.K. Chow. 2007. Investigation of meticillin-resistant Staphylococcus aureus in pigsused for research. J. Med. Microbiol. 56:1107–1109.
- Cui, S., J. Li, C. Hu, S. Jin, F. Li, Y. Guo, L. Ran, and Y. Ma. 2009. Isolation and characterization of methicillinresistant *Staphylococcus aureus* from swine and workers in China. J. Antimicrob. Chemother. 64:680–683.
- Neela, V., A. MohdZafrul, N.S. Mariana, A. van Belkum, Y.K. Liew, and E.G. Rad. 2009. Prevalence of ST9 methicillinresistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J. Clin. Microbiol. 47:4138–4140.
- Anukool, U., C.E. O'Neill, B. Butr-Indr, P.M. Hawkey, W.H. Gaze, and E.M. Wellington. 2011. Meticillin-resistant Staphylococcus aureus in pigs from Thailand. Int. J. Antimicrob. Agents. 38: 86–87.
- Larsen, J., M. Imanishi, S. Hinjoy, P. Tharavichitkul, K. Duangsong, M.F. Davis, K.E. Nelson, A.R. Larsen, and R.L. Skov. 2012. Methicillin-Resistant *Staphylococcus aureus* ST9 in Pigs in Thailand. PLoSONE 7(2): e31245. doi:10.1371/journal.pone.0031245.
- Vestergaard, M., L.M. Cavaco, P. Sirichote, A. Unahalekhaka, W. Dangsakul, C.A. Svendsen, F.M. Aarestrup, and R.S. Hendriksen. 2012. SCCmec type IX element in methicillin resistant Staphylococcus aureus spa type t337 (CC9) isolated from pigs and pork in Thailand.[Online] http://www.efsa.europa.eu/en/efsajournal/doc/1376.pdf.
- Department of Livestock development (DLD). 2011.
 Summary of pig population in Thailand by province in 2011.
 [Online]http://www.dld.go.th/datacenter/index.php/2011-10-16-12-07-59.
- 17. Lim, S.K., H.M. Nam, H.S. Lee, S.C. Jung, and H.S. Kwak. 2012. The first detection of methicillin-resistant *Staphylococcus aureus* ST398 in pigs in Korea. Vet. Microbiol. 155:88–92.
- Clinical and Laboratory Standards Institute (CLSI). 2010.
 Performance standards for antimicrobial disk susceptibility test: Approved standards. 7th ed. M2-M7. Wayne. PA.
- Khanna, T., R. Friendship, C. Dewey, and J.S. Weese. 2008. Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet. Microbiol. 128:298–303.
- Tenhagen, B.A., A. Fetsch, B. Stuhrenberg, G. Schleuter, B. Guerra, J.A. Hammerl, S. Hertwig, J. Kowall, U. Kampe, A. Schroeter, J. Braunig, A. Ka"sbohrer, and B. Appel. 2009. Prevalence of MRSA types in slaughter pigs in different German abattoirs. Vet. Rec. 165:589–593.
- Broens, E.M., E.A.M. Graat, P.J. van der Wolfc, A.W. van de Giessenb, and M.C.M. de Jong. 2011. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prevent. Vet. Med. 102:41–49.
- Morcillo, A., B. Castro, C. Rodrı´guez-A´lvarez, J.C. Gonza´lez, A. Sierra, M.I. Montesinos, R. Abreu, and A. Arias. 2012. Prevalence and characteristics of Methicillin-Resistant Staphylococcus aureus in pigs and pig workers in Tenerife, Spain. Foodborne Pathogen and Disease 9(3). [Online] DOI: 10.1089/fpd.2011.0982.
- Denis, O., C. Suetens, M. Hallin, B. Catry, I. Ramboer, M. Dispas, G. Willems, B. Gordts, P. Butaye, and M.J. Struelens.
 Methicillin-resistant Staphylococcus aureus ST398 in

- swine farm personnel, Belgium. Emerg. Infect. Dis. [Online] http://wwwnc.cdc.gov/eid/article/15/7/08-0652.htm.
- Wulf, M.W., M. Sorum, A. van Nes, R. Skov, W.J. Melchers, C.H. Klaassen, and A. Voss. 2008. Prevalence of methicillinresistant *Staphylococcus aureus* among veterinarians: an international study. Clin. Microbiol. Infect. 14: 29–34.
- vanCleef, B.A., E.J.M. Verkade, M.W. Wulf, A.G. Buiting, A. Voss, X.W. Huijsdens, W. van Pelt, M.N. Mulders, and J.A. Kluytmans. 2010. Prevalence of Livestock-Associated MRSA in Communities with High Pig-Densities in The Netherlands. PLoS ONE 5(2): e9385. [Online] doi:10.1371/journal .pone. 0009385
- Huber, H., S. Koller, N. Giezendanner, R. Stephan, and C. Zweifel. 2009. Prevalence and characteristics of meticillin-resistant Staphylococcus aureus in humans in contact with farm animals, in livestock, and in food of animal origin, Switzerland, 2009. Euro. Surveill. 2010; 15: 1 4.
- Frana, T.S., A.R. Beaham, B.M. Hanson, J.M. Kinyon, L.L. Layman, L.A. Karriker, A. Ramirez, and T.C. Smith. 2013. Isolation and characterization of methicillin-resistant Staphylococcus aureus from pork farms and visiting veterinary students. PLoSONE 8(1): e53738. [Online] doi:10.1371/journal.pone.0053738.
- Hanssen, A.M., and J.U. Ericson. 2006. SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46: 8–20.
- Silbergeld, E.K., M. Davis, J.H. Leibler, and A.E. Peterson. 2008. One reservoir: redefining the community origins of antimicrobial-resistant infections. The Medical clinics of North America, 92(6):1391–407– xi. [Online] doi:10.1016/ j.mcna.2008.07.003.

