บทคัดย่อ

รหัสโครงการ : MRG5480284

ชื่อโครงการ: การพัฒนาเซรามิกส์ทินไดออกไซด์เพื่อใช้ในอุปกรณ์วาริสเตอร์

ชื่อนักวิจัย : ผู้ช่วยศาสตราจารย์ ดร.นิติ ยงวณิชย์

อีเมลล์ : niti.yongvanich@gmail.com, niti@su.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ :

เซรามิกส์วาริสเตอร์ทินไดออกไซด์ถูกพัฒนาขึ้นเพื่อปรับปรุงประบวนการผลิตและสมบัติไฟฟ้า แนว ทางการสังเคราะห์คือการตกตะกอนร่วมเชิงเคมีและใช้ระบบ SnO₂-CoO-Nb₂O₅ ในการศึกษา โดยวิธีสถานะ ของแข็งได้ถูกใช้ด้วยเพื่อการเปรียบเทียบ สารเจือที่ใช้ คือ Zn และ Bi ตะกอนที่ได้ถูกเผาที่ 800 °C ซึ่งเป็น อุณหภูมิที่พิจารณาจากผลของ Thermogravimetric analysis (TGA) และ Fourier Transform Infrared Spectroscopy (FTIR) ระบบที่ถูกเจือด้วย Zn มีขนาดผลึกในช่วง 4 – 6 นาโนเมตร X-ray diffraction (XRD) ไม่ตรวจพบเฟสทุติยภูมิ การวิเคราะห์แบบ Williamson-Hall ได้ถูกใช้ในการศึกษา Lattice strain ความสามารถในการเผาผนึก และค่าความต่างศักย์พังทลายได้ถูกปรับปรุงขึ้นเมื่อมีการเจือถึงระดับ 2 mol% ส่วนระบบที่มีการเจือด้วย Bi แสดงความแตกต่างเล็กน้อยทางด้านการโตของผลึก ซึ่ง Bi ส่งผลให้ขนาดผลึก ใหญ่ขึ้น ชิ้นงานเซรามิกส์สามารถถูกเผาผนึกได้ความหนาแน่นสัมพัทธ์อย่างต่ำ 90% ที่ 1200 °C ซึ่งตำกว่า อุณหภูมิที่ถูกรายงานในระบบวาริสเตอร์ประเภท SnO₂ (1,300 – 1,400°C) ทั้งการโตของเกรนและสมบัติวาริ สเตอร์ได้ถูกปรับปรุงดีขึ้น ค่าความต่างศักย์พังทลายที่ดีที่สุด คือ 8200 V/cm ผลการทดลองนี้สามารถถูก อธิบายจากแนวคิดของสารละลายของแข็ง รวมถึงการเกิดตำหนิในบริเวณใกล้เคียงกับขอบเกรน

คำหลัก :

วาริสเตอร์, ทินไดออกไซด์, อนุภาคนาโน, การตกตะกอน

Abstract

Project Code: MRG5480284

Project Title: Development of SnO2-based Ceramics for Varistor Devices

Investigator: Assistant Professor Dr. Niti Yongvanich

E-mail Address: niti.yongvanich@gmail.com, niti@su.ac.th

Project Period: 2 years

Abstract :

SnO₂ varistor ceramics have been developed in order to enhance both processing and electrical properties. The synthesis route was chemical co-precipitation with a base system of SnO₂-CoO-Nb₂O₅. All samples were also prepared by solid-state reaction for comparison. Zn and Bi were selected as dopants. The obtained precipitates were calcined at 800°C as suggested by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The Zndoped system yielded nanoparticles with crystallite sizes in the 4 - 6 nm range. No secondary phase was detected by X-ray diffraction (XRD). The Williamson-Hall analysis was also used to study lattice strain. Sinterability was improved whereas the breakdown voltage (E_b) was doubled (at 2 mol%). The Bi-doped system revealed slight differences in crystal growth; the calcined nanoparticles contained crystals which became larger with increasing content of Bi. The ceramics could be sintered up to 90% density at as low as 1,200°C (2 mol%) which is a lot lower than typical temperatures reported in the literature (1,300 - 1,400°C). Both grain growth and varistor properties were significantly enhanced. The E_b value was as high as 8,200 V/cm. These results were explained using concept of solid solution as well as defect formation in the vicinity of grain boundary.

Keywords:

Varistor, tin dioxide, nanoparticle, precipitation

4