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Abstract

Project Code : MRG5480287

Project Title : Development of a Computer Model for Studying the

Superconducting Filaments Properties

Investigator : Asst.Prof.Dr.Thitipong Satiramatekul
E-mail Address : thitipong.s@ku.ac.th

Project Period : 2 years

Abstract :

The objective of this research is to develop a computer model in order to study
the phenomenon or the properties of superconductor, the magnetization, the density of
magnetic field, the electric current density, and the losses due to the hysteresis of the
electrical wire which consists of several superconducting filaments inside it. Beginning to
study and analyze a difficult electromagnetic problem, then to modify a model of
superconducting filaments from the previous model with a computer program in Fortran
language and by using the finite element method in order to solve the problem, and
then to show the graphic results with Matlab program. The results of this research can
be applied in many industrial areas, and also can be used for continuing research of the
computer program developing for solving more difficult problems of superconducting

filaments in three dimensions.

Keywords : Modeling, Finite Element Method, Superconducting Filament
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Modeling of Several Concentric Layers of Superconducting Filaments

T. Satiramatekul* and F. Bouillault®

Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom 73140, Thailand
’LGEP, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex 91192, France

The knowledge of superconducting filaments magnetization is an important issue of the LHC main magnets design during the
construction at CERN. A new method for modeling a superconducting strand which consists of several concentric layers of the
filaments is proposed in this paper. The numerical results obtained by using the finite element method demonstrate the coupling and
decoupling behaviors between the superconducting filaments via the resistive matrix. The comparison with the earlier work on the

superconductor modeling is presented and discussed.

Index Terms—Electromagnetic coupling, finite element methods, magnetization, superconducting filaments

. INTRODUCTION

I N RECENT YEARS, the superconducting multifilamentary
strands making up the Rutherford cables of the LHC main
magnets are produced at CERN [1]. In order to design these
magnets, knowledge of the current density distribution in the
filaments is necessary [2]. For several years, the coupling and
decoupling behaviors between the superconducting filaments
via the resistive matrix can be described by the numerical
results obtained by using the finite element method [3]-[6].

A strand is normally made up of several concentric layers of
the filaments. The aim of this work is to model a strand which
consists of several layers of the superconducting filaments.
For that, we propose a new method by using the superposition
theorem and Ohm’s law from the circuit theory. In this paper,
we study the coupling and decoupling between several
superconducting filaments in an applied field. The current
density distributions and the magnetization hysteresis loops
are presented. The comparison with the earlier work in [4] and
[5] is shown too.

Il. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several
concentric layers of the superconducting filaments with a
finite length L, as shown in Fig. 1 (left). The filaments are
arranged, within each of the layers, on a circle. The innermost
layer (1% layer) and outermost layer (n™ layer) are made of 6
filaments and 6xn filaments, respectively, with one filament at
the centre of the strand. For a test model in Fig. 1 (right), a
strand formed of two adjacent layers of the filaments is
proposed. All filaments are embedded in a normal resistive
matrix. The external field (B,) is applied in the direction
perpendicular to the filament axis (z axis). The current density
is assumed to depend on time (t) and 2-D Cartesian
coordinates (x, y). For simplicity and due to the source field
distribution, we suppose that the voltages and the currents are
in the form of a sinusoid (see in [7] for the influence of
nonsinusoidal case). For the i'" layer, we have

Vo 1.1°=DV, 1,1'xsin[(k-1)2z/n,] @

Manuscript received June 6, 2013. Corresponding author: Thitipong
Satiramatekul (e-mail: thitipong.s@ku.ac.th).
Digital Object Identifier inserted by IEEE

where k=1, 2, ..., n; and n; = 6xi.

Starting from the superposition theorem, by feeding only
the i" layer with the voltage V; , the AC losses P; in the
resistive matrix is obtained by

P =YY sin*[(k -2z /1] @

where the admittance Y; = I/V; . Then, feeding two adjacent
layers together with the voltages V; and V; , the AC losses P;;
which is equal to P;; can be obtained by

P, = (Y’ +Y.jvivj)isin2[(k—1)2;;/ni] )

+(YVV +Y VD sin?[(k-1)27 /n].
k=1

Furthermore, the AC losses P; and Pj; can be calculated by a
2-D formulation of a harmonic problem with the imposed
values V; = V; = 1 [5]. Therefore, we can deduce Y; and Yj;
from (2) and (3). For a test case of two layers, we obtain

