บทคัดย่อ

รหัสโครงการ: MRG5480263

ชื่อโครงการ: การแสดงออกของรีด็อกซ์โปรตีนในเซลล์ต้นกำเนิดที่ตอบสนองต่อการเลี้ยง

บนพื้นผิวสัมผัสอ่อน

ชื่อนักวิจัย: อ. คร. ฟ้าใส คันธวงค์

อีเมลล์: fahsai.k@cmu.ac.th

ระยะเวลาโครงการ: 2 ปี

บทคัดย่อ:

ความอ่อนนุ่มของวัสดุที่ใช้เลี้ยงเซลล์สามารถใช้เป็นปัจจัยเหนี่ยวนำให้เซลล์เกิดการเจริญไปในทิศทางที่ ต้องการ ใค้ ผู้วิจัยมีความเชื่อว่า ถ้าใช้วัสคุที่มีความอ่อนนุ่มใกล้เคียงกับเนื้อเยื่อสมอง จะสามารถเหนี่ยวนำ ให้เซลล์ต้นกำเนิดจากเนื้อเยื่อไขมันเจริญไปเป็นเซลล์ประสาทได้ เพราะเซลล์ต้นกำเนิดชนิดนี้มีอยู่ใน เนื้อเยื่อไขมันของคนที่โตเต็มวัย จึงนำออกมาจากร่างกายได้ง่าย เซลล์ต้นกำเนิดนี้ยังสามารถเจริญไปเป็น เซลล์ใขมัน เซลล์กล้ามเนื้อ เซลล์ประสาท และเซลล์กระดูกได้ จึงเป็นความหวังที่จะนำเซลล์ต้นกำเนิด ชนิดนี้มาใช้รักษาผู้ป่วยในอนาคตอันใกล้ ผู้วิจัยได้ผลิตไฮโดรเจลขึ้นมาจากเจลาตินโดยใช้เทคนิคโฟโต้ลิ โทกราฟิ่มากระต้นการเกี่ยวพันกันของเจลาตินเกิดเป็นไฮโครเจล เทคนิคโฟโต้ลิโทกราฟิ่ยังสามารถใช้ ควบคุมความอ่อนแข็งของไฮโดรเจลได้อีกด้วย ไฮโดรเจลที่เตรียมได้ในการทดลองนี้มีความยืดหยุ่น ประมาณ 1-5 kPa หลังจากนั้นได้นำไฮโครเจลนี้มาใช้เลี้ยงเซลล์ต้นกำเนิดจากเนื้อเยื่อไขมันเป็นเวลา 1-2 สัปดาห์ แล้วจึงสกัด RNA ออกมาวัดหาระดับการแสดงออกของ class III beta-tubulin โดยเทคนิค Real-Time PCR ผลการทดลองแสดงให้เห็นว่า เซลล์ที่เลี้ยงบนไฮโครเจล มีการเพิ่มขึ้นของ class III beta-tubulin ในระดับ RNA เมื่อเทียบกับเซลล์ที่เลี้ยงบน tissue culture polystyrene จึงสามารถสรุป เราสามารถใช้ไฮโครเจลในการเหนี่ยวนำให้เซลล์ต้นกำเนิดจากเนื้อเยื่อไขมันเจริญไปเป็นเซลล์ ประสาทได้โดยไม่ต้องใส่อาหารเสริมหรือสารกระตุ้นใดลงไป นอกจากนี้ยังพบว่า เพิ่มขึ้นของ class III beta-tubulin ในระดับ RNA มีความสัมพันธ์กับการแสดงออกของ TRX 1 และ SOD 1 ในระดับ RNA เช่นกัน นอกจากนี้ยังสามารถสังเกตเห็นการเปลี่ยนแปลงของ PRX2 ได้เพียง เล็กน้อย

คำหลัก: hydrogel, stem cells, neuronal differentiation, adipose-derived stem cells, oxidative stress, redox state

Abstract

Project Code: MRG5480263

Project Title: Redox protein expression of mesenchymal stem cells in response to

surface elasticity

Investigator: Dr. Fahsai Kantawong

E-mail Address: fahsai.k@cmu.ac.th

Project Period: 2 years

Abstract:

Stem cells sense and respond to the stiffness of the surface on which they adhere. Many studies showed that surface elasticity could control cell proliferation and cell differentiation through biochemical pathways. Adipose-derived stem cells (ADSCs) are multipotent and can differentiate along the adipocyte, chondrocyte, myocyte, neuronal, and osteoblast lineages which can be used as a source of stem cells for cell therapy in the future. We hypothesized that ADSCs could differentiate to neurons in response to the softness of the surface on which they adhere. The aim of this study were the use of soft surface to induce neuronal differentiation of ADSCs then neuronal gene expression was observed by Real-Time PCR and to study critical regulatory roles of redox proteins in surface elasticitymediated signal transduction and outgrowth of ADSCs. Photolithographic technique was used to control degree of cross-linking in the gelatinous hydrogel. This kind of hydrogel could mimic a mechanical property of brain tissue. Gelatinous hydrogels with surface elasticity ~ 1-5 kPa were used as biomaterial scaffolds to induce neuronal differentiation of ADSCs. ADSCs were cultured on soft surface for 1-2 weeks and the expressions of class III beta-tubulin and redox genes were detected by RT-PCR. It was found that class III betatubulin gene was up-regulated in ADSCs cultured on hydrogel when compared with ADSCs cultured on tissue culture polystyrene. This result indicated that neuronal differentiation of stem cells culture on hydrogel could be achived without addition of any supplement. This study indicated that neural differentiation is involved with change of redox protein expression. Redox proteins such as thioredoxin (TRX) and superoxide dismutase (SOD) have dual roles in a variety of biological processes including cytoprotection and the activation of transcription factors. The expression of Trx 1, SOD 1 and PRX2 genes were up-regulated in stem cells cultured on soft surface when compared with stem cells cultured on tissue culture polystyrene. In conclusion, neural differentiation of stem cells culture on soft matrix is involved with change in expression of redox proteins.

Keywords: hydrogel, stem cells, neuronal differentiation, adipose-derived stem cells, oxidative stress, redox state