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A graph G has an equitable k-defective coloring in m colors if its vertices can be
colored with m colors such that the maximum degree of any subgraph induced by
vertices assigned to the same color is at most k and the numbers of vertices in any two
sets composed of the vertices that are assigned to the same color differ by at most one.

The equitable k-defective chromatic number of a graph G, denoted by ¥ ., , (G), is the

smallest positive integer m for which G has an equitable k-defective coloring in m
colors.

A strong edge-coloring is a proper edge-coloring such that two edges with the
same color are not allowed to lie on a path of length three. The strong chromatic index
of a graph G denoted by s'(G) is the minimum number of colors in a strong edge-
coloring. We denote the degree of a vertex v by d(v). Let the Ore-degree of a graph G
be the maximum values of d(u) + d(v) where u and v are adjacent vertices in G.

In this research, we present the equitable k-defective chromatic numbers of
complete bipartite graphs for k=1 and k=2 and show that each graph G with Ore-degree
6 has s'(G) <10. With the further condition that G is bipartite, we have s'(G) < 9.

Keywords: equitable defective coloring, strong edge-coloring, Ore-degree
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Chapter 1

Introduction

A graph G consists of a vertex set V(G) and an edge set E(G). In this
research, graphs are considered to be finite, undirected, and simple. Let [x] and
| 2] denote the smallest integer that is not less than x and the largest integer that
is not greater than z, respectively. We refer the reader to [3] for terminology in
graph theory.

An equitable m-coloring of a graph G is a proper m-coloring of G such that
the numbers of vertices in any two sets composed of the vertices that are assigned
to the same color differ by at most one. A graph G is said to be equitably m-
colorable if G has an equitable m-coloring. The equitable chromatic number of
a graph G, denoted by x—(G), is the smallest positive integer m for which G is
equitably m-colorable. The equitable coloring introduced first by Meyer [1] in
1973.

A graph G has an equitable k-defective coloring in m colors if its vertices
can be colored with m colors such that the maximum degree of any subgraph
induced by vertices assigned to the same color is at most k and the numbers of
vertices in any two sets composed of the vertices that are assigned to the same color
differ by at most one. The equitable k-defective chromatic number of a graph G,
denoted by xgp, is the smallest positive integer m for which G has an equitable
k-defective coloring in m colors.

A strong edge-coloring is a proper edge-coloring such that two edges with
the same color are not allowed to lie on a path of length three. The strong chro-
matic index of a graph G denoted by §'(G) is the minimum number of colors in
a strong edge-coloring. We denote the degree of a vertex v by d(v). Let the Ore-
degree of a graph G be the maximum values of d(u) + d(v) where u and v are
adjacent vertices in G.

An equitable k-coloring game on a graph G is a coloring game that Alice

and Bob play with a color set C' = {1,2,...,k}. They take turns coloring the



vertices of G one at a time with colors from C, with Alice has the first move,
under the rule that adjacent vertices have different colors. Each color cannot be
used more than b times where b = [|V(G)|/k], and the coloring is allowed to have
at most |V (G)| — k(b — 1) colors to be used b times. When there are no legal
colorings left, Alice wins if all the vertices are colored and Bob wins otherwise. By
this rule, we always has an equitable coloring when all vertices are colored.

In this research, we investigate three main results. First, we present the
equitable k-defective chromatic numbers of complete bipartite graphs for £k = 1
and k = 2. Second, we show that each graph G with Ore-degree 6 has s'(G) < 10,
and with the further condition that G is bipartite, we have s'(G) < 9. Finally, we
characterize complete bipartite graphs that Alice has a winning strategy in the

equitable coloring game.



Chapter 2
Methodology

Methodology
Investigate equitable vertex coloring techniques from literatures.
Characterize properties of equitable vertex coloring in class of graphs.

Solve some conjectures concerning the equitable vertex coloring in class of

graphs.
Submit research papers to international mathematics journals.
Summarize results of the research and doing report.

Discuss with mentor during project duration.



Chapter 3
Main Results

In this chapter, we present our main results. We separate this chapter into
3 sections. First, the equitable k-defective coloring. Second, the strong chromatic
index of graphs with restricted Ore-degrees. Third, equitable Coloring Games on

Complete Bipartite Graphs.