Y. :ily :ily _ P12 _3Y1V12_6Y2V22 ) (4)
VR Ve v,v,

Note that for n layers strand, the total number of
computations to obtain Y is nx(n+1)/2, the total number of
filaments in the strand is N+1 where

N:6xZn:i. (5)

By using Ohm’s law, we obtain the relation between the
currents inside the filaments and the voltages which can be
written in the matrix form as follows

Iy I, \'A
T R S R Y A TS VAR
L |.n v
Clk 0 0 Y1 le Yln
co| @ Cao OhypoYe 2o Y (D)
o o - c, YooY, Y,

where Cj are the values of the sinusoid. For the filament at the
centre, due to the symmetry V, = 0 and naturally I, = 0. Note
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Fig. 1. Model of a strand composed of n concentric layers of the filaments
(on the left) and a test model of two layers (on the right).

that the square matrix [Y] is a symmetric matrix. The
dimensions of C and [Y] are Nxn and nxn, respectively.

I1l. NUMERICAL MODELING

In order to characterize the nonlinear electric property of the
superconductors, the behavior laws between the current
density and the electric field are proposed in [8]-[11]. For that,
in this work, we use an extension of Bean’s critical state
model (see in [12]). A geometric model of the problem, as in
Fig. 1, has been recently created by using a finite element
mesh generator. The results of the problem which can be
obtained by modifying the finite element program of LGEP
are the electric field. The currents circulating in the filaments
at each iteration p can be derived from [4]

1P =(A,]'EP +[AJEQ) x At+ 1P (8)
where [Ae] and [A,] indicate the matrix of rigidity and the
matrix of the electric resistance, respectively [5]. E is the
vector of the electric field and the voltage per unit of length in
the filament E, is defined as follows

E,=-CV /L. ©)
By replacing (6) in (8) and using (9), we have
VP =[A]'B (10)

where (in the case of n layers, the dimensions of [A], B, and D
are nxn, nx1, and Nxn, respectively)
[A]=D'D,B=D'([A,]'EP xAt+1°7) (11)
D =C[Y]+[A,]CxAt/L. (12)
By using V, we obtain E; and then | from (9) and (8),
respectively. Finally, we can solve the problem with the
following matrix system
[M16,J +[A]E +[A,]E, = F (13)
where [M] and [A;] indicate the matrix of mass and the matrix
of rigidity, respectively. J and F are the vector of the current
density and the vector of source terms, respectively.
Otherwise, by changing the variables, we have

V =-[C'C]'C'E,xL. (14)
By replacing (14) in (6) and then in (8), so we have
E; =[Al"B (15)

where (in this case, the dimensions of [A] and B are NxN and
Nx1, respectively)

[A]=-C[Y][C'C]C'xL~[A,]xAt (16)

B=[A,1'EPxAt+1P*, a7

Then 1 is obtained from (8) by using Eq , and finally the

problem can be solved with (13).

In order to reduce the computation time, we take into
account the symmetry of the problem and model only a
quarter of the domain in Fig. 1. In this case, the number of
filaments in the modeled domain N; is equal to

N N, +(1+3xi/2)

‘ _{Ni1+(2+3x(i-1)/2)
where N; = 3, the first equation uses for an even number of
layers (i = 2, 4, ...) and the second uses for an odd number of
layers (i=3,5,...).

Because there is no current for the filaments situated on the
y axis. So we consider the current only inside N; — (i+1)
filaments for a number of layers i. For example, a test case of
two layers, we have N, = 7 and consider the current only
inside 4 filaments.

(18)

IV. SIMULATION RESULTS

A. Testing Model

The series of simulations are realized for testing our model.
In the first series, we make simulations of a strand composed
of two layers of 19 superconducting filaments with a filament
diameter of 7 um in a copper matrix with the electrical
conductivity o= 10" S/m and the critical current density J, =
2,000 A/mm? at Bamax = 20 mT, 50 Hz in order to approach
the real structure of the LHC strand [1].