Original article

Prevalence and Characterization of Livestock Associated Methicillin-Resistant *Staphylococcus* aureus in Pig Farms, Workers and the Farm Environment in Pig Industries of Northern Thailand

5 Running head: Livestock Associated Methicillin-Resistant *Staphylococcus aureus* in pigs, workers and the environment in Northern Thailand

Prapas Patchanee^{1*}, Orapun Arjkumpa^{1,2,3}, David Love⁴, Karoon Chanachai⁵, Thomas Alter⁶, Soawapak Hinjoy⁷, Prasit Tharavichitkul⁸

¹Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University,

Chiang Mai, Thailand

10

²Field Epidemiology Training Program (FETP), Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Thailand

³Veterinary Research and Development Center (Southern Region), Department of Livestock Development, Ministry of agriculture and cooperation, Thailand

⁴Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

⁵Bureau of Disease Control and Veterinary Services, Department of Livestock Development,

20 Ministry of agriculture and cooperation, Bangkok, Thailand

⁶Department of Veterinary Medicine, Panel "Veterinary Public Health", Institute of Food Hygiene, Free University Berlin, Berlin, Germany

⁷Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand

25 ⁸ Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand *Address correspondence to:

Prapas Patchanee D.V.M., Ph.D.

Department of Food Animal Clinic

30 Faculty of Veterinary Medicine

Chiang Mai University,

Mae Hia, Muang, Chiang Mai, 50100, Thailand,

Phone: +66 53 948002, Fax: +66 53 948065

Email: patprapas@gmail.com

35

40

ABSTRACT

55

60

65

70

75

Livestock Associated- Methicillin-Resistant Staphylococcus aureus(LA-MRSA) has been emerging among pigs and pig handlers worldwide. This study aimed to determine the prevalence of LA-MRSA in pigs, workers and the environment in Northern Thailand and to investigate phenotypic characteristics of LA-MRSA isolates. One hundred and four pig farms were randomly selected from the total of 21,152 pig farms in Chiang Mai and Lamphun provinces in 2012. Nasal and skin swab samples were collected from five pigs and two workers in each farm. As well, five environmental samples (pig stable floor, faucet and feeder) were collected using cotton swabs. MRSA was identified and confirmed by multiplex PCR from pooled samples of pigs, pig worker and farm environment. Phenotypic characterization of MRSA isolates were performed by SCCmec typing, MLST and Kirby-Bauer disk diffusion susceptibility test. The total of 104 pig farms and 138 workers were collected. The herd prevalence of MRSA was 8.65% (9 of 104 farms). The prevalence of MRSA in pigs, workers and the farm environment was 0.96%, 4.34% and 2.88%, respectively. Thirteen MRSA isolates were identified from eight workers, four isolates from environmental samples and one isolate from pigs. Six of thirteen MRSA isolates were typed, and they were identified as SCCmecIV-ST9. Ten of thirteen MRSA isolates were tested for antimicrobial resistance; these isolates were 100% resistant to clindamycin, cefoxitin, tetracycline and penicillin and 100% of all isolates showed multidrug resistant phenotype. This survey provided the first evidence of interrelationships for LA-MRSA among pigs, workers and the farm environment in Thailand. There was a low prevalence of MRSA in pigs, workers and the environment compared to other countries. Isolates were typed as MRSA-ST9-SCCmec IV from workers and the environment and multi-drug resistant of MRSA isolates was observed. Further monitoring studies of MRSA in pig associated environment are required to detect changes in epidemiology and to implement effective control measures.

KEYWORDS: MRSA, prevalence, characterization, pigs, workers, environment

INTRODUCTION

80

85

90

95

Staphylococcus aureus is an opportunistic bacterium that is considered as microflora of human and various animals (Vanderhaeghen et al., 2010). It frequently colonizes in the anterior nares (Wertheim et al., 2005), which may cause infections when the host immune system becomes compromised. This organism developed resistance to the antibiotic methicillin (i.e., methicillin resistant Staphylococcus aureus; MRSA) through the mecA gene that is part of a large mobile genetic element (Vanderhaeghen et al., 2010), as first reported in 2003 (Robinson and Enright, 2003). MRSA has become a pathogen of increasing importance in hospitals, the community and livestock operations (Graveland et al., 2011). To date, livestock associated MRSA (LA-MRSA) had been distributed worldwide, particularly among people who are involved with livestock farming (Smith et al., 2009, Voss et al., 2005). These bacteria can be transmitted to humans in close contact with MRSA colonized animals (Smith and Pearson, 2010) meanwhile livestock, especially pigs; can serve as a reservoir for LA-MRSA (Lewis et al., 2008). The prevalence of LA-MRSA among pigs, workers and the environment varies by geographic areas. The majority of strains of LA-MRSA belong to the sequence type (ST) 398 in Europe and America, while ST9 is found in Asia (de Neeling et al., 2007, Sergio et al., 2007, Cui et al., 2009, Neela et al., 2009). In Thailand, MRSA has been isolated from healthy pigs (Anukool et al., 2011, Larsen et al., 2012) and pork (Vestergaard et al., 2012). However, investigation of LA-MRSA prevalence and importance in livestock, especially from pigs in Thailand is unknown. The aims of this study were to determine the prevalence of MRSA in pig farms and farm workers in Northern Thailand as well as to investigate genotypic and phenotypic characteristics of MRSA for potential relationship between humans, animal and the farm environment.