3.1 The equitable k-defective coloring

In this section, we present the equitable k-defective chromatic number of complete

bipartite graphs K, , with m <n for k =1 and k = 2.
Theorem 3.1.1 For a complete bipartite graph K,,, with m > 2,
x5 (Kmn) = [m/(M + 1] + [/ (M + 1)]
where M is the largest integer such that m(mod M) < [m/M] and n(mod M) < [n/M].

Nakprasit and Saigrasun [2] characterized the complete bipartite graph
K, with m < n such that x_(K,,,) =1+ [n/(m +1)] and found the smallest

integer C' such that for every integer n > C implies x=(K,n) = 1+ [n/(m +1)].

Theorem 3.1.2 For a complete bipartite graph K,,, with m <n,

XED2(Kmn) = X=(Kmn) except
(1) xepa2(Ki,) =1+ [(n—2)/4];
(2) xEp2(Kop) =14 [(n—2)/5];

(3) xep2(Kmn) =1+ [(m —2)/5] + [(n —2)/5],
where (m,n) = (7,10), (7,11), (7,17), (11, 14), or (11,19);

(4) xEp2(Ks57) = 4;

(5) xep2(Keg) = 4.



3.2 The strong chromatic index of graphs with re-
stricted Ore-degrees

A strong edge-coloring is a proper edge-coloring such that two edges with the
same color are not allowed to lie on a path of length three. The strong chromatic
index of a graph G denoted by §'(G) is the minimum number of colors in a strong
edge-coloring.

We denote the degree of a vertex v by d(v). Let the Ore-degree of a graph
G be the maximum values of d(u) + d(v) where u and v are adjacent vertices in
G. Let F3 denote the graph obtained from a 5-cycle by adding a new vertex and
joining it to a pair of nonadjacent vertices of the 5-cycle. In 2008, Wu and Lin [4]
studied the strong chromatic index with respect to the Ore-degree. Their main
result states that if a connected graph G is not F3 and its Ore-degree is 5, then
s'(G) < 6. Inspired by the result of Wu and Lin, we investigate the strong edge-
coloring of graphs with Ore-degree 6. We show that each graph G with Ore-degree
6 has s'(G) < 10. With the further condition that G is bipartite, we have s'(G) < 9.
Our results give general forms of previous results about strong chromatic indices
of graphs with maximum degree 3.

Graphs in this section are finite, undirected, and loopless, but multiple
edges are allowed. We always assume that graphs are connected unless the context
implies otherwise. Note that some results that we refer to may not consider
multiple edges, but these results can be extended easily to graphs with multiple
edges. Throughout this section, the term coloring means strong edge-coloring,
unless the coloring is specified to be other type of coloring.

For graphs with small Ore-degrees, we have the followings.

Observation 3.2.1 (Characterization of graphs with small Ore-degrees)

(1) The only graph with Ore-degree 0 is K.
(2) No graph has Ore-degree 1.

(3) The only graph with Ore-degree 2 is a path with one edge.



(4) The only graph with Ore-degree 3 is a path with two edges.

(5) A graph G has Ore-degree 4 if and only if G is a path of length at least 3,

K3, a cycle, or a graph with two vertices and two multiple edges.

Next, we proceed to investigate strong chromatic indices in terms of Ore-

degree of graphs in general.

Lemma 3.2.2 Let G be a graph with Ore-degree at most R. If M is the set of
vertices of G with degree R — 2, then s'(G) < max{s'(G — M),3R — 8}.

A path wwywy is a special 2-path if d(w;) = d(we) = 2 and w is an (R —2)-

vertex.

Lemma 3.2.3 Let G be a graph with Ore-degree at most R with a special 2-path
wwiwsy. Then §'(G) < max{s' (G —w),2R — 3}.

Theorem 3.2.4 If a graph G has Ore-degree at most 6, then s'(G) < 10.
With the futher condition that G is bipartite, we have s'(G) < 9.

3.3 Equitable coloring games on complete bipartite
graphs

In a coloring game, Alice wins if and only if all vertices are colored. To en-
force a coloring of all vertices to be an equitable k-coloring, we propose the addi-
tional rules for an equitable k-coloring game as follows. Let b = [|V(G)|/k] and
d=[|V(G)|/k]. A color that has been used b times is a major color. Each color
cannot be used more than b times and the coloring is allowed to have at most
|[V(G)| — k(b — 1) major colors.

