

รายงานวิจัยฉบับสมบูรณ์

โครงการ : การพัฒนาแบบจำลองคอมพิวเตอร์เพื่อศึกษาคุณสมบัติของลวดตัวนำยิ่งยวด

Development of a Computer Model for Studying the Superconducting Filaments Properties

โดย ผศ.ดร.ธิติพงษ์ สกิรเมธีกุล และคณะ

มีนาคม 2556

รายงานວິຈัยຈັບສມບູຮນ

ໂຄຮກກາຣ : ກາຣພັນນາແມບຈຳລອງຄອມພິວເຕອຣ ເພື່ອສຶກໜາຄຸນສມບັດຂອງລວດຕັວໜ່າຍິ່ງຍວດ
Development of a Computer Model for Studying the Superconducting Filaments Properties

ຜູ້ວິຈัย

- ຜ.ສ. ດຣ. ອິຕີພົງໝໍ ສົມບັດສຶກໜາ
- Prof. Frederic Bouillaud
- ຮ.ສ. ດຣ. ນັກງານ ອົມທັກ

ສັກດ

ຄະນະວິສວກຮມຄາສຕົກ ກຳແປງແສນ
ມາວິທຍາລັບເກະຊາສາສຕົກ ວິທຍາເຂົດກຳແປງແສນ
LGEP ແລະ University Paris 11 ປະເທດຝຣິ່ງເຈັສ
ຄະນະວິສວກຮມຄາສຕົກ
ມາວິທຍາລັບເກະຊາສາສຕົກ ວິທຍາເຂົດບາງເຂົນ

ສັບສົນໂດຍສໍານັກງານຄະນະກວມກາຮກອຸດມືກິຈາ ສໍານັກງານກອງທຸນສັບສົນກາຮວິຈີຍ
ແລະມາວິທຍາລັບເກະຊາສາສຕົກ

(ຄວາມເຫັນໃນรายงานນີ້ເປັນຂອງຜູ້ວິຈัย ສກອ. ແລະ ສກວ. ໄນຈະເປັນຕົ້ນເຫັນດ້ວຍເສນອໄປ)

บทคัดย่อ

รหัสโครงการ : MRG5480287

ชื่อโครงการ : การพัฒนาแบบจำลองคอมพิวเตอร์เพื่อศึกษาคุณสมบัติของลวดตัวนำยิงยวด

ชื่อนักวิจัย : ผศ. ดร. ฐิติพงษ์ สถิรเมธิกุล

อีเมลล์ : thitipong.s@ku.ac.th

ระยะเวลาโครงการ : 2 ปี

บทคัดย่อ :

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาแบบจำลองคอมพิวเตอร์เพื่อศึกษาคุณสมบัติหรือปรากฏการณ์ต่างๆ ของตัวนำยิงยวด ความเป็นแม่เหล็ก ความหนาแน่นของสนามแม่เหล็ก ความหนาแน่นของกระแสไฟฟ้า และการสูญเสียเนื่องจากอีสเตอริชิสของสายไฟฟ้าซึ่งประกอบด้วยลวดตัวนำยิงยวดหลายๆ เส้นอยู่ภายใน โดยเริ่มจากการศึกษาและวิเคราะห์ปัญหาที่ซับซ้อนทางด้านแม่เหล็กไฟฟ้า จากนั้นจึงทำการพัฒนาปรับปรุงแบบจำลองของลวดตัวนำยิงยวดจากแบบจำลองเดิมที่มีอยู่ด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรนและใช้ระเบียบวิธีไฟไนต์อิลิเมนต์ในการแก้ปัญหา แล้วจึงนำผลลัพธ์ที่ได้ไปแสดงผลกราฟิกด้วยโปรแกรมแมทแลป ผลที่ได้จากการวิจัยนี้สามารถนำไปประยุกต์ใช้ในงานอุตสาหกรรมหลายด้าน และยังสามารถใช้สำหรับต่อยอดงานวิจัยเพื่อการพัฒนาโปรแกรมคอมพิวเตอร์แบบสามมิติสำหรับแก้ปัญหาที่มีความซับซ้อนมากยิ่งขึ้นของลวดตัวนำยิงยวดต่อไปได้

คำหลัก : การออกแบบ, ระเบียบวิธีไฟไนต์อิลิเมนต์, เส้นลวดตัวนำยิงยวด

Abstract

Project Code : MRG5480287

Project Title : Development of a Computer Model for Studying the
Superconducting Filaments Properties

Investigator : Asst.Prof.Dr.Thitipong Satiramatekul

E-mail Address : thitipong.s@ku.ac.th

Project Period : 2 years

Abstract :

The objective of this research is to develop a computer model in order to study the phenomenon or the properties of superconductor, the magnetization, the density of magnetic field, the electric current density, and the losses due to the hysteresis of the electrical wire which consists of several superconducting filaments inside it. Beginning to study and analyze a difficult electromagnetic problem, then to modify a model of superconducting filaments from the previous model with a computer program in Fortran language and by using the finite element method in order to solve the problem, and then to show the graphic results with Matlab program. The results of this research can be applied in many industrial areas, and also can be used for continuing research of the computer program developing for solving more difficult problems of superconducting filaments in three dimensions.

Keywords : Modeling, Finite Element Method, Superconducting Filament

Executive Summary

1. ความสำคัญและที่มาของปัญหา

ในปัจจุบันมีการนำตัวนำยิ่งยวด (Superconductor) มาใช้ในงานหลาย ๆ ด้าน เนื่องจากเป็นวัสดุที่มีคุณสมบัตินำกระแสไฟฟ้าได้ดีกว่าตัวนำธรรมด้า เพราะว่าไม่มีการสูญเสียพลังงานความร้อนที่เกิดจากความต้านทาน ตัวอย่างเช่น ในการขนส่งมวลชนความเร็วสูงมีการนำเอาตัวนำยิ่งยวดมาใช้ในการสร้างรถไฟแมกเลฟ (Maglev Train) ซึ่งใช้ประโยชน์จากปรากฏการณ์ไมซเนอร์ (Meissner) ของตัวนำยิ่งยวดทำให้รถไฟลอดขึ้นจากการเป็นการลดแรงเสียดทานในขณะวิ่ง ทำให้รถไฟวิ่งด้วยความเร็วสูงมาก (ประมาณ 580 กิโลเมตรต่อชั่วโมง) ในทางการแพทย์มีการนำเอาตัวนำยิ่งยวดมาใช้ในเครื่องตรวจเอกซ์เรย์ด้วยคลื่นแม่เหล็กไฟฟ้า (Magnetic Resonance Imaging หรือ MRI) เพื่อศึกษาสิ่งผิดปกติที่เกิดขึ้นภายในร่างกายมนุษย์ได้อย่างแม่นยำ โดยไม่ก่อให้เกิดความเจ็บปวดหรือบาดแผลใดๆ แก่ร่างกายและไม่มีอันตรายจากการรังสีตกค้างอีกด้วย นอกจากนี้ยังมีการนำเอาระดับตัวนำยิ่งยวดมาใช้ในการทำเครื่องกำเนิดไฟฟ้า ซึ่งมีประสิทธิภาพสูงกว่าเครื่องกำเนิดไฟฟ้าที่ทำจากลวดทองแดงและยังมีขนาดเล็กกว่าครึ่งหนึ่งอีกด้วย ในปัจจุบันหลาย ๆ ประเทศมีแผนการที่จะแทนที่เครื่องกำเนิดไฟฟ้าด้วยเครื่องกำเนิดไฟฟ้าที่ใช้ตัวนำยิ่งยวดชนิด BSCCO หล่อเย็นด้วยไนโตรเจนเหลว ซึ่งจะทำให้กระแสไฟฟ้าไหลได้ดีกว่าที่ติดตั้งอยู่ในปัจจุบัน ในทางการทหารมีการนำเอาระดับตัวนำยิ่งยวดมาใช้ในการผลิตมอเตอร์ขนาดเล็กสำหรับเรือตรวจจับทุ่นระเบิดและเรือดำน้ำ และที่องค์กรเพื่อการวิจัยนิวเคลียร์แห่งยุโรป หรือ เซร์น (CERN) มีการนำเอาระดับตัวนำยิ่งยวดมาใช้ในการผลิตแม่เหล็กหลักสำหรับเครื่องเร่งอนุภาคขนาดใหญ่ (Large Hadron Collider หรือ LHC) ซึ่งให้ค่าสนามแม่เหล็กที่มีความเข้มสูง (ประมาณ 10 ถึง 20 เทสลา) มากกว่าค่าสนามแม่เหล็กที่เกิดจากลวดตัวนำธรรมด้า เช่น ทองแดง (ประมาณ 1 เทสลาเท่านั้น) เนื่องจากกระแสไฟฟ้าในตัวนำธรรมดามีการสูญเสียพลังงานไปในรูปของความร้อน ความร้อนที่เกิดขึ้นทำให้ไม่สามารถทนกระแสไฟฟ้าสูงเกินไปได้ ต่างจากตัวนำยิ่งยวดซึ่งสามารถถือกับกระแสไฟฟ้าได้ถึง 10,000 แอมเปอร์ โดยแบบไม่มีการสูญเสียพลังงานเลย ตัวนำยิ่งยวดที่นำมาใช้ในการสร้างสนามแม่เหล็กความเข้มสูงในระดับนี้ ได้แก่ Nb_3Ti ซึ่งต้องใช้แม่เหล็กที่ทำจากลวดตัวนำยิ่งยวดมากถึง 8,000 ตัว เพื่อให้ได้พลังงานการชน 14 TeV

จากตัวอย่างข้างต้น จะเห็นได้ว่าในปัจจุบันมีการใช้ตัวนำยิ่งยวดในการทำລວດตัวนำไฟฟ้าแทนที่ตัวนำธรรมดากันอย่างกว้างขวาง ดังนั้นเพื่อขอรับประโยชน์ที่จะเกิดขึ้น การสร้างแบบจำลองด้วยโปรแกรมคอมพิวเตอร์จึงมีความจำเป็น นอกจากนี้ยังสามารถใช้แบบจำลอง

คอมพิวเตอร์ดังกล่าวเพื่อศึกษาคุณสมบัติหรือปรากฏการณ์ใหม่ ๆ ของลวดตัวนำยิ่งยวด ได้อีกด้วย และเนื่องจากปัญหาที่ศึกษาเป็นปัญหาทางแม่เหล็กไฟฟ้า ดังนั้นจำเป็นต้องใช้ระเบียบวิธีเชิงตัวเลข (Numerical Method) ในการแก้ปัญหา ซึ่งระเบียบวิธีเชิงตัวเลขที่นิยมใช้ในการแก้ปัญหาในงานวิศวกรรมในปัจจุบันคือ ระเบียบวิธีไฟโนต์อิลิเมนต์ (Finite Element Method)

องค์ความรู้ใหม่ที่คาดว่าจะได้รับจากการวิจัยนี้คือ คุณสมบัติและ/หรือปรากฏการณ์ใหม่ ๆ ของลวดตัวนำยิ่งยวด เช่น ความหนาแน่นของสนามแม่เหล็กและความหนาแน่นของกระแสไฟฟ้าในลวดตัวนำยิ่งยวด ความเป็นแม่เหล็กและการสูญเสียอันเนื่องจากอีสเตอริซึสของลวดตัวนำยิ่งยวด เป็นต้น ซึ่งองค์ความรู้ใหม่ที่กล่าวมานี้จะส่งผลกระทบโดยตรงต่อความก้าวหน้าในเชิงวิชาการในสาขาที่เกี่ยวข้องกับตัวนำยิ่งยวด อาทิเช่น เทคโนโลยีที่เกี่ยวกับแม่เหล็กและสนามแม่เหล็ก เทคโนโลยีที่เกี่ยวกับการบันทึกข้อมูลและการเก็บข้อมูล เป็นต้น และยังส่งผลกระทบโดยตรงต่อการประยุกต์ใช้ตัวนำยิ่งยวดในด้านต่าง ๆ ดังที่ได้กล่าวมาแล้ว ได้แก่ รถไฟแมกเลฟ เครื่องตรวจเอ็กซ์เรย์ด้วยคลื่นแม่เหล็กไฟฟ้า เครื่องกำเนิดไฟฟ้า เคเบิลไฟฟ้าトイเดิน มอเตอร์ขันดาล เล็ก เครื่องเร่งอนุภาค เป็นต้น นอกจากนี้องค์ความรู้ใหม่ที่ได้อ้างนำไปเปลี่ยนหรือแลกเปลี่ยนกับนานาประเทศซึ่งทำการวิจัยในสาขาเดียวกันนี้ โดยผ่านการประชุมวิชาการในระดับนานาชาติได้อีกด้วย

2. วัตถุประสงค์

- 2.1 เพื่อพัฒนาแบบจำลองคอมพิวเตอร์ของลวดตัวนำยิ่งยวดด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรน
- 2.2 เพื่อแก้ปัญหาทางแม่เหล็กไฟฟ้าที่มีความซับซ้อนด้วยระเบียบวิธีไฟโนต์อิลิเมนต์
- 2.3 เพื่อพัฒนาหน้าต่างแสดงผลกราฟิกด้วยโปรแกรมแมทแลบ
- 2.4 เพื่อศึกษาคุณสมบัติของลวดตัวนำยิ่งยวดโดยใช้แบบจำลองคอมพิวเตอร์
- 2.5 เพื่อใช้เป็นสื่อมัลติมีเดียประกอบการเรียนการสอนเรื่องคุณสมบัติและปรากฏการณ์ของตัวนำยิ่งยวด
- 2.6 เพื่อนำองค์ความรู้ที่ได้จากในทางทฤษฎีไปประยุกต์ใช้งานจริงในทางปฏิบัติต่อไป
- 2.7 เพื่อพัฒนาความร่วมมือในการทำวิจัยระหว่างประเทศ (ไทย-ฝรั่งเศส)
- 2.8 เพื่อสร้างความแข็งแกร่งให้กับระบบการวิจัยของประเทศไทย
- 2.9 เพื่อเตรียมความพร้อมในการก้าวไปสู่การทำงานวิจัยในระดับที่สูงขึ้น

3. ระเบียบวิธีวิจัย

- 3.1 เริ่มจากการศึกษาปัญหา จากนั้นทำการค้นหาข้อมูลจากเอกสารอ้างอิงที่มีอยู่และค้นหาข้อมูลเพิ่มเติมจากเอกสารอ้างอิงอื่นๆ ในฐานข้อมูลสากลผ่านทางอินเทอร์เน็ต ในขั้นตอนนี้จะใช้เวลาประมาณ 3 เดือน
- 3.2 สร้างแบบจำลองของลวดตัวนำยิ่งวดด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรน และแก้ปัญหาทางแม่เหล็กไฟฟ้าที่มีความซับซ้อนด้วยระเบียบวิธีไฟโนต์อลิเมนต์ จากนั้นทำการทดสอบโปรแกรมและแก้ไขข้อผิดพลาดของโปรแกรมจนได้ผลลัพธ์ที่ถูกต้อง ในขั้นตอนนี้จะใช้เวลาประมาณ 6 เดือน
- 3.3 ปรึกษาหารือและขอคำแนะนำจากนักวิจัยที่ปรึกษาและนักวิจัยที่ปรึกษาร่วม จากนั้นนำข้อเสนอแนะมาทำการปรับปรุงแก้ไขโปรแกรม ในขั้นตอนนี้จะใช้เวลาประมาณ 3 เดือน
- 3.4 สร้างหน้าต่างเพื่อแสดงผลกราฟฟิกโดยใช้โปรแกรมแมทแลป ในขั้นตอนนี้จะใช้เวลาประมาณ 4 เดือน
- 3.5 รันโปรแกรมฟอร์แทรนเพื่อเก็บผลลัพธ์ จากนั้นนำผลลัพธ์ที่ได้มาแสดงผลบนหน้าต่างกราฟฟิก เสร็จแล้วจึงทำการวิเคราะห์ผลที่ได้ ในขั้นตอนนี้จะใช้เวลาประมาณ 3 เดือน
- 3.6 ปรึกษาหารือและขอคำแนะนำจากนักวิจัยที่ปรึกษาและนักวิจัยที่ปรึกษาร่วม จากนั้นนำข้อเสนอแนะมาปรับปรุงแก้ไขจนได้ข้อสรุปที่ถูกต้อง รวมทั้งได้องค์ความรู้ใหม่จากการวิจัย ในขั้นตอนนี้จะใช้เวลาประมาณ 2 เดือน
- 3.7 สรุปผลการวิจัยและเขียนรายงานฉบับสมบูรณ์ และ/หรือนำองค์ความรู้ที่ได้ไปประยุกต์ใช้ในงานจริงในทางปฏิบัติต่อไป ในขั้นตอนนี้จะใช้เวลาประมาณ 3 เดือน

4. แผนและผลการดำเนินงานวิจัยตลอดโครงการในแต่ละช่วง 6 เดือน

กิจกรรม	ระยะเวลาดำเนินการ (เดือนที่)						ผลที่ได้ (Output)
	1	2	3	4	5	6	
4.1 ศึกษาปัญหา	✓ ✓						แนวคิดในการแก้ปัญหา
4.2 ค้นหาข้อมูล		✓ ✓	✓ ✓				ข้อมูลสำหรับยังอ้าง
4.3 สร้างแบบจำลอง				✓ ✓	✓ ✓	✓ ✓	แบบจำลองคอมพิวเตอร์

กิจกรรม	ระยะเวลาดำเนินการ (เดือนที่)						ผลที่ได้ (Output)
	7	8	9	10	11	12	
4.4 ทดสอบโปรแกรม	✓ ✓	✓ ✓	✓ ✓				ความถูกต้องของโปรแกรม
4.5 ปรึกษากับนักวิจัยที่ปรึกษา				✓ ✓			คำแนะนำและข้อเสนอแนะ
4.6 ปรับปรุงแก้ไขโปรแกรม					✓ ✓	✓ ✓	ความถูกต้องของโปรแกรม

กิจกรรม	ระยะเวลาดำเนินการ (เดือนที่)						ผลที่ได้ (Output)
	13	14	15	16	17	18	
4.7 สร้างหน้าต่างแสดงผลกราฟฟิก	✓ ✓	✓ ✓	✓ ✓	✓ ✓			ผลกราฟฟิก
4.8 รันโปรแกรมเก็บผลลัพธ์					✓ ✓	✓ ✓	ข้อมูลเชิงตัวเลข

กิจกรรม	ระยะเวลาดำเนินการ (เดือนที่)						ผลที่ได้ (Output)
	19	20	21	22	23	24	
4.9 วิเคราะห์ผลที่ได้	✓ ✓						คำอธิบายผลที่ได้
4.10 ปรึกษากับนักวิจัยที่ปรึกษา		✓ ✓					คำแนะนำและข้อเสนอแนะ
4.11 สรุปองค์ความรู้ใหม่ที่ได้			✓ ✓				องค์ความรู้ใหม่
4.12 เขียนรายงานสรุปผล				✓ ✓	✓ ✓		รายงานฉบับสมบูรณ์
4.13 ประยุกต์ใช้องค์ความรู้ที่ได้						✓ ✗	การประยุกต์ใช้งานจริง

หมายเหตุ เครื่องหมาย ✓ ในบรรทัดบนหมายถึงแผนการดำเนินงาน ส่วนบรรทัดล่างหมายถึงผลการดำเนินงาน สำหรับการประยุกต์ใช้องค์ความรู้ที่ได้จะดำเนินการต่อไปในอนาคต

5. ผลงาน/หัวข้อเรื่องที่ตีพิมพ์ในวารสารวิชาการระดับนานาชาติ

ชื่อเรื่องที่ตีพิมพ์ : *Modeling of Several Concentric Layers of Superconducting Filaments*

ชื่อวารสารที่ตีพิมพ์ : *IEEE Transactions on Magnetics, Volume 50, Issue 2, February 2014*

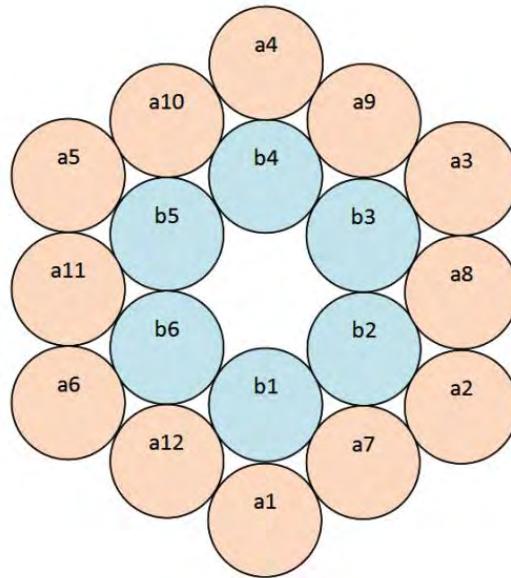
สารบัญ

หัวข้อ	หน้า
บทคัดย่อ	ก
Abstract	ก
Executive Summary	ด
สารบัญ	ช
สารบัญรูป	ช
งานวิจัยที่ 1	1
วัตถุประสงค์งานวิจัย	1
ระเบียบวิธีวิจัย	1
ผลการวิจัย	4
สรุปผลและอภิปรายผล	6
งานวิจัยที่ 2	7
วัตถุประสงค์งานวิจัย	7
ระเบียบวิธีวิจัย	7
ผลการวิจัย	11
สรุปผลและอภิปรายผล	24
งานวิจัยที่ 3	25
วัตถุประสงค์งานวิจัย	25
ระเบียบวิธีวิจัย	25
ผลการวิจัย	27
สรุปผลและอภิปรายผล	30
งานวิจัยที่ 4	31
วัตถุประสงค์งานวิจัย	31
ระเบียบวิธีวิจัย	31
ผลการวิจัย	34
สรุปผลและอภิปรายผล	39
บรรณานุกรม	40
ภาคผนวก	42

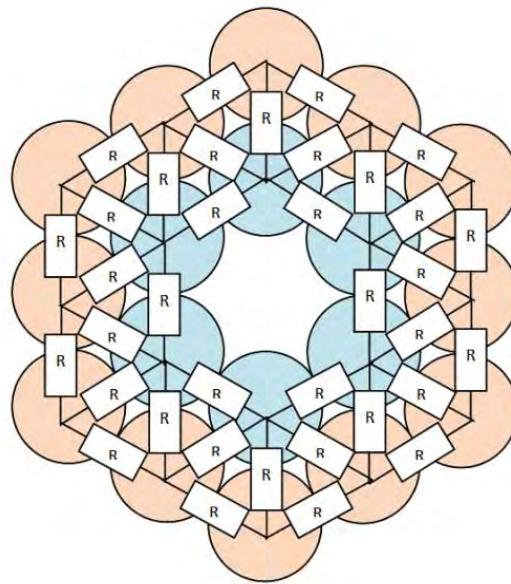
สารบัญ

หัวข้อ	หน้า
1. บัญชีของลวดตัวนำยิ่งยาดที่ช้อนกันอยู่สองชั้น	1
2. เครื่อข่ายของตัวต้านทานระหว่างลวดตัวนำยิ่งยาด	2
3. การจ่ายไฟเลี้ยงให้กับลวดตัวนำยิ่งยาดที่อยู่ในชั้นนอก (ก) และชั้นใน (ข)	4
4. การแบ่งโดเมนของปัญหาอย่างหยาบ (ก) และอย่างละเอียด (ข) โดยโปรแกรม Gmsh	5
5. แบบจำลองของลวดตัวนำยิ่งยาดที่ช้อนกันอยู่หลายชั้น (ซ้าย) และแบบจำลองที่ใช้ในการทดสอบความถูกต้องของโปรแกรมที่พัฒนาขึ้น (ขวา)	7
6. แบบจำลองสถานะวิกฤตของ Bean	9
7. โดเมนของปัญหาแบบ 2D ของลวดตัวนำยิ่งยาดเรียงช้อนกันหลายชั้น	13
8. ภาพขยายของโดเมนของปัญหาตรงบริเวณที่มีเส้นลวดตัวนำยิ่งยาดผั่งตัวอยู่	13
9. โดเมนที่พิจารณาของลวดตัวนำยิ่งยาดเรียงช้อนกันหลายชั้น	16
10. การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหา	19
11. การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนที่พิจารณา	21
12. การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนที่พิจารณา	23
13. ภาพขยายของเส้นลวดตัวนำยิ่งยาดที่เรียงช้อนกันเป็นชั้นๆ ในสายไฟจริง	24
14. การรวมเข้าเป็นเนื้อเดียวกันของลวดตัวนำยิ่งยาดหลายเส้น	25
15. เปรียบเทียบวงอิสเทอร์เชิฟของความเป็นแม่เหล็กรวมในกรณีที่เรียงช้อนกัน 1-4 ชั้น	28
16. เปรียบเทียบผลลัพธ์เชิงตัวเลขจาก FEM กับผลลัพธ์เชิงวิเคราะห์จากทั้งสองวิธี	29
17. กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นแม่เหล็กรวมสูงสุดกับค่าของ OL^2 สำหรับกรณีที่ลวดตัวนำยิ่งยาดหลายเส้นเรียงช้อนกัน 1-4 ชั้น	30
18. ผังงานของโปรแกรมสำหรับหาค่าการสูญเสียกระแสสัมบูรณ์และค่าแอดมิตแทนซ์	32
19. การจัดเรียงข้อมูลในไฟล์ข้อมูล	33
20. ผลลัพธ์ที่ได้จากการรันโปรแกรมบนแมทแลปสำหรับกรณีทดสอบ (สองชั้น)	35
21. การกระจายของสนามไฟฟ้าในโดเมนของปัญหาที่ศึกษาสำหรับกรณีทดสอบ	36
22. การกระจายของกระแสไฟฟ้าที่ให้ในเมทริกซ์ตัวนำสำหรับกรณีทดสอบ	38

งานวิจัยที่ 1



วัตถุประสงค์งานวิจัย


- เพื่อศึกษาการเชื่อมต่อทางแม่เหล็กไฟฟ้าของลวดตัวนำยิ่ง磁场หลายเส้น
- เพื่อสร้างแบบจำลองของลวดตัวนำยิ่ง磁场ด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรน
- เพื่อแก้ปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติด้วยระเบียบวิธีไฟโนต์อลิเมนต์
- เพื่อนำผลลัพธ์ที่ได้มาแสดงผลกราฟิกโดยใช้โปรแกรมแมทแลป
- เพื่อนำองค์ความรู้ที่ได้ไปประยุกต์ใช้ในงานวิจัยขั้นต่อไป

ระเบียบวิธีวิจัย

ปัญหาที่ศึกษาเป็นปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติ (2D) ของลวดตัวนำยิ่ง磁场 สิบแปดเส้นที่ซ้อนกันอยู่สองชั้น (2 Layers) และผังอยู่ในตัวนำทางไฟฟ้า โดยแบ่งเป็นชั้นในหกเส้นและชั้นนอกสิบสองเส้นดังแสดงในรูปที่ 1-1 ในที่นี่สมมติให้ตัวนำทางไฟฟ้าที่ล้อมรอบเส้นลวดตัวนำยิ่ง磁场เป็นอากาศ และสมมติให้กระแสไฟฟ้าที่วิ่งจากลวดตัวนำเส้นหนึ่งไปยังอีกเส้นหนึ่งผ่านตัวต้านทานซึ่งมีค่าความต้านทานเป็น R ดังนั้นจะได้เครื่องข่ายของตัวต้านทานระหว่างลวดตัวนำยิ่ง磁场ดังแสดงในรูปที่ 1-2

รูปที่ 1-1 ปัญหาของลวดตัวนำยิ่ง磁场ที่ซ้อนกันอยู่สองชั้น

รูปที่ 1-2 เครื่อข่ายของตัวต้านทานระหว่างลวดตัวนำยิ่งยวด

ในการณ์ที่พิจารณาพร้อมกันทั้งหมดสิบแปดเส้น จากคุณสมบัติของตัวนำยิ่งยวดและการประยุกต์ใช้กฎของโอล์มในการแก้ปัญหาดังกล่าว จะได้ระบบสมการเชิงเส้นซึ่งสามารถเขียนอยู่ในรูปของเมทริกซ์ได้ดังสมการที่ (1-1)

$$I = YE \quad (1-1)$$

โดยที่ **I** คือวงแตอร์ของกระแสไฟฟ้าที่ไหลในลวดตัวนำยิ่งยวดจาก a_1 ถึง a_{12} และ b_1 ถึง b_6 ตามลำดับ

E คือวงแตอร์ของสนามไฟฟ้าในลวดตัวนำยิ่งยวดจาก a_1 ถึง a_{12} และ b_1 ถึง b_6 ตามลำดับ

Y คือเมทริกซ์ของสมประสิทธิ์ขนาด 18×18 ซึ่งคูณด้วยแฟกเตอร์ $p/2R$

p คือระยะทางหนึ่งรอบของการบิดเกลียวของลวดตัวนำยิ่งยวด

R คือค่าความต้านทานระหว่างลวดตัวนำยิ่งยวดสองเส้น (โดยกำหนดให้มีค่าเท่ากันทั้งหมด)

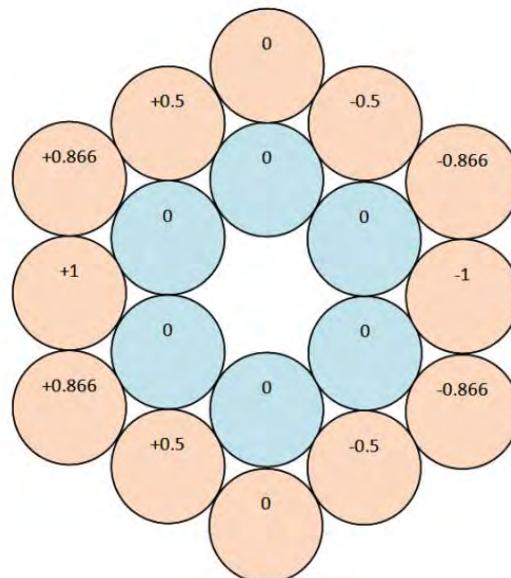
ในการณ์ที่แยกพิจารณาทีละชั้น (Layer) จากการประยุกต์ใช้ทฤษฎีการทับซ้อน (Superposition) ในการแก้ปัญหาดังกล่าว โดยในขั้นตอนแรกจะจ่ายไฟเลี้ยงให้กับลวดตัวนำยิ่งยวดที่อยู่ในชั้นนอกเท่านั้นดังแสดงในรูปที่ 1-3 (ก) จะได้ระบบสมการเชิงเส้นซึ่งสามารถเขียนอยู่ในรูปของเมทริกซ์ได้ดังสมการที่ (1-2)

$$Y_1 = I_1 / V_a \quad (1-2)$$

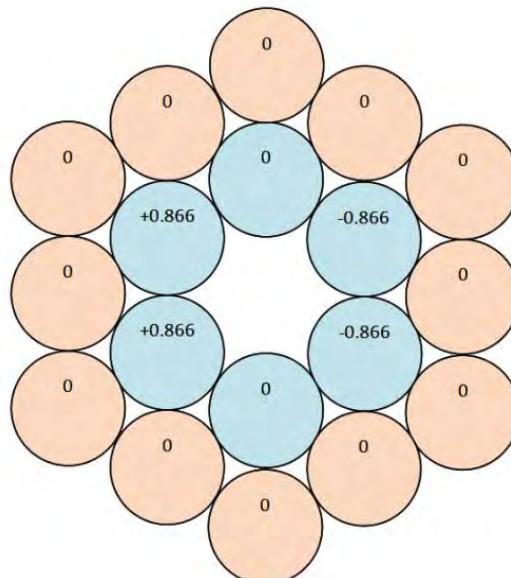
โดยที่ Y_1 คือเวกเตอร์ของสัมประสิทธิ์ ซึ่งคุณด้วยแฟกเตอร์ $1/R$
 I_1 คือเวกเตอร์ของกระแสที่ไหลในลวดตัวนำยิ่ง磁场จาก a_1 ถึง a_{12} และ b_1 ถึง b_6
 ตามลำดับ (องค์ประกอบที่ 1)
 V_a คือแรงดันไฟฟ้าที่จ่ายให้กับลวดตัวนำยิ่ง磁场ที่อยู่ในชั้นนอก (กำหนดให้มีค่าคงที่)

ส่วนในชั้นตอนที่สองจะจ่ายไฟเลี้ยงให้กับลวดตัวนำยิ่ง磁场ที่อยู่ในชั้นในเท่านั้นดังแสดงในรูปที่ 1-3 (ข) จะได้ระบบสมการเชิงเส้นซึ่งสามารถเขียนอยู่ในรูปของเมทริกซ์ได้ดังสมการที่ (1-3)

$$Y_2 = I_2 / V_b \quad (1-3)$$


โดยที่ Y_2 คือเวกเตอร์ของสัมประสิทธิ์ ซึ่งคุณด้วยแฟกเตอร์ $1/R$
 I_2 คือเวกเตอร์ของกระแสที่ไหลในลวดตัวนำยิ่ง磁场จาก a_1 ถึง a_{12} และ b_1 ถึง b_6
 ตามลำดับ (องค์ประกอบที่ 2)
 V_b คือแรงดันไฟฟ้าที่จ่ายให้กับลวดตัวนำยิ่ง磁场ที่อยู่ในชั้นใน (กำหนดให้มีค่าคงที่)