MATERIALS AND METHODS

110

115

120

125

130

STUDY DESIGN AND STUDY POPULATION

A cross-sectional study was conducted among pigs, workers and the environment in pig farms of Chiang Mai and Lamphun provinces of Northern Thailand in 2012. Farm operations are varied from large industrial facilities to small holding settings. Target populations of pig farms located in both provinces were 21,152 farms, based on a 2012 pig farm registry list from the Department of Livestock Development, Ministry of Agriculture, Thailand (DLD, 2011). Sample size was calculated from pig farms with an expected prevalence of 20% (Lim *et al.*, 2012), accepted error of 10% and a 95% confidence level using Win Episcope 2.0. One hundred and five pig farms were determined, then proportional sampling was conducted with a 7:1 ratio of Chiang Mai farm (n=18,508) to Lamphun farms (n=2,644). This resulted in 62 farms and 53 farms sampled in Chiang Mai and Lamphun provinces, respectively, for a total of 105 farms.

SAMPLE AND DATA COLLECTION

Demographic data of farm and information on farm management including farm type, number of pigs, herd size, period of operation, antibiotics used and personnel protective equipment used in workers were collected as well as swab samples from pigs, workers and the environment;

Pig: At each farm, groups of weaning pigs, fattening pigs and sows were sampled, if presented. From each group, nasal and skin swabs were collected from 5 randomly selected pigs by a veterinarian. The nasal and skin samples were collected from both sides of external nares and auxillary regions. Samples were collected using sterile cotton swabs. Swab samples from each group of 5 pigs were pooled and stored in Stuart transport medium and kept cool in an ice box (Figure 1).

Worker: Farm workers were invited to participate in the study if they work on farm at least one year. A maximum of two workers were recruited each farm. All eligible participants were

asked to sign a written informed consent document. Samples from both sides of participants' external nares and the axillary regions were collected using sterile cotton swabs.

Environment: Environmental samples were collected from pig stables. Five sites including stable floor, faucet and feeder were collected by using cotton swabs.

Swab samples were stored separately in transport media. All swab samples were transported to the central laboratory, Chiang Mai University, Faculty of Veterinary Medicine within 24 hours for further investigation.

LABORATORY ANALYSIS

135

140

145

150

155

MRSA ISOLATION AND IDENTIFICATION

All swab samples were incubated for 48 hours at 37°C in pre-enrichment media containing tryptic soy broth with 10 ml of 10% NaCl. Then, samples were inoculated onto mannitol salt agar with 6 mg/l of oxacillin and incubated at 37°C overnight. Three suspected single colonies of S. aureus from each sample were selected and identified by Gram's staining with gram positive cocci and biochemical test as catalase test positive. Colonies were then re-streaked on tryptic soy agar plates overnight for colonies duplication. A coagulase test was carried out and the positive samples were further screened for methicillin resistance by disc diffusion of oxacillin 1 µg. MRSA isolates were further investigated by multiplex PCR screening for detecting of the presence of mecA gene. All MRSA isolates were kept in brain-heart infusion broth with 15% glycerol and sent for molecular testing (Figure 2).

MOLECULAR ANALYSIS

Staphylococcal cassette chromosome *mec* (**SCC***mec*) **typing:** The type of SCC*mec* gene complex of the strain was determined by a previously describe multiplex PCR method (Zhang *et al.*, 2005).

Multilocus sequence typing (MLST): MLST analysis was carried out according to the method describe previously by Enright *et al.* (2000). Primers were used for the amplification and sequence analyses of the seven housekeeping genes: arc, aro, glp, gmk, pta, tpi, and yqi. PCR products were

purified and sequenced at the Department of Veterinary Medicine, Chiang Mai University. The allelic profiles and sequence types of MRSA were assigned using the *S. aureus* MLST database (http://www.mlst.net).

160 ANTIMICROBIAL SUSCEPTIBILITY TEST (AST)

AST was performed using Kirby-Bauer disk diffusion method according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI, 2010). The following disks were used including amoxicillin-clavulanic acid, cefoxitin, ceftriaxone, cephazolin, chloramphenicol, clindamycin, penicillin, cloxacillin, doxycycline, gentamycin, oxytetracycline, sulfa-trimethoprim, tetracycline and vancomycin.

DATA ANALYSIS

Data management and all analyses were performed using Epi Info v, 2000 (Centers for Disease Control, Atlanta, GA). The farm was the unit of analysis. Descriptive statistics were analyzed including proportion, mean, median, prevalence ratio and 95% confidence interval. A farm was considered to be MRSA positive if MRSA was found in at least one swab sample (pigs, workers or the environment) in that farm.

165

RESULTS

185

190

195

200

205

In total, 104 farms (n=39 Chiang Mai province; n=65 Lamphun province) and 138 workers participated in this study. One farm was excluded because the business closed. Of the 208 workers on study farms, 138 workers were recruited for the study because they fit the definition of a worker with more than one year of experience on the farm.

PREVALENCE OF LAMRSA

Pig farm characteristics in this study are presented in Table 1. In total, 880 swabs were collected from pigs, workers and the environment. Isolation and identification of *S. aureus*, MSSA and MRSA are shown in Table 2. The overall MRSA prevalence at all farms was 0.96% in pigs (1 of 104 farms), 4.34% in workers (6 of 138 workers) and 2.88% in the environment (3 of 104 farms). Herd prevalence of LA-MRSA was 8.65% (9 of 104 farms). LA-MRSA isolates were found in 8 workers, 4 environmental samples and one pig. There was one farm in Chiang Mai where LA-MRSA was isolated from both a pig and the environment. MRSA was identified in 8 of 39 farms (20.5%) in Chiang Mai province and one farm (1.5%) in Lamphun province (Figure 3).