Fig. 2 shows the simulation results of the current density
distributions in the modeled domain (Fig. 1 (right)) at partial
(left) and total (right) penetrations. The figures on the top and
the bottom show respectively the cases of full coupling and
full decoupling. We can see the persistent current shells in the
filaments. These results are in agreement with those in [4], [5],
and [13] (theoretical results). We find again that the situation
of partial coupling appears when the length of the filament is a
few um. These results confirm that our model works well and
efficiently
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Fig. 2. Current density distributions in the 19 filaments for a test model: full
coupling case (on the top) and full decoupling case (on the bottom).
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Fig. 3. Current density distributions in the modeled domain for several
layers of the superconducting filaments: full coupling case (on the left) and
full decoupling case (on the right).

The next series of simulations is realized on several layers
of the superconducting filaments immersed in an applied field
with B, max = 40 mT. The Dirichlet and Neumann boundary
conditions are imposed on the edge of the modeled domain.
The external boundary of the normal conductor is fixed at
twice the distance from the center point to the edge of the
outermost filament of 4 layers strand. Fig. 3 shows the results
of the current density distributions at partial penetrations for
the cases of full coupling (left) and full decoupling (right).

B. Computing Magnetization

Our model permits the calculation of the magnetization.
Fig. 4 compares four magnetization hysteresis loops for four
studied cases. When the filaments are fully coupled, the
magnetization value depends on the number of layers or the
total number of filaments. However, this value is almost the

ion (
o
2

Total Magnetizat

-0.04

-0'9&05 -064 -D.ba -0.62 -U.Io'l 6 001 002 003 004 005
Applied Field (T)

&l
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LT e -

)

4

E L s . . L L s . L
o5 004 003 002 001 0 001 00z 003 004 005
Applied Field (T)

Fig. 4. Comparison of the magnetization hysteresis loops for several layers
of the superconducting filaments: full coupling case (on the top) and full
decoupling case (on the bottom).

same and is equal to that of one filament [4], whatever the
number of layers, when these filaments are fully decoupled.

The total magnetization per unit of superconductor volume
versus the number of layers is presented in Fig. 5. In the case
of fully coupled filaments, the magnetization increases
linearly with the number of layers.

Moreover, the homogenization of several superconducting
filaments can be modeled as a homogenized filament zone
[14] and a formula for computing the magnetization per unit
of superconductor volume at saturation of this homogenized
filament (M) is also proposed in [5] by assuming that its
critical current is equal to that of several filaments. For a
strand with i layers, we have

M. =4u,J R/I(37) (19)
R=2xi+Ll)xr+(ixd) (20)
where 1 is the permeability of vacuum. R, r, and d are the
radius of the homogenized filament, the radius of the
superconducting filament, and the space between filaments,
respectively. In this case, the analytical value of the
magnetization per unit of superconductor volume (1% method)
is almost the same as the numerical value, as shown in Fig. 5.

In addition, the magnetization per unit of superconductor
volume for a multifilamentary strand (FEM) is more important
than for a homogenized filament with the same volume of
superconducting material (2" method) because of the space
between filaments, as shown in Fig. 5. In fact, the radius R in
(19) and (20) is always greater than the radius of this
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Fig. 5. Comparison of the numerical and analytical results of the maximum
total magnetization per unit of superconductor volume versus the number of
layers.

homogenized filament which is equal to /(N +1) xr .

C. Taking into account Conductive Matrix

In [5] and [6], we showed that the best intrinsic parameters
to characterize the effect of coupling for a given geometry and
a given frequency are the filament length and the electrical
conductivity of the conductive matrix (o) or the skin depth in
the conductive matrix (). Then it is interesting to study the
influence of the number of layers or the number of filaments
on the magnetization. As in [5], for the i layer of the fully

coupled filaments, we find that
N+1

Z:Ikz(N—in)xlc,IC:Jc;rI‘2
k=1

where I, is the critical current in a superconducting filament. Iy
is the current in the k™ filament, its value is positive and
negative if this filament is situated on the right side and the
left side of the y axis, respectively.

Equation (21) shows that the total magnetization per unit of
superconductor volume depends on the number of filaments
and the number of layers. The last series of simulations is
made at a given frequency of the applied field (50 Hz). Fig. 6
shows clearly that the partial coupling occurs when the value
of L2 is approximately between 1 and 10* m/Ohm. This result
is in agreement with that in [6]. The advantage of this result
allows us to know that the value of the magnetization depends
on, apart from L and &[5] or o [6], the number of layers of the
filaments too. Finally, for a given configuration with a copper
matrix, the critical length that the filaments will be fully
decoupled can be found. In summary, it is necessary to take
into account the length of the filament, the conductivity of the
matrix, and also the number of layers for the manufacture of
the superconducting strands.