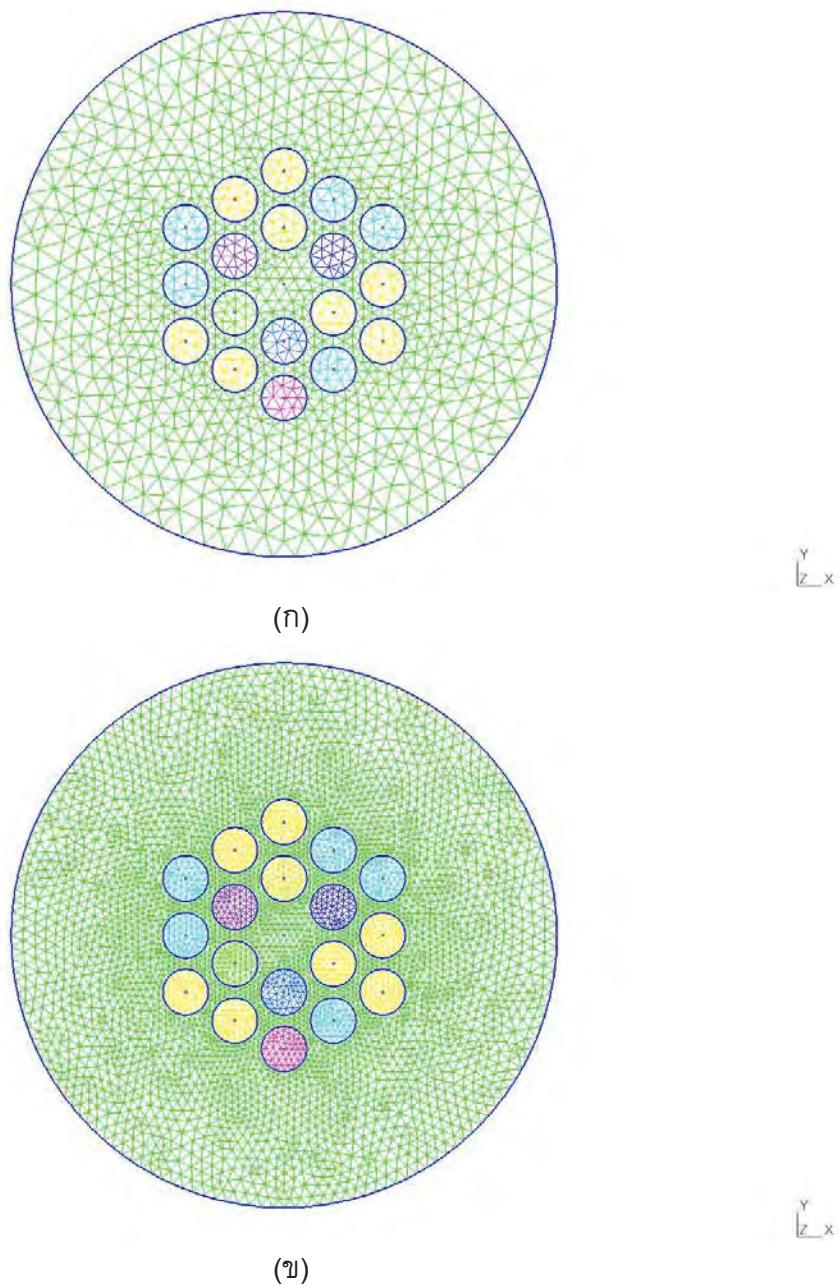
ในชั้นตอนสุดท้าย จากสมการที่ (1-2) และ (1-3) จะได้ระบบสมการเชิงเส้นของกระแสไฟฟาร่วมซึ่งสามารถเขียนอยู่ในรูปของเมทริกซ์ได้ดังสมการที่ (1-4)


$$I = I_1 + I_2 = YV \quad (1-4)$$

โดยที่ I คือเวกเตอร์ของกระแสไฟฟ้าที่ไหลในลวดตัวนำยิ่ง磁场จาก a_1 ถึง a_{12} และ b_1 ถึง b_6 ตามลำดับ
 V คือเวกเตอร์ของแรงดันไฟฟ้าที่จ่ายให้กับลวดตัวนำยิ่ง磁场ที่อยู่ในชั้นนอกและชั้นใน ตามลำดับ
 Y คือเมทริกซ์ของสัมประสิทธิ์ขนาด 18×2 ซึ่งคุณด้วยแฟกเตอร์ $1/R$

นอกจากนี้ยังได้ทำการศึกษาการใช้โปรแกรม Gmsh ซึ่งเป็นโปรแกรมสำหรับรูปที่ใช้ในการแก้ปัญหาทางแม่เหล็กไฟฟ้าแบบสามมิติ (3D) และเป็นซอฟต์แวร์โอเพนซอร์สที่พัฒนาขึ้นโดยทีมวิจัยของมหาวิทยาลัย Liege ในประเทศเบลเยียม เพื่อนำมาใช้ในการสร้างลักษณะรูปร่าง (Geometry) หรือโอดเมนของปัญหาที่ต้องการศึกษา โปรแกรม Gmsh ใช้ระเบียบวิธีไฟนิตอลิเมนต์ (Finite Element Method) ในการวิเคราะห์เชิงตัวเลข (Numerical Analysis) เช่นเดียวกันกับโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรนที่มีอยู่แล้ว (สามารถดูรายละเอียดของโปรแกรม Gmsh เพิ่มเติมได้ในเอกสารอ้างอิงที่ [1])

(η)



(η)

รูปที่ 1-3 การจ่ายไฟเลี้ยงให้กับลดตัวนำยิ่งวัดที่อยู่ในชั้นนอก (η) และชั้นใน (η)

ผลการวิจัย

รูปที่ 1-4 แสดงการสร้างโดเมนของปัญหาที่ต้องการศึกษาแบบ 2D ดังรูปที่ 1-1 โดยใช้โปรแกรม Gmsh และทำการแบ่งโดเมนของปัญหาที่พิจารณาออกเป็นชิ้นส่วนย่อยๆ เรียกว่า อิลิเมนต์ (Element) ซึ่งในกรณีนี้จะใช้อิลิเมนต์รูปสามเหลี่ยมเนื่องจากให้ผลลัพธ์ถูกต้องมากที่สุด เมื่อเทียบกับอิลิเมนต์รูปอื่นๆ การแบ่งโดเมนของปัญหาออกเป็นอิลิเมนต์ๆ อาจเรียกอีกอย่างหนึ่งว่า การสร้างตาข่าย (Mesh Generation)

รูปที่ 1-4 การแบ่งโดเมนของปัญหาอย่างหยาบ (g) และอย่างละเอียด (h) โดยโปรแกรม Gmsh

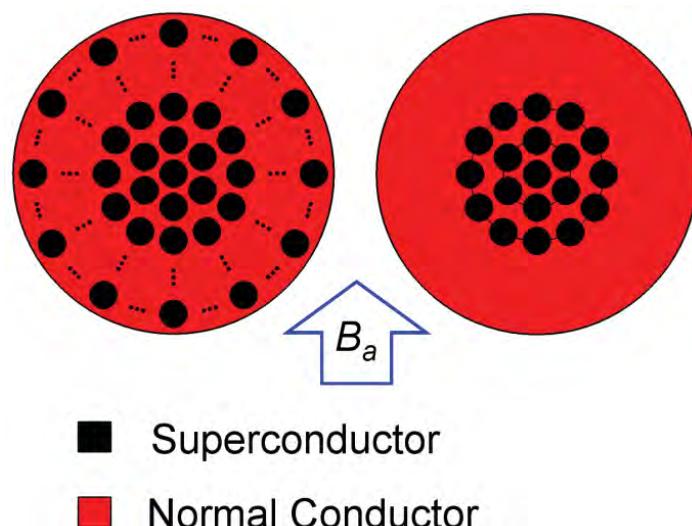
นอกจากนี้ความถูกต้องแม่นยำของผลลัพธ์ที่ได้ยังขึ้นอยู่กับความละเอียดในการแบ่งโดเมนของปัญหาอีกด้วย ยิ่งแบ่งละเอียดมากเท่าไรความถูกต้องแม่นยำของผลลัพธ์ก็มีมากขึ้นเท่านั้น แต่ในทางกลับกันก็จำเป็นที่จะต้องใช้เวลาในการประมวลผลเพื่อให้ได้ผลลัพธ์เพิ่มมากขึ้นด้วย เมื่อสร้างโดเมนของปัญหาเสร็จแล้วก็สามารถใช้โปรแกรม Gmsh ในการคำนวณหาค่าต่างๆ เช่น ค่าการกระจายของความหนาแน่นของกระแสไฟฟ้าในลวดตัวนำยิ่งวดทั้งสิบแปดเส้น เป็นต้น และแสดงเป็นผลกราฟิกได้อีกด้วย ทั้งนี้เพื่อนำผลลัพธ์ที่ได้ไปใช้ในการศึกษาคุณสมบัติของลวดตัวนำยิ่งวดต่อไป

สรุปผลและอภิปรายผล

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาแบบจำลองคอมพิวเตอร์ของลวดตัวนำยิงยาวด้วยแบบเส้นที่ซ้อนกันอยู่สองชั้นด้วยโปรแกรม Gmsh และนำผลลัพธ์ที่ได้จากการคำนวณโดยใช้ระเบียบวิธีไฟน์ตอิลิเมนต์มาแสดงผลกราฟิกเพื่อใช้ศึกษาคุณสมบัติของลวดตัวนำยิงยาวต่อไป

การดำเนินงานวิจัยในปีแรกนี้มุ่งเน้นไปที่แนวคิดและวิธีการในการแก้ปัญหา รวมทั้งการพัฒนาแบบจำลองคอมพิวเตอร์เพื่อนำไปใช้ในการทำงานวิจัยในปีต่อไป ซึ่งสามารถสรุปขั้นตอนหลักๆ ได้เป็นสามขั้นตอนดังนี้ ในขั้นตอนแรก ได้ทำการศึกษาปัญหาและทำการค้นหาข้อมูลจากเอกสารอ้างอิงที่มีอยู่เดิม รวมทั้งได้ทำการค้นหาข้อมูลเพิ่มเติมจากเอกสารอ้างอิงอื่นๆ ในฐานข้อมูลเอกสารผ่านทางอินเทอร์เน็ต ซึ่งใช้เวลาในขั้นตอนนี้ประมาณ 3 เดือน ในขั้นตอนที่สอง ได้สร้างแบบจำลองของลวดตัวนำยิงยาวด้วยแบบเส้นที่ซ้อนกันอยู่สองชั้นด้วยโปรแกรม Gmsh เพื่อนำมาใช้ในการแก้ปัญหาด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์tranที่ปรับปรุงจากโปรแกรมเดิมที่มีอยู่ จากนั้นก็ทำการทดสอบโปรแกรมและแก้ไขข้อผิดพลาดของโปรแกรมซึ่งต้องใช้เวลาในขั้นตอนนี้ประมาณ 6 เดือน และในขั้นตอนสุดท้าย ได้ทำการปรับปรุงแก้ไขโปรแกรมเพิ่มเติมตามคำแนะนำของนักวิจัยที่ปรึกษาและนักวิจัยที่ปรึกษาร่วมงานได้ผลลัพธ์ที่ถูกต้อง โดยใช้เวลาในขั้นตอนนี้ประมาณ 3 เดือน รวมระยะเวลาดำเนินการวิจัยประมาณ 12 เดือนหรือ 1 ปี

ผลงานวิจัยที่ได้รับจากการวิจัยนี้คือแบบจำลองคอมพิวเตอร์ของลวดตัวนำยิงยาวด้วยแบบเส้นที่ซ้อนกันอยู่สองชั้นโดยใช้สมการความสัมพันธ์ทางคณิตศาสตร์ของตัวแปรหรือพารามิเตอร์ต่างๆ และคุณสมบัติทางไฟฟ้าของลวดตัวนำยิงยาว ซึ่งสามารถที่จะใช้แบบจำลองดังกล่าวในการคำนวณหาค่าต่างๆ ที่ต้องการได้ เช่น ค่าความหนาแน่นของกระแสไฟฟ้าในลวดตัวนำยิงยาว ค่าความหนาแน่นของสนามไฟฟ้าในลวดตัวนำยิงยาว ค่าความหนาแน่นของสนามแม่เหล็กในลวดตัวนำยิงยาว และค่าความเป็นแม่เหล็กของลวดตัวนำยิงยาว เป็นต้น


งานวิจัยที่ 2

วัตถุประสงค์งานวิจัย

- เพื่อศึกษาการเชื่อมต่อทางแม่เหล็กไฟฟ้าของลวดตัวนำยิ่ง磁场หลายเส้น
- เพื่อสร้างแบบจำลองของลวดตัวนำยิ่ง磁场ด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรน
- เพื่อแก้ปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติด้วยระเบียบวิธีไฟโนต์อิลิเมนต์
- เพื่อนำผลลัพธ์ที่ได้มาแสดงผลกราฟิกโดยใช้โปรแกรมแมทแลป
- เพื่อศึกษาคุณสมบัติของลวดตัวนำยิ่ง磁场โดยใช้แบบจำลองคอมพิวเตอร์
- เพื่อนำองค์ความรู้ที่ได้ไปประยุกต์ใช้งานจริงต่อไป

ระเบียบวิธีวิจัย

ปัญหาที่ศึกษาเป็นปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติ (2D) ของลวดตัวนำยิ่ง磁场จำนวนหลายเส้นที่มีความยาว L และเรียงซ้อนกันอยู่หลายชั้น ดังแสดงในรูปที่ 2-1 (ซ้าย) โดยสมมติให้ตัวนำทางไฟฟ้าที่ล้อมรอบเส้นลวดตัวนำยิ่ง磁场เป็นตัวนำทางไฟฟ้าปกติ (Normal Conductor) ลวดตัวนำยิ่ง磁场ในแต่ละชั้นจะจัดเรียงอยู่บนวงกลมเดียวกัน สำหรับวงกลมชั้นในสุด (1^{st} layer) และวงกลมชั้นนอกสุด (n^{th} layer) จะประกอบด้วยลวดตัวนำยิ่ง磁场 6 เส้นและ $6 \times n$ เส้นตามลำดับ รวมกับลวดตัวนำยิ่ง磁场อีกหนึ่งเส้นตรงบริเวณศูนย์กลาง สำหรับแบบจำลองที่ใช้ในการทดสอบความถูกต้องของโปรแกรมที่พัฒนาขึ้นจะประกอบด้วยลวดตัวนำยิ่ง磁场 19 เส้นเรียงซ้อนกันอยู่สองชั้นดังแสดงในรูปที่ 2-1 (ขวา)

รูปที่ 2-1 แบบจำลองของลวดตัวนำยิ่ง磁场ที่ซ้อนกันอยู่หลายชั้น (ซ้าย) และแบบจำลองที่ใช้ในการทดสอบความถูกต้องของโปรแกรมที่พัฒนาขึ้น (ขวา)

สนามแม่เหล็กภายนอก (B_a) ถูกใส่เข้าไปในพิศทางที่ตั้งฉากกับแกนของลวดตัวนำยิ่งยาด (แกน z) และสมมติให้ความหนาแน่นของกระแสไฟฟ้าขึ้นอยู่กับเวลา (t) และค่าพิกัดในระบบ 2D (x และ y) นอกจากนี้เพื่อให้การแก้ปัญหาง่ายขึ้น จะสมมติให้แรงดันไฟฟ้าและกระแสไฟฟ้าอยู่ในรูปของฟังก์ชันไซน์หรือโคไซน์ (\sin หรือ \cos) เท่านั้น สำหรับชั้นที่ i (i^{th} layer) จะได้ว่า

$$[V_{ik} \quad I_{ik}]^t = [V_i \quad I_i]^t \times \sin[(k-1)2\pi / n_i] \quad (2-1)$$

โดยที่ $k = 1, 2, 3, \dots, n_i$ และ $n_i = 6 \times i$

เริ่มต้นจากทฤษฎีการทับซ้อน (Superposition) ในขั้นตอนแรกทำการจ่ายไฟเลี้ยงให้กับเส้นลวดตัวนำยิ่งยาดที่อยู่ในชั้นที่ i เท่านั้นด้วยแรงดัน V_i การสูญเสียกระแสสัมบ (AC Losses) ในตัวนำปากติ P_i สามารถคำนวณหาได้จากสมการที่ (2-2)

$$P_i = Y_i V_i^2 \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi / n_i] \quad (2-2)$$

โดยที่ Y_i คือ $Y_i = I/V_i$

จากนั้นในขั้นตอนต่อมาทำการจ่ายไฟเลี้ยงให้กับเส้นลวดตัวนำยิ่งยาดที่อยู่ในชั้นที่ i และชั้นที่ j ซึ่งอยู่ติดกันด้วยแรงดัน V_i และ V_j การสูญเสียกระแสสัมบในตัวนำปากติ P_{ij} (ซึ่งเท่ากับ P_j) สามารถคำนวณหาได้จากสมการที่ (2-3)

$$P_{ij} = (Y_i V_i^2 + Y_{ij} V_i V_j) \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi / n_i] + (Y_{ij} V_i V_j + Y_j V_j^2) \sum_{k=1}^{n_j} \sin^2[(k-1)2\pi / n_j] \quad (2-3)$$

นอกจากนี้ P_i และ P_{ij} สามารถคำนวณหาค่าได้จากสูตรที่ใช้ในการแก้ปัญหาอาร์โนนิกส์แบบ 2D โดยกำหนดให้ $V_i = V_j = 1$ โวลต์ (ทำนองเดียวกันกับที่แสดงไว้ในเอกสารอ้างอิงที่ [2]) ซึ่งจะอธิบายรายละเอียดอีกทีในภายหลัง (ดูงานวิจัยที่ 4) ดังนั้นจากสมการที่ (2-2) และ (2-3) ทำให้สามารถหาค่าของแอดมิตเตนซ์ Y_i และ Y_{ij} ได้ สำหรับกรณีทดสอบ (สองชั้น) จะได้ว่า

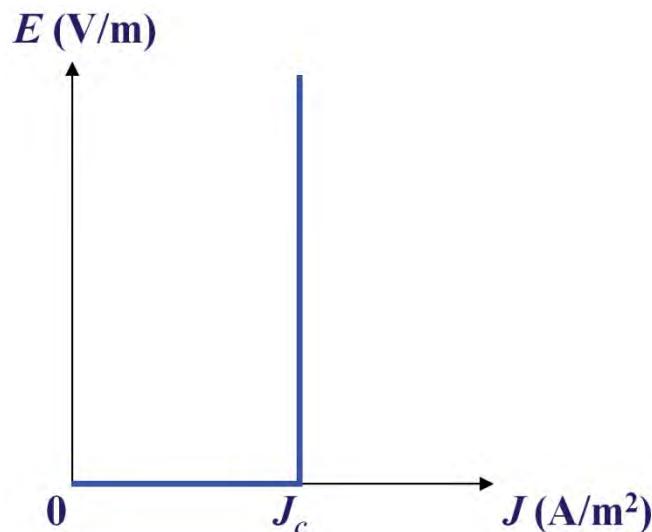
$$Y_1 = \frac{P_1}{3V_1^2}, Y_2 = \frac{P_2}{6V_2^2}, Y_{12} = \frac{P_{12} - 3Y_1 V_1^2 - 6Y_2 V_2^2}{9V_1 V_2} \quad (2-4)$$

จะสังเกตได้ว่าสำหรับลวดตัวนำยิ่งยาดที่ช้อนกันอยู่ n ชั้น จำนวนครั้งที่ต้องใช้ในการคำนวณหาค่าของแอดมิตเตนซ์คือ $n \times (n+1)/2$ ครั้ง และจำนวนทั้งหมดของลวดตัวนำยิ่งยาดคือ $N+1$ เส้น โดยที่

$$N = 6 \times \sum_{i=1}^n i \quad (2-5)$$

จากการใช้กฎของโอล์มจะได้ความสัมพันธ์ระหว่างกระแสที่ไหลในลวดตัวนำยิ่ง磁场กับแรงดัน ซึ่งสามารถเขียนเป็นสมการในรูปของเมทริกซ์ได้ดังนี้

$$I = \begin{bmatrix} I_{1k} \\ I_{2k} \\ \vdots \\ I_{nk} \end{bmatrix} = C \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = C[Y] \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = C[Y]V \quad (2-6)$$


$$C = \begin{bmatrix} C_{1k} & 0 & \cdots & 0 \\ 0 & C_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{nk} \end{bmatrix}, [Y] = \begin{bmatrix} Y_1 & Y_{12} & \cdots & Y_{1n} \\ Y_{12} & Y_2 & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1n} & Y_{2n} & \cdots & Y_n \end{bmatrix} \quad (2-7)$$

โดยที่ C_{ik} คือค่าของพังก์ชันไซน์ สำหรับลวดตัวนำยิ่ง磁场ที่อยู่ตรงบริเวณศูนย์กลาง เนื่องจากความสมมาตรของปัญหาจะได้ $V_0 = 0$ ซึ่งส่งผลให้ $I_0 = 0$ ด้วย จะสังเกตได้ว่าเมทริกซ์จัตุรัส $[Y]$ เป็นเมทริกซ์สมมาตร ขนาดของเมทริกซ์ C และ $[Y]$ คือ $N \times n$ และ $n \times n$ ตามลำดับ

กฎความสัมพันธ์ระหว่างความหนาแน่นของกระแสและสนามไฟฟ้าหมายๆ รูปแบบได้ถูกนำเสนอไว้ในเอกสารอ้างอิงที่ [3] ถึง [6] เพื่ออธิบายคุณสมบัติทางไฟฟ้าของตัวนำยิ่ง磁场 ในกรณีนี้จะใช้แบบจำลองสถานะวิกฤตของ Bean ดังแสดงในรูปที่ 2-2 (ดูรายละเอียดเพิ่มเติมได้ในเอกสารอ้างอิงที่ [7]) ซึ่งสามารถเขียนเป็นสมการทางคณิตศาสตร์ได้ดังนี้

$$\text{Bean Model} \quad \begin{cases} 0 \leq J \leq J_c & ; E = 0 \\ J = J_c & ; E \neq 0 \end{cases} \quad (2-8)$$

โดยที่ J_c คือค่าความหนาแน่นของกระแสวิกฤต

รูปที่ 2-2 แบบจำลองสถานะวิกฤตของ Bean

ผลลัพธ์ของปัญหาที่ศึกษาคือค่าสนามไฟฟ้า ซึ่งสามารถหาได้จากโปรแกรมที่พัฒนาขึ้น โดยใช้ระเบียบวิธีไฟโนร์อิลเมนต์ กระแสที่ให้ในลวดตัวนำยิ่งยาดที่การวนซ้ำ p สามารถหาได้จากสมการที่ (2-9)

$$I^p = ([A_{ev}]^t E^p + [A_v] E_0^p) \times \Delta t + I^{p-1} \quad (2-9)$$

โดยที่ $[A_{ev}]$ และ $[A_v]$ ได้นิยามไว้ในเอกสารอ้างอิงที่ [2] ส่วน E คือเวกเตอร์ของสนามไฟฟ้า และ E_0 มีนิยามดังนี้

$$E_0 = -CV / L \quad (2-10)$$

การแก้ปัญหาวิธีที่หนึ่ง เมื่อแทนสมการที่ (2-6) และ (2-10) ลงในสมการที่ (2-9) จะได้สมการดังนี้

$$V^p = [A]^{-1} B \quad (2-11)$$

โดยที่ $[A]$, B และ D (ซึ่งมีขนาด $n \times n$, $n \times 1$, และ $N \times n$ ตามลำดับ) มีนิยามดังนี้

$$[A] = D^t D, B = D^t ([A_{ev}]^t E^p \times \Delta t + I^{p-1}) \quad (2-12)$$

$$D = C[Y] + [A_v] C \times \Delta t / L \quad (2-13)$$

เมื่อได้ค่า V ก็จะสามารถหาค่า E_0 และค่ากระแส / ได้จากสมการที่ (2-10) และ (2-9) ตามลำดับ ซึ่งสุดท้ายแล้วจะสามารถแก้ปัญหาที่ศึกษาได้ด้วยสมการเมทริกซ์ดังนี้

$$[M] \partial_t J + [A_e] E + [A_{ev}] E_0 = F \quad (2-14)$$

โดยที่ $[M]$, $[A_e]$, J และ F ได้นิยามไว้ในเอกสารอ้างอิงที่ [2]

การแก้ปัญหาวิธีที่สอง โดยการเปลี่ยนตัวแปร ดังนั้นจากสมการที่ (2-10) จะได้

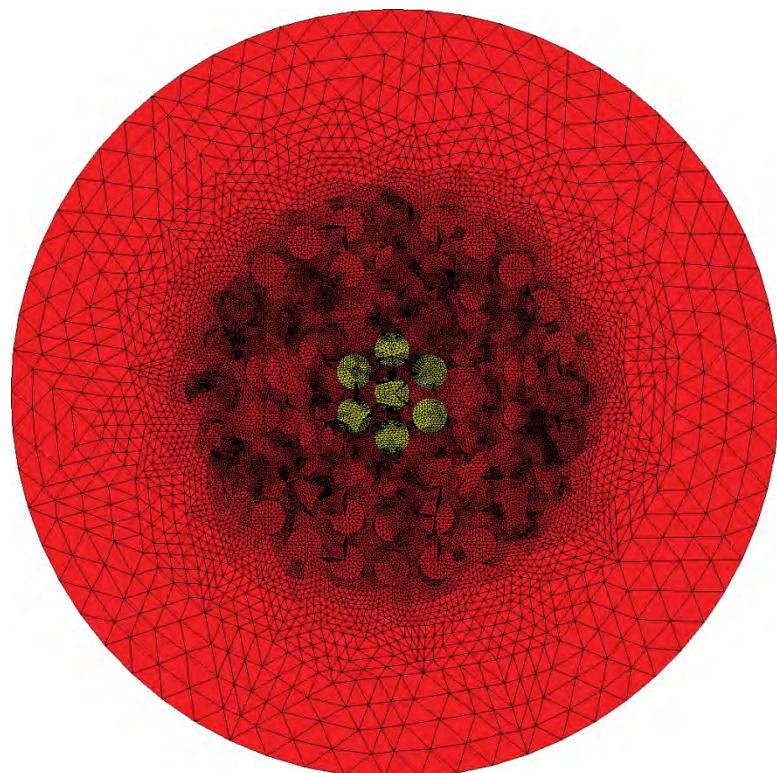
$$V = -[C^t C]^{-1} C^t E_0 \times L \quad (2-15)$$

จากนั้นเมื่อแทนสมการที่ (2-15) ลงในสมการที่ (2-6) เสร็จแล้วแทนลงในสมการที่ (2-9) จะได้สมการดังนี้

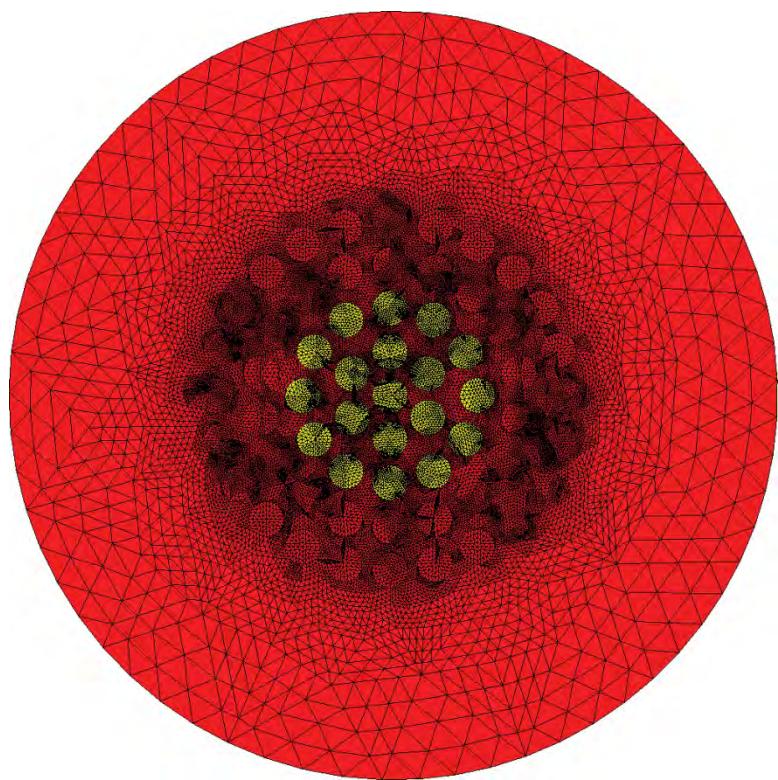
$$E_0^p = [A]^{-1} B \quad (2-16)$$

โดยที่ $[A]$ และ B (ซึ่งมีขนาด $N \times N$ และ $N \times 1$ ตามลำดับ) มีนิยามดังนี้

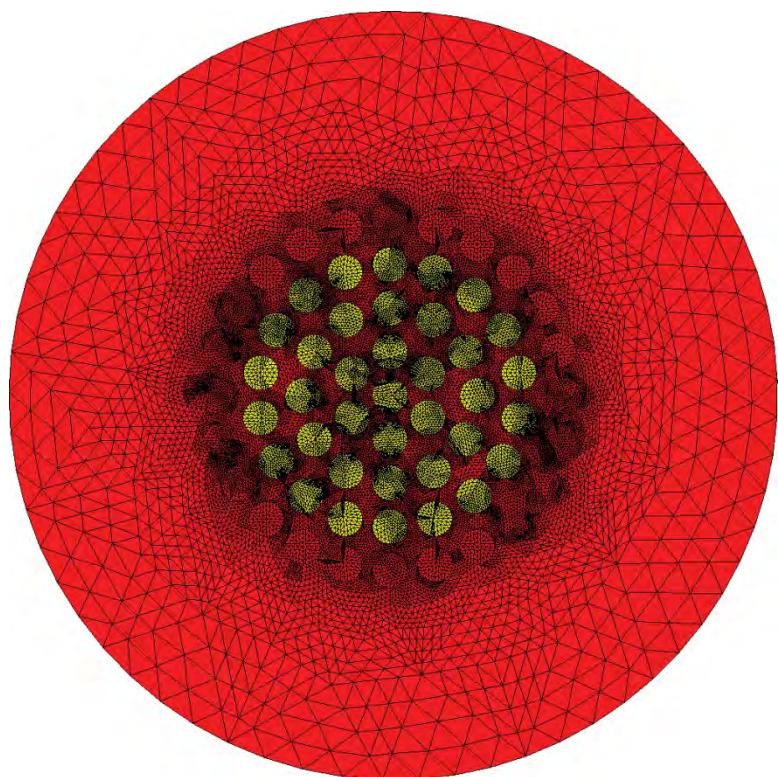
$$[A] = -C[Y][C^t C]^{-1} C^t \times L - [A_v] \times \Delta t \quad (2-17)$$

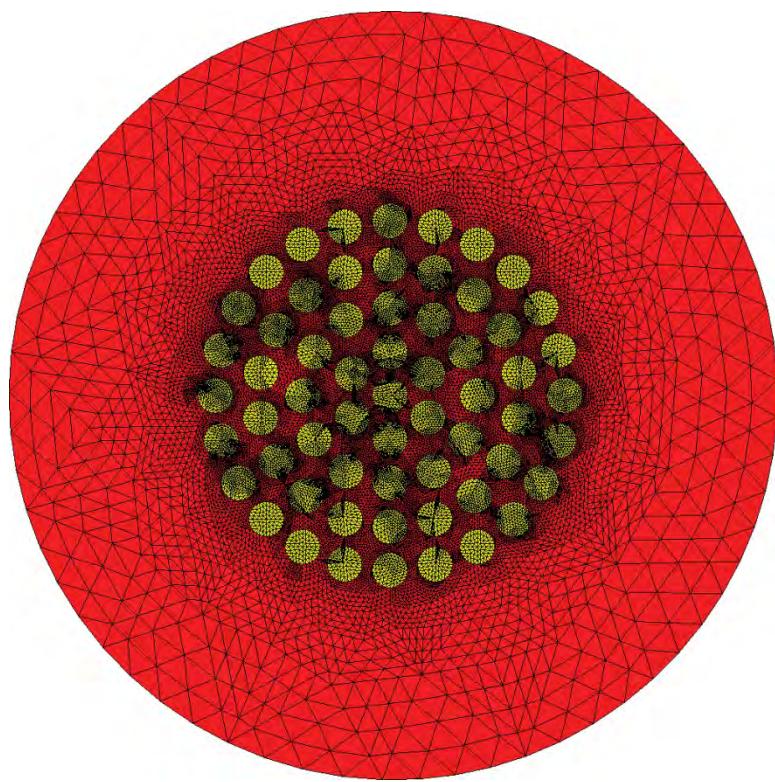

$$B = [A_{ev}]^t E^p \times \Delta t + I^{p-1} \quad (2-18)$$

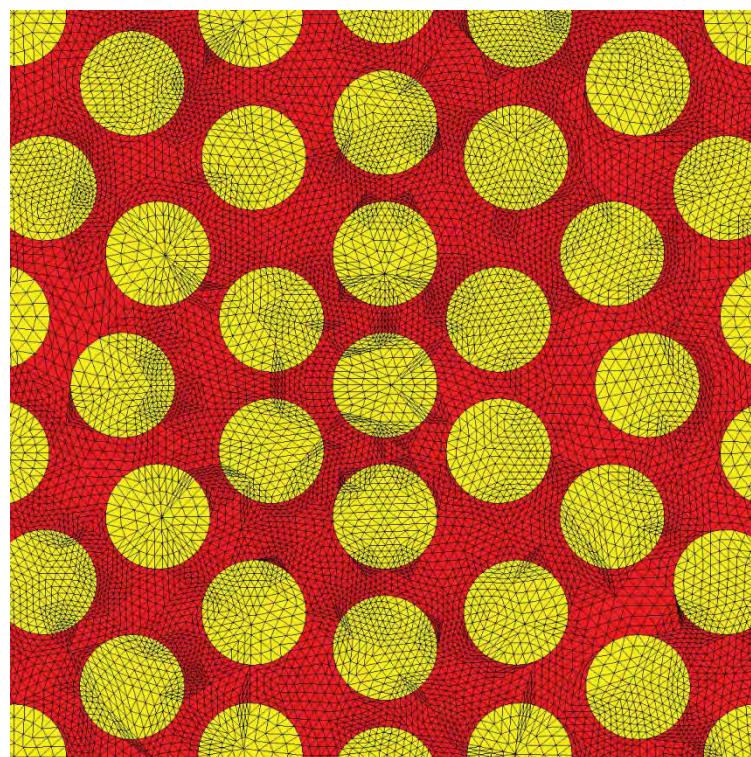
เมื่อได้ค่า E_0 ก็จะสามารถหาค่ากระแทก / ได้จากการที่ (2-9) และสุดท้ายจะสามารถแก้ปัญหาได้ด้วยสมการที่ (2-14) เช่นเดียวกับวิธีแรก


