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Abstract
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Project Title : Analysis of flow dynamics and heat transfer inside corrugated tube by mean of Large-eddy simulation
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Abstract:

This project developed a framework for heat transfer analysis in corrugated pipe. First, the research is directed at
the simulation of heat transfer in corrugated pipe using large eddy simulation. The numerical method is a
combination of fourth-order finite volume method and the immersed boundary method. The investigation of
heat transfer in channel flow at Schmidt number 0.3 — 10 has been carried out at Reynolds number 5,600. The
developed method is proven to be effective and efficient when compared with the literature. The simulation
result of corrugated pipe show enhance turbulence. However, due to the limitation of computational resource
and the unreliability of ThaiGrid infrastructure, a large-scale simulation could not performed and therefore a new
method that can deliver an even better performance is needed to carried out turbulence research in Thailand.
To this end, the second part of the research is redirected at the fundamental algorithm for fluid flow simulation.
The novel discretization called Finite Surface Method (FSM) was developed. This method, in the standard setting,
is found to be 28-times faster than a traditional research code. After optimization in some part of the code, the
performance increases to 80-times. This new methods allows a turbulence research to be carried out using the
limited computing resource we have in Thailand, whereas it would be impossible using the simulation technology

prior to this research.

Keywords : heat transfer in pipe, large-eddy simulation, finite volume method, higher order method, finite surface

method
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3.1.Problem formulation
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2% 1 Y (uydy) = 0 (4)
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2.Solution methodology
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4.Analysis
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3.1.1 Concept

Finite volume (FVD) and finite difference (FDD) discretizations have been important instruments for turbulence
research. Direct Numerical Simulation (DNS) using these two discretizations helped to achieve a better understanding
of turbulence. However, even with the current fastest supercomputers, the complexity of the turbulent flows is still
too much for us to tackle it directly, especially in the industry-relevant scales, prompting thel5need for more efficient
approaches. This can be done in many ways such as i.upgrading the numerical schemes in the discretization and
ii.develop a new discretization. The first direction has been researched intensively in the past three decades,
numerous higher-order methods have been developed among others. The second approach is rarely attempted. A
new discretization may enable more flexibility such as the Finite20Element Method or provide more robustness such

as the Discontinuous Galerkin Method(DGM), but they are not necessarily more efficient.

In the first direction, the computing cost increases as a linear function with the convergence order of the method,
but the advantage from the grid density reduction is a quartic function (including the time-step). This advantage is
well observed in convection-diffusion problems [5, 9, 10]. On the other hand, the early applications of higher-order
methods to the Navier-Stokes equations (NSE) report notable improvements in the higher-order statistics and the
energy spectra in turbulent flow simulations, but the improvements in the mean fields are almost negligible. One of
the reasons is because the higher-order schemes are applied only to the momentum-conservation equation, but
the approximations of mass and pressure fluxes are left at second-order. The enforcement of the mass-conservation
and the solution of the new pressure, are usually done by the projection method. First the momentum equation is
integrated in time and the result is treated as the provisional velocity. The divergence of this velocities is then
checked. If the field is not divergence-free, the projection method then solves the Poisson equation formed by the
multiplication of the discrete divergence and the discrete gradients. This requirement complicates the
implementation of the higher-order method significantly requirement complicates the implementation of the higher-

order method significantly.

Later, it has been widely accepted that an n-th order NSE solver must use an n-th order method in the approximation
of the mass flux and pressure force . This translates to a special form of the Laplacian in the Poisson equation for
the pressure. Figure 6 compares a fourth-order (19-point) and a sixth-order (3 1 - points) projection Laplacians to an
explicit fourth-order Laplacian (13 -point). It can be seen that, this requirement greatly increases the cost of higher-
order methods. Specifically, the cost ratio between the projection and the explicit Laplacians, at the same order of

accuracy is



_12n-11
 6n+1

Thus, the projection Laplacian is asymptotically twice more expensive than the standard Laplacian. The extra large
stencil is a consequence of the projection method. The projection Laplacian could be a full matrix if one of the

discrete operators is implicit .

L

(a) (b) (c)
Standard fourth-order Laplacian Fourth-order projection Laplacian Sixth-order projection Laplacian
Nng = 13 ng = 19 ng = 31

31]17; 6 A standard fourth-order approximation stencil of the Laplacian (a). The standard fourth- and sixth-order
projection stencils needed by FDM and FVM on staggered grid (b and c). The proposed method can deliver a sixth-

order convergence rate using the left stencil.

Furthermore, during the development of higher-order NSE solvers, the performance gains of higher-order methods
on the collocated grids are small, unlike the staggered grid counterpart. On staggered grids, the compact fourth-order
scheme is very accurate and it is ten times faster than the second-order scheme, at the same level of accuracy. The
reason why higher-order NSE solvers work very well on staggered grids is investigated in . It is concluded that the
advantage does not belong to the mathematical discretization of the NSE, but it belongs to the discretization of the
physical domain and the arrangement of the flow variables which allow a better calculation of the mass conservation.
Thus, if we step back and consider that FVD converts the continuous physical domain into a collection of
interconnected volumes (or cells) while FDD discretizes the domain into a set of isolated points in space. Then, it is
natural that we can also define the discrete space as a set of surfaces. In this paper, we present a new discretization
decomposing the physical domain this way. We call it finite surface discretization (FSD). This approach has superior
mass conservation properties compared to the existing methods and greatly reduces the complexity of the pressure
treatment mentioned previously. Figure 7 shows the exploded control surfaces of the three velocities while the 80
pressure is kept as a volume in the transparent cube. The discrete physical domain where the velocities live is now
just the outer shell of the pressure. The integral of the velocity divergence on this cell can be computed exactly by
summing the respective fluxes on these faces. Setting up a spatial discretization this way renders the discrete

mass conservation equation exact. The only equation left to approximate is the momentum conservation.



The newly developed discretization possesses the following unique properties

- It delivers the exact discrete mass conservation.

The computation of the exact mass balance costs the same as in other second-order schemes.

- It enjoys the half-a-cell advantage in the pressure gradient calculation similar to staggered grid arrangement.
- It eliminates the extended stencil needed by the projection method.

- It can use a lower order approximation for the pressure and still support higher-order momentum

approximations.

;J‘Uﬁ 7 Exploded view of the controlled-surfaces where FSD defines the velocities. Each surface contains only one

normal velocity

3.1.2 Accuracy and the performance of the method

In this section, we verify the accuracy of the finite surface method using four standard test cases and focus on how
the pressure treatment affects the overall accuracy of the compact sixth-order FSM. The convection and the viscous
terms are approximated by sixth-order schemes in all test cases and the time-integration is third-order low-storage
Runge-Kutta (RK). The approximations of the pressure gradient considered here are (i). the fourth-order explicit (PE4),
(ii). the compact fourth-order (PCO4), and (iii). the compact sixth-order (PCO6) methods. The Poisson equations are
solved by a direct FFT solver using a transfer function listed in Table 2. In the domain having both periodic and non-
periodic, the eigendecomposition is employed where we solve a banded matrix for each pair of xy-eigenmode. All
the simulations in two dimensions are computed with the sixth-order nonlinear correction without any filtering
process. The method is implemented on MGLET developed at Technische Universitat Minchen where the principal

investigator worked and helped develop the code.

First a Taylor-Green vortex (TGV) flow is used to investigate the accuracy of the individual components of the
momentum equations including the pressure. Next, a double shear layer (DBL) flow is used to verify the convergence

in a fully nonlinear flow. The boundary closures are then evaluated using an instability in plane channel flow a and



lid-driven cavity flow. The divergence error (div - Lref /Uref ) is in the range of 1E-15 for the simple TGV flow and the
instabilities in plane channel flow. In the DBL problem, the divergence is in the order of 1E-14 on the coarsest grid

and 1E-13 on the finest grid (N = 512%). In the lid-driven cavity flow, an iterative solver is used and the divergence is

kept in the vicinity of 1E-11.

Taylor-Green Vortex
In the first test, we use a family of Taylor-Green vortex flow to check the accuracy of the scheme. The initial condition

for each test is prescribed by the equations below:

u(e,y.t, Re) = cp — cos(x — cot)sin(y)e ™

. =2t

v(x,y,t, Re) = ¢, + sin(x — ¢,t)cos(y)eFe
] 21

plr,y, t, Re) = —i((:os(Q('J; — o)) + cos(2(y — cat)))eTe

First, we check the accuracy of the pressure treatment using the stationary inviscid TGV: wit Cx =Cy = 0 by initializing
the velocities with exact values but using the wrong pressure. The cell-averaged pressure value is replaced by the
pointwise value at the cell center. This mimics the situation when the velocity field is accurately known, but the
pressure is less accurate or unknown. This tests the ability to recover the pressure by the different treatments
mentioned previously. All the approximations of the convection and diffusion terms are computed with full sixth-
order except for the pressure gradient. We perform just a single time integration to check the recovered pressure.
The convergence curves of the new pressures indicate that the explicit fourth-order treatment (PE4) is the least

accurate (Fig.8(a)), as expected. Its error is 2.6 times larger than the compact fourth-order (PCO4) while the sixth-

order.
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31]17; 8 Convergence of FSM: (a) the initial projected pressure in the inviscid TGV, (b) the convergence of u and p in
the traveling TGV at t = 2TT. Every simulation is performed with CFL = 0:013 except for the addition test stated in the

graph (CFL = 0:2). The y-axis is shared by both graphs.



Next, we enable the convection and viscous terms by setting cx = 1:0; cy = 0; Re = 100. The time step is adapted
such that CFL number is kept at 0:013 to ensure that the time integration errors are smaller than the spatial
approximation errors. The initial pressure is initialized exactly using the cell-averaged values. The new TGV is now
moving along the x-axis and is scaled down with time. The pressure field is thus traveling and decays along with it.
The maximum errors are plotted in Fig.8(b) at t = 27T when the flow has completed a round-trip and decayed by
12%. At this point, both convection and diffusion 550 have made substantial contributions to the velocity. The
difference between the errors in the pressures of PE4 and PCO4 are the same as shown previously. However, their
velocity are almost identical (We remove PCO4 for clarity). The number of grid points per wavelength (PPW) in the
graph ranges from 10 on the right to 600 on the left. All treatments deliver a clear sixth-order convergence rates in
the velocity. The aver aged rate from 10 to 160 PPW is 6:42. At 200 PPW, the error in the velocity at the first time

step is 1:2E-15, which is just five times the machine accuracy.

Doubly Periodic Double Shear Layer
This simple two-dimensional flow contains Kelvin-Helmholtz instabilities in which the shear layers are perturbed by

a sinusoidal disturbance leading to a roll-up of the vortex 580 sheets into a cone-like shape. The periodic domain

Q= [0; 1) is taken for this study and the initial velocities are given by

tanh(o( y — 0.25)) for y < 0.5,
u = .
tanh(a(0.75 —y))  fory > 0.5.

v = ysin(2rx).

The Reynolds number based on the initial maximum velocity and the length of the computational domain is 10; 000.
The shear layer parameter (O) and the perturbation magnitude () are set to 30 and 0:05, respectively. The overview
of the simulations shown in Fig.9 illustrates how the shear layers get rolled up by the spanwise perturbations at a
relatively fast pace. On the 64°-grid, the numerical artifacts appear everywhere, most notably on the level close to
zero vorticity (€27 = 0). However, the tails of the vortex sheet are still clearly preserved. When the grid resolution is
tripled in each direction, some artifacts can still be observed at t = 0:8, but they have completely disappeared at t

= 1:2.



0 0

0.5 1

gﬂﬁ' 9 An overview of the vorticity (-30:6:30) of the double shear layers flow with N = 64(top) and 192° (bottom) at
t = 0:4, 0:8 and 1:2, from left to right respectively. The solid lines represent the positive contours and the dashed

line means negative vorticity.

Turbulent Channel flow
In the first part of this section, we investigate Retr = 180 and establish the relationship between the error in the bulk
flow velocity and the normalized grid spacing. The grid resolution requirement found in this section is then used to

design two new grids for the two additional Reynolds numbers, Ret = 590 and 950.

Turbulent channel flows have been studied extensively and the shape of the mean profile in the viscous sublayer
and the outer layer are well understood. Dean’s correlations for the channel flow is very accurate and they agree
well with many respectable direct numerical simulations. In Tab.1, we list two mean velocities ratios: the center line
and bulk velocities per friction velocity, u/ut and uy/ur. It is clear that the FSM converges to the spectral solution
as the grid resolution increases. The ratio u,/ur on the coarse grid is 1.146 and it is increased to 1.165 on 64°-grid
which is within the 0:1% of the finalvalue (1:164) on 128-grid. This final value is exactly same as KMM1987 [73].
Thus,FSM should already produce a correct shape of the mean velocity starting from N = 64° grid. According to the
table, mean flow parameters are monotonically approaching the reference value until 100 °-grid. However, for the
finer grids, the parameters oscillate near the reference value. These small deviations (0:2%) can be attributed to the

statistical uncertainty.



Domain Reynolds Number Grid spacing Velocity ratio

Simulation
Ts B Re,, Re, Nat Azt Ayt Awba wefus wfus
327 5,127 177.53 69.7 232 5.4 15.4 1687 14904
18 5323 177.90 16.6 155 3.0 13.6 1687  14.96
56* 5402 180.05 104 135 2.5 1.9 1739 15.00
64° 4 4myy  PAT2 17824 35.0 117 22 105 1786 15.39
708 TR 5529 17801 319 106 L8 103 1791 15.53
807 5562 179.24 28.0 9.3 L6 9.1 1812 15.52
1007 5,624 178.05 224 7.5 1.2 75 1836 15.75
1287 5,605 178.25 175 5.8 0.89 5.2 1830 15.60
144 5,606 178.50 156 5.2 0.40 5.2 1827 1573
KMMI1987 [73] 4= 27 5,600  180.00 118 7.1 0.054 4.4 1820 15.63
MKM1999 [74]  4x  4x/3 5,520 17813 177 5.9  0.054 44 18.30  15.52
VK2014 [76] 47 47/3 5,616  180.00 59 29 0024 3.9 1828  15.60

319t 1 Grid parameters and mean flow variables of the standard grids used in this validation compared to the
references. The domain sizes are normalized by the channel half-width H. Grid sizes are in wall-unit. The first 8

rows are the simulations using FSM presented in this research.

The key finding in the application of the newly proposed scheme is the relationship between the accuracy of the
direct numerical simulation of turbulent flow with the grid resolution which is never reported in the literature before.

The error in the mean flow as the function of grid spacing in the streamwise direction is

€lub

log1o (T) = —9‘342)(52101) + 33.05X310p —30.41,
‘b

Using this relationship, one knows exactly the accuracy of the simulation result w.r.t. the grid size and the simulation
can be designed accordingly. Furthermore, this resolution lead to the following grid point requirement for the
numerical simulation of turbulent channel flow
Re; 3
-5
22
This can be used a key performance index when comparing different Navier-Stokes solver. The investigator has applied

this grid resolution and conducted DNS of two turbulent channel flow at two additional Reynolds number i.e. Ret =
590 and 950 and found the the error prediction is accurate. The first- and second-order statistics are reported in

Fig.10.

The finite surface discretization itself is a natural spatial discretization that sits between FVM and FDM. For coupled
conservation problems, FSM is very competitive. The mass conservation equation in FSM is exact and it only
approximates the momentum equations. Other coupled problems such as Magnetohydrodynamics and scalar
transport should be greatly benefited from the FSM as well. The conserved quantities (mass, chemicals, magnetic
fields) can be defined on the controlled volume while the transporting variables (momentums, velocities, ion fluxes)
can live on the surface of the controlled volume. The surface-averaged flux can serve as a new type of DOF for
existing methods. Effectively, a sixth-order FSM can deliver a comparable solution 28-times faster than the

second-order FVM.



FSM
20 — DIZM2004

I :_mc
<ut = &

t.rms

+

u

—10

—20 ' , ‘ 2
109 10 102 108
'u+

31J‘I7i 10 Mean streamwise velocity and the RMS of velocities fluctuations on RE950 from the grid designed to meet

1% error in the mean profile: [4dx";4dy ", ,;4dy addz’] = [34.5; 4.7; 27.1; 12.6]. The grid density used here is 42:5

less dense than the reference.

49e-02 0.2 0.4 6.8e-01
EE——

31J‘|7i 11 A snapshot of u-contour at 5y" from RE950 (bottom) compared to the result from FVM on a larger domain

(top). Similar structures can be seen on both simulations despite FSM having a grid density 11.4-times less. Note that

the size of the wall cell with FSM simulation is 4.7y* and this plane is just above the top of this cell.
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5.1 Manuscript of
“SIP-Multigrid method in Fourth-Order Finite Volume Method for Navier-Stokes Equations”
Presented in the International Conference on Computational Methods (ICCM2012), Gold Coast, Australia

The International Conference on Computational Method (ICCM) is a small but focused conference on new method
and analysis of numerical solution for physical problems. ICCM2012 is chaired by Prof. YuanTong Gu from School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology. The Conference handbook

is still available online at https://eprints.usq.edu.au/23150/3/Documentation.pdf




5.2 Abstract of
“Development of two dimensional Finite Surface Discretizationfor Fluid Flows”
presented in the 7th International Conference on Advanced COmputational Methods in Engineering 2017,

Ghent University, Ghent, Belgium

The 7th International Conference on Advanced COmputational Methods in Engineering is a relatively large Conference
consisting of a variety of fields related to computational method in engineering. This is the first venue that the finite
surface method is presented. The reception from the audience was interesting. Many participants linked the method
with the hybridizible Galerkin Method where it define the edge polynomial to smooth out the diffusion problem.

The reaction from the listener was added to the first revision of the FSM paer.



5.3 Reprint of
“Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation laws”

(in Press)

This article has been accepted for publication in Journal of Computational Physics (IF=2.99) which is a top journal in
the field of Mathematical Physics. The journal is ranked fourth by Web of Science in Physics, Mathematical category.

In term of number of citations, it is ranked second, behind only the Physical Review E.

The first version of the manuscript was submitted in November 2017. The paper was rejected due to the reviewers
did not understood the novelty of the method and thought that the method was similar to Van Leer’s scheme. Also,
the result was presented in two-dimensional flow and the reviewer suggested that it was not suitable for the journal.
In 2019, the new revision was formed to highlight its novelty and included three-dimensional simulations. It was
submitted and was given a major correction in March 2020. Due to its highly novel concept, the reviewers still see
the method as a finite volume method and ask the author to readdress the difference from the finite volume method.
The principal investigator then addressed the misconception and the reviewers recommended further improvement
on the presentation of the method and then recommended the publication. The acceptance letter was issued in
early August 2020 and the articled is published in the in-press form during the last week of the same month. The

editorial process was overseen by Prof. Feng Xiao from Tokyo Institute of Technology in both submissions.
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The International Conference on Computational Method (ICCM) is a small but focused conference on new method
and analysis of numerical solution for physical problems. ICCM2012 is chaired by Prof. YuanTong Gu from School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology. The Conference handbook
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Abstract

Navier-Stokes equations (NSE) are a coupled equations of mass-conservation and momentum
conservation equations. Time-integration of NSE usually use Fractional Time Stepping Method
(FSTM). Under FSTM framework, fourth-order methods for NSE have to solve discrete Poisson
equation which can be a 19-point stencil [Kampanis and Ekaterinaris, 2006, Hokpunna and
Manhart, 2010a] or a 13-stencil approximations [Hokpunna, 2010b]. Unlike in second-order
context, Jacobi and Gauss-Seidel are ineffective as a smoother in 3D. Efficient solution to these
discrete Poisson equations are very limited in the literature. In this work, an efficient multigrid
method for fourth-order method for NSE is presented. The Strongly Implicit Procedure (SIP)
[Stone, 1968] is used as the smoother. Simple injection and second-order interpolation for
restriction and prolongation are compared. The performance of the algorithm in direct numerical
simulation of turbulent channel flow is presented in comparison with fast-fourier transform method
on single processor. The result of this work demonstrates that SIP is an excellent smoother for
fourth-order discrete Laplacian and the cost of the fourth-order scheme is not expensive when
compare to second-order cheme. A single V-cycle with 3 iteration of SIP in each level is sufficient
to keep the residual reduction rate at a constant value.

