

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาโครงสร้างและคุณลักษณะการทำงานของเกลี่ยวอัลฟ่าทั้งห้า ที่ทำให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ของโปรตีนสารพิษ Adenylate cyclasehemolysin toxin จากเชื้อแบคทีเรีย *Bordetella pertussis*

> โดย อ.ดร. นิรมล ธรรมวิริยสติ คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาโครงสร้างและคุณลักษณะการทำงานของเกลียว อัลฟ่าทั้งห้าที่ทำให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ของโปรตีนสารพิษ Adenylate cyclase-hemolysin toxin จากเชื้อแบคทีเรีย *Bordetella pertussis*

ผู้วิจัย สังกัด

1 อ.ดร.นิรมล ธรรมวิริยสติ คณะสหเวชศาสตร์ มหาวิทยาลัยบูรพา

สนับสนุนโดยสำนักงานคณะกรรมการการอุดมศึกษา สำนักงานกองทุนสนับสนุนการวิจัย และมหาวิทยาลัยบูรพา

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกอ.และ สกว.ไม่จำเป็นต้องเห็นด้วยเสมอไป)

บทคัดย่อ

รหัสโครงการ: MRG5480261

ชื่อโครงการ: การศึกษาโครงสร้างและคุณลักษณะการทำงานของเกลียวอัลฟาทั้งห้าที่ทำให้เกิดรูรั่ว

บนเยื่อหุ้มเซลล์ของโปรตีนสารพิษ Adenylate cyclase-hemolysin toxin จากเชื้อ

แบคทีเรีย Bordetella pertussis

ชื่อนักวิจัย: อ.ดร.นิรมล ธรรมวิริยสติ

อีเมลล์: niramon25@yahoo.com

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

โปรตีนพิษ Adenylate cyclase-hemolysin (CyaA) ที่หลั่งจากเชื้อแบคทีเรีย Bordetella pertussis เป็นหนึ่งในสมาชิกของตระกูลโปรตีนพิษ RTX (Repeat-in-ToXin) ที่สามารถทำให้เกิดรู รั่วบนผิวเซลล์เป้าหมายได้ จากการศึกษาก่อนหน้านี้ ได้ทำการสร้างโปรตีนพิษ CyaA forming domain (CyaA-PF) ที่มีขนาด 126 kDa ให้มีการแสดงออกในแบคทีเรีย *Escherichia coli* แล้วทำให้ เม็ดเลือดแดงแตกได้ ผลการวิเคราะห์กรดอะมิโนในตำแหน่งของ hydrophobic region ในช่วงกรดอะมิโน ตำแหน่งที่ 500-700 โดย hydropathy plot พบความเป็น transmembrane lpha-helical bundle ที่ประกอบด้วย เกลียวอัลฟาจำนวนห้าเกลียว ซึ่งน่าจะเป็นส่วนที่แทงเข้าไปในเมมเบรนและทำให้เกิดรูรั่ว ส่งผลให้เซลล์แตกได้ ในการศึกษานี้จะทำการโคลนเฉพาะชิ้นส่วน hydrophobic region (M⁴⁸² - A⁷⁵¹) จากพลาสมิดตันแบบ pCyaA-PF (M⁴⁸² - R¹⁷⁰⁶) เพื่อศึกษากลไกการสร้างรูรั่วบนผิวเซลล์ เมื่อนำไปแสดงออกใน *E. coli* พบว่า โปรตีน CyaA-HPR ที่ได้มีขนาดเล็กประมาณ 30 kDa ซึ่งมีการแสดงออกที่ไม่เด่นชัด มีปริมาณน้อยและไม่สามารถทำ ให้เซลล์เม็ดเลือดแดงแตกได้ แต่เมื่อทำการโคลนในรูปแบบใหม่ โดยตัดเฉพาะส่วน repeat region repetitive block II-V ในช่วงกรดอะมิโนตำแหน่ง 1091-1652 ออก พบว่า โปรตีน CyaA-PF Δ 1091-1652 ที่ทำการเติม His tag เพื่อประโยชน์ในการทำให้บริสุทธิ์นี้ มีขนาดประมาณ 70 kDa มีการแสดงออกสูง อยู่ในรูปที่ละลายน้ำ และสามารถทำให้เม็ดเลือดแดงแตกได้ ซึ่งแสดงให้เห็นว่า โปรตีนชิ้นส่วนนี้มีโครงสร้างที่จำเป็นต่อ ความสามารถในการทำให้เกิดรูรั่วบนผิวเซลล์ขั้นพื้นฐานได้ เมื่อวิเคราะห์ร่วมกับโครงสร้างสามมิติที่แสดงให้ เห็นถึงความเป็นเกลี่ยวอัลฟา 5 เกลี่ยวในช่วง hydrophobic region และการเรียงตัวแบบ Beta-roll ในช่วงของ RTX region จากทาง C-terminal folding ร่วมกับผลการทดลองที่ได้ แสดงให้เห็นว่า ส่วนของ hydrophobic region, ตำแหน่งของการเติมหมู่ไขมันที่กรดอะมิโนไลซีน 983, RTX repetitive block I (M⁴⁸² – N¹⁰⁹⁰) กับชิ้น ทางด้าน C-terminal (V¹⁶⁵³-R¹⁷⁰⁶) มีความเกี่ยวข้องในการจัดเรียงตัวโครงสร้างของโปรตีนและเหนี่ยวนำในการ สร้างรูรั่วบนผิวเซลล์

คำหลัก: โปรตีนพิษ Adenylate cyclase-hemolysin, *Bordetella pertussis,* Hydrophobic region, การสร้างรูรั่ว บนเยื่อหุ้มเซลล์

Abstract

Project Code: MRG5480261

Project Title: Structural and functional characterization of the five putative pore-forming α -

helices of the Bordetella pertussis adenylate cyclase-hemolysin toxin

Investigator: Niramon Thamwiriyasati, Ph.D

E-mail Address: niramon25@yahoo.com

Project Period: 2 Years

Abstract:

Bordetella pertussis adenylate cyclase-hemolysin toxin (CyaA) represents a unique RTX (Repeat-in-ToXin) pore-forming toxin that can permeabilize the target membrane by forming lytic pores. Previously, the 126-kDa CyaA pore-forming (CyaA-PF) domain expressed in Escherichia coli was shown to retain its hemolytic activity. The preliminary results from hydropathy plot based on hydrophobicity analysis of an amino acid, together with mutagenesis studies, suggested that the transmembrane domain of CyaA is the hydrophobic region between residues 500 to 700 and contains a five putative α -helical bundle. It is planned to investigate whether the hydrophobic region of the CyaA toxin (CyaA-HPR) can equip for membrane insertion and pore formation. In this study, the gene segment encoding the region ($M^{^{482}}$ - $A^{^{751}}$) was subcloned from pCyaA-PF (M⁴⁸² - R¹⁷⁰⁶) plasmid and expressed as a 30-kDa CyaA-HPR protein in *E. coli* under T7 promoter. The CyaA-HPR proteins were unable to express themselves well and to exert the hemolytic activity. However, CyaA-PF fragment with flanking the four CyaA-RTX repetitive block II -V named CyaA-PF Δ 1091-1652 was subcloned for solving the problem. The His-tag fused truncated CyaA-PF was highly expressed as the 70-kDa soluble protein and shown to be a minimal active fragment for pore formation. Taking together with the 3D homology model-based five putative helical segments of CyaA-HPR and repetitive parallel beta-roll of CyaA-RTX structures, suggested that hydrophobic region, segments of a post-translational acylation site-K⁹⁸³ to CyaA-RTX repetitive block $I(M^{482} - N^{1090})$ with the C-terminal region $(V^{1653} - R^{1706})$ are important for the structural integrity of CyaA toxin for conformational changes and domain fitting in the pore state.

Keywords: Adenylate cyclase-hemolysin toxin, *Bordetella pertussis*, Hydrophobic region, Poreformation, Transmembrane helices

บทสรุปผู้บริหาร (Executive Summary)

ชื่อโครงการวิจัย, ชื่อ-สกุลของนักวิจัยในโครงการ และสังกัด

(ไทย) การศึกษาโครงสร้างและคุณลักษณะการทำงานของเกลียวอัลฟาทั้งห้าที่ทำให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ ของโปรตีนสารพิษ Adenylate cyclase-hemolysin toxin จากเชื้อแบคทีเรีย *Bordetella pertussis*

(ภาษาอังกฤษ) Structural and functional characterization of the five putative pore-forming α-helices of the *Bordetella pertussis* adenylate cyclase-hemolysin toxin

ชื่อหัวหน้าโครงการวิจัย อาจารย์ ดร.นิรมล ธรรมวิริยสติ มหาวิทยาลัยบูรพา

ชื่ออาจารย์ที่ปรึกษาโครงการ ศาสตราจารย์ ดร.ชนันท์ อังศุธนสมบัติ

สถาบันชีววิทยาศาสตร์โมเลกุล มหาวิทยาลัยมหิดล

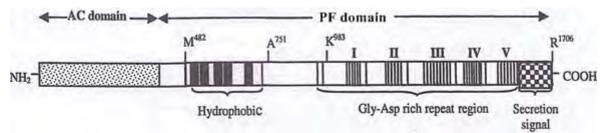
วัตถุประสงค์ของโครงการโดยสรุปย่อ

เพื่อนำเสนอรูปแบบและอธิบายลักษณะกลไกในแทรกตัวและก่อให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ระดับ โมเลกุลของเกลียวอัลฟ่าทั้งห้าของโปรตีนพิษ CyaA

ผลการดำเนินโครงการตามวัตถุประสงค์ โดยสรุปย่อ

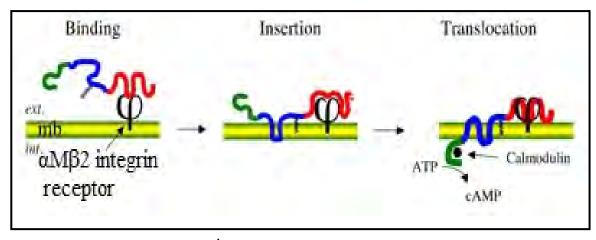
ผลการดำเนินโครงการในครั้งนี้ ประสบความสำเร็จในการสร้างโคลนโปรตีนพิษ Adenylate cyclase - hemolysin เฉพาะส่วนต่างๆที่พบในส่วนของ Pore-forming ด้วยวิธีทางพันธุวิศวกรรมในการตัดต่อยืน จากพลาสมิดตันแบบ pCyaAC-PF และทดสอบคุณลักษณะต่อความสามารถในการทำให้เม็ดเลือดแดงแกะแตก โดยวิธี Hemolysis assay ซึ่งพบว่าโคลน pCyaAC-PF∆1901-1652 ที่ได้ มีการแสดงออกของ Hydrophobic region, acylation site และ C-terminal RTX block I ขนาด ~70-kDa ที่แสดงออกร่วมกับเอนไซม์ 21-kDa CyaC-acyltransferase ในรูปแบบของโปรตีนที่ละลายน้ำได้ใน Escherichia coli และสามารถทำให้เม็ดเลือด แดงแกะแตกได้ แต่พบระดับเปอร์เซนต์ในการทำให้เม็ดเลือดแดงแกะแตกที่ต่ำกว่าโปรตีนพิษ CyaA-PF ปกติ แสดงให้เห็นว่า เฉพาะส่วน Hydrophobic region เพียงอย่างเดียว ไม่สามารถทำให้เม็ดเลือดแดงแตกได้ ต้องมี การทำงานร่วมกับตำแหน่งต่างๆในส่วนของ Pore-forming domain อันได้แก่ การเดิมหมู่ไขมัน palmitoyl group ด้วย CyaC ที่ตำแหน่ง Lys-983 ซึ่งช่วยเพิ่มความสามารถในการจับบนผิวเซลล์เป้าหมาย การจัดเรียง ตัวของ RTX repeat region ทางด้าน C-terminal เพื่อจับกับตัวรับบนผิวเซลล์ จึงสามารถก่อให้เกิดการเรียงตัว ของโครงสร้างที่ทำให้เกิดการสร้าง pore หรือรูรั่วบนผิวเซลล์ ที่ทำให้เม็ดเลือดแดงแตกได้

แนวทางการนำผลการดำเนินโครงการไปใช้ประโยชน์


ทราบกลไกคุณลักษณะจำเพาะทางโครงสร้างและช่วงตำแหน่งเปปไทด์ที่เกี่ยวข้องกับอันตรกิริยากับ เซลล์เป้าหมายเพื่อการเรียงตัวและก่อให้เกิดรูรั่วบนผิวเซลล์

เนื้อหางานวิจัย

1. ที่มาและความสำคัญของงานวิจัย


โรคไอกรน (Whooping cough หรือ Pertussis) เป็นโรคติดเชื้อของระบบทางเดินหายใจซึ่งเกิดจาก เชื้อแบคทีเรีย Bordetella pertussis ติดต่อได้ง่ายจากการไอจามรดกันโดยตรง ผู้สัมผัสโรคที่ไม่มีภูมิคุ้มกัน จะติดเชื้อและเกิดโรคเกือบทุกราย โรคนี้เป็นหนึ่งในสาเหตุหลักของการตายในเด็ก "Baby killer" โดยเฉพาะ ในระยะก่อนที่จะเริ่มมีการรณรงค์ให้วัคซีนทั่วโลก มีผู้ป่วยประมาณ 45 ล้านคนต่อปี มีผู้ป่วยเสียชีวิตจากโรค นี้ประมาณ 400,000 คนต่อปี (Crowcroft and Pebody, 2006) ปัจจุบันการให้วัคซีนป้องกันโรคไอกรนใน เด็กแนะนำให้ใช้วัคซีนชนิด acellular pertussis vaccine จาก ส่วนของโปรตีน filamentous hemagglutinin, pertactin และ fimbriae แทนที่ whole-cell vaccine ซึ่งทำให้มีอาการข้างเคียงน้อยลงมาก แต่มีการรายงาน ความผันแปรของลำดับนิวคลีโอไทด์ (polymorpholism) ที่กำหนดการสร้างโปรตีนเหล่านี้จากสายพันธุ์ Tohama I ในการทำวัคซีน ทำให้ไม่สามารถป้องกันการเกิดโรคได้อย่างมีประสิทธิภาพ (Packard et al., 2004)

โปรตีนพิษ adenylate cyclase-hemolysin (CyaA) ที่หลั่งจากเชื้อแบคทีเรีย *Bordetella pertussis* เป็นหนึ่งในป**ัจจัยสำคัญที่ทำให**้เชื้อนี้มีความรุนแรง (virulence factors) อันก่อให้เกิดพยาธิสภาพของโรคและ กระตุ้นการตอบสนองของระบบภูมิคุ้มกันในคน รวมทั้งยังไม่พบความผันแปรของลำดับนิวคลีโอไทด์ที่ กำหนดในการสร้างโปรตีนพิษ CyaA เมื่อเปรียบเทียบกับสายพันธุ์อื่นๆ (Packard *et al.*, 2004) ทำให้ โปรตีนชนิดนี้มีความน่าสนใจและเหมาะสมที่จะนำมาศึกษาเพื่อใช้เป็นส่วนประกอบในการผลิตวัคซีน คุณสมบัติของโปรตีนสารพิษ CyaA เป็น Bi-functional toxin ขนาดใหญ่ประมาณ 177 kDa ที่ประกอบด้วย 2 ส่วนหลักสำคัญ ได้แก่ Adenylatecyclase (AC) domain และ Haemolysin หรือ Pore forming (PF) domain โดยทั้ง 2 ส่วนจะทำงานเป็นอิสระต่อกัน (Glaser *et al.*, 1988) และในส่วนของPF domain นี้ยัง ประกอบด้วย 4 ส่วนย่อยคือ (i) Hydrophobic region (residues 500-700) ประกอบด้วยส่วนเกลี่ยวอัลฟ่า จำนวน 5 เกลียวซึ่งจัดว่ามีความสำคัญที่ทำให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ (Powthongchin *et al.*, 2008) (ii) acylation site (Lys⁹⁸³) เป็นตำแหน่งที่มีหมู่ Palmitoyl group เกาะอยู่ที่กรดอะมิโน Lysine ตำแหน่ง 983 จากการทำงานของCyaC-acyltransgerase (Thamwiriyasati et al., 2010) (iii) Gly-Asp-rich repeat region (residues 1,000-1,600) ประกอบด้วยกรดอะมิโน Glycine และ Aspartate ซึ่งเป็นกรดอะมิโนชนิดไม่ ้มีขั้วเรียงตัวซ้ำกันเป็นจำนวนมาก (Gly-Gly-x-Gly-x-Asp-Asp-x-Leu) จึงถูกจัดเป็นลักษณะเด่นของโปรตีน สารพิษชนิดนี้และเรียกว่า RTX toxin (Repeat-in-ToXin) (Pojanapotha *et al.*, 2010) และ(iv) C-terminal secretion signal region (residue 1,601-1,706) เป็นส่วนที่ช่วยในการหลั่งโปรตีนออกนอกเซลล์ (Welch 1991; Sebo and Ladant., 1993) แสดง**ดังภาพที่ 1**

ภาพที่ 1 แสดงโครงสร้างของโปรตีนพิษ Adenylate cyclase – hemolysin (Sebo and Ladant, 1993)

แรกเริ่มนั้นโปรตีนพิษ CyaA ถูกสังเคราะห์อยู่ในรูปของ protoxin ที่ยังไม่สามารถทำงานได้ และเมื่อ เอนไซม์ Acyltransferase (CyaC) กระตุ้นให้มีการเติมหมู่ไขมัน (palmitoyl group) ที่ตำแหน่ง Lys 983 ที่อยู่ ในส่วนของ Fatty-acylation region จะกระตุ้นความเป็นพิษของโปรตีนให้ออกฤทธิ์ได้ (Barry et al., 1991; Hackett et al., 1994) ซึ่งกลไกการทำงานของโปรตีน CyaA เริ่มต้นจากการที่ส่วนของ calcium-binding repeat region จับอย่างจำเพาะกับเซลล์เป้าหมายผ่านทาง $\alpha_{\rm M}\beta_2$ integrin receptor หรือ CD11b/CD18 (Guermonprez et al., 2001) ที่อยู่บนผิวของเซลล์เม็ดเลือดขาว ทั้งชนิด macrophage, neutrophil และ dendritic cell จากนั้นจะทำการแทรกตัวเข้าสู่เยื่อหุ้มเซลล์โดยอาศัยส่วนของ Hydrophobic region ส่งผลทำ ให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ และทำการ translocatation ส่วนของ AC domain เข้าไปยังไซโทรพลาสซึมที่อยู่ ภายในเซลล์ ซึ่งในส่วนของ AC domain นี้ จะจับกับ calmodulin ส่งผลทำให้เกิดการเปลี่ยนแปลงของ ATP เป็น cAMP ที่มากขึ้นอย่างควบคุมไม่ได้ จึงทำให้มีปริมาณของ cAMP ที่มากเกินกว่าปกติ มีผลยับยั้ง กระบวนการทำงานของเซลล์เม็ดเลือดขาว และก่อให้เกิดการตายแบบ apoptosis ในที่สุด (Gueirard et al., 1998) นอกจากนี้ยังพบว่า โปรตีนพิษ CyaA สามารถจับกับเซลล์บางชนิดที่ไม่มี receptor บนผิวเซลล์ใด้ เช่น เซลล์เม็ดเลือดแดงแกะ หรือ liposome และก่อให้เกิดรูรั่วบนผิวเซลล์ หรือเซลล์แตก โดยอาศัยการ ทำงานเฉพาะส่วนของ PF domain (Osickova et al., 1999) แสดงดังภาพที่ 2

ภาพที่ 2 แสดงกลไกการทำงานของโปรตีนพิษ CyaA (ที่มา http://www.pasteur.fr/recherche สืบคันเมื่อ 5 มีนาคม 2557)

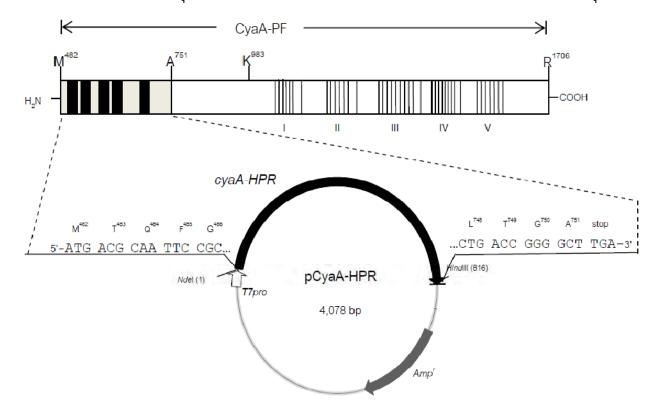
จากผลงานวิจัยก่อนหน้านี้ของ Powthongchin & Angsuthanasombat, 2008 ได้ผลิตโปรตีนพิษ เฉพาะส่วน PF domain ของ CyaA (CyaA-PF) ที่มีขนาดใหญ่ ~126-kDa และมีฤทธิ์ทำให้เม็ดเลือดแดง แตก โดยทำนายลักษณะโครงสร้างในระดับทุติยภูมิของส่วน hydrophobic region ประกอบด้วยโครงสร้างที่ เป็นเกลี่ยวอัลฟาจำนวน 5 เกลี่ยว ซึ่งมีส่วนของ transmembrane helix ของโปรตีน ที่คาดว่าจะแทรกตัวเข้า สู่ผนังเยื่อหุ้มเซลล์และทำให้เกิดรูรั่วบนผิวเซลล์ได้ การทดลองนี้จึงตั้งอยู่สมมติฐานที่ว่า เฉพาะชิ้นส่วน hydrophobic region ของ CyaA สามารถทำงานได้ด้วยตัวของมันเองเฉกเช่น pore-forming toxin อื่นๆ ซึ่ง ในการศึกษาครั้งนี้จะทำการแยกส่วนของ hydrophobic region ออกจาก CyaA และศึกษาชิ้นส่วนอื่นๆที่ เกี่ยวข้องกับกลไกในการทำให้เกิดรูรั่วบนผิวเซลล์ เพื่อให้ได้โปรตีนพิษที่สามารถทำงานได้ และมีขนาดเล็ก ลงจากเดิม ที่สามารถผลิตได้ปริมาณมาก ง่ายต่อการทำให้บริสุทธิ์ และสามารถก่อให้เกิดรูรั่วบนผิวเซลล์ได้ เพื่อเพิ่มโอกาสในการตกผลิกโปรตีนได้มากขึ้นเมื่อเทียบกับโปรตีนต้นแบบที่มีขนาดใหญ่ งานวิจัยชิ้นนี้จัดทำ เพื่อให้ได้มาชึ่งโครงสร้างสามมิติและวิเคราะห์หารูปแบบการจัดเรียงตัวทางโครงสร้างระดับโมเลกุลในแต่ละ ชิ้นเกลียวอัลฟาที่อยู่ในส่วน hydrophobic region และชิ้นส่วนต่างๆที่เกี่ยวข้องในการสร้างรูรั่วบนผิวเซลล์มี่ อยู่ในส่วนของ pore-forming domain ของโปรตีนพิษ CyaA

2. วัตถุประสงค์ของงานวิจัย

- 1) เพื่อกำหนดโครงสร้างสามมิติของเกลียวอัลฟาทั้งห้าจากส่วน hydrophobic region ของ CyaA
- 2) เพื่อหาตำแหน่งการวางตัวของเกลียวอัลฟาทั้งห้าในการแทรกตัวเข้าสู่ผนังเยื่อหุ้มเซลล์และทำให้ เกิดรูรั่วบนผนังหุ้มเซลล์ของโปรตีนพิษ CyaA
- 3) เพื่อนำเสนอรูปแบบและอธิบายลักษณะกลไกในแทรกตัวและก่อให้เกิดรูรั่วบนเยื่อหุ้มเซลล์ระดับ โมเลกุลของเกลียวอัลฟาทั้งห้าของโปรตีนพิษ CyaA

3. ระเบียบวิธีวิจัย

1) การสร้างโปรตีน CyaA เฉพาะส่วนของ hydrophobic region (CyaA-HPR)


ทำการตัดต่อยืนที่สร้างโปรตีน CyaA เฉพาะส่วนของ hydrophobic region (aâ 482-751) โดยนำ พลาสมิดต้นแบบ pCyaA-PF ที่สร้างโดย Powthongchin and Angsuthanasombat, 2008 มาสร้างโปรตีน พิษ CyaA เฉพาะส่วนของ hydrophobic region (CyaA-HPR) โดยเทคนิคทาง Polymerase chain reaction จากการออกแบบ primer และ amplify gene เฉพาะที่มีรหัสของกรดอะมิโนตำแหน่งที่ 482 ถึง 751 (M⁴⁸² - A⁷⁵¹) ที่อยู่ในส่วนของ hydrophobic region นำ PCR product ที่ตัดด้วย Restriction Enzyme ให้เป็น sticky end ด้วย Ndel และ BamHI มาตัดต่อยืนเข้ากับ pET-17b vector (แสดงดังภาพที่ 3) จากนั้นตรวจสอบ ความถูกต้องของพลาสมิดที่ควบคุมการสร้างโปรตีน CyaA-HPR โดยกระบวนการ Restriction enzyme analysis และ DNA sequencing