CHARACTERISTICS OF LAMRSA

Of the 13 MRSA isolates, molecular typing was performed on 6 isolates due to budget constraints, and these isolates (n=1 pig isolate; n=3 worker isolates; n=2 environment isolates;) belonged to ST9 (alleic profile: 3-4-1-1-1-10) and carried SCC*mec* IV in this study (Figure 4). A phylogenetic tree of MRSA ST9 isolates among pigs, workers and the environment is presented in Figure 5.

Eleven representing MRSA isolates were done for antimicrobial susceptibility. Sources of MRSA isolates were from pig (n=1 isolate), workers (n=7 isolates) and the environment (n=3 isolates). Susceptibility testing revealed 100% resistance to clindamycin, cefoxitin, tetracycline and penicillin. No resistance was observed for cloxacillin and vancomycin (Figure 6). There were seven different patterns of antimicrobial drug resistance in pig, workers and the environment isolates (Table 3). All isolates were resistant to at least five antimicrobials (Figure 7). One isolate

was resistant to 11 antimicrobial drugs (worker: DA-OT-P-SXT-TE-FOX-CN-DO-CRO-AMC-210 KZ).

When comparing antimicrobial drug used between the MRSA positive farms and the MRSA negative farms, gentamycin, penicillin-streptomycin, amoxicillin and tiamulin were more likely to be used in the MRSA positive farms (Figure 8).

215

220

225

235 **DISCUSSION**

240

245

250

255

260

Findings from this study may be used as the basic information regarding the burden of MRSA associated with pig industries. The prevalence of LA-MRSA among pig farms in Northern Thailand was lower than in previous studies in other countries including 1.4% in Malaysia (Neela et al., 2009), 11.4% in China(Cui et al., 2009), 22.7% in Korea(Lim et. al., 2012) 26% in Canada(Khanna et al., 2008), 36% in USA(Smith et al., 2009), 39% in The Netherland(de Neeling et al., 2007), and 49% in Germany (Tenhagen et al., 2009) between 2008 and 2013. However, the prevalence variation is depending on many factors including geographical region, sampling methods, laboratory testing methods(Broens, 2011) and age of pigs tested(Khanna et al., 2008). Commercial large farm size in the US and in the European countries comparing with smaller farms settings in Thailand may cause more opportunities for pathogen transfer and higher prevalence of MRSA than in this study. MRSA colonization among pig workers in Northern Thailand was low (2.8%) comparing with other studies among pig workers in Europe (Morcillo et al., 2012, Denis et al., 2009) and the USA(Khanna et al., 2008). Other studies of MRSA prevalence in risk populations including slaughterhouse workers and veterinarians in Europe ranged between 3% and 12.5 % (Wulf et al., 2008, van Cleef et al., 2010, Huber et al., 2010). Our results revealed that pig workers in northern Thailand were at a lower risk of MRSA colonization than other countries. perhaps because of the prevalence of MRSA in pigs is lower.

MRSA was isolated from the environment in this study with the prevalence 2.88% which was lower than the results from the study in the USA (17.3%) (Frana et al., 2013). Staphylococci in the farming environment could serve as a source of MRSA type as it was generally easily detectable in both pig and the environmental samples (Hanssen and Ericson, 2006). Our results showed that only one farm had MRSA positive samples from both pigs and the farm environment, and no farms had MRSA positive samples from both pigs and pig workers.

Our study revealed that all LAMRSA isolates were ST9, which belonged to SCCmec IV. The ST9 represents the most common sequence types in Asia (Cui et al., 2009, Neela et al., 2008)

and was a dominant clone among pig and pig-related workers (Armad et al., 2005). Recent reports indicate MRSA ST9 colonization in pigs and pork in Northern and Central part of Thailand with different SCCmec types(Anukool et al., 2011), Larsen et al., 2012 and Vestergaard et al., 2012). From our samples as shown in Figure 4, this sequence type was similar among workers and environment, which suggests a circulation of MRSA ST9 among workers and the environment. Interestingly, our study did not detect any MRSA ST398 isolates. This lack of MRSA ST398 may be due to the minimal exchange of sows between Europe, USA and Asia.

MRSA is a human bacterial pathogen that has emerged as a major threat in both a hospital setting (as a nosocomial infection) and as a community-acquired infection for high-risk groups such as slaughterhouse workers (Graveland et al., 2011). The use of antibiotics in livestock production has selected for multi-drug resistance. In this study, there were various resistance phenotype of MRSA isolates from farm workers and the environment with combined resistance to clindamycin, cefoxitin, tetracycline, penicillin and sulfa-trimethoprim, whereas other studies of MRSA-ST9 in China showed similarity of MRSA resistance patterns in workers to clindamycin, cefoxitin, tetracycline and ciprofloxacin(Cui et al., 2009). These antibiotics are commonly used in both human medicine and food animal health management. Overuse or misuse of medically important antibiotics in animals is emerging as a public health concern due to community-associated antibiotic resistant infections (Silbergeld et al., 2008).

To our knowledge, this is the first study to demonstrate the prevalence of LA-MRSA among pigs, farm workers and the environment in Thailand. Therefore, continuous efforts to monitor of MRSA in these populations are required for detecting changes in epidemiology and for the implementation of effective control measures in livestock and human health. Meanwhile, conducting studies in different areas in Thailand, such as the central or eastern part of the country where the highest pig population reside, should be performed. Limitation of this study were the sampling method did not use a stratified sampling technique to study a specific production system and the study was somewhat under-powered, because observed MRSA prevalence was lower than

expected MRSA prevalence used in sample size calculations. Moreover, of 104, only one farm had MRSA positive samples from pigs. Techniques for isolation and detection of MRSA should be considered. Other works had demonstrated that the prevalence of MRSA in pigs in Thailand might be quite high according to the low number of samples had been tested.