Keywords: Higher-order method, Poisson equation, multi-grid methods

Introduction

In recent development of higher-order methods for solving Navier-Stokes Equations (NSE), the
enforcement of mass-conservation is found to be a crucial part. The mass conservation and the
approximation of pressure force have to be approximated with higher-order accuracy as well. The
requirements necessitate the use of higher-order discrete Laplacian with a wider matrix bandwidth
than what used in second-order scheme. When the NSE are solved in three dimensions together
with projection method, the bandwidth of such of a discrete Laplacian can be 19 [Kampanis and
Ekaterinaris, 2006, Hokpunna and Manhart, 2010a]. In comparison with 7-point stencil of the
second-order Laplacian, this is very expensive. Suppose that a similar strategies like Gauss-Seidel
or Successive Over Relaxation (SSOR) can be used and the number of iteration required to achieve
the usual divergence is the same, the cost is almost triple. Relaxation schemes are a crucial part for
multigrid method and they are also served very well as preconditioner for Krylov subspace method.
In this work, we present application of Strongly Implicit Procedure (SIP) [3] together with a
multigrid method for solving higher-order discrete Laplacian arises in the process of continuity.
First the Laplacian operators consider in this work is outlined, then the smoothing analysis of
several iterative solvers are discussed. Numerical results are presented next in comparison with
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same scheme applied to second-order discrete Laplacian. This paper is then closed by the
conclusion and the outlook for the research that that would be benefit to computational fluid
dynamics communities.

Higher-order discrete Laplacian in CFD

The Navier-Stokes equations are composed of two equations: (i) mass-conservation equation and
(i) momentum conservation equations. These equations are nonlinearly coupled and are usually
solved by operator splitting method or Fractional Time Stepping Method (FSTM). One of the most
sucessful method in the FSTM class is the projection method which first integrate the momentum in
time neglecting the mass-conservation completely, then applies a projection operator to the
resulting field. This projection guarantees that the outcome is divergence-free, if solved by a direct
method. It is commonly agreed now that mass-conservation and pressure calculation must be done
in the same order as those used for the momentum equations in order to achieve the same
convergence rate. For example, a fourth-order code must compute mass balance and pressure
gradient using fourth-order convergence methods. In the frame work of traditional projection
method, one must solve a certain form of discrete Poisson equations. For fourth-order scheme on
staggered Cartesian grids, there are two discrete Laplacians proposed recently. The first one is
called fourth-order discrete Laplacian [Kampanis and Ekaterinaris, 2006, Hokpunna and Manhart ,
2010a].

(£ _EAL 1 FO2L —
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460f,) /5764 Z (1)
In three dimensions this constitutes a 19-point stencil. This operator arises from the multiplication
of the fourth-order divergence and fourth-order gradient operators. Another one is called mixed-
order discrete Laplacian which is used with approximate projection method [Hokpunna, 2010b].
This Laplcian reads:

(—fiss + 28fis1 — D4/ 24(4x)7, 2)
which is a product of the fourth-order divergence and second-order gradient operators. However,
this approximate projection method uses a fourth-order approximation of the pressure gradient in
the momentum equations which deviates from the usual concept of projection method and thus are
called approximate projection method in contrast to the formal projection method which is also
called exact projecion method [Almgren and Bell and William, 2000].

It was shown in [Hokpunna, 2010b] that the accuracy of the approximate projection method (solves
13-point Laplacian) is as accurate as the exact projection method (solves 19-point Laplacian) and is
sufficient to maintain fourth-order convergence of the NSE solver. Fig.1 demonstrates the accuracy
of the mixed-order Laplacian in turbulent channel flow simulation. The mean velocity profile and
the profiles of velocity fluctuations collapse almost completely. Since the approximate projection
method is less expensive and requires only two ghost cells, we chose this method as the standard
method in our code. Therefore in this work we are reporting the result of the mixed-order operator.



20 T T T 3 T T T T T T T T T
25 W
urms
2 -
" .
> E 15 H _
vrms
1 -
05 wrms i
0 I 1 1 1 | 1 1 1 1
1 10 100 20 40 60 80 100 120 140 160 180
+ +
Z z

Figure 1 Comparison of mean velocity (left) and rms of velocity fluctuations between exact
projection method and the approximate projection method. Solid line: exact projection
method, dash-line: approximate projection method.

Smoothing Analysis of classic iterative scheme

Here we consider the amplification factor of the Fourier modes. The Fourier analysis in this context
is called local mode analysis. Note that this analysis does not include effects of the boundaries and
the grid is assumed to be uniform. The amplification factor obtained from this analysis can be
thought of as the best case scenario. For a linear algebriac system Ax = b, let A be split as
A = M — N, then a basic iterative method corresponding to this splitting can be written as

v**l = Syt 4 M ih 3)
with § = M7!N. Let the eigenfunction be f; = ex“p{i(kl + kg}}, then the amplification of each
Fourier mode is given by [Wesseling, 1992]

R(e;ﬁgj = E N [kj_}kz)exp(i(ki + kz:‘) f E M (kLkg:lexp(i(ki + kg)) (4)

Applying Eq.(4) leads to the amplification factor shown in Fig.1 which indicates a deterioration of
the that the smoothing of the high frequencies. The smoothing factor (|4], (|k1],|k2|) 2 ©/2) was
increased from 0.278 to 0.688. Nevertheless, The plot shows that the incomplete LU of the SIP
works well as a smoother for the mixed-order discrete Laplacian. The function of the amplification
factor when applying SIP to the fourth-order discrete Laplacian (Eq.(1)) looks similar to Fig.1(b)
with the smoothing factor of 0.684. In the next section we present the convergence of the full-
coarsening V-cycle multigrid method using SIP as the smoother. This method is called MG-SIP.
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Figure 2 Amplification factors of SIP applied to the second-order (a) and mixed-order (b)
Laplacian operators.

Convergence of the SIP and the of MG-SIP method for higher-order scheme

In order to investigate the convergence of the MG-SIP in a realistic application, we consider a direct
numerical simulation of turbulent channel flow. The number of grid cells used here are 64K, 262K
and 2.1M where the number of grid cell in each direction is 32, 64 and 128 respectively. In practice,
the convergence of the SIP is limited by the treatment of the boundaries. Therefore, the
convergence rates of the SIP when applied to the second-order or the fourth-order Laplacian, do not
differ much. Figure 3(a) demonstrates the convergence rates of SIP (without multigrid) applied to
the Poisson equations generated by the projection methods. The strongly implicit procedure, when
applied to the mixed-order Laplacian, converges even faster the rate seen with the second-order.
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Figure 3 (a) Convergence of the SIP applied to the mixed-order discrete Laplacian (40) in
comparison with that of the second-order (20). (b) Convergence of multigrid-SIP (2G)
applied to mixed-order Laplacian using two level of coarsening. The numbers after the
hyphen indicate the number of grid points. The residual display here and in all other graph is
normalized by the initial residual.



Figure 3(b) displays the convergence rate of two-grid method, the multigrid method with only two
coarsening levels. The restriction process was done exactly and the prolongation was performed
with second-order method. For the two smallest cases, applying multigrid method for two level is
sufficient to achieve the residual close to the machine accuracy. The multigrid-SIP method appears
to converge at the same rate for all grids. A simple regression indicates that the reduction rate is
0.738. Exceptions are observed for the first fast drop on 323-grid and the saturation after 40th
iteration on 1283-grid. This saturation disappears when an additional level was added (see Fig.4(a)).
However, a further coarsening (4-level) do not improve the convergence rate of the 2-level.

Different combinations of the restrictions and prolongations are studied in Fig.4(b) using 3-level
grid. In finite volume context, the values stored in the cell is a volume averaged value. Thus the
restriction by summing up the values in the eight sub cells is an exact operation. The first-order
prolongation means that the 8 sub cells take the value of the coarse grid and the second-order
prolongation use linear interpolation between the neighboring cells on the coarse grid. For the first-
order restriction, the value of the lowest index on the fine grid is taken as the value of the respective
coarse grid. Under this two-grid method, the first-order restriction (injection) decreases the
convergence rate while the first-order prolongation has positive effects.

"2 Level 'exREST-2PROL —— |
3-Level -------- exREST-1PROL -------
0.01 4-level o 7] 0.01 - iNjREST-2PROL -------- .
iNjREST-1PROL =
0.0001 0.0001 | g inj2REST-1PROL o
T 1e-06 T 1e-06 [
] 5
(723 (7]
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Figure 4 (a) Convergence of the MG-SIP applied to the mixed-order discrete Laplacian (40)
on 128-grid with different numbers of coarsening using exREST-2PROL. (b) Convergence on
the same grid but with 3-level MG-SIP and different combinations of restrictions (exact
restriction (exREST) and prolongations (first-order (1IPROL) and second-order (2PROL)).
The cross restriction is named inj2.

Figure 4(b) indicates that the exact restriction with the first-order prolongation (exREST-1PROL)
works surprisingly well. The overall convergence rate is the same as exREST-2PROL. This means
attempt on reproducing the high-frequency content of the coarse grid solution fails to deliver, at
least with the second-order approximation. Simple injection converges but at a slower rate. Thus the
only thing left to optimize is how to restrict the data. It can be shown that picking one cell from
eight cells create phase errors in all three directions. Therefore choosing the sub cells in such a way
that the coarse grid get the phase information adequately in all directions should improve the
convergence. We tried a cross restriction which sum the four opposite sub cells and it is found to be
highly satisfactory. The convergence rate is even slightly faster than exREST-2PROL at low level
of residual. Since the exREST-2PROL requires more work, this reflects in the CPU-TIME. The
CPU-TIME of this algorithm is measured on Phenom II X6 1050T. The CPU-TIME requires per
solution for the MG-SIP to achieve 10E-6 and 10E-10 is 2.43s and 8.42s for EXrest-2PROL. The



same values for inj2REST-2PROL are 2.26s and 6.08s, respectively. Consider that the direct solver
(fast fourier transform) requires 1.34 to solve the same problem (with 2E-14 residual) the
performance of the MG-SIP is very good.

Conclusion

The performance of the MG-SIP applied to the Poisson equation generated by the projection
method of fourth-order finite volume discretization of the Navier-Stokes Equations was presented.
The test case considered in this work is challenging for any iterative Poisson solver. It contains
periodic conditions and highly stretched grid. The result showed that MG-SIP is powerful. It would
be very interesting to investigate the convergence rate of other cycles. If one looks closely to the
residual plot, the first few iteration has higher reduction, which are approximately 0.18, 0.4 and 0.5.
At the moment, MG-SIP cannot achieve these reduction rates and only 0.738 was obtained. On 128-
grid used in the test, the time integration of the momentum equation costs 1.3s and the direct solver
costs about the same. Therefore the efficient solutions to higher-order discrete Poisson equation are
highly demanded. A combination of restriction, prolongation and multigrid cycle that can capture
the best residual reduction rate of the SIP is very valuable and the application of MG-SIP as the
preconditioner for Krylov subspace method in higher-order context can also be an interesting
alternative.
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5.2 Abstract of
“Development of two dimensional Finite Surface Discretizationfor Fluid Flows”
presented in the 7th International Conference on Advanced COmputational Methods in Engineering 2017,

Ghent University, Ghent, Belgium

The 7th International Conference on Advanced COmputational Methods in Engineering is a relatively large Conference
consisting of a variety of fields related to computational method in engineering. This is the first venue that the finite
surface method is presented. The reception from the audience was interesting. Many participants linked the method
with the hybridizible Galerkin Method where it define the edge polynomial to smooth out the diffusion problem.

The reaction from the listener was added to the first revision of the FSM paer.
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Abstract

The sixth-order accurate finite-surface discretization for the incompressible Navier-
Stokes equations are presented. This discretization retains all the advantage of the stag-
gered without needing to define the staggered cell or co-volume and it is 6X faster than
the fourth-order compact finite volume method.

Key words: finite volume method, Navier-Stokes equations, finite surface method, stag-
gered grid, high-order schemes

1 Introduction

The work on higher-order methods applied to turbulent flows on collocated grid were discour-
age at first as the early adopter found that the improvement over the second-order scheme
were small [1, 2]. Later, a fourth-order compact scheme is reported to deliver the same pre-
dictions as the second-order scheme while using the total grid points 8X lesser [3]. At this
comparable level of accuracy, the fourth-order deliver the result 10X faster. The reason why
staggered grid is much better than the collocated grid at solving turbulent flow was further
investigated in [4]. It was found that half-a-cell distance of the staggered is the reason which
means it can resolve the high-frequency components better and thus the high-frequency
components of the flow are kept at the momentum instead of diverted to the pressure by
the fractional-time-stepping method. In another word, the staggered grid satisfies the mass-
conservation better than the collocated one. Thus, what would happen if we could have the
exact equation for the mass-conservation?

Consider the arrangement of the flow variables in staggered finite volume discretization
(Fig.1(a)) showing the positions of the u and v momentums relative to the pressure cell. If we
shrink the control volumes of the momentum cells towards the boundary of the pressure cell,
the momentums become the surfaces defined on the faces of the pressure cell as the thick-
nesses approach zero. It is obvious that the sum of these momentum flux is the mass balance
over the pressure cell. The finite surface method (FSM) defines the velocities as surfaced-
averaged values living on a set of connected volumes where the mass is set to be conserved
similar to finite volume method. The equation for the mass balance becomes an analytical
discrete equation. Therefore the only equation left to approximate is the momentum equa-
tion. We present the sixth-order approximation of the FSM with three variants of pressure
treatments and its validation in the next section.
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Figure 1: (a) Arrangement of flow variables on staggered grids consisting of pressure cells
(clear), u-momentum (dash) and v-momentum (gray) cells. (b) The finite surface discretization
constricts the momentum control volumes on to the surfaces of the pressure cell.

N FSM6:PE4 FSM6:PCO4 FVM4:P4E
tm  tp/nie ng tm  tp/nip nig tm tp/nir  nip
1287 211 1.07 88 21.6 1.78 55 31 0.94 406
256° 78.1 7.24 41 86.4 10.26 46 130.2 11.96 96
5122 396.0 34.80 25 440.0 47.50 32 524.0 43.88 100

Table 1: Number of iteration needed to reach 107° relative volumetric imbalance, the CPU-
time (,,) in millisecond spent in the momentum equation and the time used for projection

step per pressure iteration (t,/n;;).

2 Results

In this work, we repeat the same doubly periodic shear layer widely used in the literature.
The sixth-order FSM with 170? cells can match the result of the FVM on 2562 cell. The pro-
posed method, not only more accurate than the fourth-order FVM (which it should), it is also
significantly faster than the fourth-order Tab.1. This table suggests that in two dimensions,
the newly developed sixth-order FSM is 4.5X faster than the fourth-order FVM per time step
which is translated to 6X times faster in a time-dependent problem.
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5.3 Reprint of
“Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation laws”

(in Press)

This article has been accepted for publication in Journal of Computational Physics (IF=2.99) which is a top journal in
the field of Mathematical Physics. The journal is ranked fourth by Web of Science in Physics, Mathematical category.

In term of number of citations, it is ranked second, behind only the Physical Review E.

The first version of the manuscript was submitted in November 2017. The paper was rejected due to the reviewers
did not understood the novelty of the method and thought that the method was similar to Van Leer’s scheme. Also,
the result was presented in two-dimensional flow and the reviewer suggested that it was not suitable for the journal.
In 2019, the new revision was formed to highlight its novelty and included three-dimensional simulations. It was
submitted and was given a major correction in March 2020. Due to its highly novel concept, the reviewers still see
the method as a finite volume method and ask the author to readdress the difference from the finite volume method.
The principal investigator then addressed the misconception and the reviewers recommended further improvement
on the presentation of the method and then recommended the publication. The acceptance letter was issued in
early August 2020 and the articled is published in the in-press form during the last week of the same month. The

editorial process was overseen by Prof. Feng Xiao from Tokyo Institute of Technology in both submissions.



0 N O oA W N =

OO O g oo g a0 o o0 oo oo a b~ DB BB BB BB DWW W W WoWWWWNNNDDNDNDNDMNDDNDNDNDDNDN =S = =SS a
- O © 00 N O O & WN =+ O © 0N O OO A WONM - O O© 0N GG A ON = O O© ©NOO U DB ON-=- O © 0N O b OWNM = O ©

JID:YJCPH AID:109790 /FLA

[m3G; v1.292; Prn:27/08/2020; 7:19] P.1 (1-36)

Journal of Computational Physics eee (eeee) eeeeee

Journal of Computational Physics

Contents lists available at ScienceDirect

www.elsevier.com/locate/jcp

Finite surface discretization for incompressible Navier-Stokes
equations and coupled conservation laws

Arpiruk Hokpunna®*, Takashi Misaka ¢, Shigeru Obayashi ¢,
Somchai Wongwises ef Michael Manhart 8

4 Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University (CMU), Chiang Mai 50200, Thailand

b Advanced Research Center for Computational Simulation, Chiang Mai University (CMU), Chiang Mai 50200, Thailand

¢ National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan

d Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan

€ Department of Mechanical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140,

Thailand

f National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
& Fachbebiet Hydromechanik, Technische Universitdt Miinchen (TUM), Miinchen 80333, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 20 December 2019

Received in revised form 12 August 2020
Accepted 16 August 2020

Available online xxxx

Keywords:

Finite surface method
Navier-Stokes equations
Incompressible flow
High-order scheme
Projection method

We present a new Finite Surface Discretization (FSD) aiming at the incompressible Navier-
Stokes Equations (NSE) and other coupled conservation laws. This discretization defines
the velocities as surfaced-averaged values living on the faces of the pressure volumes in
which the mass is set to be conserved. Consequently, the calculation of the mass balance
on these control volumes is exact which allows more accurate information to be kept in
the velocity field and produces a very accurate prediction of the pressure in the next time
step. The proposed discretization reduces the stencil size of the Poisson equation in the
projection method compared to the finite volume and finite difference discretizations. Due
to highly accurate mass conservation, the compact sixth-order approximation of FSD can
be used with an explicit fourth-order pressure treatment. This property greatly reduces the
cost and complexity of the implementation. We present the discrete evolution equation
of the surface-averaged velocities together with the enforcement of mass-conservation
and the solution procedure for the pressure. The approximation of the NSE under this
new discretization uses a combination of finite-difference and finite-volume methods. The
proposed method is validated using standard laminar test cases. We identify the conditions
under which a fourth-order pressure treatment can support the sixth-order and eighth-
order approximations of the convection term using Fourier analysis. The performance of
the method is evaluated on turbulent channel flows up to friction Reynolds number of
950. The quantitative relationships between the accuracy of the solution and grid size are
identified. We present two performance indices for comparison with other methods. At the
error level of 1 per mille, the proposed method is 28-times faster than the classic second-
order scheme.
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1. Introduction

Finite volume (FVD) and finite difference (FDD) discretizations have been important instruments for turbulence research.
Direct Numerical Simulation (DNS) using these two discretizations helped to achieve a better understanding of turbulence.
However, even with the current fastest supercomputers, the complexity of the turbulent flows is still too much for us to
tackle it directly, especially in the industry-relevant scales, prompting the need for more efficient approaches. This can be
done in many ways such as i. upgrading the numerical schemes in the discretization and ii. develop a new discretization. The first
direction has been researched intensively in the past three decades, numerous higher-order methods have been developed
[1-7] among others. The second approach is rarely attempted. A new discretization may enable more flexibility such as the
Finite Element Method or provide more robustness such as the Discontinuous Galerkin Method (DGM) [8], but they are not
necessarily more efficient.