ผลการวิจัย

การแก้ปัญหาเพื่อหาผลลัพธ์ด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรนที่พัฒนาขึ้นจากโปรแกรมเดิมโดยใช้ระเบียบวิธีไฟน์เติร์นอลิเมนต์นั้น จำเป็นที่จะต้องใช้แบบจำลองทางเรขาคณิตของปัญหาดังที่แสดงในรูปที่ 2-1 ซึ่งสามารถสร้างขึ้นโดยใช้กล่องเครื่องมือ PDE (PDE Toolbox) ในโปรแกรมแมทแลป (Matlab) โดยเริ่มต้นจากการสร้างรูปร่างของปัญหาแบบ 2D การสร้างพื้นผิวและกำหนดคุณสมบัติของสารว่าเป็นตัวนำปกติหรือตัวนำยิ่งขวด เสร็จแล้วจึงทำการสร้างตัวข่ายและกำหนดเงื่อนไขขอบเขต (Boundary Condition) ตามลำดับ


รูปที่ 2-3 (ก)-(ง) แสดงการแบ่งโดเมนของปัญหาออกเป็นอิลิเมนต์รูปสามเหลี่ยมขนาดต่างๆ กัน โดยแบ่งออกเป็นสองโดเมนย่อยคือ เส้นลวดตัวนำยิ่งขวด (สีเหลือง) และตัวนำปกติ (สีแดง) สำหรับกรณีที่เรียงช้อนกัน 1-4 ชั้น ตามลำดับ นอกจากนี้ยังได้ทำการแบ่งโดเมนของปัญหาอย่างละเอียดโดยเฉพาะบริเวณที่มีเส้นลวดตัวนำยิ่งขวดผังตัวอยู่เพื่อให้ผลลัพธ์ที่ได้มีความถูกต้องแม่นยำมากที่สุด และเมื่อทำการขยายภาพเพื่อดูบริเวณดังกล่าวก็จะเห็นอิลิเมนต์รูปสามเหลี่ยมขนาดเล็กอยู่เป็นจำนวนมากมากดังแสดงในรูปที่ 2-4

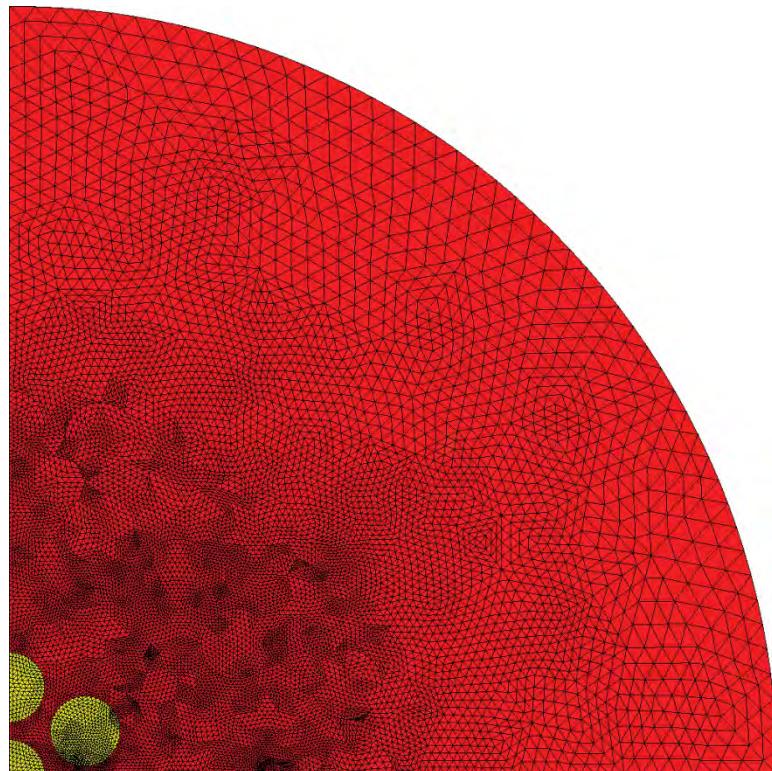

(ก) โดเมนของปัญหาสำหรับกรณีที่เรียงช้อนกันหนึ่งชั้น


(ข) โดเมนของปัญหาสำหรับกรณีที่เรียงช้อนกันสองชั้น (กรณีทดสอบ)

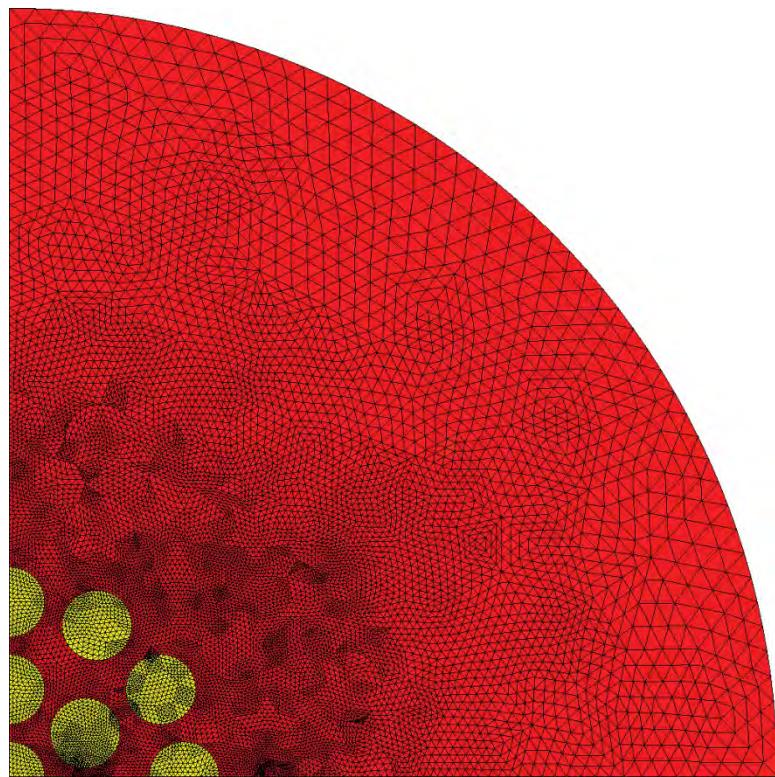
(ค) โดเมนของปัญหาสำหรับกรณีที่เรียงช้อนกันสามชั้น

(ง) โดเมนของปัญหาสำหรับกรณีที่เรียงช้อนกันสี่ชั้น
รูปที่ 2-3 โดเมนของปัญหาแบบ 2D ของลวดตัวนำยิ่งယัดเรียงช้อนกันหลายชั้น

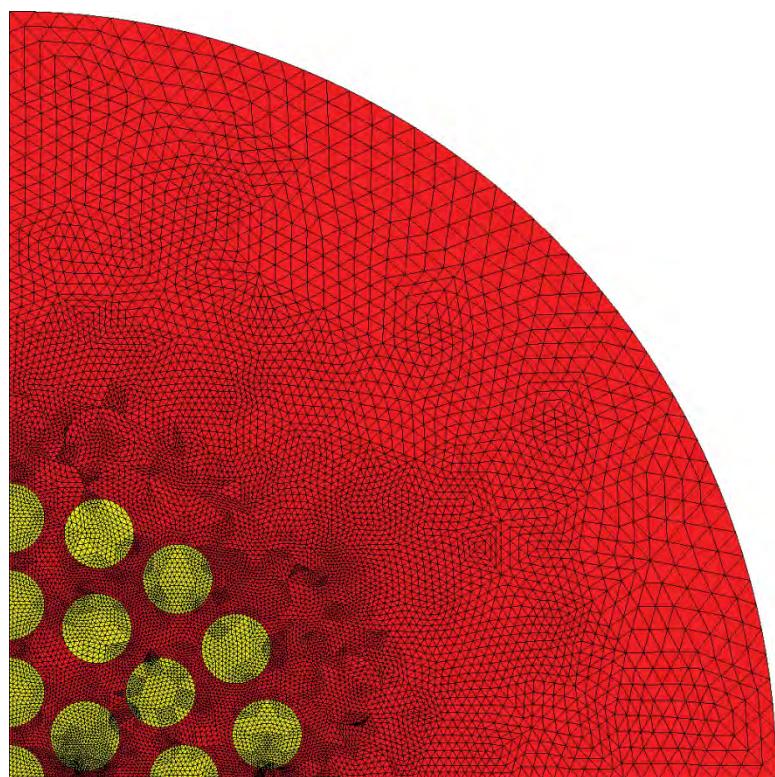
รูปที่ 2-4 ภาพขยายของโดเมนของปัญหาทรงบริเวณที่มีเส้นลวดตัวนำยิ่งယัดผังตัวอยู่

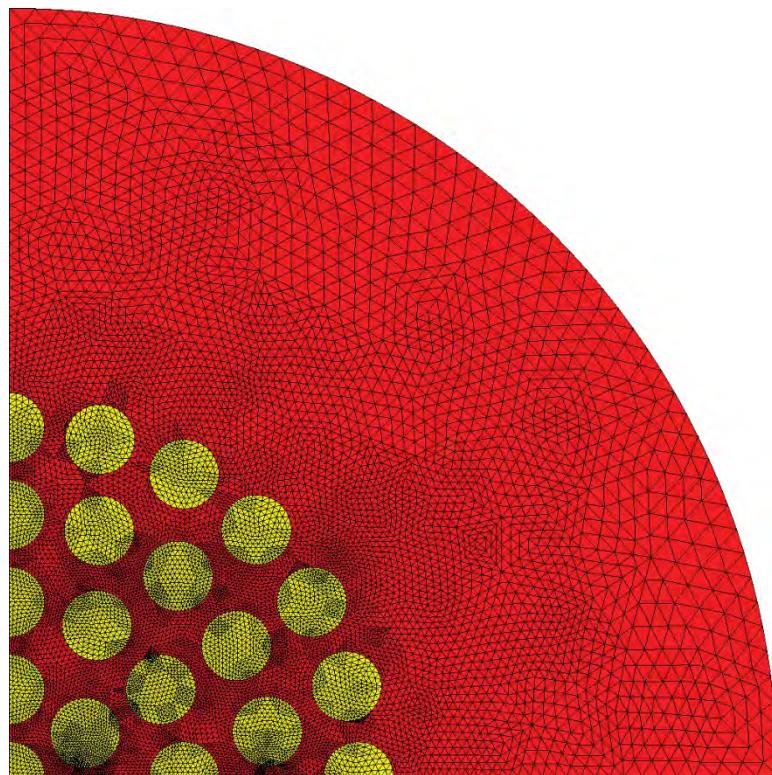

นอกจากนี้ยังได้พิจารณาความสมมาตรของปัญหาที่ศึกษาเพื่อทำการลดเวลาที่ใช้ในการประมวลผลของโปรแกรม โดยใช้แบบจำลองเพียง $1/4$ ของโดเมนของปัญหาเท่านั้น ดังแสดงในรูปที่ 2-5 ในกรณีจำนวนของลวดตัวนำยิ่งยาวในโดเมนที่พิจารณาจะเท่ากับ

$$N_i = \begin{cases} N_{i-1} + (1 + 3 \times i / 2) \\ N_{i-1} + (2 + 3 \times (i - 1) / 2) \end{cases} \quad (2-19)$$


โดยที่สมการบนและสมการล่างใช้สำหรับชั้นที่เป็นเลขคู่ ($i = 2, 4, \dots$) และเลขคี่ ($i = 3, 5, \dots$) ตามลำดับ และ $N_1 = 3$

เนื่องจากไม่มีกระแสไฟฟ้าในเส้นลวดตัวนำยิ่งยาวที่อยู่ในแนวแกน y ดังนั้นสำหรับชั้นที่ i จะพิจารณากระแสที่เหลือในลวดตัวนำยิ่งยาวจำนวน $N_i - (i+1)$ เส้นเท่านั้น ตัวอย่างเช่นจากรูปที่ 2-5 (ข) ในกรณีทดสอบ ($i = 2$) จะได้ $N_2 = 7$ และพิจารณากระแสที่เหลือในลวดตัวนำยิ่งยาวจำนวน 4 เส้นเท่านั้น


ในงานวิจัยนี้ได้ทำการศึกษาการเชื่อมต่อ (Coupling) และการไม่เชื่อมต่อ (Decoupling) ทางแม่เหล็กไฟฟ้าของลวดตัวนำยิ่งยาวหลายเส้นที่เรียงชื่อว่ากันหลาดชั้น ดังนั้นผลการวิจัยที่ได้จะแสดงให้เห็นถึงการเชื่อมต่อและการไม่เชื่อมต่อทางแม่เหล็กไฟฟ้าดังกล่าวโดยผ่านทางผลของการกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหาที่ศึกษา

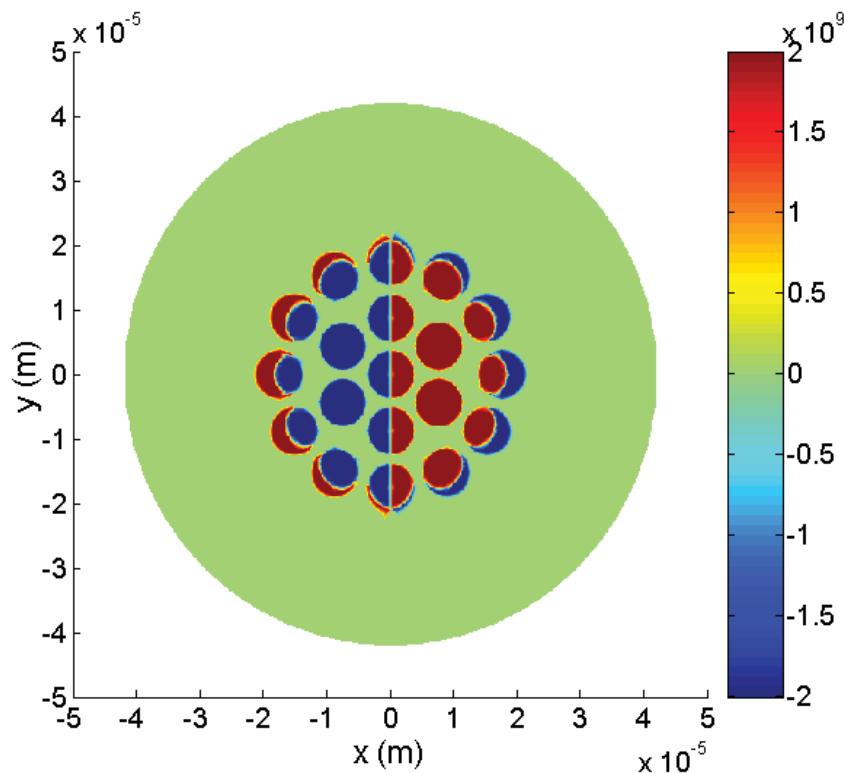

(ก) โดเมนที่พิจารณาสำหรับกรณีที่เรียกว่ากันหลาดชั้น

(ข) โดเมนที่พิจารณาสำหรับกรณีที่เรียงช้อนกันสองชั้น (กรณีทดสอบ)

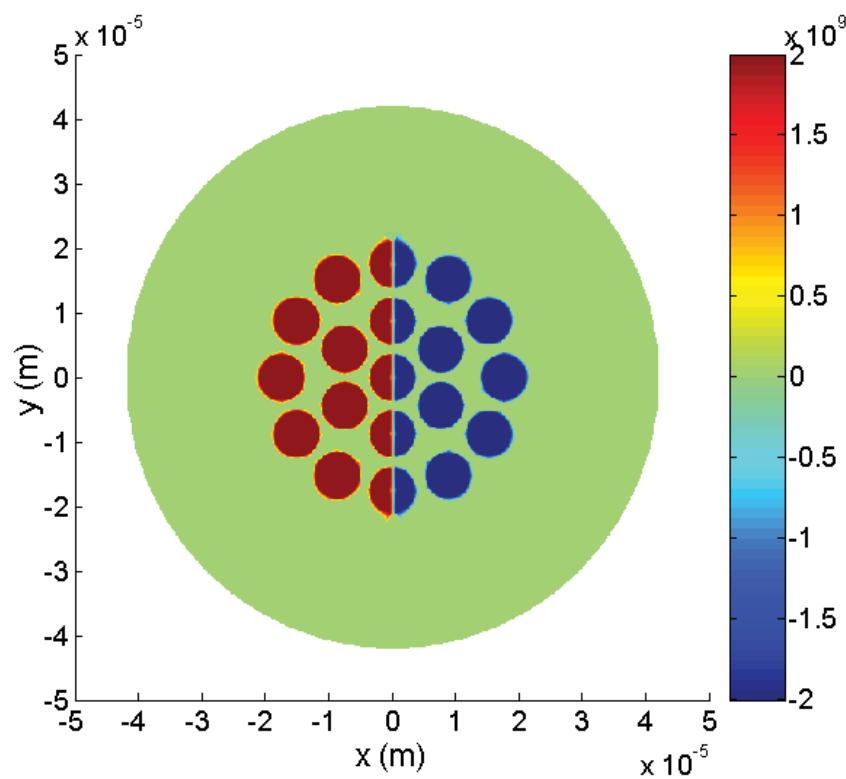
(ค) โดเมนที่พิจารณาสำหรับกรณีที่เรียงช้อนกันสามชั้น

(ง) โดเมนที่พิจารณาสำหรับกรณีที่เรียงช้อนกันสี่ชั้น
รูปที่ 2-5 โดเมนที่พิจารณาของลวดตัวนำยิ่งยอดเรียงช้อนกันหลายชั้น

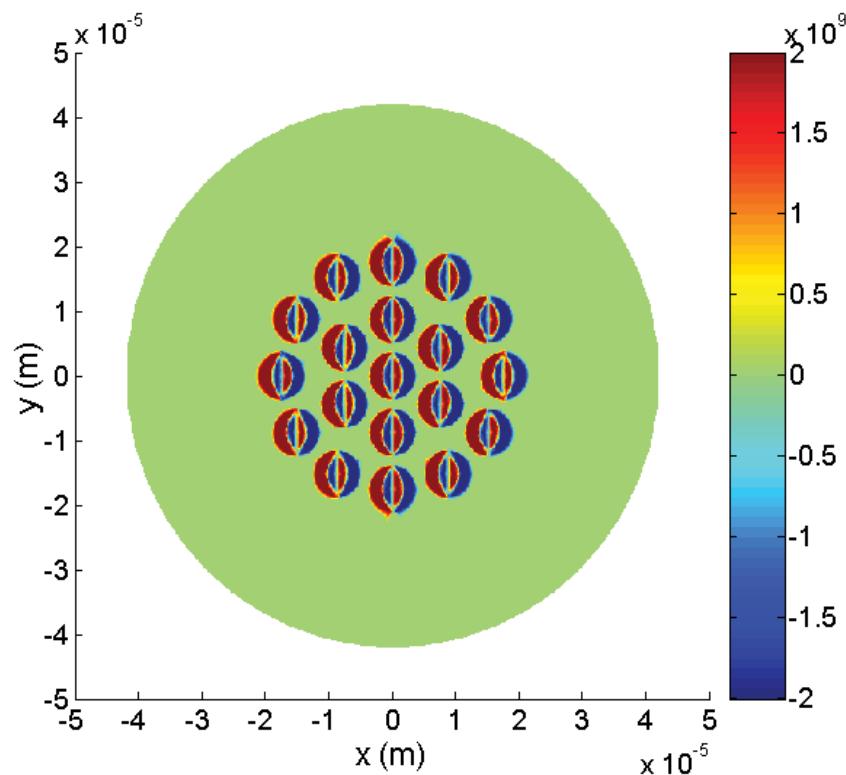
ผลลัพธ์ในชุดแรกได้จากการรันโปรแกรมโดยใช้แบบจำลองของลวดตัวนำยิ่งยอดจำนวน 19 เส้นที่มีขนาดเส้นผ่านศูนย์กลางเท่ากับ 7 ไมโครเมตรเรียงช้อนกันอยู่สองชั้นในตัวนำทองแดงซึ่งมีค่าความนำไฟฟ้า (σ) โดยประมาณเท่ากับ 10^{10} ซีเมนส์/เมตร ที่อุณหภูมิ 4.2 เคลวิน เพื่อทำการทดสอบความถูกต้องของโปรแกรมที่พัฒนาขึ้น และมีค่าความหนาแน่นของกระแสวิกฤต (J_c) เท่ากับ 2,000 แอมป์/ตารางมิลลิเมตร ที่ค่าสนามแม่เหล็กสูงสุด ($B_{a,max}$) เท่ากับ 20 มิลลิเทสลา และความถี่ 50 เอิร์ตซ์ ซึ่งเป็นการจำลองสถานการณ์จริงที่เกิดขึ้นภายในเครื่องเร่งอนุภาค LHC (Large Hadron Collider) ของศูนย์วิจัยเชร์น (CERN) โดยสามารถดูรายละเอียดเพิ่มเติมได้ในเอกสารอ้างอิงที่ [8] นอกจากนี้ยังต้องกำหนดเงื่อนไขข้อมูลของ Neumann บนข้อมูลเขตที่เป็นวงกลมนอกสุดซึ่งมีรัศมีเป็นสองเท่าของระยะห่างจากจุดศูนย์กลางถึงข้อมูลเส้นลวดตัวนำยิ่งยอดที่อยู่ในชั้นที่สอง (ชั้นนอกสุด) หากต้องการให้ผลลัพธ์ที่ได้มีความถูกต้องแม่นยำมากยิ่งขึ้นก็จะต้องขยายรัศมีนี้ออกไปอีก แต่ข้อเสียก็คือจะต้องใช้เวลาในการประมวลผลของโปรแกรมมากยิ่งขึ้นตามไปด้วย

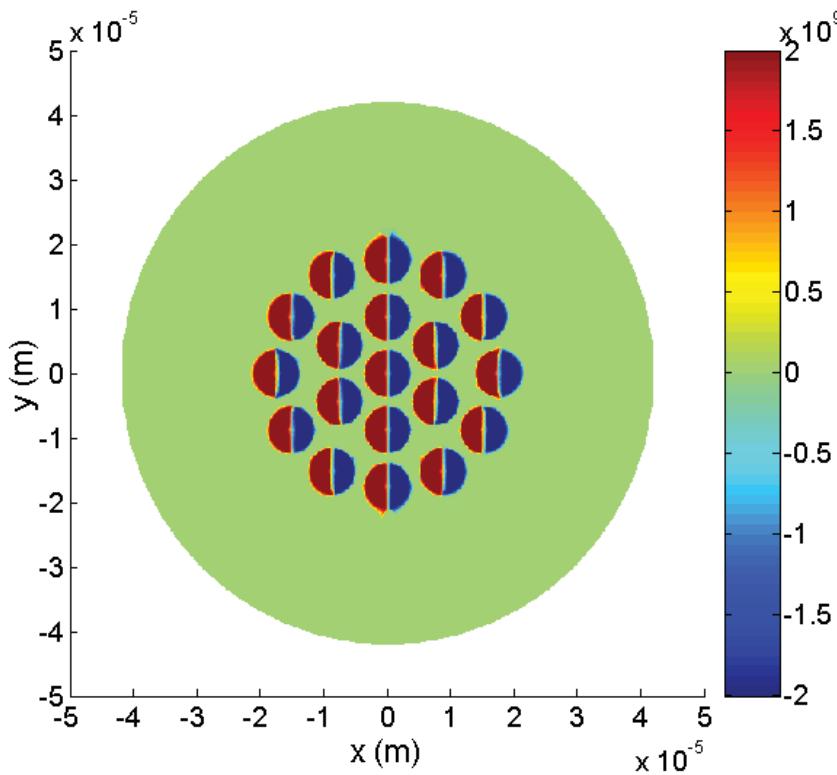

รูปที่ 2-6 แสดงภาพการกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหาที่ศึกษาสำหรับกรณีทดสอบ (สองชั้น) จะเห็นว่าค่าของกระแสเป็นศูนย์ (สีเขียว) ในตัวนำ

ท่องແດງ ສ່ວນໃນເສັ້ນລວດຕ້ວນໍາຍິ່ງຍວດຈະເຫັນກະຮະແສໄໝລີໃນສອງທຶກທາງ (ສືແດງແລະສື່ນໍ້າເງິນ) ແລະ ໄຫລສວນທາງກັນດ້ວຍຂາດທີ່ເທົກັນເຊີ່ງເທົກັນຄ່າຂອງກະຮະແສວິກຸຕ (I_c) ໂດຍຄໍານວນໄດ້ດັ່ງນີ້

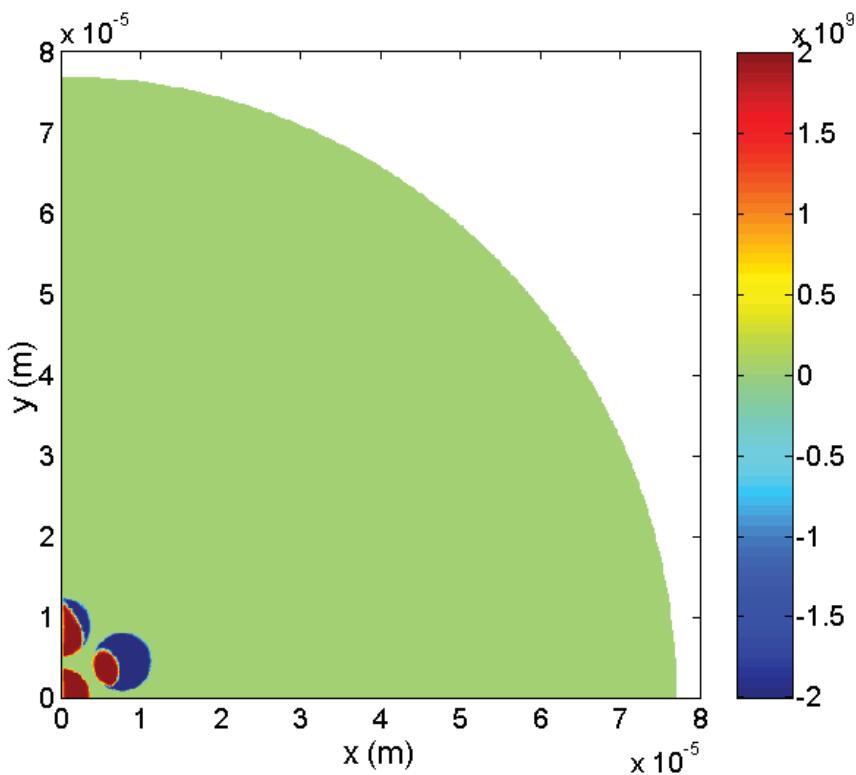

$$I_c = J_c \times A \quad (2-20)$$

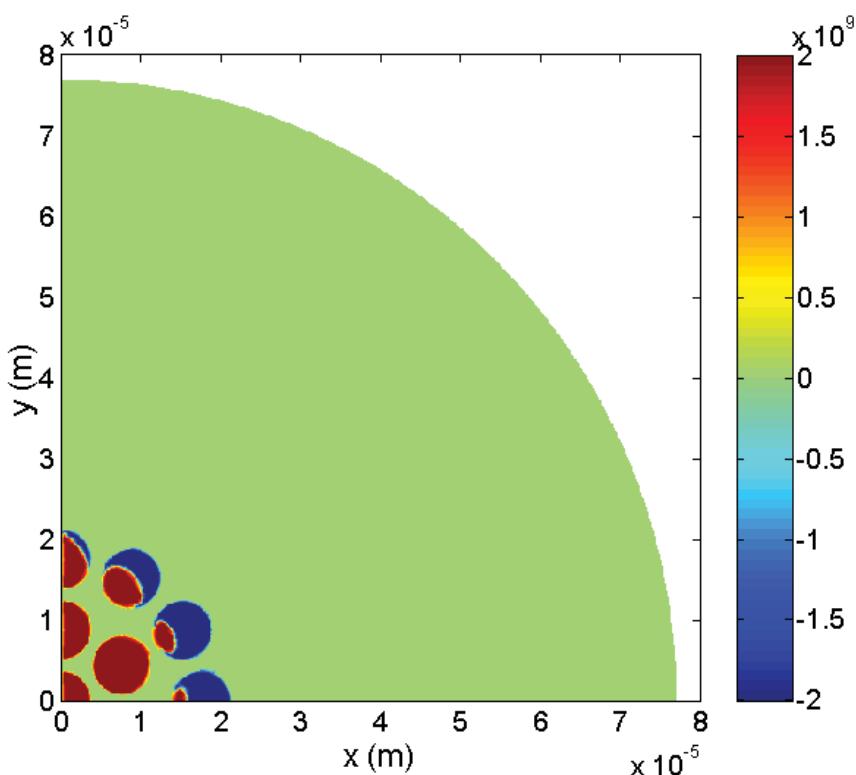
ໂດຍທີ່ A ຄືອພື້ນທີ່ໜ້າຕັດຄື່ງວົງກລມຂອງເສັ້ນລວດຕ້ວນໍາຍິ່ງຍວດທີ່ກະຮະແສໄໝລີຝາກ


ຮູບທີ່ 2-6 (ກ) ແລະ (ຂ) ແສດງໃຫ້ເຫັນພລັພົບໃນກຣນີທີ່ມີການເຊື່ອມຕ່ອທາງແມ່ເໜັກໄຟຟ້າ ແບບສມບູຮົນຮະຫວ່າງລວດຕ້ວນໍາຍິ່ງຍວດທັງ 19 ເສັ້ນທີ່ສກວະໄມ່ອື່ມຕົວແລະສກວະອື່ມຕົວ ຕາມລຳດັບສ່ວນຮູບທີ່ 2-6 (ຄ) ແລະ (ງ) ແສດງໃຫ້ເຫັນພລັພົບໃນກຣນີທີ່ໄມ່ມີການເຊື່ອມຕ່ອທາງແມ່ເໜັກໄຟຟ້າ ແບບສມບູຮົນຮະຫວ່າງລວດຕ້ວນໍາຍິ່ງຍວດທັງ 19 ເສັ້ນທີ່ສກວະໄມ່ອື່ມຕົວແລະສກວະອື່ມຕົວ ຕາມລຳດັບສໍາຮັບທີ່ສກວະໄມ່ອື່ມຕົວຈະສັງເກດເຫັນໜັກການເປີ່ອຍິນທຶກທາງການໄໝລີຂອງກະຮະແສໃນລວດຕ້ວນໍາຍິ່ງຍວດ ທີ່ພລັພົບທີ່ໄດ້ນີ້ສອດຄລັງກັບພລັພົບໃນທາງທຸກໆໜີທີ່ແສດງໄວ້ໃນເອກສາຮ້າອ້າງອີງທີ່ [9] ແລະ ຍັງສອດຄລັງກັບພລັພົບທີ່ໄດ້ກ່ອນໜ້ານີ້ທີ່ແສດງໄວ້ໃນເອກສາຮ້າອ້າງອີງທີ່ [2] ແລະ [10] ອີກດ້ວຍນອກຈາກນີ້ຍັງໄດ້ພລັພົບໃນກຣນີທີ່ມີການເຊື່ອມຕ່ອທາງແມ່ເໜັກໄຟຟ້າແບບບາງສ່ວນທີ່ຄວາມຍາວຂອງເສັ້ນລວດຕ້ວນໍາຍິ່ງຍວດໄມ່ກໍໄມ່ໂຄຣເມຕຣ (ໄມ່ຄື່ງ 10 ໄມ່ໂຄຣເມຕຣ) ອີກດ້ວຍ ພລັພົບທີ່ໄດ້ນີ້ແສດງໃຫ້ເຫັນວ່າໂປຣແກຣມທີ່ພັນນາຂຶ້ນນີ້ສາມາດໃຊ້ແກ້ປັບປຸງຂອງລວດຕ້ວນໍາຍິ່ງຍວດຈຳນວນ 19 ເສັ້ນທີ່ເຮັດວຽກ ທັງນັ້ນກັນອຸ່ສອງໜັກໄດ້ຍ່າງຄຸງຕ້ອງ

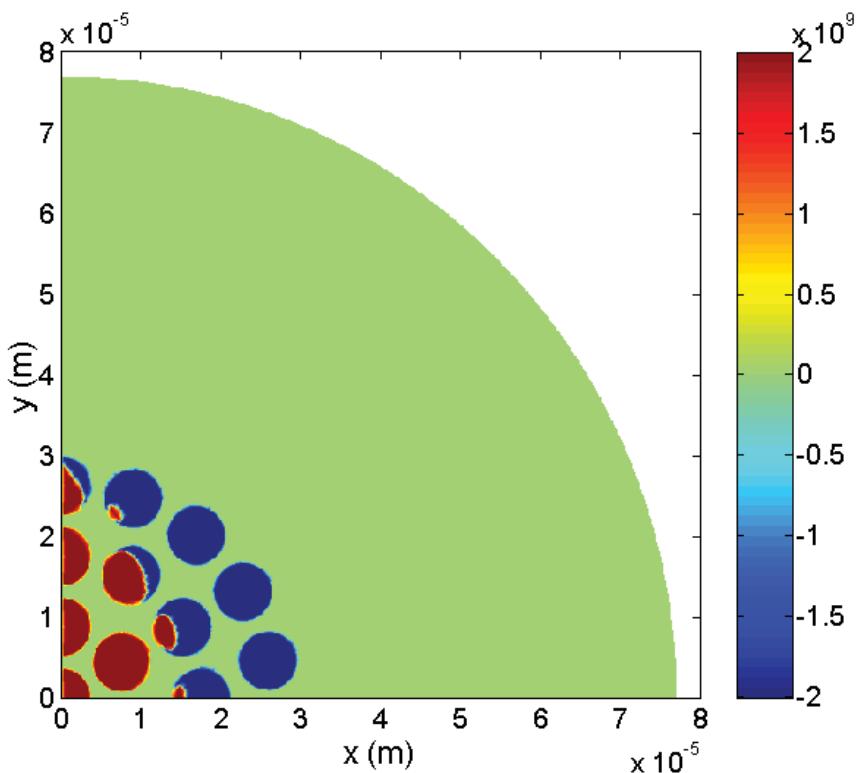

(ກ) ກຣນີທີ່ມີການເຊື່ອມຕ່ອທາງແມ່ເໜັກໄຟຟ້າແບບສມບູຮົນທີ່ສກວະໄມ່ອື່ມຕົວ

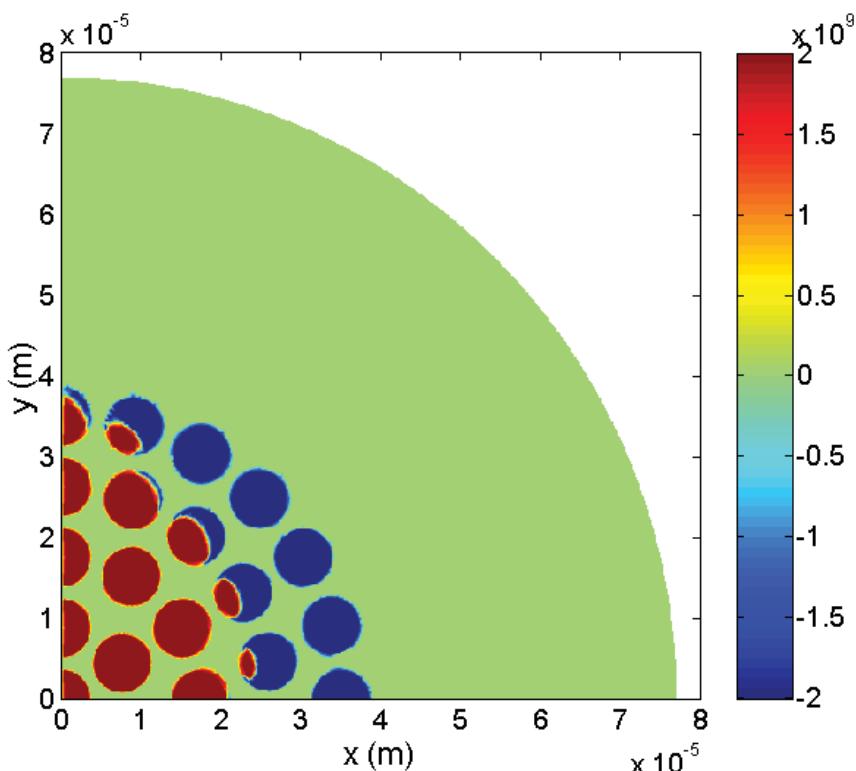
(ข) กรณีที่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ที่สภาวะอิ่มตัว