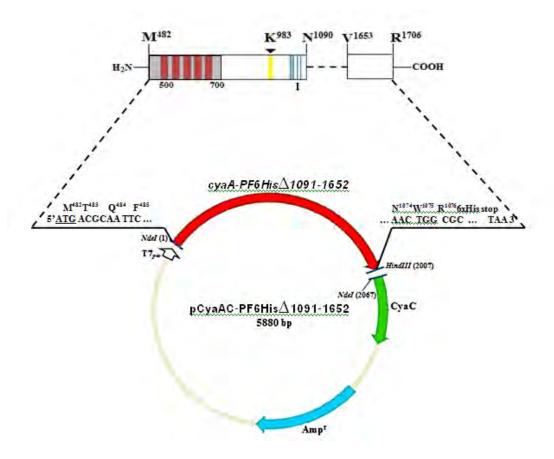
Primers ที่ออกแบบ ถูกสังเคราะห์โดย Thermo Fisher Scientific Inc. (Fermentas) โดยออกแบบ ให้เริ่มที่ M⁴⁸² (start codon)และกลายพันธุ์กรดอะมิโน L⁷⁰⁶ ให้เป็น stop codon (เปลี่ยนลำดับเบส 3 ตำแหน่ง) รวมทั้งกลายพันธุ์เบส 1 ตำแหน่ง เพื่อให้เกิดตำแหน่งของ restriction enzyme *Bam*HI ในการตัด ต่อยืน ซึ่งการกลายพันธุ์เบสในตำแหน่ง L⁷⁰⁶ ไม่มีผลต่อการสร้างโปรตีน ลำดับเบสของ Primers (ตารางที่ 1) โดยกำหนดให้ ตำแหน่งที่ขีดเส้นใต้เป็น Restriction enzyme ตำแหน่ง start และ stop codon แสดงให้ เห็นในตัวอักษรสีแดง และตำแหน่งลำดับเบสที่กลายพันธุ์แสดงให้เห็นเป็นตัวหนา

ตารางที่ 1 แสดงลำดับเบสของ Primer ที่ใช้ในการทำ PCR

Primer	Sequence	Restriction site
	М ⁴⁸² Т Q F	
CyaA_HPR- f	5'-GATATA <u>CAT<mark>ATG</mark></u> ACGCAATTCGGC-3'	Ndel
	stop	
CyaA_L706-r	5'-CCGCGCA <u>GGATCC</u> CGTT TCA AGCCCCGGTCAGCA-3'	BamHI

เมื่อได้ Recombinant clones ที่ต้องการแล้ว นำไปศึกษาการแสดงออกโดย วิธี Transformation เข้า สู่ *E. coli* สายพันธุ์ BL21(DE3)pLysS และกระตุ้นการแสดงออกของยืนด้วย 0.1 mM IPTG ที่ 30°C เป็น เวลา 6 ชั่วโมง โดยทำการกระตุ้นการแสดงออกร่วมกับ pET17b vector และ CyaAC เพื่อเป็นตัวควบคุม

ภาพที่ 3 แสดงพลาสมิค pCyaA-HPR ที่ได้มาจาก pCyaA-PF ต้นแบบ ซึ่งประกอบด้วยยืนที่สร้างโปรตีน CyaA (CyaA-PF, residues 482-751) เฉพาะส่วนของ hydrophobic region ภายใต้ T7 promoter


2) การสร้างโปรตีน CyaA-PF6His∆1091-1652 ที่ขาดส่วน repetitive nanopeptide block II-V

พลาสมิด 7.5-kb pCyaAC-PF6His ที่มีรหัสยืน cyaA เฉพาะส่วน pore-forming domain (3,678 bp) ร่วมกับยืน cyaC (669 bp) ถูกนำมาใช้เป็นโคลนตันแบบในตัดต่อยืนcyaA ให้เหลือเฉพาะส่วน hydrophobic ที่มี acylation regions และ His-tagged C-terminal end (pCyaAC-PF6His Δ 1091-1652) โดยการตัดด้วยเอนไซม์ Tat! แบบ Partial digestion ภายใต้สภาวะที่ใช้เอนไซม์ Tat! 0.5 U ต่อปริมาณ DNA 120 ng เพื่อให้เอนไซม์สามารถตัดได้ตำแหน่งเดียวที่ลำดับเบส 1,824 ของยืน cyaA และได้ผลิตภัณฑ์แถบ แบนดีเอ็นเอขนาด 7.5 kb จากนั้นนำชิ้นส่วน 7.5-kb DNA linear band ที่ต้องการมาสกัดออกจากเจลแล้ว นำมาตัดอีกครั้งด้วยเอนไซม์ Ade! ที่ตำแหน่งยืน cyaA ลำดับเบส 3,513ทำให้ได้แถบดีเอ็นเอที่มีขนาดเล็ก ลงขนาด 5.8kb ซึ่งสามารถตรวจสอบความถูกต้องของชิ้นส่วน 5.8-kb DNA band (TatI/AdeI) ได้

ในกระบวนการตัดพลาสมิดด้วยเอนไซม์ Tatlและ Adel จะทำให้ได้พลาสมิดที่มีลักษณะแบบ ปลายเปิดทั้งสองด้าน (stricky end) ที่ไม่สามารถ self-ligation ได้ จึงต้องทำการเปลี่ยน dsDNA ด้านปลาย 5' stricky end ของพลาสมิดที่ถูกตัดด้วยเอนไซม์ Tatl (5' overhang restriction enzyme) ให้เป็น blunt end โดยการใช้ Klenow fragment ของ DNA polymerase I ที่มีคุณสมบัติของ DNA polymerase ในการเติม นิวคลีโอไทด์จาก 5' ไป 3'(Filling in recessed 3'end) และตัดปลายดีเอ็นเอ3'overhangที่ยื่นออกมาของ พลาสมิดจากการถูกตัดด้วยเอนไซม์ Adel (3' overhang restriction enzyme) โดยการใช้ Klenow fragment ของ DNA polymerase I ที่มีคุณสมบัติของเอนไซม์ 3' ->5' exonucleaseเช่นเดียวกัน (digesting away protruding 3' overhang)เชื่อมต่อปลาย blunt end ทั้งสองด้านด้วยวิธี self-ligationจะได้ Recombinant plasmid ของ pCyaAC-PF6His∆1091-1652 ที่ตัดตำแหน่งกรดอะมิโน 1091-1652 ในส่วนของ RTX region ออก และผลิตโปรตีน CyaA เฉพาะส่วน hydrophobic region จนถึง acylation site

หลังจากนั้นทำการเลือกโคลนที่มี recombinant DNA ด้วย restriction analysis และตรวจสอบความ ถูกต้องด้วยวิธี DNA sequencing และทำการ transform เข้า *E. coli* BL21(DE3)pLysS competent cell เพื่อเหนี่ยวนำให้เกิดการแสดงออกของยืน 0.1 mM IPTG ที่ 30°C เป็นเวลา 6 ชั่วโมง โดยทำการกระตุ้น การแสดงออกร่วมกับ pET17b vector และ CyaAC เพื่อเป็นตัวควบคุม

วิเคราะห์ผลการสกัดโปรตีนด้วย SDS-PAGE โดยใช้ 12% separating gel และ 4% stacking gel (รายละเอียดการเตรียมอยู่ในภาคผนวก) ใช้กระแสไฟฟ้า 25 mA/gel เป็นเวลา 2-3 ชั่วโมงจากนั้นนำแผ่น เจลที่ได้ย้อมสีด้วย 0.1% Coomassie brilliant blue R250 เป็นเวลา 1 ชั่วโมงแช่ในDestain solutions ข้ามคืนหรือจนกว่าพื้นเจลจะใส

ภาพที่ 4 แสดง Recombinant plasmid ของ pCyaAC-PF6His Δ 1091-1652และโครงสร้างของโปรตีน CyaA fragment ที่แสดงออกภายใต้การควบคุมของ T7 promoter โดยลูกศรแสดงทิศทางการถอดรหัสตาม promoter และ genes, แสดงลำดับของ nucleotide และกรดอะมิโนที่ปลาย 5' และปลาย 3' ของCyaA-fragment ลำดับของ nucleotideที่ขีดเส้นใต้แสดงถึง start codon และ Amp'แสดงถึง Ampicillin resistance ยืนในกล่องสีแดงแสดงรหัสโปรตีน CyaA fragment ตั้งแต่บริเวณ hydrophobic region (สีเทา) ถึง K^{983} ตำแหน่งที่มีการเติมหมู่ palmitoyl group ในส่วนของ Acylationsite (สีเหลือง) โดยตัดบริเวณcalciumbinning repeat หลังตำแหน่ง N^{1090} - V^{1653} ออก (เส้นประ)

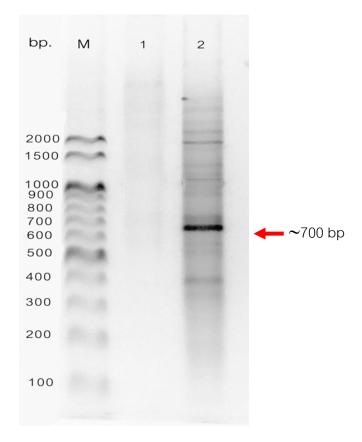
3) การพิสูจห์ชนิดของโปรตีนด้วย Western blot analysis

แผ่นเจลที่ได้จาก SDS-PAGE และยังไม่ได้ย้อมสี Coomassie blue นำมาย้ายโปรตีนลงบนแผ่น nitrocellulose membrane ด้วยวิธี wet blotting โดยนำแผ่น nitrocellulose membrane กระดาษกรองและ แผ่นเจลแช่ใน transfer buffer (192 mM glycine, 25 mMTris-HCl, 20% v/v methanol, pH 8.3) เป็นเวลา ประมาณ 10-15 นาทีจากนั้นนำมาเรียงบน blotting cassette ทำการย้ายโปรตีนออกจากเจลไปยังแผ่น nitrocellulose membrane ที่กระแสไฟฟ้าคงที่ 350 mA เป็นเวลา 1 ชั่วโมงย้อมแผ่น nitrocellulose ด้วยสี 0.1% Ponceaus S ใน 5% acetic acid 5-10 วินาทีล้างสีPonceus S ออกด้วยน้ำกลั่นแล้วทำการ block nonspecific binding โดยการแช่ใน Blotto solution (5% skim milk ใน 1X PBS buffer) 2 ชั่วโมงจากนั้นแช่ แผ่น nitrocellulose membrane ใน Anti-his polyclonal antibody ใน Blotto solution ด้วยอัตราส่วน 1: 2,000 นาน 2 ชั่วโมงล้างด้วย PBS-T จำนวน 3 ครั้งๆละ 10 นาทีหลังจากนั้นแช่ใน carbonate buffer (100 mM NaHCO₃, 1 mM MgCl₂, pH 9.8) ที่ประกอบด้วย developer solution [5-bromo-4-chloro-3-indolyl phosphate/nitrobluetetrazolium (BCIP/NBT)] จนเห็นแบนแล้วล้างด้วยน้ำกลั่นและเก็บไว้ในที่มีด

4) การทดสอบการออกฤทธิ์ต่อเม็ดเลือดแดงแกะ

นำสารละลายเม็ดเลือดแดงแกะ800 µl ใน 1X TBS (20 mMTris-HCl, pH 7.4, 5 mM CaCl₂และ 150 mMNaCl) มาผสมกับสารละลายโปรตีนตัวอย่างของ pET17b vector, CyaA-HPR, CyaA-PF6His, CyaA-PF6His Δ1091-1652 อย่างละ 200 µl (~1 mg total protein) แล้วนำไป incubate ที่ 37°C เป็นเวลา 5 ชั่วโมงหลังจากนั้นนำไปปั่นที่ความเร็วรอบ 12,000Xg เป็นเวลา 2 นาทีและเก็บส่วน supernatant ไปวัด ค่าดูดกลืนแสงที่ OD₅40 ตามความเข้มสีแดงของฮีโมโกลบินที่หลุดจากเม็ดเลือด ในการทดลองครั้งนี้ กำหนดให้สารละลายเม็ดเลือดแดงแกะที่ไม่มีโปรตีนเป็น Negative control และสารละลายเม็ดเลือดแดงแกะ ที่ผสมกับ 0.1% Triton-X เป็น Positive control (เม็ดเลือดแดงแตกทั้งหมดคิดเป็น 100%) โดยเปอร์เซ็นต์ การแตกของเม็ดเลือดแดงของสารตัวอย่างคำนวณจาก {[OD₅40ของสารตัวอย่างทำ 2 ซ้ำ จำนวน 3 ครั้ง การทดลองที่เป็นอิสระต่อกันและเปรียบเทียบวิเคราะห์ผลด้วยวิธีทางสถิติStudent's t test

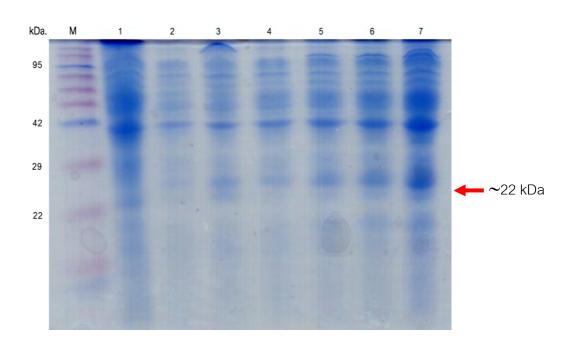
5) การกำหนดหาโครงสร้างสามมิติของโปรตีน CyaA-HPR โดยใช้โปรแกรมทำนาย


โปรแกรมทำนายโครงสร้างสามมิติ (3D-homology modeling) เป็นการหาโครงสร้างจากโปรตีนที่มีลำดับ ของกรดอะมิโนที่คล้ายคลึงกัน ซึ่งคาดว่าจะมีความสัมพันธ์ทางวิวัฒนาการ และมีโครงสร้างสามมิติจากการ ทดลองมาเป็นต้นแบบ โดยกำหนดหาโครงสร้างในช่วงของ hydrophobic region ของโปรตีนพิษ CyaA เปรียบเทียบกับโครงสร้างสามมิติของ Rhodopsin template (PDB file GZM)

4. ผลการวิจัย

1) ผลการสร้างโคลนยีน *cyaA* เฉพาะส่วน hydrophobic region และการแสดงออกของยีน

นำพลาสมิด pCyaA-PF ที่สกัดได้ มาสังเคราะห์ยีนเฉพาะส่วน hydrophobic region (*cyaA-HPR*) โดยการออกแบบ forward primer: 5'-GATATACATATGACCCAATTCGGC-3' และ reverse primer: 5'-CCGCGCAGGATCCCGTTTCAAGCCCCGA-3' ตามลำดับ ผ่านปฏิกิริยาลูกโซโพลิเมอเรส โดยใช้ อุณหภูมิในขั้นตอน annealing (T_a) ที่ 57°C จำนวน 30 รอบ แล้วทำการวิเคราะห์ขนาดของ PCR products ที่ได้ ด้วย 1.0% (w/v) Agarose gel electrophoresis พบแถบ PCR products ขนาด~700 bp. (ภาพที่ 5)

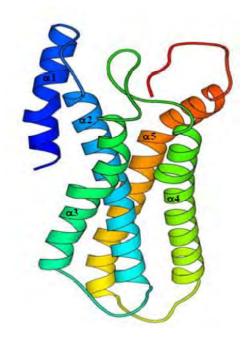

ชิ้นส่วนของ PCR products ที่ได้ คาดว่าเป็นยืน *cyaA-HPR* ที่มีลำดับเบส 684 bp. ที่สามารถ ถอดรหัสจากกรดอะมิโนที่ตำแหน่ง M⁴⁸² ถึง A⁷⁰⁵ ของโปรตีนพิษ CyaA เฉพาะส่วน hydrophobic region ซึ่ง มีตำแหน่งที่สามารถตัดด้วย *Ndel* และ *Bam*HI ที่ตำแหน่งปลาย 5' และ 3' จากการออกแบบด้วย forward และ reverse primers ตามลำดับ ซึ่งทำให้สามารถตัดต่อลงใน pET17b vector ที่ตัด restriction enzymes ณ. ตำแหน่งเดียวกัน เป็นผลทำให้ได้ recombinant plasmid ที่เรียกว่า pCyaA-HPR ขนาด 3,926 bp

ภาพที่ 5 แสดง PCR products ที่ได้จากปฏิกิริยาลูกโซ่โพลิเมอเรส เมื่อใช้ T_a ที่ 57° C วิเคราะห์ด้วย 1.0% (w/v) Agarose gel electrophoresis

PCR products ของยืน *cyaA-HPR* ขนาด ~700 bp. (lane 2) ตำแหน่งที่ลูกศรชี้ และ Negative control ที่กำหนดให้ไม่มี plasmid (lane 1) เมื่อเทียบกับ 100bp Ladder DNA Marker (M)

เมื่อน้ำ recombinant plasmid ที่ได้ มาทำการกระตุ้นให้เกิดการแสดงออกของยืน cyaA-HPR ด้วย การเติม 0.1 mM IPTG inducer ที่อุณหภูมิ 30°C เป็นเวลา 6 ชั่วโมง พบว่า มีการแสดงออกของยืน ดังจะ เห็นได้จากเกิดแถบโปรตีนพิษ CyaA-HPR ขนาด ~22 kDa (ภาพที่ 6, lane 5 – 7) เมื่อเทียบกับแถบโปรตีนมาตรฐาน Chromatin Prestained protein ladder (M) และจะไม่พบแถบโปรตีนนี้ เมื่ออยู่ในช่วงที่ ไม่ได้มีการเหนี่ยวนำให้เกิดการแสดงออกของยืน (uninduced CyaA-HPR) (ภาพที่ 6, lane 4) ในการ ทดลองนี้ ใช้ตัวควบคุมที่ทราบการแสดงออกของยืน (control) ตามสภาวะที่ใช้ดังกล่าว คือ CyaAC-PF พบว่า เกิดแถบโปรตีน CyaA-PF ขนาด ~126 kDa และแถบโปรตีน CyaC ขนาด~22 kDa ในช่วงที่ เหนี่ยวนำให้เกิดการแสดงออกของยืน (induced CyaAC-PF) (ภาพที่ 6, lane 3) เมื่อเทียบกับในช่วงที่ไม่ได้ มีการเหนี่ยวนำ (uninduced CyaAC-PF) (ภาพที่ 6, lane 2)

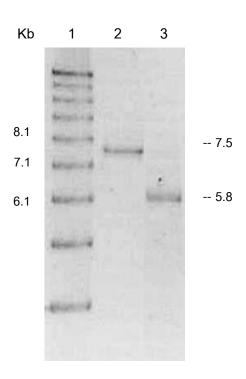
ภาพที่ 6 แสดงผลการเหนี่ยวนำให้เกิดการแสดงออกของโปรตีนพิษ CyaA-HPR เมื่อวิเคราะห์ด้วย 15% SDS-gel ที่ย้อมด้วยสี Coomassie Blue


โดย	Lane M:	Chromatin Prestained protein ladder
	Lane 1:	ช่วง induce ของ pET17b
	Lane 2:	ช่วง uninduce ของ CyaAC-PF
	Lane 3:	ช่วง induce ของ CyaAC-PF (Control)
	Lane 4:	ช่วง uninduce ของ CyaA-HPR
	Lane 5	ช่วง induce ของ CyaA-HPR โคโลนีที่ 1
	Lane 6	ช่วง induce ของ CyaA-HPR โคโลนีที่ 2
	Lane 7	ช่วง induce ของ CyaA-HPR โคโลนีที่ 3

นอกจากนี้ ยังพบว่า น้ำหนักโมเลกุลของโปรตีนที่แสดงออกของ CyaA-HPR สอดคล้องกับน้ำหนัก โมเลกุลที่ทำนายโดยใช้โปรแกรม Compute pl/Mw จากฐานข้อมูลทาง Bioinformatics เมื่อคิดจากตำแหน่ง ของกรดอะมิโน M⁴⁸² ถึง A⁷⁰⁵ รวม 224 กรดอะมิโน ซึ่งมีค่า Theoretical pl/Mw เท่ากับ 4.49 / 21179.74 Da. แสดงดังภาพที่ 7

Theoretical p	ol/Mw (averag	e) for the use	r-entered sec	uence:	
10		3 <u>0</u>			
MTQFGRAGST	NTPQEAASLS	AAVFG LGEAS	SAVAETVSGF	FRGSSRWAGG	FGVAGGAMAL
70	80	90	100	110	120
	GMS LTDDA PA	GQKAA AGAEI	ALQLTGGTVE	LASSIALALA	AARGVTSGLQ
130	140	150	160	170	180
VAGASAGAAA	GALAAALS PM	EIYGLVQQSH	YADQLDKLAQ	ESSAYGYEGD	ALLAQLYRDK
190	200	210	220		
I AAEGAVAGV	SAVLSTVGAA	VSIAAAASVV	GAPVAVVTSL	LTGA	

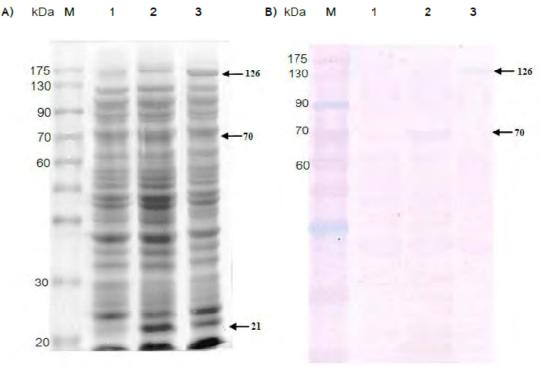
ภาพที่ 7 แสดงผลการทำนายน้ำหนักโมเลกุลของโปรตีนพิษ CyaA-HPR จากลำดับกรดอะมิโน


เมื่อเปรียบเทียบโครงสร้างในช่วงของ hydrophobic region ของโปรตีนพิษ CyaA กับโครงสร้างสามมิติ ของ Rhodopsin template (GZM.pdb) ตามหลักการ 3D homology modeling พบว่า โครงสร้างของ CyaA-HPR (Leu⁵⁰⁰-Ser⁷⁰⁰) ประกอบด้วยเกลียวแอลฟ่าจำนวน 5 เกลียวของ α -helical bundle (α 1: 501-519, α 2: 527-556, α 3: 566-588, α 4: 612-640 และ α 5: 650-685) ดังภาพที่ 8

ภาพที่ 8 แสดงโครงสร้างสามมิติของ CyaA-HPR จากการทำนายที่อยู่ในรูป α-helices

2) ผลการสร้างโคลน pCyaAC-PF6His Δ 1091-1652 และการแสดงออกของยืน

นำพลาสมิด 7.5-kb pCyaAC-PF6His ที่มีรหัสยืน cyaA เฉพาะส่วน pore-forming domain (3,678 bp) ร่วมกับยืน cyaC (669 bp) มาตัดต่อยืน cyaA ให้เหลือเฉพาะส่วน hydrophobic ที่มี acylation regions และ His-tagged C-terminal end (pCyaAC-PF6His\Delta1091-1652) โดยการตัดด้วยเอนไซม์ Tat I แบบ Partial digestion เพื่อให้เอนไซม์สามารถตัดได้ตำแหน่งเดียวที่ลำดับเบส 1,824 ของยืน cyaA และได้ ผลิตภัณฑ์แถบแบนดีเอ็นเอขนาด 7.5 kb จากนั้นนำชิ้นส่วน 7.5-kb DNA linear band ที่ต้องการมาสกัด ออกจากเจลแล้วนำมาตัดอีกครั้งด้วยเอนไซม์ Adel ที่ตำแหน่งยืน cyaA ลำดับเบส 3,513 ทำให้ได้แถบดีเอ็น เอที่มีขนาดเล็กลงขนาด 5.8 kb ดังภาพที่ 9 จากนั้นใช้ Klenow fragment ของ DNA polymerase I เชื่อมต่อ ปลาย blunt end ทั้งสองด้านด้วยวิธี self-ligation จะได้ Recombinant plasmid ของ pCyaAC-PF6His\Delta1091-1652 ที่ตัดตำแหน่งกรดอะมิโน 1091-1652 ในส่วนของ RTX region ออก และผลิตโปรตีน CyaAเฉพาะส่วน hydrophobicregion จนถึง acylation site

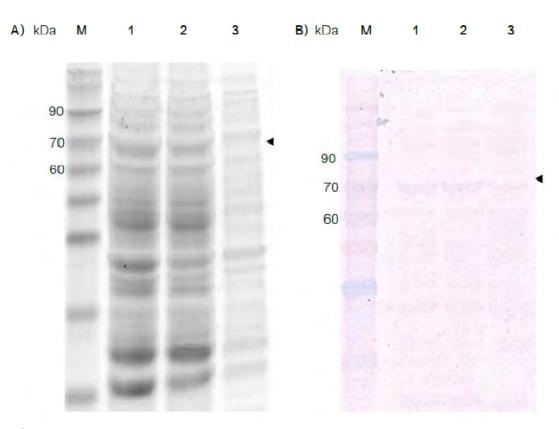

ภาพที่ 9 แสดงผลการตัด pCyaAC-PF6His plasmid ด้วยเอนไซม์ *Tat*l และ*Ade*l เมื่อวิเคราะห์ด้วย 0.8% (w/v) Agarose gel electrophoresis