In the first direction, the computing cost increases as a linear function with the convergence order of the method,
but the advantage from the grid density reduction is a quartic function (including the time-step). This advantage is well
observed in convection-diffusion problems [5,9,10]. On the other hand, the early applications of higher-order methods to
the Navier-Stokes equations (NSE) report notable improvements in the higher-order statistics and the energy spectra in
turbulent flow simulations [11-13], but the improvements in the mean fields are almost negligible. One of the reasons is
because the higher-order schemes are applied only to the momentum-conservation equation, but the approximations of
mass and pressure fluxes are left at second-order. The enforcement of the mass-conservation and the solution of the new
pressure, are usually done by the projection method [14,15]. First the momentum equation is integrated in time and the
result is treated as the provisional velocity. The divergence of this velocity is then checked. If the field is not divergence-

Please cite this article in press as: A. Hokpunna et al., Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation
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Fig. 1. A standard fourth-order approximation stencil of the Laplacian (a). The standard fourth- and sixth-order projection stencils needed by FDM and FVM
on staggered grid (b and c). The proposed method can deliver a sixth-order convergence rate using the left stencil.

free, the projection method then solves the Poisson equation formed by the multiplication of the discrete divergence and
the discrete gradients. This requirement complicates the implementation of the higher-order method significantly.

Later, it has been widely accepted that an n-th order NSE solver must use an n-th order method in the approximation
of the mass flux and pressure force [2,4,16]. This translates to a special form of the Laplacian in the Poisson equation for
the pressure. Fig. 1 compares a fourth-order (19-point) and a sixth-order (31-points) projection Laplacians to an explicit
fourth-order Laplacian (13-point). It can be seen that, this requirement greatly increases the cost of higher-order methods.
Specifically, the cost ratio between the projection and the explicit Laplacians, at the same order of accuracy is

11—
To6n+1

Thus, the projection Laplacian is asymptotically twice more expensive than the standard Laplacian. The extra large stencil is
a consequence of the projection method. The projection Laplacian could be a full matrix if one of the discrete operators is
implicit [17,18].

Later works recognized this limitation and turned to the pressure-Poisson approach. This approach uses a simpler
Laplacian that is sufficiently close to the projection Laplacian. Demuren and Wilson [17] adopt the pressure-Poisson formu-
lation and use a compact second-derivative approximation of the Laplacian instead of the full-matrix projection Laplacian.
Knikker [4], and Piller and Stalio [19] use second-order Poisson equation. The residuals in the Poisson equation of the
pressure-Poisson approach do not exactly reflect the actual mass-imbalance. Therefore, after solving the Poisson equation
and correcting the velocities, the divergence must be rechecked. If a certain value of mass-conservation is required, the
solver must recompute the divergence and repeat the process again, forming a dual inner-outer iteration loop.

Furthermore, during the development of higher-order NSE solvers, the performance gains of higher-order methods on the
collocated grids are small [11,12,20], unlike the staggered grid counterpart. On staggered grids, the compact fourth-order
scheme is very accurate [21] and it is ten times faster than the second-order scheme [2], at the same level of accuracy.
The reason why higher-order NSE solvers work very well on staggered grids is investigated in [22]. It is concluded that the
advantage does not belong to the mathematical discretization of the NSE, but it belongs to the discretization of the physical
domain and the arrangement of the flow variables which allow a better calculation of the mass conservation. Thus, if we
step back and consider that FVD converts the continuous physical domain into a collection of interconnected volumes (or
cells) while FDD discretizes the domain into a set of isolated points in space. Then, it is natural that we can also define
the discrete space as a set of surfaces. In this paper, we present a new discretization decomposing the physical domain this
way. We call it finite surface discretization (FSD). This approach has superior mass conservation properties compared to the
existing methods and greatly reduces the complexity of the pressure treatment mentioned previously.

Let us start from a finite volume discretization on a staggered Cartesian grid in Fig. 2(a). This is the arrangement of
the velocities and the pressure cell in two dimensions. The horizontal velocity (u) is defined staggered by half-a-cell in the
x-axis while the vertical velocity (v) is staggered in the y-axis. If we constrict these velocity cells towards the boundary of
the pressure, the control volumes become control surfaces as the thicknesses approach zero (Fig. 2(b)). In two dimensions,
the control surface is a line (or an edge) as shown in the figure. Fig. 3 shows the exploded control surfaces of the three
velocities while the pressure is kept as a volume in the transparent cube. The discrete physical domain where the velocities
live is now just the outer shell of the pressure. The integral of the velocity divergence on this cell can be computed exactly

(1)
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Fig. 2. (a) Arrangement of flow variables on 2D staggered grids of FVM. The variables are the pressure (clear), u-momentum (dash) and v-momentum (gray)
cells. (b) Finite surface discretization constricts the momentum control volumes on to the surfaces of the pressure cell.
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Fig. 3. Exploded view of the controlled-surfaces where FSD defines the velocities. Each surface contains only one normal velocity.

by summing the respective fluxes on these faces. Setting up a spatial discretization this way renders the discrete mass-conservation
equation exact. The only equation left to approximate is the momentum-conservation.

A similar idea first appeared in electromagnetic simulations by the work of Vinokur and Yarrow [23,24] who coined the
term finite-surface method. There are some follow-up works in the same field [25,26]. The main argument of the method
is that the divergence of the electric and magnetic fluxes, computed by a simple flux summation, is the exact integral
of the divergence. Unfortunately, the method has been presented in a second-order context where there is no distinction
among pointwise, line-averaged, and volume-averaged quantities. Their final formulation looks the same as other second-
order FD and FV methods. This even led them to mistake an FDM of [27] as an FSM in [23] which was corrected in the
later work [24]. If the method had been presented in a higher-order context, it would be clear that the definitions and the
approximation coefficients are different. Due to this, the method is almost unknown to the CFD community and we only
found it during the early preparation of this paper.

Perhaps one of the reasons preventing the finite surface method to be widely used is that the method makes no sense
without the coupled conservation laws. It is relatively more difficult to evolve the surface-averaged quantity than the point-
wise or volumetric quantities because an FSM would contain FVM- and FDM-directions. Thereby, the method and the
dimensions of the fluxes are not isotropic. Without the coupled conserved quantities, the finite surface discretization is
not worth the additional efforts. However, if there are coupled conservation laws, the finite-surface discretization becomes
very competitive, especially in the high-order context. We call the approximation of the FSD presented in this work as the
Finite Surface Method (FSM), following the referral of finite difference and finite volume methods.

The proposed discretization enjoys the following advantages:

It delivers the exact discrete mass conservation.

The computation of the exact mass balance costs the same as in other second-order schemes.

It enjoys the half-a-cell advantage in the pressure gradient calculation similar to staggered grid arrangement.

It eliminates the extended stencil needed by the projection method.

It can use a lower order approximation for the pressure and still support higher-order momentum approximations.
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This new discretization bears some similarities with the scheme IV of Van Leer [28] in which he proposed to improve the
accuracy of numerical simulations by adding the cell boundary values as the flow variables, in addition to the original cell
average. This method is very popular in compressible flow solvers. The modern adaptation of this concept is called the active
flux schemes (AF) [29,30]. This class of method defines the velocity as a pointwise value located at the boundary. The fluxes
leaving the surface must be integrated from these flux points [30]. In the same spirit, Xiao developed the multi-moment
method (MM) in [31,32] where both cell-averaged and face-averaged are used. The method later includes derivatives in [33].
The multi-moment method chooses to integrate the cell-averaged data in time, and then transfer the changes back to the
surface average using interpolation in the second step. The hybridizable discontinuous Galerkin method (HDGM) [34-36]
also defines extra boundary polynomials in addition to the cell polynomial and uses them to solve the instabilities in
diffusion problems. At best, the mass imbalance of the cell is only exact up to the polynomial being used. In our approach,
we define the normal velocities as a surface average on the faces of the pressure’s control volume—one degree of freedom
per face. The convection and the diffusion are directly exchanged through the surface and the edges of the control surface.
We have not seen such a formulation of the momentum balance in the literature. To the best of our knowledge, this paper
is the first work that evolves the discrete surface-averaged quantities directly.

The most distinct concept of the proposed discretization is that the velocity and the pressure are operating on a different
dimension. The pressure is defined as a d-dimensional control volume while the velocity is defined as a (d — 1)-dimensional
hyperplane. This is completely different from FVD and FDD where the pressure and the velocity are defined on the same
type of geometry. From the method of weighted residual’s point of view, the other three methods (AF, MM, and HDGM)
minimize the residual over the control volumes using different definitions of the local bases, the weighting functions, and the
inherent variables. FSD, on the other hand, minimizes the residual over the surfaces of such volumes. Therefore, the method
presenting here is a completely new class of its own.

This paper is organized as follows. First, the finite surface discretization of the NSE and a detailed comparison to other
related methods are presented. The sixth-order approximations of the momentum equation are then introduced. After that,
we address the advantages and quantify them for the projection method. It will be shown that an n-th order momentum
approximation can be supported by an (n — 2)-th or even (n — 4)-th order treatment of the pressure. This means the sixth-
order FSM can use the 13-point stencil in Fig. 1(a), instead of the 31-point of Fig. 1(c). After that, the proposed scheme
is validated using the Taylor-Green vortex flow, a double shear layer flow, an instability in a plane channel flow, and a
lid-driven cavity flow. We then identify the range in which the sixth- and eight-order FSM can be supported by the fourth-
order approximations of the pressure using a model spectrum analysis. The performance of the method in turbulent flows is
demonstrated using a turbulent channel flow up to the friction Reynolds number Re; = 950. The CPU-time of the proposed
method is presented and compared with a compact fourth-order FVM. The grid resolutions requirement is determined for
arbitrary accuracy in the mean flow (10~4 < |error/uj| < 10~1). Finally, we present the concluding remarks and outlook in
the last section.

2. The Navier-Stokes equations and the finite surface discretization

The integral form of the Navier-Stokes equations for incompressible Newtonian fluid can be written as

%u-ndA:O (2)

A

ad 1

s udQ+7§(u~n)udA:vy§TdA—;jﬁpl-ndA (3)
Q A A

Here, the variables and notations are velocity vector: u, pressure: p, strain rate tensor: T, identity matrix: I, density: p and
the kinematic viscosity: v. The unit vector (n) of an infinitesimal area dA is pointing outwards of the volume d<2.

2.1. Finite-surface discretization

On Cartesian grids, a system of staggered grids (Fig. 2a) can be set up by putting collocated grid points along a real
line x using a strictly increasing function &(i), x; = £(i), i =0, ...,nx. We can then define staggered grid points using the
same function if it is continuous, otherwise it can be defined by xs; = %(x,;1 +x;), i =1, ...,nx, with the following transfer
property: xs; = Xj_1,2. We define the boundary of the pressure cells on these the staggered grid points i.e. Q; = [xs;_1, Xs;].
In 3D, ; j i is defined by the Cartesian product ; jr = (X, ¥, 2) € [Xi—1/2, Xi+1/2] X [¥j—1/2, ¥j+1/2] X [Zk=1/2, Zkt1/2].

The pressure volume is defined as the cell-averaged value on the control volume ; ; «

Xi+1/2 Y j+1/2 Zk+1/2
[P, = 1 / / / p(x, y, z)dx dy dz. (4)
JE Qi ik
Xi—1/2 ¥Yj-1/2 Zk—1/2
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Fig. 4. The u-velocity on the west-face of the 3D pressure cell and the edge velocity fluxes responsible for the convection in y- and z-directions in Eq. (18).
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

The velocity is defined as a surface-averaged value. For example, the u-velocity on the west-face of the pressure cell (at
Xis = Xj_1,2) Is given by

Yij+1/2 Zk+1/2

1

vz _ )

(ulis k= Ak / u(xis, y,z) dy dz, (5)
’ Yiji-1/2 Zk-1/2

where Aj = [yj_%z, Yj+1/2] X [2Zk=1/2, Zk+1/2]. The other velocity components on the negative faces of the pressure cell

are [v fzjs r and [W]ij;- «s- 1he velocity variables are treated as continuous functions, and thus u on the east-face of [pl; j is

equal to u on the west-face of [p]it1, j . Therefore, FSD only defines one u-momentum per pressure cell.

2.1.1. Mass-conservation equation
The integral mass-conservation in Eq. (2) applied to the control volume €; ;  of the pressure cell is

- [u]iyj%“> Ayibzy+ ([v]’.‘Z

Xz .
ij+1k [V]i,j—%,k> DX Bz

_ . Xyz . i _ yz
% [u] - ndA = [dlv]i,j,kAx,ijAzk = ([u]H%’jyk
A

(6)
Xy _ Xy i i
+ ([W]i,j,k+% [W]i,j,k—%> ALY,

where div = du;/0x;.

This discretization of the mass-conservation equation is exactly the same as in the finite-volume method. However, in the
FVM the fluxes must be deconvolved from the cell-averaged values while in the proposed FSM they are directly discretized
and thus Eq. (6) is analytically exact. Using the fractional time-stepping method (FSTM) [14,15], we can apply this mass-
conservation equation after the momentum was evolved. The mass imbalance will be eliminated by a projection method
described later.

2.1.2. Momentum-conservation equation

In three dimensions, we conserve pu = (p[u])’

PV p[w];‘,’}’ks), the area-averaged momentum in x, y and z

is, j.k’ i,js.k’
respectively. Let us consider the discrete form of the first component:
Al 1
is,j.k
Ajk TR —Cis,jk + VDis jk — ;Pis,j,k ™)

The velocity [u]iyszj « Is located on the west-face of the pressure cell shown in Fig. 3. Fig. 4 illustrates this surface and the
associated line-averaged velocities required for the convection term. The terms Cjs jx and Djs j  are shorthand notations of
the net convective and diffusive fluxes. The pressure force is represented by Pjs ;. On Cartesian grids they are defined as
follows:

duu1?
Cis,jk = [W] AyjAzy + ([vu]? [vul? ,7%’k> Az + ([wu]ist kel [wul? )ij, (8)

01 I 1
1 , _1
is. j.k is, j+3.k is, j is, j.k—5

o [azur Ayidzt [au]z [au]z o [au}y [au]y Ayi (9)
isik=| 7= Az — -|= k — - = i
X% Jis ik Oy disj+le L0V Disj-1k 0Z Jis ja+t L OZ Jis ja—1
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ap1?
Pis, j k= [5] AyjAzy. (10)
is, j.k

The above discrete forms can be obtained by integrating the momentum equation in Eq. (3) over the control surface of
[u]gf ik In the x-direction, the convective term duu/dx is formulated like in an FDM and integrated over the control surface
(hatched blue in the figure). In y- and z-directions, the momentum is exchanged with the next cells through the edges of
the face in an FVM formulation (blue and red lines in the figure). Note that the first term in the RHS of Egs. (8) and (9),
are the limit of the flux difference divided by Axs;. Numerical approximations for all the terms in the above equations can
be picked directly from the schemes developed for FVM and FDM. Our choices of these approximations are described in
section 3.

2.2. Distinction of FSD from other methods

From a certain viewpoint, our approach shares some similarities with Van Leer’'s scheme IV [28], the active fluxes
method [29], and the multi-moment method [31,32]. A distinction and the contributions of this work should be prop-
erly addressed. FSM can turn one of the coupled equations to an exact discrete form and eliminate the extended stencil in
the Projection method. To the best of our knowledge, this is the first discretization achieving these two properties on an
analytical level, unlike the pressure-Poisson formulation [15] or the approximate projection [37] in which the continuity is
not satisfied exactly after the velocity correction. This property cannot be found in the Van Leer’s scheme IV, active fluxes,
and the multi-moment methods. These approaches are aiming at compressible flow problems that do not need the Poisson
equation for the pressure. Thus, applying them directly to the incompressible flow will create a complicated Poisson equa-
tion. On the other hand, applying the FSD to compressible flows may be less beneficial as well. Nevertheless, a compressible
flow solver can benefit from the exact mass computation by storing pu, at the surface and enjoy the exact cell-averaged
pressure. Furthermore, the multi-moment method stores two types of velocities: the cell-averaged and the surface averaged
values. The surface-averaged velocity is defined on every face of the cell (u, v, and w). On a 3D Cartesian grid, this method
stores 12 DOFs per pressure cell. In contrast, our method stores only the normal velocity on each face. This means 3 veloc-
ities per pressure cell which is the same number as in the standard FVM and FDM. The proposed method does not store
any other types of velocity, neither cell-averaged nor pointwise data. Therefore, the same convergence rate can be achieved
using a much lower DOF, but at the expense of less data locality.

FSM can be criticized for not being as compact as DGM and the multi-moment method. However, having less unknown
per cell is not actually a disadvantage. The method we present here can achieve a sixth-order convergence using 4 DOFs.
Even though the standard DG and the HDG methods are shown to possess a global superconvergence for the pure convection
problem [38] and the diffusion dominated problem [35]. The application of DGM and HDGM to NSE only obtains k + 1
convergence rate [36,39-41], when used with a k-th order polynomial. Thus, DGM would need a fifth-order polynomial
(35 DOF per cell in 3D) to achieve the same rate of convergence. This factor allows FSM to use a grid 3.3-times denser
per direction if the complexities of the methods are comparable. Furthermore, the Courant-Friedrichs-Lewy (CFL) limit in
DGM scales with 0 (Ax/k?) [42] while that of FVM and FDM grows with O (Ax/k). Thus DGM should cost much more than
standard methods (FDM/FVM). A similar cost analysis is not yet applied to FSM. But since the approach we are proposing is
based on FVM and FDM, we conjecture the cost to grow similarly.

We would like to emphasize that, the proposed discretization does not improve the accuracy in the approximation of
the convection and diffusion terms directly. The staggered FVM, FDM, and FSM should be similarly accurate when they
are used with the same class of approximation. For example, the compact FDM from Lele [1] and the compact FVM from
Kobayashi [43] should give similar results. The key improvement of FSM is the coupling with the mass-conservation equation.
Under the projection method, the divergence operator detects the non-solenoidal part of the provisional velocity field and
the Poisson equation searches for a pressure that could eliminate this part. An approximate divergence operator will in-
evitably sense some of the divergence wrong (mistakes non-divergence part as a divergence one). This solenoidal part in
the provisional velocity, will be washed out during the projection (see Chap. 5 in [44]). The finite-surface discretization
minimizes this loss of information, and thereby improves the overall accuracy.