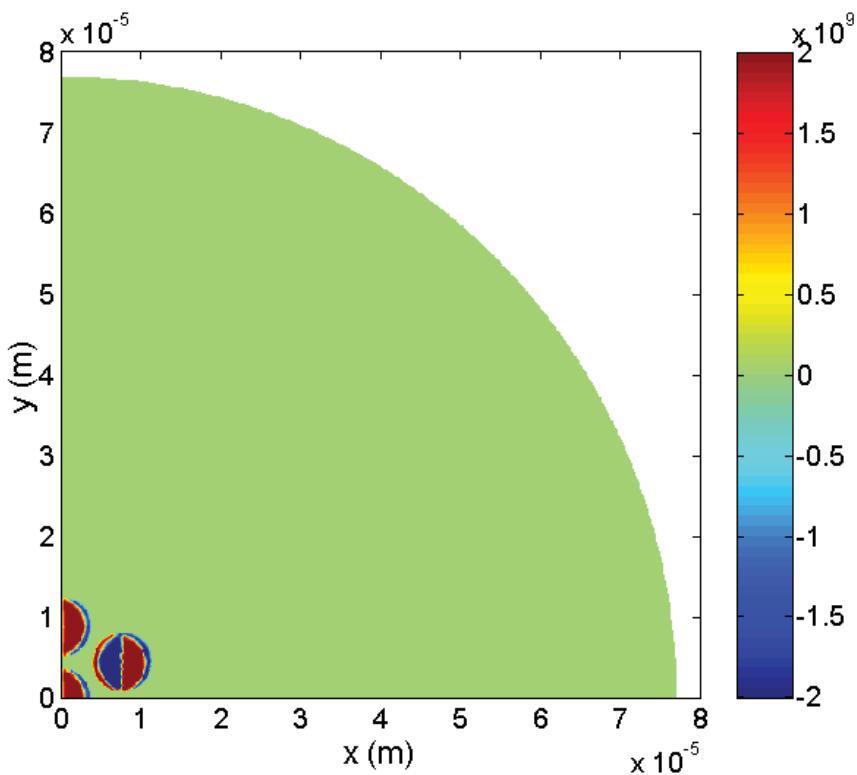

(ค) กรณีที่ไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ที่สภาวะไม่อิ่มตัว

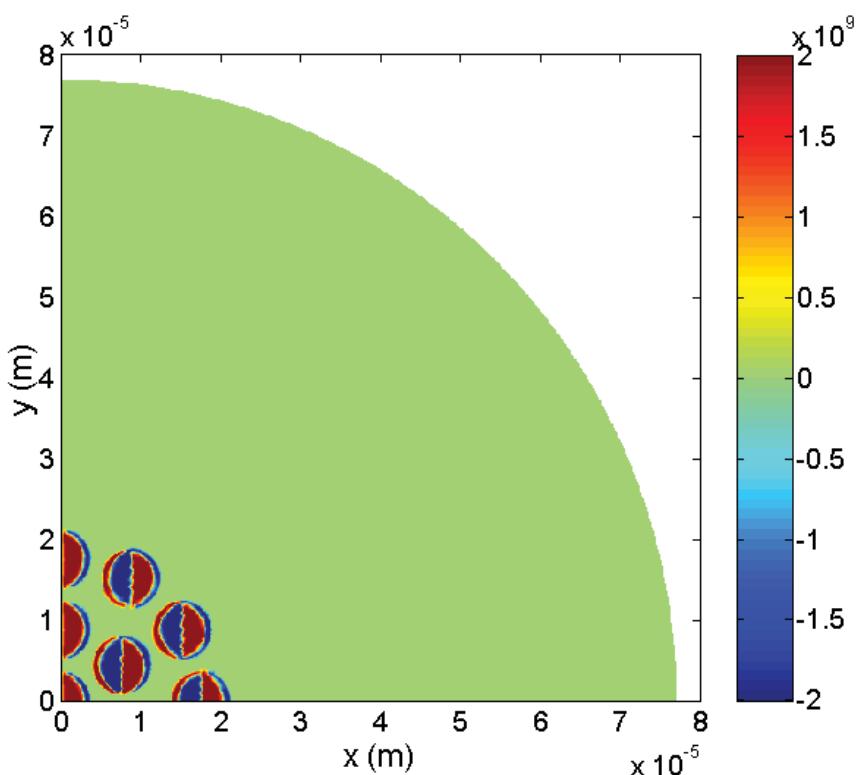

(ก) กรณีที่ไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ที่สภาวะอิ่มตัว
รูปที่ 2-6 การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหา

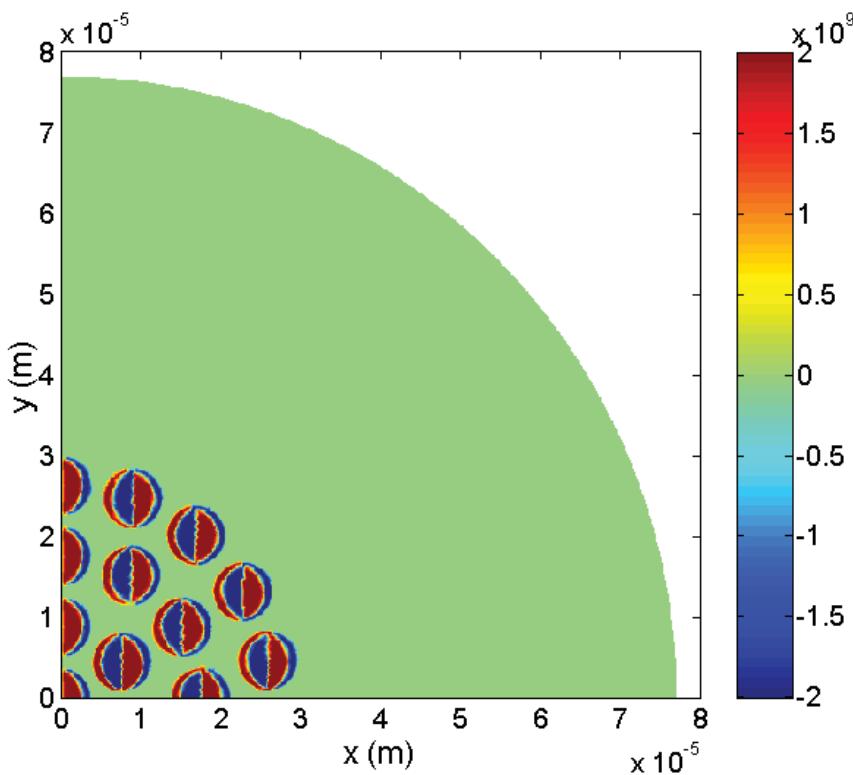
ผลลัพธ์ในชุดที่สองได้จากการรันโปรแกรมโดยใช้แบบจำลองเพียง $1/4$ ของโดเมนของปัญหา (ดังรูปที่ 2-5) ที่ค่าสนามแม่เหล็กสูงสุด ($B_{a,max}$) เท่ากับ 40 มิลลิเทสลา และความถี่ 50 เอิร์ตซ์ ในกรณีนี้จะต้องกำหนดเงื่อนไขข้อมูลเขตของ Dirichlet บนข้อมูลเขตที่เป็นเส้นตรงในแนวแกน y และกำหนดเงื่อนไขข้อมูลเขตของ Neumann บนข้อมูลเขตที่เป็นเส้นตรงในแนวแกน x กับข้อมูลเขตที่เป็นเส้นโค้งของวงกลมซึ่งมีรัศมีเป็นสองเท่าของระยะห่างจากจุดศูนย์กลางถึงข้อมูลเส้นลวดตัวนำยิ่งยอดที่อยู่ในชั้นที่สี่ (ชั้นนอกสุด)

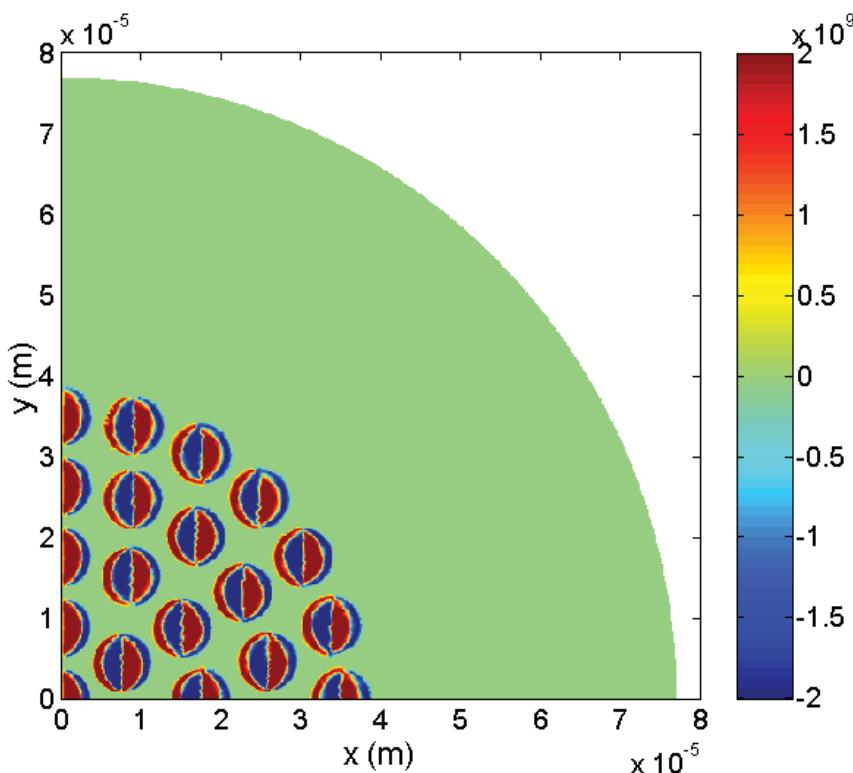

รูปที่ 2-7 และ 2-8 แสดงผลของการกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหาที่ศึกษาสำหรับกรณีที่มีและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ ระหว่างลวดตัวนำยิ่งยอดที่สภาวะไม่อิ่มตัว ตามลำดับ ส่วนรูป (ก)-(ง) แสดงผลลัพธ์ในกรณีที่เส้นลวดตัวนำยิ่งยอดเรียงช้อนกัน $1-4$ ชั้น ตามลำดับ กรณีที่ลวดตัวนำยิ่งยอดมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์นั้น เส้นลวดทั้งหมดจะทำตัวเสมอเป็นเส้นลวดเดียวที่มีรัศมีเท่ากับระยะห่างจากจุดศูนย์กลางถึงข้อมูลของเส้นลวดตัวนำยิ่งยอดที่อยู่ในชั้นนอกสุด ดังนั้นจากผลลัพธ์ที่ได้จะเห็นว่าโปรแกรมที่พัฒนาขึ้นนี้สามารถนำมาใช้แก้ปัญหาของลวดตัวนำยิ่งยอดจำนวนหลายเส้นที่เรียงช้อนกันอยู่เป็นชั้นๆ ได้อย่างถูกต้องและมีประสิทธิภาพ


(ก) กราฟที่เรียงซ้อนกันหนึ่งชั้นและมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์


(ข) กราฟที่เรียงซ้อนกันสองชั้นและมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์

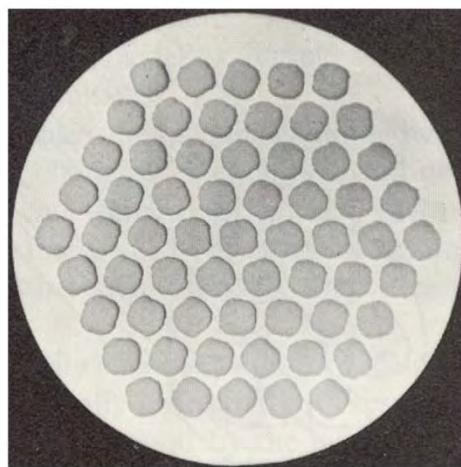

(ค) กรณีที่เรียงช้อนกันสามชั้นและมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์


(ง) กรณีที่เรียงช้อนกันสี่ชั้นและมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์
รูปที่ 2-7 การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนที่พิจารณา


(ก) กรณีที่เรียงช้อนกันหนึ่งชั้นและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์

(ข) กรณีที่เรียงช้อนกันสองชั้นและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์

(ค) กรณีที่เรียงช้อนกันสามชั้นและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์


(ง) กรณีที่เรียงช้อนกันสี่ชั้นและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์
รูปที่ 2-8 การกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนที่พิจารณา

สรุปผลและอภิปรายผล

สืบเนื่องจากการผลิตเส้นลวดตัวนำยิ่งยวดจำนวนมากเพื่อใช้ทำเดเบิล Rutherford สำหรับเครื่องเร่งอนุภาค LHC ที่ศูนย์วิจัยเชร์น (CERN) ในประเทศสวิตเซอร์แลนด์ จึงจำเป็นที่จะต้องทำการศึกษาค้นคว้าและวิจัยเพื่อให้ได้ความรู้/องค์ความรู้ที่เกี่ยวกับการกระจายของความหนาแน่นของกระแสในเส้นลวดตัวนำยิ่งยวด (ดูรายละเอียดเพิ่มเติมได้ในเอกสารอ้างอิงที่ [11]) ซึ่งในรอบสิบปีที่ผ่านมา นักวิจัยได้มีการค้นคว้าวิจัยกันอย่างจริงจังเกี่ยวกับการเชื่อมต่อทางแม่เหล็กไฟฟ้าของเส้นลวดตัวนำยิ่งยวดที่ผังตัวอยู่ในตัวนำปกติ โดยนำเอาวิธีไฟฟ์ไนต์อิลิเมนต์มาใช้ในการแก้ปัญหา ดังผลลัพธ์ที่ได้จากการรันโปรแกรมคอมพิวเตอร์ที่แสดงไว้ในบทความทางวิชาการต่างๆ มากมาย ตัวอย่างเช่นในเอกสารอ้างอิงที่ [10], [12] และ [13] เป็นต้น

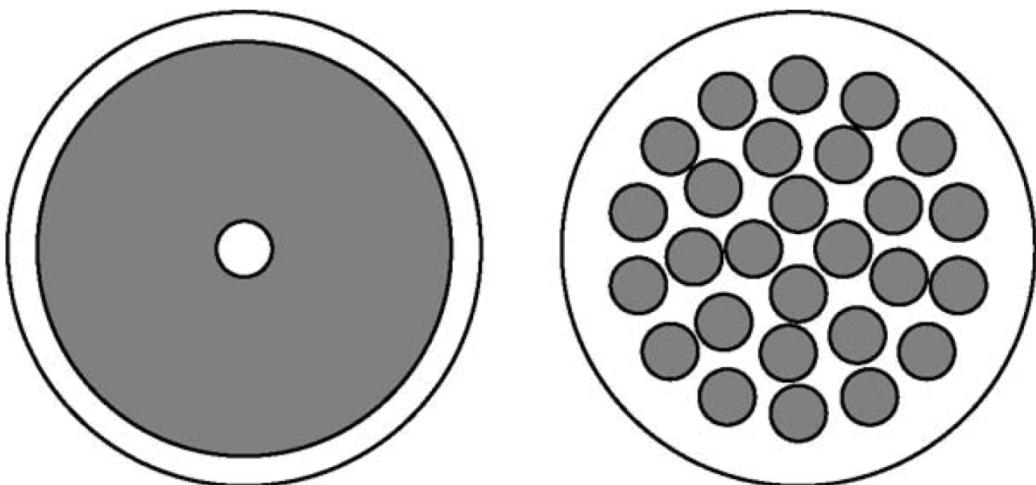
โดยปกติแล้วสายไฟหนึ่งเส้นที่ใช้ในการทำเดเบิล Rutherford นั้น จะประกอบไปด้วยลวดตัวนำยิ่งยวดหลายเส้นเรียงช้อนกันเป็นชั้นๆ ในตัวนำทองแดง ดังแสดงในรูปที่ 2-9 (ภาพจากเอกสารอ้างอิงที่ [9]) วัตถุประสงค์ของงานวิจัยนี้คือสร้างแบบจำลองของลวดตัวนำยิ่งยวดหลายเส้นที่เรียงช้อนกันหลายชั้นในตัวนำปกติและพัฒนาโปรแกรมคอมพิวเตอร์เพื่อนำมาใช้ในการแก้ปัญหาดังกล่าว

ในงานวิจัยนี้ได้นำความรู้พื้นฐานทางไฟฟ้าคือทฤษฎีการทับช้อนและกฎของโอล์มมาใช้ในการแก้ปัญหา ผลลัพธ์ที่ได้จากการรันโปรแกรมที่พัฒนาขึ้นคือการกระจายของความหนาแน่นของกระแสไฟฟ้าในโดเมนของปัญหาที่พิจารณาแสดงให้เห็นอย่างชัดเจนว่ามีและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ของเส้นลวดตัวนำยิ่งยวดที่สภาวะต่างๆ กัน (อิมตัวและไม่อิมตัว) ผลลัพธ์ที่ได้นอกจากจะสอดคล้องกับผลลัพธ์ในทางทฤษฎีแล้วยังสอดคล้องกับผลลัพธ์ที่ได้ก่อนหน้านี้อีกด้วย

(M. N. Wilson, Superconducting Magnets)

รูปที่ 2-9 ภาพขยายของเส้นลวดตัวนำยิ่งยวดที่เรียงช้อนกันเป็นชั้นๆ ในสายไฟจริง

งานวิจัยที่ 3


วัตถุประสงค์งานวิจัย

- เพื่อศึกษาความเป็นแม่เหล็กของลวดตัวนำยิ่งยวดหลายนี้
- เพื่อสร้างแบบจำลองของลวดตัวนำยิ่งยวดด้วยโปรแกรมคอมพิวเตอร์ภาษาฟอร์แทรน
- เพื่อแก้ปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติด้วยระเบียบวิธีไฟโนต์อลิเมนต์
- เพื่อนำผลลัพธ์ที่ได้มาแสดงเป็นกราฟโดยใช้โปรแกรมแมทแลป
- เพื่อศึกษาคุณสมบัติของลวดตัวนำยิ่งยวดโดยใช้แบบจำลองคอมพิวเตอร์
- เพื่อนำองค์ความรู้ที่ได้ไปประยุกต์ใช้งานจริงต่อไป

ระเบียบวิธีวิจัย

ค่าความเป็นแม่เหล็กรวม (Total Magnetization) ของเส้นลวดตัวนำยิ่งยวดทั้งหมดสามารถคำนวณหาได้จากค่าความหนาแน่นของกระแสไฟฟ้าที่ได้จากการวิจัยก่อนหน้านี้ เมื่อนำค่าความเป็นแม่เหล็กรวมและค่าสนามแม่เหล็กภายนอก (B_a) อย่างน้อยหนึ่งค่ามาแสดงเป็นกราฟโดยใช้โปรแกรมแมทแลปก็จะได้วงอิสเทอรีซิส (Hysteresis) ของความเป็นแม่เหล็กรวมของเส้นลวดตัวนำยิ่งยวดทั้งหมด

นอกจากนี้การรวมเข้าเป็นเนื้อเดียวกัน (Homogenization) ของลวดตัวนำยิ่งยวดเล็กๆ ทั้งหมดทุกเส้นสามารถมองเห็นอ่อนเป็นลวดตัวนำยิ่งยวดขนาดใหญ่เพียงเส้นเดียวที่มีรัศมีเท่ากัน ระยะห่างจากจุดศูนย์กลางถึงขอบของเส้นลวดตัวนำยิ่งยวดเล็กๆ ที่อยู่ในชั้นนอกสุด ดังแสดงในรูปที่ 3-1 (ภาพจากเอกสารอ้างอิงที่ [14])

รูปที่ 3-1 การรวมเข้าเป็นเนื้อเดียวกันของลวดตัวนำยิ่งยวดหลายนี้

สำหรับสูตรที่ใช้ในการคำนวณหาค่าความเป็นแม่เหล็กต่อหน่วยปริมาตรของตัวนำยิ่งEDAของเส้นลวดขนาดใหญ่ดังกล่าวที่สภาวะอิมต้า (M_s) โดยการสมมติให้กระแสวิภาคของเส้นลวดขนาดใหญ่นั้นมีค่าเท่ากับกระแสวิภาคของเส้นลวดตัวนำยิ่งEDAเล็กๆ ได้แสดงเอาไว้ในเอกสารอ้างอิงที่ [2] ซึ่งในกรณีที่เส้นลวดตัวนำยิ่งEDAเล็กๆ เหล่านี้เรียงซ้อนกันอยู่จำนวน i ชั้น จะได้ว่า

$$M_s = 4\mu_0 J_c R / (3\pi) \quad (3-1)$$

$$R = (2 \times i + 1) \times r + (i \times d) \quad (3-2)$$

โดยที่ R และ r คือรัศมีของเส้นลวดตัวนำยิ่งEDAขนาดใหญ่ และรัศมีของเส้นลวดตัวนำยิ่งEDAเล็กๆ (โดยสมมติให้มีขนาดเท่ากันทุกเส้น) ตามลำดับ และ d คือระยะห่างระหว่างเส้นลวดตัวนำยิ่งEDAเล็กๆ (โดยสมมติให้มีขนาดเท่ากัน) ส่วน μ_0 คือค่าความซึมซาบแม่เหล็กในสุญญากาศ ซึ่งมีค่าเท่ากับ $4\pi \times 10^{-7}$ เอ็นรี/เมตร

ยิ่งไปกว่านั้นค่าความเป็นแม่เหล็กรวมต่อหน่วยปริมาตรของตัวนำยิ่งEDAของลวดตัวนำยิ่งEDAเล็กๆ หลายเส้นที่ได้มาจากการเบี่ยบวิธีเชิงตัวเลข (Numerical Method) จะมีค่ามากกว่าค่าความเป็นแม่เหล็กต่อหน่วยปริมาตรของตัวนำยิ่งEDAของลวดตัวนำยิ่งEDAขนาดใหญ่หนึ่งเส้นที่มีปริมาตรของตัวนำยิ่งEDAเท่ากัน ซึ่งเป็นผลเนื่องมาจากการยังห่างระหว่างเส้นลวดตัวนำยิ่งEDAเล็กๆ นั้นเอง ในความเป็นจริงแล้วค่ารัศมี R ในสมการที่ (3-1) และ (3-2) นั้นจะมีค่ามากกว่าค่ารัศมีของลวดตัวนำยิ่งEDAขนาดใหญ่เส้นนี้ (R') เสมอ ซึ่งมีค่าเท่ากับ

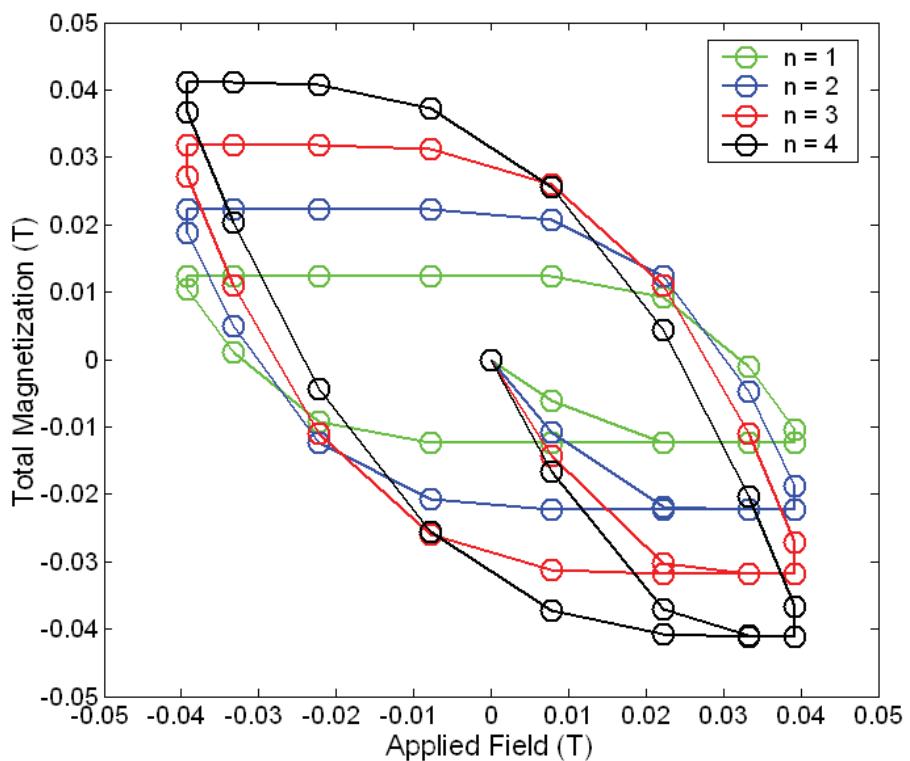
$$R' = \sqrt{(N + 1)} \times r \quad (3-3)$$

โดยที่ค่าของ N หาได้จากสมการที่ (2-5)

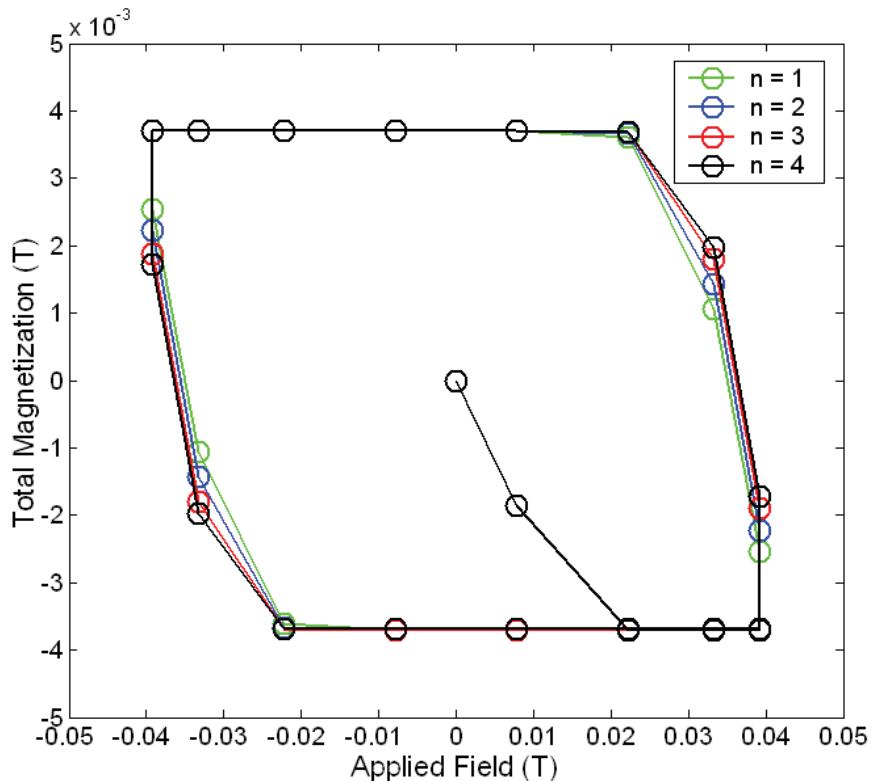
เมื่อคำนึงถึงผลของตัวนำปกติที่อยู่รอบๆ เส้นลวดตัวนำยิ่งEDA (Conductive Matrix) พารามิเตอร์ที่ดีที่สุดที่ใช้อธิบายผลของการเชื่อมต่อทางแม่เหล็กไฟฟ้าของลวดตัวนำยิ่งEDA สำหรับรูปร่างของปัญหาและความถี่ที่กำหนดให้คือ ความยาวของเส้นลวด (L) และความนำไฟฟ้าของตัวนำปกติ (σ) หรือความลึกผิว (δ) ดังที่ได้แสดงไว้ในเอกสารอ้างอิงที่ [2] และ [13] ดังนั้นในกรณีนี้สิ่งที่น่าสนใจคือการศึกษาอิทธิพลของจำนวนชั้นหรือจำนวนเส้นลวดต่อค่าความเป็นแม่เหล็กรวมของลวดตัวนำยิ่งEDAเล็กๆ ทุกเส้น ซึ่งเมื่อใช้วิธีคิดเหมือนกับที่ได้แสดงไว้ในเอกสารอ้างอิงที่ [2] สำหรับกรณีที่ลวดตัวนำยิ่งEDA มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ เมื่อพิจารณาชั้นที่ i จะได้ว่า

$$\sum_{k=1}^{N+1} I_k = (N - 2 \times i) \times I_c, I_c = J_c \pi r^2 \quad (3-4)$$

โดยที่ I_c คือค่ากระแสวิภาคในเส้นลวดตัวนำยิ่งEDA

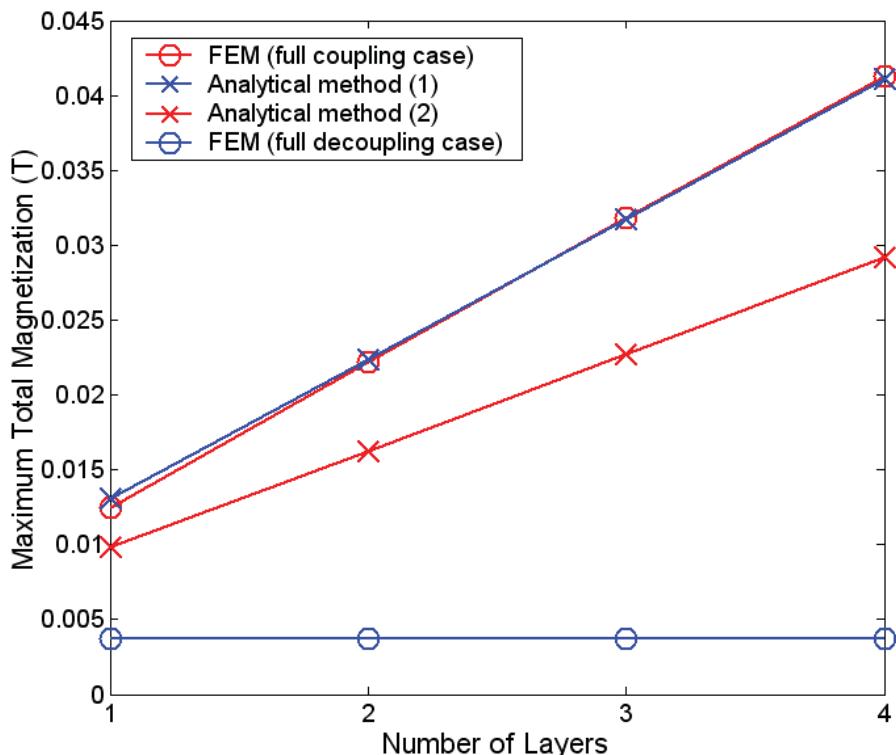

จากสมการที่ (3-4) จะพบว่ากราฟแสดงที่เหลื่อนเส้นลวดตัวนำยิ่งยอดที่ k (I_k) มีค่าเป็นบวก และลบ ถ้าเส้นลวดตัวนำยิ่งยอดนั้นมีตำแหน่งอยู่ทางด้านขวาและซ้ายของแกน y ตามลำดับ สมการนี้ยังแสดงให้เห็นว่าค่าความเป็นแม่เหล็กรวมต่อห่วงปริมาตรของตัวนำยิ่งยอดขึ้นอยู่กับ จำนวนของเส้นลวด (N) และจำนวนชั้นที่เรียงซ้อนกัน (i) อีกด้วย

ผลการวิจัย


โปรแกรมที่พัฒนาขึ้นในงานวิจัยนี้สามารถใช้คำนวณหาค่าความเป็นแม่เหล็กรวมของ ลวดตัวนำยิ่งยอดหดหายเส้นที่เรียงซ้อนกันเป็นชั้นๆ ได้ รูปที่ 3-2 แสดงการเปรียบเทียบวงอิสเทอ รีซิสของความเป็นแม่เหล็กรวมจำนวน 4 วง สำหรับในกรณีที่เส้นลวดตัวนำยิ่งยอดเรียงซ้อนกัน 1-4 ชั้น เมื่อเส้นลวดตัวนำยิ่งยอดมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์แล้ว ค่าความ เป็นแม่เหล็กรวมนี้จะขึ้นอยู่กับจำนวนชั้นที่เรียงซ้อนกันหรือจำนวนของเส้นลวดตัวนำยิ่งยอด ดัง แสดงในรูปที่ 3-2 (ก) แต่เมื่อย่างไรก็ตามเมื่อเส้นลวดตัวนำยิ่งยอดไม่มีการเชื่อมต่อทาง แม่เหล็กไฟฟ้าแบบสมบูรณ์แล้ว ค่าความเป็นแม่เหล็กรวมนี้จะมีค่าเท่าๆ กันและเท่ากับค่าความ เป็นแม่เหล็กของลวดตัวนำยิ่งยอดหนึ่งเส้น (ดูรายละเอียดเพิ่มเติมได้ในเอกสารอ้างอิงที่ [13]) โดยจะไม่ขึ้นอยู่กับจำนวนชั้นที่เรียงซ้อนกันหรือจำนวนของเส้นลวดตัวนำยิ่งยอดอีกเลย ดัง แสดงในรูปที่ 3-2 (ข)