In conclusion, this study provides the first evidence of MRSA prevalence among pigs, workers and environment in Thailand, although the prevalence was low in pig farms in Northern Thailand as compared to other countries. Characterized isolates from workers and environment were MRSA-ST9-SCCmec IV. In addition, multi-drug resistant MRSA isolates were observed. Continued efforts are required to monitor MRSA in at-risk populations including livestock and slaughterhouse workers to detect changes in epidemiology and to implement effective control measures.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Thailand Research Fund Project (ID: MRG5480258) and the Ministry of Public Health. We would like to thank the staff of the Chiang Mai Provincial and District Livestock office, the Lampoon Provincial and District Livestock office and the Faculty of Veterinary Medicine, Chiang Mai University for their assistance in sampling and laboratory testing. We thank colleagues from Bureau of Epidemiology, Ministry of Public Health for their help sampling. We gratefully acknowledge the pig production companies and the farmers for their cooperation in this study. Authors thank to Dr. Kenard E. Nelson, Bloomberg School of Public Health, Johns Hopkins University for his manuscript revision.

290

295

300

REFERENCES

330

Anukool U, O'Neill CE, Butr-Indr B, Hawkey PM, Gaze WH, Wellington EM. Meticillinresistant *Staphylococcus aureus* in pigs from Thailand. Int J Antimicrob Agents 2011; 38: 86–87.

Armand-Lefevre L, Ruimy R, Andremont A. Clonal comparison of *Staphylococcus aureus* isolates from healthy pig farmers, human controls and pigs. Emerg Infect Dis 2005; 11: 711–714.

Broens EM, Graat EAM, van der Wolfc PJ, van de Giessenb AW, de Jong MCM. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Preventive Veterinary Medicine 2011; 102: 41–49.

Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial disk susceptibility test: Approved standards, 7th ed. M2-M7. Wayne, PA. 2010.

Cui S, Li J, Hu C, Jin S, Li F, Guo Y, Ran L,Ma Y. Isolation and characteri-zation of methicillin-resistant *Staphylococcus aureus* from swine and workers in China. J Antimicrob Chemother 2009; 64: 680–683.

de Neeling AJ, van den Broek MJ, Spalburg EC, van Santen-Verheuvel MG, Dam-Deisz WD, Boshuizen HC, van de Giessen AW, van Duijkeren E, Huijsdens XW. High prevalence of methicillin resistant *Staphylococcus aureus* in pigs. Vet Microbiol 2007; 122: 366–372.

Denis O, Suetens C, Hallin M, Catry B, Ramboer I, Dispas M, Willems G, Gordts B, Butaye P, Struelens MJ. Methicillin-resistant *Staphylococcus aureus* ST398 in swine farm personnel, Belgium. Emerg Infect Dis 2009. Available from http://wwwnc.cdc.gov/eid/article/15/7/08-0652.htm.

Department of Livestock development (DLD). Summary of pig population in Thailand by province in 2011. 2011. Available from http://www.dld.go.th/datacenter/index.php/2011-10-16-12-07-59.

Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol 2000; 38: 1008-1015.

345

350

360

Frana TS, Beaham AR, Hanson BM, Kinyon JM, Layman LL, Karriker LA, Ramirez A, Smith TC. Isolation and characterization of methicillin-resistant *Staphylococcus aureus* from pork farms and visiting veterinary students. PLoSONE 2013; 8(1): e53738. doi:10.1371/journal.pone.0053738.

Graveland H, Wagenaar JA, Bergs K, Heesterbeek H, Heederik D. Persistence of Livestock Associated MRSA CC398 in Humans Is Dependent on Intensity of Animal Contact. PLoSONE 2011; 6(2): e16830. doi:10.1371/journal.pone.0016830.

Hanssen AM, Ericson JU. SCC*mec* in staphylococci: genes on the move. FEMS Immunol Med Microbiol 2006; 46: 8–20.

Huber H, Koller S, Giezendanner N, Stephan R, Zweifel C. Prevalence and characteristics of meticillin-resistant *Staphylococcus aureus* in humans in contact with farm animals, in livestock, and in food of animal origin, Switzerland, 2009. Euro Surveill 2010; 15: 1 − 4.

Khanna T, Friendship R, Dewey C, Weese JS. Methicillin resistant *Staphylococcus aureus* colonization in pigs and pig farmers. Vet Microbiol 2008; 128: 298–303.

Larsen J, Imanishi M, Hinjoy S, Tharavichitkul P, Duangsong K, Davis MF, Nelson KE, Larsen AR, Skov RL. Methicillin-Resistant *Staphylococcus aureus* ST9 in Pigs in Thailand. PLoSONE 2012; 7(2): e31245. doi:10.1371/journal.pone.0031245.

Lewis HC, Mølbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, Skov RL. Pigs as source of methicillin-resistant *Staphylococcus aureus* CC398 infections in humans, Denmark. Emerg Infect Dis 2008; 14:1383–1389.

Lim SK, Nam HM, Lee HS, Jung SC, Kwak HS. The first detection of methicillin-resistant *Staphylococcus aureus* ST398 in pigs in Korea. Veterinary Microbiology 2012; 155: 88–92.