From now on, a game means an equitable k-coloring game on a complete
bipartite K, ,. Let X and Y be partite sets of K, ,, of size m and n, respectively,
with m < n. A partite set is called even (respectively, odd) if its size is even

(respectively, odd).



3.3.1 The games with 0 < 2

Lemma 3.3.1 If d < 1 then Alice has a winning strategy.
Lemma 3.3.2 If b= d = 2 then Bob has a winning strategy.

Lemma 3.3.3 Let m = d =b—1 = 2. Alice has a winning strategy if and only if
(i) n =3(k — 1) and n is even, or (ii) n < 3(k — 1) and n is odd.

3.3.2 The games with d > 3

The X -mazimizing tactic is a strategy of Bob defined as follows. Bob plays a new
color in X if there exists an unused color, and fewer than d uncolored vertices are
in X or Alice played a new color in the turn immediately before. Otherwise, Bob
plays a legal color with the largest class size in X. If all vertices in X are colored,
then Bob plays arbitrarily. The Y -mazimizing tactic is defined similarly.

Remark. If Bob always has new colors to use for the X-maximizing tactic before
all vertices in X are colored, then there is a color class of size less than d. Thus if
we assume that a coloring is completed despite the X-maximizing tactic used by

Bob, then all colors are used before all vertices in X are colored.
Lemma 3.3.4 Ifd <1 then Alice has a winning strategy.
Lemma 3.3.5 If b= d = 2 then Bob has a winning strategy.

Lemma 3.3.6 Let m = d =0b—1 = 2. Alice has a winning strategy if and only if
(i) n=3(k —1) and n is even, or (it) n < 3(k — 1) and n is odd.

3.3.3 The games with d > 3

The X -mazimizing tactic is a strategy of Bob defined as follows. Bob plays a new
color in X if there exists an unused color, and fewer than d uncolored vertices are
in X or Alice played a new color in the turn immediately before. Otherwise, Bob
plays a legal color with the largest class size in X. If all vertices in X are colored,

then Bob plays arbitrarily. The Y -maximizing tacticis defined similarly.



Remark. If Bob always has new colors to use for the X-maximizing tactic before
all vertices in X are colored, then there is a color class of size less than d. Thus if
we assume that a coloring is completed despite the X-maximizing tactic used by

Bob, then all colors are used before all vertices in X are colored.

Lemma 3.3.7 Let d > 3. If Alice colors a vertex in X in the first turn, then Bob

has a winning strategy.

Remark. In view of Lemma 3.3.7, we assume that Alice colors a vertex in Y in
the first turn for a game with d > 3.
Before we investigate the equitable game coloring further, we define two

conditions of m and n which are refered in later parts.

Definition 3.3.8 Let k = 2t + 1 where t is an integer. We say m and n satisfy
condition (A) if m =rb+ (t —r)d and n =rb+ (t + 1 — r)d where r is an integer
satisfying 1 < r < t.

Definition 3.3.9 Let k = 2t + 1 where t is an integer. We say m and n satisfy
condition (B) if one of the following holds:

(1) m=tbandn = (t—1)b+ 2d,
(2) m=({t—1)b+d andn = (t +1)b,
B3) m=(t—-1)b+dandn=1tb+d,
(4) m=(t—2)b+2d and n = (t+ 1),
(5) m=(t—2)b+2d and n=tb+d, or
(6) m=(t—2)b+2d andn = (t — 1)b+ 2d.
Lemma 3.3.10 Let d > 3. If k is even, then Bob has a winning strategy.

Lemma 3.3.11 Let d > 3. If k is odd and Alice has a winning strategy, then m
and n satisfy condition (A), (B), orn —m > d+ 1.



Lemma 3.3.12 Let d > 3. If k is odd and Alice has a winning strategy, then m
and n satisfy condition (A), (B), orn—m < d— 1.

Combining Lemmas 3.3.11 and 3.3.12, we immediately have the following result.

Corollary 3.3.13 Let d > 3. If k is odd and Alice has a winning strategy, then m
and n satisfy condition (A) or (B).