Land M: 1-kb DNA Ladder marker

Land 1: Purified 7.5-kb DNA linear band ที่ตัดด้วยเอนไซม์ *Tat*l

Land 2: 5.8-kb DNA band ที่ตัดด้วยเอนไซม์ *Tat*l และ *Ade*l

เมื่อทำการเหนี่ยวนำให้เกิดการแสดงออกของโปรตีนด้วย 0.1 mM IPTG ที่อุณหภูมิ 30°C เป็นเวลา 6 ชั่วโมง ภายใต้การควบคุม T7 promoter ของ pET17b vector ใน*E.coli*สายพันธุ์ BL21(DE3)pLysSพบว่า pCyaAC-PF6HisมีการแสดงออกของโปรตีนCyaA-PF ที่มี His tag ติดอยู่ทางด้านปลาย C-terminal ขนาด ~126 kDaร่วมกับโปรตีน CyaC ขนาด ~21 kDa (ภาพที่ 9, Lane 3) ส่วน pCyaAC-PF6His\(\Delta\)1091-1652 มีการแสดงออกของโปรตีนCyaA-PF6His\(\Delta\)1091-1652 fragment ที่มี His tag ติดอยู่เช่นกัน และมีขนาด ~70kDa(ค่าที่ได้จากการคำนวณน้ำหนักโมเลกุล=68,392.20 Da และมีค่า Isoelectric point (pI) = 5.07) ร่วมกับโปรตีน CyaC ขนาด ~21 kDaเมื่อเทียบขนาดกับแถบแบนโปรตีนมาตรฐาน และสามารถผลิตโปรตีน ที่ต้องการออกมาในปริมาณมาก (ภาพที่ 10, Lane 2) เมื่อตรวจสอบตำแหน่งของแบนโปรตีนCyaA-PF6His และCyaA-PF6His\(\Delta\)1091-1652 ที่ได้ด้วยวิธี Western blot analysisโดยการใช้ Anti-his monoclonal antibodies ที่จำเพาะต่อกรดอะมิโน 6XHis (His-tag) พบว่า สามารถเห็นแถบแบนโปรตีนตำแหน่งเดียวกัน กับ SDS-PAGE แสดงดังภาพที่ 10B


ภาพที่ 10 แสดงผลการเหนี่ยวนำให้เกิดการแสดงออกของโปรตีน เมื่อวิเคราะห์ด้วย 12% SDS-PAGE และ Western blot analysisโดยใช้ Anti-his monoclonal antibodies มาพ A) แสดงการแสดงออกของโปรตีน เมื่อวิเคราะห์ด้วย 12% SDS-PAGE แสดงการพิสูจน์ตำแหน่งของโปรตีน ด้วย Western blot (Corresponding gel) โดย Lane M: Prestained protein markers

Lane 1: pET17b vector ที่เหนี่ยวนำให้เกิดการแสดงออก

Lane 2: pCyaAC-PF6His Δ 1091-1652 ที่เหนี่ยวนำให้เกิดการแสดงออก

Lane 3: pCyaAC-PF6His ที่เหนี่ยวนำให้เกิดการแสดงออก

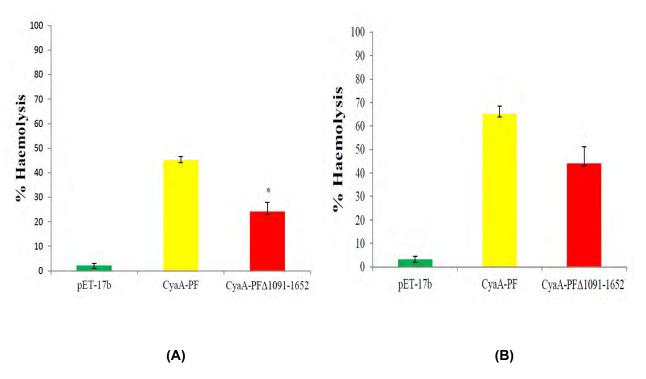
จากนั้นตรวจสอบรูปแบบของโปรตีนที่ได้ ด้วยการทำให้เซลล์แตกและปั่นเหวี่ยงที่ความเร็วรอบ 12,000Xg เพื่อแยกเก็บระหว่างส่วนของ supernatant fractions ที่มีโปรตีนที่ละลายน้ำได้ (soluble proteins) และ Pellet fraction ที่มีโปรตีนที่ไม่ละลายน้ำ (insoluble proteins) อยู่ ผลที่ได้พบว่า โปรตีน 70-kDa CyaA-PF6His fragment อยู่ในรูปของโปรตีนที่ละลายน้ำ หรือ soluble form ที่พบในชั้นของ supernatant (ภาพที่ 10A) ตรวจสอบตำแหน่งและชนิดของแบนโปรตีนด้วย Anti-his monoclonal antibodies ได้ผลสอดคล้องกับ SDS-PAGE (ภาพที่ 11B) น้ำหนักโมเลกุลของโปรตีน CyaA-PF6His 1091-1652 ที่ได้ใกล้เคียงกับค่า น้ำหนักโมเลกุลที่ได้จากการทำนายโดยใช้โปรแกรม Compute pl/Mw มีจำนวนกรดอะมิโนทั้งหมด 660 ตัว ค่า Theoretical pl/ Mw เท่ากับ 5.07/ 68,392.20 Da

ภาพที่ 11 แสดงลักษณะรูปแบบโปรตีนCyaA-PF fragment ที่ได้จาก SDS-PAGE และ Western blot analysisโดยใช้ Anti-his monoclonal antibodies

ภาพ A) แสดงรูปแบบของโปรตีนที่ได้ เมื่อวิเคราะห์ด้วย 12% SDS-PAGE

ภาพ B) แสดงการพิสูจน์ตำแหน่งของโปรตีน ด้วย Western blot (Corresponding gel)

โดย Lane M: Prestained protein markers


Lane 1: Total lysates ของCyaA-PF6His Δ 1091-1652

Lane 2: Supernatant fractions ของCyaA-PF6His Δ 1091-1652

Lane 3: Pellet fractions ของCyaA-PF6His Δ 1091-1652

3) ผลการออกฤทธิ์ในการทำให้เม็ดเลือดแดงแกะแตก (Hemolytic activity)

จากการทดสอบความสามารถการแตกของเม็ดเลือดแดงแกะพบว่า Cell Iysate ของ CyaA-PF6His ∆1091-1652 fragment ที่ความเข้มข้นของสารละลายโปรตีนทั้งหมด~1mg สามารถทำให้เม็ดเลือด แดงแกะแตกได้ 24±0.4% ซึ่งมีระดับเปอร์เซ็นต์การแตกน้อยกว่า Cell Iysate ของ CyaA-PF6His ที่สามารถทำให้เม็ดเลือดแดงแกะแตกได้ถึง 45±0.5% แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p-value ≤ 0.01) (ภาพที่ 12A) ในขณะที่ Cell Iysate ของ pET-17b ไม่สามารถทำให้เม็ดเลือดแดงแกะแตกได้แต่อย่างใด (2±0.9%) ส่วน CyaA-HPR ไม่สามารถทำให้เม็ดเลือดแดงแกะแตกได้เช่นกัน (ไม่ได้แสดงผล) ซึ่งเมื่อเพิ่มความเข้มข้น ของสารละลายโปรตีนทั้งหมดเป็น ~2 mg พบว่าโปรตีนสารพิษ CyaA-PF6His ∆1091-1652 มีเปอร์เซ็นต์ การแตกของเม็ดเลือดแดงแกะเพิ่มขึ้นสองเท่าที่ระดับ 44±0.8% ในขณะที่CyaA-PF6Hisเพิ่มขึ้นเพียง 65±1.1% แตกต่างกันอย่างมีนัยสำคัญทางสถิติ (p-value ≤ 0.01) แต่ค่าที่ได้มีระดับใกล้เคียงกันมากขึ้น (ภาพที่ 12B)

ภาพที่ 12 แสดงเปอร์เซ็นต์การแตกของเม็ดเลือดแดงแกะของCell lysate ที่มีโปรตีนสารพิษCyaA-PF6His และ CyaA-PF6His∆1091-1652 fragment ที่ความเข้มขันของสารละลายโปรตีน ~1 mg (A) และที่ความเข้มขัน ~2 mg (B)

5. สรุปผลและอภิปรายผล

โปรตีน CyaA-HPR ขนาด ~22-kDa ที่ผลิตออกมานั้นมีปริมาณที่ค่อนข้างน้อย ซึ่งอาจเกิดจากการ แสดงออกของยีนเฉพาะส่วน hydrophobic region นั้นเป็นส่วนที่ความไฮโดรโฟบิกสูงและมีโครงสร้างจาก การทำนายเป็น α -helical bundle ที่มีความสามารถในการละลายน้ำต่ำและอาจมีความเป็นพิษต่อเซลล์ โฮสต์ α coli ในการเจริญเติบโตแบ่งตัวเพิ่มจำนวนเซลล์ จึงทำให้ได้ผลิตภัณฑ์ของโปรตีนที่ค่อนข้างน้อย อาจมีการปรับเปลี่ยนชนิดของเซลล์โฮสต์ หรือ expression vector ตัวอื่นที่เหมาะสมต่อการแสงดออกของ ยีนชนิดนี้ให้ได้มากยิ่งขึ้น (Francis & Page, 2010) อย่างไรก็ตามโปรตีนเฉพาะชิ้นส่วนนี้ยังไม่สามารถทำให้ เม็ดเลือดแดงแกะแตกได้ แสดงให้เห็นว่าเฉพาะส่วนของ hydrophobic region เพียงอย่างเดียว ไม่สามารถ สร้าง pore หรือรูรั่วบนผิวเซลล์ จำเป็นต้องอาศัยชิ้นส่วนอื่นในส่วนของ pore-forming domain เข้ามาช่วยใน การเรียงตัวโครงสร้างหรือยึดจับกับแซลล์เป้าหมายได้

โปรตีน CyaA-PF6His \$\Delta\$1091-1652 ขนาด ~70-kDa ที่ถูกผลิตออกมานั้นอยู่ในรูปของ Soluble form ที่ละลายน้ำได้ เช่นเดียวกับ CyaA-PF6His wild type ที่เป็นตัวแทนของ native folding ที่อยู่ในรูปของ soluble form เช่นเดียวกัน แสดงให้เห็นถึง การเรียงตัว Folding ของโปรตีนที่คล้ายคลึงกัน และยังพบว่า โปรตีน CyaA-PF6His \$\Delta\$1091-1652 ที่มีขนาดเล็กลงนี้มีระดับการแสดงออกของโปรตีนที่มากกว่า CyaA-PF6His wild type ในขณะที่การแสดงออกของ CyaC ขนาด ~21-kDa นั้นเท่ากัน ซึ่งโปรตีน CyaC นี้เป็น ตัวกลางในการเติมหมู่ palmitoyl ที่ตำแหน่ง Lys 983 ที่คาดว่ามีความสำคัญต่อการทำงานของโปรตีนสารพิษ CyaA ทั้งการเกิด cytotoxicity และ hemolytic activity และอาจจะเป็นตัวกลางที่ช่วยเพิ่มประสิทธิภาพในการ ยึดเกาะกับเยื่อหุ้มเซลล์ของเซลล์เป้าหมายอีกด้วย

เมื่อเปรียบเทียบประสิทธิภาพของโปรตีนสารพิษ CyaA-PF6HisΔ1091-1652 กับ CyaA-PF6His ต่อการแตกของเม็ดเลือดแดงแกะจาก Crude Iysates พบว่าที่ความเข้มข้น ~1mg total protein จะมี CyaA อยู่ประมาณ 10 μg โดยที่ CyaA-PF6HisΔ1091-1652 กลายพันธุ์มีความสามารถในการทำให้เม็ดเลือดแดง แกะแตก 24±1% น้อยกว่าค่าของโปรตีนสารพิษ CyaA-PF6His ปกติ (45±0.5%) ซึ่งแตกต่างกันอย่างมี นัยสำคัญทางสถิติแสดงให้เห็นว่า RTX region ส่วนที่ตัดออกไปมีผลทำให้การแตกของเม็ดเลือดแดงลดลงใน ระดับหนึ่ง อาจเป็นเพราะส่วนของ repeat (RTX) region ที่มีลักษณะการเรียงลำดับกรดอะมิโนซ้ำกัน9 ตัว ของ Gly-Asp rich repeat region เป็นส่วนที่ใช้จับกับแคลเซียมทำให้เปลี่ยนโครงสร้างแบบ Beta-roll structure จากทาง C-terminus ของ CyaA toxin ให้อยู่ในรูปของโปรตีนที่ทำงานได้ (Pojanapotha et al., 2011; Bleuner et al., 2010)

แต่อย่างไรก็ตาม เมื่อมีการเพิ่มความเข้มข้นของโปรตีนเป็น ~2mg พบว่าโปรตีนสารพิษCyaA-PF6His \$\Delta\$1091-1652 มีเปอร์เซ็นต์การแตกของเม็ดเลือดแดงแกะเพิ่มขึ้นสองเท่าเป็นสัดส่วนโดยตรง (44±0.8%) ในขณะที่CyaA-PF6Hisเพิ่มขึ้นเพียง 65±1.1% ไม่เป็นสัดส่วนโดยตรงกับปริมาณโปรตีน ซึ่งมี แนวโน้มว่า ปริมาณของโปรตีนสารพิษ CyaA truncate fragment ที่เพิ่มขึ้นอย่างต่อเนื่องจะทำให้ ความสามารถในการทำให้เม็ดเลือดแดงแกะแตกจนเทียบเท่ากับ CyaA-PF wild type ซึ่งผลการทดลองที่ได้ นี้แสดงให้เห็นว่า โปรตีนสารพิษ CyaA อาศัยส่วนของ RTX region ในการจับกับเซลล์เป้าหมายเพียง

เบื้องต้นเท่านั้น (Target cell specificity) เมื่อปริมาณของ Toxin เพิ่มมากขึ้น จะสามารถใช้หมู่ไขมัน Acyl group anchor เป็นตัวยึดจับกับผิวเซลล์และเหนี่ยวนำให้มีการแทรกตัวของ hydrophobic region เข้าสู่เซลล์ เกิดกระบวนการ Oligomerization ที่ก่อให้เกิดรูรั่วบนผิวเซลล์และทำให้เซลล์แตกได้ (Bauche et al., 2006) ซึ่งอาจกล่าวอีกนัยหนึ่งได้ว่า กลไกในการออกฤทธิ์ต่อเม็ดเลือดแดง (Hemolytic activity) ของโปรตีนพิษ CyaA ใช้กลไกการแทรกตัวของ hydrophobic region และการจับกับเซลล์เป้าหมายด้วย acyl group ในการ ทำให้เม็ดเลือดแดงแกะแตก

จากผลการทดลองสรุปได้ว่า ประสบความสำเร็จในการสร้างโคลน pCyaAC-PF6His∆1091-1652 ที่ สามารถผลิตโปรตีน CyaA เฉพาะส่วนของ hydrophobic region ที่มี acylation site และ C-terminal His tag ด้วยเทคนิคทางพันธุวิศวกรรมแบบ restriction enzyme digestion ซึ่งโปรตีนที่ได้มีขนาด ~70kDa ปริมาณมาก อยู่ในรูปแบบที่ละลายน้ำและมีฤทธิ์ทำให้เม็ดเลือดแดงแกะแตกได้ ซึ่งโปรตีนสารพิษ CyaA-PF6His fragment ที่ได้นี้ สามารถใช้ต่อยอดในการตกผลึกคริสตัลเพื่อหาโครงสร้างสามมิติและวิเคราะห์หา รูปแบบการจัดเรียงตัวทางโครงสร้างระดับโมเลกุลต่อไปในอนาคต

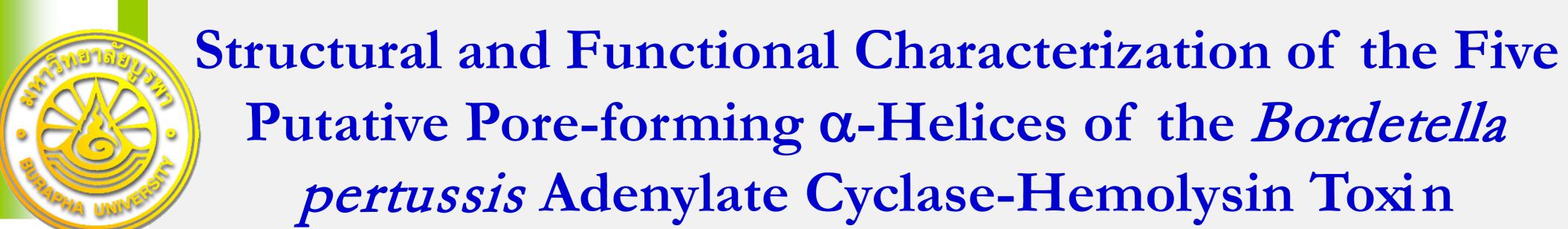
ข้อเสนอแนะ

- ควรพิสูจน์ยืนยันการเกิด Palmitoylation ที่ตำแหน่งกรดอะมิโน Lys⁹⁸³ ในส่วนของ acylation region ของโปรตีนกลายพันธุ์ CyaA-PF6His∆1091-1652 จากการทำงานของเอนไซม์ CyaCacyltransferase โดยวิธี Mass spectrometry ซึ่งยืนยันว่าการกลายพันธุ์ตัดต่อยืนไม่มี ผลกระทบต่อการเติมหมู่ palmitoyl group แต่อย่างใด
- 2. ควรทำโปรตีนให้บริสุทธิ์ผ่านการใช้เครื่อง High Performance Liquid Chromatography (HPLC) เพื่อเพิ่มความบริสุทธิ์ของโปรตีนที่ได้ และนำโปรตีนที่ผ่านการทำให้บริสุทธิ์แล้วไป ตกตะกอนโปรตีนคริสตัลและหาโครงสร้างสามมิติทาง Crystallography ต่อไป

เอกสารอ้างอิง

- Barry EM, Weiss AA, Ehrmann IE, Gray MC, Hewlett EL, Goodwin MS. *Bordetella pertussis* adenylate cyclase toxin and hemolytic activities require a second gene, *cyaC*, for activation. J Bacteriol 1991; 173: 720-726.
- Blenner MA, Shur O, Szilvay GR, et al. Calcium-induced folding of a beta roll motif requires C-terminal entropic stabilization. J Mol Biology 2010; 400: 244-256.
- Crowcroft NS, Pebody RG. Recent developments in pertussis. Lancet 2006; 367: 1926-1936.
- Francis DM, Page R. Strategies to optimize protein expression in *E. coli*. Curr Protoc Protein Sci Chapter 5: Unit 5. 2010; 24: 21-29.

- Glaser PH, Sakamoto J, Bellalou, et al. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of *Bordetella pertussis*. *EMBO J*, 1988; **7**(12): 3997-4004.
- Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during *Bordetella pertussis* infection *in vivo*. Infect Immun 1998; 66: 1718-1725.
- Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, Ladant D, Leclerc C. The adenylate cyclase toxin of *Bordetella pertussis* binds to target cells via the alpha (M) beta (2) integrin (CD11b/CD18). J Exp Med 2001; 193: 1035-1044.
- Hackett ML, Guo J, Shabanowitz, et al. Internal lysine palmitoylation in adenylate cyclase toxin from *Bordetella pertussis*. *Science*, 1994; 266(5184): 433-435.
- Osickova A, Osicka R, Maier E, Benz R, Sebo P. An amphipathic α-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 1999; 274: 37644-37650.
- Parkard ER, Parton R, Coote JG, Fry NK. Sequence variation and conservation in virulence-related genes of *Bordetella pertussis* isolates from the UK. J Med Microbiol 2004; 53: 355-365.
- Pojanapotha, P., Thamwiriyasati N., *et al. Bordetella pertussis* CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation." Protein Expr Purif 2011; 75(2): 127-132.
- Powthongchin B, Angsuthanasombat C. High level of soluble expression in *Escherichia coli* and characterisation of the CyaA pore-forming fragment from a *Bordetella pertussis* Thai clinical isolate. Arch Microbiol 2008; 189: 169-174.
- Sebo P, Ladant D. Repeat sequences in the *Bordetella pertussis* adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the *Escherichia coli* alphahaemolysin translocator. Mol Microbiol 1993; 9: 999-1009.
- Thamwiriyasati N, Powthongchin B, Kittiworakarn J, Katzenmeier G, Angsuthanasombat C. Esterase activity of *Bordetella pertussis* CyaC-acyltransferase against synthetic substrates: Implications for catalytic mechanism *in vivo*. *FEMS Microbiol Letters* 2010; 304(2): 183-190.
- Welch RA. Pore-forming cytolysins of Gram-negative bacteria. Mol Microbiol, 1991; 5: 521-528.


6. Output ที่ได้จากโครงการ

การนำเสนอผลงานวิจัยเผยแพร่แบบโปสเตอร์

- Yentongchai M., Angsuthanasombat C., Thamwiriyasati N. Generation of the Bordetella pertussis CyaA toxin fragment containing the hydrophobic region with an acylation site for structure-folding studies. Burapha University International Conference, Thailand: July 4th -5th, 2013.
- Thamwiriyasati N. & Angsuthanasombat C. Structural and Functional Characterization of the Five Putative Pore-forming α-Helices of the *Bordetella pertussis* AdenylateCyclase-Hemolysin Toxin. TRF academic meeting 56, Thailand: October 10th -12th, 2013.

ผลงานที่เผยแพร่/ตีพิมพ์ในวารสารทางวิชาการทั้งในระดับชาติและนานาชาติ

- Thamwiriyasati N., Yentongchai M., Sakdee S., Angsuthanasombat C. Hydrophobic region and acylation site of CyaA-hemolysin act as a minimal active fragment for membrane insertion and pore formation. Toxicon 2014. (Manuscript in progress)
- Juntapremjit S., Powtongchin B, Prangkio P, Shank L, Thamwiriyasati N,
 Angsuthanasombat C. Importance of glycine cluster in the putative transmembrane helix 2 of the *Bordetella pertussis* hemolysin toxin. Toxicon 2014. (Manuscript in progress)
- 3. Yentongchai M., Angsuthanasombat C., **Thamwiriyasati N**, Generation of the *Bordetella pertussis* CyaA toxin fragment containing the hydrophobic region with an acylation site for structure-folding studies. Proceeding in Burapha University International Conference, Burapha University, Thailand: July 4th -5th, 2013. HSP342-9: page 706-712.
- 4. Kurehong C., Powthongchin B., **Thamwiriyasati N.**, Angsuthanasombat C. Functional significance of the highly conserved Glu570 in the putative pore-forming helix 3 of the *Bordetella pertussis* haemolysin toxin. Toxicon 2011; 57: 897–903.
- 5. **นิรมล ธรรมวิริยสติ.** การปรากฏขึ้นอีกครั้งของโรคไอกรน: ปัญหาและแนวทางการควบคุม. วารสารธรรมศาสตร์เวชศาสตร์ ปีที่ 14 ฉบับที่ 2 ประจำเดือนเมษายน-มิถุนายน พ.ศ. 2557
- 6. **นิรมล ธรรมวิริยสติ.** โรคไอกรน: หนทางวิจัยสู่แนวทางการผลิตวัคซีน. จุลสารการวิจัยคณะสห เวชศาสตร์: โครงการเปิดบ้านสหเวชศาสตร์ วันที่ 16 สิงหาคม พ.ศ. 2556.

Niramon Thamwiriyasati¹ and Chanan Angsuthanasombat²

¹ Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand. email: niramon@buu.ac.th ² Laboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Unit, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.

Abstract

In this study, the recombinant plasmids encoding the CyaA hydrophobic region with an acylation site (CyaA-PF Δ 1091-1652) have been subcloned by restriction enzyme digestion and over-expressed in *Escherichia coli* as a ~70-kDa soluble protein. The particular gene of interest will be further investigated its functionality. When hemolytic activity of *E. coli* lysates containing soluble truncated toxin was tested against sheep erythrocytes, the importance of pore-forming α -helices with acylation sites, was revealed conceivably for hemolytic activity against sheep erythrocytes.

Introduction

CyaA is a virulence factor secreted from *B. pertussis*, a causative agent of whooping cough [1]. It is classified into the RTX (Repeat-in-ToXin) family due to its tandem repeated nonapeptides, Gly-Gly-X-Gly-X-Asp-XU-X, which are the putative calcium-binding sites [2].

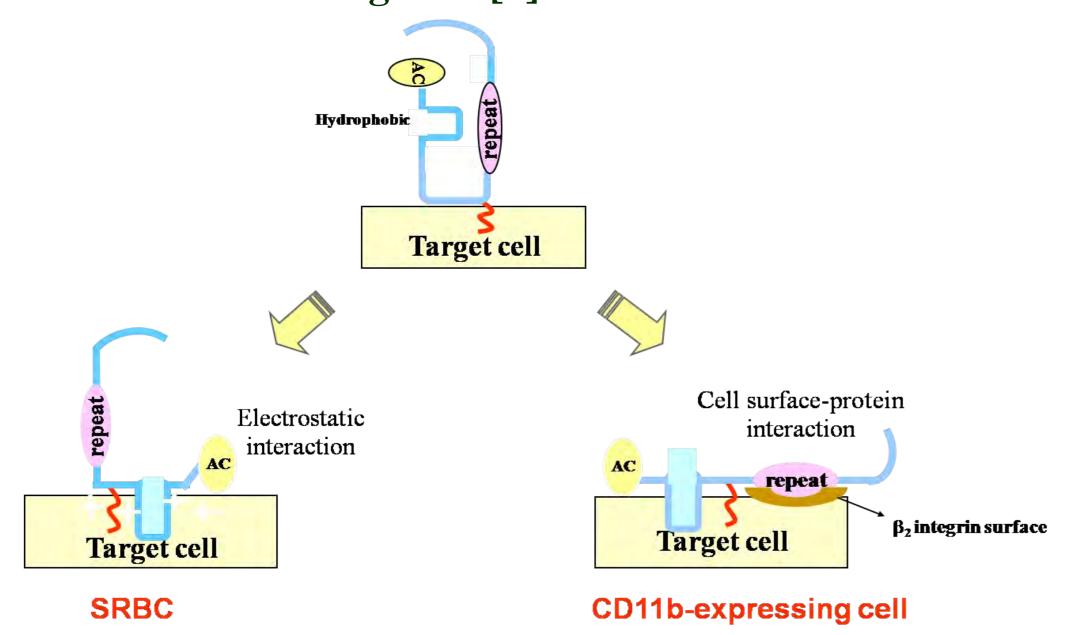


Fig 1. The interaction of RTX toxin between the target cells.