375

380

390

Morcillo A, Castro B, Rodri'guez-A'Ivarez C, Gonza' lez JC, Sierra A, Montesinos MI, Abreu R, Arias A. Prevalence and Characteristics of Methicillin-Resistant *Staphylococcus aureus* in Pigs and Pig Workers in Tenerife, Spain. Food borne Pathogen and Disease 2012; 9(3). DOI: 10.1089/fpd.2011.0982.

Neela V, Mohd Zafrul A, Mariana NS, van Belkum A, Liew YK, Rad EG. Prevalence of ST9 methicillin-resistant *Staphylococcus aureus* among pigs and pig handlers in Malaysia. J Clin Microbiol 2009; 47:4138–40.

Robinson DA, Enright MC. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47: 3926–3934.

Sergio DM, Koh TH, Hsu LY, Ogden BE, Goh AL, Chow PK. Investigation of meticillin-resistant *Staphylococcus aureus* in pigs used for research. J Med Microbiol 2007; 56: 1107–1109.

Silbergeld EK, Davis M, Leibler JH, Peterson AE. One reservoir: redefining the community origins of antimicrobial-resistant infections. The Medical clinics of North America 2008; 92(6), 1391–407– xi. doi:10.1016/j.mcna.2008.07.003.

395

Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt LA, Diekema DJ. Methicillin-Resistant *Staphylococcus aureus* (MRSA) Strain ST398 Is Present in Midwestern U.S. Swine and Swine Workers. PLoSONE 2009; 4(1): e4258. doi:10.1371/journal.pone.0004258.

400

405

Smith TC, Pearson N. The emergence of *Staphylococcus aureus* ST398. Vector Borne Zoonotic Dis 2010; 11: 327–339.

Tenhagen BA, Fetsch A, Stu"hrenberg B, Schleuter G, Guerra B, Hammerl JA, Hertwig S, Kowall J, Ka"mpe U, Schroeter A, Bra"unig J, Ka"sbohrer A, Appel B. Prevalence of MRSA types in slaughter pigs in different German abattoirs. Vet Rec 2009; 165: 589–593.

van Cleef, B.A., E.J.M. Verkade, M.W. Wulf, A.G. Buiting, A. Voss, X.W. Huijsdens, W. van Pelt, M.N. Mulders, and J.A. Kluytmans. 2010. Prevalence of Livestock-Associated MRSA in Communities with High Pig-Densities in The Netherlands. PLoS ONE 5(2): e9385. [Online] doi:10.1371/journal.pone. 0009385.

Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Methicillin-resistant *Staphylococcus aureus* (MRSA) in food production animals. Epidemiol Infect 2010; 138: 606–625.

Vestergaard M, Cavaco LM, Sirichote P, Unahalekhaka A, Dangsakul W, Svendsen CA, Aarestrup FM, Hendriksen RS. SCC*mec* type IX element in methicillin resistant *Staphylococcus aureus* spa type t337 (CC9) isolated from pigs and pork in Thailand. 2012; http://www.efsa.europa.eu/en/efsajournal/doc/1376.pdf.

420

Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. Methicillin-resistant *Staphylococcus* aureus in pig farming. Emerg. Infect. Dis 2005; 11: 1965–1966.

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA,

Nouwen JL. The role of nasal carriage in *Staphylococcus aureus* infections. Lancet Infect

Dis 2005; 5: 751–762.

Wulf MW, Sørum M, van Nes A, Skov R, Melchers WJ, Klaassen CH, Voss A.

Prevalence of methicillin-resistant *Staphylococcus aureus* among veteri-narians: an

international study. Clin Microbiol Infect 2008; 14: 29–34.

Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosomemectypes I to V in methicillin-resistant *Staphylococcus aureus*. J Clin Microbiol 2005; 43: 5026–5033.

Table 1. Characteristics of pig farms (n=104) in the study.

Characteristics	% Frequency	Mean (Range)	
	(n farms)		
Farm type			
Open	56.7 (59)	NA	
Close	43.3 (45)	NA	
Pig type			
Weaning	27.8 (29)	72.7 (12-400)	
Fattening	58.6 (61)	341.0 (9-999)	
Sow	50.9 (53)	89.6 (3-380)	
Pig herd size			
< 250	50.0 (52)	NA	
250-600	25.0 (26)	NA	
> 600	14.4 (15)	NA	
unknown	10.6 (11)	NA	
Years in operation	NA	10.9 (1-33)a	
Injectable antibiotics use in pigs	100 (104)	NA	
Personal protective equipment use	100 (104)	NA	
in workers			

^a n=102 farms responded to this question

Table 2. Prevalence of S. aureus, MSSA and MRSA among pigs, workers and environment.