Corollary 3.3.13 gives necessary condition for complete bipartite graphs
that Alice has a winning strategy. Next we investigate which necessary condtions

are also sufficient.

Lemma 3.3.14 Let odd k = 2t + 1, d > 3, while m and n satisfy condition (A) or
(B). If b is even, then Bob has a winning strategy. (Note that b and d maybe equal

in this Lemma.)

Lemma 3.3.15 Let odd k =2t+1,d > 2, m=(t—1)b+d, and n = tb+d, or
(t 4+ 1)b. If b is odd, then Alice has a winning strategy. (Note that b and d maybe

equal in this Lemma.)

Lemma 3.3.16 Let odd k =2t + 1 and odd b > d > 2. Bob has a winning strategy
if m and n satisfy one of the following:

(i) m =tb, and n = (t — 1)b+ 2d,

(i) m = (t —2)b+2d, and n = (t — 1)b+ 2d,

(iii) m = (t —2)b+ 2d, and n =tb+d or (t + 1)b.

Lemma 3.3.17 Let odd k = 2t + 1, odd b > d > 3, m =rb+ (t —r)d > 3, and
n=rb+ (t —r+1)d where 1 <r <t. Alice has a winning strategy if and only if

r==t.

3.3.4 The games withb=d+ 1 =3

The main idea of this section is similar to one in Subection 3.3.3. However we

need tactics other than the maximizing tactic which is not effective anymore; now
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Bob may not be able to play a new color to make a color class of size less than
d even when some colors are unused. For example, Bob uses the X-maximizing
tactic with |X| = 6, and Alice can counter the tactic by playing the same color
after each play of Bob. This play results in three color classes of size 2 in X even
if some colors are unused. To emphasize the difference and to prevent confusion,
we separate the games with b = d + 1 = 3 to be considered in this section.

To define the next tactic, we needs two new deifinitions. If a color ¢ appears
twice and it is played by Bob first and Alice later while there is an unused color
to play, then we call ¢ a bad color unless stated otherwise. A good color is a color
that is not bad. (Note that an unused color is also a good color.) Let f'(X) be
the number of good colors in X, and ¢’(X) be the number of good colors of size 3
in X. Bob has four types of colors for playing in the the X -optimizing tactic: (1)
a new color in X, (2) a legal good color in X with the largest size, (3) a legal bad
color in X, or (4) a legal color in Y. Table 3.1 lists these four types of colors from
the most preference to the least preference according to situations. Bob always
plays the most prefered legal color. The Y -optimizing tactic, f'(Y), and ¢'(Y) can

be defined similarly to previous definitions.

Conditions Bob’s preference
Alice plays a new color (1), (2), (3), (4)
Alice plays a used color in X (1), (2), (3), (4)

If Bob plays (2) then there are at most one color class of size | (1), (2), (3), (4)
lin X

Alice plays a used color in Y, and if Bob responds by playing | (2), (1), (3), (4)

(2) then there are at least two color classes of size 1 in X

Table 3.1: The X-optimizing tactic

Remark. Assume that in a certain stage of the game, two (or more) color classes
of size 1 appear in X. If Bob always has a new color to use for the X-optimizing
tactic before all vertices in X are colored, then there is a color class of size 1 in

the endgame. Thus if we suppose that a coloring is completed despite the X-
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optimizing tactic used by Bob, then all colors are used before all vertices in X are

colored.

Lemma 3.3.18 Let b = d + 1 = 3. If Alice colors a vertexr in X in the first turn,

then Bob has a winning strategy.

Remark. In view of Lemma 3.3.18, we assume that Alice colors a vertex in Y in

the first turn for a game in this section.
Lemma 3.3.19 Letb=d+ 1 =3. If k is even, then Bob has a winning strategy.

Lemma 3.3.20 Let b = d+ 1 = 3. If k is odd and Alice has a winning strategy,
then m and n satisfy condition (A), (B), orn—m >d+ 1.

Lemma 3.3.21 Let b =d+ 1 = 3. If k is odd and Alice has a winning strategy,
then m and n satisfy condition (A), (B), orn—m <d— 1.

Combining Lemmas 3.3.20 and 3.3.21, we immediately have the following result.

Corollary 3.3.22 Let b=d+ 1= 3. If k is odd and Alice has a winning strategy,
then m and n satisfy condition (A) or (B).