The basic concept of this discretization can be applied to any governing equations. However, the systems governed by
conservation laws (contain divergence operator) would benefit most. For example, the velocity-vorticity formulation in [45,
46] would benefit from FSM more than the vorticity-velocity formulation in [47] and the vorticity-stream function [48,49].

Lastly, we would like stress that FSD is a spatial discretization that can be solved by any type of mathematical approx-
imations e.g. spectral methods or method of least square. In the current work, we use a traditional approach similar to
finite volume and finite difference methods. The numerical approximation is a reconstruction type. The detail of the discrete
equations and the approximations are explained in the following sections.

3. Numerical approximations
In this work, we use compact sixth-order schemes from Lele [1] and Kobayashi [43] as well as a nonlinear correction

concept from [2] and [50]. The numerical approximations are presented here only for u. The applications to the rest are
straightforward.
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3.1. Convection in x-direction

The convective term in x-direction: [8uu/8x]yzj ¢ shown in Eq. (8) can be approximated in different ways such as;

is

the divergence form:

[ouuY* duu Y*
duu :[_] (11)
L 9% lis jk X lis jk
the convective form:
[ouu7”? auY?
duu =z[u_] (12)
L 9% lis jk X lis,jk
the skew-symmetric form:
[ouu 1Y 1 (T ouul?? u’?
L 9x lisje 2 \L 9% lisjik X lis,jk

The convective form is known to be unstable when applied in FDM to turbulent flows due to the strong aliasing errors [51].
The divergence form approximates a gradient having twice wave number and thus it usually underpredicts the convection.
The skew-symmetric form balances the two errors and it can be made energy and mass-conserving [51-53]. In this work,
we are not attempting to construct a fully-conservative scheme. Therefore, we select the standard convective form because
it is the most accurate when it is stable. On a smooth field, this form can be used with the FSM directly, but when the
field is rough, a slight filtering of the convective term is sufficient to stabilize the flow. This filtering is one of the common
approaches used to control aliasing errors in higher-order schemes.
The convective form in FSM reads

duu1V? u ou? qur*
— =|lu—+4u— =2|u— (14)
X lis ik ax 0X Jis.jk 0X lis. j k
o [ ina (15)
=W Bx [ :

This convective flux is the convolution of the transporting derivative (0u/dx) and the transported velocity (u) over the con-
trolled surface Ajs . A direct multiplication of them is a linearized convective flux (LC) which is only a second-order
approximation. The nonlinear correction NC1 compensates this deficiency and it will be discussed later.

The surface-averaged velocity [u])”  in Eq. (15) is an inherent variable and can be used directly. The second term,

is, j,
[8u/8x]l.};2j 1o €an be computed using one of the formulas from [1]. It can be rewritten in the following form:
ulY* ouY? qulY*
o [a_] * [a—] *“”[a—] = (L0 = 2 )
X Jis—1,j,k X lis,jk X lis+1,j.k (16)

+h12 ([u]zfj,k - ”Evsz—1,j,k> +h13 ([”]iysiu,k - ”{vsfjﬁk) +hra <[”]iysz+2,j.k - ”iysz+1.j,k>
On a uniform grid, the sixth-order compact scheme uses o11 =12 =1/3, 12 =13 =29/(36A%) and B1,1 = P14 =
1/(36Ax%).

The coefficients for a higher order scheme can be rearranged from [1]. Alternatively, they can be obtained directly from
[43] using the second fundamental theorem of calculus. (See section 2.4.3 in [2].) The latter approach makes the equation
compatible with Eq. (19) and delivers conservative convective mass fluxes over the momentum control surface.

Our convective form above looks similar to FDM where the velocity variable (u) transports the changes of du/dx along
the x-direction and the variable u can be called transporting velocity or convective velocity. However, there are two dif-
ferences that should be addressed. First, the convective form of FDM does not have the factor two which is achieved by
the cancellation of the second udu/dx by the convection in y- and z-direction (due to the continuity constraint), that is
d(ujuj)/ox; = ujouj/xj + u;ou;j/x;. In FSM, the other two directions are FVM-like and could not cancel the term. Second,
we learned from the development of higher-order FVM that the convective velocity around the momentum cells should be
divergence free in order to satisfy the Galilean invariance and the local mass conservation. This means, we have to transfer
the mass fluxes surrounding the pressure cell to the momentum and use them as the convective fluxes. Integrating the

divergence over the surface of [u]?’sz ik gives
auY? 1 1
iv1¥Ye o | 22 z _ z y _ y
[dlv]is,j,k - [8X]is,j v + INT <[v]is,j+%,k [v]is,j—%,k> + Az <[W]is,j,k+% [W]is,j,k—%> (17)

Once the line-averaged velocities were determined, the velocity derivative here can be injected directly into Eq. (15). This
derivative flux is thus the one doing the convection. Hence, we denote it as the transporting derivative earlier.
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3.2. Convective flux in y- and z-directions

Along the edges of the u-momentum in Fig. 4, the convection is a result of the line integral flux transfers. The net
convective flux in y-axis is the difference between the convective flux at the top and the bottom edges. At the top edge of

[y} 4 the convective flux is given by

z

[vu] ls,j+%,k

z 11z
is,j+%,k_[V]is.j+%,k[u] +NC2. (18)

The surface-averaged u is deconvolved into a line-averaged on the edge of the control surface using this equation:

yz yz yz yz
2,1 [u]izs,jsfl,k + [u]izs,js.k + a2’2[u]izs,j+l.k = P21 [u]is,j—z,k + 'BZ»Z[U]is.j—l,k + '32~3[u]is,j,k + ﬁ2s4[u]is,j+1,k (19)

This process is sometimes called interpolation, however, deconvolution is a more correct name. It shares the same co-
efficients as Eq. (16), that is az; = a1; and B; = B1.;. We denote it as inter-cell deconvolution because it recovers a
line-averaged from the surface-averaged velocities, at the interfaces between the cells. It is the momentum flux that will
be convected away by [V]izs,js.k' See [2,43] for other approximation choices.

In general, the transporting velocity [V];’Zs,j&,k in Eq. (18) requires a special treatment such that the numerical scheme
preserves the Galilean invariant and skew-symmetric property. We just use an overbar here to designate the transporting
velocity (the one effectuating the convection). The same holds true for [H]fs.js’k that has to transport [v],.zs’jsyk. In other
works [2,54], these transporting velocities must be computed first at the pressure cell and then interpolated to the required
locations in a conservative way. Therefore, even the transported u and the transporting u share the same position, they
are obtained differently. However, FSM can freely use the transported flux as the transporting fluxes for other velocities.
This fact can be easily proved by injecting the approximation formula into Eq. (17). This feature saves significant compu-
tational resources. In three dimensions, Eq. (18) still requires a nonlinear correction NC2 to achieve higher-order accuracy.
If the nonlinear correction is neglected, the formal accuracy of the approximation is reduced to second-order. In 2D, the
line-averaged fluxes are reduced to point fluxes and require no correction. We present an approximation of NC2 later in
section 3.7. The approximation of [w]?’s o for the convection in z-direction can be done accordingly.

)oK

3.3. Diffusion in x-direction

The diffusion of u in the x-direction can be computed similar to FDM. Here the compact sixth-order approximation for
the second derivatives is computed by

2 yz azu yz 2 yz
013,1[—} +[—] +a3,2[—} =Baalull’, .+ B32ull” .+ Bslull’
dx? is—1,j,k ax? is,j.k 9x? is+1,j,k 52,5k oLk s,k (20)
+ /33,4[u]1¥5117j'k + '33'5[11]1?;’:-2,1',1('

On a uniform grid, a3 1 = a3 2 =2/(11), B3.1 = B3.5 = 3/(44AX?), P32 = B3.4=12/(11A%%) and B33 = —51/(22Ax?).
3.4. Diffusive flux in y- and z-direction

The diffusive flux at the top edge of the u-control surface needs a line-averaged of du/dy on the top edge which can be
approximated to sixth-order accuracy by

0641[8—u]z +[a_uT +a42[8_u]z =Baalull; 5+ Ba2lulll |+ Baslull,
TLOY disjs—1k LY dis sk TLOY dis js+1k B TR TR (21)

yz
+ ﬂ4,4[u]is,j+1,k'

with ag1 =042 =2/11, a1 = —Paa =3/(442X), a3 = —Pa2 = 51/(44AX). The reader should note the difference of this
approximation from Eq. (16). In that equation, the locations where the variables live are the same. This equation delivers a
deconvoluted differentiation in which the surface-averaged value is converted to a line-averaged derivative. The diffusion in
z-direction can be computed similarly.

3.5. Non-uniform grids and boundary closures

It is customary to provide approximation coefficients in an explicit form. However, this is impractical for higher-order
schemes where the closed form is inevitably obtained form Cramer’s rule. The final form is tedious and expensive to
compute. A more efficient way to obtain the coefficients is to calculate them by solving the Taylor expansion matrix. Detail
description of the method is given in [43] and [55]. The process is straightforward and it is not discussed here.
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Closures for convection term on Dirichlet B.C.

Fig. 5. Positioning of variables used in the boundary closure of the u-convection in x- and y-directions. The gray area is the pressure cell and the blue-
surface is the surface-averaged u. The thick lines depict the line-averaged flux needed for the convection in y-direction. The derivative du/dx is needed for
the convection in x-axis and it is defined on the same position as the u itself. The LHS and the RHS variables needed for the closure are shown in diagram.
The known values are marked with the circles. On the left, the knowns and unknowns are collocated while they are staggered from each other on the right.

At boundaries, the approximation stencils are not available and the information outside the domain is missing. We need
a certain closure to complete the approximation and keep it accurate. The most popular approaches are (i) shift the stencil
into a deeper domain and maintain the same local truncation error (LTE), (ii) use the same stencil as if the missing value
exists and apply certain assumptions on them [54,56], (iii) use a reduced-order stencil near the boundary [2,4,43,57], and
(iv) assume a certain feature of the field and use the most appropriate function e.g. wall-modeling. The first method is
known to be unstable. Applying an assumption mismatched with the actual physics could lead to a very poor result in the
second and the fourth approach. Thus we recommend the third approach.

3.5.1. Boundary closures for convection
The stencil for the boundary condition at the wall is shown in Fig. 5 for the approximation of the convective terms for
u-momentum in x- and y-directions.

Convection in x-direction. Even though [u]1s]k is specified by the wall value, [Bu/ax]ls]k is required for Eq. (16). We
recommend the third-order approximation of the wall-normal derivatives at the wall:

B ] - )y (-
__ _ - b
ax 15.jk 9x 2.0k 2AX 25 J.k c 3s,j.k 25 j.k

which is followed by the fourth-order formula for the next derivative

1 [ou7? quY? 1 [ou7? 2 6 2 2

—= +|=| +=|=| = ( V) + e (-l 23

10 [ ax]ls,j,k [3X]2s,1,k 10 [ 8X:|3S,j,k 5Ax L3 e~ Whs s S5AX (T35 g4~ Mg s 23)
The approximation polynomials used for the derivation are reduced from a sixth-order polynomial (Pg) in the inner-domain

to P4 and P3 towards the wall. Note that the derivative at the wall is not actually needed ([u]? ¢ is not evolved). We just
compute it to satisfy the second closure.

is,1s,

Convection in y-direction. The wall-value of [u]fs 1sk is given by the boundary condition and the closure for the second

position can be closed by the compact fourth-order scheme

1 1 3 yz
Z[u]?SJS,k + [u]izs,ZS,k + Z[u]izs,Bs,k = Z[u] J1,k +7 [u]lS 2,k" (24)

It is possible to use a fifth-order closure here. However, it could be less accurate if the grid is very coarse.

3.5.2. Boundary closures for diffusion

The stencil for the diffusion closures differs slightly from the convection. We do not provide a schematic here, but it is
sufficient to look at the position from the previous figure. The second derivative for the diffusion in x-direction at the wall
needs 3 cells to achieve third-order:
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2u7”” 92u 5
— + 11[ ] - (13fb 27l +15[wlY? ., — 1ul, )/Ax (25)
[3"2]1st< 9x2 25,k c ZS]k 35]k 4s;l<

The next unknown is closed by the fourth-order formula

1[32 ] +[32 ] 42 [32 ] _ [y [ (26)
1000x2 Jig i Lox® os i 10L0X2 15 ik 5Ax2 1SJ’< 5A2 251’<

Here, we use a similar order reduction as the convection closure.
The walls normal to y-axis exert a shear stress on the u-momentum and the velocity gradient at the wall can be
computed by

L Y KLY T e 1 — ) (27)
ay is 15k ay is.25.k - 3AX b is,1, k 18Ax is, 2 k™~ is, 3 k*
The next face is also closed by the compact fourth-order approximation
1[oul? N au* L1 1[aul? [ W [u] (28)
10 3_}/ is,1s,k 8y is,2s,k 10 3}/ is,3s,k IS’U( i 2 k

3.6. Pressure gradient

The primary role of the pressure is to remove the non-solenoidal component which could be created from the convection
term. Thus, it is reasonable to approximate the pressure force using the same method as the convection and diffusion terms.
However, doing that might lead to a large stencil in the Poisson equation as mentioned earlier. On staggered grid, an explicit
fourth-order pressure treatment can work with a compact fourth-order scheme very well [2]. Thus, it is not necessary to
use the same scheme. The pressure treatment just has to be at least comparable to the convection and the diffusion terms.
Therefore, in order to explore and find the suitable pressure treatment, we consider three approximations for the pressure
gradient:

e The explicit differences:

ap 1
[a]iw_’k—ﬂs 1[p1? 3]k+ﬂ5 2[p1 2]k+/35 3[pI” 1]k+,35 4[P]l],<+ﬂs 5[P],+1]k 29)

Xyz

+ ﬂs,G[p]iJ’,z’j’k

with two variants:
- The fourth-order scheme with 85 4 = —f53 =5/(4AX), f5,5 = —f52=—1/(12AX) and B56 = —B51 =0 on a uniform
grid.
- The sixth-order scheme with S5 4 = —f53 =49/(36AX), B55 = —f52 =—5/(36A%) and B56 =—P5,1 =1/(90Ax) on
a uniform grid.
e The compact differences:

[ap]yz ap1* ap1*
06,1 + [—} + a2 [—} = Bealpl” + Be.2[p1”
X Jis—1jk LOX lis jk 0X list1,jk = 2]k = l]k (30)

+ ﬂG B[P], s k + ﬂ6 4[p]1+1 j.k

with two variants:

- The fourth-order compact difference with ag1 =a62 =1/10, B63 = —B6,2 =6/(5A%) and B4 =—Ps1 =0 on a
uniform grid.

- The sixth-order compact difference with ag 1 =62 =2/11, B6,3 = —Ps,2 =51/(44AX) and B4 = —Ps,1 = 3/(44AX)
on a uniform grid.

The compact approximations are slightly more expensive than the explicit counterpart while greatly improve the accuracy.
The coefficients of the explicit gradient on a non-uniform grid are straightforward and those of the compact gradient can
be obtained from Eq. (21) and [43]. On the wall-boundary, we assume the Neumann conditions for the pressure and simply
reflect the approximation coefficients.
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3.7. Approximation of the nonlinear correction

The Finite Surface Method inherits the desirable conservation property of the FVM on the directions tangent to the
control surfaces due to the telescoping property. However, it also inherits the nonlinear difficulties at the surfaces where
[fe)¥%i £ [ 1% [g]¥%. In order to achieve higher-order accuracy, we improve the approximation of the linearized convec-
tive flux by a nonlinear correction term as suggested in [2] and [50]. The fourth-order nonlinear corrections for a surface
average (NC1) in Eq. (15) and the line average (NC2) in Eq. (18) are

h2 9%u du  h} 9%u ou

129x9z 0z | 12 axdy ayJr (31)
h2 3v du

NC2=—~-——+HOT2 (32)
12 9z 9z

Since this correction is second-order, any second-order approximation to the derivatives is sufficient to achieve a fourth-
order correction. A recommended practice is to compute the derivatives from the linear fluxes already obtained. A study
on choices for the nonlinear correction has been done in [58]. Taylor's expansion can be used to obtain arbitrary order
correction. However, this can result in a lengthy formulation. The Taylor’s expansion indicates that a sixth-order nonlinear
correction for NC1 must eliminate 11 terms. Nevertheless, it can be achieved with the following formula:

NC1=NC1y+NC1,+HOTy+HOT,+ HOTy, + O(h%) (33)
1

NCly = 2 Ayn() (34)
1

NCl, = 22 Azn()) (35)
11 (1 )

HOTyZm 1 Ayn()) — AyZhJ 720Ayh(1) (36)
1 (1 )

HOT, = 5 | 7Az0()) — Azzh(J) 720/\2,,1(]) (37)

1 . aulY*
HOTy, = 5304 —=—Ezn (Ey,h ([u],ysjk)) E;n (Ey h <|: 8X:|1s,j,k>) (38)
d
<[u]lS]k’ I:aZ]lsjk> (39)

where Ay (fi,j,k,g,;j,k) defines a multiplication of the central difference along the y-direction of f and g using h dis-
tance from the point of differencing i.e. Ay s (fis j k. &is.jk) = Ey.n (fis,jk) Eyn(8is k). The operator Eyp is the central
differencing operator i.e. Ey n(fijk) = fi j+1.k — fi,j—1k The square represents the second-order central difference e.g.
Ei,h(fi,j,k) = fic1jk — 2fijk + fis1,jk # Exn (Exn(fijx)). The term A2 2 p s also the multiplication of the two second-
order differences. The first two terms, NC1, and NC1, are the second- order approximation of the derivatives in Eq. (31).
This approximation can be adopted for NC2. This sixth-order nonlinear correction can be used for higher-order FVM as
well. It is also possible that there exists a better way to compute a higher-order correction. However, it will be shown later
that the nonlinear correction can be omitted in turbulent flow. Thus, we do not exhaustively search for other possibilities.

3.8. Aliasing error management

In smooth laminar flow, the FSM with the convective form is stable and very accurate. In turbulent flow, we found that
the solutions are stable on reasonable grids, however they converge to the reference solution in a non-monotonic way. This
non-monotonic convergence stems from the aliasing error in the convective term. In spectral methods, this problem is solved
by computing the convective term on a larger space and then truncate the result back to the original space. Higher-order
methods are known to be strongly affected by aliasing errors [51]. If these aliasing errors are not managed, it can corrupt
the accuracy of the calculations or even destabilize the calculation entirely. In non-spectral schemes, this aliasing error can
be managed by using fully conservative schemes such that the L,-norm of the velocity is bounded, or applying a filter. In
this work, we apply a mild low-pass filter before computing the convective term. It is done by using a simple compact
interpolation to interpolate the velocity to the cell-center and then interpolate them back to the original positions. Here
we use a simple sixth-order compact interpolation (see [1]). The leading complexity of the sixth-order double interpolation
is 24N per axis. The transfer function of this double interpolation is displayed as F6 in Fig. 6 along with the resolving
efficiency e = khyax/m where |1 — T(kh)| < ¢, of other linear terms.
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T(kh)

0.6 Mothod Resolving Efficiency (€) Ny N \
0.25 0.1 0.01 0.001 0.0001 \\\ \\
.
0.4 GAE 0.795 0.596 0.317 0.175 0.098 \\\ N \‘\
G4C 0.875 0.688 0.391 0.222 0.125 N \\
F6 0.729 0.636 0.450 0.313 0.216 \\\ \\
0.2 DAE 0.582 0.444 0.240 0.133 0.075 \\\\\\\
D4aC 0.720 0.594 0.355 0.205 0.116 “\
D6C 0.797 0.699 0.500 0.350 0.241 \\\k;\\
N
0.0 AL
0 /4 /2 3m/4 ks

kh
Fig. 6. Transfer functions of linear approximations; G4E: explicit fourth-order pressure gradient (Eq. (29)), G4C: compact fourth-order pressure gradient
(Eq. (30)), F6: filtering by a sixth-order double interpolation, D4E: explicit fourth-order inter-cell differentiation, D4C: compact fourth-order inter-cell dif-

ferentiation, D6C: compact sixth-order inter-cell differentiation (Eq. (16)). Note that, the collocated differentiation (Eq. (16)) and the inter-cell deconvolution
(Eq. (19)) are equivalent and they are shown here as one (D6C). The D4E and D4C use a reduced form of (Eq. (16)).