Objective & Methods

To pave the way for studying mechanisms of membrane insertion and lytic pore-formation, we decided to construct the recombinant clone of hydrophobic region together with an acylation site within the PF domain $(cyaA-PF\Delta 1091-1652)$ coexpressing with accessory cyaC gene.

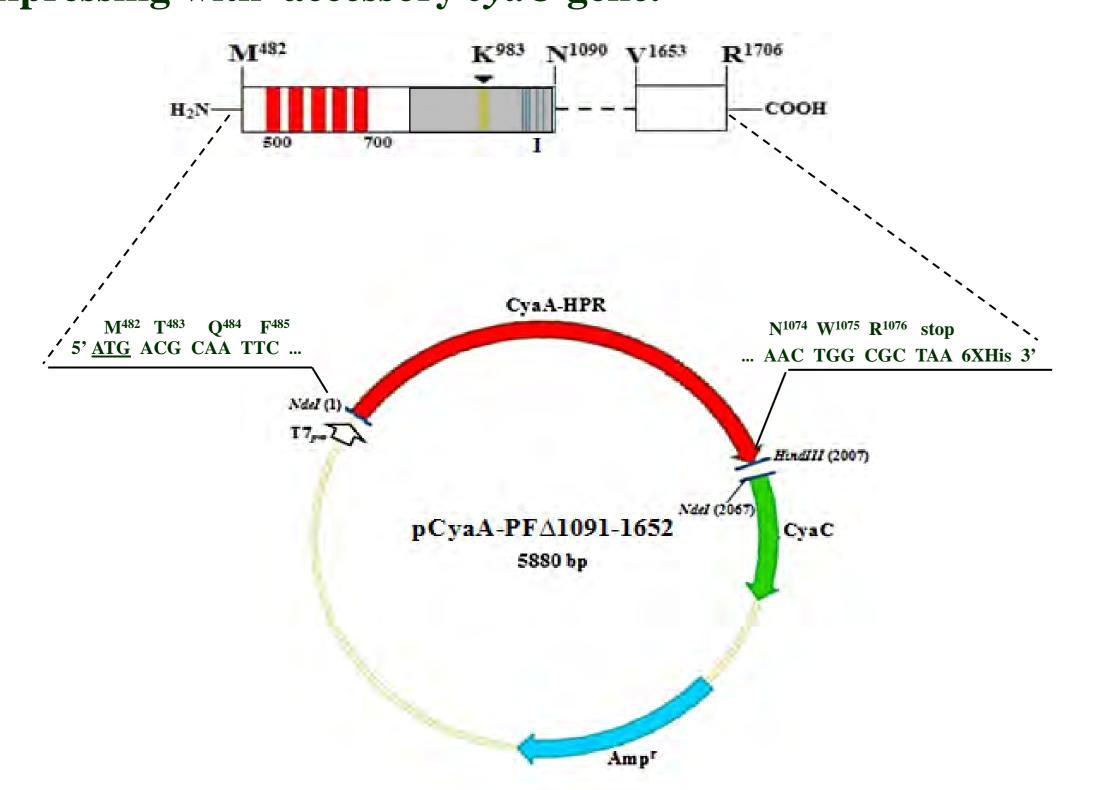


Fig 2. Schematic diagrams of the recombinant plasmids (pCyaAC-PF6HisΔ1091-1652) encoding the CyaA protein fragment.

Subcloning & Expression

The recombinant CyaA subdomain have been successfully generated by genetic approach and over-expressed as a soluble native fold.

Fig3. Protein Expression of pCyaAC6His and pCyaAC6His Δ1091-1652 (12% SDS gel)

Fig4. Western blot analysis by Anti-His monoclonal antibodies

Hemolytic activities

The hemolytic activity of the CyaA deleted fragment toxin was 2-fold reduced ($24\pm0.4\%$) when compared to the wild-type toxin ($45\pm0.5\%$).

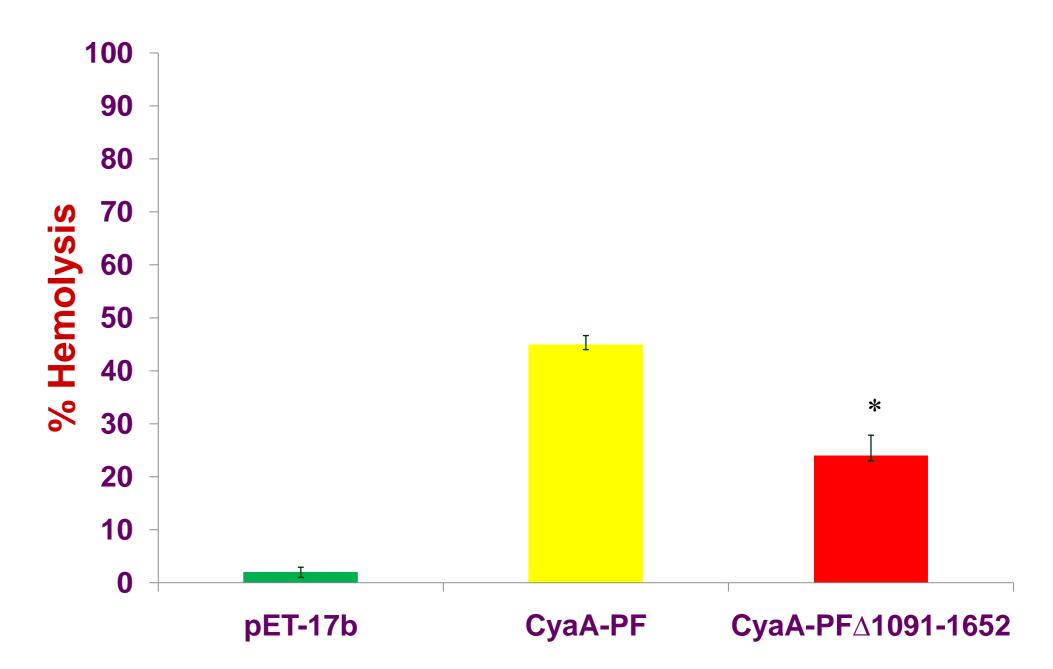


Fig 5. Hemolytic activities of wild-type and mutant CyaA-PF toxin against sheep erythrocytes.

Conclusion and applications

Hydrophobic region with an acylation site of CyaA toxin are essential for toxin activities. These results suggest that the structural integrity of CyaA toxin is necessary for pore formation and entry into target cells.

Acknowledgement

This work was generously supported by the Thailand Research Fund in cooperation with the Office of the Higher Education

References

- 1. Barry EM, Weiss AA, Ehrmann IE, Gray MC, Hewlett EL, Goodwin MS (1991) *Bordetella pertussis* adenylate cyclase toxin and hemolytic activities require a second gene, *cyaC*, for activation. J Bacteriol 173:720–726
- 2. Bauche C, Chenal A, Knapp O, Bodenreider C, Benz R, ChaVotte A, Ladant D (2006) Structural and functional characterization of an essential RTX subdomain of *Bordetella pertussis* adenylate cyclase toxin. Biol Chem 281:16914–16926

Generation of the Bordetella pertussis CyaA toxin fragment containing the hydrophobic region with an acylation site for structure-folding studies

Mattayaus Yentongchaia, Chanan Angsuthanasombath, and Niramon Thamwiriyasatia.

Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand Laboratory of Molecular Biophysic and Structural Biochemistry, Bacterial Protein Toxin Research cluster Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand

Introduction

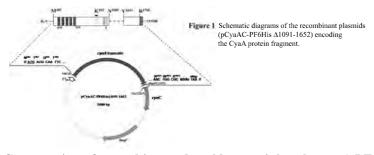
Adenylate cyclase - haemolysin toxin (CyaA) is a large protoxin (~177 kDa) which is a bifunctional toxin composed of two functional domains, a 400- residue N-terminal adenylate cyclase (AC) domain and a 1,306-residue C-terminal haemolysin or pore-forming (PF) domain [1]. The PF domain comprises four important parts; a hydrophobic region (residues 500-700), an acylation region (residues 800-1,000), a glycine-aspartic acid repeat region (residues 1,000-1,600) containing the nonapeptide repeats (Gly-Gly-X-Gly-X-Asp-Asp-X-Leu), and a C-terminal secretion signal. Toxin activation of CyaA via palmitoylation at Lys983 and calcium binding to the nonapeptide repeats are required for delivery of the AC domain into the target cell interior as well as for formation of lytic pores [2].

Previously, the CyaA pore-forming (CyaA-PF) domain expressed in *Escherichia coli* was shown to retain its hemolytic activity [3]. The preliminary results from hydropathy plot based on hydrophobicity analysis of an amino acid, together with mutagenesis studies, suggested that the transmembrane domain of CyaA is the hydrophobic region between residues 500 to 700 and contains a five putative αhelical bundle, but its structure of pore formation still remain to be investigated. To pave the way for studying mechanisms of membrane insertion and lytic pore-formation of the *B. pertussis* CyaA toxin.

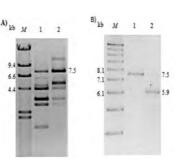
Experimental Design

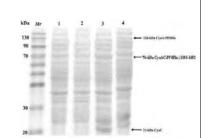
Plasmid DNA extraction by alkaline lysis method

Construction of recombinant plasmids by partial digestion (TatI) & complete digestion (AdeI)



Synthesized the blunt of recombinant plasmids by Klewnow fragment of DNA polymerase I


Toxin expression


Results & Discussion

Construction of recombinant plasmids containing the cyaA-PF fragment gene

The gene segment encoding the hydrophobic region with an acylation site (deleting aa 1091 to 1652) and 6His-tagged C-terminal end of CyaA was subcloned by restriction enzyme analysis. The pCyaAC-PF6His template was digested with one cut at the 1,824-bp cyaA site by TatI restriction enzyme (7.5-kb band) and 3,514-bp cyaA by AdeI restriction enzyme (5.9-kb band) (see Figure 2). To create blunt ends of double-stranded DNA, filling in recessed 3' ends of DNA fragments and digesting away protruding 3' overhangs were made by Klewnow fragment of DNA polymerase I. The digested plasmid was facilitated the self-ligation later on. The resulting 5,880-bp recombinant plasmid was named as pCyaA-PF6His∆1091-1652 (see Figure 1). The correct construct was verified by restriction analysis and DNA sequencing.

re 2 Restriction enzyme digestion for subcloning of pCyaAC-PF6His template

pCyaAC-PF6His ∆1091-1652

Expression of the CyaA truncated toxin

The recombinant plasmid was transformed into E. coli BL21(DE3)pLysS for expression the gene product. The ~70-kDa CyaA fragment with C-terminal 6His tag (calculated molecular mass = 68392.20 Da) was highly produced almost exclusively as a soluble protein compared with the wild type (Fig 3). The 21-kDa CyaCacyltransferase was also expressed in this condition.

Conclusion

In conclusion, this present report provides evidence that the gene segment encoding the hydrophobic region with an acylation site of CyaA toxin was successfully subcloned. The 70-kDa truncated CyaA toxin with 6His-tagged C-terminal end was well highly-expressed as a soluble protein in E. coli in order to further study its functionality.

ACKNOWLEDGEMENTS

This work was generously supported by the Thailand Research Fund in cooperation with the Office of the Higher Education Commission (to N.T., MRG5480261)

REFERENCES

- Ladant, D., and Ullmann, A. 1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7: 172-176
 Knapp, O., Maier, E., Polleichtner, G., Masin, J., Sebo, P., and Benz, R. 2003. Channel formation in model membranes by the adenylate
 cyclase toxin of Bordetella pertussis: Effect of calcium. Biochemistry 42: 8077-801.
 Powthongchin, B., and Angsuthanasombat, C. 2008. High level of soluble expression in Escherichia coli and characterisation of the CyaA
 pore-forming fragment from a Bordetella pertussis Thai clinical isolate. Arch Microbiol 189(2): 169-174.

Form of the paper: Research Article

Running title: truncated CyaA-hemolysin act as a minimal active fragment

Hydrophobic region and acylation site of CyaA-hemolysin act as a minimal active fragment for membrane insertion and pore formation

Niramon Thamwiriyasati $^{a,\xi,*}$, Mattayaus Yentongchai $^{b,c,\xi}$, Somsri Sakdee c , Chanan Angsuthanasombat c

^aDepartment of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand

^bDepartment of Medical Science, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand

^cLaboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand

Authors with equal contributions.

*To whom correspondence should be addressed (N. Thamwiriyasati)

E-mail: niramon@buu.ac.th

This manuscript contains

16 pages including 1 table and 3 figures.

ABSTRACT

Adenylate cyclase-hemolysin toxin (CyaA) is a virulence factor secreted from the etiologic agent of whooping cough, Bordetella pertussis. Previously, the recombinant CyaAporeforming (CyaA-PF) fragment was showed to be expressed in Escherichia coli as soluble protein, which found to cause cell lysis of sheep erythrocytes and the primarily results from hydropathyplot based on hydrophobicity analysis of an amino acid, together with mutagenesis studies, suggested that the transmembrane domain of CyaA-PF was the hydrophobic region between residues 500 to 700 and contained a five putative α-helical bundle. Howeverthe molecular mechanism of action of the CyaA-PF toxin is still not completely described, particularly the steps of toxin insertion and pore-formation in target cell membrane. Here, the recombination plasmid encoding the hydrophobic region with an acylation site (CyaAC-PF6His∆1091-1652) was constructed by the restriction enzyme. The mutant protein was overexpress in E.coliverified for toxin acylation as a 70-kDa soluble protein which cross reacted with Anti-his polyclonal antibody. When haemolytic activity of crude lysateof soluble mutant protein is tested against sheep erythrocytes and the DNA sequencing as the result are corresponding to the wild-type toxin. This present report that the recombinant CyaAC-PF6His∆1091-1652 protein comprising the hydrophobic region with an acylation site can be high-level soluble expressed as native-folded precursor that conserves at part of its functionality

Keywords: Acylation, Adenylate cyclase-hemolysin, Hemolytic activity. Hydrophobic region, Pore-forming toxin

Abbreviations:

AC (adenylate cyclase), CyaA (adenylate cyclase-hemolysin toxin), CyaA-PF (CyaA pore-forming),IPTG (isopropyl-β-D-thiogalactopyranoside), PMSF (phenylmethylsulfonylfluoride),RTX (Repeats-in-ToXin), SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis)

1. Introduction

Bordetella pertussis, a Gram-negativebacterium causing whooping cough in human, secretes a variety of toxins including the adenylate cyclase-haemolysin toxin (CyaA) which is important for respiratory tract infection(Wood and McIntyre, 2008). CyaA is large protein toxin (~177 kDa) that is a typical member of the pore-forming RTX cytotoxins (a subgroup of the Repeats in ToXin (RTX) protein family) which is composed of two functional domains, a 400-residue N-terminal adenylate cyclase (AC) domain and a 1,306-residue C-terminal haemolysin or pore-forming (PF) domain. The CyaA-PF domain (~126 kDa) is separated to four regions, N-terminal hydrophobic region, Acylation site, a Gly-Asp-rich nonapeptide-repeat region or Calcium-binding region and an C-terminal signal peptide sequence. However, these CyaA toxins require post-translational acylation at acylation site, e.g. palmitoylation at Lys⁹⁸³ by CyaC acyltransferase to turn into an active form (Hackett et al., 1994). Following secretion, the CyaA toxin is stabilized by extracellular calcium ions that act as a structural stabilizing bridge ina β-roll motif of the Gly-Asp-rich repeats(Pojanapotha et al., 2011).

CyaA toxin affects to human immune cell by binding to $\alpha_M\beta_2$ -intergrin receptor (CD11b/CD18) that has been represent on neutrophils and macrophages surface. Then it's translocating catalytic AC domain into the cytoplasm. Upon binding to the intracellular calmodulin, CyaA catalyses the production of supraphysiological level of cAMP and subsequently inhibits normal functions of phagocytes, leading to cell death by apoptosis(Cheung et al., 2008; Gueirard et al., 1998; Vojtova et al., 2006). However, CyaA toxic can against sheep erythrocytes, which lack the $\alpha_M\beta_2$ -intergrin receptor, suggesting a different mechanism of cell invasion(Osickova et al., 1999). Nevertheless, the 126-kDa CyaA-PF fragment (haemolysin domain) was found sufficient to cause haemolysis of sheep erythrocytes (Powthongchin and Angsuthanasombat, 2008), co-express with CyaC which acylation at acylation site *e.g.* palmitoylation at Lys⁹⁸³ of toxin protein to turn into activate for cytotoxicity and haemolytic activity (Hackett et al., 1994; Thamwiriyasati et al., 2010). However, the hydrophobic region of

cyaA was deleted resulting in toxin protein could not be pore-forming on lipid bilayer, that show the hydrophobic region was importantly pore-forming (Bellalou et al., 1990; Benz et al., 1994), but its structural basis of pore formation still remains to be investigated.

In our previous work, the hydrophobic region within the CyaA-PF domain has been suggested to be the membrane-inserting for pore-formation on the target cell membranes (Powthongchin and Angsuthanasombat, 2009). By using various algorithms of membrane topology predictions, the PF hydrophobic stretch covering residues 500-700 of CyaA was predicted to fold up into five potential helical transmembrane segments (Osickova et al., 1999; Powthongchin and Angsuthanasombat, 2009) and substitutions of single-proline which lead to disturb of secondary structure revealed the importance of putative transmembrane $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\alpha 5$ in pore formation. However, detailed understanding of the molecular mechanism of action of the CyaA toxin is still not completely described, particularly the steps of toxin insertion and pore-formation in target cell membrane.

In the present report, we decided to construct independently the CyaA pore-forming (CyaAC-PF6His Δ 1091-1652) fragment. The following CyaAC-PF6His Δ 1091-1652 encoding with *cyaC* that gene encoding the accessory protein required for toxin turn into activationwhereas the Gly-Asp-rich nonapeptide-repeat region (block II-V) were deleted. This work is first report that demonstrate the successful of the high-level soluble expression as native-folded precursor in *E.coli* of the recombinant CyaAC-PF6His Δ 1091-1652 protein that can be lytic the sheep erythrocytes as well as CyaA-PF6His.

2. Materials and methods

2.1. Plasmid DNA extraction by alkaline lysis method

A single colony of recombinant *E. coli* was incubated into Luria–Bertani mediumcontaining 100 µg/ml ampicillin for overnight at 37°C.Cell was collected by centrifugation at 12,000 g, suspend in ice-cold Solution I, lysis cell by adding Solution II and Solution III was used to neutralize. After 10-minincubation on ice, the precipitated chromosomal DNA was separated by centrifugation. Plasmid DNA was conserved from supernatant by adding two volumes of isopropanol and centrifugation. Then the pellet was washed with 70% ethanol, air dried and suspended in 20 µl of sterile water.

2.2. Construction of recombinant plasmids by restriction enzyme

The pCyaAC-PF6His plasmid encoding both the ~126-kDa CyaA-PF fragment with 6His tag and the ~21-kDa CyaC acyltransferase under control of the T7-promoter was used as a template. The recombinant plasmid encoding *cyaA*was deleted gene (aâ 1091-1652) which encoding Gly-Asp-rich nonapeptide-repeat region (block II-V)by partial digested with 1 μl of 0.5U/μl*Tat*I(Fermentas Life Sciences) and complete digestion with 1 μl of 1-2 U/μl *Ade*I (Fermentas Life Sciences), and follow bysynthesized the blunt end by Klewnow fragment of DNA polymerase I(Amersham Pharmacia Biotech)to facilitate self-ligation later on. Selected the recombinant DNA clones were first verified by restriction endonuclease digestion and then identified by DNA sequencing, using 1st BASE DNA Sequencing service(First BASE Laboratories Sdn Bhd, Malaysia).

2.3. Toxin expression and Western blotting

The CyaA-PF6His wild-type and CyaAC-PF6HisΔ1091-1652 mutatedwere retransformed into *E.coli*strain BL21(DE3)pLysS for protein expression which culturingovernight of both selected clones were grow in Luria–Bertani medium containing 100 mg/ml ampicillin at 30°C, following by addingIPTG (isopropyl-b-D-thiogalactopyranoside) at final concentration of 0.1 mM for inducing toxin expression when the cell culture at OD600 reached ~0.6 and then incubation was continued for 6 h. *E.coli* cell, which expressed the toxin was harvested via centrifugation and re-suspended in50 mM Tris–HCl (pH 8.0) containing 5 mM CaCl₂ and 1 mM PMSF, after that disrupted cell in a French Pressure Cell at 10,000 psi. After centrifugation at 12,000g for 20 min at 4°C, total toxin proteins in soluble crude lysates were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and their concentrations were determined byusing the Bradford-based protein microassay (Bio-Rad,USA), with bovine serum albumin (Sigma–Aldrich, USA) as a standard.

Toxin protein separated by SDS-PAGE were transferred onto a nitrocellulose membrane. Western blot analysis was performed to identity of the CyaA-PF6His wild-type and its mutant proteins by probing with anti-his polyclonal antibody (1:2,000 dilution) which is specific to the amino acid of histidine epitope of CyaA, that toxin proteins were reveal by soaking in carbonate buffer (100 mM NaHCO₃, 1mM MgCl₂, pH 9.8) that include developer solution [5-bromo-4-chloro-3-indolylphosphate/nitroblue tetrazolium (BCIP/NBT)], until the band of toxin protein is appeared.

2.4. Haemolytic activity assay

The haemolytic activity assay was performed by incubating 800 μl of sheep erythrocyte(5x10⁸ cells/ml) which were suspended in buffer (5 mM CaCl₂, 150 mM NaCl 20 mM and Tris-HCl, pH 7.4,), with 200 μl (~1 mg total proteins) of soluble *E. coli* lysate containing~10 μg CyaAC-PF6HisΔ1091-1652mutated then the mixtures were incubated at37°C for 5 h. Following by centrifugation at 12,000g for 2 minfor unlysed erythrocyte separationtesand then the supernatant have been containing the released haemoglobin was measured by spectrophotometer at OD₅₄₀ and identical amount of sheep erythrocyte incubated with 0.1% Triton-X 100 was used as the positive control which determined as 100% haemolysis. Other while the same amount of total protein of soluble *E. coli* lysate containing pET-17b acted as the negative control.All of the samplewere tested in triplicate of three independent experiments. The percentage of haemolysis for each toxin sample was calculated by {[OD₅₄₀ sample – OD₅₄₀ negative control]/[OD₅₄₀ of 100% haemolysis – OD540 negative control× 100]} and Student's *t* test was used to determine significance levels between the wild type and mutants.

3. RESULTS AND DISCUSSION

3.1. Construction of recombinant plasmids containing the cyaA-PF fragment gene

The *cyaA* gene segment of pCyaAC-PF6His which encoding the hydrophobic region with an acylation site (deleting aâ 1091 to 1652) and 6His-tagged C-terminal end of CyaA was constructed by restriction enzyme analysis. The pCyaAC-PF6His was used as a template to digested with single cut (partial digestion) at the position 1,824-bp *cyaA* by *Tat*I restriction enzyme (7.5-kb band) and 3,514-bp *cyaA* by *Ade*I restriction enzyme (5.9-kb band) (see Figure 1). Follow bycreate blunt ends of double-stranded DNA to facilitated the self-ligation, filling in recessed 3' ends of DNA fragments and digesting even projecting 3' overhangs what were made by Klewnow fragment of DNA polymerase I. The resulting 5,880-bp recombinant plasmid was named as pCyaA-PF6HisΔ1091-1652 (see Figure 2). The correct construct was verified by restriction analysis and DNA sequencing.

3.2. Expression of the recombinant CyaA toxin and Western blot

The recombinant plasmid was retransformed into *E. coli* BL21(DE3)pLysS for expression the gene product, high-level production of the target protein from recombinant plasmid, pCyaA-PF6HisΔ1091-1652 was success after 6 h-induction with0.1 mM IPTG at 30°C(Powthongchin and Angsuthanasombat, 2008). SDS-PAGE was used to perform the toxin protein revealed that heavily stained bands of ~70-kDa CyaA fragment with C-terminal 6His tag as a soluble protein compared with the wild type and 21-kDa CyaC-acylatransferase was expressed as well as pCyaA-PF6His wild-type (Fig 3*left*. lane 2, lane 3)which CyaC was used to acrylate at acylation site *e.g.* palmitoylation at Lys⁹⁸³ of toxin protein to turn into activate for cytotoxicity and haemolytic activity (Hackett et al., 1994; Thamwiriyasati et al., 2010) and the palmitoylation at Lys⁹⁸³ would be act as membrane anchor facilitated to attachment the target cells (Masin et al., 2005). However both proteins were absent for *E.coli* cell harbouring the pET-17b vector (Fig 3*left*. lane 1). The expression protein was found to correspond size with the

calculated molecular mass from Met^{482} - Arg^{1706} including Asn^{1090} - Val^{1653} of CyaA-PF6His Δ 1091-1652 by using Compute pI/MW from Gene Data Base of Bioinformatics, Theoretical pI/Mw of CyaA-PF6His Δ 1091-1652 was 68392.20 Da.