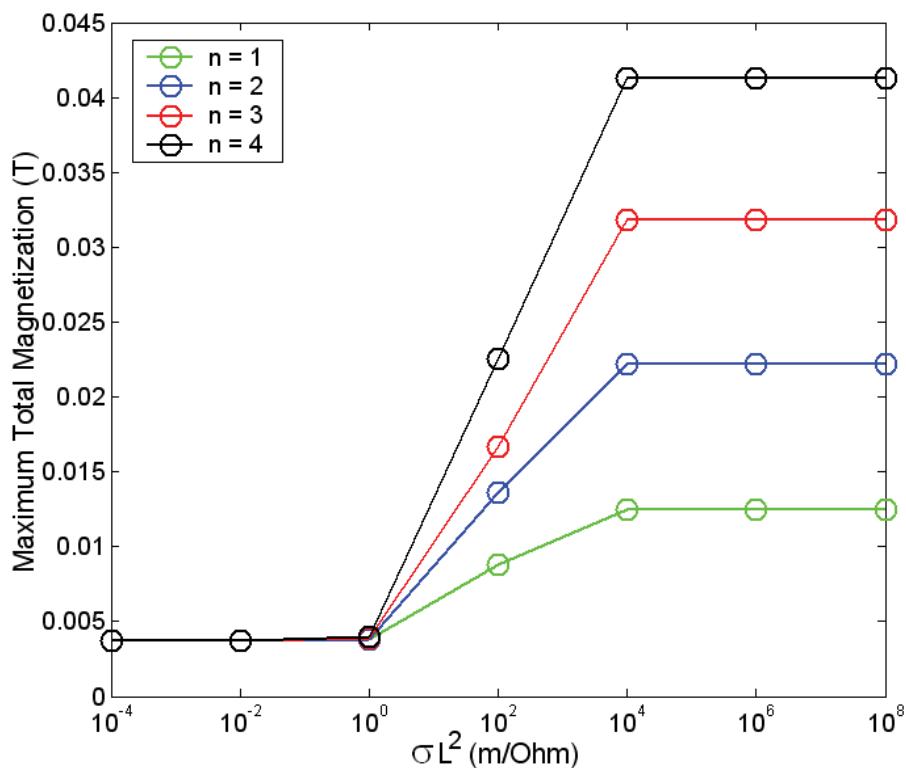
กราฟความสัมพันธ์ระหว่างค่าความเป็นแม่เหล็กรวมสูงสุดต่อห่วงปริมาตรของตัวนำ ยิ่งยอดของลวดตัวนำยิ่งยอดหดหายเส้นที่เรียงซ้อนกันเป็นชั้นๆ (ที่สภาวะอิมตัว) กับจำนวนชั้นที่ เรียงซ้อนกันแสดงในรูปที่ 3-3 จะเห็นได้ว่าในกรณีที่เส้นลวดตัวนำยิ่งยอดมีการเชื่อมต่อทาง แม่เหล็กไฟฟ้าแบบสมบูรณ์ ค่าความเป็นแม่เหล็กรวมสูงสุดจะแปรผันแบบเชิงเส้นกับจำนวนชั้น ที่เรียงซ้อนกัน และจะไม่ขึ้นกับจำนวนชั้นที่เรียงซ้อนกันในกรณีที่เส้นลวดตัวนำยิ่งยอดไม่มีการ เชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์

นอกจากนี้สำหรับกรณีที่เส้นลวดตัวนำยิ่งยอดมีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบ สมบูรณ์ เมื่อทำการเปรียบเทียบผลลัพธ์ที่ได้จากโปรแกรมหรือผลลัพธ์เชิงตัวเลขจากวิธีไฟโน๊ต อลิเมนต์ (FEM) และผลลัพธ์ที่ได้จากสมการที่ (3-1) ซึ่งจะเรียกว่า ผลลัพธ์จากวิธีเชิงวิเคราะห์ (1) หรือ Analytical Method (1) พบว่ามีค่าใกล้เคียงกันมาก และมีค่ามากกว่าค่าความเป็น แม่เหล็กต่อห่วงปริมาตรของตัวนำยิ่งยอดของลวดตัวนำยิ่งยอดขนาดใหญ่หนึ่งเส้นที่มีปริมาตร ของตัวนำยิ่งยอดเท่ากัน ซึ่งเรียกว่า ผลลัพธ์จากวิธีเชิงวิเคราะห์ (2) หรือ Analytical Method (2) ดังแสดงในรูปที่ 3-3



(ก) กรณีที่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์

(ข) กรณีที่ไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์


รูปที่ 3-2 เปรียบเทียบวงจรสเทอริซของความเป็นแม่เหล็กรวมในกรณีที่เรียงช้อนกัน 1-4 ชั้น

รูปที่ 3-3 เปรียบเทียบผลลัพธ์เชิงตัวเลขจาก FEM กับผลลัพธ์เชิงวิเคราะห์จากทั้งสองวิธี

ผลลัพธ์ในชุดสุดท้ายได้จากการรันโปรแกรมโดยกำหนดให้ความถี่ของสนามแม่เหล็กภายนอกมีค่าคงที่เท่ากับ 50 เฮิรตซ์เพื่อศึกษาถึงผลของจำนวนชั้นที่เรียงซ้อนกันต่อค่าความเป็นแม่เหล็กรวมของลวดตัวนำยิ่ง磁场โดยเส้น รูปที่ 3-4 แสดงให้เห็นอย่างชัดเจนว่าเส้นลวดตัวนำยิ่ง磁场มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบบางส่วนเมื่อค่าของ σL^2 อยู่ระหว่าง 1 ถึง 10^4 เมตร/โอม ซึ่งผลลัพธ์ที่ได้นี้สอดคล้องกับผลลัพธ์ที่ได้ก่อนหน้านี้ที่แสดงไว้ในเอกสารอ้างอิงที่ [13]

จากผลลัพธ์ที่ได้ในรูปที่ 3-4 ทำให้ทราบว่าค่าความเป็นแม่เหล็กรวมนอกจจะขึ้นอยู่กับความยาวของเส้นลวดและความนำไฟฟ้าของตัวนำปกติ (จากเอกสารอ้างอิงที่ [2]) หรือความลึกผิว (จากเอกสารอ้างอิงที่ [13]) และ ยังขึ้นอยู่กับจำนวนชั้นที่เรียงซ้อนกันของลวดตัวนำยิ่ง磁场อีกด้วย ดังนั้นจากการวิจัยนี้จึงสรุปได้ว่าจำเป็นอย่างยิ่งที่จะต้องคำนึงถึงความยาวของเส้นลวด ความนำไฟฟ้าของตัวนำท่องแสงที่อยู่โดยรอบเส้นลวด และจำนวนชั้นที่เรียงซ้อนกันของเส้นลวดสำหรับการผลิตสายไฟตัวนำยิ่ง磁场ที่จะใช้ในการทำเคเบิล Rutherford สำหรับเครื่องเร่งอนุภาค LHC ต่อไป

รูปที่ 3-4 กราฟแสดงความสัมพันธ์ระหว่างค่าความเป็นแม่เหล็กรวมสูงสุดกับค่าของ σL^2 สำหรับกรณีที่ลวดตัวนำยิ่งยอดหดหายเส้นเรียงช้อนกัน 1-4 ชั้น

สรุปผลและอภิปรายผล

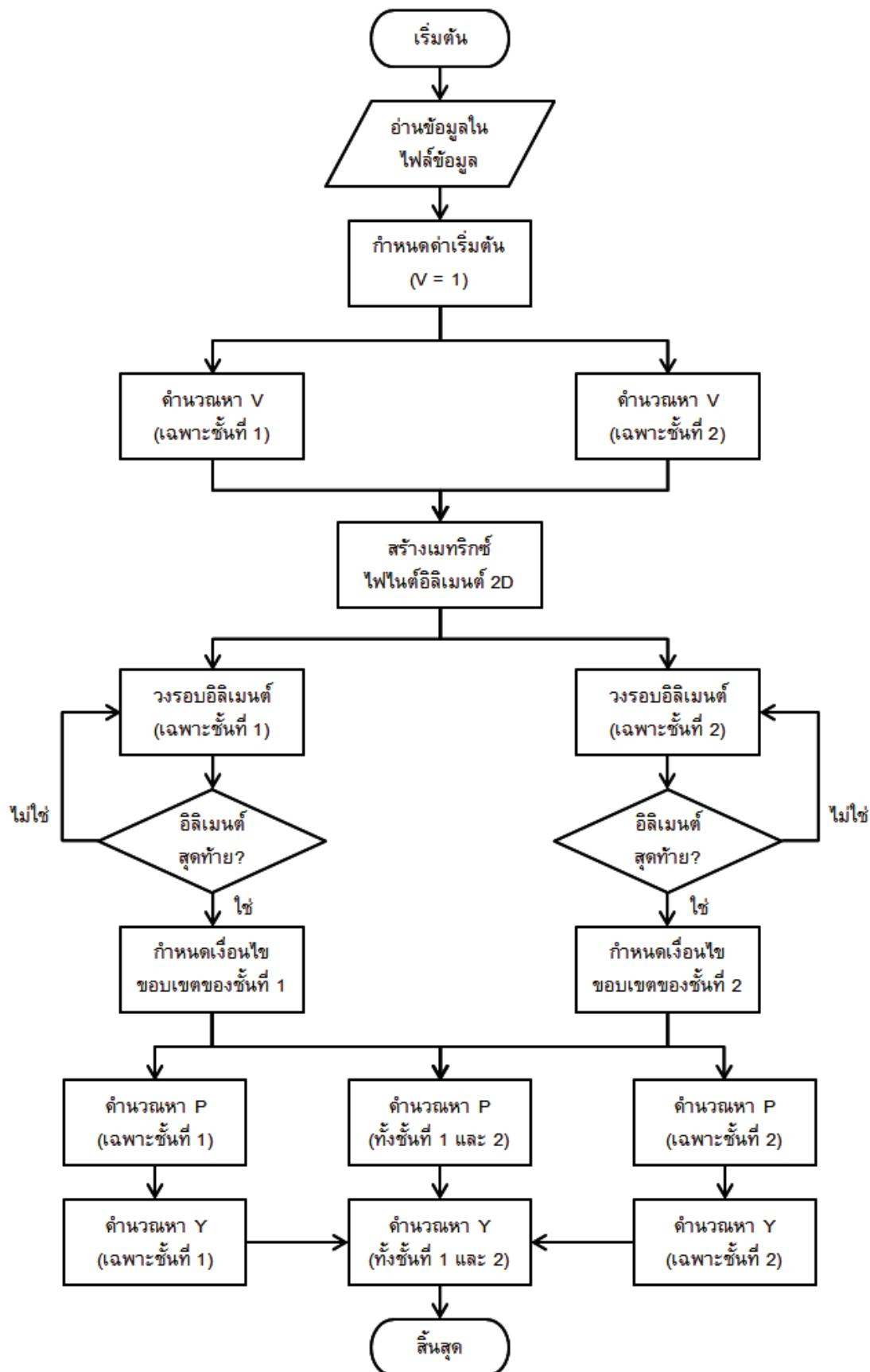
ความรู้เกี่ยวกับความเป็นแม่เหล็กของลวดตัวนำยิ่งยอดมีความสำคัญอย่างยิ่งสำหรับการออกแบบสายไฟที่ทำจากตัวนำยิ่งยอดในกระบวนการผลิตที่ศูนย์วิจัยเชิร์น งานวิจัยนี้ได้นำเสนอเทคนิคใหม่ในการออกแบบสายไฟซึ่งประกอบด้วยลวดตัวนำยิ่งยอดหดหายเส้นเรียงช้อนกันเป็นชั้นๆ ผลลัพธ์จำนวนมากที่ได้จากการรันโปรแกรมแสดงให้เห็นว่าโปรแกรมที่พัฒนาขึ้นทำงานได้อย่างถูกต้องและมีประสิทธิภาพ นอกจากนี้ผลลัพธ์ที่ได้จากการวิจัยนี้ยังพิสูจน์ให้เห็นว่าผลลัพธ์ที่ได้จากการวิจัยก่อนหน้านี้มีความถูกต้องอีกด้วย

วงอิสเทอร์ชิสของความเป็นแม่เหล็กรวมของลวดตัวนำยิ่งยอดหดหายเส้นที่เรียงช้อนกันเป็นชั้นๆแสดงให้เห็นความแตกต่างระหว่างกรณีที่ลวดตัวนำยิ่งยอดมีและไม่มีการเชื่อมต่อทางแม่เหล็กไฟฟ้าแบบสมบูรณ์ โดยสรุปแล้วงานวิจัยนี้ทำให้ทราบเกี่ยวกับพารามิเตอร์ที่ดีที่ควรนำมาใช้ประกอบการออกแบบความเป็นแม่เหล็กรวมของลวดตัวนำยิ่งยอดหดหายเส้นที่เรียงช้อนกันเป็นชั้นๆนั่นคือ ความยาวของเส้นลวดตัวนำยิ่งยอด ความนำไฟฟ้าของตัวนำปกติที่ใช้เป็นเมทริกซ์ และจำนวนชั้นที่เรียงช้อนกันของเส้นลวด ซึ่งพารามิเตอร์สองตัวแรกได้มาจากการวิจัยก่อนหน้านี้ ส่วนพารามิเตอร์ตัวสุดท้ายเป็นผลที่ได้จากการวิจัยนี้

งานวิจัยที่ 4

วัตถุประสงค์งานวิจัย

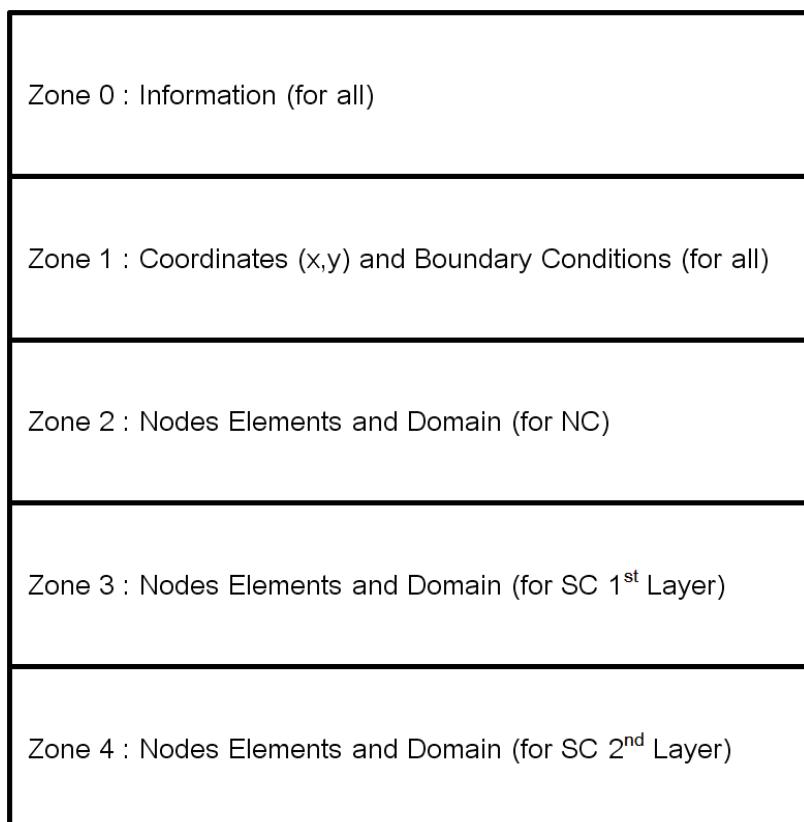
- เพื่อคำนวณหาการสูญเสียกระแสสัลบของลวดตัวนำยิ่งยอดหอยเส้น
- เพื่อแก้ปัญหาทางแม่เหล็กไฟฟ้าแบบสองมิติด้วยระเบียบวิธีไฟโนต์อลิเมนต์
- เพื่อนำผลลัพธ์ที่ได้มาแสดงผลกราฟิกโดยใช้โปรแกรมแมทแลบ
- เพื่อศึกษาคุณสมบัติของลวดตัวนำยิ่งยอดโดยใช้แบบจำลองคอมพิวเตอร์
- เพื่อนำผลลัพธ์ที่ได้ไปประยุกต์ใช้ในงานวิจัยขั้นต่อไป


ระเบียบวิธีวิจัย

เนื่องจากในงานวิจัยที่ 2 มีความจำเป็นที่จะต้องนำเอาค่าของ การสูญเสียกระแสสัลบในตัวนำปกติที่อยู่โดยรอบเส้นลวดตัวนำยิ่งยอด ซึ่งจะเรียกว่า เมทริกซ์ตัวนำ (Conductive Matrix) มาใช้ในการคำนวณหาค่าของแอดมิตเตนซ์ ดังนั้นงานวิจัยนี้จึงมุ่งเน้นไปที่วิธีการคำนวณหาค่าของ การสูญเสียกระแสสัลบและใช้โปรแกรมแมทแลบในการประมวลผลหาค่าดังกล่าว นอกจากนี้ยังใช้โปรแกรมแมทแลบในการแสดงผลกราฟิกของสนามไฟฟ้าและกระแสที่ไหลอยู่ในเมทริกซ์ตัวนำอีกด้วย

การสูญเสียกระแสสัลบ (AC Losses หรือ Joule Losses) ในสายไฟที่ประกอบด้วยลวดตัวนำยิ่งยอดหอยเส้นผังตัวอยู่ในตัวนำทางไฟฟ้าสามารถหาค่าได้จากสูตรที่ใช้ในการแก้ปัญหาอาร์โนนิกส์แบบ 2D หรือจากการแก้สมการที่ (4-1) โดยการกำหนดค่าของ V ลงไปในลวดตัวนำยิ่งยอดเดตเลสัน (ดูรายละเอียดเพิ่มเติมได้ในเอกสารอ้างอิงที่ [2])

$$\Delta V = \nabla^2 V = 0 \quad (4-1)$$


รูปที่ 4-1 แสดงให้เห็นผังงาน (Flowchart) ของโปรแกรมที่พัฒนาขึ้นบนแมทแลบเพื่อใช้ในการคำนวณหาค่าของ การสูญเสียกระแสสัลบ (P) และค่าของแอดมิตเตนซ์ (Y) สำหรับปัญหาของลวดตัวนำยิ่งยอดที่เรียงชื่อ กันสองชั้น (กรณีทดสอบ) เริ่มต้นจากการอ่านข้อมูลของปัญหาในไฟล์ข้อมูล (.ascii) และทำการกำหนดค่าเริ่มต้น จำนวนคำนวณหาค่าของ V_1 และ V_2 โดยคิดเฉพาะชั้นที่ 1 และชั้นที่ 2 ตามลำดับ ขั้นตอนต่อมาทำการสร้างเมทริกซ์ไฟโนต์อลิเมนต์แบบ 2 มิติ และทำการวนลูป围绕อลิเมนต์ที่อยู่ในลวดตัวนำยิ่งยอดโดยคิดเฉพาะเส้นลวดที่อยู่ในชั้นที่ 1 และชั้นที่ 2 ตามลำดับ เมื่อวนลูปจนครบทุกอลิเมนต์แล้วจึงทำการกำหนดเงื่อนไขของเขต (Boundary Condition) ขั้นตอนสุดท้ายทำการคำนวณหาค่าของสนามไฟฟ้า E_1 และ E_2 จำนวน คำนวณหาค่าของ การสูญเสียกระแสสัลบ P_1 , P_2 และ P_{12} และจึงนำค่าของ การสูญเสียกระแสสัลบดังกล่าวไปคำนวณหาค่าของ แอดมิตเตนซ์ Y_1 , Y_2 และ Y_{12} ต่อไป

รูปที่ 4-1 ผังงานของโปรแกรมสำหรับหาค่าการสูญเสียกระแสสลับและค่าแอดมิตเตนซ์

จากผังงานของโปรแกรมในรูปที่ 4-1 สามารถแบ่งการทำงานของโปรแกรมดังกล่าวออกได้เป็น 3 ส่วนคือ Pre-Process, FEM-Process และ Post-Process ในส่วนของ Pre-Process ประกอบด้วย การอ่านไฟล์ข้อมูล การกำหนดค่าเริ่มต้น และการคำนวณหาค่าของ V ในส่วนของ FEM-Process ประกอบด้วยขั้นตอนการแก้ปัญหาด้วยระเบียบวิธีไฟโนต์อิลิเมนต์ และในส่วนของ Post-Process ประกอบด้วย การคำนวณหาค่าของ E , P และ Y ตามลำดับ

สำหรับไฟล์ข้อมูล (.ascii) นั้นอาจได้จากโปรแกรม Gmsh (ดังที่ได้กล่าวไว้ในงานวิจัยที่ 1) หรือได้จากโปรแกรมแมทแลป (ดังที่ได้กล่าวไว้ในงานวิจัยที่ 2) ส่วนข้อมูลที่อยู่ในไฟล์ข้อมูลจะมีการจัดเรียงดังแสดงในรูปที่ 4-2 โดยที่โซน 0 จะเป็นข้อมูลทั่วไป เช่น จำนวนจุดต่อ (Node) จำนวนอิลิเมนต์ (Element) จำนวนโดเมน (Domain) เป็นต้น โซน 1 จะเป็นพิกัด (x,y) ของจุดต่อ และเงื่อนไขขอบเขตของจุดต่อนั้น โซน 2 ถึงโซน 4 จะเป็นหมายเลขจุดต่อทั้ง 3 จุดของอิลิเมนต์สามเหลี่ยมแต่ละอิลิเมนต์ และโดเมนของอิลิเมนต์นั้น โดยที่โซน 2 สำหรับอิลิเมนต์ที่อยู่ในโดเมนของตัวนำปกติ (Normal Conductor หรือ NC) ส่วนโซน 3 และโซน 4 สำหรับอิลิเมนต์ที่อยู่ในโดเมนของลวดตัวนำยิ่งยอด (Superconductor หรือ SC) ที่เรียงอยู่ในชั้นที่ 1 และชั้นที่ 2 ตามลำดับ

รูปที่ 4-2 การจัดเรียงข้อมูลในไฟล์ข้อมูล

จากรูปที่ 4-2 เมื่อคิดเฉพาะเส้นลวดตัวนำยิ่งยอดที่อยู่ในชั้นที่ 1 ก็จะให้โดเมนของอิลิเมนต์ที่อยู่ในโซน 4 เมื่อونกับโดเมนของอิลิเมนต์ที่อยู่ในโซน 2 คือตัวนำปกติ และในทางกลับกันเมื่อคิดเฉพาะเส้นลวดตัวนำยิ่งยอดที่อยู่ในชั้นที่ 2 ก็จะให้โดเมนของอิลิเมนต์ที่อยู่ในโซน 3 เมื่อونกับโดเมนของอิลิเมนต์ที่อยู่ในโซน 2 ในกรณีที่เส้นลวดตัวนำยิ่งยอดเรียงซ้อนกันหลายชั้นก็จะมีโซนเพิ่มขึ้น เช่น ในกรณีที่เรียงซ้อนกัน 3 และ 4 ชั้นก็จะมีโซน 5 และ 6 สำหรับอิลิเมนต์ที่อยู่ในโดเมนของลวดตัวนำยิ่งยอดที่เรียงอยู่ในชั้นที่ 3 และชั้นที่ 4 ตามลำดับ เป็นต้น

หลังจากที่ได้ค่าของสนามไฟฟ้า E_1 และ E_2 แล้วจึงคำนวณหาค่าของกระแสสูญเสียกระแสลับ P_1 (จาก E_1), P_2 (จาก E_2) และ P_{12} ซึ่งมีค่าเท่ากับ P_{21} (จาก E_1 และ E_2) จากสมการที่ (2-2) ในงานวิจัยที่ 2 จะได้สมการความสัมพันธ์ของการสูญเสียกระแสลับและแอดมิตตันซ์ เมื่อพิจารณาเฉพาะชั้นที่ 1 และชั้นที่ 2 ดังนี้

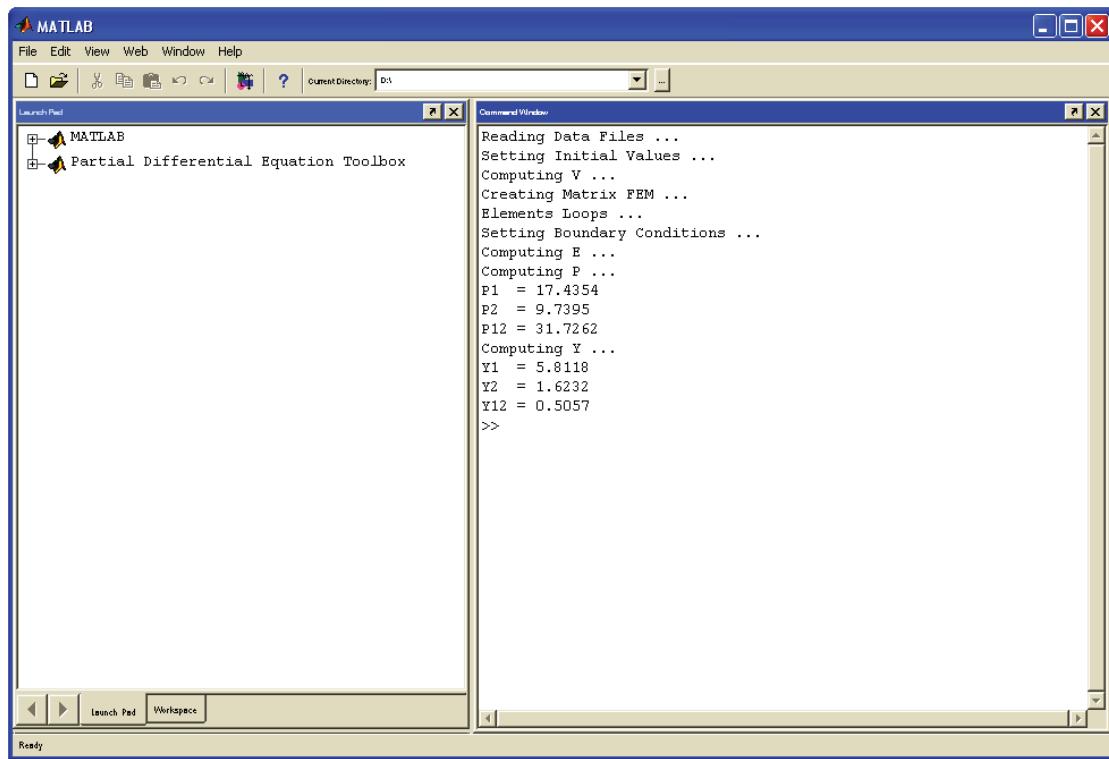
$$P_1 = 3Y_1V_1^2 \quad (4-2)$$

$$P_2 = 6Y_2V_2^2 \quad (4-3)$$

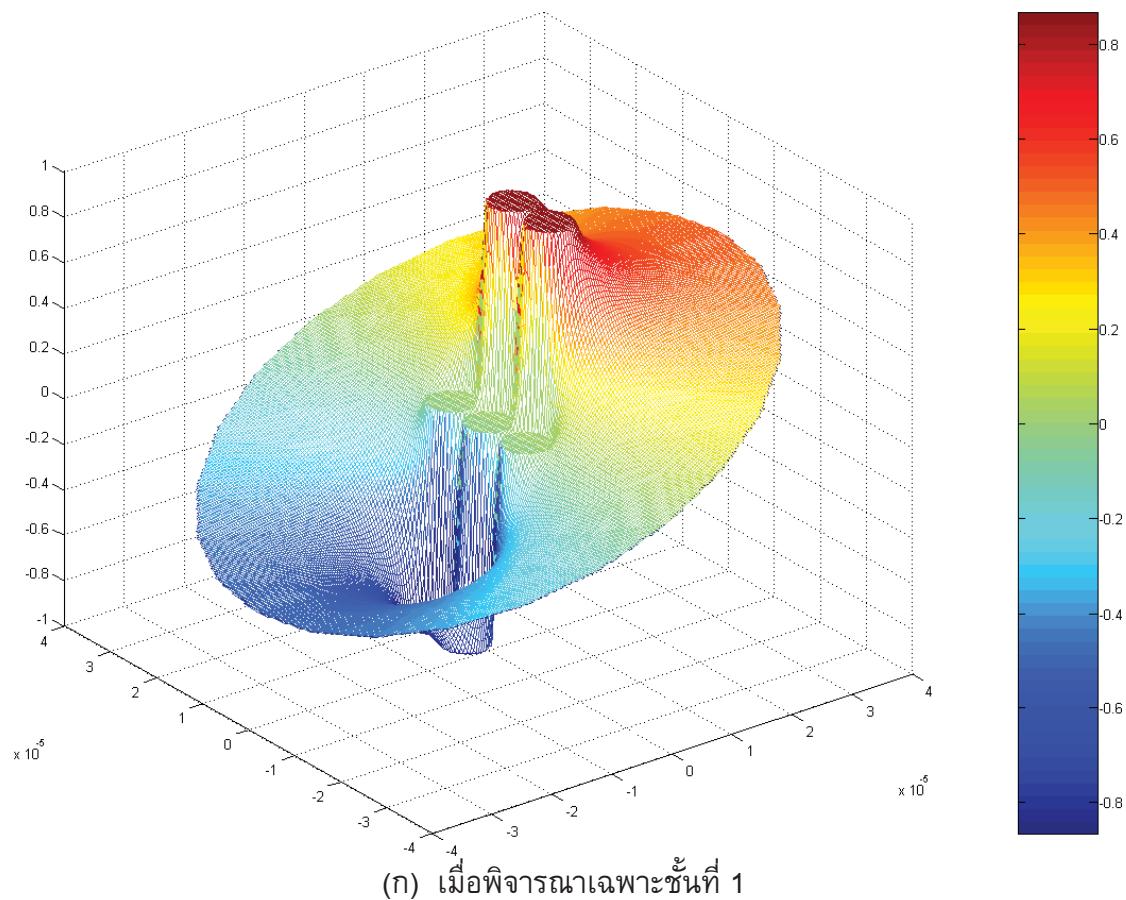
และจากสมการที่ (2-3) จะได้สมการความสัมพันธ์ของการสูญเสียกระแสลับและแอดมิตตันซ์ เมื่อพิจารณาทั้งชั้นที่ 1 และชั้นที่ 2 พร้อมกันดังนี้

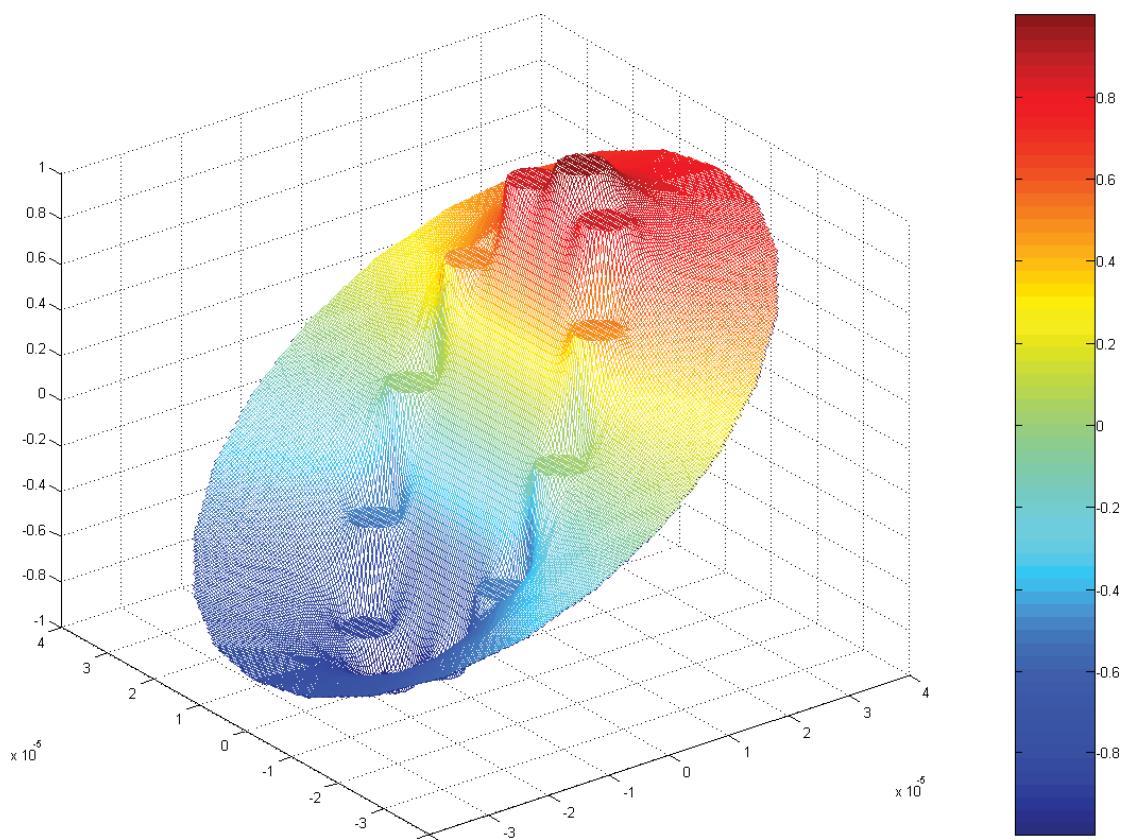
$$P_{12} = P_{21} = 3Y_1V_1^2 + 9Y_{12}V_1V_2 + 6Y_2V_2^2 \quad (4-4)$$

ดังนั้นจากสมการที่ (4-2), (4-3) และ (4-4) เมื่อแทน $V_1 = V_2 = 1$ โวลต์ จะได้สมการของแอดมิตตันซ์ในฟังก์ชันของการสูญเสียกระแสลับดังนี้