		PREVALENCE					
	N=880	% S. aureus	95% CI	%MSSA	95% CI	%MRSA	95% CI
	11-000	(n)	<i>75 7</i> 6 C1	(n)	<i>357</i> 0 C1	(n)	<i>70 70 CI</i>
Nursery pig							
Nasal swab	24	0.0(0)	0.0-11.7	0.0(0)	0.0-11.7	0.0(0)	0.0-11.7
Skin swab	23	0.0(0)	0.0-12.2	0.0(0)	0.0-12.2	0.0(0)	0.0-12.2
Fattening pig							
Nasal swab	65	1.5 (1)	0.0-7.3	0.0(0)	0.0-4.5	1.5 (1)	0.0-7.3
Skin swab	69	1.9 (2)	0.2-6.8	1.9 (2)	0.2-6.8	0.0(0)	0.0-4.2
Sow							
Nasal swab	57	0.0(0)	0.0-5.1	0.0(0)	0.0-5.1	0.0(0)	0.0-5.1
Skin swab	54	0.0(0)	0.0-5.4	0.0(0)	0.0-5.4	0.0(0)	0.0-5.4
Sub-total	292	1.0 (3)	0.2-2.7	5.4 (2)	3.2-8.5	0.3 (1)	0.0-1.6
Environment							
Stable floor	104	0.0(0)	0.0-2.8	0.0(0)	0.0-2.8	0.0(0)	0.0-2.8
Faucet	104	2.9 (3)	0.6-8.2	1.9 (2)	0.2-6.8	1.0(1)	0.0-5.2
Feeder	104	2.8 (3)	0.2-6.8	0.0(0)	0.0-2.8	2.8 (3)	0.6-8.2
Sub-total	312	1.9 (6)	0.7-3.9	0.6 (2)	0.1-2.1	1.2 (4)	0.4-3.0
Worker							
Nasal swab	138	8.6 (12)	4.7-14.3	5.0 (7)	2.2-9.7	3.6 (5)	1.3-7.8
Skin swab	138	3.6 (5)	1.3-7.8	0.7(1)	0.0-3.5	2.8 (4)	0.9-6.8
Sub-total	276	6.1 (17)	3.7-9.4	2.8 (8)	1.3-5.4	3.2 (9)	1.6-5.8

Table 3. Antimicrobial resistance patterns of MRSA isolates from workers and the environment at pig farms.

Origin	Resistance profile	Number of isolates (%)
Pig	DA-OT-P-TE-FOX-CN-C-AMC	1 (9)
Workers	DA-OT-P-SXT-TE	1 (9)
	DA-OT-P-SXT-TE-FOX	2 (18)
	DA-OT-P-SXT-TE-CN	2 (18)
	DA-OT-P-SXT-TE-FOX-CN-DO	1 (9)
	DA-OT-P-SXT-TE-FOX-CN-DO-CRO-	1 (0)
	AMC-KZ	1 (9)
Environment	DA-OT-P-SXT-TE	1 (9)
	DA-OT-P-SXT-TE-FOX	1 (9)
	DA-OT-P-SXT-TE-FOX-CRO	1 (9)

DA= clindamycin, OT= oxytetracycline, P= penicillin, SXT= sulfa-trimethoprim, TE= tetracycline, FOX= cefoxitin, CN= gentamycin, DO= doxycycline, CRO= ceftriaxone, AMC= amoxicillin-clavulanic acid, C=chloramphenicol, KZ= cephazolin

475 FIGURES

- Figure 1. Schematic overview of sample collection methodology.
- Figure 2. Overview of MRSA isolation and identification methods.
- Figure 3. Map of MRSA isolates (n=13) by subdistrict in Chiang Mai and Lampoon provinces.
- Figure 4. SCC*mec* Multiple PCR of pig, worker and the environment.
- Figure 5. Phenotypic tree of MRSA among pig, workers and the environment in pig farms of Northern Thailand.
 - Figure 6. Characteristics of antimicrobial susceptibility testing of MRSA isolates (n=1 isolate from pig, n=7 isolates from workers and n=3 isolates from environment) in pig farms.
 - Figure 7. Proportion of multi drug resistant of MRSA isolates in pig farm (n=10 isolates).
- Figure 8. Frequency of injectable antimicrobial drug use in MRSA positive (n=9) and negative pig farms (n=95).

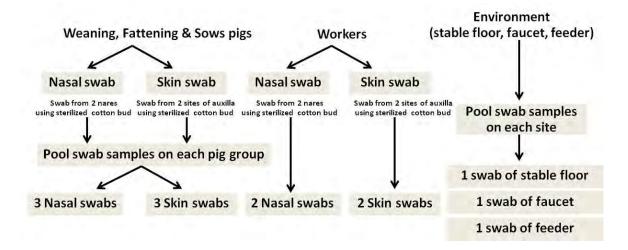


Figure 1. Schematic overview of sample collection methodology.

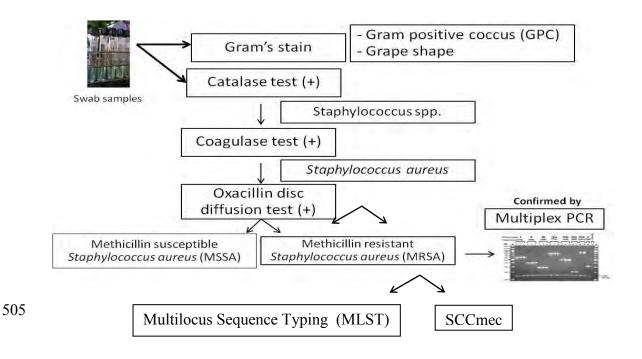
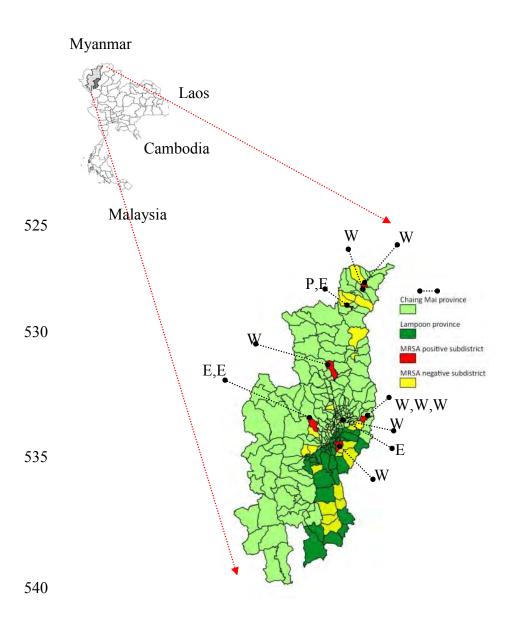



Figure 2. Overview of MRSA isolation and identification methods.