4. Mass and momentum conservations decoupling

The projection method [14,15,59] is used to decouple the mass conservation equation from the momentum equation and
we solve the NSE using the following steps:

1. Integration of the momentum equation:

1
u=u"+ <”H,(u") - ;Gp") At (40)
2. Projection step:
P 5y
=—D 41
L= Du (41)
At
at! —ut — ?qu (42)
P =p"+¢ (43)

where H is the net numerical convection and diffusion operator. The above procedures are performed for each RK substep.
The projection method (Eq. (41) to Eq. (43)) acts as a projection operator P =1— G(L)~!D to u™. This projection requires
a solution of Poisson equation in Eq. (41) whose Laplacian is given by L = DG, the multiplication of the divergence (D) and
gradient (G) operators. The choices of these two approximations determine the discrete Laplacian. Additional information
on the projection method can be found in [44,59].

Equation (41) can be solved by direct or iterative methods. When a homogeneous direction is present, an application
of FFT solver is very efficient. For general domains, one must use an iterative solver. In our code, we use a classic strongly
implicit procedure (SIP) [60]. The SIP kernel is a first-order approximation to the second-order accurate discrete Laplacian.
It is a very effective smoother for the fourth-order Laplacian. For a very low divergence, multigrid method must be used to
solve the system within a reasonable time.

4.1. Discrete Poisson operator

In term of pressure calculation, the first advantage of the finite-surface method over FDM and FVM is that it offers the
smallest possible stencil of the projection Laplacian. This is because the divergence operator Dy; is reduced to a difference
operator & =[—8; jx 8it+1,j,k]/Ax; and the Laplacian becomes

Lx¢ = ngx¢ (44)

The 1D Laplacian stencil can be directly constructed from the difference of the two consecutive pressure gradients e.g.

[[ap/ax]g'sil’j’k - [ap/ax]gijk} /Ax; from Eq. (29). On a uniform grid, the corresponding fourth-order Laplacian in the x-
direction becomes
1 xyz xyz Xyz
L4E,x¢ = 5xGx¢ = —IZAXZ (30 [¢]i,j.k —16 [¢]ii1,j,k + [¢]ii2,j,k) . (45)
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Fig. 7. Transfer functions of the discrete Laplacians; L4E: explicit fourth-order, L6E: explicit sixth-order, L4CO: compact fourth-order, L6CO: compact sixth-
order, L4CC: fourth-order cell-centered, L6CC: sixth-order cell-centered, L8CC: eight-order cell-centered.

Table 1

Leading term of the complexity in evaluating 3D discrete Laplacians and
their one-dimensional resolving efficiency. N; is the number of total pres-
sure cell i.e. Ny = NxyNyN,.

Method Leading term of Resolving efficiency (e)
complexity (Nop) 0.1 0.01 0.001
FSM-L2E 13N, 0.356 0.110 0.035
FSM-L4E 25N¢ 0.596 0.317 0.176
FSM-L6E 37N¢ 0.706 0.446 0.296
FSM-L4CO 27N 0.688 0.391 0.222
FSM-L6CO 39N¢ 0.809 0.555 0.383
FSM-L4CC 37N¢ 0.611 0.329 0.183
FVM-L6CC 61N 0.722 0.461 0.307
FVM-L8CC 85N¢ 0.784 0.545 0.395

Consequently, the number of stencil points in 3D is 13 which is the smallest explicit approximation of the fourth-order
accurate Laplacian. Note that this number in the fourth-order projection of FVM and FDM is 25 on collocated grids and 19
on staggered grids.

When the pressure gradient is approximated using a compact differentiation, it is impractical to store a full matrix
Ly =&« (A; 1Bx) where Ay and By is the approximation matrix for the pressure gradient in Eq. (30). However, most of the
iterative algorithms solving the multidimensional Poisson equation rarely need the actual form of the discrete Laplacian. It
is sufficient to just evaluate the Laplacian of the solution, thus we only need to store the banded matrices Ay and By and
use them to compute the Laplacian of the incremental pressure by solving the RHS of

Laco ¢ = & (A; 'Byo) (46)

with Gaussian elimination. Evaluating this equation for a fourth-order compact scheme costs 9N operations on a non-
uniform grid for N being the number of cells in x-axis. This is 2N more than Eq. (45). However, on a non-uniform grid
the cost of computing Lsf is increased to the same number—9n. Finally, in a 3D non-uniform grid, computing the Laplacian
with the compact fourth-order scheme costs 27N while the fourth-order explicit Laplacian costs 25N. The transfer functions
of the Laplacians in Fig. 7 show that the cell-centered (CC) Laplacian (on staggered FVM) is slightly more accurate than
FSM, at the same order of convergence. The corresponding costs are listed in Table 1 together with the resolving efficiency.
It can be argued in terms of performance that, FSM is faster than FVM at the same level of accuracy, but the advantage is
marginal. In the next section we demonstrate why the pressure treatment on FSM is better than the staggered FVM, even
on the same grid.

5. Combined effects of the Laplacian and divergence operators

The numerical divergence can be written in a discrete form as div = (DX+Dy +DZ) u*. The tilde indicates that the
variable is an approximation. We can apply the Fourier transformation to Eq. (41) and arrive at:
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Table 2

Transfer functions of different discrete Laplacians under finite surface and finite volume methods. L4E:
explicit fourth-order, L6E: explicit sixth-order, L4CO: compact fourth-order, L6CO: compact sixth-order,
L4CC: fourth-order cell-centered, L6CC: sixth-order cell-centered and L8CC: eight-order cell-centered.

Method Transfer function (T (kh))

FSM-L2E [2 — 2cos (kh))/[k*h?]

FSM-L4E [15 — 16cos (kh) + cos (2kh)]/[6k*h?]

FSM-L6E [245 — 270cos(kh) + 27cos(2kh) — 2cos(3kh)]/[90k?h?]
FSM-L4CO  [12(1 — cos (kh))]/[k2h? (cos (kh) + 5)]

FSM-L6CO  [3 (17 — 16cos (kh) — cos (2kh))1/[2k*h? (4 cos (kh) + 11)]
FVM-L4CC  [(27sin (kh/2) — sin (3kh/2))?]/[12kh]?

FVM-L6CC  [(2250sin(kh/2) — 125sin(3kh/2) + 9sin(5kh/2))?]/[960kh]?

FVM-L8CC [—75sin(7kh/2) + 1029sin(5kh/2) — 8575sin(3kh/2) + 128625sin(kh/2)]? /[53760kh]?
1.0
0.8
0.6 |- —e— FSM-P2E
_ —A-- FSM-P4E
= — 4 FSM-6E
[N —  FSM-P4CO
04 |- — FSM-P6CO
—o— FVM-P2CC
—-A—- FVM-P4CC
—4&— FVM-P6CC
02 | —m— FVM-P8CC N
FDM-P4-COL
00 & ! ! ! ]
0 n/4 /2 3m/4 a

kh

Fig. 8. Mass conservation factor as a function of wave number. Here two additional schemes presented: the second-order cell-center method (2CC) and the
explicit fourth-order pressure treatment on collocated grid (FDM-P4-COL). The other schemes are named as in Fig. 7.

Tpx(ky) + Tpy(ky) + Tpx(kz) am
- 2 > 5 A1Vkx ky kz- (47)
Tr(k)ky + Tr(ky)ky + Tr(kz)kz

Thus, the accuracy of the mass-conservation and the pressure term is a combination of two parts: (i). the divergence
computation and (ii). the approximation of the Poisson operator. If we accept that, Tp determines the amount of the useful
information that will be available from the divergence calculation and T; determines how much we could salvage the correct
pressure out of the discrete Laplacian. The combination of these two would represent the effective mass conservation and
thus we define the mass-conservation factor for the projection method as

¢kx,ky,kz =

Fp.L(kh) = Tp(kh)TL(kh). (48)

The exactness of the divergence calculation in the FSM improves the overall accuracy of the incremental pressure. First,
the Tp above is unity because it is exact. Second, the transfer function of the Laplacian is actually formed by T; = TpTg.
Therefore, the accuracy of the Poisson equation is improved as well. In finite volume and finite difference methods, the
mass-conservation factor is the cubic of the transfer function of the first derivative approximation—provided that the gradi-
ent and the divergence are computed with the same scheme. One of the terms comes from the divergence approximation
and the other two come from the Laplacian. In FSM, we only approximate the derivative once for the pressure gradient, but
the divergence calculation is exact. Thus the only approximation determining the accuracy of the mass conservation and the
pressure in FSM is the approximation of the pressure gradient.

We plot the mass-conservation factor in Fig. 8. Note that all of the factors in FSM are the same as the transfer functions
shown previously in Fig. 7. The factor of the FVM, on the other hands, drops significantly. The curve of FVM-P2CC is
separated from the FSM-P2E whereas they were exactly the same when consider only the Laplacian (L2E in Fig. 7). All of
the explicit pressure treatments are clearly better with FSM.

We can define a mass conservation efficiency similar to the resolving efficiency. Thus, let us consider the mass conser-
vation efficiency, e;; = khyax/7t where |1 — Fp 1 (kh)| < €. The result is listed in Table 3. This mass conservation efficiency
tells us how much of the Nyquist limit, the projection method can cover w.r.t. the given relative error ¢. In this table, the
number in the acronym indicates the order of accuracy. The letters E and CO stand for the explicit and the compact scheme
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Table 3

Mass conservation efficiency of a selected pressure treatments for
FSM and the staggered FVM. Here, the acronym L is replaced by
P to represent the overall pressure treatment.

Method Mass conservation efficiency (en)
€=0.25 €=0.1 €=0.01 € =0.001

FVM-P2CC 0.478 0.291 0.090 0.028
FSM-P2E 0.583 0.356 0.110 0.035
FVM-P4CC 0.722 0.548 0.296 0.165
FSM-P4E 0.795 0.596 0.317 0.176
FSM-P4CO 0.875 0.688 0.391 0.222
FVM-P6CC 0.818 0.666 0.429 0.286
FSM-P6E 0.889 0.706 0.446 0.296
FSM-P6CO 0.959 0.809 0.555 0.383
FVM-P8CC 0.870 0.733 0.514 0.374

under FSM, respectively. CC stands for the cell-centered scheme used exclusively in staggered FVM. The frequency windows
for capturing fine scales of the second-order pressure treatment are 22% wider in FSM. This advantage is reduced to 9% and
6% in fourth- and sixth-order, respectively. Note that the costs of evaluating the explicit fourth-, sixth- and eighth-order
Laplacians are 48%, 65% and 73% more expensive in FVM, compared to the FSM counterpart. Thus for explicit schemes, the
mass conservation is much more efficient with FSM. In contrast to this, the compact treatment of the pressure is even more
attractive. FSM-P4CO is more accurate than the sixth-order cell-center treatment (FVM-P6CC) at high wave number. The
cost of the pressure treatment in FSM is not only less, the richer information on the mass imbalance allows keeping the
velocity solenoidal to a higher degree than in FVM.

The mass-conservation factor at the lowest level (¢ = 0.25) is interesting. This level of relative error sounds quite large
in general, but in a broad spectrum flow it is inevitable. The resolving efficiency of FSM-P4E at this level is 79.5%, and
the accumulated error is less than 4% on a flat spectrum. Also, this resolving efficiency is comparable to the sixth-order
approximation of the convective term (D6C) in Fig. 6. At smaller tolerance, this pressure treatment is less accurate. Thus in
a broad spectrum flow where the small structures are not fully resolved, the dominant error could be coming mainly from
them. In such situation, FSM-P4E can accompany the sixth-order FSM without loosing accuracy. A quantitative analysis of
this issue will be given later in section 7.

6. Validation

In this section, we verify the accuracy of the finite surface method using four standard test cases and focus on how
the pressure treatment affects the overall accuracy of the compact sixth-order FSM. The convection and the viscous terms
are approximated by sixth-order schemes in all test cases and the time-integration is third-order low-storage Runge-Kutta
(RK) [61]. The approximations of the pressure gradient considered here are (i). the fourth-order explicit (PE4), (ii). the compact
fourth-order (PCO4), and (iii). the compact sixth-order (PCO6) methods. The Poisson equations are solved by a direct FFT solver
using a transfer function listed in Table 2. In the domain having both periodic and non-periodic, the eigendecomposition
is employed where we solve a banded matrix for each pair of xy-eigenmode. All the simulations in two dimensions are
computed with the sixth-order nonlinear correction without any filtering process. The method is implemented on MGLET [2]
developed at Technische Universitdit Miinchen.

First a Taylor-Green vortex (TGV) flow is used to investigate the accuracy of the individual components of the momentum
equations including the pressure. Next, a double shear layer (DBL) flow is used to verify the convergence in a fully nonlinear
flow. The boundary closures are then evaluated using an instability in plane channel flow a and lid-driven cavity flow. The
divergence error (div - Lyef/Urer) is in the range of 1E-15 for the simple TGV flow and the instabilities in plane channel flow.
In the DBL problem, the divergence is in the order of 1E-14 on the coarsest grid and 1E-13 on the finest grid (N = 5122).
In the lid-driven cavity flow, an iterative solver is used and the divergence is kept in the vicinity of 1E-11.

6.1. Taylor-Green vortex flow

A family of Taylor-Green vortex flows can be described by

u(x,y,t,Re) =cy —cos(x — cxt)sin(y)e% (49)

V(X,y,t,Re) =cy + sin(x — cyt)cos(y)e% (50)
1 _

p(x,y,t,Re) = —Z(cos(2(x —Cxt)) +cos2(y — czt)))eR_ze[. (51)

Please cite this article in press as: A. Hokpunna et al., Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation
laws, J. Comput. Phys. (2020), https://doi.org/10.1016/j.jcp.2020.109790

© 00 N O O b~ WD =

-

31



© 00 N O O b~ W N =

OO O g o0 g a0 o o0 oo oo a b~ DB BB BB BB DWW W W WoWWWWNNNNDDNDNDNDNDDNDNDNDDND =S = 2SS a
- O © 00 N O O & WN =+ O © 0N O G A~ WONM =+ O O© 0N O GG A ON - O © ©NO U B ON-=- O © 0N O b WMN = O

JID:YJCPH AID:109790 /FLA [m3G; v1.292; Prn:27/08/2020; 7:19] P.17 (1-36)

A. Hokpunna et al. / Journal of Computational Physics eee (eeee) seeeee 17
0 T T T
- p-PCO6 B — u-PCO6
® pPCO4 PR --- p-PCO6 L
P [0} . 0
ol ]l o p-PE4 - ° 4 A u-PE4 P -
—.—.- Fourth order P o o) p-PE4 - o
------- Sixth order L ° . A u-PE4,CFL=0.2 -0 .
-7 P N T Sixth order o7 o e
4 -7 Q -’ | | |--- Fourthord 20 |
. - ° ", ourth order o
8 " o
© ° R
= —6 R4 - - |
E o Lo
.
S b R4
—~ .
'¢
_8 |- '¢ — | - .
‘l
L4
'l
4
'l
—10 |- R4 - - |
L4
(a)
_12 | | | | | | | | | | |
—-1.6 —14 —1.2 -1 -0.8 —06 —04 —0.2 0 —2.5 -2 —1.5 -1 —0.5 0
lOglo(h) lOgl()(h)

Fig. 9. Convergence of FSM: (a) the initial projected pressure in the inviscid TGV, (b) the convergence of u and p in the traveling TGV at t = 2. Every
simulation is performed with CFL =0.013 except for the addition test stated in the graph (CFL =0.2). The y-axis is shared by both graphs.

In this study, the domain is set to (x, y) € [0, 2r]? with the periodic boundary conditions. This test case has been widely
used in literature. The classical TGV (cy =cy =0, Re =100) is a popular tool to demonstrate the convergence of NSE solver.
On uniform grids, central schemes from the FDM and FVM produce accidental error cancellations where the convective
fluxes are canceled out exactly by the pressure force and the flow will be scaled down by the viscosity. Ultimately, under
these conditions, the pressure from the projection method will be exact, regardless of the order of the numerical scheme.
FSM does not have that cancellation and the errors thus remain at the local truncation error.

6.1.1. Stationary inviscid TGV

First, we check the accuracy of the pressure treatment using the stationary inviscid TGV: ¢y =cy =0, Re = oo by ini-
tializing the velocities with exact values but using the wrong pressure. The cell-averaged pressure value is replaced by the
pointwise value at the cell center. This mimics the situation when the velocity field is accurately known, but the pressure
is less accurate or unknown. This tests the ability to recover the pressure by the different treatments mentioned previously.

All the approximations of the convection and diffusion terms are computed with full sixth-order except for the pressure
gradient. We perform just a single time integration to check the recovered pressure. The convergence curves of the new
pressures indicate that the explicit fourth-order treatment (PE4) is the least accurate (Fig. 9(a)), as expected. Its error is 2.6
times larger than the compact fourth-order (PCO4) while the sixth-order compact scheme (PCO6) is much more accurate.
Both fourth-order treatments are not good enough to formally deliver the sixth-order accurate initial pressure. However, it
is possible for the fourth-order schemes to recover the correct initial pressure, similar to that of PCO6. This can be done by
iterating the NSE solver for several iterations using a very small time-step, e.g. 1E-6 Lyef/Urer. This only need to be done
once at the beginning of the simulation. It will be demonstrated later that, if the initial pressure is correct, PE4 and PCO4
will be as good as PCO6.

6.1.2. Traveling-viscous TGV

Next, we enable the convection and viscous terms by setting ¢y = 1.0, ¢, =0, Re = 100. The time step is adapted such
that CFL number is kept at 0.013 to ensure that the time integration errors are smaller than the spatial approximation
errors. The initial pressure is initialized exactly using the cell-averaged values. The new TGV is now moving along the x-axis
and is scaled down with time. The pressure field is thus traveling and decays along with it. The maximum errors are plotted
in Fig. 9(b) at t =2 when the flow has completed a round-trip and decayed by 12%. At this point, both convection and
diffusion have made substantial contributions to the velocity. The differences between the errors in the pressures of PE4
and PCO4 are the same as shown previously. However, their velocities are almost identical (We remove PCO4 for clarity).
The number of grid points per wavelength (PPW) in the graph ranges from 10 on the right to 600 on the left.