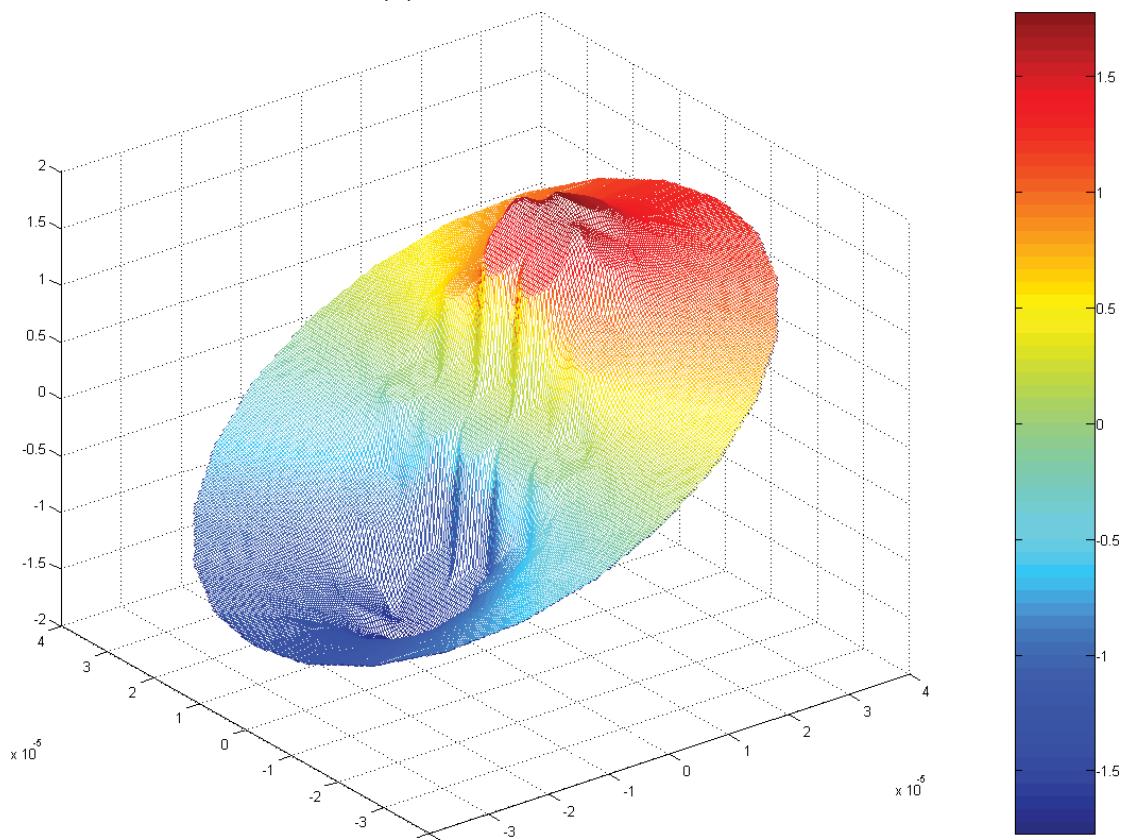

$$Y_1 = P_1 / 3 \quad (4-5)$$

$$Y_2 = P_2 / 6 \quad (4-6)$$

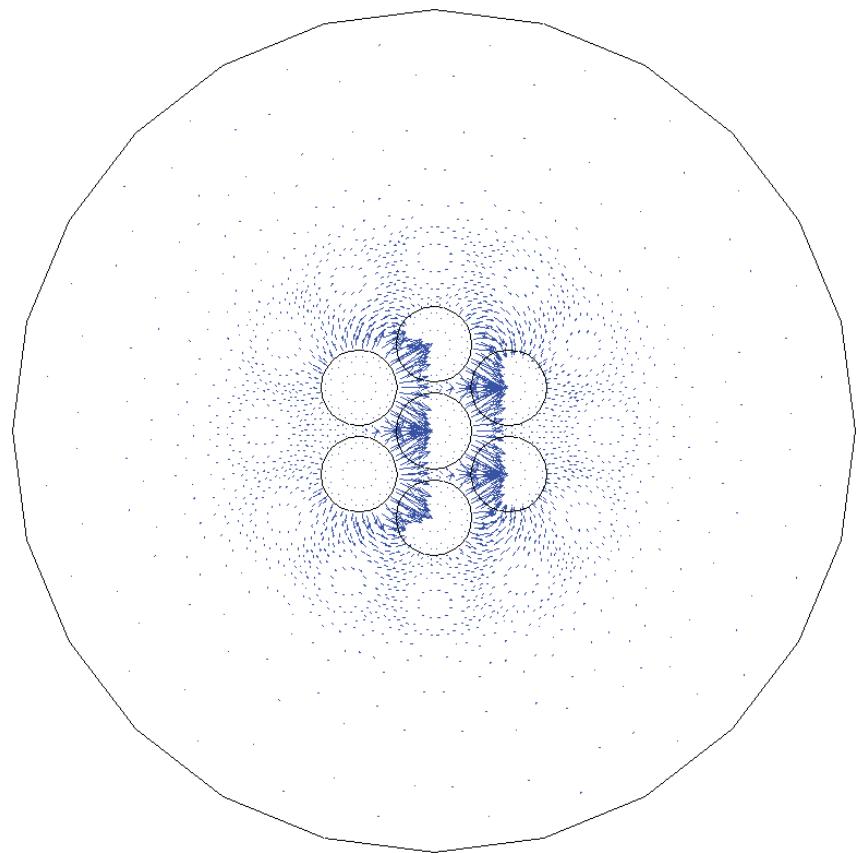

$$Y_{12} = Y_{21} = (P_{12} - 3Y_1 - 6Y_2) / 9 \quad (4-7)$$


ผลการวิจัย

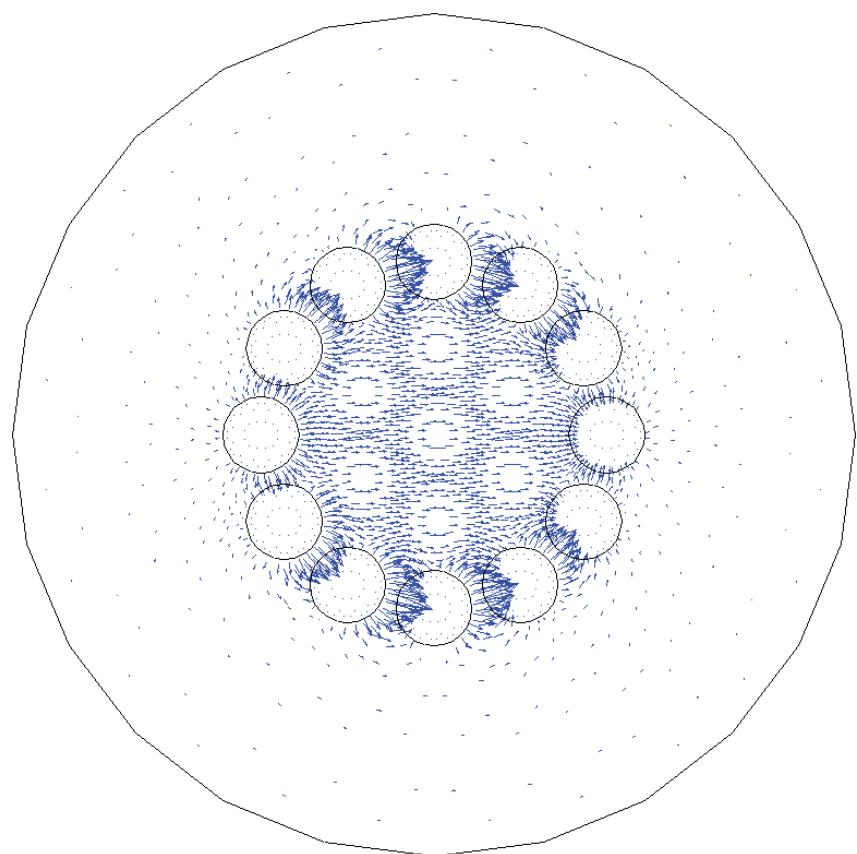
สำหรับกรณีทดสอบคือกรณีของเส้นลวดตัวนำยิ่งยอดเรียงซ้อนกัน 2 ชั้น ผลลัพธ์ที่ได้จากการรันโปรแกรมที่พัฒนาขึ้นบนแมทแลปแสดงดังรูปที่ 4-3 จะเห็นได้ว่าโปรแกรมสามารถคำนวณหาค่าของการสูญเสียกระแสลับและค่าของแอดมิตตันซ์ได้อย่างถูกต้องและครบถ้วน ส่วนผลกราฟิกของการกระจายของสนามไฟฟ้าในโดเมนของปัญหาที่ศึกษาแสดงดังรูปที่ 4-4 (ก), (ข) และ (ค) เมื่อพิจารณาเฉพาะชั้นที่ 1, ชั้นที่ 2 และทั้ง 2 ชั้น ตามลำดับ ส่วนผลกราฟิกของการกระจายของกระแสไฟฟ้าที่ให้ระหว่างเส้นลวดตัวนำยิ่งยอดในเมทริกซ์ตัวนำแสดงดังรูปที่ 4-5 (ก), (ข) และ (ค) เมื่อพิจารณาเฉพาะชั้นที่ 1, ชั้นที่ 2 และทั้ง 2 ชั้น ตามลำดับ



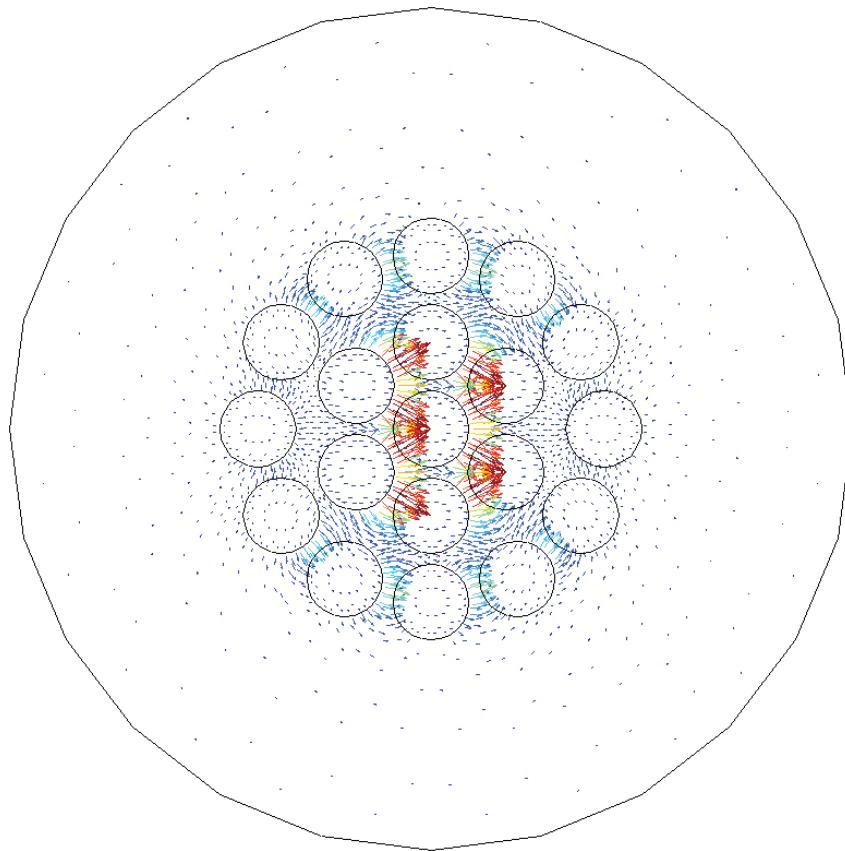
รูปที่ 4-3 ผลลัพธ์ที่ได้จากการรันโปรแกรมบนแมทแลปสำหรับกรณีทดสอบ (สองชั้น)



(u) เมื่อพิจารณาเฉพาะชั้นที่ 2



(v) เมื่อพิจารณาทั้งชั้นที่ 1 และชั้นที่ 2


รูปที่ 4-4 การกระจายของสนามไฟฟ้าในโดเมนของปัญหาที่ศึกษาสำหรับกรณีทดสอบ

(ก) เมื่อพิจารณาเฉพาะชั้นที่ 1

(ข) เมื่อพิจารณาเฉพาะชั้นที่ 2

(ค) เมื่อพิจารณาหั้งชั้นที่ 1 และชั้นที่ 2

รูปที่ 4-5 การกระจายของกระแสไฟฟ้าที่ไฟลในเมทริกซ์ตัวนำสำหรับกรณีทดสอบ

จากรูปที่ 4-4 และ 4-5 จะสังเกตเห็นการเปลี่ยนแปลงของสนามไฟฟ้าและการไฟลของกระแสไฟฟ้าในเมทริกซ์ตัวนำที่อยู่โดยรอบเส้นลวดตัวนำยิ่งยวด ซึ่งผลลัพธ์ที่ได้นี้สอดคล้องกับผลลัพธ์ที่ได้ในกรณีของเส้นลวดตัวนำยิ่งยวดจำนวน 7 เส้นที่เรียงชื่องกันชั้นเดียวที่แสดงไว้ในเอกสารอ้างอิงที่ [2] นอกจากนี้ยังพบว่ากระแสไฟฟ้าที่ไฟลระหว่างเส้นลวดตัวนำยิ่งยวดที่อยู่ในชั้นเดียวกันนั้นจะมีค่ามากกว่ากระแสไฟฟ้าที่ไฟลระหว่างเส้นลวดตัวนำยิ่งยวดที่อยู่คู่และชั้นกันโดยสังเกตได้จากทิศทางและความยาวของลูกศรในรูปที่ 4-5 นั้นเอง และยังพบว่ากระแสไฟฟ้าที่ไฟลอยู่ในเมทริกซ์ตัวนำที่อยู่รอบนอกสุดซึ่งไม่มีเส้นลวดตัวนำยิ่งยวดอยู่นั้นจะมีค่าน้อยมากๆ จนแทบจะเป็นศูนย์ ทั้งนี้เนื่องจากค่าความนำไฟฟ้าของเมทริกซ์ตัวนำ (ซึ่งในกรณีนี้ใช้ตัวนำทองแดง) ถูกกำหนดให้มีค่าน้อยกว่าค่าความนำไฟฟ้าของตัวนำยิ่งยวดอยู่มากนั่นเอง

นอกจากผลลัพธ์ที่ได้ในกรณีของเส้นลวดตัวนำยิ่งยวดเรียงชื่องกัน 2 ชั้นแล้ว ยังได้ใช้โปรแกรมดังกล่าวคำนวณหาค่าของกระแสสูญเสียกระแสลับ ($P_1, P_2, P_3, P_{12}, P_{13}$ และ P_{23}) และค่าของแอดมิตเตนซ์ ($Y_1, Y_2, Y_3, Y_{12}, Y_{13}$ และ Y_{23}) ในกรณีของเส้นลวดตัวนำยิ่งยวดเรียงชื่องกัน 3 ชั้น รวมทั้งค่าของการสูญเสียกระแสลับ ($P_1, P_2, P_3, P_4, P_{12}, P_{13}, P_{14}, P_{23}, P_{24}$ และ P_{34}) และค่าของแอดมิตเตนซ์ ($Y_1, Y_2, Y_3, Y_4, Y_{12}, Y_{13}, Y_{14}, Y_{23}, Y_{24}$ และ Y_{34}) ในกรณีของเส้นลวดตัวนำยิ่งยวดเรียงชื่องกัน 4 ชั้นอีกด้วย

สรุปผลและอภิปรายผล

งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาโปรแกรมบนแมทแลปเพื่อใช้ในการคำนวณหาค่าของแรงสูญเสียกระแสสลับและค่าของแอดมิตเตนซ์ ผลลัพธ์ที่ได้จากการวิจัยนี้ได้ถูกนำไปใช้ในงานวิจัยอื่นเพื่อให้ได้ผลลัพธ์ที่จะใช้ในการศึกษาคุณสมบัติของลวดตัวนำยิ่งยอดหดหายเส้นที่เรียงช้อนกันเป็นชั้นๆต่อไป นอกจากนี้อิทธิพลของตัวนำปกติที่อยู่ในเมทริกซ์ตัวนำได้ถูกนำมาพิจารณาด้วยผ่านทางผลกราฟิกของการกระจายของสนามไฟฟ้าและการกระจายของกระแสไฟฟ้าในเมทริกซ์ตัวนำ

สำหรับปัญหาหลักที่พบในงานวิจัยนี้คือเวลาที่ใช้ในการประมวลผลเพื่อหาผลลัพธ์ของโปรแกรมที่พัฒนาขึ้นบนแมทแลป เนื่องจากข้อมูลที่อยู่ในไฟล์ข้อมูลมีมากทั้งจำนวนจุดต่อและจำนวนอิลิเมนต์ทำให้ต้องเสียเวลาในการอ่านข้อมูลในไฟล์ข้อมูล และเนื่องจากเมทริกซ์ไฟล์อิลิเมนต์ที่สร้างขึ้นนั้นมีขนาดใหญ่มากทำให้ต้องเสียเวลาในการคำนวณหาผลลัพธ์อีกด้วย โดยเฉพาะอย่างยิ่งถ้าแบ่งโดเมนของปัญหาอย่างละเอียดมากเท่าไรก็จะต้องใช้เวลามากขึ้นเท่านั้น

- [1] C. Geuzaine and J. F. Remacle, “Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities,” *Int. J. Numer. Meth. Eng.*, vol.79, no.11, pp. 1309-1331, 2009.
- [2] T. Satiramattekul, F. Bouillault, and L. Santandrea, “Modeling of magnetization curves of partially coupled superconducting filaments with dependence of current density according to applied magnetic field,” *IEEE Trans. Magn.*, vol. 42, pp. 887-890, 2006.
- [3] C. P. Bean, “Magnetization of hard superconductors,” *Phys. Rev. Lett.*, vol. 8, pp. 250-253, 1962.
- [4] A. Bossavit, “Numerical modeling of superconductors in three dimensions: a model and a finite element method,” *IEEE Trans. Magn.*, vol. 30, pp. 3363-3366, 1994.
- [5] E. Vinot, G. Meunier, and P. Tixador, “Different formulations to model superconductors,” *IEEE Trans. Magn.*, vol. 36, pp. 1226-1229, 2000.
- [6] S. Stavrev *et al.*, “Comparison of numerical methods for modeling of superconductors,” *IEEE Trans. Magn.*, vol. 38, pp. 849-852, 2002.
- [7] M. Maslouh, F. Bouillault, A. Bossavit, and J. C. Verite, “From Bean’s model to the H-M characteristic of a superconductor: some numerical experiments,” *IEEE Trans. Appl. Supercond.*, vol. 7, pp. 3797-3800, 1997.
- [8] L. Rossi, “The LHC main dipoles and quadrupoles toward series production,” *IEEE Trans. Appl. Supercond.*, vol. 13, pp. 1221-1228, 2003.
- [9] M. N. Wilson, *Superconducting magnets*, Oxford: Clarendon, 1983, pp. 174-176.
- [10] T. Satiramattekul and F. Bouillault, “Magnetization of coupled and noncoupled superconducting filaments with dependence of current density on applied field,” *IEEE Trans. Magn.*, vol. 41, pp. 3751-3753, 2005.

- [11] T. Boutboul, S. L. Naour, D. Leroy, L. Oberli, and V. Previtali, "Critical current density in superconducting Nb-Ti strands in the 100 mT to 11 T applied field range," *IEEE Trans. Appl. Supercond.*, vol. 16, pp. 1184-1187, 2006.
- [12] M. Costa *et al.*, "3D modeling of coupling between superconducting filaments via resistive matrix in ac magnetic field," *IEEE Trans. Appl. Supercond.*, vol. 13, pp. 3634-3637, 2003.
- [13] T. Satiramatekul and F. Bouillault, "Numerical modeling of superconducting filaments for coupled problem," *IEEE Trans. Magn.*, vol. 46, pp. 3229-3232, 2010.
- [14] M. Lylly, A. Stenvall, and R. Mikkonen, "Validation of homogenized filament bundle model in ac loss computations," *IEEE Trans. Appl. Supercond.*, vol. 22, pp. 4705505-4705505, 2012.

ภาคผนวก

ภาคผนวก ก บทความที่กำลังตีพิมพ์ในสารสารวิชาการระดับนานาชาติ

ภาคผนวก ข บทความและโปสเตอร์ที่เผยแพร่ในการประชุมวิชาการระดับนานาชาติ

ภาคผนวก ค บทคัดย่อและโปสเตอร์ที่เผยแพร่ในการประชุมวิชาการระดับชาติ

และรางวัลระดับชาติที่ได้รับ

ภาคผนวก ก

Subject **Compumag 2013 -- IEEE TMAG publication fee**
Sender **Compumag 2013 Organizers <compumag2013@confotool.com>**
Recipient **<thitipong.s@ku.ac.th>**
Copy **<fengtps@gmail.com>**
Reply-To **<editorial@compumag2013.com>**
Date **11.11.2013 21:41**

Dear Dr. Thitipong Satiramatekul

First of all we would like to congratulate that the extended version of your COMPUMAG 2013 paper titled "Modelling of Several Concentric Layers of Superconducting Filaments" has been accepted for publication in the February 2014 issue of the IEEE Transaction on Magnetics.

As it was announced before the COMPUMAG 2013, the conference budget covers only partially the publication fee related to the IEEE Transaction on Magnetics papers, that is why accepted papers are to be charged with 100 EUR. In this letter we would like to ask you to pay this 100 EUR publication fee related to your accepted paper mentioned above. We kindly ask you to make the payment until November 22, 2013. As soon as we receive your payment we will notify IEEE TMAG to include your paper in the Journal.

The payment can be done via the conference website (compumag2013.com) by anybody who participated COMPUMAG2013 (please find the detailed description below). The publication fee can be billed to any organization entered during the payment process. If the invoice is set for an organization resident in the European Union the community taxation number (EU VAT number) of the given organization is necessary to successfully complete the payment.

Thank you very much for your payment and for your contribution to the success of the COMPUMAG2013 Conference by your excellent publication.

Sincerely yours,
Jozsef Pavo
on behalf of the organizers of the COMPUMAG2013 Conference

CONFIRMATION

Dr. Satiramatekul, Thitipong

Kasetsart University

Nakhon Pathom

Faculty of Engineering, Kasetsart University, Kamphaengsaen Campus

73140

Thailand

Diamond Congress Kft.

1012 Budapest, Vérmező út 8.

1015 Budapest, Csalogány u. 28. (office)

Tel.: +36 1 214 7701

Fax.: +36 1 201 2680

Congr. manager: Varga Attila

E-mail: diamond@diamond-congress.hu

Date: 2013-11-13

Compumag 2013

2013-06-30 - 2013-07-04

Programmnumber: 2066

Dear Dr. Satiramatekul, Thitipong

Thank you for your registration. Let us take this opportunity to reconfirm your orders as follows:

Registration number:

Please refer to your FAMILY name or this number (116) at the registration desk.

Registration fee	Early full-registration (non-ICS member)	1	person	760,00 EUR
Optional program	Welcome reception (19:30-21:00 June 30)	1	person	0,00 EUR
Optional program	Gala dinner (19:00-23:00 July 3)	1	person	0,00 EUR
Optional program	Hidden treasures of Budapest (9:30-10:30 July 1)	1	person	0,00 EUR
Registration fee	IEEE TMAG publication fee (1 x 4-page papers)	1	person	100,00 EUR

Total value of orders **860,00 EUR**

Prepaid

Payment (Registration fee)	760,00 EUR
Payment (Registration fee)	100,00 EUR

BALANCE

EUR

0,00

Notice:

After a few days from the receipt of payment, the invoice in pdf format is downloadable from the menu "My invoices" of the registration database.

Modeling of Several Concentric Layers of Superconducting Filaments

T. Satiramatekul¹ and F. Bouillault²

¹Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom 73140, Thailand

²LGEP, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex 91192, France

The knowledge of superconducting filaments magnetization is an important issue of the LHC main magnets design during the construction at CERN. A new method for modeling a superconducting strand which consists of several concentric layers of the filaments is proposed in this paper. The numerical results obtained by using the finite element method demonstrate the coupling and decoupling behaviors between the superconducting filaments via the resistive matrix. The comparison with the earlier work on the superconductor modeling is presented and discussed.

Index Terms—Electromagnetic coupling, finite element methods, magnetization, superconducting filaments

I. INTRODUCTION

IN RECENT YEARS, the superconducting multifilamentary strands making up the Rutherford cables of the LHC main magnets are produced at CERN [1]. In order to design these magnets, knowledge of the current density distribution in the filaments is necessary [2]. For several years, the coupling and decoupling behaviors between the superconducting filaments via the resistive matrix can be described by the numerical results obtained by using the finite element method [3]-[6].

A strand is normally made up of several concentric layers of the filaments. The aim of this work is to model a strand which consists of several layers of the superconducting filaments. For that, we propose a new method by using the superposition theorem and Ohm's law from the circuit theory. In this paper, we study the coupling and decoupling between several superconducting filaments in an applied field. The current density distributions and the magnetization hysteresis loops are presented. The comparison with the earlier work in [4] and [5] is shown too.

II. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several concentric layers of the superconducting filaments with a finite length L , as shown in Fig. 1 (left). The filaments are arranged, within each of the layers, on a circle. The innermost layer (1st layer) and outermost layer (n^{th} layer) are made of 6 filaments and $6 \times n$ filaments, respectively, with one filament at the centre of the strand. For a test model in Fig. 1 (right), a strand formed of two adjacent layers of the filaments is proposed. All filaments are embedded in a normal resistive matrix. The external field (B_a) is applied in the direction perpendicular to the filament axis (z axis). The current density is assumed to depend on time (t) and 2-D Cartesian coordinates (x, y). For simplicity and due to the source field distribution, we suppose that the voltages and the currents are in the form of a sinusoid (see in [7] for the influence of nonsinusoidal case). For the i^{th} layer, we have

$$[V_{ik} \quad I_{ik}]' = [V_i \quad I_i]' \times \sin[(k-1)2\pi/n_i] \quad (1)$$

Manuscript received June 6, 2013. Corresponding author: Thitipong Satiramatekul (e-mail: thitipong.s@ku.ac.th).

Digital Object Identifier inserted by IEEE

where $k = 1, 2, \dots, n_i$ and $n_i = 6 \times i$.

Starting from the superposition theorem, by feeding only the i^{th} layer with the voltage V_i , the AC losses P_i in the resistive matrix is obtained by

$$P_i = Y_i V_i^2 \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i] \quad (2)$$

where the admittance $Y_i = I_i/V_i$. Then, feeding two adjacent layers together with the voltages V_i and V_j , the AC losses P_{ij} which is equal to P_{ji} can be obtained by

$$P_{ij} = (Y_i V_i^2 + Y_{ij} V_i V_j) \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i] + (Y_{ij} V_i V_j + Y_j V_j^2) \sum_{k=1}^{n_j} \sin^2[(k-1)2\pi/n_j]. \quad (3)$$

Furthermore, the AC losses P_i and P_{ij} can be calculated by a 2-D formulation of a harmonic problem with the imposed values $V_i = V_j = 1$ [5]. Therefore, we can deduce Y_i and Y_{ij} from (2) and (3). For a test case of two layers, we obtain

$$Y_1 = \frac{P_1}{3V_1^2}, \quad Y_2 = \frac{P_2}{6V_2^2}, \quad Y_{12} = \frac{P_{12} - 3Y_1 V_1^2 - 6Y_2 V_2^2}{9V_1 V_2}. \quad (4)$$

Note that for n layers strand, the total number of computations to obtain Y is $n \times (n+1)/2$, the total number of filaments in the strand is $N+1$ where

$$N = 6 \times \sum_{i=1}^n i. \quad (5)$$

By using Ohm's law, we obtain the relation between the currents inside the filaments and the voltages which can be written in the matrix form as follows

$$I = \begin{bmatrix} I_{1k} \\ I_{2k} \\ \vdots \\ I_{nk} \end{bmatrix} = C \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = C[Y] \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = C[Y]V \quad (6)$$

$$C = \begin{bmatrix} C_{1k} & 0 & \cdots & 0 \\ 0 & C_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{nk} \end{bmatrix}, \quad [Y] = \begin{bmatrix} Y_1 & Y_{12} & \cdots & Y_{1n} \\ Y_{12} & Y_2 & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1n} & Y_{2n} & \cdots & Y_n \end{bmatrix} \quad (7)$$

where C_{ik} are the values of the sinusoid. For the filament at the centre, due to the symmetry $V_0 = 0$ and naturally $I_0 = 0$. Note

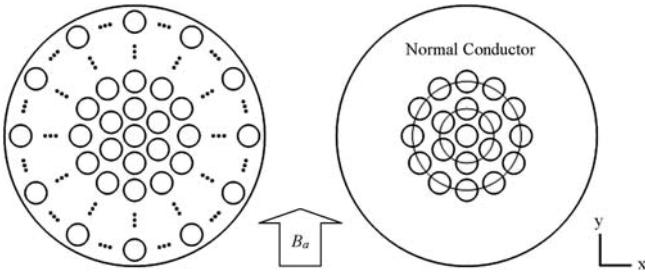


Fig. 1. Model of a strand composed of n concentric layers of the filaments (on the left) and a test model of two layers (on the right).

that the square matrix $[Y]$ is a symmetric matrix. The dimensions of C and $[Y]$ are $N \times n$ and $n \times n$, respectively.

III. NUMERICAL MODELING

In order to characterize the nonlinear electric property of the superconductors, the behavior laws between the current density and the electric field are proposed in [8]-[11]. For that, in this work, we use an extension of Bean's critical state model (see in [12]). A geometric model of the problem, as in Fig. 1, has been recently created by using a finite element mesh generator. The results of the problem which can be obtained by modifying the finite element program of LGEP are the electric field. The currents circulating in the filaments at each iteration p can be derived from [4]

$$I^p = ([A_{ev}]^T E^p + [A_v] E_0^p) \times \Delta t + I^{p-1} \quad (8)$$

where $[A_{ev}]$ and $[A_v]$ indicate the matrix of rigidity and the matrix of the electric resistance, respectively [5]. E is the vector of the electric field and the voltage per unit of length in the filament E_0 is defined as follows

$$E_0 = -CV / L. \quad (9)$$

By replacing (6) in (8) and using (9), we have

$$V^p = [A]^{-1} B \quad (10)$$

where (in the case of n layers, the dimensions of $[A]$, B , and D are $n \times n$, $n \times 1$, and $N \times n$, respectively)

$$[A] = D^T D, B = D^T ([A_{ev}]^T E^p \times \Delta t + I^{p-1}) \quad (11)$$

$$D = C[Y] + [A_v] C \times \Delta t / L. \quad (12)$$

By using V , we obtain E_0 and then I from (9) and (8), respectively. Finally, we can solve the problem with the following matrix system

$$[M] \partial_t J + [A_e] E + [A_{ev}] E_0 = F \quad (13)$$

where $[M]$ and $[A_e]$ indicate the matrix of mass and the matrix of rigidity, respectively. J and F are the vector of the current density and the vector of source terms, respectively.

Otherwise, by changing the variables, we have

$$V = -[C' C]^{-1} C' E_0 \times L. \quad (14)$$

By replacing (14) in (6) and then in (8), so we have

$$E_0^p = [A]^{-1} B \quad (15)$$

where (in this case, the dimensions of $[A]$ and B are $N \times N$ and $N \times 1$, respectively)

$$[A] = -C[Y][C' C]^{-1} C' \times L - [A_v] \times \Delta t \quad (16)$$

$$B = [A_{ev}]^T E^p \times \Delta t + I^{p-1}. \quad (17)$$

Then I is obtained from (8) by using E_0 , and finally the

problem can be solved with (13).

In order to reduce the computation time, we take into account the symmetry of the problem and model only a quarter of the domain in Fig. 1. In this case, the number of filaments in the modeled domain N_i is equal to

$$N_i = \begin{cases} N_{i-1} + (1 + 3 \times i / 2) \\ N_{i-1} + (2 + 3 \times (i - 1) / 2) \end{cases} \quad (18)$$

where $N_1 = 3$, the first equation uses for an even number of layers ($i = 2, 4, \dots$) and the second uses for an odd number of layers ($i = 3, 5, \dots$).

Because there is no current for the filaments situated on the y axis. So we consider the current only inside $N_i - (i+1)$ filaments for a number of layers i . For example, a test case of two layers, we have $N_2 = 7$ and consider the current only inside 4 filaments.

IV. SIMULATION RESULTS

A. Testing Model

The series of simulations are realized for testing our model. In the first series, we make simulations of a strand composed of two layers of 19 superconducting filaments with a filament diameter of 7 μm in a copper matrix with the electrical conductivity $\sigma = 10^{10} \text{ S/m}$ and the critical current density $J_c = 2,000 \text{ A/mm}^2$ at $B_{a,max} = 20 \text{ mT}$, 50 Hz in order to approach the real structure of the LHC strand [1].

Fig. 2 shows the simulation results of the current density distributions in the modeled domain (Fig. 1 (right)) at partial (left) and total (right) penetrations. The figures on the top and the bottom show respectively the cases of full coupling and full decoupling. We can see the persistent current shells in the filaments. These results are in agreement with those in [4], [5], and [13] (theoretical results). We find again that the situation of partial coupling appears when the length of the filament is a few μm . These results confirm that our model works well and efficiently.

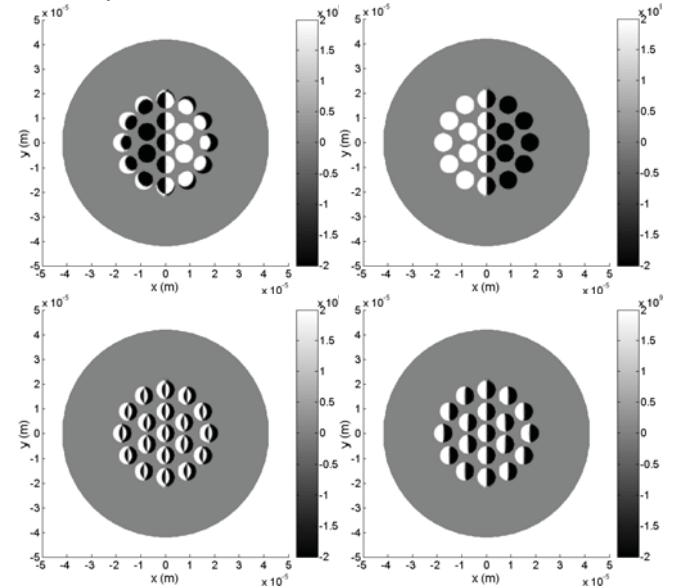


Fig. 2. Current density distributions in the 19 filaments for a test model: full coupling case (on the top) and full decoupling case (on the bottom).

