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Abstract : 
 

 The objective of this research is to develop a computer model in order to study 

the phenomenon or the properties of superconductor, the magnetization, the density of 

magnetic field, the electric current density, and the losses due to the hysteresis of the 

electrical wire which consists of several superconducting filaments inside it. Beginning to 

study and analyze a difficult electromagnetic problem, then to modify a model of 

superconducting filaments from the previous model with a computer program in Fortran 

language and by using the finite element method in order to solve the problem, and 

then to show the graphic results with Matlab program. The results of this research can 

be applied in many industrial areas, and also can be used for continuing research of the 

computer program developing for solving more difficult problems of superconducting 

filaments in three dimensions. 
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Modeling of Several Concentric Layers of Superconducting Filaments 
T. Satiramatekul1 and F. Bouillault2

1Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom 73140, Thailand 
2LGEP, UMR 8507 CNRS, SUPELEC, Gif sur Yvette Cedex 91192, France 

The knowledge of superconducting filaments magnetization is an important issue of the LHC main magnets design during the 
construction at CERN. A new method for modeling a superconducting strand which consists of several concentric layers of the 
filaments is proposed in this paper. The numerical results obtained by using the finite element method demonstrate the coupling and 
decoupling behaviors between the superconducting filaments via the resistive matrix. The comparison with the earlier work on the
superconductor modeling is presented and discussed.  

Index Terms—Electromagnetic coupling, finite element methods, magnetization, superconducting filaments  

I. INTRODUCTION

N RECENT YEARS, the superconducting multifilamentary 
strands making up the Rutherford cables of the LHC main 

magnets are produced at CERN [1]. In order to design these 
magnets, knowledge of the current density distribution in the 
filaments is necessary [2]. For several years, the coupling and 
decoupling behaviors between the superconducting filaments 
via the resistive matrix can be described by the numerical 
results obtained by using the finite element method [3]-[6]. 

A strand is normally made up of several concentric layers of 
the filaments. The aim of this work is to model a strand which 
consists of several layers of the superconducting filaments. 
For that, we propose a new method by using the superposition 
theorem and Ohm’s law from the circuit theory. In this paper, 
we study the coupling and decoupling between several 
superconducting filaments in an applied field. The current 
density distributions and the magnetization hysteresis loops 
are presented. The comparison with the earlier work in [4] and 
[5] is shown too. 

II. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several 
concentric layers of the superconducting filaments with a 
finite length L, as shown in Fig. 1 (left). The filaments are 
arranged, within each of the layers, on a circle. The innermost 
layer (1st layer) and outermost layer (nth layer) are made of 6 
filaments and 6 n filaments, respectively, with one filament at 
the centre of the strand. For a test model in Fig. 1 (right), a 
strand formed of two adjacent layers of the filaments is 
proposed. All filaments are embedded in a normal resistive 
matrix. The external field (Ba) is applied in the direction 
perpendicular to the filament axis (z axis). The current density 
is assumed to depend on time (t) and 2-D Cartesian 
coordinates (x, y). For simplicity and due to the source field 
distribution, we suppose that the voltages and the currents are 
in the form of a sinusoid (see in [7] for the influence of 
nonsinusoidal case). For the ith layer, we have  
               ]/2)1sin[(][][ i

t
ii

t
ikik nkIVIV  (1) 

where k = 1, 2, ... , ni and ni = 6 i.
Starting from the superposition theorem, by feeding only 

the ith layer with the voltage Vi , the AC losses Pi in the 
resistive matrix is obtained by  
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where the admittance Yi = Ii/Vi . Then, feeding two adjacent 
layers together with the voltages Vi and Vj , the AC losses Pij
which is equal to Pji can be obtained by  
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Furthermore, the AC losses Pi and Pij can be calculated by a 
2-D formulation of a harmonic problem with the imposed 
values Vi = Vj = 1 [5]. Therefore, we can deduce Yi and Yij
from (2) and (3). For a test case of two layers, we obtain  
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Note that for n layers strand, the total number of 
computations to obtain Y is n (n+1)/2, the total number of 
filaments in the strand is N+1 where  
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n

i
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By using Ohm’s law, we obtain the relation between the 
currents inside the filaments and the voltages which can be 
written in the matrix form as follows  
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where Cik are the values of the sinusoid. For the filament at the 
centre, due to the symmetry V0 = 0 and naturally I0 = 0. Note 
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that the square matrix [Y] is a symmetric matrix. The 
dimensions of C and [Y] are N n and n n, respectively. 

III. NUMERICAL MODELING

In order to characterize the nonlinear electric property of the 
superconductors, the behavior laws between the current 
density and the electric field are proposed in [8]-[11]. For that, 
in this work, we use an extension of Bean’s critical state 
model (see in [12]). A geometric model of the problem, as in 
Fig. 1, has been recently created by using a finite element 
mesh generator. The results of the problem which can be 
obtained by modifying the finite element program of LGEP 
are the electric field. The currents circulating in the filaments 
at each iteration p can be derived from [4]  
                   1

0 )][]([ pp
v

pt
ev

p ItEAEAI  (8) 
where [Aev] and [Av] indicate the matrix of rigidity and the 
matrix of the electric resistance, respectively [5]. E is the 
vector of the electric field and the voltage per unit of length in 
the filament E0 is defined as follows  
                                      ./0 LCVE  (9) 

By replacing (6) in (8) and using (9), we have  
                                       BAV p 1][  (10) 
where (in the case of n layers, the dimensions of [A], B, and D
are n n, n 1, and N n, respectively)  
              )]([,][ 1ppt

ev
tt ItEADBDDA  (11) 

                           ./][][ LtCAYCD v  (12) 
By using V, we obtain E0 and then I from (9) and (8), 

respectively. Finally, we can solve the problem with the 
following matrix system  
                        FEAEAJM evet 0][][][  (13) 
where [M] and [Ae] indicate the matrix of mass and the matrix 
of rigidity, respectively. J and F are the vector of the current 
density and the vector of source terms, respectively. 

Otherwise, by changing the variables, we have  
                              .][ 0

1 LECCCV tt  (14) 
By replacing (14) in (6) and then in (8), so we have  

                                       BAE p 1
0 ][  (15) 

where (in this case, the dimensions of [A] and B are N N and 
N 1, respectively)  
                  tALCCCYCA v

tt ][]][[][ 1  (16) 
                            .][ 1ppt

ev ItEAB  (17) 
Then I is obtained from (8) by using E0 , and finally the 

problem can be solved with (13). 
In order to reduce the computation time, we take into 

account the symmetry of the problem and model only a 
quarter of the domain in Fig. 1. In this case, the number of 
filaments in the modeled domain Ni is equal to  

                    
)2/)1(32(

)2/31(

1

1

iN
iN

N
i

i
i

 (18) 

where N1 = 3, the first equation uses for an even number of 
layers (i = 2, 4, ...) and the second uses for an odd number of 
layers (i = 3, 5, ...). 

Because there is no current for the filaments situated on the 
y axis. So we consider the current only inside Ni  (i+1) 
filaments for a number of layers i. For example, a test case of 
two layers, we have N2 = 7 and consider the current only 
inside 4 filaments. 

IV. SIMULATION RESULTS

A. Testing Model 
The series of simulations are realized for testing our model. 

In the first series, we make simulations of a strand composed 
of two layers of 19 superconducting filaments with a filament 
diameter of 7 m in a copper matrix with the electrical 
conductivity  = 1010 S/m and the critical current density Jc = 
2,000 A/mm2 at Ba,max = 20 mT, 50 Hz in order to approach 
the real structure of the LHC strand [1]. 

Fig. 2 shows the simulation results of the current density 
distributions in the modeled domain (Fig. 1 (right)) at partial 
(left) and total (right) penetrations. The figures on the top and 
the bottom show respectively the cases of full coupling and 
full decoupling. We can see the persistent current shells in the 
filaments. These results are in agreement with those in [4], [5], 
and [13] (theoretical results). We find again that the situation 
of partial coupling appears when the length of the filament is a 
few m. These results confirm that our model works well and 
efficiently. 

Fig. 1.  Model of a strand composed of n concentric layers of the filaments
(on the left) and a test model of two layers (on the right). 

Fig. 2.  Current density distributions in the 19 filaments for a test model: full
coupling case (on the top) and full decoupling case (on the bottom). 
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The next series of simulations is realized on several layers 
of the superconducting filaments immersed in an applied field 
with Ba,max = 40 mT. The Dirichlet and Neumann boundary 
conditions are imposed on the edge of the modeled domain. 
The external boundary of the normal conductor is fixed at 
twice the distance from the center point to the edge of the 
outermost filament of 4 layers strand. Fig. 3 shows the results 
of the current density distributions at partial penetrations for 
the cases of full coupling (left) and full decoupling (right). 

B. Computing Magnetization 
Our model permits the calculation of the magnetization. 

Fig. 4 compares four magnetization hysteresis loops for four 
studied cases. When the filaments are fully coupled, the 
magnetization value depends on the number of layers or the 
total number of filaments. However, this value is almost the 

same and is equal to that of one filament [4], whatever the 
number of layers, when these filaments are fully decoupled. 

The total magnetization per unit of superconductor volume 
versus the number of layers is presented in Fig. 5. In the case 
of fully coupled filaments, the magnetization increases 
linearly with the number of layers. 

Moreover, the homogenization of several superconducting 
filaments can be modeled as a homogenized filament zone 
[14] and a formula for computing the magnetization per unit 
of superconductor volume at saturation of this homogenized 
filament (Ms) is also proposed in [5] by assuming that its 
critical current is equal to that of several filaments. For a 
strand with i layers, we have  
                                 )3/(4 0 RJM cs  (19) 
                             )()12( diriR  (20) 
where 0 is the permeability of vacuum. R, r, and d are the 
radius of the homogenized filament, the radius of the 
superconducting filament, and the space between filaments, 
respectively. In this case, the analytical value of the 
magnetization per unit of superconductor volume (1st method) 
is almost the same as the numerical value, as shown in Fig. 5. 

In addition, the magnetization per unit of superconductor 
volume for a multifilamentary strand (FEM) is more important 
than for a homogenized filament with the same volume of 
superconducting material (2nd method) because of the space 
between filaments, as shown in Fig. 5. In fact, the radius R in 
(19) and (20) is always greater than the radius of this 

Fig. 3.  Current density distributions in the modeled domain for several
layers of the superconducting filaments: full coupling case (on the left) and
full decoupling case (on the right). 

Fig. 4.  Comparison of the magnetization hysteresis loops for several layers
of the superconducting filaments: full coupling case (on the top) and full
decoupling case (on the bottom). 
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homogenized filament which is equal to rN )1( .

C. Taking into account Conductive Matrix 
In [5] and [6], we showed that the best intrinsic parameters 

to characterize the effect of coupling for a given geometry and 
a given frequency are the filament length and the electrical 
conductivity of the conductive matrix ( ) or the skin depth in 
the conductive matrix ( ). Then it is interesting to study the 
influence of the number of layers or the number of filaments 
on the magnetization. As in [5], for the ith layer of the fully 
coupled filaments, we find that  

                   2
1

1
,)2( rJIIiNI ccc

N

k
k

 (21) 

where Ic is the critical current in a superconducting filament. Ik
is the current in the kth filament, its value is positive and 
negative if this filament is situated on the right side and the 
left side of the y axis, respectively. 

Equation (21) shows that the total magnetization per unit of 
superconductor volume depends on the number of filaments 
and the number of layers. The last series of simulations is 
made at a given frequency of the applied field (50 Hz). Fig. 6 
shows clearly that the partial coupling occurs when the value 
of L2 is approximately between 1 and 104 m/Ohm. This result 
is in agreement with that in [6]. The advantage of this result 
allows us to know that the value of the magnetization depends 
on, apart from L and  [5] or  [6], the number of layers of the 
filaments too. Finally, for a given configuration with a copper 
matrix, the critical length that the filaments will be fully 
decoupled can be found. In summary, it is necessary to take 
into account the length of the filament, the conductivity of the 
matrix, and also the number of layers for the manufacture of 
the superconducting strands. 

V. CONCLUSION

This work is related to a novel approach for modeling a 
superconducting strand consisting of several concentric layers 
of the filaments in a conductive matrix with respect to the 
earlier work. The quantitative evaluation of the obtained 
results was performed in order to check our proposed model. 
In fact, the results showed in this paper improve on our earlier 

work. This study allows us to know more about a good 
parameter to model the magnetization of several concentric 
layers of the superconducting filaments. 
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Abstract—The knowledge of the critical current density in the 
superconducting filaments is an important issue of the LHC main 
magnets design during the construction at CERN. A new method 
for modelling a superconducting strand which consists of several 
concentric layers of the filaments is proposed in this paper. The 
superposition theorem in the circuit theory is applied in this 
method. The numerical results obtained by using the finite 
element method demonstrate the coupling and decoupling 
behaviours between the superconducting filaments via the 
resistive matrix. The comparison with the earlier work on the 
superconductor modelling are presented and discussed.

Index Terms—Electromagnetic coupling, finite element 
methods, magnetization, superconducting filaments

I. INTRODUCTION

In recent years, the superconducting multifilamentary 
strands composing the Rutherford cables of the LHC main 
magnets are produced at CERN [1]. In order to design these 
magnets, the knowledge of the current density distribution in 
the filaments is necessary [2]. For several years, the coupling 
and decoupling behaviours between the superconducting 
filaments via the resistive matrix can be described by the 
numerical results obtained by using the finite element method. 

A strand is normally made up of several concentric layers 
of the filaments. The aim of this work is to model a strand 
which consists of several layers of the superconducting 
filaments. For that, we propose a new method by using the 
superposition theorem and Ohm’s law from the circuit theory. 
In this paper, we demonstrate the coupling and decoupling 
between the superconducting filaments in an applied field. The 
current density distributions and the magnetization hysteresis 
loops are presented. The comparison with the earlier work in 
[3] and [4] is shown too. 

II. PROBLEM ANALYSIS

Let us consider a model of a strand composed of several 
concentric layers of the superconducting filaments with a 
finite length L, as shown in Fig. 1 (left). The filaments are 
arranged, within each of the layers, substantially on a circle. 
The innermost layer (1st layer) and outermost layer (nth layer) 
are made of 6 filaments and 6 n filaments respectively with 
one filament at the centre of the strand. For a test model in 
Fig. 1 (right), a strand formed of two adjacent layers of the 
filaments is proposed. All filaments are embedded in a normal 
resistive matrix. The external field is applied in the direction 
perpendicular to the filament axis (z axis). The current density 
is assumed to depend on time (t) and 2-D Cartesian 
coordinates (x, y). For simplicity and due to the source field 
distribution, we suppose that the voltages and the currents are 
in the form of a sinusoid. For the ith layer, we have  

 (1) 
where k = 1, 2, ... , ni and ni = 6 i.

Starting from the superposition theorem, by feeding only 
the ith layer with the voltage Vi , the AC losses Pi in the 
resistive matrix is obtained by  

 (2) 
where Yi = Ii/Vi . Then, feeding two adjacent layers together 
with the voltages Vi and Vj , the AC losses Pij which is equal to 
Pji can be obtained by  

. (3) 
Furthermore, the AC losses Pi and Pij can be calculated by 

a 2-D formulation of a harmonic problem with the imposed 
values Vi = Vj = 1 [4]. Therefore, we can deduce Yi and Yij
from (2) and (3). For a test case of two layers, we obtain  

. (4) 

Note that for n layers strand, the total number of 
computations to obtain Y is n (n+1)/2, the total number of 
filaments in the strand is N+1 where  

. (5) 

          

Fig. 1.  Model of a strand composed of n concentric layers of the filaments. 

By using Ohm’s law, we obtain the relation between the 
currents inside the filaments and the voltages which can be 
written in the matrix form as follows  

 (6) 

 (7) 

where Cik are the values of the sinusoid. For the filament at the 
centre, due to the symmetry V0 = 0 and naturally I0 = 0. 
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Remark that the square matrix [Y] is a symmetric matrix. The 
dimensions of C and [Y] are N n and n n respectively. 

III. NUMERICAL MODELLING

In order to characterize the nonlinear electric property of 
the superconductors, the behaviour laws between the current 
density and the electric field are proposed in [5] and [6]. For 
that, in this work, we use an extension of Bean’s critical state 
model (see in [7]). A geometric model of the problem as in 
Fig. 1 is recently created by using a finite element mesh 
generator called Gmsh [8]. The results of the problem which 
can be obtained by modifying the finite element program of 
LGEP are the electric field. The currents circulating in the 
filaments at each iteration p can be derived from [3]  

 (8) 
where [Aev] and [Av] indicate the matrix of rigidity and the 
matrix of the electric resistance respectively [4]. E is the 
vector of the electric field and the voltage per unit of length in 
the filament E0 is defined as follows  

. (9) 
By replacing (6) in (8) and using (9), we have  

 (10) 
where (in the case of n layers, the dimensions of [A], B and D
are n n, n 1 and N n respectively)  

 (11) 

. (12) 
By using V, we obtain E0 and then I from (9) and (8) 

respectively. Finally, we can solve the problem with the 
following matrix system  

 (13) 
where [M] and [Ae] indicate the matrix of mass and the matrix 
of rigidity respectively. J and F are the vector of the current 
density and the vector of source terms respectively. 

Otherwise, by changing the variables, we have  

. (14) 
By replacing (14) in (6) and then in (8), so we have  

 (15) 
where (in this case, the dimensions of [A] and B are N N and 
N 1 respectively)  

 (16) 

. (17) 
By using E0 , I is obtained from (8) and then the problem 

can be solved with (13). 

IV. SIMULATION RESULTS

In order to test our model and approach to the real 
structure of the LHC strand, we make simulations of a strand 
composed of two layers of 19 superconducting filaments with 
a filament diameter of 7 m in a copper matrix with  = 1010

S/m and Jc = 2,000 A/mm2 at Ba,max = 20 mT, 50 Hz [1]. 

Figure 2 shows the simulation results of the current density 
distributions in the modelled domain (Fig. 1 (right)) at partial 
(left) and total (right) penetrations. The figures on the top and 
the bottom show the cases of full coupling and full decoupling 
respectively. We can see the persistent current shells in the 
filaments. We observe that these results are in agreement with 
those in [3] and [4]. We find again that the situation of partial 
coupling appears when the length of the filament is a few m. 
These results confirm that our model works well. In addition, 
we can present the current distribution in the resistive matrix 
and also the magnetization hysteresis loops. Moreover, our 
model allows us to calculate the magnetization per unit of 
superconductor volume versus the number of layers too. 

(a) 

(b)
Fig. 2.  Current density distributions in the superconducting filaments for a 

test model: (a) full coupling case and (b) full decoupling case. 
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Abstract 
The objective of this research is to develop a computer model in order to study the phenomenon 
or the properties of superconductor, the magnetization, the density of magnetic field, the 
electric current density, and also the losses due to the hysteresis of the electrical wire which 
consists of several superconducting filaments embedded in a normal conductive matrix. For 
that, we start to study and to analyze a difficult electromagnetic problem. Then we modify the 
previous model of superconducting filaments in two dimensions with a computer program in 
Fortran language. In order to solve the problem, we employ a numerical method (in this work, 
we use the finite element method). And finally, we show the graphic results on the graphical 
user interface by using Matlab program. The obtained results in this work allow us to get a 
novel knowledge in superconducting filaments modeling. These results are in agreement with 
those of the earlier work and confirm that our previous results are correct. In summary, the 
results of this research can be applied in many industrial areas (in particular for nuclear 
research), and also can be used for future research of the computer program developing for 
solving more complex problems of several superconducting filaments in three dimensions. 
 

Keywords: electromagnetism, finite element method, numerical simulation, superconductor 
modeling 
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Abstract
The objective of this research is to develop a computer model in order to study the phenomenon 
or the properties of superconductor, the magnetization, the density of magnetic field, the electric 
current density, and also the losses due to the hysteresis of the electrical wire which consists of 
several superconducting filaments embedded in a normal conductive matrix. For that, we start to 
study and to analyze a difficult electromagnetic problem. Then we modify the previous model of 
superconducting filaments in two dimensions with a computer program in Fortran language. In 
order to solve the problem, we employ a numerical method (in this work, we use the finite 
element method). And finally, we show the graphic results on the graphical user interface by 
using Matlab program. The obtained results in this work allow us to get a novel knowledge in 
superconducting filaments modeling. These results are in agreement with those of the earlier 
work and confirm that our previous results are correct. In summary, the results of this research 
can be applied in many industrial areas (in particular for nuclear research), and also can be used 
for future research of the computer program developing for solving more complex problems of 
several superconducting filaments in three dimensions. 
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In recent years, the superconducting multifilamentary
strands composing the Rutherford cables of the LHC
main magnets are produced at CERN. In order to design
these magnets, the knowledge of the current density
distribution in the filaments is necessary. For several
years, the coupling and decoupling behaviours between
the superconducting filaments via the resistive matrix
can be described by the numerical results obtained by
using the finite element method.
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The aim of this research is to develop a computer model
in order to study the phenomenon or the properties of
superconductor, the electric current density, the density of
magnetic field, the magnetization, and also the losses due
to the hysteresis of the electrical wire which consists of
several superconducting filaments embedded in a normal
conductive matrix.

The obtained results in this work allow us to get a novel
knowledge in superconducting filaments modeling. The results
of this research can be applied in many industrial areas (in
particular for nuclear research), and also can be used for future
research of the computer program developing for solving more
complex problems of several superconducting filaments in three
dimensions.
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