Corollary 3.3.22 gives necessary condition for complete bipartite graphs
that Alice has a winning strategy. Next we investigate which necessary condtions

are also sufficient.

Lemma 3.3.23 Let odd k =2t +1,b=d+1=3, m=rb+ (t —r)d > 3, and
n=rb+ (t—r+1)d where 1 <r <t. Alice has a winning strategy if and only if

r==t.

3.3.5 Conclusion

To characterize complete bipartite graphs that Alice has a winning strategy, we
refer to

(i) Lemmas 3.3.4, 3.3.5, and 3.3.6 for b < 2,

(ii) Corollary 3.3.13 and Lemmas 3.3.10, 3.3.14, 3.3.15, 3.3.16, and 3.3.17 for d > 3,
(iii) Corollary 3.3.22 and Lemmas 3.3.15, 3.3.16, 3.3.19, and 3.3.23 forb = d + 1 = 3.
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Theorem 3.3.24 Alice has a winning strategy for an equitable k-coloring game on
K if and only if one of the following holds:

(i)d <1,

(ii)m=d=b—1=2,n=3(k—1),n is even,

(iii) m=d=b—1=2n<3(k—1),n is odd, or

(iv) k is odd (k = 2t+1), b is odd, m = (t—i)b+id > 3, andn = (t+7)b+(1—j)d

where 1,7 =0 or 1.
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Abstract: A graph G has an equitable k-defective coloring in m colors if its
vertices can be colored with m colors such that the maximum degree of any
subgraph induced by vertices assigned to the same color is at most k£ and the
numbers of vertices in any two sets composed of the vertices that are assigned
to the same color differ by at most one. The equitable k-defective chromatic
number of a graph G, denoted by xgp (G), is the smallest positive integer m
for which G has an equitable k-defective coloring in m colors. In this paper,
we present the equitable k-defective chromatic numbers of complete bipartite
graphs for k =1 and k = 2.
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1. Introduction

A graph G consists of a vertex set V(G) and an edge set F(G). In this paper,
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graphs are considered to be finite, undirected, and simple. Let [z] and |z|
denote the smallest integer that is not less than = and the largest integer that
is not greater than z, respectively. We refer the reader to [15] for terminology
in graph theory.

An equitable m-coloring of a graph G is a proper m-coloring of G such
that the numbers of vertices in any two sets composed of the vertices that are
assigned to the same color differ by at most one. A graph G is said to be
equitably m-colorable if G has an equitable m-coloring. The equitable chromatic
number of a graph G, denoted by x=(G), is the smallest positive integer m for
which G is equitably m-colorable. The equitable coloring introduced first by
Meyer [13] in 1973.

Lih and Wu [9] investigated the equitable chromatic number of a connected
bipartite graph. The authors proved that every complete bipartite graph K, ,
can be equitably colored using k colors if and only if [n/|k/2|]—|n/[k/2]| < 1.
Moreover, if G is a connected bipartite graph with partite sets X, Y and € edges
such that e < [n/(m+1)|(n —m) 4+ 2n, then x=(G) < 1+ [n/(m +1)], where
| X|=m<n=|Y]|.

Lam et. al. [8] determined the equitable chromatic number of a complete 7-
partite graph Ky, m,. They showed that x= (K, ,..m,) = iy [mi/(M+1)]
where M is the largest integer such that m;(mod M) < [m;/M] (i =1,...,r).

Nakprasit and Saigrasun [14] characterized the complete bipartite graph
K, with m < n such that x=(K,, ) = 14+[n/(m+1)] and found the smallest
integer C' such that for every integer n > C implies x=(K,n) = 1+[n/(m+1)].

For more on the equitable coloring of graphs see [6] and [10].

A subset U of V(G) is said to be k-independent if the maximum degree of
an induced subgraph G[U] is at most k. A k-defective coloring in m colors of
a graph G is an m-coloring of G such that the set of vertices that are assigned
to the same color is k-independent. A graph G is (m, k)-colorable if G has an
k-defective coloring in m colors. The k-defective chromatic number of a graph
G, denoted by xx(G), is the smallest positive integer m for which G is (m, k)-
colorable. Note that xo(G) is the usual chromatic number of G. It is clear that
Xx(G) < [n/(k+ 1)], where n is the order of G.