(21)

V. CONCLUSION

This work is related to a novel approach for modeling a
superconducting strand consisting of several concentric layers
of the filaments in a conductive matrix with respect to the
earlier work. The quantitative evaluation of the obtained
results was performed in order to check our proposed model.
In fact, the results showed in this paper improve on our earlier

0.045
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0p4l G n=2
- n=3
- - n=4
= 0035
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™ 0.03
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o
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o
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m
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Rl .
E0015
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e

£ onm -

0.00!

10" 10° 10" 10 10°

10, 107
o™ (mfChm)

Fig. 6. Maximum total magnetization per unit of superconductor volume
versus the value of oL? for several layers of the superconducting filaments.

work. This study allows us to know more about a good
parameter to model the magnetization of several concentric
layers of the superconducting filaments.
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Abstract—The knowledge of the critical current density in the
superconducting filaments is an important issue of the LHC main
magnets design during the construction at CERN. A new method
for modelling a superconducting strand which consists of several
concentric layers of the filaments is proposed in this paper. The
superposition theorem in the circuit theory is applied in this
method. The numerical results obtained by using the finite
element method demonstrate the coupling and decoupling
behaviours between the superconducting filaments via the
resistive matrix. The comparison with the earlier work on the
superconductor modelling are presented and discussed.

Index Terms—Electromagnetic coupling, finite
methods, magnetization, superconducting filaments

element

I. INTRODUCTION

In recent years, the superconducting multifilamentary
strands composing the Rutherford cables of the LHC main
magnets are produced at CERN [1]. In order to design these
magnets, the knowledge of the current density distribution in
the filaments is necessary [2]. For several years, the coupling
and decoupling behaviours between the superconducting
filaments via the resistive matrix can be described by the
numerical results obtained by using the finite element method.

A strand is normally made up of several concentric layers
of the filaments. The aim of this work is to model a strand
which consists of several layers of the superconducting
filaments. For that, we propose a new method by using the
superposition theorem and Ohm’s law from the circuit theory.
In this paper, we demonstrate the coupling and decoupling
between the superconducting filaments in an applied field. The
current density distributions and the magnetization hysteresis
loops are presented. The comparison with the earlier work in
[3] and [4] is shown too.

Il. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several
concentric layers of the superconducting filaments with a
finite length L, as shown in Fig. 1 (left). The filaments are
arranged, within each of the layers, substantially on a circle.
The innermost layer (1% layer) and outermost layer (n™ layer)
are made of 6 filaments and 6xn filaments respectively with
one filament at the centre of the strand. For a test model in
Fig. 1 (right), a strand formed of two adjacent layers of the
filaments is proposed. All filaments are embedded in a normal
resistive matrix. The external field is applied in the direction
perpendicular to the filament axis (z axis). The current density
is assumed to depend on time (t) and 2-D Cartesian
coordinates (x, y). For simplicity and due to the source field
distribution, we suppose that the voltages and the currents are
in the form of a sinusoid. For the i layer, we have

Wik Iul* =V L] xsin[(k—1)2m/n;] 1)
wherek =1, 2, ..., njand n; = 6xi.
Starting from the superposition theorem, by feeding only
the i layer with the voltage V; , the AC losses P; in the
resistive matrix is obtained by

P, = YVA YL, sin?[(k — 1)2m/n;] 2

where Y; = [;/V; . Then, feeding two adjacent layers together
with the voltages V; and V; , the AC losses Pj; which is equal to
Pji can be obtained by

P; = (V2 +Y,ViV) Xel, sin?[(k — 1)2m/n] +
(YyViV; + V) 3,0, sin?[(k — 1)2n/nj]. ©)
Furthermore, the AC losses P; and Pj; can be calculated by
a 2-D formulation of a harmonic problem with the imposed

values Vi = V; = 1 [4]. Therefore, we can deduce Y; and Yj;
from (2) and (3). For a test case of two layers, we obtain

P =P _ Pz-3nvi-enri ()
17 gp2 7 72 T p2z 0 127 A
Note that for n layers strand, the total number of

computations to obtain Y is nx(n+1)/2, the total number of
filaments in the strand is N+1 where

N=6xXiL. (®)

Normal Conductor

o0
2&%
LR
20805
[SrS1S)

Fig. 1. Model of a strand composed of n concentric layers of the filaments.