The both CyaA-PF6His Δ 1091-1652 mutated and CyaA-PF wild type toxin proteins were determined by Anti-his monoclonal antibodies, which recognized the 6His tag at C-terminal end (Fig 3 *right*. lane 2, lane 3), whereas absented for *E.coli* cell harbouring the pET-17b vector (Fig 3 *right*. lane 1).

3.3. Haemolytic activity of the recombinant CyaA toxin

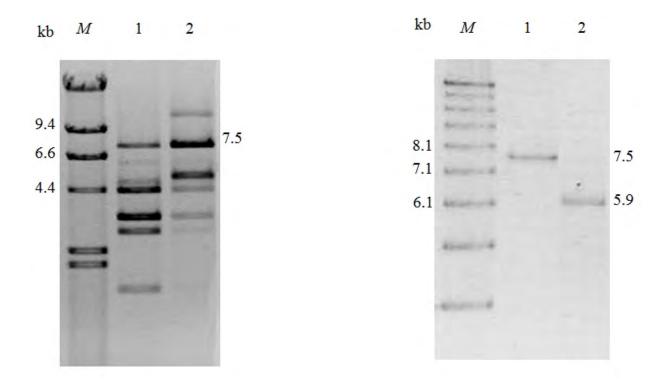
The crude solution was extracted form E.coli cell co-expression CyaA-PF6His wild type or CyaA-yaA-PF6HisΔ1091-1652 mutated with CyaC used to examined for their relation heamolytic activity against to sheep erythrocyte. From comparing the heamolysis data between CyaA-yaA-PF6His∆1091-1652 and CyaA-PF6His wild typeindicated that at the concentration of ~1 mg, the CyaA in total protein was about 10 µg (Table. 1). The haemolystic activity of CyaA-PF6His∆1091-1652 mutation that could be lyse sheep red blood cells was 24±1% which was less than CyaA-PF6H wild type is $45\pm0.5\%$ in significant(p-value ≤ 0.01). This result showed that the deleted RTX region affected to the decreasing of sheep red blood cell because the repeated (RTX) region containing the nine repeated amino acid arrangement of Gly-Asp rich repeat region bound to calcium, leading to the conformational change from Beta-roll structure turn into the functional proteins(Pojanapotha et al., 2011) and also bound to CD11b/CD18 integrin receptor on the white blood cell surface which caused intoxication process or toxin in cells (El-Azami-El-Idrissi et al., 2003). However, the increasing concentration of toxin protein was about ~2 mg showed that the percentage of CyaA-PF6His∆1091-1652 mutatedtoxic protein also increased directly double proportion (44±0.8%) whereas the increasing percentage of CyaA-PF6His wild type was only 65±1.1% (Table. 2), which did not directly proportion to protein volume.

According to the CyaA-PF6His Δ 1091-1652 mutatedtoxin protein volume continuously increased, the heamolytic activity of sheep red blood cell was as well as CyaA-PF wild type, this result suggest that the RTX region of CyaA toxic protein could be bind to target cell specificity, preliminary and when the concentration of toxin was increased, its could be bind to cell surface by using Acyl group act as the anchor and induced hydrophobic region inserted into the target cells, leading to oligomerisation process, which could increase the leaks on the cell surface caused cell apoptosis (Benz et al., 1994; Masin et al., 2005). In other words the hemolytic activity mechanism of CyaA toxic protein could be occur by using the insertion of hydrophobic region mechanism and binding to the target cells with acyl group.

In conclusion, this present report provides evidence that the gene segment encoding the hydrophobic region with an acylation site of CyaA toxin was successfully subcloned. The ~70-kDa truncated CyaA toxin with 6His-tagged C-terminal end was well highly-expressed as a soluble protein in *E. coli* in order to further study its functionality.

ACKNOWLEDGEMENTS

This work was generously supported by the Thailand Research Fund in cooperation with the Office of the Higher Education Commission (to N.T., MRG5480261) and Royal Golden Jubilee Ph.D. Scholarships (to N.T. and M.Y.)


Reference

- Bellalou, J., Sakamoto, H., Ladant, D., Geoffroy, C., Ullmann, A., 1990. Deletions affecting hemolytic and toxin activities of *Bordetella pertussis* adenylate cyclase. Infection and immunity 58, 3242-3247.
- Benz, R., Maier, E., Ladant, D., Ullmann, A., Sebo, P., 1994. Adenylate cyclase toxin (CyaA) of *Bordetella pertussis*. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. The Journal of biological chemistry 269, 27231-27239.
- Cheung, G.Y., Dickinson, P., Sing, G., Craigon, M., Ghazal, P., Parton, R., Coote, J.G., 2008.

 Transcriptional responses of murine macrophages to the adenylate cyclase toxin of Bordetella pertussis. Microbial pathogenesis 44, 61-70.
- El-Azami-El-Idrissi, M., Bauche, C., Loucka, J., Osicka, R., Sebo, P., Ladant, D., Leclerc, C., 2003. Interaction of *Bordetella pertussis* adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. The Journal of biological chemistry 278, 38514-38521.
- Gueirard, P., Druilhe, A., Pretolani, M., Guiso, N., 1998. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during *Bordetella pertussis* infection in vivo. Infection and immunity 66, 1718-1725.
- Hackett, M., Guo, L., Shabanowitz, J., Hunt, D.F., Hewlett, E.L., 1994. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266, 433-435.
- Masin, J., Basler, M., Knapp, O., El-Azami-El-Idrissi, M., Maier, E., Konopasek, I., Benz, R., Leclerc, C., Sebo, P., 2005. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry 44, 12759-12766.
- Osickova, A., Osicka, R., Maier, E., Benz, R., Sebo, P., 1999. An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate

- cyclase toxin and modulates formation and cation selectivity of its membrane channels. The Journal of biological chemistry 274, 37644-37650.
- Pojanapotha, P., Thamwiriyasati, N., Powthongchin, B., Katzenmeier, G., Angsuthanasombat, C., 2011. *Bordetella pertussis* CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation. Protein expression and purification 75, 127-132.
- Powthongchin, B., Angsuthanasombat, C., 2008. High level of soluble expression in Escherichia coli and characterisation of the CyaA pore-forming fragment from a *Bordetella pertussis* Thai clinical isolate. Archives of microbiology 189, 169-174.
- Powthongchin, B., Angsuthanasombat, C., 2009. Effects on haemolytic activity of single proline substitutions in the *Bordetella pertussis* CyaA pore-forming fragment. Archives of microbiology 191, 1-9.
- Thamwiriyasati, N., Powthongchin, B., Kittiworakarn, J., Katzenmeier, G., Angsuthanasombat, C., 2010. Esterase activity of *Bordetella pertussis* CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. FEMS microbiology letters 304, 183-190.
- Vojtova, J., Kamanova, J., Sebo, P., 2006. *Bordetella* adenylate cyclase toxin: a swift saboteur of host defense. Current opinion in microbiology 9, 69-75.
- Wood, N., McIntyre, P., 2008. Pertussis: review of epidemiology, diagnosis, management and prevention. Paediatric respiratory reviews 9, 201-211; quiz 211-202.

Figure Legends

Fig. 1. Restriction enzyme digestion for construction of pCyaAC-PF6His template: Agarose gel electrophoresis (Ethidium bromide 0.8%) analysis of partial digestion by TatI. The partial digest of pCyaAC-PF6His with one cut were used by TatI 1U (lane 1) and 0.5U/120 ng DNA (lanes 2). M represents $\lambda/HindIII$ digested DNA markers (left), while the analysis of complete digestion by AdeI. The purified 7.5-kb products of TatI partial digests were used as a template (lane 1), and subsequently digested by AdeI(lanes 2). M represents $\lambda/BstEII$ digested DNA markers,(right).

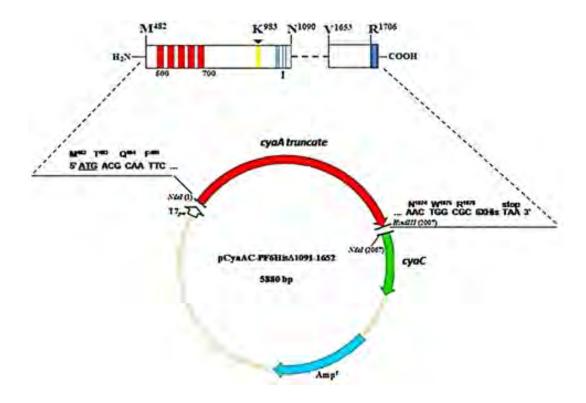
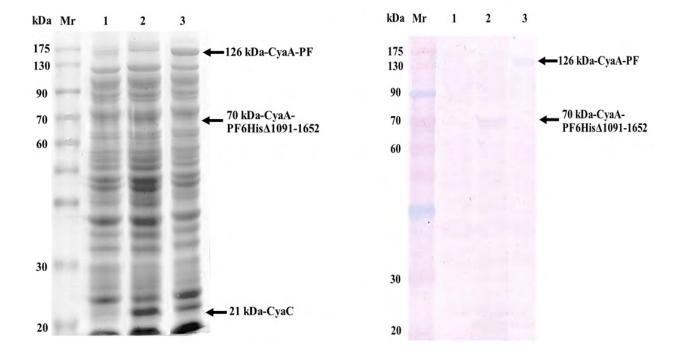



Fig. 2. Schematic diagrams of the recombinant plasmids (pCyaAC-PF6His Δ 1091-1652) encoding the CyaA protein fragment. Transcription of the corresponding genes is under control of the T7 promoter (T7pro) of the pET-17b expression vector (thin line). The arrows indicate the transcriptional direction of the corresponding promoter and genes. The nucleotide and deduced amino acid sequences at the 5'- and 3'-ends of the structural gene segment of cyaA-PF6His(2,067 bp) and cyaC (558 bp) are shown, respectively, with the underlined nucleotides representing the start codon. Amp^r indicates the ampicillin resistance gene. For clarity, only the restriction endonuclease sites mentioned in the text are shown. The expressing CyaA-PF6His deletion fragment is shown at the top.

Fig 3. SDS-PAGE analysis (Coomassie blue-stained 10% gel) of *E. coli* lysates expressing the 126-kDa CyaA-PF protein from pCyaAC-PF6His and the 70-kDa CyaA-PF6His truncate fragment from pCyaAC-PF6HisΔ1091-1652, (*left*).*Mr* represents standard protein markers. *E. coli* cells harbouring the pET-17b vector were used as a negative control (lane 1). Lanes 2, 3 and 4 are lysates extracted from *E. coli* cells harbouring uninduced, induced pCyaAC-PF6HisΔ1091-1652, and pCyaAC-PF6His, respectively. Western blot analysis of a probed with anti-His monoclonal antibodies specific to the His-tag of the C-terminal end of toxin protein, *Mr* represents standard protein markers (right).

Table 1. Haemolytic activities of CyaAC-PF6His and CyaAC-PF6His∆1091-1652 toxin protein on sheep erythrocyte.

Toxin protein ^a	Haemolytic Activity b	
	(% haemolysis ±SEM)	
CyaA-PF wild type	45±0.5%	
pCyaAC-PF6His∆1091-1652	24±1%*	

SEM Standard errors of the mean

^a Soluble fraction of *E. coli* BL21(DE3)pLysS lysate containing tested toxins (~10 μg) was used in haemolytic activity assays

^b Percent haemolysis was calculated as described in Materials and Methods. The same amount of total proteins in the soluble fraction of $E.\ coli$ lysate containing the pET-17b vector, which was used as a negative control, gave <1% haemolysis. The values were averaged from three independent experiments performed in duplicates

^{*}Represent the haemolytic activity of the mutants that are significantly different (p-value ≤ 0.01) from that of the wild-type

Form of the paper: Article

Running Title: Functional role of $\alpha 2$ -glycine cluster in CyaA-PF

Importance of glycine cluster in the putative transmembrane helix 2 of the *Bordetella pertussis* hemolysin toxin

Sirikarn Juntapremjit $^{a\zeta}$, Busaba Powtongchin $^{b\zeta}$, Panchika Prangkio c , Lalida Shank c , Niramon Thamwiriyasati d and Chanan Angsuthanasombat a*

^aLaboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand

^bDepartment of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakornpathom, Thailand

^cDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

^dDepartment of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand

E-mail: chanan.ang@mahidol.ac.th

Authors with equal contributions.

^{*}To whom correspondence should be addressed (C. Angsuthanasombat)

ABSTRACT

Adenylate cyclase-haemolysin toxin (CyaA) is one of the major virulence factors of *Bordetella pertussis* causing whooping cough in human. We earlier showed that the two putative transmembrane helices (α2 and α3) in the hemolysin or pore-forming domain (CyaA-PF) are important for the lysis of sheep erythrocytes. In this study, PCR-based alanine substitutions were employed to investigate a role in hemolytic activity of the series of four glycine residues (Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴) lying on one face of the relatively hydrophobic α2 (529-550). Upon IPTG induction, all the mutant CyaA-PF toxins were expressed in *Escherichia coli* as a 126-kDa soluble protein at levels comparable to the wild-type toxin. A marked reduction in sheep erythrocyte hemolysis was observed for three CyaA-PF mutants, *i.e.* G530A, G533A and G537A, but not G544A, suggesting an important role of the glycine cluster (Gly⁵³⁰_Gly⁵³³_Gly⁵³⁷) that is located at the N-terminal part of helix 2. Molecular modeling and docking studies of the α2-loop-α3 hairpin put forward that this cluster is conceivably involved in driving and stabilizing the helix association.

Keywords: Adenylate cyclase-haemolysin, *Bordetella pertussis*, hemolytic activity, pore-forming toxin, helix association

1. Introduction

Adenylate cyclase toxin-haemolysin (CyaA) is a virulence factor of *Bordetella pertussis*, causing whooping cough in humans (Carbonetti et al., 2005). CyaA is classified into the **Repeat** in **ToX**in (RTX) family which contains 1,706 amino acids consisting of two functional domains: a 400-residue N-terminal adenylatecyclase (AC) and a 1,306-residue C-terminal hemolysin or poreforming (PF) domain (Fig. 1A). The PF domain comprises 4 distinct regions: a hydrophobic region, an acylation region, a calcium-binding region contains a Gly-Asp-rich-repeat and C-terminal secretion signal (Bellalou et al., 1990; Ehrmann et al., 1992; Welch, 1991). Inactive CyaA becomes an active form after pamitoylation at conserved Lys⁹⁸³ by CyaC acyltransferase (Hackett et al., 1994). In addition, calcium ion is importance for structural stability of CyaA by attach to the space in the β-roll structure of the Gly-Asp-rich-repeats region (Chenal et al., 2009; Knapp et al., 2003; Pojanapotha et al., 2011; Rose et al., 1995).

CyaA binds specifically to target cells through the $\alpha_M\beta_2$ -integrin receptor (CD11b/CD18) (El-Azami-El-Idrissi et al., 2003). Upon binding, CyaA toxin translocated AC domain into the target cell cytoplasm that causes the uncontrollable production of cAMP, leading to apoptotic cell death (Cheung et al., 2008). However, CyaA also functions as a hemolysin against cells lacking of the CD11b/CD18 receptor such as sheep erythrocytes (Ehrmann et al., 1992; Powthongchin and Angsuthanasombat, 2008; Sakamoto et al., 1992). This hemolytic activity has been demonstrated that a 126-kDa truncated CyaA toxin (CyaA-PF toxin) is independent from the N-terminal AC domain (Powthongchin and Angsuthanasombat, 2008). Nevertheless, in the details of structure-function studies of this toxin, it still remains under investigation.

From our earlier studies, we successfully expressed as a soluble CyaA-PF toxin in *E. coli* (Powthongchin and Angsuthanasombat, 2008). In addition, we used different transmembrane-finding algorithms to predict a helical transmembrane topology within the hydrophobic region of CyaA. These predictions resulted in five putative α -helices ($\alpha 1_{500-522}$, $\alpha 2_{529-550}$, $\alpha 3_{570-593}$, $\alpha 4_{602-627}$ and $\alpha 5_{678-698}$. Furthermore, single proline substitution for alanine in each putative helix revealed that helix $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\alpha 5$, is important for hemolytic activity, particularly for the

transmembrane hairpin (α2-loop-α3), has been proposed to be pore-lining segments that could span the lipid bilayers in which putative helix a3 is aligned to face of the channel lumen and responds in ion conduction whereas hydrophobic helix α2 interacts to the lipid membrane and may be involved in toxin oligomerization (Fig. 1C) (Powthongchin and Angsuthanasombat, 2009). Furthermore, the contribution of charged residues in the putative helix $\alpha 3$, particularly the highly conserved Glu⁵⁷⁰ which is critical for hemolytic activity and possibly serves as a general pore-lining residue involved in ion conduction (Kurehong et al., 2011). For the putative helix α2 (A⁵²⁹GGFGVAGGAMALGGGIAAAVG⁵⁵⁰), it contains relatively hydrophobic side chains. Interestingly, the series of four glycine residues (Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴) lying on one face of helix as shown in the helical wheel projections (Fig. 1B), this could imply the structure role in toxicity of the toxin. Here, we employed the PCR-based alanine substitutions to investigate a possible role in hemolytic activity of these four glycine residues. The results revealed that glycine cluster (Gly 530 _Gly 533 _Gly 537) which located at the N-terminal part of helix $\alpha 2$ is important for hemolytic activity of the toxin. Furthermore, we also present a structural model by using homology-based modeling and automated protein docking web server, supporting that glycine cluser is possibly involved in driving and stabilizing the helix association within the lipid bilayers.

2. Materials and methods

2.1. Construction of mutant plasmids by PCR-based directed mutagenesis

The pCyaAC-PF recombinant plasmid encoding both the 126-kDa CyaA-PF toxin fragment and 21-kDa CyaC acyltransferase which for the activation of toxin (Powthongchin and Angsuthanasombat, 2008) was used as a template for single alanine substitutions. The mutagenic primers (see Table 1) designed according to the *cyaA-PF* gene sequence (GenBank accession no. EF_595960). All mutant plasmids were generated by PCR-based directed mutagenesis using a Phusion® High-Fidelity DNA polymerase (Finnzymes, Finland), following the procedure of the QuickChange Mutagenesis Kit (Stratagene, USA). The PCR products were treated by *DpnI* and then transformed into *E. coli* strain JM109. Selected clones with the required mutation were first identified by restriction endonuclease digestion of the plasmids and verified by DNA sequencing (Macrogen, Inc., Korea).

2.2. Expression and preparation of toxins

The CyaAC-PF wild-type and its mutant were re-transformed into *E. coli* strain BL21 (DE3)pLysS for protein expression at 30°C in Luria-Bertani medium containing 100 μg/ml ampicillin and 34 μl/ml chloramphenical. When OD₆₀₀ of the culture reached 0.5-0.6, protein expression was induced with IPTG (isopropyl-b-D-thiogalactopyranoside) at final concentration of 0.1 mM, and incubation was continued for 6 h. *E. coli* cells, which expressed the toxins as soluble proteins, were harvested by centrifugation and resuspended in 50 mM Tris–HCl (pH 8.0) containing 5 mM CaCl₂ and 1 mM PMSF (phenylmethylsulfonylfluoride), and disrupted in a French Pressure Cell at 10,000 psi. After centrifugation at 12,000g for 20 min at 4°C, total soluble proteins in the supernatant were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and concentrations were determined by Bradford-based protein microassay (Bio-Rad, USA), with bovine serum albumin (Sigma–Aldrich, USA) as a standard.

Western blot analysis was performed by probing with the 9D4 anti-RTX monoclonal antibody to the blotted proteins on the membrane (Listlabs, USA, 1:2000 dilution). The immunocomplexes were detected with alkaline phosphatase-conjugated goat anti-mouse IgG

antibody (Pierce, USA,1:20,000 dilution) as described previously (Powthongchin and Angsuthanasombat, 2008).

2.3. Haemolytic activity assay

Haemolysis assay was performed against sheep erythrocytes. The 1.5-ml microcentrifuge tube contains 200 μl (~1 mg total proteins) of soluble *E. coli* lysate containing ~ 10 μg CyaA-PF toxin (estimated from densitometry of the band intensity compared to the standard protein markers in the staining protein gel with coomassie blue, see Fig. 2) and 800 μl of sheep erythrocyte suspension (5x10⁸ cells/ml) in Tris-buffer saline (150 mM NaCl, 2 mM CaCl₂, 20 mM Tris–HCl, pH 7.4). The mixture solution was incubated at 37 °C for 5 h and removed the unlysed erythrocytes by centrifugation at 12,000g for 2 min. The released hemoglobin in supernatant was measured by spectrophotometer at OD₅₄₀. The same amount of total proteins in the soluble lysate containing the pET-17b vector was used as a negative control while 100% hemolysis (regarding as a positive control) was obtained by lysing the erythrocytes with 0.1% Triton-X 100. Percent hemolysis for each toxin sample was calculated by {[OD₅₄₀ sample - OD₅₄₀ negative control]/[OD₅₄₀ of 100% hemolysis - OD₅₄₀ negative control]}x 100. All samples were tested in triplicate for three independent experiments. Student's *t* test was performed to determine significance levels between mutants and the wild-type.

2.4. Amino acid sequence alignment

The thirteen amino acid sequences from different related pore-forming RTX cytotoxins [CyaA from *B. pertussis* (*Bpt-CyaA*, gb:CAE41066); HlyA and EhxA from *E. coli* (*Ecl-HlyA*, gb:ABE10329 and *Ecl-EhxA*, gb:BAA31774); RtxA from *Moraxella bovis* (*Mbv-RtxA*, gb:AKK84651) and *Kingella kingae* (*Kkg-RtxA*, gb:ABK58601); *AqxA* from *Actinobacillus equuli* (*Aeq-AqxA*; gb:AMM45569); *ApxIA*, *ApxIIA* and *ApxIIIA* from *Actinobacillus pleuropneumoniae* (*Apr-ApxIA*, gb:AAL55666; *Apr-ApxIIA*, gb:AAU84700 and *Apr-ApxIIIA*, gb:CAA48711); LktA from *Manheimia haemolytica* (*Mhm-LktA*, gb:AAL13281); *Manheimia glucosidal* (*Mgc-LktA*, gb:AAG40306) and *Manheimia ruminalis* (*Mrm-LktA*, gb:AAR09165);

LtxA from *Aggregatibacter actinomycetemcomitans* (*Aat-LktA*, gb:CAA34731)] were aligned by using ClustalW program. Alignment was then manually adjusted to improve the overall alignment. The degree of homology among the multiple sequence alignment was defined by the different colored shadings.

2.5. Homology-based modeling and the docking prediction of the α2-loop-α3 hairpin

Because of no three-dimensional structure determined for CyaA toxin, we built a plausible 3D model of transmembrane hairpin structure (α2-loop-α3) in the hydrophobic region of CyaA-PF by using homology-based modeling. The best template protein was the crystal structure of bovine rhodopsin (Protein Data Bank code: 1gzm) which was selected based on high amino acid sequence homology to the hydrophobic region of CyaA-PF. The model was constructed by using SWISS-MODEL program. The refinement via energy minimization was performed by using GROMOS96 simulation software. To predict formation of α2-loop-α3 hairpin oligomeric complex, ClusPro2.0, an automated protein docking web server for the prediction of protein–protein interactions (http://nrc.bu.edu/cluster) (Comeau et al., 2004a, b; Kozakov et al., 2006).

3. Results and discussion

3.1. Expression of single-alanine substituted CyaA-PF mutants

To investigate a possible role of glycine residues in relatively hydrophobic helix $\alpha 2$, we have made single alanine-substitutions at the series of four glycine residues (Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴) which are presented on the same face of α -helix, as schematized in the wheel diagram of Figure 1B. The wild-type recombinant plasmid (pCyaAC-PF) contains gene segments encoding both 126-kDa truncated CyaA toxin and 21-kDa CyaC-acyltransferase which for the toxin activation, was used as a template. Upon IPTG induction, all four mutants (G530A, G533A, G537A and G550A) were successfully expressed in E. coli as a 126-kDa soluble protein comparable to the wild-type when co-expressed with CyaC-acyltransferase #Fig. 2). This result indicates that these alanine substitutions did not effect to the folding of the mutant toxins, as protein misfolding leading to the formation of the insoluble protein aggregate. To confirm the identity of the CyaA-PF wild-type and its mutants, we performed western blot analysis by probing with the 9D4 anti-RTX monoclonal antibody specific to the RTX epitope of CyaA toxin. The result shows that the wild-type and all mutants were recognized by anti-RTX monoclonal antibodies (data not shown). Moreover, several smaller immune-reactive bands were also detected in both wild-type and all mutants (data not shown), suggesting the soluble CyaA-PF toxin was sensitive to proteolytic degradation (Powthongchin and Angsuthanasombat, 2008). น่าจะเอาออกเพราะเรา ไม่ได้โชว์ผล เหมือนเราพูดซ้ำเปเปอร์เดิม

3.2. Haemolytic activity of the single-alanine-substituted CyaA-PF mutants

To determine mutational effects on their hemolytic activity of the toxin, the soluble crude lysate *E. coli* expressing CyaA-PF mutants were incubated with sheep erythrocytes as shown in Fig. 3. The result revealed that the G530A, G5533A and G537A mutant toxins exhibited a drastic and significant (p < 0.05) reduction in haemolytic activity to 4.7 ± 0.2 , 6.5 ± 0.3 and $4.1 \pm 0.2\%$, respectively, when compared to $73.8 \pm 1.1\%$ of the wild-type (~90% decreased from the control wild-type value). It suggested that single-alanine substitution of these three glycine residues with

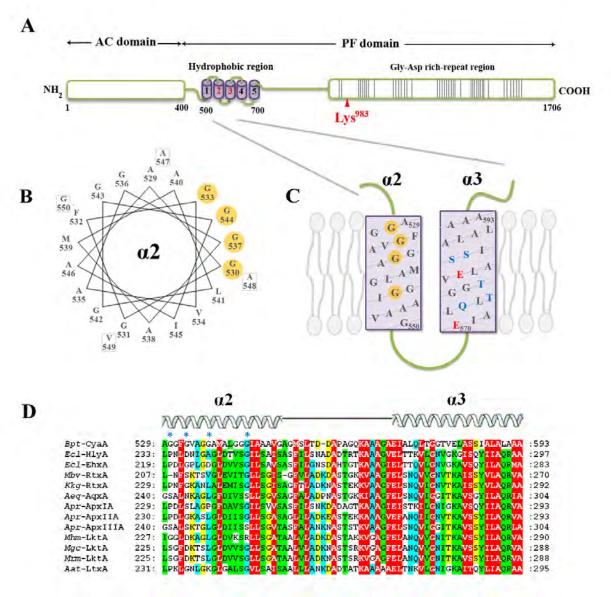
larger hydrophobic amino acids was shown to disrupt in haemolytic activity of the toxin. On the other hand, the G544A mutant still retained relatively high haemolytic activity at $75.3 \pm 1.5\%$ of the wild-type activity, suggesting that glycine at position 544 is not essential for hemolytic activity.