All treatments deliver a clear sixth-order convergence rates in the velocity. The averaged rate from 10 to 160 PPW is
6.42. At 200 PPW, the error in the velocity at the first time step is 1.2E — 15, which is just five times the machine accuracy
(€). The solution is thus affected by the accumulated round-off errors and the convergence is halted. The last two errors
in the graph are very close to machine accuracy times the number of time steps (NT x €). The sixth-order convergence
rate can be recovered again by switching to quadruple precision (not shown). In our early study, we initialized the pressure
using the point value as we did with the inviscid TGV. In that study, we found that PE4 and PCO4 deliver the sixth-order
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accurate momentum up to 15 point-per-wave-length (PPW) and the convergence rate degraded to fourth-order. However,
once the pressure was initialized correctly, the momentums obtained from all the pressure treatments are virtually the same
as shown here.

We attempt to expose whether the fourth-order pressure treatments benefited from the small CFL by redoing the case
again with CFL = 0.2. This is a reasonable number for general CFD simulation. The error in the momentum of PE4 is shown
by the filled triangles and the end convergence rate is third-order. This is, however, not the deficit of the PE4. The reason
for the third-order convergence rate is actually the time-integration scheme which was third-order (accumulated error).
Nevertheless, at lower resolutions we see the convergence rate of 5.1 and 4.6 for the first three grids. The PPW of these
three grids are: 10, 15 and 20 and the simple sine wave of the velocity can be considered very well resolved at these
resolutions. We conclude that at finer grids, the error by the third-order RK becomes dominant at CFL > 0.2. Thus, in order
to achieve a full sixth-order, the time-step size must be small enough or a higher-order time-integration should be used.

6.2. Doubly periodic double shear layers flow

This simple two dimensional flow contains Kelvin-Helmholtz instabilities in which the shear layers are perturbed by a
sinusoidal disturbance leading to a roll-up of the vortex sheets into a cone-like shape. The periodic domain € = [0, 1]? is
taken for this study and the initial velocities are given by

_Jtanh(o(y —0.25)) fory<0.5, (52)
" |tanh(c(0.75—y)) fory > 0.5,

v =ySsin(2mwx). (53)

The Reynolds number based on the initial maximum velocity and the length of the computational domain is 10, 000. The
shear layer parameter (o) and the perturbation magnitude () ) are set to 30 and 0.05, respectively. This setting is similar to
a thick shear-layer problem studied in [62]. The number of cells used in this study is N = (i x 64) for i =1..8. The error is
measured against the result of the finest resolution. The time-step size is refined as the number of grid point is increased.
The CFL is set in the range of 0.03 < CFL < 0.06, in order to keep the time-integration error low. The overview of the
simulations shown in Fig. 10 illustrates how the shear layers get rolled up by the spanwise perturbations at a relatively fast
pace. On the 642-grid, the numerical artifacts appear everywhere, most notably on the level close to zero vorticity (w, = 0).
However, the tails of the vortex sheet are still clearly preserved. When the grid resolution is tripled in each direction, some
artifacts can still be observed at t = 0.8, but they have completely disappeared at t =1.2.

Finite volume and finite surface methods suffer additional difficulty due to the nonlinear convective fluxes. A nonlinear
correction is a simple method that can solve this problem at a significant cost (in sixth-order context). If its contributions
are insignificant, we could turn it off and save some computing resources. Thus we check the contributions of the nonlinear
correction at t = 0.4. The averaged norms of each contribution are plotted in Fig. 11(a) showing that the contribution of
the nonlinear correction (NVC) is getting smaller as the grid is refined. At the coarsest grid, the nonlinear correction is
about a magnitude smaller than the diffusion and it is five orders of magnitude smaller than the linearized convection
term (C). The norm of the nonlinear correction converges at second-order rate which agrees well with the local truncation
error. We further check the contribution ratio of the other terms relative to the nonlinear correction at the position of the
maximum nonlinear correction (Fig. 11(b)). At this point, the value of |C/NC| is in the range of 21 — 475 which means
NC contributes at most the second or the third significant digit of the linearized convection. In term of the total change in
the momentum, the linearized convection contributes about 73.5% on the finest grid. The diffusion contributes 8% and the
pressure’s contribution is 18.4%. The nonlinear correction contributes less than 0.1% of the total momentum change on the
cell where its value is maximum.

The convergence rate of the global error of the streamwise velocity is plotted in Fig. 12 at t = 0.4. The results of this
convergence test demonstrate that the fourth- and sixth-order pressure treatments deliver almost the same convergence
rate. The marks of PCO4 fit very well within PCO6’s marks while those of PE4 coincide at first and slightly fell off after
N = 1922. The averaged convergence rates (Ry) of PCO4 and PCO6 are sixth-order and PE4 follows closely at 5.83. To
investigate why the fourth-order pressure treatments can deliver a sixth-order convergence for this flow, we subtract the
streamwise velocity of PE4 and PCO4 from PCO6 and plot their norms in Fig. 12. The convergence curves of the differences
clearly show that the sixth-order convergence rates of PE4 were possible because the treatment of pressure is more accurate
than the convective term at low resolutions. As the resolution increases, the sixth-order convergence of H eventually catches
up after N = 3202. We see earlier in Fig. 10 that the solution of this flow is already smooth at N = 1922 and the errors
on this grid are already less than 10~ >u,;qx. Therefore, the ability of PE4 to accompany the sixth-order schemes of the
momentum term up to N = 3202 is very impressive. Using PE4 can save a lot of effort in upgrading older codes as well
as saving computing time because the sixth-order pressure treatment can cost 50% more when the pressure is solved by
iterative methods. In an extremely accurate simulation where PE4 is insufficient, PCO4 could still work at a small additional
cost. Initially, the convergence rate of |ucos — Ucog| Starts at 5.69 and the average rate from N = 64% to 1922 is 6.7. After
that, the rounding errors interfere. In this particular problem, the difference between PCO4 and PCO6 on very fine grid was
actually limited by the machine accuracy instead of the treatment of the pressure.
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Fig. 10. An overview of the vorticity (—30:6:30) of the double shear layers flow with N =642 (top) and 1922 (bottom) at t = 0.4, 0.8 and 1.2, from left to
right respectively. The solid lines represent the positive contours and the dashed line means negative vorticity.
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Fig. 11. The contribution of convection, diffusion and pressure terms at t = 0.4. (a) An averaged L, of the linearized convection term (2[u]” [uy]”), diffusion
term (D), the pressure term (7) and the nonlinear correction (N'C). (b) The norm of each term in the momentum equation normalized by |N'C| at the
position of |NC|s.

We continue to evolve the flow to t = 1.2 and check the maximum error globally. In Fig. 13, the errors from every
pressure treatment are clustered very closely. The u-convergence of the full sixth-order (PCO6) starts off at R = 3.26 and
increases until reaching the end convergence rate at R, = 5.81 while the end convergence rate of v is slightly lower at
Re = 5.74. A better number is observed for p with R, =5.97. PCO4 coincides with the POC6’s marks. The error in u of
PE4 is at most 12% higher than PCO6 while that of the pressure is 10% higher on the coarsest grid and increases to 81%
at the finest grid. PE4 also has a lower convergence in p, however, the error level is still significantly below that of the
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Fig. 12. Convergence of global streamwise velocity error in the doubly periodic double shear layers flow at t = 0.4 from different pressure treatments. The
symbols are the convergence plot measured against finest grid of the respective pressure treatment. The lines with symbol depict the errors measured
against the sixth-order pressure treatment (PCO6). The numerical convergence rates at the beginning (R,) and the end (R.) are shown in the legend.

-1 T T T
O Upco6, Re =5.81
+  upcoss Re = 5.86
. Uped, Re =5.86
_o| | —O— vpco6: BRe =5.75 |
—+— vVpcoar Re =5.75
—e— vpe4, Re =5.35
) Peo6s Re = 5.97 8
+  Ppcoar Re =5.97
-3 ° Ppedr Re =5.18 —
— Sixth order
d 8
=]
g
—4 |- ° |
(2]
®
L]
-5 |- (5] -
L]
2]
-6 | | | | | | | | |
—2.6 —2.5 —2.4 —2.3 —2.2 —2.1 -2 —1.9 —1.8 —1.7 —1.6
logio(h)

Fig. 13. Convergence of the global maximum error in the doubly periodic double shear layers flow with different pressure treatment at t = 1.2. The
fourth-order pressure treatment can deliver a sixth-order apparent convergence rate.

momentum and allows a very accurate velocity. The break-even point between the fourth-order pressure and the sixth-
order momentum has not yet been reached in the grids tested here. We checked the differences of PE4 and PCO4 w.r.t.
PCO6 on the 256%-grid and found that u-velocity errors are 5E-6 and 7E-9, respectively. The errors are dominated almost
purely by the convective term. FSM can thus advance the solution accurately while using a fourth-order treatment of the
pressure and deliver an apparent sixth-order convergence rate. In comparison to other higher-order methods, at t = 0.4, the
error of FSM on the coarsest grid is 120-times smaller than the fourth-order FDM [62] on the coarsest grid (2.2E-3 vs. 0.27).
The error level of the FSM on our coarse grid is actually just 38% more than the fourth-order FDM [62] with N = 2562 grid
points. At t = 1.2, the error ratio between the fourth-order FVM [2] and the FSM is 1.7 on the coarsest grid increases to
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Table 4

Convergence study in y-direction of the instability of plane channel flow on uniform grid with Ny = 64. The table shows
growth-rates of perturbations (Gp), their errors (¢p) relative to the linear stability theory. The averaged convergence rates
measured from the overall range while the final rate measured using the last two grids.

Ny Growth rate Error Convergence rate
Final Average Final Average Final Average

64 5.3500E—03 5.1405e—03 8.8004e—04 6.7058e—04 - -

96 4.5641E—03 4.5356e—03 9.4132E-05 6.5596e—05 5.51 5.73
128 4.4843E—03 4.4786e—03 1.4340E—-05 8.5925e—06 5.94 6.29
144 4.4762E—03 4.4734e—03 6.2254E—06 3.4368e—06 6.11 6.50
160 4.4727E—-03 4.4713e—03 2.7583E—06 1.3859e—06 6.29 6.75
192 4.4706E—03 4.4704e—03 6.8275E—07 4.5911e—07 6.52 6.63
256 4.4702E—03 4.4704e—03 1.9974E—-07 4.5166e—07 5.99 5.27

10 on the finest grid. A projection from the convergence rate suggests that FSM needs a 1732-grid to match the FVM on
2562-grid. This saves half of the grid points.

So far, we see that PE4 is sufficient to deliver a sixth-order convergence rate. However, would it be enough to do it in a
long integration time? This is a valid question since the cases we test so far are short time simulations. In the next section,
we check this issue with the presence of wall boundaries.

6.3. Instability of plane channel flow

The instability of a plane channel flow is a common test case used to validate the higher-order accuracy of numerical
schemes including the wall treatment. In this test case, the parabolic velocity profile of the channel flow is disturbed by the
most unstable eigenfunction v (y) and the respective stream function of the perturbations is W(x, y) = ¥ (y)exp [i (ax — wt)].
The initial velocity field is given by

oW (x,
ux. y.t0)=(1-y% +8% (54)
oW(x,
v(x, y,t)=— 1Y) (55)
ax
The energy of the perturbation and its growth-rate is computed by:
2 2
Eq(t) =/ (u(x,y,t) —u(x,y,O)) + (V(x,y,t) - V(x,y,O)) dxdy (56)
Q
aE4(t
Gq(t) =2w; = 2In ( ;t( )> (57)

Note that only the real part of the perturbations is accepted into the velocities. This test-case is very sensitive to the
balance among the terms in the NSE. The viscous term attenuates the perturbation while the convective term transfers
energy from the main flow to the perturbations. If the approximation of the diffusion term is accurate and the convective
term is under approximated, the growth-rate of the disturbance will be lower than the analytical value. This is a common
situation found in finite difference methods applied to this case [63-67]. On the other hand, the growth-rate will be larger
than the analytical one when the situation is reversed which is found in some finite volume codes [2] or Fourier B-spline
method [68]. Higher-order convergence can only be achieved if every approximation is correctly treated. Therefore, this is a
formidable test case for numerical schemes and the boundary closures.

The conditions of this test are set to the same conditions used in [64,68] with Re = 7500, @ =1, € =0.0001 and the only
unstable mode is w = 0.24989154 4 0.00223498i and the respective analytical growth rate is Gp(t) = 2w; = 4.46996E-3. In
this test case we use the eigenfunction obtained from a Chebyshev collocation with Ny, = 512. The computational domain is
set to [Ly, Ly] =[2H, 2H] based on the channel half-width H. The periodic conditions are set in the streamwise direction
and the no-slip condition is imposed at the top and the bottom walls. The simulations are calculated using double precision
and the growth-rate of the perturbation is measured at t = 50H/U. where U, is the velocity at the center of the channel.
We conduct the test on uniform and non-uniform grids. On non-uniform grids, the grid is compressed at the wall and the
smallest grid size is set to 1/Ny. The grid is stretched inwards the channel at a constant factor. All the simulations are
solved with the explicit fourth-order pressure.

Note that another growth rate w; can be found in literature which is 0.00223497 [69]. This difference stems from the
solution process of the Orr-Sommerfeld equation. The eigenproblem solved by Chebyshev collocation [70] with different
number of nodes deliver slightly different solution. The differences are bracketed by 4 x 10~%, when the number of collo-
cation points is varied from 480 to 1024. This translates to 0.001% relative error. We will explain later that this uncertainty
can be one of the limiting factors when measuring the convergence rate of the method on very fine grids.
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Fig. 14. (a) The growth of perturbations energy in plane channel flow. (b) Convergence rates on uniform- and non-uniform grids.

Fig. 14 shows the evolution of the perturbation energy beside the convergence rates on uniform- and non-uniform grids.
It is evident that the proposed method delivers a clear sixth-order convergence rate on both type of grids. The geometric
grid stretching allows the method to capture near-wall structures accurately and it delivers a comparable result to the
uniform grid having twice resolutions. It is possible to optimize the grid distribution such as the one plotted in Fig. 14(a).
There, the growth rate on a nonuniform grid (NxNy = 10 x 32) is virtually identical to the analytical curve. The uniform grid
needs 128 cells in y to get the same growth rate. In Table 4 we list the values of the growth rates, errors and convergence
rates for a refinement in y-direction when Ny is fixed at 64. Two measurements of convergence rates are displayed, the
averaged- and the final-growth rates.

We also perform another set of simulations using the compact fourth-order pressure (the results are not shown here).
The differences are found in the eighth to tenth significant digits which can be rated as insignificant. Therefore, the sixth-
order FSM can be used together with the fourth-order explicit pressure without a loss of accuracy in this test case. As we
have seen earlier that LCO4 is comparable to LAG6, thus the prospect of using LAG6 to improve the solution is low.

It should be pointed out that, on the finest grid (Table 4), the convergence rate slows down to 5.27. This reduction can
be explained by the approximate nature of the linear instability theory in which the perturbation consists of only a single
mode. The Navier-Stokes equations are generating other modes as well due to their nonlinear nature and these nonlinear
modes will affect the actual growth rate. We checked the energy of these additional modes at t = 27 /w, and found that
energy contained in these modes is 0.3%. In fact, the Fourier-Chebyshev spectral method [64] predicts G4 = 4.4714 x 103
in average. The relative error of 0.001% mentioned earlier translates to the uncertainty in the last digit here.

Thus we can conclude that the Navier-Stokes equations simply converge to another growth rate than what linear stability
theory predicted. The slight deviation on the finest grid is thus natural.

6.4. Lid-driven cavity flow

Lid-driven cavity is one of the well-known benchmarks. We use the data published in [49] as a reference for our simu-
lations. Here, we consider three Reynolds numbers: 1000, 5000, and 7500 of the cubical cavity (x, y) € [0, L] x [0, L]. Three
simple uniform meshes with N =502, 1002 and 1282 are paired with the respective Reynolds number, in ascending order.
The boundary conditions are set to u(x, L) = U, and the no-slip conditions are set everywhere else. This case contains two
singularities at the top corner which require special treatment in some numerical methods. Here we do not use any type of
stabilization, including filtering or dealiasing. We have seen from the previous cases that PE4 is sufficient, thus we use it in
this test case. Note that the grid resolutions we use here are much coarser than those reported in the literature.

We first start with RE1000. All variables are set to zero initially and the flow is let to develop until it reaches the
steady-state. Since we are not interested in the evolution and seek only the stable steady-state solution, we interpolate this
solution to the other Reynolds number. Each case is then carried out until the steady-state solution is reached (change in
the kinetic energy is less than 10719 per L/U;. The final vertical profiles of the horizontal velocity are displayed in Fig. 15
including the primary core vorticity from the reference and the one from [71]. The FSM profiles of the two lower Re agree
very well with the reference. FSM solution still agrees reasonably with the reference at the highest Re, but the deviations
become larger. The magnitude of the primary core vorticity (|awc|) of the lowest Re is within 0.3% of the reference values
(2.0721 vs. 2.0677). In comparison, Boersma [18] applies a compact sixth-order FDM to this flow and obtains the vorticity
lwe| = 2.02622, 2.05889, and 2.0666 on 322, 642, and 1282 grids. Bruneau and Saad [71] report that three third-order
upwind schemes deliver |w.| = 2.0538 and 2.0638 in averaged on 1282 and 256% grids, respectively. Nishida et al. [48]
apply a sixth-order scheme on a 129%-grid and obtain 2.05715. We refer the reader to [49] for an extensive comparison
among different methods.

The magnitude of the primary core vorticity on RE7500 still follows the reference closely, but the deviation in the core
vorticity is increased to 1.8%. It should be pointed out that the RE7500 is a formidable test case. In the reference, Erturk
et al. employ 3 grids for this case and they found that the vorticity on the lowest resolution (N = 4012) differs from the
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Fig. 15. Horizontal velocity at the center-plane (x = L/2) and the vorticity at the primary core (w.). The velocity in Re =5,000 and 7,500 are shifted 0.5U
and Uy, respectively. The reference solution ECG is from [49] and BS is from [71].

reference value by 2.5%. Doubling the total number of grid points, only reduces this error to 1.1%. Thus, it is satisfactory
that the FSM can deliver similar predictions using a much coarser grid.

7. Applicable range of n-th apparent convergence rate with lower-order pressure treatment

In the previous sections, we have seen the performance of the explicit fourth-order pressure treatment (PE4). Evidently,
the pressure treatment PE4 can support the sixth-order accuracy of the FSM. Based on the formal truncation error, however,
we cannot expect PE4 to deliver the sixth-order convergence rate in every situation. If the flow spectrum is broad, the error
in the small scales from the convective term could be dominant dwarfing all other errors. On the other hand, if the flow
lacks high frequency parts, the fourth-order error of the pressure would be exposed as we have seen in the benchmarks
applied so far. The next natural question is “In what situation PE4 can accommodate the sixth-order FSM?”. This section is
dedicated to answer this question.