By using Ohm’s law, we obtain the relation between the
currents inside the filaments and the voltages which can be
written in the matrix form as follows

Vi
V
I ] civl| 2| =civiv. ()
v,
Cik 0 - Y:; Y Y
c 0 C2k O . [Y] = Y12 Yz an )
0 0 "'an Yln Y2n Yn

where Cj, are the values of the sinusoid. For the filament at the
centre, due to the symmetry Vo, = 0 and naturally I, = 0.



Remark that the square matrix [Y] is a symmetric matrix. The
dimensions of C and [Y] are Nxn and nxn respectively.

I1l. NUMERICAL MODELLING

In order to characterize the nonlinear electric property of
the superconductors, the behaviour laws between the current
density and the electric field are proposed in [5] and [6]. For
that, in this work, we use an extension of Bean’s critical state
model (see in [7]). A geometric model of the problem as in
Fig. 1 is recently created by using a finite element mesh
generator called Gmsh [8]. The results of the problem which
can be obtained by modifying the finite element program of
LGEP are the electric field. The currents circulating in the
filaments at each iteration p can be derived from [3]

1P = ([Ae,]°EP + [A,]EY) x At + P71 (®)

where [Aq] and [A,] indicate the matrix of rigidity and the
matrix of the electric resistance respectively [4]. E is the
vector of the electric field and the voltage per unit of length in
the filament E; is defined as follows

E, = —CV/L. 9)
By replacing (6) in (8) and using (9), we have
Ve =[A]™ (10)

where (in the case of n layers, the dimensions of [A], B and D
are nxn, nx1 and Nxn respectively)

[A]=D'D , B =D!([A,]'EP x At +IP~1)  (11)
D = C[Y] + [4,]C x At/L. (12)

By using V, we obtain E, and then | from (9) and (8)
respectively. Finally, we can solve the problem with the
following matrix system

[M10:] + [Ae]E + [Aey]Eo = F (13)
where [M] and [A¢] indicate the matrix of mass and the matrix
of rigidity respectively. J and F are the vector of the current
density and the vector of source terms respectively.

Otherwise, by changing the variables, we have

V =—[C'C]7*C'Ey X L. (14)
By replacing (14) in (6) and then in (8), so we have
o =[A1"B (15)

where (in this case, the dimensions of [A] and B are NxN and
Nx1 respectively)

[A] = —C[Y][CtC]71Ct X L — [A,] X At (16)

B = [A,,]tEP X At + IP71, (17)
By using Eq , | is obtained from (8) and then the problem
can be solved with (13).

IV. SIMULATION RESULTS

In order to test our model and approach to the real
structure of the LHC strand, we make simulations of a strand
composed of two layers of 19 superconducting filaments with
a filament diameter of 7 pm in a copper matrix with o= 10"
S/m and J; = 2,000 A/mm? at B, nax = 20 mT, 50 Hz [1].

Figure 2 shows the simulation results of the current density
distributions in the modelled domain (Fig. 1 (right)) at partial
(left) and total (right) penetrations. The figures on the top and
the bottom show the cases of full coupling and full decoupling
respectively. We can see the persistent current shells in the
filaments. We observe that these results are in agreement with
those in [3] and [4]. We find again that the situation of partial
coupling appears when the length of the filament is a few pum.
These results confirm that our model works well. In addition,
we can present the current distribution in the resistive matrix
and also the magnetization hysteresis loops. Moreover, our
model allows us to calculate the magnetization per unit of
superconductor volume versus the number of layers too.
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Fig. 2. Current density distributions in the superconducting filaments for a
test model: (a) full coupling case and (b) full decoupling case.
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Abstract

The knowledge of superconducting filaments magnetization is an important issue of the LHC main magnets design during the construction
at CERN. A new method for modelling a superconducting strand which consists of several concentric layers of the filaments is proposed in
this paper. The numerical results obtained by using the finite element method demonstrate the coupling and decoupling behaviours between
the superconducting filaments via the resistive matrix. The comparison with the earlier work on the superconductor modelling is presented.