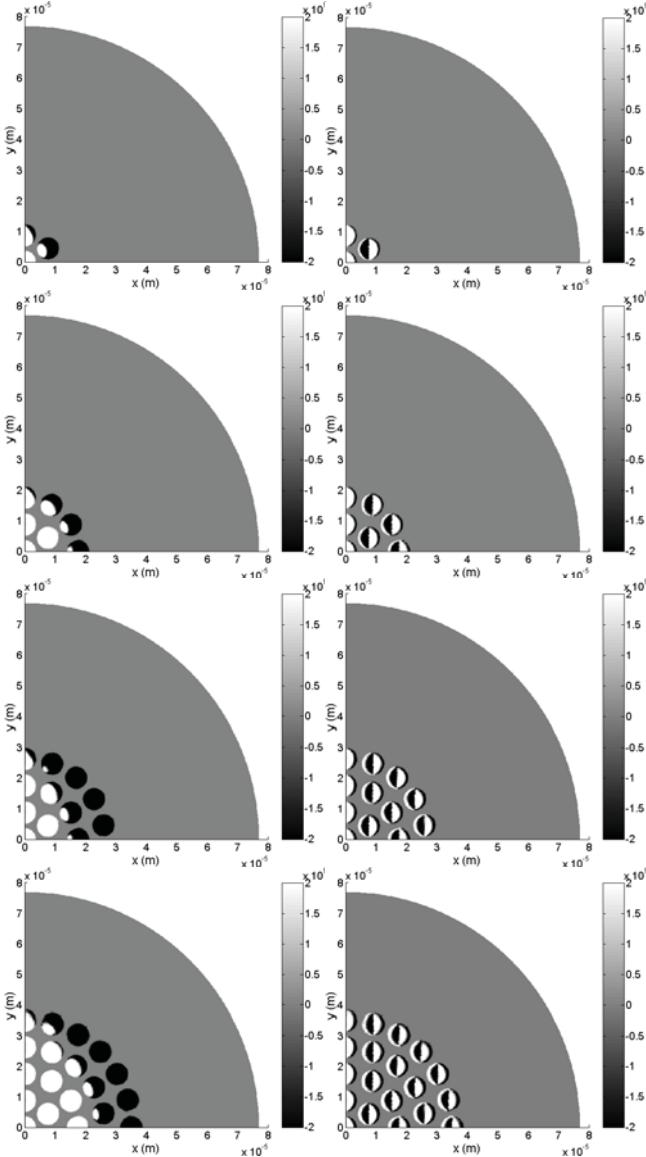


Fig. 3. Current density distributions in the modeled domain for several layers of the superconducting filaments: full coupling case (on the left) and full decoupling case (on the right).

The next series of simulations is realized on several layers of the superconducting filaments immersed in an applied field with $B_{a,max} = 40$ mT. The Dirichlet and Neumann boundary conditions are imposed on the edge of the modeled domain. The external boundary of the normal conductor is fixed at twice the distance from the center point to the edge of the outermost filament of 4 layers strand. Fig. 3 shows the results of the current density distributions at partial penetrations for the cases of full coupling (left) and full decoupling (right).

B. Computing Magnetization

Our model permits the calculation of the magnetization. Fig. 4 compares four magnetization hysteresis loops for four studied cases. When the filaments are fully coupled, the magnetization value depends on the number of layers or the total number of filaments. However, this value is almost the

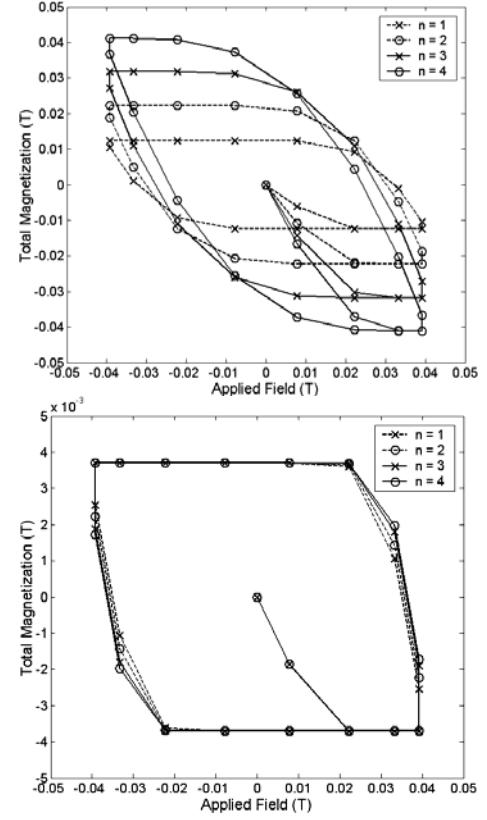


Fig. 4. Comparison of the magnetization hysteresis loops for several layers of the superconducting filaments: full coupling case (on the top) and full decoupling case (on the bottom).

same and is equal to that of one filament [4], whatever the number of layers, when these filaments are fully decoupled.

The total magnetization per unit of superconductor volume versus the number of layers is presented in Fig. 5. In the case of fully coupled filaments, the magnetization increases linearly with the number of layers.

Moreover, the homogenization of several superconducting filaments can be modeled as a homogenized filament zone [14] and a formula for computing the magnetization per unit of superconductor volume at saturation of this homogenized filament (M_s) is also proposed in [5] by assuming that its critical current is equal to that of several filaments. For a strand with i layers, we have

$$M_s = 4\mu_0 J_c R / (3\pi) \quad (19)$$

$$R = (2 \times i + 1) \times r + (i \times d) \quad (20)$$

where μ_0 is the permeability of vacuum. R , r , and d are the radius of the homogenized filament, the radius of the superconducting filament, and the space between filaments, respectively. In this case, the analytical value of the magnetization per unit of superconductor volume (1st method) is almost the same as the numerical value, as shown in Fig. 5.

In addition, the magnetization per unit of superconductor volume for a multifilamentary strand (FEM) is more important than for a homogenized filament with the same volume of superconducting material (2nd method) because of the space between filaments, as shown in Fig. 5. In fact, the radius R in (19) and (20) is always greater than the radius of this

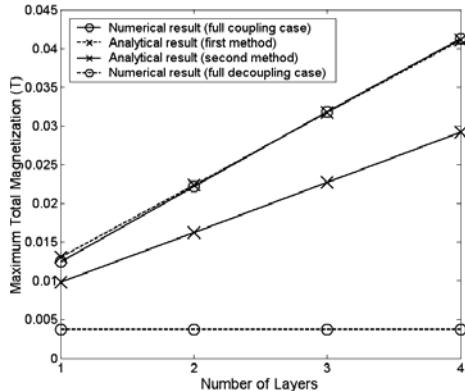


Fig. 5. Comparison of the numerical and analytical results of the maximum total magnetization per unit of superconductor volume versus the number of layers.

homogenized filament which is equal to $\sqrt{(N+1) \times r}$.

C. Taking into account Conductive Matrix

In [5] and [6], we showed that the best intrinsic parameters to characterize the effect of coupling for a given geometry and a given frequency are the filament length and the electrical conductivity of the conductive matrix (σ) or the skin depth in the conductive matrix (δ). Then it is interesting to study the influence of the number of layers or the number of filaments on the magnetization. As in [5], for the i^{th} layer of the fully coupled filaments, we find that

$$\sum_{k=1}^{N+1} I_k = (N - 2 \times i) \times I_c, \quad I_c = J_c \pi r^2 \quad (21)$$

where I_c is the critical current in a superconducting filament. I_k is the current in the k^{th} filament, its value is positive and negative if this filament is situated on the right side and the left side of the y axis, respectively.

Equation (21) shows that the total magnetization per unit of superconductor volume depends on the number of filaments and the number of layers. The last series of simulations is made at a given frequency of the applied field (50 Hz). Fig. 6 shows clearly that the partial coupling occurs when the value of σL^2 is approximately between 1 and 10^4 m/Ohm. This result is in agreement with that in [6]. The advantage of this result allows us to know that the value of the magnetization depends on, apart from L and δ [5] or σ [6], the number of layers of the filaments too. Finally, for a given configuration with a copper matrix, the critical length that the filaments will be fully decoupled can be found. In summary, it is necessary to take into account the length of the filament, the conductivity of the matrix, and also the number of layers for the manufacture of the superconducting strands.

V. CONCLUSION

This work is related to a novel approach for modeling a superconducting strand consisting of several concentric layers of the filaments in a conductive matrix with respect to the earlier work. The quantitative evaluation of the obtained results was performed in order to check our proposed model. In fact, the results showed in this paper improve on our earlier

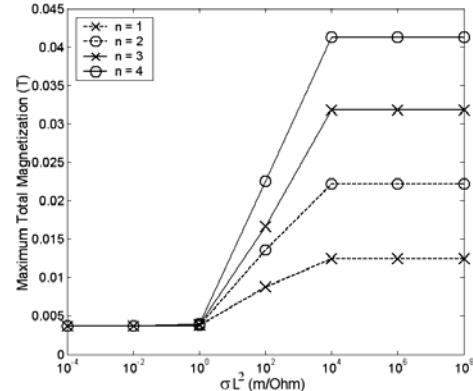


Fig. 6. Maximum total magnetization per unit of superconductor volume versus the value of σL^2 for several layers of the superconducting filaments.

work. This study allows us to know more about a good parameter to model the magnetization of several concentric layers of the superconducting filaments.

ACKNOWLEDGMENT

This work was supported by OHEC, TRF, and Kasetsart University under Grant MRG5480287.

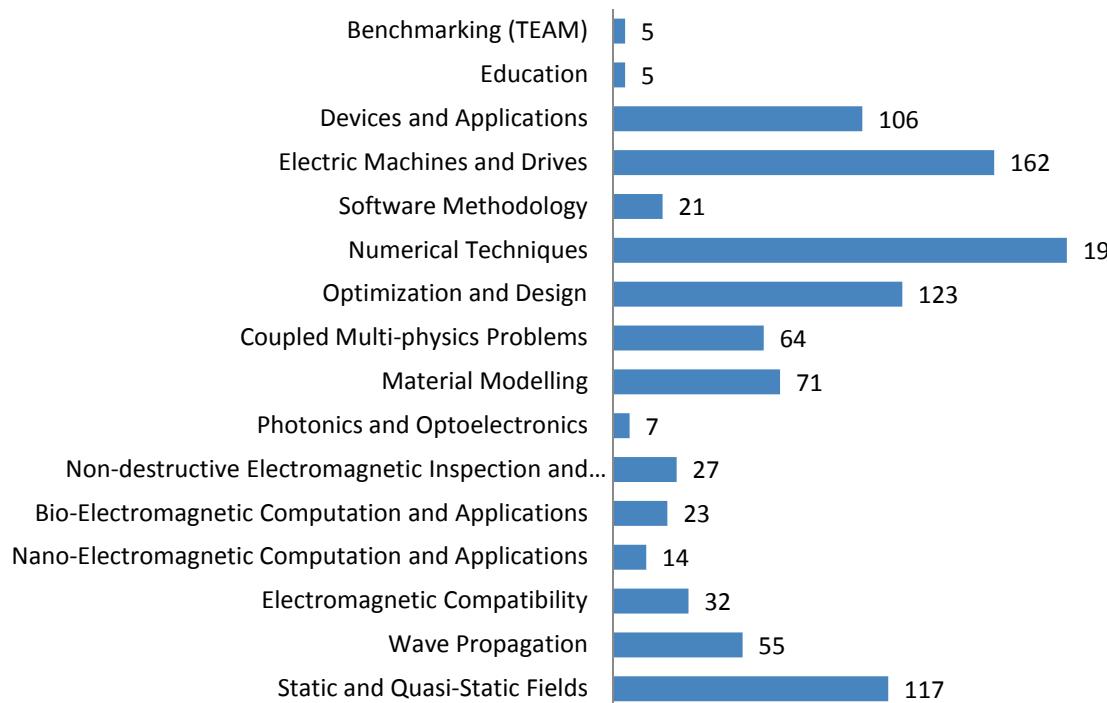
REFERENCES

- [1] L. Rossi, "The LHC main dipoles and quadrupoles toward series production," *IEEE Trans. Appl. Supercond.*, vol. 13, pp. 1221-1228, 2003.
- [2] T. Boutboul, S. L. Naour, D. Leroy, L. Oberli, and V. Previtali, "Critical current density in superconducting Nb-Ti strands in the 100 mT to 11 T applied field range," *IEEE Trans. Appl. Supercond.*, vol. 16, pp. 1184-1187, 2006.
- [3] M. Costa *et al.*, "3D modeling of coupling between superconducting filaments via resistive matrix in ac magnetic field," *IEEE Trans. Appl. Supercond.*, vol. 13, pp. 3634-3637, 2003.
- [4] T. Satiramatekul and F. Bouillault, "Magnetization of coupled and noncoupled superconducting filaments with dependence of current density on applied field," *IEEE Trans. Magn.*, vol. 41, pp. 3751-3753, 2005.
- [5] T. Satiramatekul, F. Bouillault, and L. Santandrea, "Modeling of magnetization curves of partially coupled superconducting filaments with dependence of current density according to applied magnetic field," *IEEE Trans. Magn.*, vol. 42, pp. 887-890, 2006.
- [6] T. Satiramatekul and F. Bouillault, "Numerical modeling of superconducting filaments for coupled problem," *IEEE Trans. Magn.*, vol. 46, pp. 3229-3232, 2010.
- [7] T. Satiramatekul and F. Bouillault, "Finite element modeling of superconducting magnet," *IEEE Trans. Appl. Supercond.*, vol. 20, pp. 1634-1637, 2010.
- [8] C. P. Bean, "Magnetization of hard superconductors," *Phys. Rev. Lett.*, vol. 8, pp. 250-253, 1962.
- [9] A. Bossavit, "Numerical modeling of superconductors in three dimensions: a model and a finite element method," *IEEE Trans. Magn.*, vol. 30, pp. 3363-3366, 1994.
- [10] E. Vinot, G. Meunier, and P. Tixador, "Different formulations to model superconductors," *IEEE Trans. Magn.*, vol. 36, pp. 1226-1229, 2000.
- [11] S. Stavrev *et al.*, "Comparison of numerical methods for modeling of superconductors," *IEEE Trans. Magn.*, vol. 38, pp. 849-852, 2002.
- [12] M. Maslouh, F. Bouillault, A. Bossavit, and J. C. Verite, "From Bean's model to the H-M characteristic of a superconductor: some numerical experiments," *IEEE Trans. Appl. Supercond.*, vol. 7, pp. 3797-3800, 1997.
- [13] M. N. Wilson, *Superconducting magnets*, Oxford: Clarendon, 1983, pp. 174-176.
- [14] M. Lylly, A. Stenvall, and R. Mikkonen, "Validation of homogenized filament bundle model in ac loss computations," *IEEE Trans. Appl. Supercond.*, vol. 22, pp. 4705505-4705505, 2012.

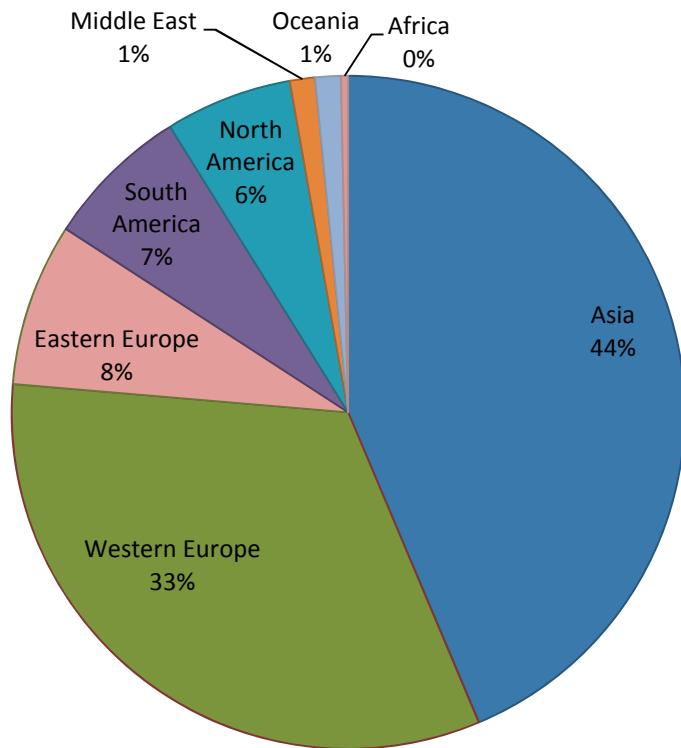
ภาคผนวก ข

19th International Conference on the Computation of Electromagnetic Fields

Technical Program


 Compumag 2013

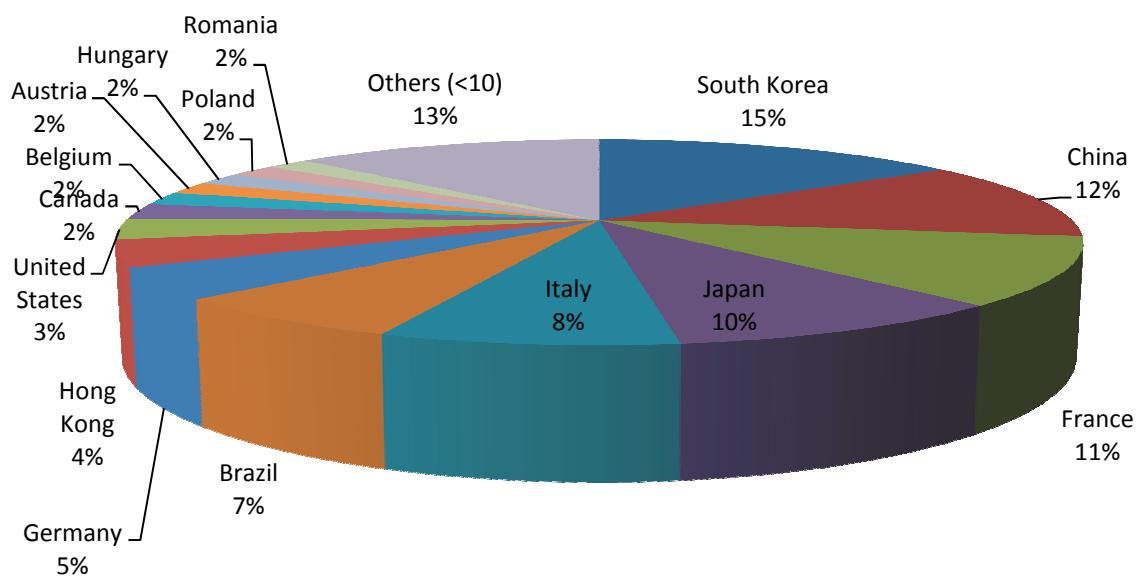
30 June–4 July 2013, Budapest, Hungary



Compumag 2013 in Numbers

Accepted Papers' Distribution by Session:

Accepted Papers' Distribution by Region:



Compumag 2013 in Numbers

Accepted Papers' Distribution by Country:

Country	Papers
Algeria	1
Australia	7
Austria	11
Belgium	12
Brazil	40
Canada	14
China	71
Croatia	2
Czech Republic	2
Estonia	1
Finland	5
France	61
Germany	28
Greece	9
Hong Kong	24
Hungary	11
India	2
Iran	5
Italy	47

Country	Papers
Japan	56
Lebanon	2
Mexico	2
Poland	11
Romania	10
Russia	5
Serbia	1
Singapore	2
Slovenia	2
South Africa	1
South Korea	87
Spain	1
Sweden	2
Switzerland	4
Taiwan, R.O.C.	4
Thailand	5
Turkey	3
United Kingdom	5
United States	19

1:45pm - 3:25pm Ballroom Foyer	PD5: Material Modeling 3 Session Chairs: Janos Füzi, João Pedro Assumpção Bastos
	PD5-1 Construction of Magnetic Hysteresis Loops from the Normal BH Curve and Intrinsic Coercivity <u>Dingsheng Lin</u> , Ping Zhou, Chuan Lu, Ningning Chen Ansys Inc., United States of America
	PD5-2 Hysteresis Losses Evaluation in Electromagnetic Devices under Non Sinusoidal Induction Waveforms Diego C. S. do Prado, Patrick Kuo-Peng, <u>Nelson Sadowski</u> , Nelson J. Batistela GRUCAD/EEL/CTC/UFSC, Brazil
	PD5-3 Thermal Behavior of Iron-Nickel-Chromium Alloys and Correlation with Magnetic and Physical Properties- Part A: Static Effects Modeling Oualid Messal ¹ , <u>Fabien Sixdenier</u> ² , Laurent Morel ³ , Noël Burais ⁴ ¹ Laboratoire AMPERE, Université Claude Bernard Lyon1, France; ² Laboratoire AMPERE, Université Claude Bernard Lyon1, France; ³ Laboratoire AMPERE, Université Claude Bernard Lyon1, France; ⁴ Laboratoire AMPERE, Université Claude Bernard Lyon1, France
	PD5-4 A Complex-Valued Rotating Magnetic Property Model and its Application to Iron Core Loss Calculation of Transformer Iron Core <u>Yanli Zhang</u> , <u>Dexin Xie</u> Shenyang University of Technology, People's Republic of China
	PD5-5 Nonlinear Magnetization Loss in Sintered NdFeB Magnet due to Eddy Current Heat Dissipation <u>Radu Fratila</u> ^{1,2} , Abdelkader Benabou ¹ , Abdelmounaïm Tounzi ¹ , Jean-Claude Mipo ² ¹ L2EP/Université Lille1, France; ² Valeo Equipements Electriques Moteur, France
	PD5-6 On the Modeling of Dynamic Hysteresis Using JA and Field Separation Theories <u>Ajay P. Singh Baghel</u> , S. V. Kulkarni Indian Institute of Technology Bombay, India
	PD5-7 Development of Vector Hysteresis Model using a Magnetic Flip Model <u>Atsushi Furuya</u> ¹ , Jun Fujisaki ¹ , Yuji Uehara ¹ , Koichi Shimizu ¹ , Hirotaka Oshima ² , Tetsuji Matsuo ³ ¹ Fujitsu, Japan; ² Fujitsu Laboratories Ltd.; ³ Kyoto University
	PD5-8 Non Linear 2D Time Domain Eddy Current Calculation for Laminated Iron Cores Wagane Faye ^{1,2} , Gérard Meunier ¹ , Brahim Ramdane ¹ , <u>Christophe Guérin</u> ² , Marlène Faure ² , Delphine Dupuy ² , Patrice Labie ¹ ¹ G2ELAB (Grenoble Electrical Engineering Lab), France; ² Cedrat, France

PD5-9

A 3D Semi Implicit Method for Computing Current Density in Bulk Superconductors

Abelin Kameni¹, Mohamed Boubeker¹, Lotfi Alloui¹, Jonathan Lambrechts², Frederic Bouillault¹, Christophe Geuzaine³

¹Laboratoire de Génie Electrique de Paris, France; ²Centre for Systems Engineering and Applied Mechanics, Louvain-la-Neuve, Belgium; ³Dept of Electrical Engineering and Computer Science, Montefiore Institute, Liège, Belgium

PD5-10

Parameters for Expressing an Analytical Magnetization Curve Obtained Using a Genetic Algorithm

Marko Jesenik, Anton Hamler, Peter Kitak, Mladen Trlep
University of Maribor, Slovenia

PD5-11

Comparison between Modeling Methods of Two-Dimensional Magnetic Properties in Magnetic Field Analysis of Synchronous Machines

Shingo Higuchi¹, Yasuhito Takahashi¹, Tadashi Tokumasu², Koji Fujiwara¹

¹Department of Electrical Engineering, Doshisha University, Japan; ²Toshiba Mitsubishi-Electric Industrial Systems Corporation, Japan

PD5-12

Improvement and Application of the Viscous-Type Frequency-Dependent Preisach Model

Miklós Kuczmann
Szechenyi Istvan University, Hungary

PD5-13

Loss Calculation Method Considering Hysteretic Property with Play Model in Finite Element Magnetic Field Analysis

Junji Kitao¹, Yoshimi Takeda¹, Yasuhito Takahashi¹, Koji Fujiwara¹, Akira Ahagon², Tetsuji Matsuo³

¹Doshisha University, Japan; ²Science Solutions International Laboratory, Inc., Japan;

³Kyoto University, Japan

PD5-14

Comparison Between Different Approaches in Homogenization: Mean-field Approach vs Full-field Approaches

Romain Corcolle
Laboratoire de Génie Electrique de Paris (LGEP), France

PD5-15

Thermal Behavior of Iron-Nickel-Chromium Alloys and Correlation with Magnetic and Physical Properties-Part B: Dynamic Modeling

Oualid Messal, Fabien Sixdenier, Laurent Morel, Noël Burais
Laboratoire AMPERE, Université Claude Bernard Lyon1, France

PD5-16

Comparison of Iron Loss Prediction Formulae

Tanvir Rahman¹, Jemimah Akiror², Pragassen Pillay², David Lowther¹

¹Infolytica Corporation, Canada; ²Concordia University, Canada

	<p>PD5-17 Modelling of Several Concentric Layers of Superconducting Filaments <u>Thitipong Satiramatekul</u>¹, Frederic Bouillault² ¹Kasetsart University, Thailand; ²LGEP, France</p> <p>PD5-18 Homogenized Magnetostatic Analysis of Periodic Structure with Anisotropy <u>Yasuhide Ito</u>, Hajime Igarashi Graduate School of Information Science and Technology, Hokkaido University, Japan</p> <p>PD5-19 Modeling of a Novel Three-Dimensional Magnetization Structure for Laminated Silicon Steel <u>Yongjian Li</u>¹, Qingxin Yang², Jianguo Zhu³, Zhigang Zhao¹, Xiaojing Liu¹, Changgeng Zhang¹ ¹Hebei University of Technology, People's Republic of China; ²Tianjin Polytechnic University, People's Republic of China; ³University of Technology, Sydney, Australia</p> <p>PD5-20 Prediction of Hysteresis Characteristics Using Stress-Dependent Preisach Model and FEM Jae-han Sim, Jae-woo Jung, Byeong-hwa Lee, Seung-hee Chai, <u>Jung-pyo Hong</u> Hanyang University, Republic of Korea (South Korea)</p>
1:45pm - 3:25pm Corvina	<p>PD6: Electrical Machines & Drives 5 Session Chairs: Wolfgang Rucker, Oriano Bottauscio</p>
	<p>PD6-1 Comparative Study of E-Core Axial Field Flux-Switching Permanent Magnet Machines Wei Zhang^{1,2}, Mingyao Lin¹, Li Hao¹, Jilong Zhao¹, <u>DA Xu</u>¹, Xinghe Fu¹ ¹School of Electrical Engineering, Southeast University, People's Republic of China; ²School of Electrical Engineering, Nantong University, People's Republic of China</p> <p>PD6-2 Commutation Analysis for High-Speed Universal Motors <u>Kazumi Kurihara</u>¹, Mamoru Kokubo¹, Takahiro Ito² ¹Ibaraki University, Japan; ²Hitachi Appliances, Inc., Japan</p> <p>PD6-3 Diagnosis Technique Using Detection Coil in BLDC Motor with Inter-Turn Fault <u>Kyung-Tae Kim</u>, Seung-Tae Lee, Jin Hur University of Ulsan, Republic of Korea (South Korea)</p> <p>PD6-4 Development of Axial Gap Generators for Mycro-hydro System Utilizing Magnetic Material Attached Magnetic Flux Concentrated Permanent Magnets Shiota Katsuyuki, <u>Takashi Todaka</u>, Masato Enokizono Oita University, Faculty of Engineering, Japan</p>

Modelling of Several Concentric Layers of Superconducting Filaments

T. Satiramatekul¹ and F. Bouillault²

¹Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom, 73140, Thailand

²LGEF, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex, 91192, France
thitipong.s@ku.ac.th

Abstract—The knowledge of the critical current density in the superconducting filaments is an important issue of the LHC main magnets design during the construction at CERN. A new method for modelling a superconducting strand which consists of several concentric layers of the filaments is proposed in this paper. The superposition theorem in the circuit theory is applied in this method. The numerical results obtained by using the finite element method demonstrate the coupling and decoupling behaviours between the superconducting filaments via the resistive matrix. The comparison with the earlier work on the superconductor modelling are presented and discussed.

Index Terms—Electromagnetic coupling, finite element methods, magnetization, superconducting filaments

I. INTRODUCTION

In recent years, the superconducting multifilamentary strands composing the Rutherford cables of the LHC main magnets are produced at CERN [1]. In order to design these magnets, the knowledge of the current density distribution in the filaments is necessary [2]. For several years, the coupling and decoupling behaviours between the superconducting filaments via the resistive matrix can be described by the numerical results obtained by using the finite element method.

A strand is normally made up of several concentric layers of the filaments. The aim of this work is to model a strand which consists of several layers of the superconducting filaments. For that, we propose a new method by using the superposition theorem and Ohm's law from the circuit theory. In this paper, we demonstrate the coupling and decoupling between the superconducting filaments in an applied field. The current density distributions and the magnetization hysteresis loops are presented. The comparison with the earlier work in [3] and [4] is shown too.

II. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several concentric layers of the superconducting filaments with a finite length L , as shown in Fig. 1 (left). The filaments are arranged, within each of the layers, substantially on a circle. The innermost layer (1st layer) and outermost layer (nth layer) are made of 6 filaments and 6×n filaments respectively with one filament at the centre of the strand. For a test model in Fig. 1 (right), a strand formed of two adjacent layers of the filaments is proposed. All filaments are embedded in a normal resistive matrix. The external field is applied in the direction perpendicular to the filament axis (z axis). The current density is assumed to depend on time (t) and 2-D Cartesian coordinates (x, y). For simplicity and due to the source field distribution, we suppose that the voltages and the currents are in the form of a sinusoid. For the ith layer, we have

$$[V_{ik} \quad I_{ik}]^t = [V_i \quad I_i]^t \times \sin[(k-1)2\pi/n_i] \quad (1)$$

where $k = 1, 2, \dots, n_i$ and $n_i = 6 \times i$.

Starting from the superposition theorem, by feeding only the ith layer with the voltage V_i , the AC losses P_i in the resistive matrix is obtained by

$$P_i = Y_i V_i^2 \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i] \quad (2)$$

where $Y_i = I_i/V_i$. Then, feeding two adjacent layers together with the voltages V_i and V_j , the AC losses P_{ij} which is equal to P_{ji} can be obtained by

$$P_{ij} = (Y_i V_i^2 + Y_{ij} V_i V_j) \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i] + (Y_{ij} V_i V_j + Y_j V_j^2) \sum_{k=1}^{n_j} \sin^2[(k-1)2\pi/n_j]. \quad (3)$$

Furthermore, the AC losses P_i and P_{ij} can be calculated by a 2-D formulation of a harmonic problem with the imposed values $V_i = V_j = 1$ [4]. Therefore, we can deduce Y_i and Y_{ij} from (2) and (3). For a test case of two layers, we obtain

$$Y_1 = \frac{P_1}{3V_1^2}, \quad Y_2 = \frac{P_2}{6V_2^2}, \quad Y_{12} = \frac{P_{12} - 3Y_1 V_1^2 - 6Y_2 V_2^2}{9V_1 V_2}. \quad (4)$$

Note that for n layers strand, the total number of computations to obtain Y is $n \times (n+1)/2$, the total number of filaments in the strand is $N+1$ where

$$N = 6 \times \sum_{i=1}^n i. \quad (5)$$

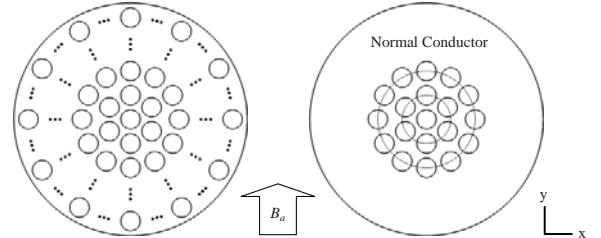


Fig. 1. Model of a strand composed of n concentric layers of the filaments.

By using Ohm's law, we obtain the relation between the currents inside the filaments and the voltages which can be written in the matrix form as follows

$$I = \begin{bmatrix} I_{1k} \\ I_{2k} \\ \vdots \\ I_{nk} \end{bmatrix} = C \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = C[Y] \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = C[Y]V \quad (6)$$

$$C = \begin{bmatrix} C_{1k} & 0 & \dots & 0 \\ 0 & C_{2k} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & C_{nk} \end{bmatrix}, \quad [Y] = \begin{bmatrix} Y_1 & Y_{12} & \dots & Y_{1n} \\ Y_{12} & Y_2 & \dots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1n} & Y_{2n} & \dots & Y_n \end{bmatrix} \quad (7)$$

where C_{ik} are the values of the sinusoid. For the filament at the centre, due to the symmetry $V_0 = 0$ and naturally $I_0 = 0$.

Remark that the square matrix $[Y]$ is a symmetric matrix. The dimensions of C and $[Y]$ are $N \times n$ and $n \times n$ respectively.