3.3. Homology-based transmembrane hairpin structure ($\alpha 2$ -loop- $\alpha 3$) with implication for helix-helix association

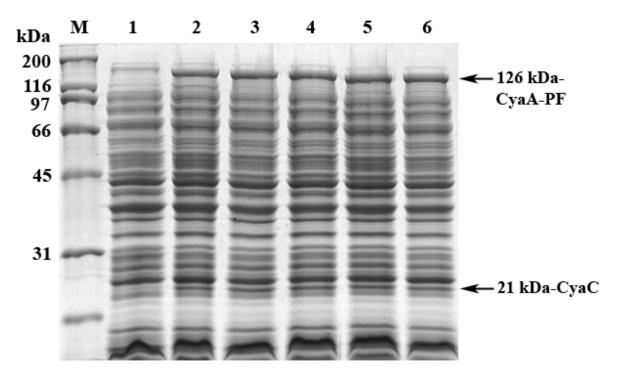
Since the crystal structure of CyaA has not been yet resolved, so the structure of this toxin was constructed by using the homology-based model with high amino acid sequence homology of known toxin structure. Their best-fit protein template is bovine rhodopsin for the hydrophobic region of CvaA-PF toxin. From a plausible 3D model of the transmembrane hairpin structure (α2loop-α3) of CyaA-PF (Fig. 4) revealed that the series of four glycine residues, i.e. Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴, lying on one face of the hydrophobic helix α 2. Interestingly, three glycine residues (Gly⁵³⁰ Gly⁵³³ Gly⁵³⁷) formed as a cluster on the top part of the helix and facing outward from the pore-lining helix α3. Many of previous statistical analysis of the amino acid composition and distribution of transmembrane α-helices studies have shown that glycine residues occur frequently in the helix-helix interface of transmembrane helix and preferentially found on the same side of α-helices (Arkin and Brunger, 1998; Javadpour et al., 1999; Senes et al., 2000). In addition, it has been reported that the same side of glycine residues, i.e. Gly¹⁴, Gly¹⁸ and Gly²², in hexameric membrane channel structure of *Helicobacter pylori* vacuolating toxin (VacA) contact to small amino acid side chain of neighboring helix indicating the helix-helix packing interaction region (Kim et al., 2004). This consistent to our mutagenesis data shows that glycine cluster region (Gly⁵³⁰_Gly⁵³³_Gly⁵³⁷) in transmembrane helix 2 is essential for its toxicity (Fig. 3). It may imply an important role of glycine cluster in driving and stabilizing the helix-helix association between the transmembrane hairpins to form the lytic pore within the lipid bilayers.

3.4. The prediction of transmembrane hairpin (\alpha 2-loop-\alpha 3) complex to form pore structure

Here, we predicted transmembrane oligomeric complex by using an automated protein docking web server, ClusPro2.0. The homology model of transmembrane hairpin (α 2-loop- α 3) structure (PDB file) was uploaded to the web server and then the server results back the top10 best prediction (data not shown) but the best one prediction model was shown in Fig. 5. From the candidate prediction model reveals that transmembrane hairpin forms complex with another molecule through relatively hydrophobic helix α 2, in which N-terminal glycine cluster (Gly⁵³⁰_Gly⁵³³_Gly⁵³⁷) tends to interact with adjacent helix α 3. Since its lack of side chain that creates a flat surface, so it possibly permits a close approach to the neighboring helix for enhancing helix-helix association. In this close positioning, glycine cluster can drive and stabilize helix interaction via donate theirs $C\alpha$ hydrogen to form a weak hydrogen bond with a carbonyl oxygen atom from an adjacent helix (Eilers et al., 2000; Senes et al., 2001).


In conclusion, this is the first study to investigate the important role in relatively hydrophobic helix $\alpha 2$ of *B. pertussis* CyaA-hemolysin toxin. Particularly, it provides insights into the series of four glycine residues which are located on the same face of α -helix. Based on our mutagenesis data and homology-based modeling, three glycine residues, *i.e.* Gly⁵³⁰, Gly⁵³³ and Gly⁵³⁷, are crucial for hemolytic activity and form as a cluster at the N-terminal part of transmembrane helix $\alpha 2$. The close position is facilitated by small size of glycine residues, in which promotes to form hydrogen bond ($C\alpha$ –H $^{...}O$) with an adjacent putative lumen-lining helix $\alpha 3$ leading to enhance helix associaction for oligomerization of the transmembrane hairpins to form a lytic pore. However, it remains a challenge for determining the crystal structure of the soluble and protomer form of CyaA-PF toxin leading to more understanding in structure-function relationship details of their molecular events.

Acknowledgements


This research was supported by the Thailand Research Fund in cooperation with the Commission on Higher Education (CHE), Ministry of Education (Thailand).

References

- Arkin, I.T., Brunger, A.T., 1998. Statistical analysis of predicted transmembrane alpha-helices. Biochim Biophys Acta 1429, 113-128.
- Bellalou, J., Sakamoto, H., Ladant, D., Geoffroy, C., Ullmann, A., 1990. Deletions affecting hemolytic and toxin activities of *Bordetella pertussis* adenylate cyclase. Infect Immun 58, 3242-3247.
- Carbonetti, N.H., Artamonova, G.V., Andreasen, C., Bushar, N., 2005. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of *Bordetella pertussis* infection of the respiratory tract. Infect Immun 73, 2698-2703.
- Chenal, A., Guijarro, J.I., Raynal, B., Delepierre, M., Ladant, D., 2009. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J Biol Chem 284, 1781-1789.
- Cheung, G.Y., Dickinson, P., Sing, G., Craigon, M., Ghazal, P., Parton, R., Coote, J.G., 2008. Transcriptional responses of murine macrophages to the adenylate cyclase toxin of *Bordetella pertussis*. Microb Pathog 44, 61-70.
- Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., 2004a. ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32, W96-99.
- Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., 2004b. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45-50.
- Ehrmann, I.E., Weiss, A.A., Goodwin, M.S., Gray, M.C., Barry, E., Hewlett, E.L., 1992. Enzymatic activity of adenylate cyclase toxin from *Bordetella pertussis* is not required for hemolysis. FEBS Lett 304, 51-56.
- El-Azami-El-Idrissi, M., Bauche, C., Loucka, J., Osicka, R., Sebo, P., Ladant, D., Leclerc, C., 2003. Interaction of *Bordetella pertussis* adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. J Biol Chem 278, 38514-38521.
- Javadpour, M.M., Eilers, M., Groesbeek, M., Smith, S.O., 1999. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77, 1609-1618.
- Kim, S., Chamberlain, A.K., Bowie, J.U., 2004. Membrane channel structure of *Helicobacter pylori* vacuolating toxin: role of multiple GXXXG motifs in cylindrical channels. Proc Natl Acad Sci U S A 101, 5988-5991.
- Knapp, O., Maier, E., Polleichtner, G., Masin, J., Sebo, P., Benz, R., 2003. Channel formation in model membranes by the adenylate cyclase toxin of *Bordetella pertussis*: effect of calcium. Biochemistry 42, 8077-8084.
- Kozakov, D., Brenke, R., Comeau, S.R., Vajda, S., 2006. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392-406.
- Kurehong, C., Powthongchin, B., Thamwiriyasati, N., Angsuthanasombat, C., 2011. Functional significance of the highly conserved Glu(570) in the putative pore-forming helix 3 of the *Bordetella pertussis* haemolysin toxin. Toxicon 57, 897-903.
- Pojanapotha, P., Thamwiriyasati, N., Powthongchin, B., Katzenmeier, G., Angsuthanasombat, C., 2011. *Bordetella pertussis* CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation. Protein Expr Purif 75, 127-132.
- Powthongchin, B., Angsuthanasombat, C., 2008. High level of soluble expression in Escherichia coli and characterisation of the CyaA pore-forming fragment from a *Bordetella pertussis* Thai clinical isolate. Arch Microbiol 189, 169-174.
- Powthongchin, B., Angsuthanasombat, C., 2009. Effects on haemolytic activity of single proline substitutions in the *Bordetella pertussis* CyaA pore-forming fragment. Arch Microbiol 191, 1-9.
- Rose, T., Sebo, P., Bellalou, J., Ladant, D., 1995. Interaction of Calcium with Bordetella pertussis Adenylate Cyclase Toxin. Journal of Biological Chemistry 270, 26370-26376.
- Sakamoto, H., Bellalou, J., Sebo, P., Ladant, D., 1992. *Bordetella pertussis* adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J Biol Chem 267, 13598-13602.
- Senes, A., Gerstein, M., Engelman, D.M., 2000. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 296, 921-936.
- Senes, A., Ubarretxena-Belandia, I., Engelman, D.M., 2001. The Cα---H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci U S A 98, 9056-9061
- Welch, R.A., 1991. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5, 521-528.

Fig.1. A: Schematic diagram of CyaA showing adenylate cyclase (AC) domain and haemolysin or pore-forming (PF) domain. In the hydrophobic region (residues 500–700) contains five putative helices which are shown by purple blocks. Lys⁹⁸³ indicates the palmitoylation site. The calcium-binding region (residues 1006–1612) shows lines representing each nonapeptide repeat (Gly-Gly-X-Gly-X-Asp-X-Leu-X). B: Helical wheel projections of the relatively hydrophobic helix α 2 of the CyaA-PF fragment. Amino acids are plotted every 100° consecutively around the helix axis (360° for 3.6 residues). C: Schematic representation of two amphiphatic helices (α 2₅₂₉₋₅₅₀ and α 3₅₇₀₋₅₉₃) which have been proposed to be transmembrane hairpin (α 2-loop- α 3). The following colour codes are used: red is an amino acid with a charged side-chain, blue is a polar uncharged side-chain and gray is a hydrophobic side-chain. The orange shadings in the putative helix 2 represent the series of four glycine residues (Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴) lying on one face of the helix. D: Multiple sequence alignment of putative transmembrane α 2₅₃₀₋₅₅₀ of CyaA PF with the twelve different related pore-forming RTX cytotoxins. Conserved residues in all thirteen sequences are shown on red background, residues identical in 80–90%, 65–75% and 50–60% represent in green, blue and yellow background, respectively. Stars indicate the series of four glycine residues.

Fig.2. SDS-PAGE (Coomassie blue-stained 12% gel) of lysates extracted from *E. coli* BL21(DE3)pLysS expressing the 126-kDa CyaA-PF protein from pCyaA-PF, the 21-kDa CyaC protein. M represents standard protein markers. Lane 1, *E. coil* lysate harbouring the pET-17b vector was used as a negative control. Lane 2, lysate extracted harbouring pCyaA-PF. Lanes 3–6 represent CyaA-PF mutants G530A, G533A, G537A, and G544A with 0.1 mM IPTG induction, respectively.

% hemolysis 100 80 60 40 20

Fig.3. Haemolytic activity assays of CyaA-PF wild-type (wt) and its mutants against sheep erythrocytes. Lysate extracted of *E.coli* cells harbouring pET–17b vector was used as a negative control. The CyaA-PF wild-type toxin exhibited 73.8 \pm 1.1% hemolysis. The G530A, G533A, G537A and G544A mutants showed 4.7 \pm 0.2, 6.5 \pm 0.3, 4.1 \pm 0.2 and 75.3 \pm 1.5% haemolysis, respectively. Error bars indicated standard errors of the mean from three independent experiments with each performed in triplicate. Black shading boxes represent the hemolytic activity of the mutants that are significantly different (p values < 0.05) from that of the wild-type.

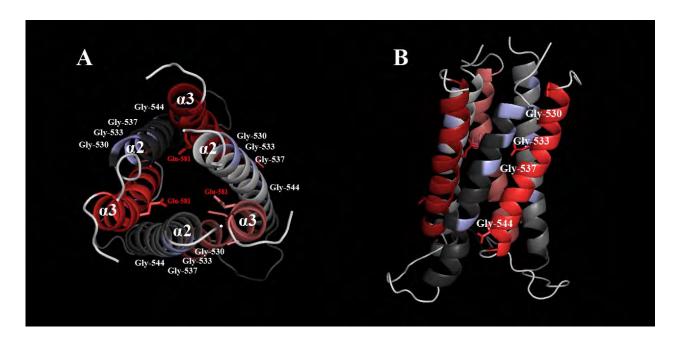
G533A

G537A

G544A

G530A

0


pET-17b

CyaA-PF

WT

Fig.4. Homology modeling of the transmembrane hairpin (α 2-loop- α 3) of CyaA-PF toxin. Negatively and positively charged side-chains are shaded with red and blue, respectively. Orange and light-blue shadings represent oxygen- and nitrogen-containing uncharged side-chains, respectively. Hydrophobic side-chains and glycine residues are shaded with gray and light-purple, respectively. A: Top view of the transmembrane hairpin. The glycine cluster (Gly⁵³⁰_Gly⁵³³_Gly⁵³⁷) is located at the N-terminal part of the relatively hydrophobic helix α 2 and facing outward from lumen-lining helix α 3. B: Side view of the transmembrane hairpin. The series of four glycine residues (Gly⁵³⁰, Gly⁵³³, Gly⁵³⁷ and Gly⁵⁴⁴) lying on the same face of helix α 2. Figure generated by PyMol program.

Fig.5. The prediction model of transmembrane hairpin (α 2-loop- α 3) complex obtained from ClusPro2.0, an automated protein docking web server. A: Top view of transmembrane hairpin (α 2-loop- α 3) complex. The N-terminal glycine cluster (Gly⁵³⁰_Gly⁵³³_Gly⁵³⁷) of relatively hydrophobic helix α 2, as shown in light-purple colour tends to interact with adjacent helix α 3, suggesting enhances helix-helix association. B: Side view of transmembrane hairpin (α 2-loop- α 3) complex.

Table 1 Oligonucleotide primers used in single-alanine substitutions.

Primer ^a	Sequence ^b	Restriction site
000011	5'-TGGGCAGCCGGTTTCGGCGT-3' 3'-AAGCGCGACCCGTCGGCCAAA-5'	Sau96I °
	5'-GTTTCGCTGT <u>AGCT</u> GGCGGCGC-3' 3'-GGCCGCCAAAGCGACA <u>TCGA</u> CC-5'	AluI
	5'-TGGCGCCG <u>CCATGG</u> CGCTGGGAG- 3' 3' -CGCACCGACCGCGGC <u>GGTACC</u> GC- 5'	NcoI
	5'-GAGGC <u>GCCATCGCGGC</u> GGCCGTTGGCG- 3' 3'-CCGCGACCCT CCG <u>CGGTAGCGCCG</u> CCGG - 5'	BglI

^a f and r represent forward and reversed primers, respectively.
^b Underlined bases represent the recognition sites introduced for restriction enzyme analysis. Enlarge letters indicate the substituted nucleotide residues. The mutated residues in introduced restriction sites generate silent mutations.

^c Deleted recognition sites.

HSP342-9

Generation of the *Bordetella pertussis* CyaA toxin fragment containing the hydrophobic region with an acylation site for structure-folding studies

Mattayaus Yentongchai^a, Chanan Angsuthanasombat^b, and Niramon Thamwiriyasati^{a,*}

^a Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand

^b Laboratory of Molecular Biophysic and Structural Biochemistry, Bacterial Protein Toxin Research cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand

* Tel: +66-82-685457; E-mail: <u>niramon@buu.ac.th</u>

ABSTRACT

Adenylate cyclase-haemolysin toxin (CyaA) is one of the major virulence factors secreted from *Bordetella pertussis*, the etiologic agent of whooping cough. CyaA is a bifunctional toxin composed of two major domains, the adenylate cyclase domain and the pore-forming domain. Previously, the CyaA pore-forming (CyaA-PF) domain expressed in *Escherichia coli* was shown to retain its hemolytic activity. The preliminary results from hydropathy plot based on hydrophobicity analysis of an amino acid, together with mutagenesis studies, suggested that the transmembrane domain of CyaA is the hydrophobic region between residues 500 to 700 and contains a five putative α -helical bundle. It is planned to generate the CyaA protein fragment which is responsible for membrane insertion and pore formation in defining relationships between sequence, structure and function. In this study, the recombinant plasmids encoding the CyaA hydrophobic region with an acylation site (CyaA-PF Δ 1091-1652) have been subcloned by restriction enzyme digestion and over-expressed in *Escherichia coli* as a ~70-kDa soluble protein. The particular gene of interest will be further investigated its functionality.

Keywords: Adenylate cyclase - haemolysin toxin, *Bordetella pertussis*, Hydrophobic region, Partial digestion, Pore-formation

INTRODUCTION

Adenylate cyclase - haemolysin toxin (CyaA) is one of the major virulence factors of *Bordetella pertussis*, a gram-negative pathogen causing whooping cough in humans (Carbonetti et al., 2005). CyaA belongs to the same RTX (Repeat-in-ToXin) family as the *Escherchia coli* haemolysin, HlyA. CyaA is synthesised as an inactive precursor, which is post-translationally modifed by fatty-acylation at the conserved Lys⁹⁸³ into active CyaA in the process catalysed by CyaC-acyltransferase (Barry et al., 1991: Hackett et al., 1994). CyaA is a large protoxin (~177 kDa) which is a bifunctional toxin composed of two functional domains, a 400-residue N-terminal adenylate cyclase (AC) domain and a 1,306-residue C-terminal haemolysin or pore-forming (PF) domain (Ladant and Ullmann, 1999). The PF domain comprises four important parts; a hydrophobic region (residues 500-700), an acylation region (residues 800-1,000), a glycine–aspartic acid repeat region (residues 1,000-1,600) containing the nonapeptide repeats (Gly-Gly-X-Gly-X-Asp-Asp-X-Leu), and a C-terminal secretion signal (Ladant and Ullmann, 1999: Welch, 2001). Toxin activation of CyaA *via* palmitoylation at Lys⁹⁸³ and calcium binding to the nonapeptide repeats are required for delivery of the AC domain into the target cell interior as well as for formation of lytic pores (Knapp et al., 2003: Rose et al., 1995).

CyaA can intoxicate host immune cells by translocating catalytic AC domain into the cytoplasm. Upon binding to the intracellular calmodulin, CyaA catalyses the production of supraphysiological level of cAMP and subsequently inhibits normal functions of phagocytes, leading to cell death by apoptosis (Gueirard et al., 1998). Unlike cytotoxic activity *via* AC translocation that involves the entire toxin, pore-forming (haemolytic) activities of CyaA mediated by the PF domain do not require the AC domain (Ehrmann et al., 1992: Sakamoto et al., 1992). It has been shown that myeloid phagocytic cells expressing $\alpha_M\beta_2$ -intergrin receptor (CD11b/CD18) such as neutrophils and macrophages were considered as primary target cells of the *Bordetella* CyaA toxin. Nevertheless, CyaA is also toxic against sheep erythrocytes, which lack the $\alpha_M\beta_2$ -intergrin receptor, suggesting a different mechanism of cell invasion (Osickova et al., 1999). Additionally, it has been demonstrated that the pore-forming activity of CyaA could be acylated at Lys⁹⁸³ by CyaC-acyltransferase in promoting lysis of the target cells (Basar et al., 2001). However, detailed understanding of the molecular mechanism of action of the CyaA toxin is still not completely described, particularly the steps of toxin insertion and pore-formation in target cell membrane.

Previously, the CyaA pore-forming (CyaA-PF) domain expressed in *Escherichia coli* was shown to retain its hemolytic activity (Powthongchin and Angsuthanasombat, 2008). The preliminary results from hydropathy plot based on hydrophobicity analysis of an amino acid, together with mutagenesis studies, suggested that the transmembrane domain of CyaA is the hydrophobic region between residues 500 to 700 and contains a five putative α -helical bundle, but its structure of pore formation still remain to be investigated. To pave the way for studying mechanisms of membrane insertion and lytic pore-formation of the *B. pertussis* CyaA toxin, we decided to construct the recombinant clone of hydrophobic region together with an acylation site within the PF domain ($cyaA-PF\Delta1091-1652$) co-expressing with cyaC gene, the accessory protein required for toxin activation. The recombinant CyaA subdomain have been successfully generated by genetic approach and over-expressed as a soluble native fold. The 70-kDa CyaA-PF truncate toxin will be further investigated to define the functional motifs responsible for membrane insertion and pore-formation.

MATERIALS AND METHODS

Plasmid DNA extraction by alkaline lysis method

A single colony of recombinant E. coli was incubated into LB broth containing $100 \,\mu\text{g/ml}$ ampicillin and incubated overnight at 37°C with shaking at $200 \,\text{rpm}$. Cell collected by centrifugation, resuspend in ice-cold Solution I, lysis cell by adding Solution II and Solution III used to neutralize. After 10-min incubation on ice, the precipitated chromosomal DNA was separated by centrifugation. Plasmid DNA was conserved from supernatant by adding two volumes of isopropanol and centrifugation. Then the pellet was washed with 70% ethanol, air dried and resuspend in $20 \,\mu\text{l}$ of sterile water.

Construction of recombinant plasmids

The pCyaAC-PF6His plasmid encoding both the ~126-kDa CyaA-PF fragment with 6His tag and the ~21-kDa CyaC acyltransferase under control of the T7-promoter (Powthongchin and Angsuthanasombat, 2008) was used as a template. The recombinant plasmid encoding *cyaA* deleted gene (aâ 1091-1652) co-express with *cyaC* was digested with *TatI* (partial digestion) and *AdeI* (complete digestion), and subsequently synthesized the blunt end by Klewnow fragment of DNA polymerase I to facilitate self-ligation later on. Selected clones with the required recombinant DNA were first identified by restriction endonuclease digestion of the plasmids and then verified by DNA sequencing, using 1st BASE DNA Sequencing service

Toxin expression

The recombinant plasmids were re-transformed into *E. coli* strain BL21(DE3)pLysS for protein expression. An overnight culture of each selected clone was grown at 30 °C in Luria–Bertani medium containing 100 mg/ml ampicillin. When the cell culture at OD₆₀₀ reached ~0.6, toxin expression was induced with IPTG (isopropyl-b-D-thiogalactopyranoside) at a final concentration of 0.1 mM, and incubation was continued for another 6 h. *E. coli* cells were harvested and re-suspended in 50 mM Tris–HCl (pH 8.0) containing 5 mM CaCl₂ and 1 mM PMSF (phenylmethylsulfonylfluoride), and subsequently disrupted in a French Pressure Cell at 10,000 psi. After centrifugation at 12,000g for 20 min at 4°C, total proteins in soluble crude lysates were analysed by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis)

RESULTS AND DISCUSSION

Construction of recombinant plasmids containing the cyaA-PF fragment gene

The gene segment encoding the hydrophobic region with an acylation site (deleting aâ 1091 to 1652) and 6His-tagged C-terminal end of CyaA was subcloned by restriction enzyme analysis. The pCyaAC-PF6His template was digested with one cut at the 1,824-bp *cyaA* site by *Tat*I restriction enzyme (7.5-kb band) and 3,514-bp *cyaA* by *Ade*I restriction enzyme (5.9-kb band) (see Figure 1). To create blunt ends of double-stranded DNA, filling in recessed 3' ends of DNA fragments and digesting away protruding 3' overhangs were made by Klewnow fragment of DNA polymerase I. The digested plasmid was facilitated the self-ligation later on. The resulting 5,880-bp recombinant plasmid was named as pCyaA-PF6HisΔ1091-1652 (see Figure 2). The correct construct was verified by restriction analysis and DNA sequencing.