In actual turbulent flows, the spectrum is broad. The dominant error of a numerical simulation is determined by the
combination of the transfer function of the overall numerical schemes and the complexity of the flow. In a homogeneous
turbulent flow, Kolmogorov's theory predicted the —7/3 law for the pressure spectra and the —5/3 law for the velocity
spectra. In different regimes of turbulent flows, the pressure and velocity spectra can have different slopes. In boundary
layer flows, the slopes of the pressure spectra Ep, are found between —1 and —7/3 while the slopes of velocity spectra are
close to —5/3 [72]. In this section, we use a synthesis spectrum to check for the range of the decay rate in which we can
use a lower-order pressure treatment to support the sixth- and eighth-order NSE solver. We neglect the damping function of
the spectrum and consider a one-dimensional analysis by assuming that u and p follow the following the same spectrum:

E(kh) = (kh)™°. (58)

Let us recall the semi-discrete form of the momentum equation in Eq. (7), rewrite it in a vector form and apply a discrete
Fourier transform (&) to it, and strip the subscripts and superscripts for clarity:

au 1
A F—=-FC+v¥FD - —FP. (59)
at 0
The numerical approximations alter the above equation to
ou ~ ~ 1 _~
A-F—-=—8C+vFD - ;371 (60)

The difference between the RHS Eq. (59) and Eq. (60) is the error that will affect the evolution of the velocity. The diffusion
term is usually very accurate and thus we neglect it along with the density. The error in the evolution equation becomes

Eq = — (3¢ - §C) - (3P - 5P) (61)

Let EC; and EPg j, be the error from the convection and the pressure. The error from the convection can be further decom-
posed in to each direction. Let us consider the error norm due to the convection in x-direction:

Please cite this article in press as: A. Hokpunna et al., Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation
laws, J. Comput. Phys. (2020), https://doi.org/10.1016/j.jcp.2020.109790

© 00 N O O~ WD =

-
-y



© 00 N O O b~ W N =

O O o g g g g oo a D BB B DS B B BB DB W W W oOOWWWWWWNNDMNDNDNDMNDMNMNMNDDN= = = 2 2 a4 da g
- O © 00 N O O & WN = O © 0N O G A WONM =+ O O© 0N O GG A ON =+ O © N O UG B ON-=- O © 0N O B WN = O

JID:YJCPH AID:109790 /FLA [m3G; v1.292; Prn:27/08/2020; 7:19] P.24 (1-36)

24 A. Hokpunna et al. / Journal of Computational Physics eee (eeee) seeeee
~ ouul’?  [ouul’?
ECax(i)|=|F(Cx—C) | = — | - 62
[ECa 0| =[5 (¢~ C3) ‘s[a} 5] (62
A simple Fourier analysis can show that an error in the nonlinear convection is larger than the linear one, therefore
—~—yZ —— yZ
oul* T[ou ouu’®  [ouu
— —| = <|ECax(K)|= — — | = . 63
[ax] [ax} = [ECax (0| ‘3 [ax] [Bx] (83)

Note that the indices are dropped for clarity.
Thus, the normalized cumulative error in the convection of u; due to the deficiency in the transfer function is bounded
on the left by

T
1 ~
() = = |2/|1—Tc(fc)|uK di (64)
K
0

where T¢ is the transfer function of the linear convection in Eq. (16). This is the total error in the resolvable Fourier space.
Likewise, the cumulative normalized error in the pressure gradient reads

b4
1 —~
wp(n>=A—f|1—Tc<x>| B di, (65)
[Di |2 ;

where T¢ is the inter-cell differentiation for the pressure gradient such as Eq. (29) and Eq. (30). Note that we neglect the
superposition and the cancellation of the other two convection directions. Only the contribution from the x-direction is kept
in W, ().

Next, let us assume that the spectrum of the pressure and the velocity are the same, that is U, = P,. Then, we pair the
convection schemes with a different pressure scheme and plot the ratio of the normalized error |Wy(7)/ W, (77)| against the
decaying rate of the spectrum (a) in Fig. 16. The ratio larger than one means the pressure error is larger than the convection
error, and vice versa. For the flat spectrum (a — 0), the field is very rough and the lower-order pressure gradient ((n — 2)-th)
is superior to the higher-order convection (n-th) as expected. As a increases, the flows become smoother and the error of
the lower-order gradients grows faster due to the larger LTE. For decay rates larger than a = 2.71, the ratio is larger than
one. This rate is already outside the range found in turbulent boundary layer. For such a rapidly decaying spectrum, the
flow should appear very well resolved on the grid. The compact version of the fourth-order pressure (G4C) is more accurate
than the sixth-order approximation of the momentum (D6C) for all decay rates considered here. This trend is carried on
to the eight-order FSM as well. Both sixth-order approximations of the pressure are more accurate than the eighth-order
convection approximation, throughout the range (a < 5). Furthermore, the compact fourth-order scheme (G4C) would be
able to support the eighth-order convection (D8C) up to a =4.36. It is very likely that the fourth-order compact pressure
can support the eighth-order scheme very well. Thus, the high resolving power of the compact scheme is extremely useful.
This should be applicable to other methods on staggered grid as well. However, at a lower applicable range. It is worth
noting that, P2CC can deliver around third-order convergence rate when paired with the compact fourth-order FVM [44]. In
another study, we found that the P4CC can deliver a fifth-order convergence rate when paired with the compact sixth-order
FVM.

We revisit the double shear layer problem (N =5122 and t = 1.2) and plot pressure and velocity profiles on the hori-
zontal center line including their spectra in Fig. 17. The flow is very smooth and is over resolved by the grid as we can see
that the energy of the modes kh > 27 /3 drops to machine accuracy. The modes kh > 7r /2 are already very small. The decay
rate in /3 > kh > 27 /3 is roughly 10 which is larger than the predicted break-even point. The magnitude of the error on
this grid can be extrapolated from the error on N = 2562 in Fig. 13 to be 4E-7. The solutions of PE4 and PE6 on this grid
differ from PCO6 by 3.2E-7 and 2.8E-10, respectively. Thus, even for such a steep decay spectra, PE4 is still accurate enough
to accommodate the sixth-order FSM down to 512%-grid which is already overresolved.

It should be noted that, our prediction for the break-even point here is very conservative and thus it cannot be used to
predict the precise point. The main message, however is, the explicit fourth-order pressure can be used with the compact sixth-order
FSM in practical fluid flows. The less resolved the flow is, the smaller is the contribution of the pressure error to the overall error.

8. Application to turbulent channel flow

In this section we investigate the accuracy and the performance of the newly developed scheme in turbulent channel
flow. This type of flow has been used extensively for turbulence research and modeling as well as benchmarking numerical
schemes. Results of numerical simulations using spectral codes from several authors [73-77] are publicly available for com-
parison. Numerical simulations using other classes of approximations should converge to these data. The previous results
suggest that the benefits of PCO4 and PE6 over PE4 will only show at an extremely well resolved flow. In the following
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Fig. 17. The energy spectra of u and p in the double shear layer flow at t = 1.2 with N = 5122, The spectra show that the flow is over resolved and the
spectra of u are more complex than the pressure’s.

simulations, we use only the fourth-order explicit pressure (PE4) and keep all the other terms at sixth-order, except the
nonlinear correction which is removed. We filter the transported velocity to a temporary array before performing the con-
vection. The original velocity is kept unfiltered and the final du; is added to u; during the time integration without filtering.
The projection method is then applied and the process repeated again for the next time step. The filtering is thus applied
directly and only to the convective term. We do not consider this dealiasing to be turbulence modeling because the viscous
diffusion is not altered in any way. This is unlike the high-wave artificial viscosity, or filtering the velocity field, which can
be rewritten in a diffusion form. The filtering process we used, acts in the same way as the dealiasing in spectral codes.

The dealiasing is applied in both homogeneous directions. The wall-normal direction is sufficiently well resolved and
does not need filtering. Effectively, the leading complexity of the convective term and the pressure gradient becomes 115N
per momentum per time step. The cost of the filtering is very demanding. It now costs 42% of the convective term. The
result is compared against the spectral database and the compact fourth-order FVM of [2]. Note that we turn off the NC
in the FVM as well and the respective complexity is 95N. When adding the diffusion term, the sixth-order FSM costs 17%
more operations than the fourth-order FVM.

In the first part of this section, we investigate Re; = 180 and establish the relationship between the error in the bulk
flow velocity and the normalized grid spacing. The grid resolution requirement found in this section is then used to design
two new grids for the two additional Reynolds numbers, Re; =590 and 950.

8.1. Friction Reynolds number 180

Sagaut [78] suggests that, for the turbulent channel flow, the grid resolution in the streamwise, spanwise and the wall-
normal directions should be [AX, AYwai, AYmax, 221 = [151,1F,10%, 571 which are corresponding to the physical size of
the smallest relevant scales. The flow is usually driven by a pressure gradient added as a source term in the streamwise
velocity. The driving force could be determined a priori using Dean’s correlation between the Reynolds number based on
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Table 5
Grid parameters and mean flow variables of the standard grids used in this validation compared to the references. The domain sizes are normalized by the
channel half-width H. Grid sizes are in wall-unit. The first 8 rows are the simulations using FSM presented in this paper.

Simulation Domain Reynolds number Grid spacing Velocity ratio

Ly L, Rey Re; Axt Azt AYEL AVt Uc/uq up/uy
323 5127 177.53 69.7 23.2 5.4 184 16.87 14.94
483 5,323 177.90 46.6 15.5 3.0 13.6 16.87 14.96
563 5,402 180.05 404 135 2.5 119 17.39 15.00
64° 5,472 178.24 35.0 117 2.2 10.5 17.86 15.39

3 4 4 /3

70 5,529 178.01 319 10.6 1.8 10.3 17.94 15.53
80° 5,562 179.24 28.0 9.3 1.6 9.1 18.12 15.52
100° 5,624 178.05 224 75 1.2 7.5 18.36 15.75
1283 5,605 178.25 175 5.8 0.89 52 18.30 15.69
1443 5,606 178.50 15.6 5.2 0.40 52 18.27 15.73
KMM1987 [73] 4 2 5,600 180.00 118 71 0.054 44 18.20 15.63
MKM1999 [74] Y4 47 /3 5,529 178.13 17.7 5.9 0.054 44 18.30 15.52
VK2014 [76] 47 4 /3 5,616 180.00 5.9 2.9 0.024 3.9 18.28 15.60

the friction (Re;) and the bulk flow (Rep) velocities: Re; = 0.09Reg~88. This force can be fixed or controlled. Fixing the
pressure gradient will fix u; and Re; up to sampling error. The numerical interactions will determine the bulk flow. For
example, when the numerical scheme predicts low turbulent interactions and diffusion, the bulk flow would be higher than
the correct value, and vice versa. On the other hand, adjusting the pressure gradient to fix the bulk flow or (Rep) will result
in an error of the friction factor. In this work we fix the pressure gradient and let the bulk flow adjusts itself according to
the numerical interactions.

The parameters of the numerical grids and the computational domain used in this study are listed in Table 5 along with
the three spectral simulations which are used for comparison. In our simulations, the streamwise, spanwise and wall-normal
directions are set to X, y and z accordingly. The computational box is [Ly, Ly, L;] =[47w H,4/37 H, 2H] which is the same
domain used in [74,76].

Homogeneity is assumed in streamwise and spanwise directions and thus periodic boundary conditions are applied. The
top and the bottom walls are treated by no-slip boundary conditions. The flow is driven by a constant pressure gradient
which is added as a source term in the momentum equation of the streamwise velocity. There is no control of mass flow
within the simulations. The initial velocity field is obtained by imposing a random perturbation on the logarithmic velocity
profile with a Tollman-Schlichting wave. We integrate the solution in time using CFL ~ 0.2 for 32 < N < 64 to mimic actual
conditions that the DNS code would be mostly used. After that resolution, we are forced to reduce the CFL number to ~ 0.05
in order to keep the time-integration error low. The statistically steady state is assumed when the bulk flow velocity is not
changed more than 0.5%U, over a period of 10Ly/Uj. After the statistically steady state is reached, the flow was further
advanced for 10Ly/U; before the sampling started. The sampling time is set to 500H /U, together with the averaging in
the homogeneous directions. In order to find a correlation between the normalized grid spacing and the accuracy of the
simulation we perform a convergence study using numerical grids listed in Table 5, starting from a very coarse grid up to
the one slightly finer than the spectral solution in [74].

8.1.1. Mean flow statistics

Turbulent channel flows have been studied extensively and the shape of the mean profile in the viscous sublayer and
the outer layer are well understood. Dean’s correlations for the channel flow are very accurate and they agree well with
many respectable direct numerical simulations. In Table 5, we list two mean velocities ratios: the center line and bulk
velocities per friction velocity, u./u; and up/u;. It is clear that the FSM converges to the spectral solution as the grid
resolution increases. The ratio up/uc on the coarse grid is 1.146 and it is increased to 1.165 on 643-grid which is within
the 0.1% of the final value (1.164) on 1283-grid. This final value is exactly same as KMM1987 [73]. Thus, FSM should already
produce a correct shape of the mean velocity starting from N = 643 grid. According to the table, mean flow parameters are
monotonically approaching the reference value until 1003-grid. However, for the finer grids, the parameters oscillate near
the reference value. These small deviations (& 0.2%) can be attributed to the statistical uncertainty (discussed later).

In transient simulations of turbulent flow, it is very important to use a good numerical grid. This means the relevant
structures of the flow must be properly resolved. This is usually translated to using grid sizes in the range of Kolmogorov's
or Taylor’s length-scales. In DNS, it is very costly to follow this strict interpretation. In some cases, numerical simulations
are performed on grids coarser than the theoretical resolution. Such numerical simulations are usually called coarse DNS,
when no explicit or implicit modelings are involved. It is very useful to know the grid resolutions needed to achieve the
desired accuracy.

Thus, we investigate the convergence rate of the mean bulk flow in Fig. 18(a), where the error of the bulk flow velocity
is plotted against normalized grid spacings. The overview of the velocity profile on some grids is shown beside in Fig. 18(b).
Two convergence studies are conducted, the simultaneous refinement on all directions (xyz-refinement) and the spanwise
refinement (z-refinement). In the xyz-refinement, we plot AxT against the up-error w.rt. the result on the 1443-grid.
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Fig. 18. The convergence of the bulk flow velocity against the three-dimensional refinement (xyz-refinement) and the refinement in the spanwise direction
(z-refinement) w.r.t. 1443-grid and the error estimations for the convergent regime (a). Mean velocity profiles compared to two spectral solutions from [73]
and [74] (b).

The error curve exhibits two convergence rates, the underresolved and the resolved rates. In the underresolved region, the
convergence rate is approximately one. Starting from Axt =40 (N = 562), the flow is sufficiently resolved and a convergence
rate of order 7.88 is obtained.

Next, we fix the number of grid in the streamwise and wall-normal directions (Nx = Ny = 100) and check the conver-
gence rate in the spanwise direction (z-refinement). The mean velocity error is plotted against the spanwise grid spacing
using the secondary axis on the top (Az™). The convergence curve exhibits two regions similar to the simultaneous refine-
ment. In the resolved region, a convergence rate of 7.66 is obtained. The errors of the bulk flow rate on 64> and 100% grids
are 2.4% and 0.1%, respectively. The relative error in up/u; here is intended as a quick performance indicator which can
be easily generated and compared to other methods. The low error in uj/u; does not necessarily mean that the profile
is accurate to the same error level. In order to quantify the error in the profile, we compute the deviation of these two
profiles from the reference [74]. The maximum deviations on these two grids are 2.5% and 0.5% which is comparable to the
previous numbers. Thus, the error in u,/u; is a reasonable indicator for the error in the mean velocity profile. Vreman and
Kuerten [76] analyzed several turbulent channel flow databases and found that the differences in the mean profiles from
spectral simulations can be up to 0.4% which is just slightly lower than the error level on our 1003-grid. They also analyze
the maximum statistical relative error when sampling the flow over T = 200H /u, (equals to 3,216H /uj in our outer time
unit). The maximum values in their mean velocity profiles are in the range of 0.1 — 0.8%. Thus, it can be concluded that,
the sampling error is the dominant part beyond 1003 grid.

In order to determine the relationship between the error and the grid spacings, we fitted estimations for the relative
errors in the mean bulk flow. The equations for the convergence regimes are shown in the graph. However, an estimation
with a wider range is

er
log10 ( u‘:f’) =—9.342XA, +33.05Xj10p — 3041, (66)

with Xp0p =logio(Ax™). This relation is valid on 10~* < ery, < 10~ Therefore the streamwise grid spacings (Ax*) needed
to achieve 3%, 1%, and 0.1% error are 38, 30 and 21, respectively. Likewise, the respective spanwise grid spacings are
AzT =16, 11 and 8.3. If the structures in turbulent channel flow scale similarly, these estimations should hold for other
Reynolds numbers too. It is also worth noting that, the ratio Ax/Ay is about 2.5, which is slightly smaller than the ratio
recommended (3) in [78]. Thus, from this study we can conclude that for the homogeneous directions, FSM can achieve
3% errors in the mean profile using a grid 2.5-times larger than the recommended resolutions. A 1%-error can be achieved
with a factor two. For a one-per-mille error, FSM can achieve with factor 1.4. The necessary resolution in the wall-normal
direction will be presented later.

Fig. 18(b) displays the mean streamwise velocity profiles along with the two reference data from [73,74]. The result from
the 323 grid captures the flow relatively well, considered that wall-normal cell at the wall is 5.3y which is a bit larger
than the viscous sublayer. Doubling the resolution in every direction pushes the profile within the two spectral solutions.
Increasing the number of grid points further to 70° does not change the mean profile in a significant way. Thus, the profile
must have already converged as the uj/u.-ratio suggested earlier. When compared to a compact fourth-order FVM [2], a
similar equation for Eq. (66) can be formed. The ratio of the necessary grid size between FVM and FSM (AxﬁVM/AxﬁSM) is
approximately 1.25, for the error levels considered here.
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Fig. 19. RMS of the velocity fluctuations in linear (a) and in logarithmic scales (b). Skewness of the streamwise and wall-normal components near the wall
(c) and in the first half of the channel (d). Legends are listed in (a) and (c). The line styles are consistent for all graphs. For clarity, the skewness from
563-grid and the RMS from 100%- and 1283-grids are not plotted.

8.1.2. Second- and third-order statistics

The second- and third-order statistics are plotted in Fig. 19(a). The values plotted here are the statistics of the face-
averaged fluctuations and the horizontal axis positions are the face center. They are not expected to be the same value as
the pointwise data from the reference solution, but they should be close. The differences are in the order of O (Ay?) and the
differences should be contracting as the grid is refined. At the coarsest resolution, the peak uys overshoots to 2.79 which is
5% higher than the reference solutions. For finer grids, the RMS profiles of FSM approach the spectral solution from below.
This means the flow is heavily underresolved on the 323-grid. A good agreement of an RMS with the reference on this grid
at the channel center is purely coincidental. The RMS from 643 and 70% grids are very similar and they are closer to the
reference than the one of the 563-grid. The u-rms on 703-grid peaks at 2.588 which is 2.6% lower than MKM1999 (2.66)
indicating a convergence in the second-order statistics. Still, to put the RMS curves within 1% error of the spectral solutions,
FSM needs 1283. We do not show this profile on the graph to stress the accuracy of the RMS on 643 and 703 grids. On
the 1283-grid, the peak of uys is 2.658, while the peak cell-averaged from MKM1999 is 2.65. The peak u;ms from VK2014
is 2.67 and the one from MKM1987 is 2.63. The overall relative error (except the first cell) w.r.t. MKM1999 is 3.3% which
is on the same level as the differences among the spectral codes [76]. The u,ys on the first cell, however, differs from the
reference by 13%. This could be probably contributed to the difference in the type of the data statistics: the face-averaged
against the pointwise data. That is < [u]'[u]’ > # <u'u’ > # [<u'u’ >], especially at the first cell where the gradient is
strongest.