P: Pig, Worker: Worker, E: Environment, •···• : One farm

Figure 3. Map of MRSA isolates (n=13) by subdistrict in Chiang Mai and Lampoon provinces.

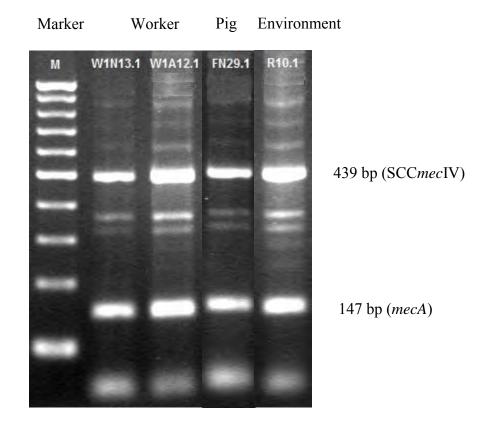
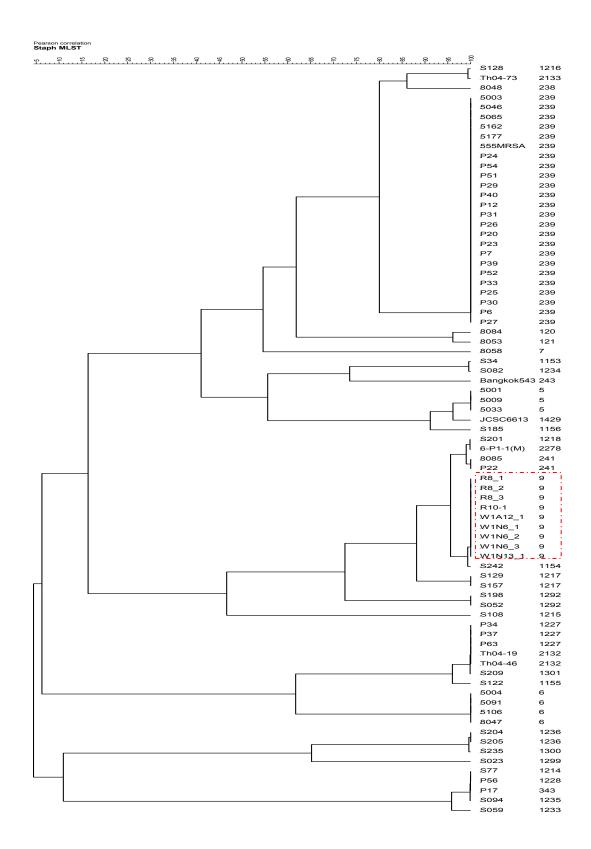



Figure 4. SCC*mec* Multiple PCR of pig, worker and the environment.

575 Figure 5. Phylogenetic tree of MRSA ST9 among pig, workers and the environment in pig farms of Northern Thailand.

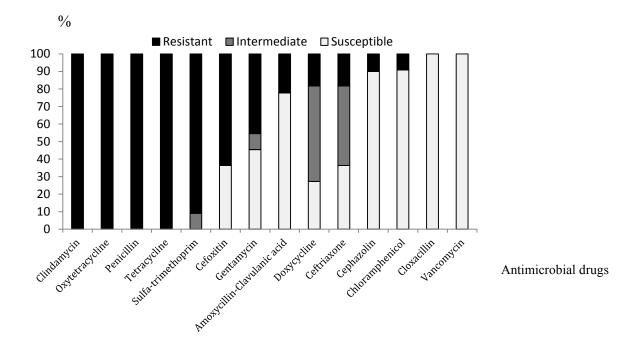


Figure 6. Characteristics of antimicrobial susceptibility testing of MRSA isolates (n=1 isolate from pig, n=7 isolates from workers and n=3 isolates from environment) in pig farms.

No. of drug resistance

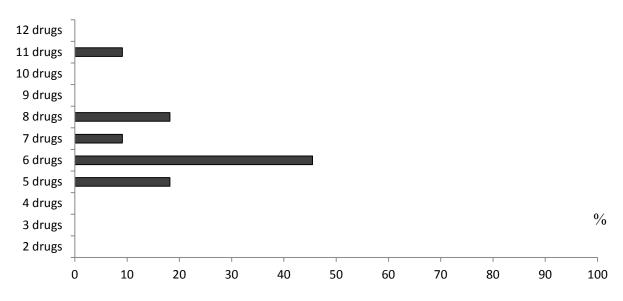


Figure 7. Proportion of multi drug resistant of MRSA isolates in pig farm (n=11 isolates).

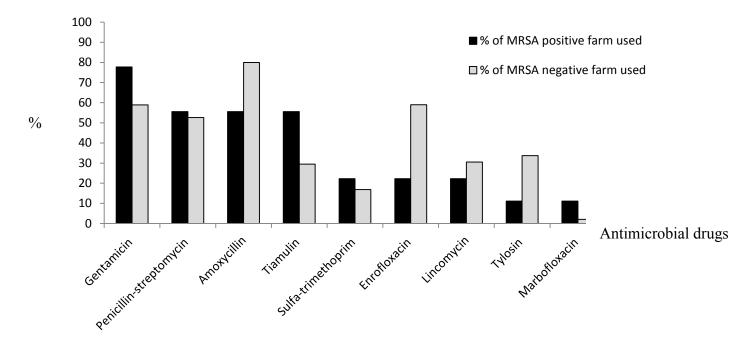


Figure 8. Frequency of injectable antimicrobial drug use in MRSA positive (n=9) and negative pig farms (n=95).