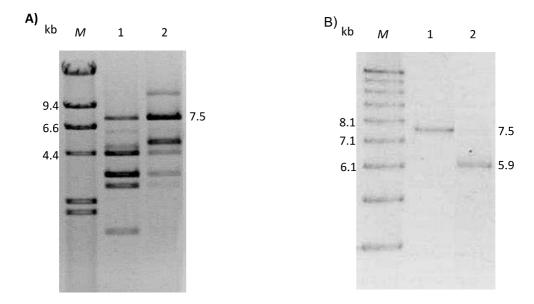


Figure 1 Restriction enzyme digestion for subcloning of pCyaAC-PF6His template

- A) Agarose gel electrophoresis (Ethidium bromide 0.8%) analysis of partial digestion by TatI. The partial digest of pCyaAC-PF6His with one cut were used by TatI 1U (lane 1) and 0.5U/120 ng DNA (Lanes 2). M represents $\lambda/HindIII$ digested DNA markers
- B) Agarose gel electrophoresis (Ethidium bromide 0.8%) analysis of complete digestion by AdeI. The purified 7.5-kb products of TatI partial digests were used as a template (lane 1), and subsequently digested by AdeI (Lanes 2). M represents $\lambda/BstEII$ digested DNA markers

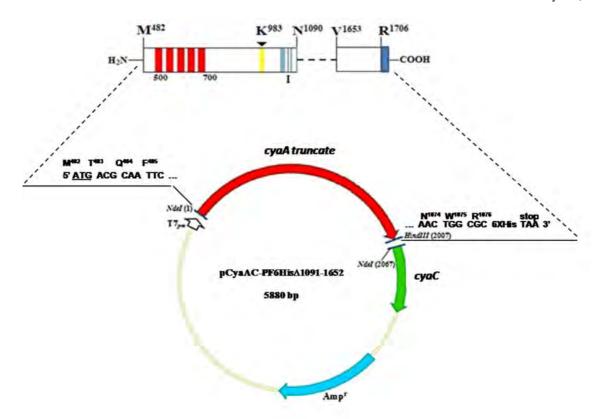


Figure 2. Schematic diagrams of the recombinant plasmids (pCyaAC-PF6His∆1091-1652) encoding the CyaA protein fragment.

Transcription of the corresponding genes is under control of the T7 promoter (T7*pro*) of the pET-17b expression vector (thin line). The arrows indicate the transcriptional direction of the corresponding promoter and genes. The nucleotide and deduced amino acid sequences at the 5'- and 3'-ends of the structural gene segment of *cyaA-PF6His*(2,067 bp) and *cyaC* (558 bp) are shown, respectively, with the underlined nucleotides representing the start codon. *Amp*^r indicates the ampicillin resistance gene. For clarity, only the restriction endonuclease sites mentioned in the text are shown. The expressing CyaA-PF6His deletion fragment is shown at the top.

Expression of the CyaA truncated toxin

The recombinant plasmid was transformed into $E.\ coli\ BL21(DE3)$ pLysS for expression the gene product. The ~70-kDa CyaA fragment with C-terminal 6His tag (calculated molecular mass = 68392.20 Da) was highly produced almost exclusively as a soluble protein compared with the wild type (Fig 3). The 21-kDa CyaC-acylatransferase was also expressed in this condition.

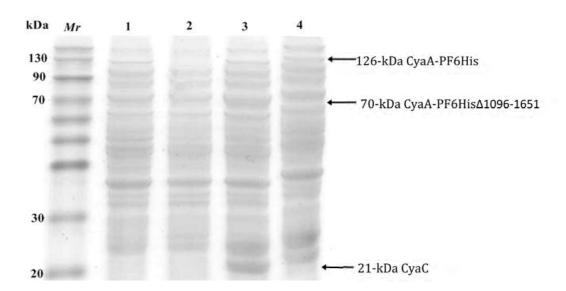
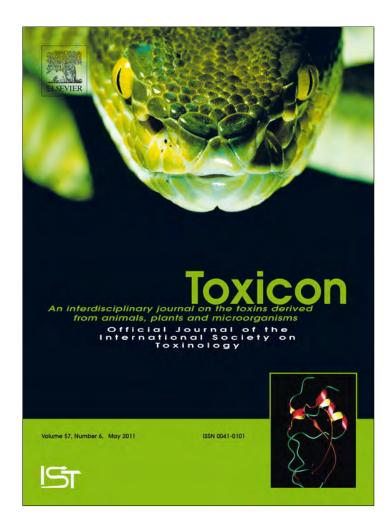


Figure 3. Expressed protein profiles of pCyaAC-PF6His and pCyaAC-PF6His∆1091-1652

SDS-PAGE (Coomassie blue-stained 10% gel) of *E. coli* lysates expressing the 126-kDa CyaA-PF protein from pCyaAC-PF6His and the 70-kDa CyaA-PF6His truncate fragment from pCyaAC-PF6HisΔ1091-1652. *Mr* represents standard protein markers. *E. coli* cells harbouring the pET-17b vector were used as a negative control (lane 1). Lanes 2, 3 and 4 are lysates extracted from *E. coli* cells harbouring uninduced, induced pCyaAC-PF6HisΔ1091-1652, and pCyaAC-PF6His, respectively.

In conclusion, this present report provides evidence that the gene segment encoding the hydrophobic region with an acylation site of CyaA toxin was successfully subcloned. The 70-kDa truncated CyaA toxin with 6His-tagged C-terminal end was well highly-expressed as a soluble protein in *E. coli* in order to further study its functionality.


ACKNOWLEDGEMENTS

This work was generously supported by the Thailand Research Fund in cooperation with the Office of the Higher Education Commission (to N.T., MRG5480261)

REFERENCES

- Basar, T. Havlicek, V., Bezouskova, S., Hackett, M., and Sebo P. 2001. Acylation of Lys 983 is sufficient for toxin activity of *Bordetella pertussis* adenylate cyclase: substitutions of alanine 140 modulate acylation site selectivity of the toxin acyltransferase CyaC. J Biol Chem 276(1): 348-354.
- Barry, E.M., Weiss, A.A., Ehrmann, I.E., Gray, M.C., Hewlett, E.L., and Goodwin, M.S. 1991. *Bordetella pertussis* adenylate cyclase toxin and hemolytic activities require a second gene, *cyaC*, for activation. J Bacteriol 173: 720-726.
- Carbonett, N.H., Artamonava, G.V., Andreasen, C., and Bushar, N. 2005. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of *Bordetella pertussis* infection of the respiratory tract. Infect Immun 73: 2698-2703.
- Ehrmann, I.E., Weiss, A.A, Goodwin, M.S., Gray, M.C., Barry, E., and Hewlett, E.L. 1992. Enzymatic activity of adenylate cyclase toxin from *Bordetella pertussis* is not required for hemolysis. FEBS Lett 304: 51-56.
- Gueirard, P., Druilhe, A., Pretolani, M., and Guiso, N. 1998. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during *Bordetella pertussis* infection *in vivo*. Infect Immun 66: 1718-1725.
- Hackett, M., Guo, L., Shabanowitz, J., Hunt, D.F., and Hewlett, E.L. 1994. Internal lysine palmitoylation in adenylate cyclase toxin from *Bordetella pertussis*. Science 266: 433-435.
- Knapp, O., Maier, E., Polleichtner, G., Masin, J., Sebo, P., and Benz, R. 2003. Channel formation in model membranes by the adenylate cyclase toxin of *Bordetella pertussis*: Effect of calcium. Biochemistry 42: 8077-8084.
- Ladant, D., and Ullmann, A. 1999. *Bordetella pertussis* adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7: 172-176.
- Osickova, A., Osicka, R., Maier, E., Benz, R., and Sebo, P. 1999. An amphipathic α-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274:37644-37650.
- Powthongchin, B., and Angsuthanasombat, C. 2008. High level of soluble expression in *Escherichia coli* and characterisation of the CyaA pore-forming fragment from a *Bordetella pertussis* Thai clinical isolate. Arch Microbiol 189(2): 169-174.
- Rose, T., Sebo, P., Bellalou, J., and Ladant, D. 1995. Interaction of calcium with *Bordetella pertussis* adenylate cyclase toxin: characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270: 26370-26376.
- Sakamoto, H., Bellalou, J., Sebo, P., and Ladant, D. 1992. *Bordetella pertussis* adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J Biol Chem 267: 13598-13602.

Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

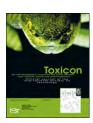
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy


Toxicon 57 (2011) 897-903

Contents lists available at ScienceDirect

Toxicon

journal homepage: www.elsevier.com/locate/toxicon

Functional significance of the highly conserved Glu⁵⁷⁰ in the putative pore-forming helix 3 of the *Bordetella pertussis* haemolysin toxin

Chattip Kurehong ^{a,1}, Busaba Powthongchin ^{b,1}, Niramon Thamwiriyasati ^c, Chanan Angsuthanasombat ^{a,*}

- ^a Laboratory of Molecular Biophysics and Structural Biochemistry, Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand
- ^b Department of Biopharmacy, Faculty of Pharmacy, Silpakorn University, Nakornpathom 73000, Thailand
- ^c Department of Medical Technology, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand

ARTICLE INFO

Article history: Received 25 November 2010 Received in revised form 10 February 2011 Accepted 8 March 2011 Available online 16 March 2011

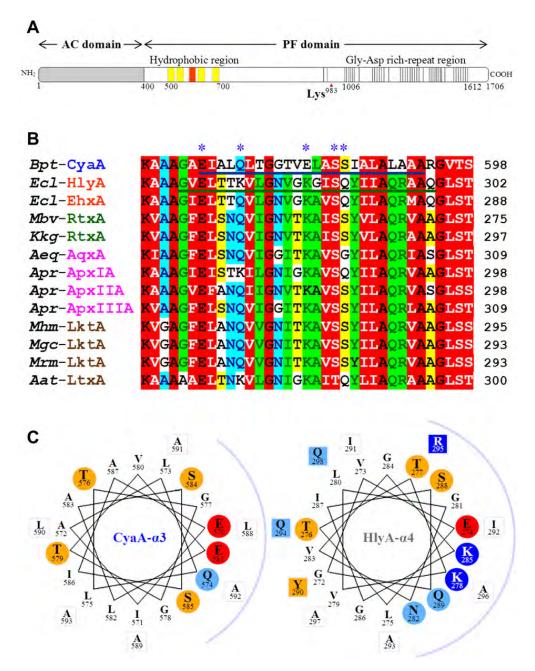
Keywords:
Adenylate cyclase-haemolysin
Bordetella pertussis
Haemolytic activity
Pore-forming toxin
Transmembrane helix

ABSTRACT

Adenylate cyclase-haemolysin toxin (CyaA) is a virulence factor secreted from the etiologic agent of whooping cough, *Bordetella pertussis*. Previously, the haemolysin or pore-forming domain (CyaA-PF) has been shown to cause cell lysis of sheep erythrocytes independently, and the predicted helix 3₍₅₇₀₋₅₉₃₎ within the PF-hydrophobic stretch could be a pore-lining constituent. Here, a plausible involvement in haemolytic activity of polar or charged residues (Glu⁵⁷⁰, Gln⁵⁷⁴, Glu⁵⁸¹, Ser⁵⁸⁴ and Ser⁵⁸⁵) lining the hydrophilic side of CyaA-PF helix 3 was investigated *via* single-alanine substitutions. All the 126-kDa mutant proteins over-expressed in *Escherichia coli* were verified for toxin acylation as the results are corresponding to the wild-type toxin. When haemolytic activity of *E. coli* lysates containing soluble mutant proteins was tested against sheep erythrocytes, the importance of Glu⁵⁷⁰, which is highly conserved among the pore-forming RTX cytotoxin family, was revealed for pore formation, conceivably for a general pore-lining residue involved in ion conduction.

1. Introduction

Bordetella pertussis, a Gram-negative bacterium causing whooping cough in human, secretes a variety of toxins including the adenylate cyclase-haemolysin toxin (CyaA) which is important for initiating respiratory tract infection (Carbonetti et al., 2005). CyaA (~177 kDa) is a typical member of the pore-forming RTX cytotoxins (a subgroup of the **R**epeats-in-**ToX**in (RTX) protein family) that contains an


Abbreviations: 3D, three-dimensional; AC, adenylate cyclase; CyaA, adenylate cyclase-haemolysin toxin; CyaA-PF, CyaA pore-forming; IPTG, isopropyl-β-D-thiogalactopyranoside; PCR, polymerase chain reaction; PMSF, phenylmethylsulfonylfluoride; RTX, Repeats-in-ToXin; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis.

adenylate cyclase (AC) domain attached to the N-terminus of the relatively conserved haemolysin or pore-forming (PF) domain (Fig. 1A). The CyaA-PF domain (~126 kDa) shares some common features with other RTX cytotoxins in that it contains an N-terminal hydrophobic region, a Gly-Asp-rich nonapeptide-repeat region and an unprocessed Cterminal signal peptide sequence (Welch, 1991; Linhartova et al., 2010). Moreover, these RTX toxins require posttranslational acylation at an internal lysine, e.g. palmitoylation at Lys⁹⁸³ for CyaA by CyaC acyltransferase, to turn into an active form (Hackett et al., 1994) and be secreted subsequently by the type I secretion system (Welch, 2001; Linhartova et al., 2010). Following secretion, the CyaA toxin is stabilised by extracellular calcium ions which might act as a structural stabilising bridge in a β-roll motif of the Gly-Asp-rich repeats (Rose et al., 1995; Knapp et al., 2003; Chenal et al., 2009; Pojanapotha et al., 2011).

^{*} Corresponding author. Tel.: +662 800 3624; fax: +662 441 9906. E-mail address: stcas@mahidol.ac.th (C. Angsuthanasombat).

¹ Authors with equal contributions.

C. Kurehong et al. / Toxicon 57 (2011) 897-903

Fig. 1. A: Schematic diagram of CyaA showing adenylate cyclase (AC) and haemolysin or pore-forming (PF) domains. Five putative helices in the hydrophobic region (residues 500–700) are shown by yellow blocks, with red colour for α3. The calcium-binding region (residues 1006–1612) shows lines corresponding to each nonapeptide repeat (Gly–Gly–X–Asp–X–U–X). Lys⁹⁸³ indicates the palmitoylation site. B: Multiple sequence alignment of amino acid sequences covering the putative transmembrane $\alpha_{3(570-593)}$ of CyaA aligned with corresponding sequences of twelve pore-forming RTX cytotoxins. CyaA-α3₍₅₇₀₋₅₉₃₎ and the putative membrane-spanning HlyA-α4₍₂₇₂₋₂₉₈₎ are underlined. Degree of conservation among the sequences is highlighted by shading residues with red (black characters denote identical), blue, green and yellow for 100%, 80–90%, 65–75% and 50–60% homology, respectively. Asterisks indicate CyaA-PF residues selected for alanine substitutions. C: Helical wheel projections comparing CyaA-α3₍₅₇₀₋₅₉₃₎ and HlyA-α4₍₂₇₂₋₂₉₈₎. Amino acids were plotted every 100° consecutively around the helix axis (360° for 3.6 residues). Negatively and positively charged side-chains are shaded with red and blue, respectively. Orange and light-blue shadings represent oxygen- and nitrogen-containing uncharged side-chains, respectively. Relatively hydrophilic surface is indicated by arc. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

CyaA toxin affects mainly human macrophages by binding to the $\alpha_M\beta_2$ -integrin receptor through its non-apeptide-repeat region (El-Azami-El-Idrissi et al., 2003). Recently, the involvements of lipid rafts as well as the sugar moiety on the β_2 integrin in CyaA toxin binding were also reported (Morova et al., 2008; Bumba et al., 2010). Upon

binding, the AC domain was internalised into the target-cell cytoplasm to catalyse the uncontrolled production of cAMP, disturbing the transcription of many inflammatory- and cell signalling-associated genes in apoptotic pathways that lead to cell death (Hewlett et al., 1989; Carbonetti et al., 2005; Cheung, 2008). However, the CyaA toxin can also

exert haemolytic activity against cells lacking the integrin receptor such as sheep erythrocytes (Osickova et al., 1999). In addition, the 126-kDa CyaA-PF fragment (haemolysin domain) was found sufficient to cause haemolysis of sheep erythrocytes (Ehrmann et al., 1992; Sakamoto et al., 1992; Powthongchin and Angsuthanasombat, 2008) but its structural basis of pore formation still remains to be investigated.

The hydrophobic region within the CyaA-PF domain or other related pore-forming RTX toxins has been suggested to be the membrane-inserting part for forming lytic pore in the target-cell membrane (Ludwig et al., 1991; Benz et al., 1994; Valeva et al., 2008; Powthongchin and Angsuthanasombat, 2009). By using various algorithms of membrane topology predictions, the PF-hydrophobic stretch covering residues 500-700 of CyaA was predicted to fold up into five potential helical transmembrane segments (Osickova et al., 1999; Powthongchin and Angsuthanasombat, 2009). In our previous work, single-proline substitutions as a means of disturbing each confined secondary structure revealed the importance of putative transmembrane $\alpha 1$, $\alpha 2$, $\alpha 3$ and $\alpha 5$ in pore formation, and we have proposed that the putative helical hairpin (α 2-loop- α 3) is part of the transmembrane pore in which a3 lines the lumen (Powthongchin and Angsuthanasombat, 2009). In this study, to characterise further the structural importance of the putative CyaA-PF pore-lining segment (α 3), we have made single-alanine substitutions selectively at the polar and charged residues lining the hydrophilic side of this helix. The results revealed the involvement of charged residues for haemolytic activity against sheep erythrocytes of this haemolysin toxin, in particular the highly conserved Glu⁵⁷⁰ which conceivably serves as a general pore-lining residue involved in ion conduction.

2. Materials and methods

2.1. Amino acid sequence alignment and 3D modelling

Multiple sequence alignment of deduced amino acid sequences from related pore-forming RTX cytotoxins [CyaA from B. pertussis (Bpt-CyaA, gb:CAE41066); HlyA and EhxA from Escherichia coli (Ecl-HlyA, gb:ABE10329 and Ecl-EhxA, gb:BAA31774); RtxA from Moraxella bovis (Mbv-RtxA, gb: AKK84651) and Kingella kingae (Kkg-RtxA, gb:ABK58601); AqxA from Actinobacillus equuli (Aeq-AqxA; gb:AMM45569); ApxIA, ApxIIA and ApxIIIA from Actinobacillus pleuropneumoniae (Apr-ApxIA, gb:AAL55666; Apr-ApxIIA, gb:AAU 84700 and Apr-ApxIIIA, gb:CAA48711); LktA from Manheimia haemolytica (Mhm-LktA, gb:AAL13281); Manheimia glucosida (Mgc-LktA, gb:AAG40306) and Manheimia ruminalis (Mrm-LktA, gb:AAR09165); LtxA from Aggregatibacter actinomycetemcomitans (Aat-LktA, gb:CAA34731)] was performed using ClustalW. Regions that are highly conserved in identity or similarity were again manually edited and the degree of sequence homology among the aligned sequences was defined by different coloured shadings.

For homology-based modelling, a template structure searched from the Protein Data Bank was selected based on the highest sequence homology to the CyaA-hydrophobic region which comprises five putative helical segments, $\alpha 1_{(500-522)}$,

 $\alpha2_{(529-550)}$, $\alpha3_{(570-593)}$, $\alpha4_{(602-627)}$ and $\alpha5_{(678-698)}$ as assigned previously (Powthongchin and Angsuthanasombat, 2009). A plausible 3D model was consequently constructed based on the best-fit template structure of bovine rhodopsin (1gzm.pdb) using the SWISS-MODEL program. Structural refinement of the modelled five-helix bundle via energy minimisation was subsequently performed using GROMOS96 simulation software.

2.2. Construction of mutant plasmids by PCR-based directed mutagenesis

The pCyaAC-PF plasmid encoding both the 126-kDa CyaA-PF haemolysin fragment and the 21-kDa CyaC acyltransferase under control of the T7-promoter (Powthongchin and Angsuthanasombat, 2008) was used as a template. Complementary pairs of mutagenic oligonucleotide primers (see Table 1) were designed according to the sequence of the *cyaA-PF* gene to generate single-alanine-substituted mutant plasmids using a high fidelity Phusion™ DNA polymerase (Finnzymes, Finland), following the procedure of the Quick-Change Mutagenesis Kit (Stratagene, USA). The *DpnI*-treated PCR products were transformed into *E. coli* strain JM109. The selected clones were subjected to restriction endonuclease analysis and subsequently verified by DNA sequencing (Macrogen, Inc., Korea).

2.3. Toxin expression

The mutant plasmids were re-transformed into *E. coli* strain BL21(DE3)pLysS for protein expression. An overnight culture of each selected clone was grown at 30 °C in Luria–Bertani medium containing 100 μ g/ml ampicillin and 34 μ g/ml chloramphenicol. When the cell culture at OD₆₀₀ reached ~0.6, toxin expression was induced with IPTG (isopropyl- β -D-thiogalactopyranoside) at a final concentration of 0.1 mM, and incubation was continued for another 6 h. *E. coli* cells were harvested and re-suspended in 50 mM Tris–HCl (pH 8.0) containing 5 mM CaCl₂ and 1 mM PMSF (phenylmethylsulfonylfluoride), and

Oligonucleotide primers used in single-alanine substitutions.

Primers ^a	Sequences ^b	Restriction site
	5'-CGCCG <u>CGATCG</u> CGCTG C-3' 3'-GGCCG <u>CGGCGCTAGC</u> G-5'	PvuI
~	5'-GCGCTG GC GTT A ACAGGTGGAACGGT-3' 3'-GCTCTAGCGCGACCGCAATTGTCCAC-5'	HpaI
	5′-CGGTCG <u>CGCT</u> GGCTTC-3′ 3′-CTTGCCAGC <u>GCGA</u> CCG-5′	AluI ^c
	5'-CTGGCT G C A TC G ATCGCGTTGGCGG-3' 3'-CCAGCTCGACCGACC <u>TAGCTA</u> GCGC-5'	ClaI
	5'-GGCTTCT GCG ATCGCGTTGG-3' 3'-CGACCGAAGA C G C TAGCGC5'	BstX1 ^c

^a f and r represent forward and reversed primers, respectively.

^b Underlined bases represent the recognition sites introduced for restriction enzyme analysis. Enlarge letters indicate the substituted nucleotide residues. The mutated residues in introduced restriction sites generate silent mutations.

^c Deleted recognition sites.

subsequently disrupted in a French Pressure Cell at 10,000 psi. After centrifugation at 12,000g for 20 min at 4 °C, total proteins in soluble crude lysates were analysed by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and concentrations were determined with the Bradford-based protein microassay (Bio-Rad, USA), with bovine serum albumin (Sigma–Aldrich, USA) as a standard.

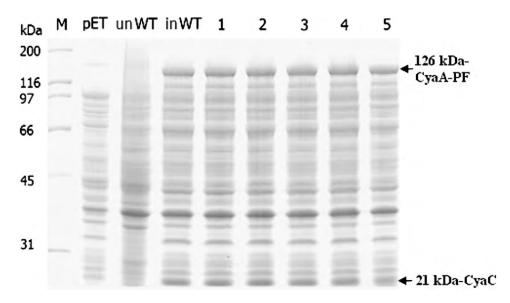
Western blot analysis was performed to validate the identity of the CyaA-PF wild-type and its mutant proteins by probing with the 9D4 anti-RTX monoclonal antibody (Listlabs, USA, 1:2000 dilution). The immunocomplexes were subsequently detected with alkaline phosphatase-conjugated goat anti-mouse IgG antibody (Pierce, USA, 1:20,000 dilution) as described previously (Powthongchin and Angsuthanasombat, 2008).

2.4. Toxin acylation analysis

Palmitoylation of toxins at Lys⁹⁸³ was verified by mass spectrometry. The proteins were separated by SDS-PAGE (10% w/v gel), eluted from the excised gel and subsequently digested with trypsin according to the standard protocol. The peptide separation was performed in a nanobored C18 column prior to mass and LC-MS/MS analyses by using the ABI 4800 MALDI-TOF/TOF mass spectrometer (Applied Biosystems) and LTQ-Orbitrap (Thermo Fisher Scientific, Inc., Germany), respectively.

2.5. Haemolytic activity assay

The haemolytic activity test was performed in a 1-ml microcentrifuge tube by incubating 800 μ l of sheep erythrocyte suspension (5 \times 10⁸ cells/ml) in buffer (150 mM NaCl, 2 mM CaCl₂, 20 mM Tris–HCl, pH 7.4) with 200 μ l (\sim 1 mg total proteins) of soluble *E. coli* lysate containing \sim 10 μ g CyaA-PF (estimated from densitometer tracings of the band


intensity compared to the standard protein markers in the stained gel, see Fig. 2). The mixtures were incubated at 37 °C for 5 h and thereafter the unlysed erythrocytes were pelleted down at 12,000g for 2 min. The supernatant containing the released haemoglobin was measured by spectrophotometer at OD₅₄₀. The same amount of total proteins in soluble *E. coli* lysate containing pET-17b was used as a negative control while the same amount of erythrocytes lysed with 0.1% Triton-X 100 was defined as 100% haemolysis. Percent haemolysis for each toxin sample was calculated by {[OD₅₄₀ sample – OD₅₄₀ negative control]/[OD₅₄₀ of 100% haemolysis – OD₅₄₀ negative control]} \times 100. All samples were tested in triplicate for three independent experiments. Student's t test was performed to determine significance levels between the wild type and mutants.

3. Results and discussion

In our previous work, the predicted $\alpha 2_{529-550}$ and $\alpha 3_{570-593}$ within the PF-hydrophobic stretch were found to be crucial for haemolytic activity of CyaA-PF in line with the suggestion that the amphipathic $\alpha 3$ lines the lumen (Powthongchin and Angsuthanasombat, 2009). Therefore, molecular characterisation of this putative CyaA-PF porelining segment was further made in the present study for its functional importance.

