บทคัดย่อ

โปรแกรมการตายของเซลล์ (programmed cell death, PCD) เป็นเหตุการณ์ที่จำเป็นต่อการเจริญพัฒนาในสัตว์รวมทั้ง แมลงให้เป็นไปอย่างปกติ และเป็นเหตุการณ์ที่ถูกควบคุมโดยฮอร์โมนที่สำคัญคือ ฮอร์โมน 20-ไฮดรอกซีเอคไดโซน (20hydroxyecdysone, 20E) โดยจะทำหน้าที่ในการย่อยสลายเซลล์และเนื้อเยื่อที่ไม่จำเป็นออกไปในแมลงบางชนิดต่อม สร้างไหมส่วนต้น (anterior silk glands, ASGs) จัดเป็นเนื้อเยื่อที่พบในระยะตัว หนอนและจะถูกกำจัดไปเมื่อตัวหนอน เปลี่ยนเป็นดักแด้ หนึ่งในยีนที่พบว่ามีความสำคัญต่อการควบคุมการตายคือ Broad-Complexgene (BR-C) ในงานวิจัยนี้ ได้ทำการศึกษาผลของฮอร์โมนจูวีไนล์สังเคราะห์ (juvenile hormone analogue, JHA) ต่อการเกิดโปรแกรมการตาย ของเซลล์และศึกษาหาค วามสัมพันธ์ระหว่างการเกิดโปรแกรมการตายของเซลล์กับการแสดงออกของยีน สร้างไหมส่วนต้นของหนอนเยื่อไผ่ระยะไดอะพอส ผลการศึกษาพบว่า ต่อมสร้างไหมส่วนต้นของหนอนที่ได้รับฮอร์โมนจูวี -ไนล์สังเคราะห์ความเข้มข้นต่างๆ ได้แก่ 0.1 0.5 และ 1.0 ไมโครกรัมต่อ 5 ไมโครลิตร ทำให้ต่อมสร้างไหมส่วนต้นเกิด โปรแกรมการตายของเซลล์ได้โดยทุกความเข้มข้นของฮอร์โมนทำให้ต่อมเกิดการเปลี่ยนแปลงทางสัณฐานวิทยา แบ่งได้ เป็น 6 ระดับคะแนนการตาย (PCD score = 0-5 และค่าเฉลี่ยของระดับคะแนนการตายในดักแด้ระยะสุดท้าย (G3) ขึ้นอยู่กับความเข้มข้ นของฮอร์โมน นอกจากนี้ยังพบว่าฮอร์โมนจูวีไนล์ที่ความเข้มข้น 1.0 ไมโครกรัมต่อ 5 ไมโครลิตร สามารถชักนำให้ต่อมเกิดการอัดแน่นของนิวเคลียสและเกิดการแตกหักของนิวเคลียสได้เร็วที่สุดเมื่อเปรียบเทียบกับ ฮอร์โมนที่ความเข้มข้นต่ำ อย่างไรก็ตาม ไม่พบการแตกหักของ DNA เพื่อศึกษาหาความสัมพันธ์ระหว่างยืน BR-C และการเกิดโปรแกรมการตายของเซลล์ที่ถูกกระตุ้นโดย JHA จึงได้ทำการหาลำดับเบสของยีน *BR-C* บางส่วน (partial sequences)จากอิพิเดอร์มิสของดักแด้ระยะ G2 พบว่า ยีนมีขนาด 636 คู่เบสมีค่าเปอร์เซ็นต์ความเหมือนกับหนอนใบ ยาสูบ (Manduca sexta) และหนอนไหม (Bombyx mori) คิดเป็น 78% และ 76% ตามลำดับ เมื่อตรวจวัดการ แสดงออกของยืน BR-Cในหนอนเยื่อไผ่ระยะไดอะพอสระหว่างเดือนตุลาคมถึงเดือนกุมภาพันธ์โดยวิธี semi-qualitative PCR พบว่ายีน BR-C มีการแสดงออกลดลงอย่างต่อเนื่องจนถึงเดือนกุมภาพันธ์ นอกจากนั้นแล้วยังได้เก็บตัวอย่างต่อม สร้างไหมส่วนต้นจากหนอนเยื่อไผ่ที่ได้รับฮอร์โมนจูวีไนล์ความเข้มข้นต่างๆ มาตรวจวัดการแสดงออกของยีน ผลการ ทดลองพบว่า ฮอร์โมนจูวีในล์ทุกความเข้มข้นมีผลต่อการแสดงออกของยีน BR-C ในรูปแบบเดียวกัน งานวิจัยในครั้งนี้ แสดงให้เห็นว่าฮอร์โมนจูวีไนล์สามารถซักนำให้ต่อมสร้างไหมส่วนต้นเกิดโปรแกรมการตายของเซลล์ได้และมีผลต่อการ แสดงออกของยืน BR-C แต่อย่างไรก็ตามยังไม่สามารถอธิบายความสัมพันธ์ระหว่างการเกิดโปรแกรมการตายของเซลล์กับ การแสดงออกของยืน BR-C ได้อย่างชัดเจน

คำสำคัญ: Apoptosis, Diapause termination, Juvenile hormone, Methoprene

ABSTRACT

Programmed cell death (PCD) is essential to the development of animals and insects. An event that is controlled by the 20-hydroxyecdysone (20E). Anterior silk glands (ASGs) is larval-specific tissues that are normally eliminated by PCD after pupation. One of the genes found to be important to control the PCD is Broad-complex (BR-C). This research was conducted effects of juvenile hormone analogue (JHA) to programmed cell death and relationship between programmed cell death with BR-C gene expression in the anterior silk glands of the bamboo borer (Omphisa fuscidentalis Hampson). Results showed that PCD was occurred in all the ASGs of larvae treated with different concentration of JHA $(0.1, 0.5, 1.0 \,\mu\text{g}/5\mu\text{l})$. All concentrations of JHA caused morphological changes to the gland which could be divided in to 6 levels of death (PCD score = 0-5). However, the mean score of the glands from the larvae treated with those concentrations of hormone at the end of pupal stage (G3) was in a dose response manner. In addition, it was found that 1.0 μ g/ 5μ l JHA was able to induce nuclear condensation and nuclear fragmentation the fastest compared to low concentrations. However, DNA fragmentation was not observed. Furthermore, partial sequences of BR-C were identified in order to indicate the relationship of BR-C and PCD induced by JHA. A partial cDNA sequences were isolated from epidermis of G2-stage larvae with 636 base pair nucleotides. The similarity of OfBR-C with Manduca sexta BR-C and Bombyx mori BR-C was 78% and 76%, respectively. cDNA of ASGs from October to February were prepared in order to study the developmental profile of BR-C. The expression was decreased continuously until February. Moreover, cDNA from ASGs of larvae treated with different concentrations of JHA were prepared for measuring BR-C expression. Results showed that expression pattern of BR-C were similar. Although it was not clearly of how BR-C involved with PCD, these researches indicated that JHA induced PCD effectively and affected BR-C expression.

Keywords: Apoptosis, Diapause termination, Juvenile hormone, Methoprene