Next, we consider the skewness of the velocities fluctuations. The skewness measures the asymmetry of the probability
density function (PDF). Positive values mean that the tail of the PDF is on the right and the positive fluctuations are stronger
in magnitude, but less frequent. Here we consider the skewness of u and v in Fig. 19(b). The value of S, is close to zero
because of the flow symmetry and thus not considered here. The coarsest grid predicts S; much higher than the correct
level and the profile seems to be shifted at a constant factor upward. The profile of S, agrees well with the other grid in
the center. However, it predicts a negative value near the wall which is opposite to the reality. Increasing the resolution,
improves the accuracy of the solutions. Near the wall, the result from [74] indicates that S, starts from 0.897 and reaches
the peak value 0.922 at 0.00752H (1.34y*). On our 643-grid, the first cell size is 2.2y*. This grid over predicts S, slightly
(1.07). This overshoot disappears when the size of the first cell is refined to 1.8y™ on the 703-grid. In order to have an
excellent agreement on S, near the wall, the size of the first-cell must be comparable to this peak’s distance which is
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Fig. 20. Profiles of flow statistics under wall-normal refinement: (a) mean streamwise velocity, (b) RMS of velocity fluctuations, (c) skewness near the wall,
and (d) skewness over half of the channel. Legends are listed in (a) and (c). The line styles are consistent for all graphs. The skewness of u is marked by
open square for Ny = 32 to help distinguish it from S, which is marked by filled rectangles.

achieved on the 1003-grid (two cells enclosing the peak). As moving away from the wall, the skewness of FSM’s solutions
deviates slightly from the reference solution, however, it is clear that the grid refinement brings the profiles closer to those
from the references. The skewness profiles from the 1283-grid are very close to the other two spectral solutions and the
differences among the three profiles are comparable. For example, near y/H = 0.6, MKM1999 overpredicts the peak S,
from VK2014 by a comparable level that FSM-1283 underpredicts it (7% vs. 8%).

8.1.3. Wall-normal grid resolution effects

In comparison to other higher-order methods applied to turbulent channel flow, our result on 64> (DOF = 0.26M) is
more accurate than the implicit LES from discontinuous Galerkin method [79] on 1M DOF and it is comparable to the result
with 8.4M DOF. FSM on this grid predicts the same value of the peak u,,s as the optimized sixth-order compact [80] with
1.39M grid. Traditionally for DNS, it is recommended to have the first cell at one wall-unit. This guideline is applicable to
wall-resolved LES as well and the standard resolutions used in the wall-bounded flow are usually set to Ax™ ~ 50 ~ 130
and Az™ A 15 ~ 30. The lower values of these ranges are very close to the 3%-resolution established earlier (Ax™ = 40
and Azt = 14). Rezaeiravesh and Liefvendahl [81] recently investigated the effect of grid resolution on LES of turbulent
channel flow using OpenFOAM and they recommend that Ax* < 18, Azt < 12 and ijva“ < 2 are sufficient to produce low
errors in the flow statistics. Since our grid resolution requirement in the homogeneous directions is much more relaxed, it
is interesting to see the new resolution requirement in the wall-normal direction.

Physically, the wall-normal grid size is responsible for two important effects. First it must capture small-scaled inter-
actions near the wall, especially the impingement of high momentum fluid from the outer layer and the formation of
streamwise and spanwise vortices. Second, it must be able to capture the correct shear force of the streamwise velocity
profile which is very steep near the wall. A grid too coarse will destabilize the numerical boundary closures leading to a
simulation failure. In order to shed some light on this issue, we take the 1003-grid and perform a coarsening in the wall-
normal direction by reducing the number of cells to 64 and 32. The wall-normal grid distributions are taken directly from
the previous cases (64> and 323 in Table 5). The mean and the RMS profiles are plotted in Fig. 20. Unlike our expectation,
the results imply that the wall-normal grid size almost does not affect the mean and the RMS profiles, as long as the simu-
lation is stable. The differences however appear in the skewness where we get an unusually high value of S, near the wall.
The curve on N, =32 follows S, instead of the correct curve. The high positive value here indicates that ejection events
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Table 6

Sequential CPU-time per time-step on Intel Xeon 8168 and three performance indices of FSM: i. Million
grid points per second (MPS), ii. MPS per TeraFLOPS of LINPACK 1000D (MPT F1000op) and iii. MPS per
TeraFLOPS of HPL. The FSM, FVM and the two benchmarks are compiled using Intel compiler with -03
-xCORE-AVX512.

Method CPU-time per time step (s) FSM performance index
FVM4 FSM6 FSM6/FVM4 MPS MPT Fig00p MPTFypy

323 0.018 0.017 0.975 1.88 293.7 20.6
483 0.068 0.064 0.976 1.74 272.0 19.1
563 0.128 0.123 0.963 1.37 2149 15.0
643 0.189 0.187 0.992 1.39 2144 15.2
70 0.363 0.360 0.986 1.25 195.6 13.7
803 0.395 0.398 1.007 1.23 193.0 135
1283 2.065 2.029 0.983 0.93 148.8 10.2
1443 3154 3.202 1.018 0.95 145.7 10.0

become much stronger near the wall. Later at y ~0.1H ~ 18y™, S, resumes the usual value. This means Ayyq = 5.3y"
is not enough to resolve the near-wall dynamics correctly, but it still can provide an equivalent momentum transfer for the
early buffer layer and the outer layer.

We also tried pairing a very fine wall resolution and with a coarser grid in the homogeneous directions and found that
the resolutions in the homogeneous directions dictate the bulk flow rate. Specifically, all the wall-normal resolution we
used here, when paired with N2-grid in the wall-parallel directions, would generate essentially the same mean flow as
the corresponding N3-grid reported in Table 5. Unfortunately, when the first grid cell is larger than 6y, the simulations
become unstable. Thus, for an accurate prediction of the first- and second-order statistics, the first grid cell should not go
beyond the viscous sublayer (Ayyq < 5y*) and we recommend 4y™ as the maximum size. It should be mentioned that
this near-constant flow rate behavior is observed on the fourth-order FVM as well, but the wall-normal grid size must be
25% finer than in FSM to achieve the same effects. Coupled with the resolving power improvement in the wall-parallel direction,
FSM only needs half of the grid points (N /2) to match the compact fourth-order FVM on N;-grid.

According to the result with Ny, =32, grid spacing at the center in this case should be sufficient to resolve the flow
there. This is highly possible because the flow in the center is almost isotropic. Thus, the size of Ax™ should be applicable
in the wall-normal direction as well. This preliminary resolution (Ay* = 30) will be tested using the other two Reynolds
numbers later.

8.1.4. CPU-time

In two-dimensional laminar flows, FSM does not require the filter and the momentum calculation is 30 — 60% faster than
the fourth-order FVM. However, when we use the filter on convective terms, the finite surface slows down significantly.
We measured the computational time in the previous turbulent channel flow simulations. Note that, we use a direct solver
with FFT in the homogeneous directions to solve the Poisson equation. The third-order RK time-integration of the FSM takes
0.18 s on the coarsest grid and 3.15 s on the finest (Table 5). The detail on CPU-time is listed in Table 6. On average, FSM
with filter is slightly faster than the fourth-order FVM on the same grid. This falls within the expectation, because FVM
needs more memory transfer which offsets the lower number of floating point operations. The CPU-time of both methods
is increasing as a logarithmic function of the number of grid points due the Nlog(N) complexity of the FFT. This eventually
becomes the leading cost as N increases. Taking the performance of the fourth-order FVM in the table, together with the
grid point requirement, we can conclude that for all the levels of accuracy considered in this paper (0.1 — 3%), FSM can
deliver a solution 2.8-times faster than the fourth-order FVM. Coupled with the improvement factor of the FVM, the sixth-
order FSM is 28X faster than the classical second-order schemes, at the same level of accuracy. This result is obtained with
a sixth-order dealiasing.

When one starts a numerical investigation, it is useful to know how many grid points are needed and how much CPU-
time is needed. The above timing can be used as a rough guide to predict the runtime for the processor on the same class
by using the number of million grid points per second (MPS). However, it is difficult to translate it to other processors. Thus,
we need a relative performance index. In this table we list three performance indices: (i). Million Points per Second (MPS),
(ii). MPS per TeraFlops of LINPACK 1000D (MPT F1poop) and (iii). MPS per TeraFlops of High-Performance LINPACK. The MPS
is a simple measurement which is specific to a machine. In order to estimate it on other machines, we need to relate with a
standard benchmark which is also available on the machines of interest. The first benchmark is a classic 1000D LINPACK [82]
which is a standard FORTRAN code available publicly. However, the problem size is too small for current machines and the
embedded code may not be fully optimized by the compiler. Thus, the number of floating points operation obtained by
1000D is a rather pessimistic estimation of the machine performance. The High-Performance LINPACK (HPL) [83], on the
other hand, is highly dependent on the performance of the Mathematics library (BLAS and LAPACK). When the optimized
libraries are used, the number obtained usually represents the best performance one can get out of the machine. We run
both benchmarks on a single core of Intel Xeon 8168 (parallel threads disabled). The MPS is gradually reduced from 1.88
down to about half of this value on the finest grid. The logarithmic complexity is responsible for about 40% of the increase
in the computing time and the rest is coming from the caching effects. On the first two grids, the data needed for the
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Fig. 21. Mean streamwise velocity and the RMS of velocities fluctuations on RE950 from the grid designed to meet 1% error in the mean profile:
[AxT, Ay:'va”. AYihaxs A2T1=1[34.5,4.7,27.1,12.6]. The grid density used here is 42.5 less dense than the reference.

compact scheme can stay on the level 2 cache, and other variables used in the momentum and the pressure calculation
can be fitted within the level 3 cache, thus the performance is very good. On the finest grid, the level 3 cache can barely
contain the two arrays used in the compact scheme. Therefore the performance drops a lot compared to the rest. The
1000D achieves about 6.3 GFlops while the HPL peaks at 91.3 GFlops with the leading dimension 20,480 on a single core.
Therefore, the index MPT Figpop is higher. According to these indices, we could expect a machine having 1 TeraFlops (HPL)
to complete a time-step of 10.0 - 20.6 million grid points in a second. The open question, however, is the performance on
a massive parallel architecture.

8.2. Friction Reynolds number 590 and 950

In this section we evaluate the error estimations (Eq. (66)) when applied to higher Reynolds numbers: Ret =590 and
950, denoted as RE590 and RE950, respectively The forcing and the methods are the same as the previous case. The
nominal forcing is set to Re; = 587.19 and 935.0 to match the exact Reynolds number in the references [74,77]. The
computational domains on RE590 case is set to the same one used in the reference [74]. The spanwise width on RE950
is shortened to save the computing time. Del Alamo et al. [77], conducted numerical experiments on two domains. The
large domain is 8w H long (streamwise) and 37 H wide (spanwise) and the smaller domain is wH long and w H/2 wide.
According to their data, the spanwise width of the smaller domain is quite close to the necessary length, but the streamwise
length is too short. This too small domain cannot produce the correct turbulent shear stress and results in a wrong mean
profile. Our previous study shows that the domain four-times larger (2w x ) than the smaller domain is sufficient to
capture the flow statistics of RE950 accurately. The result from this domain shows that the autocorrelations in the spanwise
direction are close to zero at w H/2 except near the center where shear stresses are very low. Li and Tsubokura [84] used
this narrow spanwise width (w7 H/2) and obtained a very good agreement with the larger domain in the reference [77].
Thus, we set the streamwise-spanwise domain to (27 x ;) for RE590 matching to the reference, but reduce it to 7 H/2 on
RE950. Due to the faster decay of the autocorrelations, this domain is large enough to compare a 1% difference in the first-
and second-order statistics.

We designed two grids such that the resolutions are close to the 1%-margin developed earlier. The effective grid reso-
lutions [AxT, Ayv+va”, Ayt Az1] are [29.0,4.7,29.4,12.9] and [34.5,4.7,27.1, 12.6] with the total number of cells equal
to 1.47M(RE590) and 2.67M(RE950). The actual mean flow variables obtained on RE590 are Rep, = 21,874 (21,609),
Re; =590.35 (587.19), uc/u; = 21.05 (21.26), up/u; = 18.40 (18.65). The numbers in the parentheses are processed
from the reference data [74]. The mean flow parameters are well within a 1% error. The maximum and the average
of the local relative errors in the time-averaged profile w.r.t. the filtered DNS solution are 2.1% and 1.4%, respectively.
This is in line with the previous behavior on RE180 with the 643-grid. Note that the local errors here are defined as
}(ufsm ) — uref(y)) [Uref (y)‘. The large errors are observed within the viscous sublayer and the buffer layer. Outside, they
are almost constant at the level close to the average error. We plot the mean profile and the RMS of the fluctuations for
RE950 in Fig. 21 for visual inspection. Note that the grid density (N¢/(LxLyL;)) used in this case is 42.5-times less dense
than the reference’s grid. Here we reverted the symbol and the lines designations. The open circle symbols now belong
to FSM and the solid line is the reference. This is done to highlight that this grid only has 3 cells before the peak of the
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Fig. 22. A snapshot of u-contour at 5y* from RE950 (bottom) compared to the result from FVM on a larger domain (top). Similar structures can be seen
on both simulations despite FSM having a grid density 11.4-times less. Note that the size of the wall cell with FSM simulation is 4.7y* and this plane is
just above the top of this cell.

Urms. Note that in the graph, u and v are positioned differently. The first point of u and v are at the center of the first cell
(2.34y™) while the first point of wyns is located at the top of the first cell (4.68y™). The figure indicates that the profiles
on this tailored grid follow the reference solution closely. Next, we consider a snapshot of the wall-normal plane (y* =5)
in Fig. 22 along with the result from the fourth-order FVM [44]. The FSM on the smaller domain produces similar structures
as obtained on the larger domain having 61.4M cells.

In comparison to other methods, Li and Tsubokura [84] solve the truncated compressible NSE [84] on 10.5M-grid using
a low-Mach-fix for Roe’s approximation [85] and their automatic dissipation adjustment model (ADA). The simulation there
without ADA is much less accurate than the present work while the solution with ADA has a comparable accuracy. The
mean profile here is comparable to an implicit LES based on DGM [86] with 3.5M DOFs (27 x m domain), but the RMS
profiles here are more accurate. Thus, our coarse DNS results are on par with some higher-order large-eddy simulations,
without using any turbulence modeling, numerical damping, penalty terms or the direct filtering to the velocities.

9. Conclusion and outlook

We have presented a new discretization aiming specially at coupled conservation problems. The discretization conserves
the discrete mass analytically. Its high resolving power is a result of the spatial arrangement of the discrete variables
which allows the analytical mass flux calculation. Formally, this method asymptotically halves the size of the stencil of
the Laplacian for the projection method. The sixth-order compact schemes for convection and diffusion terms are validated
together with three pressure treatments. The explicit fourth-order pressure treatment is sufficient to deliver the apparent
sixth-order convergence rate. Consequently, the sixth-order FSM can use the 13-point Laplacian stencil, instead of the 31-
point.

The grid resolutions needed to obtain a 1%-error in the mean profile of turbulent channel flow simulation are
[AxT, Ay:rvau, Ay%x, AzT]=1[30,4,30, 11], for the proposed method. At high Reynolds numbers, this resolution translates
to total grid points of (Re;/22)3 per cubic of channel half-width (H?). When the grid resolutions are the same as the spec-
tral solutions, the predictions are as good as the other spectral schemes. In terms of accuracy, the sixth-order FSM should
not differ much from other sixth-order methods. However, in terms of performance, FSM should be faster than FVM and
FDM. Two performance indices of the NSE solvers: the 1%-error resolutions and the MPTFyp; are proposed.

The finite surface discretization itself is a natural spatial discretization that sits between FVM and FDM. For coupled
conservation problems, FSM is very competitive. The mass conservation equation in FSM is exact and it only approximates
the momentum equations. Other coupled problems such as Magnetohydrodynamics and scalar transport should be greatly
benefited from the FSM as well. The conserved quantities (mass, chemicals, magnetic fields) can be defined on the controlled
volume while the transporting variables (momentums, velocities, ion fluxes) can live on the surface of the controlled volume.
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The surface-averaged flux can serve as a new type of DOF for existing methods. Effectively, a sixth-order FSM can deliver a
comparable solution 28-times faster than the second-order FVM.

It would be interesting to extend FSM to other coordinate systems including curvilinear coordinates, or apply it to non-
orthogonal and unstructured grids. To enable the full potential of the discretization, a time integration method should be
more accurate than the third-order Runge-Kutta. The current dealiasing filter costs about 42% of the convection. A more
efficient filter is needed to improve the overall performance of the scheme. Lastly, the method has been run in serial.
For large-scale turbulent simulations, effective methods for solving systems of the compact stencil on massively parallel
computer need to be implemented.
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Finite Surface Discretization for
Incompressible Navier-Stokes Equations
and Coupled Conservation Laws

i

Pressure surfaces store the face-averaged normal
velocity.
¢ The mass balance is computed exactly.
* The projection Laplacian is most compact.
* 60 momentum can be used with 40 pressure.
* Runtime per grid point is the same as

a fourth-order FVM

1

0.8

0.6

y/L

Re = 1,000

0.4

Lid-driven cavity on
50%,100% and 128 grid

Primary core vorticity
Reynolds 1

bor)
1000 5,000 7,500

Refo
N =100%

Pros
BCG-1017
ECG-601% 2,065

BS1287 20508 18505

BS-2 20631 1.9125 -
ECG-REF 206721 194073 1.92607

02 04 06 08 1 1.2 14 16 18 2
u/Up,

20

Turbulent channel flow
Re =950

1%-error resolutions
[Aerv Ay:;allv Ay, Az+]

max?
ut,

~de 30, 4, 30, 11]

Please cite this article in press as: A. Hokpunna et al., Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation
laws, ]J. Comput. Phys. (2020), https://doi.org/10.1016/j.jcp.2020.109790

0 N O O s W N =

O O g o g g o o0 o0 o o b~ BB B B B BB BB DWW WO OOoWWOWWWNNNDDNDDNDDNDDMNDDNDNDDN =S =4 2 2 dadaa g O
- O © 00 N O O & WN = O © © N O O & ON - O © O©®NO G A ONM - O © O©®NO G A ONM - O © 0N OO > WM =+ O


https://doi.org/10.1016/j.jcp.2020.109790
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp

JID:YJCPH AID:109790 /FLA [m3G; v1.292; Prn:27/08/2020; 7:19] P.38 (1-36)

Highlights

The new finite-surface discretization conserves the exact discrete mass.

The Laplacian from the projection method is smallest under this discretization.

The sixth-order convergence rate can be achieved with an explicit fourth-order approximation of the pressure.
The sixth-order FSM costs the same as a fourth-order FVM.

FSM can match a fourth-order FVM solution using one-half number of total grid points.

At the same level of accuracy, the proposed FSM is 28-times faster than the classic second-order FVM.
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