III. NUMERICAL MODELLING

In order to characterize the nonlinear electric property of the superconductors, the behaviour laws between the current density and the electric field are proposed in [5] and [6]. For that, in this work, we use an extension of Bean's critical state model (see in [7]). A geometric model of the problem as in Fig. 1 is recently created by using a finite element mesh generator called Gmsh [8]. The results of the problem which can be obtained by modifying the finite element program of LGEP are the electric field. The currents circulating in the filaments at each iteration p can be derived from [3]

$$I^p = ([A_{ev}]^t E^p + [A_v] E_0^p) \times \Delta t + I^{p-1} \quad (8)$$

where $[A_{ev}]$ and $[A_v]$ indicate the matrix of rigidity and the matrix of the electric resistance respectively [4]. E is the vector of the electric field and the voltage per unit of length in the filament E_0 is defined as follows

$$E_0 = -CV/L. \quad (9)$$

By replacing (6) in (8) and using (9), we have

$$V^p = [A]^{-1} B \quad (10)$$

where (in the case of n layers, the dimensions of $[A]$, B and D are $n \times n$, $n \times 1$ and $N \times n$ respectively)

$$[A] = D^t D, \quad B = D^t ([A_{ev}]^t E^p \times \Delta t + I^{p-1}) \quad (11)$$

$$D = C[Y] + [A_v] C \times \Delta t / L. \quad (12)$$

By using V , we obtain E_0 and then I from (9) and (8) respectively. Finally, we can solve the problem with the following matrix system

$$[M] \partial_t J + [A_e] E + [A_{ev}] E_0 = F \quad (13)$$

where $[M]$ and $[A_e]$ indicate the matrix of mass and the matrix of rigidity respectively. J and F are the vector of the current density and the vector of source terms respectively.

Otherwise, by changing the variables, we have

$$V = -[C^t C]^{-1} C^t E_0 \times L. \quad (14)$$

By replacing (14) in (6) and then in (8), so we have

$$E_0^p = [A]^{-1} B \quad (15)$$

where (in this case, the dimensions of $[A]$ and B are $N \times N$ and $N \times 1$ respectively)

$$[A] = -C[Y][C^t C]^{-1} C^t \times L - [A_v] \times \Delta t \quad (16)$$

$$B = [A_{ev}]^t E^p \times \Delta t + I^{p-1}. \quad (17)$$

By using E_0 , I is obtained from (8) and then the problem can be solved with (13).

IV. SIMULATION RESULTS

In order to test our model and approach to the real structure of the LHC strand, we make simulations of a strand composed of two layers of 19 superconducting filaments with a filament diameter of 7 μm in a copper matrix with $\sigma = 10^{10}$ S/m and $J_c = 2,000 \text{ A/mm}^2$ at $B_{a,max} = 20 \text{ mT}$, 50 Hz [1].

Figure 2 shows the simulation results of the current density distributions in the modelled domain (Fig. 1 (right)) at partial (left) and total (right) penetrations. The figures on the top and the bottom show the cases of full coupling and full decoupling respectively. We can see the persistent current shells in the filaments. We observe that these results are in agreement with those in [3] and [4]. We find again that the situation of partial coupling appears when the length of the filament is a few μm . These results confirm that our model works well. In addition, we can present the current distribution in the resistive matrix and also the magnetization hysteresis loops. Moreover, our model allows us to calculate the magnetization per unit of superconductor volume versus the number of layers too.

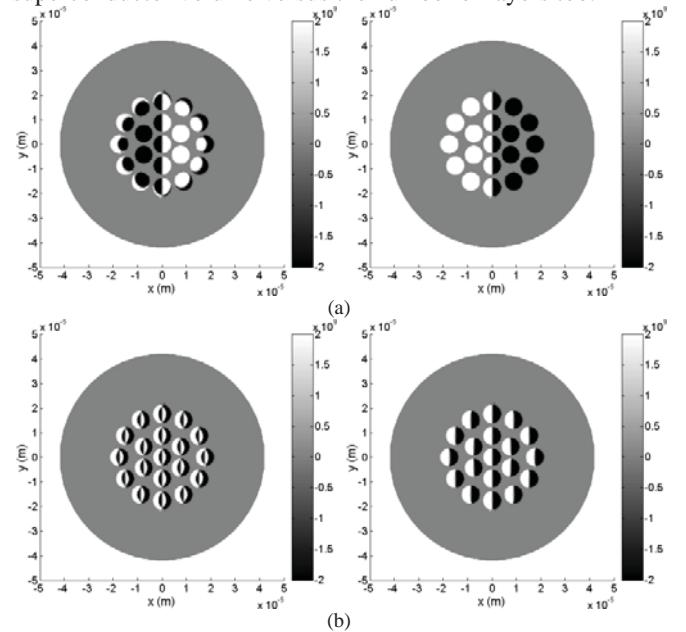


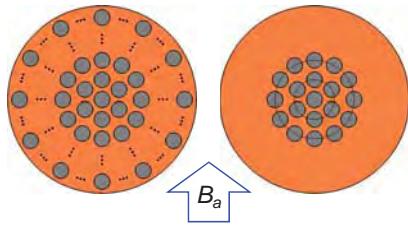
Fig. 2. Current density distributions in the superconducting filaments for a test model: (a) full coupling case and (b) full decoupling case.

REFERENCES

- [1] L. Rossi, "The LHC main dipoles and quadrupoles toward series production," *IEEE Trans. Appl. Supercond.*, vol.13, no.2, pp. 1221-1228, 2003.
- [2] T. Boutboul, S. L. Naour, D. Leroy, L. Oberli and V. Previtali, "Critical current density in superconducting Nb-Ti strands in the 100 mT to 11 T applied field range," *IEEE Trans. Appl. Supercond.*, vol.16, no.2, pp. 1184-1187, 2006.
- [3] T. Satiramatekul and F. Bouillault, "Magnetization of coupled and noncoupled superconducting filaments with dependence of current density on applied field," *IEEE Trans. Magn.*, vol.41, no.10, pp. 3751-3753, 2005.
- [4] T. Satiramatekul, F. Bouillault and L. Santandrea, "Modeling of magnetization curves of partially coupled superconducting filaments with dependence of current density according to applied magnetic field," *IEEE Trans. Magn.*, vol.42, no.4, pp. 887-890, 2006.
- [5] A. Bossavit, "Numerical modelling of superconductors in three dimensions: a model and a finite element method," *IEEE Trans. Magn.*, vol.30, no.5, pp. 3363-3366, 1994.
- [6] S. Stavrev *et al.*, "Comparison of numerical methods for modelling of superconductors," *IEEE Trans. Magn.*, vol.38, no.2, pp. 849-852, 2002.
- [7] M. Masloun, F. Bouillault, A. Bossavit and J. C. Verite, "From Bean's model to the H-M characteristic of a superconductor: some numerical experiments," *IEEE Trans. Appl. Supercond.*, vol.7, no.3, pp. 3797-3800, 1997.
- [8] C. Geuzaine and J. F. Remacle, "Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities," *Int. J. Numer. Meth. Eng.*, vol.79, no.11, pp. 1309-1331, 2009.

Modelling of Several Concentric Layers of Superconducting Filaments

T. SATIRAMATEKUL ¹ and F. BOUILLAULT ²


¹ Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom 73140 Thailand

² LGEP, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex 91192, France

e-mail: thitipong.s@ku.ac.th

Abstract

The knowledge of superconducting filaments magnetization is an important issue of the LHC main magnets design during the construction at CERN. A new method for modelling a superconducting strand which consists of several concentric layers of the filaments is proposed in this paper. The numerical results obtained by using the finite element method demonstrate the coupling and decoupling behaviours between the superconducting filaments via the resistive matrix. The comparison with the earlier work on the superconductor modelling is presented.

■ Superconductor (NbTi)
■ Normal Conductor (Cu)

Problem Analysis

$$[V_{ik} \quad I_{ik}]' = [V_i \quad I_i]' \times \sin[(k-1)2\pi/n_i]$$

$$P_i = Y_i V_i^2 \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i]$$

$$P_{ij} = (Y_i V_i^2 + Y_j V_i V_j) \sum_{k=1}^{n_i} \sin^2[(k-1)2\pi/n_i] + (Y_j V_i V_j + Y_j V_j^2) \sum_{k=1}^{n_j} \sin^2[(k-1)2\pi/n_j]$$

$$I = \begin{bmatrix} I_{1k} \\ I_{2k} \\ \vdots \\ I_{nk} \end{bmatrix} = C \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = C[Y] \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = C[Y]V$$

$$C = \begin{bmatrix} C_{1k} & 0 & \cdots & 0 \\ 0 & C_{2k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{nk} \end{bmatrix}, [Y] = \begin{bmatrix} Y_1 & Y_{12} & \cdots & Y_{1n} \\ Y_{12} & Y_2 & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1n} & Y_{2n} & \cdots & Y_n \end{bmatrix}$$

Numerical Modelling

$$I^p = ([A_{ev}]' E^p + [A_v] E_0^p) \times \Delta t + I^{p-1}$$

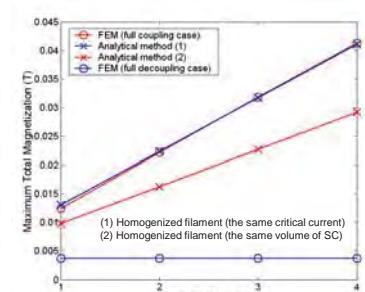
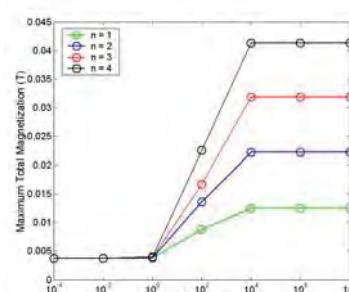
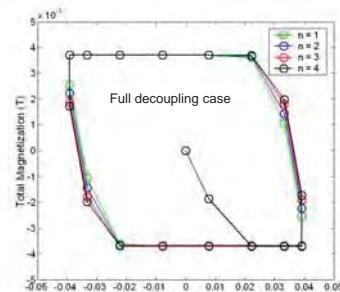
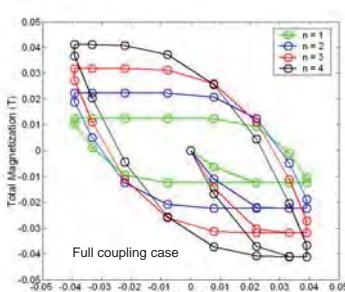
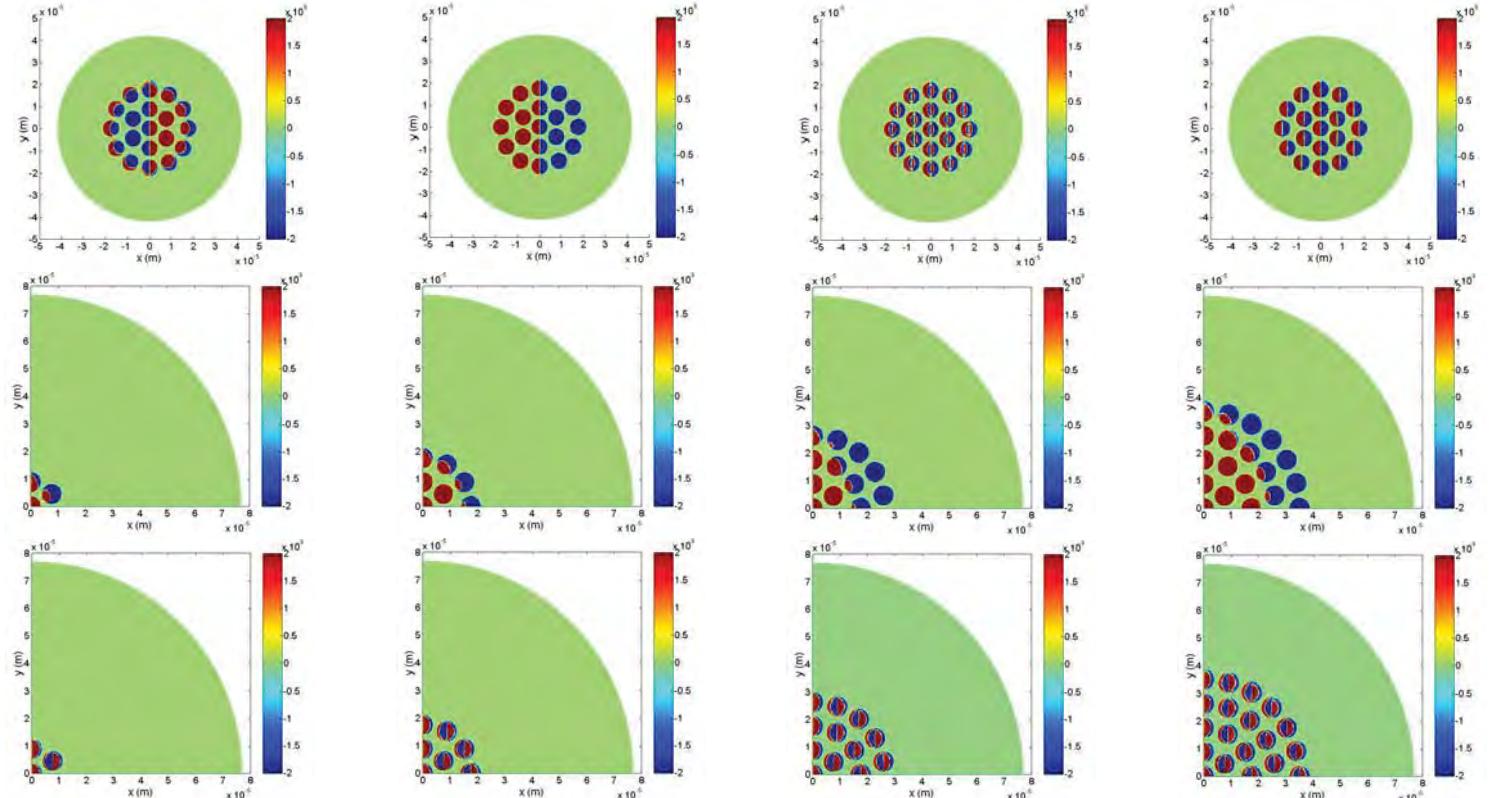
$$[M] \partial_r J + [A_e] E + [A_{ev}] E_0 = F$$

$$E_0 = -CV/L$$

$$V^p = [A]^{-1} B$$

$$[A] = D'D, B = D'([A_{ev}]' E^p \times \Delta t + I^{p-1})$$

$$D = C[Y] + [A_v] C \times \Delta t / L$$






$$V = -[C'C]^{-1} C'E_0 \times L$$

$$E_0^p = [A]^{-1} B$$

$$[A] = -C[Y][C'C]^{-1} C' \times L - [A_v] \times \Delta t$$

$$B = [A_{ev}]' E^p \times \Delta t + I^{p-1}$$

Simulation Results

ภาคผนวก ค

บทคัดย่อ¹ การเสนอผลงานแบบโปสเตอร์

การประชุมนักวิจัยรุ่นใหม่ พบ เมธิวิจัยอาวุโส สกอ. ครั้งที่ 13

วันที่ 16-18 ตุลาคม 2556

โรงแรมเดอะรีเจันท์ ชะจำปีช รีสอร์ท หัวหิน ชะจำ
จังหวัดเพชรบุรี

สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.)

สำนักงานคณะกรรมการการอุดมศึกษา (สกอ.)

P-BIO-L05	Infection and Induction of Cellular Mediators of the Human Embryonic Stem Cell (hES)-Derived Neural Progenitors with the Highly Pathogenic Avian Influenza Virus (H5N1) <i>in vitro</i>	Kidsadagon Pringproa	203
P-BIO-L06	Thai Pediatric Trauma and Injury Severity Score	Sakda A. Vallipakorn	204
P-BIO-L07	Prevalence and Characteristics of Livestock Associated Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) in Pig Farms, Workers and the Farm Environment in Pig Industries of Northern Thailand	Prapas Patchanee	205
P-BIO-L08	Interleukin-7 Level in HIV-infected Patients from Northern Thailand with Different Responses to Combination Antiretroviral Treatment	Panthong Singbootra	206
P-BIO-L09	A Simple PCR Condition for Detection of a Single Cyst of <i>Acanthamoeba</i> Species	Porntip Laummaunwai	207
P-BIO-M01	The Protective Effect of Piperine on Ischemia/Reperfusion Injury in Isolated Rat Heart	Wachirawadee Malakul	208
P-BIO-M02	Effect of Terpenes on the Permeation of Minoxidil	Napaphak Jaipakdee	209
P-BIO-M03	Co-delivery of Doxorubicin and Bay 11-7085 by Using Liposomes for Cancer Treatment	Montree Jaturanpinyo	210
P-BIO-M04	Challenges in Design of Novel pH Responsive Polymeric Micelles Based on Chitosan Derivatives for Development of Curcumin Oral Delivery System	Warayuth Sajomsang	211
P-BIO-M05	High-strength Hydroxypropyl Methylcellulose Phthalate Reinforced with Nanocrystal Starch	Kittiwut Kasemwong	212
P-BIO-M06	Influence of UGT2B7 -161C>T Polymorphism on the Population Pharmacokinetics of Lamotrigine in Thai Patients	Baralee Punyawudho	213

ENG: Engineering Sciences

P-ENG		October 17, 2013 14:30 – 17:30 Room: Park View Hall	
P-ENG-A01	The Use of Recycled Materials as Coarse Aggregate in Porous Concrete	Vanchai Sata	215
P-ENG-A02	Influence of Fly Ash on Slump Loss and Strength of Concrete Fully Incorporating Recycled Concrete Aggregates	Weerachart Tangchirapat	216
P-ENG-A03	Analysis of ASR Phenomenon on Concrete Structure by Rigid Body Spring Model	Worapong Srisoros	217
P-ENG-A04	Effects of Cement Content and Curing Period on Compressibility of Cemented Loose Sand	Anuchit Uchaipichat	218
P-ENG-A05	Mechanically Stabilized Earth Walls with Geocomposite Drainage under Seepage Condition	Avirut Chinkulkijniwat	219
P-ENG-A06	Using Natural Fibers as Limited Life Geotextiles (LLGs) for Slope Stability Improvement and Erosion Control	Tawatchai Tanchaisawat	220
P-ENG-A07	A Basic Model for Bangkok Congestion Charging	Muanmas Wichiensin	221
P-ENG-B01	Higher Order Method for Direct Numerical Simulation of Scalar Transport	Arpiruk Hokpunna	222
P-ENG-B02	Thermal Characteristics of Thermosyphon with Closed-Loop Oscillating Heat Pipe Inside	Phrut Sakulchangsatjatai	223
P-ENG-B03	A Diesel Oil Packed-bed Sphere Porous Burner	Bundit Krittacom	224
P-ENG-B04	Auto-ignition and Combustion of Diesel Spray using Unsteady Laminar Flamelet Model	Isares Dhuchakallaya	225
P-ENG-B05	A Study on the Mechanism and the Parameters Affecting to Sliding Loss of a Parallel-Axis Gear Pair	Chanat Ratanasumawong	226
P-ENG-B06	Effects of the Newly-design Rotary Blades on Vibration Characteristics and Tillage Performances of a Rotary Power Tiller	Sirisak Choedkiatphon	227

P-ENG-B07	Modeling of an Unmanned Quadrotor Helicopter	Pongtorn Prombut	228
P-ENG-C01	Solid Acid Catalyst Generated from Sulfonation of Coffee Residue Activated Carbon for Esterification of Caprylic Acid	Kanokwan Ngaosuwan	229
P-ENG-C02	The Influence of Tungsten Precursors and Loading on the Activity of Tungstated Zirconia Catalysts in Two-phase Esterification Reaction	Peangpit Wongmaneenil	230
P-ENG-C03	Surface Modification of Titanium Dioxide Nanoparticles with Nonmetallic-element as a Support of the Pt-catalyst for CO oxidation	Nattaya Comsup	231
P-ENG-C04	Removal of Hydrophobic Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Current Vacuum Stripping	Suratsawadee Kungsant	232
P-ENG-C05	CO ₂ Hydrogenation to Methanol over Cu/ZnO Nanocatalysts Prepared via a Chitosan-Assisted Co-Precipitation Method	Thongthai Witoon	233
P-ENG-C06	Development of High Stability Catalyst in Transesterification by Amime-Functionalized on Zeolite Y Catalysts	Chanatip Samart	234
P-ENG-C07	Au/La _{1-x} Sr _x MnO ₃ Nanocomposite for Chemical-Energy Cogeneration in Solid Oxide Fuel Cell Reactor	Wisitsree Wiyaratn	235
P-ENG-C08	On the Cleaning of Coconut Milk Foulants from Heat Treatment Process	Phanida Saikhwan	236
P-ENG-C09	Thermodynamic Analysis of Combined Unit of Biomass Gasifier and Tar Steam Reformer for Hydrogen Production and Tar Removal	Supawat Vivanpatarakij	237
P-ENG-C10	Small-Scale Chemistry Laboratory (SSCL) to Enhance Science Inquiry Skills and Conceptual Understanding for High School Students	Saksri Supasorn	238
P-ENG-D01	CAD/CAE for Stress-Strain Properties of Multifilament Twisted Yarns	Keartisak Sriprateep	239
P-ENG-D02	Solving Make-Pack Problem in Process Manufacturing with Genetic Algorithm	Wuthichai Wongthatsanekorn	240
P-ENG-D03	Design and Development of Green Supply Chain Performance Measurement System for Electronics and Auto Part Industry	Korrakot Yaibuathet Tippayawong	241
P-ENG-E01	A 300 Watt Portable Power Generator using PEM Fuel Cell	Anucha Saengrung	242
P-ENG-E02	Hydrogen and Syngas Productions via Steam and Carbon Dioxide Co-Electrolysis using Solid Oxide Electrolysis Cell	Pattaraporn Kim-Lohsoontorn	243
P-ENG-E03	Solar Drying of Cassava Chip with Hot Air Energy	Sopa Cansee	244
P-ENG-F01	Study of Electrostatic Discharged Effect in Head Stack Assembly	Nattawoot Suwannata	245
P-ENG-F02	Low-Voltage and Low-Power Highly Linear Reconfigurable Filter using Switched-Resistor Technique	Amorn Jiraseree-Amornkun	246
P-ENG-F03	Implementation and Control of a Doubly Fed Induction Generator for a Variable Speed Wind Turbine System	Satean Tunyasarut	247
P-ENG-F04	An Enhanced Differential Evolution Algorithm for Transmission Expansion Planning with Security Constraints Consideration	Thanathip Sum-Im	248
P-ENG-F05	Investigation and Analysis of Paralleling Three-Phase AC to DC Converter with Minimized DC Bus Capacitance	Uthen Kamnarn	249
P-ENG-F06	Optimal Regulation of Voltage Fluctuation due to Uncertainty of Renewable Energy Sources in Power Systems	Surachai Chaitusaney	250
P-ENG-F07	PRML with Jitter Noise over Heat-Assisted Magnetic Recording	Wannaree Wongtrairat	251
P-ENG-F08	A Computer Model for Studying the Superconducting Filaments Properties	Thitipong Satiramatekul	252
P-ENG-F09	Subjective Intelligibility Testing and Perceptual Study of Thai Initial and Final Consonants	Charturong Tantibundhit	253
P-ENG-G01	Face Image Enhancement from Low Resolution Video by a Novel Regression Analysis in Tensor Space	Parinya Sanguansat	254
P-ENG-G02	Ensemble Selection for the Problem of Multiple Image Segmentation Combination	Pakaket Wattuya	255
P-ENG-G03	Computational Privacy – a Framework for Measurable and Provable Anonymity Scheme	Bhume Bhumiratana	256

P-ENG-G04	A Program Analyzer for Improving the Performance and Effectiveness of Asymmetric Race Detection and Toleration	Paruj Ratanaworabhan	257
P-ENG-G05	A Simulation of Hybrid Wavelet Image Compression	Poonlap Lamsrichan	258
P-ENG-G06	Security System in Wireless Sensor Network for Agriculture Applications	Piya Techateerawat	259

A Computer Model for Studying the Superconducting Filaments Properties

Satiramatekul, T.^{1*}, Bouillault, F.², Homsup, N.³

¹Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom, Thailand

²LGEF, SUPELEC, Gif sur Yvette Cedex, France

³Faculty of Engineering, Kasetsart University, Bangkok, Thailand

Abstract

The objective of this research is to develop a computer model in order to study the phenomenon or the properties of superconductor, the magnetization, the density of magnetic field, the electric current density, and also the losses due to the hysteresis of the electrical wire which consists of several superconducting filaments embedded in a normal conductive matrix. For that, we start to study and to analyze a difficult electromagnetic problem. Then we modify the previous model of superconducting filaments in two dimensions with a computer program in Fortran language. In order to solve the problem, we employ a numerical method (in this work, we use the finite element method). And finally, we show the graphic results on the graphical user interface by using Matlab program. The obtained results in this work allow us to get a novel knowledge in superconducting filaments modeling. These results are in agreement with those of the earlier work and confirm that our previous results are correct. In summary, the results of this research can be applied in many industrial areas (in particular for nuclear research), and also can be used for future research of the computer program developing for solving more complex problems of several superconducting filaments in three dimensions.

Keywords: electromagnetism, finite element method, numerical simulation, superconductor modeling

สำนักงานกองทุนสนับสนุนการวิจัย (สกว.)
THE THAILAND RESEARCH FUND (TRF)

979/17-21 ชั้น 14 อาคารอีส เอ็ม ทาวเวอร์ ถนนพหลโยธิน
แขวงสามเสนใน เขตพญาไท กรุงเทพฯ 10400

โทรศัพท์ 0-2278-8251-60 โทรสาร 0-2278-8248

E-mail: trfbasic@trf.or.th Homepage: <http://www.trf.or.th>

Website: <http://academic.trf.or.th> (สมัครทุนแบบ online)

Website: <http://academic.trf.or.th/meeting> (ดาวน์โหลดบทคัดย่อ)

A Computer Model for Studying the Superconducting Filaments Properties

Satiramatekul, T.^{1*}, Bouillaud, F.², Homsup, N.³

¹Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom, Thailand

²LGEF, SUPELEC, Gif sur Yvette Cedex, France

³Faculty of Engineering, Kasetsart University, Bangkok, Thailand

Abstract

The objective of this research is to develop a computer model in order to study the phenomenon or the properties of superconductor, the magnetization, the density of magnetic field, the electric current density, and also the losses due to the hysteresis of the electrical wire which consists of several superconducting filaments embedded in a normal conductive matrix. For that, we start to study and to analyze a difficult electromagnetic problem. Then we modify the previous model of superconducting filaments in two dimensions with a computer program in Fortran language. In order to solve the problem, we employ a numerical method (in this work, we use the finite element method). And finally, we show the graphic results on the graphical user interface by using Matlab program. The obtained results in this work allow us to get a novel knowledge in superconducting filaments modeling. These results are in agreement with those of the earlier work and confirm that our previous results are correct. In summary, the results of this research can be applied in many industrial areas (in particular for nuclear research), and also can be used for future research of the computer program developing for solving more complex problems of several superconducting filaments in three dimensions.

Keywords: electromagnetism, finite element method, numerical simulation, superconductor modeling

Outputs

1. Satiramatekul T, Bouillaud F. *Modelling of several concentric layers of superconducting filaments*. Proceedings of the 19th International Conference on the Computation of Electromagnetic Fields **2013**; to be published.

*Corresponding author.

Tel.: 0-3435-2853; Fax: 0-3435-1842

E-mail: thitipong.s@ku.ac.th

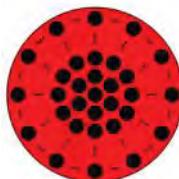
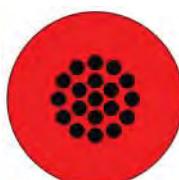
A Computer Model for Studying the Superconducting Filaments Properties

Asst. Prof. Dr. Thitipong SATIRAMATEKUL ^①
Prof. Dr. Frederic BOUILLAULT ^②
Assoc. Prof. Dr. Nuttaka HOMSUP ^③
(e-mail: thitipong.s@ku.ac.th)

^① Faculty of Engineering at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom, Thailand

^② Laboratoire de Genie Electrique de Paris, Supelec, Plateau de Moulon, Gif sur Yvette Cedex, France

^③ Faculty of Engineering, Kasetsart University, Bangkhen Campus, Bangkok, Thailand



INTRODUCTION

In recent years, the superconducting multifilamentary strands composing the Rutherford cables of the LHC main magnets are produced at CERN. In order to design these magnets, the knowledge of the current density distribution in the filaments is necessary. For several years, the coupling and decoupling behaviours between the superconducting filaments via the resistive matrix can be described by the numerical results obtained by using the finite element method.

OBJECTIVE

The aim of this research is to develop a computer model in order to study the phenomenon or the properties of superconductor, the electric current density, the density of magnetic field, the magnetization, and also the losses due to the hysteresis of the electrical wire which consists of several superconducting filaments embedded in a normal conductive matrix.

NUMERICAL MODELING

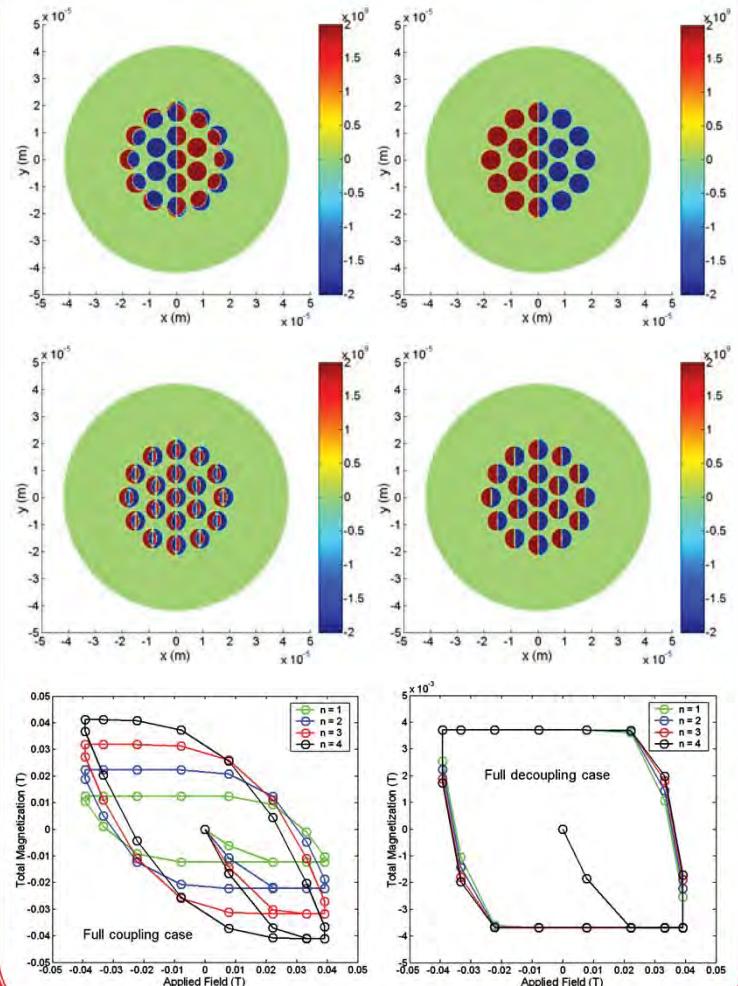
■ Superconductor (NbTi)
■ Normal Conductor (Cu)

$$[V_{ik} \quad I_{ik}]^T = [V_i \quad I_i]^T \times \sin[(k-1)2\pi/n_i]$$

$$P_i = Y_i V_i^2 \sum_{k=1}^n \sin^2[(k-1)2\pi/n_i]$$

$$P_y = (Y_i V_i^2 + Y_j V_j) \sum_{k=1}^n \sin^2[(k-1)2\pi/n_i] + (Y_i V_i V_j + Y_j V_i^2) \sum_{k=1}^n \sin^2[(k-1)2\pi/n_j]$$

$$I = \begin{bmatrix} I_{1k} \\ I_{2k} \\ \vdots \\ I_{nk} \end{bmatrix} = C \begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = C[Y] \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = C[Y]V$$
$$C = \begin{bmatrix} C_{11} & 0 & \cdots & 0 \\ 0 & C_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{nn} \end{bmatrix}, [Y] = \begin{bmatrix} Y_1 & Y_{12} & \cdots & Y_{1n} \\ Y_{12} & Y_2 & \cdots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Y_{1n} & Y_{2n} & \cdots & Y_n \end{bmatrix}$$


$$I^p = ([A_{cv}]^T E^p + [A_v] E_0^p) \times \Delta t + I^{p-1} \quad E_0 = -CV/L$$
$$V = -[C' C]^{-1} C' E_0 \times L$$

$$V^p = [A]^{-1} B \quad [A] = D^T D, B = D^T ([A_{cv}]^T E^p \times \Delta t + I^{p-1})$$
$$D = C[Y] + [A_v] C \times \Delta t / L$$

$$E_0^p = [A]^{-1} B \quad [A] = -C[Y][C' C]^{-1} C' \times L - [A_v] \times \Delta t$$
$$B = [A_{cv}]^T E^p \times \Delta t + I^{p-1}$$

$$[M] \partial_t J + [A_e] E + [A_{cv}] E_0 = F$$

SIMULATION RESULTS

CONCLUSION

The obtained results in this work allow us to get a novel knowledge in superconducting filaments modeling. The results of this research can be applied in many industrial areas (in particular for nuclear research), and also can be used for future research of the computer program developing for solving more complex problems of several superconducting filaments in three dimensions.

ACKNOWLEDGMENT

This work was supported by the OHEC, the TRF, and Kasetsart University under Grant MRG5480287.

สำนักงานคณะกรรมการอุดมศึกษา (สกอ.) กระทรวงศึกษาธิการ

OFFICE OF THE HIGHER EDUCATION COMMISSION

สำนักงานกองทุนสนับสนุนการวิจัย (สกสว.)
THE THAILAND RESEARCH FUND

ประกาศนียบัตรแสดงงานวิจัยตีพิมพ์เผยแพร่ในต่างประเทศ

เพื่อแสดงว่า

ผศ. ดร. วิวัฒน์ สุวิรเมธีกุล
เป็นผู้เสนอผลงานวิจัยตีพิมพ์

ในการประชุมวิจัยรุนแรงในไทย..พบ..เมืองอุบลราชธานี สำนักงานวิจัยฯ

ระหว่างวันที่ ๑๖ - ๑๘ ตุลาคม ๒๕๖๒

ของผู้ทรงคุณวุฒิด้วยตระหนักรู้พิพิธพักร ทำดุษณปรัชญาในด้านการสร้างสรรค์ปัญญา
เพื่อพัฒนาประเทศสืบต่อไปเป็นการ.shtml

ด้วย

รองศาสตราจารย์ นพ. ภัจรงค์ ติติราภิวัชร์ จิตพิมลงามาศ
รองศาสตราจารย์ ดร. สุทธิพิพัฒ์ จิตพิมลงามาศ

รองศาสตราจารย์ ดร. ธรรมรงค์ ภู่ว่องไว

ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย