เอกสารแนบหมายเลข 2

Abstract

Project Code: MRG5480290

Project Title: Using Natural Fibers as Limited Life Geotextiles (LLGs) for Slope Stability

Improvement and Erosion Control

Investigator: Dr. Tawatchai Tanchaisawat

Department of Civil Engineering, Faculty of Engineering, Chiang Mai University

E-mail: tawatchai@eng.cmu.ac.th

Project Period: 24 months

This research presents using natural fibers to fabricate as soil reinforcement materials. Natural fibers such as kenaf or water hyacinth are much more available in Thailand which is renewable and can be fabricate to enhance their engineering properties. It can be used as reinforcement to increase stability of slope on hilly area or as erosion protection on rainy area also. This kind of earth structures can be constructed by localized people in remote area, big construction equipment is no need and definitely ecology design more on environmental friendly. From tensile strength test results, long fibers group (kenaf) has high tensile strength of 22 kN/m (plain pattern in machine direction) while short fibers group (water hyacinth) has low tensile strength of 11 kN/m (plain pattern in machine direction). The natural fiber used for this study was roselle or Thai Kenaf which was made into geogrid with opening size of 4 mm was investigated. Locally available silty sand was used for compacted backfill material. Large scale pullout and direct shear tests were performed in order to investigate interaction mechanism of kenaf geogrid and compacted sand. Numerical simulation was studied in terms of its reinforcement mechanism on plane strain mode. From the results of sensitivity analyses, the interaction coefficient and axial stiffness of the geogrid were found to be important parameters affecting the efficiency of geogrid. The interaction coefficient R_{inter} is 0.9 for pullout mechanism and 0.6 for direct shear mechanism. The full scale test embankment was constructed with subsurface and embankment instrumentation for study the behavior of Kenaf LLGs reinforced embankment on soft ground area. This test embankment was constructed on soft Bangkok clay to introduce this reinforced embankment to alleviate subsidence problem. The embankment is 4 meters height reinforced with Kenaf LLGs in 0.50 vertical spacing. In order to monitoring the behavior of embankment,

ฉ

settlement plate was installed at surface, 3 meters and 6 meters depth. Excess pore water

pressure was recorded by piezometer at 3 meters and 6 meters depth. Wire extensometer was

attached to the reinforcement to check movement of Kenaf LLGs. The observation was monitor

from first layer of embankment until 250 days after. The maximum settlement at surface point is

279 mm while the highest excess pore pressure occurs at 3 meters depth is 37 kPa. Kenaf LLGs

was move constantly not more than 100 mm. Afterward the behavior of full scale test

embankment was simulated by numerical method using finite element technic. The proposed soil

parameters and model can be captured well the field behavior. Settlement of foundation soil,

excess pore water pressure, stress of reinforcement and lateral wall movement predicted by

numerical method mostly agree with field measurement.

Finally, Kenaf grid can be used as soil reinforcement materials to increase stability of

earth slope since it has high tensile strength. Water hyacinth grid can be used as erosion

protection on side slope according to its low tensile strength. Natural fibers can be modified into

woven geogrid and used in geotechnical engineering applications and generally classified as

Limited Life Geosynthetics (LLGs). The recommended parameters for these reinforced systems

have been introduced to use as sustainable geosynthetics. Furthermore, Kenaf geogrid which is

LLGs concept can be widely promoted for natural fiber application in many countries.

Keywords: Natural Fibers, Soil Reinforcement, Interaction, Geogrid, Embankment, Soft Ground

บทคัดย่อ

รหัสโครงการ: MRG5480290

ชื่อโครงการ: การใช้เส้นใยธรรมชาติเป็นวัสดุเสริมแรงเพื่อเพิ่มเสถียรภาพและป้องกันการชะล้าง

พังทลายของลาดดิน

นักวิจัย: อาจารย์ ดร. ธวัชชัย ตันชัยสวัสดิ์

ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

อีเมลล์: tawatchai@eng.cmu.ac.th

ระยะเวลา: 24 เดือน

โครงการวิจัยนี้ได้นำเอาเส้นใยธรรมชาติของพืชชนิดต่าง ๆ เช่น ปอ ป่าน กก หรือผักตบชวา ซึ่งเป็นพืชที่มีจำนวนมากในแต่ละพื้นที่ของประเทศไทย อีกทั้งเป็นวัสดุที่หาได้ง่ายในท้องถิ่น มีราคาถูก มาถักสานหรือถักทอให้เป็นแผ่นวัสดุเสริมแรงในแบบต่าง ๆ เช่น แบบโครงตาข่าย หรือแบบแผ่นเรียบ ซึ่งสามารถนำไปใช้เป็นวัสดุเสริมแรงให้แก่ดินเพื่อเพิ่มเสถียรภาพของลาดดินหรือคันดิน และสามารถ นำไปใช้ป้องกันการชะล้างพังทลายของหน้าดินได้อีกด้วย โครงสร้างดังกล่าวสามารถดำเนินการ ก่อสร้างได้อย่างประหยัด ไม่ใช้เครื่องจักรขนาดใหญ่ และยังมีลักษณะที่สวยงามเป็นธรรมชาติและเป็น มิตรต่อสิ่งแวดล้อมอีกด้วย จากผลการทดสอบเบื้องต้นในส่วนของกำลังรับแรงดึงของเส้นใยที่ถักสาน เป็นโครงตาข่ายพบว่ากลุ่มเส้นใยขนาดยาวจำพวกปอ หรือป่าน มีกำลังรับแรงดึงค่อนข้างสูงประมาณ 22 กิโลนิวตันต่อเมตร (ตามแนวการถักสานแบบเรียบ) ซึ่งจะเหมาะสำหรับเป็นวัสดุเสริมแรงในดิน ขณะที่กลุ่มเส้นใยขนาดสั้นจำพวก กกหรือผักตบชวา มีกำลังรับแรงดึงค่อนข้างต่ำประมาณ 11 กิโลนิว ตันต่อเมตร (ตามแนวการถักสานแบบเรียบ) จะเหมาะสำหรับเป็นวัสดุปกคลุมเพื่อป้องกันการกัดเซาะ หน้าดิน ดังนั้นจึงได้คัดเลือกเอาเส้นใยปอมาถักสานเป็นโครงตาข่ายในลักษณะเรียบโดยมีขนาดช่อง เปิด 4 มิลลิเมตรในการนำมาทดสอบเพื่อหาพฤติกรรมปฏิสัมพันธ์กับทรายบดอัดในห้องปฏิบัติการซึ่ง พบว่าค่าตัวแปรปฏิสัมพันธ์ที่เหมาะสมจากการจำลองเชิงตัวเลขในการทดสอบแบบดึงออกมีค่าเท่ากับ 0.9 ขณะที่การทดสอบแบบเฉือนตรงมีค่าเท่ากับ 0.6 จากผลการทดสอบในห้องปฏิบัติการทำให้ทราบ ถึงลักษณะที่เหมาะสมของโครงตาข่ายเส้นใยปอในการใช้งานจริงในสนาม จึงนำผลการทดสอบที่ได้ไป ออกแบบและก่อสร้างคันดินถมขนาดจริงซึ่งเสริมแรงโดยโครงตาข่ายเส้นใยปอดังกล่าวโดยมีแนวคิด พื้นฐานจากการออกแบบกำลังของวัสดุเสริมแรงในช่วงอายุจำกัด ซึ่งคันดินทดสอบสร้างอยู่บนดิน เหนียวอ่อนกรุงเทพฯ เพื่อศึกษาแนวทางการลดปัญหาการทรุดตัวของดินอีกด้วย

การศึกษาพฤติกรรมของคันดินถมเสริมแรงดังกล่าวดำเนินการโดยการก่อสร้างคันดินถม ขนาดจริงสูง 4 เมตรและใช้โครงตาข่ายเส้นใยปอเป็นวัสดุเสริมแรงในแต่ละชั้นดินถมเป็นระยะ 0.50 เมตร การตรวจวัดพฤติกรรมนั้นได้ทำการติดตั้งแผ่นวัดการทรุดตัวที่ระดับผิวดิน ที่ระดับสึกจากผิวดิน 3 เมตร และ 6 เมตร ในส่วนของแรงดันน้ำส่วนเกินทำการตรวจวัดโดยติดตั้งเครื่องวัดค่าความดันน้ำที่ ระดับลึกจากผิวดิน 3 เมตร และ 6 เมตร การเคลื่อนตัวของวัสดุเสริมแรง ทำการติดตั้งเส้นลวดวัด การเคลื่อนตัว โดยผลการตรวจติดตามพฤติกรรมในสนามพบว่าค่าการทรุดตัวสูงสุดของดินฐานราก ใต้คันดินถมที่ตำแหน่งผิวดินมีค่า 279 มิลลิเมตร ค่าความดันน้ำส่วนเกินสูงสุดที่ตำแหน่งลึก 3 เมตร จากผิวดินมีค่า 37 กิโลปาสคาล ค่าการเคลื่อนตัวของวัสดุเสริมแรงมีค่าสูงสุด 100 มิลลิเมตร ซึ่งเมื่อ ทำการจำลองพฤติกรรมของคันดินด้วยวิธีเชิงตัวเลขพบว่าสามารถใช้แบบจำลองที่เหมาะสมของดิน ฐานรากและแบบจำลองดินถมเสริมแรงด้วยโครงตาข่ายเส้นใยปอ ในการจำลองพฤติกรรมด้านการ ทรุดตัวของดิน แรงดันน้ำส่วนเกิน หน่วยแรงในวัสดุเสริมแรง และการเคลื่อนที่ด้านข้างของคันดิน ได้ ใกล้เคียงกับพฤติกรรมที่ตรวจวัดจริงจากสนาม

จากผลการวิจัยดังกล่าวข้างต้นสามารถสรุปได้ว่าเส้นใยธรรมชาติจำพวกปอซึ่งเป็นเส้นใยที่มีขนาดยาวมีความเหมาะสมในการนำมาถักสานเป็นโครงตาข่ายในลักษณะเรียบเพื่อนำไปเป็นวัสดุ เสริมแรงในดินได้ซึ่งผลการทดสอบในห้องปฏิบัติการและผลจากการตรวจวัดพฤติกรรมจริงในสนามของคันดินถมเสริมแรงด้วยโครงตาข่ายดังกล่าวให้ผลดี โดยที่ค่าตัวแปรต่าง ๆ ที่แนะนำเพื่อนำไปใช้ในการออกแบบและก่อสร้างได้สรุปไว้ในโครงการวิจัยนี้ สุดท้ายการใช้งานเส้นใยธรรมชาติภายใต้แนวคิดการออกแบบกำลังของวัสดุเสริมแรงในช่วงอายุจำกัดสามารถนำมาประยุกต์ใช้ได้จริงและเป็นการส่งเสริมให้มีการนำเส้นใยธรรมชาติต่าง ๆ มาใช้ประโยชน์ในเชิงวิศวกรรมมากยิ่งขึ้น

คำสำคัญ: เส้นใยธรรมชาติ การเสริมแรงในดิน การป้องกันการกัดเซาะ เส้นใยธรรมชาติ การ เสริมแรงในดิน คันดินถม ดินอ่อน