3.1. Sequence conservation among the related pore-forming RTX cytotoxins

When the amino acid sequence corresponding to the putative $\alpha 3_{(570-593)} (E^{570}IALQLTGGTVELASSIALALAAA^{593})$ of *B. pertussis* CyaA was aligned with that of twelve closely related pore-forming RTX cytotoxins, including both haemolysin (HlyA, EhxA and ApxIA) and leukotoxin subgroups (RtxA, AqxA, ApxIIA, ApxIIIA, LktA and LtxA), a high degree of sequence similarity (>90%) was found among these

Fig. 2. SDS-PAGE (Coomassie blue-stained 10% w/v) of *E. coli* lysates (0.1 OD₆₀₀) expressing CyaA-PF or mutant toxins. M represents standard protein markers. pET represents the pET-17b empty vector. The CyaAC-PF wild-type was expressed in the absence (unWT) or presence of 0.1 mM IPTG (inWT). Lanes 1–5 represent the CyaA-PF mutants E570A, Q574A, E581A, S584A and A585A with 0.1 mM IPTG induction, respectively. The arrows indicate 126-kDa CyaA-PF and 21-kDa CyaC bands.

sequences (Fig. 1B). This could imply a common membranespanning segment of these related pore-forming RTX cytotoxins regardless of their target-cell specificity. Moreover, the region flanking CyaA- α 3 (K⁵⁶⁴AAAGA⁵⁶⁹ and G⁵⁹⁵VTS⁵⁹⁸ being assigned as loop regions) is also conserved. It is noteworthy that Glu⁵⁷⁰ located at the *N*-terminal end of the CyaA-helix is entirely identical throughout the aligned toxins whilst Glu⁵⁸¹ in the helix's centre is opposite in charge to the corresponding position (i.e. Lys) of all other toxins. It was also interesting to note that the three toxins, E. coli HlyA, A. pleuropneumoniae ApxIA and A. actinomycetemcomitans LtxA, which all have relatively high activities, have a positively charged lysine in place of the polar uncharged glutamine at position 574 of CyaA, suggesting the requirement of an additional positively charged moiety lining the pore lumen.

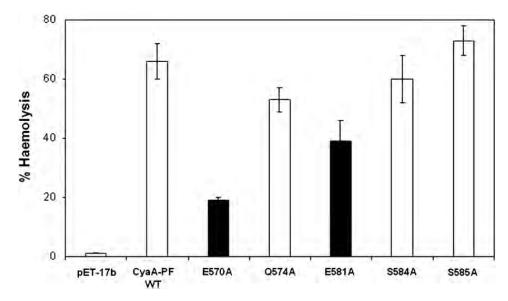
As illustrated in Fig. 1C, the helical wheel projection of the CyaA- α 3 was also compared with that of *E. coli* HlyA (G²⁷²VELTTKVLGNVGKGISQYIIAQRAAQ²⁹⁸), which has been proposed to serve as a transmembrane helix (Ludwig et al., 1991; Valeva et al., 2008). It reveals that these two amphipathic transmembrane helices possess a very similar hydrophilic surface. Additionally, the projections of the other aligned toxins also show the amphipathic nature of these segments along with their hydrophilic sides resembling that of CyaA and HlyA (data not shown), supporting the functional importance of these conserved sequences in serving as a lumen-pore-lining segment.

3.2. Common biochemical characteristics of the expressed CyaA-PF mutant proteins

Further attempts were made to characterise the structural importance of this putative CyaA-PF pore-lining segment (E⁵⁷⁰IALQLTGGTVELASSIALALAAA⁵⁹³). Singlealanine substitutions were conducted selectively at the polar (Gln⁵⁷⁴, Ser⁵⁸⁴ and Ser⁵⁸⁵) and charged residues (Glu⁵⁷⁰ and Glu⁵⁸¹) lining the hydrophilic side of this helix (see Fig. 1C). All five alanine-substituted mutants (E570A, Q574A, E581A, S584A and S585A) of the 126-kDa CyaA-PF toxin, when overproduced in E. coli together with its accessory protein (the 21-kDa CyaC acyltransferase), still remained as a soluble form with yields comparable to the wild-type toxin (Fig. 2). This could indicate that these single-alanine substitutions did not affect the folding of the mutant molecules, as protein misfolding can lead to the formation of an insoluble aggregate (no 126-kDa CyaA-PF protein was detected in the pellet fraction of each mutant lysate, data not shown). It should be noted that the wildtype and mutant CyaA-PF toxins were all recognised by anti-RTX specific monoclonal antibody in Western blot analysis (data not shown), but not for the 21-kDa protein band which was previously verified to be CyaC acyltransferase by LC/MS/MS (Thamwiriyasati et al., 2010). In addition, some other smaller immuno-reactive bands were also observed for both the wild-type and mutant toxins (data not shown), indicating that all the expressed CyaA-PF fragments are somewhat sensitive to proteolytic degradation (Powthongchin and Angsuthanasombat, 2008).

As mentioned earlier, palmitoylation at Lys⁹⁸³ is needed for activating the haemolytic fragment precursor (CyaA-PF)

(Powthongchin and Angsuthanasombat, 2008). Therefore, verification via MALDI-TOF/MS and LC-MS/MS analyses was conducted to prove such $in\ vivo$ acylation of each mutant toxin. As was determined by MALDI-TOF/MS analysis, the molecular weight (MW) of trypsin-treated fragments derived from each mutant protein matched their primary sequences. Furthermore, LC-MS/MS analysis identified the peptide fragment of m/z 1619.63 to be E^{972} GVATQTTAYGK $_{C16:0}$ R 984 , containing the palmitoylated Lys 983 (MW of the added palmitoyl group \sim 238). It was found that all the mutant toxins reveal the palmitoylated peptide mass as described. These results indicate that toxin palmitoylation at Lys 983 was not affected by each alanine substitution, confirming that no severe conformational change had occurred as a consequence of these mutations.


3.3. Haemolytic activity of the single-alanine-substituted CyaA-PF mutants

To determine an effect of these single-alanine substitutions (E570A, Q574A, E581A, S584A and S585A) on toxicity, we examined the soluble crude lysates from E. coli expressing each CyaA-PF mutant toxin for their relative haemolytic activities against sheep red blood cells as shown in Fig. 3. It was revealed that single-alanine substitutions at Glu⁵⁷⁰ or Glu⁵⁸¹ caused a drastic decrease in haemolytic activity to 19 \pm 1 and 39 \pm 7%, respectively, compared to 66 \pm 6% of the wild-type (~70% and ~40% decreased from the control wild-type value ($66 \pm 6\%$) for E570A and E581A, respectively). In contrast, these substitutions at Gln⁵⁷⁴, Ser⁵⁸⁴ or Ser⁵⁸⁵ did not severely affect the toxin activity, as the Q574A, S584A and S585A mutant toxins still retained relatively high haemolytic activity (53 \pm 4, 60 \pm 8 and $70 \pm 5\%$, respectively) at a level more than 80% of the wildtype activity against sheep erythrocytes, perhaps suggesting that these residues (Gln⁵⁷⁴, Ser⁵⁸⁴ and Ser⁵⁸⁵) are not importantly involved in toxin haemolysis. It should be noted that the detrimental effects on haemolytic activity seen for the E570A and E581A mutants are least likely to be caused by improper folding and non-acylation of the mutant proteins since both are still palmitoylated at Lys⁹⁸³ as mentioned earlier. These results thus suggest that Glu⁵⁷⁰ and Glu⁵⁸¹ in the putative pore-lining helix (α 3) play a role in haemolytic activity of the CyaA-PF toxin.

3.4. Structural model with implications for ion conduction

Thus far, no 3D crystal structure of the pore-forming RTX cytotoxins has yet been resolved. Most structure–function relationship studies were based on homology modelling and prediction algorithms, categorising this group of toxins to be alpha-pore-forming toxins (α -PFT) (Ludwig et al., 1991; Menestrina et al., 1994; Osickova et al., 1999). The α -PFTs utilise their amphipathic α -helices as a fundamental constituent to form pores or channels in the target-cell membrane (Gonzalez et al., 2008). Insecticidal crystal proteins (Cry δ -endotoxins) from *Bacillus thuringiensis* (β t), one of the well-characterised α -PFTs, are notable for the crucial role of the α 4-loop- α 5 hairpin which provides a proper structure for inserting and spanning the target-cell membrane to form pores (Angsuthanasombat,

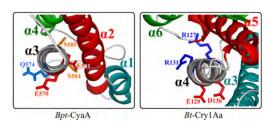

C. Kurehong et al. / Toxicon 57 (2011) 897-903

Fig. 3. Haemolytic activities of soluble crude extracts of *E. coli* cells expressing CyaA-PF wild-type (WT) or each mutant toxin (E570A, Q574A, E581A, S584A and S585A) were tested against sheep erythrocytes. The crude lysate containing the pET-17b empty vector alone was used as a negative control. CyaA-PF wild-type toxin exhibited $66 \pm 6\%$ haemolysis. The E570A, Q574A, E581A, S584A and S585A mutant toxins showed 19 ± 1 , 53 ± 4 , 39 ± 7 , 60 ± 8 and $70 \pm 5\%$ haemolysis, respectively. Error bars indicated standard errors of the mean from three independent experiments with each performed in triplicate. The activities of mutants which show significant differences (P values ≤ 0.05) from that of the wild type are denoted by black shading.

2010). The relatively hydrophobic $\alpha 5$ of Cry toxins is likely to interact with the membrane and is involved in toxin-pore oligomerisation (Likitvivatanavong et al., 2006) whilst the amphipathic $\alpha 4$ suitably lines the lumen and explicit charged residues (*e.g.* Glu¹²⁹ and Asp¹³⁶ for Cry1Aa, see Fig. 4B) are shown to participate in ion permeation through the pore (Masson et al., 1999).

Here, we have built a plausible 3D model for the putative helical bundle of CyaA-PF (Fig. 4A). As can be inferred from the model, the lumen-lining $\alpha 3$ reveals the two critical negatively charged residues, *i.e.* Glu⁵⁷⁰ and Glu⁵⁸¹, with good spatial and geometrical relations similar to Glu¹²⁹ and Asp¹³⁶ of Cry1Aa- $\alpha 4$ (Fig. 4A and B). Interestingly, it has been reported that substitutions of Glu⁵⁷⁰ with Pro, Gln or Lys decreased CyaA haemolysis whereas this activity markedly increased for the replacement of Glu⁵⁸¹ with polar uncharged- (Gln) or oppositely charged- (Lys) residues (Basler et al., 2007). As was noted earlier, Glu⁵⁷⁰ presented at the cap of this lumen-lining helix is completely

Fig. 4. Comparison of amino acid arrangement between two analogous lumen-lining helices, *Bpt*-CyaA $\alpha 3$ (*left*) and *Bt*-Cry1Aa $\alpha 4$ (*right*), together with the relative positions of other helices in the CyaA-PF helical model and the Cry1Aa crystal structure (top view generated by the PyMol program). The relatively hydrophobic helix (CyaA- $\alpha 2$ or Cry1Aa- $\alpha 5$) encircled by other amphipathic helices is shown in red. The two critical negatively charged side-chains (Glu⁵⁷⁰ and Glu⁵⁸¹ for CyaA-PF, Glu¹²⁹ and Asp¹³⁶ for Cry1Aa) are denoted with red sticks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

conserved throughout the aligned cytotoxins but Glu^{581} in the core helix is reverse in charge to the equivalent position (*i.e.* Lys) of all other toxins (see Fig. 1B). Together with our mutagenesis data as presented above (Fig. 3), it is thus conceivable that the terminal negatively charged residue (i.e. Glu^{570}) which has a tendency to be at the pore entrance could contribute to the primary interaction with an incoming cation. For the interior Glu^{581} , it seems that oppositely charged requirement might also contribute in part to haemolysis since reversal of this charge (E581K) showed enhanced activity of CyaA as mentioned earlier (Basler et al., 2007) and all the cytotoxins, including the highly active haemolysin-HlyA from *E. coli*, possess the acquired positive charge at this position.

In conclusion, this study provides further insights into a functional significance of two negatively charged residues in the putative lumen-lining $\alpha 3$ of B. pertussis CyaA-haemolysin. The highly conserved Glu^{570} which is relatively more critical for haemolytic activity against sheep erythrocytes could act as a gateway of the pore lumen, whilst Glu^{581} in the middle of the helical segment might recruit the hydrated ions through the toxin-induced pore. The inward ions along with water molecules would finally lead to colloid-osmotic lysis of target cells. However, it remains to be tested whether the substitutions at Glu^{570} and Glu^{581} are conducive to alterations in the passage of ions through the pore.

Conflict of interest

There are no conflicts of interest.

Acknowledgements

This work was generously supported by the Thailand Research Fund in cooperation with the Office of the Higher

Education Commission (to B.P., MRG5180296) and Royal Golden Jubilee Ph.D. Scholarships (to C.K. and N.T.)

References

- Angsuthanasombat, C., 2010. Structural basis of pore formation by mosquito-larvicidal proteins from *Bacillus thuringiensis*. Open Toxinol. I. 3. 126–132.
- Basler, M., Knapp, O., Masin, J., Fiser, R., Maier, E., Benz, R., Sebo, P., Osicka, R., 2007. Segments crucial for membrane translocation and pore-forming activity of *Bordetella* adenylate cyclase toxin. J. Biol. Chem. 282, 12419–12429.
- Benz, R., Maier, E., Ladant, D., Ullmann, A., Sebo, P., 1994. Adenylate cyclase toxin (CyaA) of *Bordetella pertussis*. Evidence for the formation of small ion-permeable channels and comparison with HlyA of *Escherichia coli*. J. Biol. Chem. 269, 27231–27239.
- Bumba, L., Masin, J., Fiser, R., Sebo, P., 2010. *Bordetella* adenylate cyclase toxin mobilizes its β2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps. PLoS Pathog. 6. e1000901.
- Carbonetti, N.H., Artamonova, G.V., Andreasen, C., Bushar, N., 2005. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of *Bordetella pertussis* infection of the respiratory tract. Infect. Immun. 73, 2698–2703.
- Chenal, A., Guijarro, J.I., Raynal, B., Delepierre, M., Ladant, D., 2009. RTX calcium binding motifs are intrinsically disordered in the absence of calcium: implication for protein secretion. J. Biol. Chem. 284, 1781–1789.
- Cheung, G., 2008. Transcriptional responses of murine macrophages to the adenylate cyclase toxin of *Bordetella pertussis*. Microb. Pathog. 44, 61–70.
- Ehrmann, I.E., Weiss, A.A., Goodwin, M.S., Gray, M.C., Barry, E., Hewlett, E. L., 1992. Enzymatic activity of adenylate cyclase toxin from *Bordetella pertussis* is not required for hemolysis. FEBS Lett. 304, 51–56.
- El-Azami-El-Idrissi, M., Bauche, C., Loucka, J., Osicka, R., Sebo, P., Ladant, D., Leclerc, C., 2003. Interaction of *Bordetella pertussis* adenylate cyclase with CD11b/CD18. J. Biol. Chem. 278, 38514–38521.
- Gonzalez, M., Bischofberger, M., Pernot, L., van der Goot, F., Freche, B., 2008. Bacterial pore-forming toxins: the (w)hole story? Cell Mol. Life Sci. 65, 493–507.
- Hackett, M., Guo, L., Shabanowitz, J., Hunt, D.F., Hewlett, E.L., 1994. Internal lysine palmitoylation in adenylate cyclase toxin from *Bordetella pertussis*. Science 266, 433–435.
- Hewlett, E.L., Gordon, V.M., McCaffery, J.D., Sutherland, W.M., Gray, M.C., 1989.
 Adenylate cyclase toxin from *Bordetella pertussis*. Identification and purification of the holotoxin molecule. J. Biol. Chem. 264, 19379–19384.
- Knapp, O., Maier, E., Polleichtner, G., Masin, J., Sebo, P., Benz, R., 2003. Channel formation in model membranes by the adenylate cyclase toxin of *Bordetella pertussis*: effect of calcium. Biochemistry 42, 8077–8084.
- Likitvivatanavong, S., Katzenmeier, G., Angsuthanasombat, C., 2006. Asn183 in α5 is essential for oligomerisation and toxicity of the *Bacillus thuringiensis* Cry4Ba toxin. Arch. Biochem. Biophys. 445, 46–55.

- Linhartova, I., Bumba, L., Masin, J., Basler, M., Osicka, R., Kamanova, J., Prochazkova, K., Adkins, I., Hejnova-Holubova, J., Sadilkova, L., Morova, J., Sebo, P., 2010. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 34, 1076–1112.
- Ludwig, A., Schmid, A., Benz, R., Goebel, W., 1991. Mutations affecting pore formation by haemolysin from *Escherichia coli*. Mol. Gen. Genet. 226, 198–208.
- Masson, L., Tabashnik, B.E., Liu, Y.-B., Brousseau, R., Schwartz, J.-L., 1999. Helix 4 of the *Bacillus thuringiensis* Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996–32000.
- Menestrina, G., Moser, C., Pellet, S., Welch, R., 1994. Pore-formation by *Escherichia coli* hemolysin (HlyA) and other members of the Rtx toxins family. Toxicology 87, 249–267.
- Morova, J., Osicka, R., Masin, J., Sebo, P., 2008. Rtx cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA 105, 5355–5360.
- Osickova, A., Osicka, R., Maier, E., Benz, R., Sebo, P., 1999. An amphipathic α -helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J. Biol. Chem. 274, 37644–37650.
- Pojanapotha, P., Thamwiriyasati, N., Powthongchin, B., Katzenmeier, G., Angsuthanasombat, C., 2011. *Bordetella pertussis* CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation. Protein Expr. Purif 75, 127–132.
- Powthongchin, B., Angsuthanasombat, C., 2008. High level of soluble expression in *Escherichia coli* and characterisation of the CyaA poreforming fragment from a *Bordetella pertussis* Thai clinical isolate. Arch. Microbiol. 189, 169–174.
- Powthongchin, B., Angsuthanasombat, C., 2009. Effects on haemolytic activity of single proline substitutions in the *Bordetella pertussis* CyaA pore-forming fragment. Arch. Microbiol. 191, 1–9.
- Rose, T., Sebo, P., Bellalou, J., Ladant, D., 1995. Interaction of calcium with *Bordetella pertussis* adenylate cyclase toxin. J. Biol. Chem. 270, 26370–26376.
- Sakamoto, H., Bellalou, J., Sebo, P., Ladant, D., 1992. Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J. Biol. Chem. 267, 13598– 13602.
- Thamwiriyasati, N., Powthongchin, B., Kittiworakarn, J., Katzenmeier, G., Angsuthanasombat, C., 2010. Esterase activity of *Bordetella pertussis* CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. FEMS Microbiol. Lett. 340, 183–190.
- Valeva, Å., Siegel, I., Wylenzek, M., Wassenaar, T.M., Weis, S., Heinz, N., Schmitt, R., Fischer, C., Reinartz, R., Bhakdi, S., Walev, I., 2008. Putative identification of an amphipathic α-helical sequence in hemolysin of *Escherichia coli* (HlyA) involved in transmembrane pore formation. Biol. Chem. 389, 1201–1207.
- Welch, R.A., 1991. Pore-forming cytolysins of Gram-negative bacteria. Mol. Microbiol. 5, 521–528.
- Welch, R.A., 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr. Top. Microbiol. Immunol. 257, 85–111.

อาจารย์ คร.นีรมล ธรรมวิริยสติ

Niramon Thamwiriyasati, Ph.D. กลุ่มวิชาเคมีคลินิก สาชาวิชาเทคนิคการแพทย์ ernal: niramon@buu.ac.th โพร 0-3810-3163

โรคไอกรน: หนทางวิจัยสู่แนวทางการผลิตวัคซีน

โรคโอกรนเป็นโรคติดเรื้อในระบบทางเดินหายใจ ที่มีลักษณะ โอชัยบๆ ติดกัน จนหายใจไม่ทัน และมีอาการหายใจเข้า ลักๆ เป็นเสียง วิป สลับกับการโอเป็นของ สาเพตรองโรคเกิดจากเชื่อแบคทีเรีย Bordetella pertussis (B. pertussis) เป็นเชื้อที่ เพาะขึ้นได้ยาก พบเขียใต้ในสำคอของผู้ป่วย สิตต่อกันได้ล่ายจากการโอ จามรดกันโดยตรง ผู้สัมผักโรคที่ไม่มีภูมิคุ้มกับจะคิดเชื้อและ เกิดโรคเกียบทุกราย พบได้บ่อยในเด็ก ส่วนใหญ่ตัดเขียมาขากผู้ใหญ่ในครอบครัว ซึ่งมีการติดเชื้อแต่ไม่มีอาการ ในเด็กเล็กอาการจะ รุนแรงมากและมีอัตราดาอสูง ส่วนใหญ่เป็นเด็กอาธุดำกว่า 1 ปี และเป็นเด็กที่ไม่เคยได้รับวัดสืบมาก่อน โดยทั่วไปแล้ว โรคนี้เป็นได้ พกลายู ถ้าในมีภูมิรัมกัน แต่ในวัยหนุ่มสาว หรือผู้ใหญ่อาจไม่มีอาการ คร. นิรมธ กล่าวว่า ในประเทศไทย ภูมิดีการณ์ของโรคโยกรน เดตเมาก ซึ่งเป็นผอจากการเพิ่มระดับความพรอบคณของการได้รับวัคซึ่นป้องกันโรคคอดีบ โอกรน บาดพะยัก (DTP) เด็กที่ผาย น้อยกว่า 6 ปี จะได้รับวัดสินน้องกันโอกรน ซึ่งเป็นวัดสินที่เครียมจากเชื้อมบดทีเรีย & partusss ที่ตายแล้ว แต่างไรก็ดี ยังคงพบไรค นี้ได้ประปราชโบชนบทและสนในเด็กสายกัน 5 ปี มากขึ้น จึงส่วนใหญ่เป็นเด็กที่ไม่ได้รับวัดจีน พบการระบาดเป็นครั้งคราวในเด็ก นักเรียนขึ้นประกบ และพบอัตราการเกิดโรครองผู้สิดเรื่อเพิ่มมากขึ้น แม้แต่ในรายที่ได้รับการฉีดวัดซีน คร. นิรมด ซึ่งสนใจและเริ่ม งานวิจัยที่ให้ความสำคัญกับส่วนประกอบต่างๆของเชื้อ โดยเฉพาะโปรดีนพิษ Adenviate cyclase - hemplysin toxin หรือ CycA เพื่อนำมาใช้เป็นส่วนหนึ่งในการผลิต หรือพัฒนาวัดซึบ (Acellinar vaccine) แทนการใช้เดือนบดทีเรียทั้งตัวที่ย่อนแอลง ซึ่งช่วยลด อาการข้างเคียงและเพิ่มประสัทธิภาพในการป้องกับของโรคนี้มากยิ่งขึ้น โดย คร. บิรมล ทำการโคลนอื่นเฉพาะสวนของโปรสิน CvaA และตัดต่อยืนเพื่อตรวจสอบตำแน่งเปบใหด้ของโปรดีนที่เกี่ยวข้องกับการจับกับเขตต์เม็ดเลือดขาวที่สร้างภูมิคู่มกันในร่างกายคน ดลอดจนศึกษาโครงสร้างของโปรดีบรนิดนี้ในการเกิดพิษต่อเชอร์เบ้าหนาย เพื่อเป็นแนวพางในการอร้างเปนใหต่วัดจีนในการป้องกัน Libered

ตาชาวิจัยที่ คร.นิรมต ธรรมวิริยสติ ศึกษาและเขียวชาญ

ชีวเคมีและออมูชีววิทยาทางการแพทย์, จุลชีววิทยาทางการแพทย์

ตัวอย่างผลงานวิจัยที่เผยแพร่

- Pojarapotha P, Thamwiriyasati N, Powthongchin B, Katzerimeier G, Angsuthanasombat C. Bordetello perfussis CyaA-RTX subdomain requires calcium ions for structural stability against proteolytic degradation. Protein Eugress. Purif. 2011; 75: 127–132.
- Thermwiriyaseti N, Singsanan S, Chunta S, Angsuthanasombat C. Identification of a Specific Receptor-Binding Region in the RTX subdomain of Adenylate cyclase-Hemotysin Toxin. HERP CONGRESS I. January 21th – 23th, 2013.

90 กุมภาพันธ์ ๒๕๕๗

เรื่อง แจ้งตอบรับการตีพิมพ์บทความ

เรียน อาจารย์ ดร.นิรมล ธรรมวิริยสติ

ตามที่ ท่านได้ส่งบทปริทัศน์ เรื่อง การปรากฏขึ้นอีกครั้งของโรคไอกรน: ปัญหาและแนวทาง การควบคุม เพื่อลงตีพิมพ์ในวารสารธรรมศาสตร์เวชสาร โดยท่านได้แก้ไขบทความตามข้อเสนอแนะของ ผู้ทรงคุณวุฒิตรวจสอบคุณภาพบทความ และกองบรรณาธิการธรรมศาสตร์เวชสาร เรียบร้อยแล้วนั้น

กองบรรณาธิการธรรมศาสตร์เวชสาร ได้รับบทปริทัศน์ดังกล่าวแล้ว และจะได้ลงตีพิมพ์ใน วารสารธรรมศาสตร์เวชสาร ปีที่ ๑๔ ฉบับที่ ๒ ประจำเดือนเมษายน – มิถุนายน พ.ศ. ๒๕๕๗

จึงเรียนมาเพื่อทราบ

ขอแสดงความนับถือ

(ศาสตราจารย์ นายแพทย์สุรศักดิ์ บูรณตรีเวทย์) บรรณาธิการ