Problem Analysis I, I, v
V, 1,1'=[V, 1] xsin[(k-1)27x/n,]| I, I v,
Wy 1) =10, 1) xsinl( 1l R L et L eta
P =YV sin*[(k-1)27/n,] /) I v
k=] s " "
N ", ) [ 0 . 0 Y }’: cer }’"
P, = (VY2 + Y,V )Y sin [k —1)27 /] oo oy
B Superconductor (NbTi YV Y VS sin 2[(k - : ' o o ol
p (NbTi) +(Y, VY, +Y )V, );.ﬁm [(k-1)27/n,] 0 0 - C, voov, e ¥
I Normal Conductor (Cu) =
Numerical Modelling , , p— -
[A1=D'D.B=D"([A,)E" xAt+1"")
7= (A, ) E" +[AE)x At+ 17— D =C[Y]+[4,]CxAt/L

[A]=-C[Y[C'CT'C" x L —[A,]x Al
B=[A VE"xAt+1""

[[M]0,J +[4,)E +[4,]E, = F]

Simulation Results

Full decoupling case

(1) Homogenized filament (the same critical current)
(2) Homogenized filament (the same volume of SC)

Full coupling case
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A Computer Model for Studying the Superconducting Filaments Properties

Satiramatekul, T.*", Bouillault, F.%, Homsup, N.2

Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom, Thailand
2L GEP, SUPELEC, Gif sur Yvette Cedex, France
®Faculty of Engineering, Kasetsart University, Bangkok, Thailand

Abstract
The objective of this research isto develop a computer model in order to study the phenomenon

or the properties of superconductor, the magnetization, the density of magnetic field, the
electric current density, and also the losses due to the hysteresis of the electrical wire which
consists of several superconducting filaments embedded in a normal conductive matrix. For
that, we start to study and to analyze a difficult electromagnetic problem. Then we modify the
previous model of superconducting filaments in two dimensions with a computer program in
Fortran language. In order to solve the problem, we employ a humerical method (in this work,
we use the finite element method). And finally, we show the graphic results on the graphical
user interface by using Matlab program. The obtained results in this work allow us to get a
novel knowledge in superconducting filaments modeling. These results are in agreement with
those of the earlier work and confirm that our previous results are correct. In summary, the
results of this research can be applied in many industrial areas (in particular for nuclear
research), and also can be used for future research of the computer program developing for
solving more complex problems of several superconducting filamentsin three dimensions.

Keywords: electromagnetism, finite element method, numerical simulation, superconductor

modeling
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Abstract

The objective of this research is to develop a computer model in order to study the phenomenon
or the properties of superconductor, the magnetization, the density of magnetic field, the electric
current density, and also the losses due to the hysteresis of the electrical wire which consists of
several superconducting filaments embedded in a normal conductive matrix. For that, we start to
study and to analyze a difficult electromagnetic problem. Then we modify the previous model of
superconducting filaments in two dimensions with a computer program in Fortran language. In
order to solve the problem, we employ a numerical method (in this work, we use the finite
element method). And finally, we show the graphic results on the graphical user interface by
using Matlab program. The obtained results in this work allow us to get a novel knowledge in
superconducting filaments modeling. These results are in agreement with those of the earlier
work and confirm that our previous results are correct. In summary, the results of this research
can be applied in many industrial areas (in particular for nuclear research), and also can be used
for future research of the computer program developing for solving more complex problems of
several superconducting filaments in three dimensions.

Keywords: electromagnetism, finite element method, numerical simulation, superconductor
modeling
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INTRODUCTION SIMULATION RESULTS

In recent years, the superconducting multifilamentary
strands composing the Rutherford cables of the LHC
main magnets are produced at CERN. In order to design
these magnets, the knowledge of the current density
distribution in the filaments is necessary. For several
years, the coupling and decoupling behaviours between
the superconducting filaments via the resistive matrix
can be described by the numerical results obtained by
using the finite element method.

OBJECTIVE

The aim of this research is to develop a computer model
in order to study the phenomenon or the properties of
superconductor, the electric current density, the density of
magnetic field, the magnetization, and also the losses due
to the hysteresis of the electrical wire which consists of
several superconducting filaments embedded in a normal
conductive matrix.

/ NUMERICAL MODELING \

CONCLUSION

The obtained results in this work allow us to get a novel
knowledge in superconducting filaments modeling. The results
of this research can be applied in many industrial areas (in
particular for nuclear research), and also can be used for future
research of the computer program developing for solving more

17 =([A 1 E? +[A)EL)x At + 177

V=-[C'C]"'C'E, x L] complex problems of several superconducting filaments in three
dimensions.
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