The concept of (m, k)-coloring has been studied by several authors. Hopkins
and Staton [7] refered to a k-independent set as a k-small set. Maddox ([11],
[12]) and Andrews and Jacobson [2] refered to this set as a k-dependent set. The
k-defective chromatic number has been investigated as the k-partition number
by Frick [4], Frick and Henning [5], Maddox ([11], [12]), Hopkins and Staton [7]
and under the name k-chromatic number by Andrews and Jacobson [2].

Achuthan et al. [1] determined the smallest order of a triangle-free graph
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such that xx(G) = m, denoted by f(m,k). They showed that f(3,2) = 13.
Moreover, they presented a lower bound for f(m,k) for m > 3 and also an
upper bound for f(3, k).

A graph G has an equitable k-defective coloring in m colors if G has a
k-defective coloring in m colors and the numbers of vertices in any two sets
composed of the vertices that are assigned to the same color differ by at most
one. The equitable k-defective chromatic number of a graph G, denoted by
XED,k(G), is the smallest positive integer m for which G has an equitably -
defective coloring in m colors.

Cummuang and Nakprasit [3] presented the equitable k-defective chromatic
numbers of paths, cycles, complete graphs, hypercubes, stars, and wheels for
any positive integer k.

Williams, Vandenbussche, and Yu [16] studied the equitable defective color-
ing of sparse planar graph by using the discharing method. The authors proved
that every planar graph with minimum degree at least 2 and girth at least 10
has an equitable 1-defective coloring in m colors for m > 3.

In this paper, we show that xgp 1 (Kmn) = X=(Kmn) for 2 <m < n and
XED2(Kmn) = X=(Km,n) for all but a finite number of (m,n) pairs.

2. Preliminary Results

Let K,,, be a complete bipartite graph with partite sets X and Y, where
X ={z1,29,...,xp} and Y = {y1,92,...,yn}, and m < n. Lemmas 1 — 4 can
be found in [14].

Lemma 1. Let K,,, be a complete bipartite graph.
IV, Vo, oo s Vigny(m+1)] are equitable color classes of Ky, p, then X =V; for
somei € {1,2,...,14+ [n/(m+1)]}.

For Lemmas 2 to 4, we let n = a(m + 1) + 0,0 < b < m where a and b are
integers.

Lemma 2. The complete bipartite graph K,,, has 1 + [n/(m + 1)]
equitable color classes of size m or m—+1 if and only ifb=0orm—a < b < m.

Lemma 3. The equitable chromatic number x= (K, ,,) = 1+ [n/(m+1)]
ifand only if b=0orm —2a—1<b<m.

Lemma 4. Given a positive integer m, let C' be the smallest positive
integer such that x—(Km,n) =1+ [n/(m + 1)] for every integer n > C. Then

C = (m—1)(m/2] - 1).
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Lemma 5. Let k,n € N andn > k such thatn =a(k+1)+0b, 0 <b < k.
There exist nonnegative integers s and t such that n = s(k+ 1) + tk if and only
ifb=0ork—a<b<k.

Proof. To prove the theorem, we first assume that there exist nonnegative
integers s and t such that n = s(k + 1) + tk. By choosing s and ¢ such that
s + t is minimum, we can show that (a,b) = (s,0) for t = 0 and (a,b) =
(s+t—1,k—t+1)fort>0.

Suppose that b =0 or k —a < b < k. We can show that n = s(k + 1) 4 tk
where (s,t) are (a,0), (0,a+1), and (a+b—k,1+k—0) forb=0,b=Fk —a,
and k —a+ 1 < b <k, respectively. This completes the proof. ]

Lemma 6. Let k,n € N with n > k(k — 1). Then there exist nonnegative
integers s and t such that n = s(k + 1) +tk and s+t = [n/(k+1)].

Proof. By the division algorithm, n = a(k + 1) + b where 0 < b < k. We
consider two cases.

Case 1: a=k—2. Then b > 2. Consequently, k —a=2<b< k.

Case2: a>k—1. For b=0, we have s = a and t = 0.

For 1 < b <k, wehave k —a+1 < b < k. Lemma 5 implies there exist
nonnegative integers s and t such that n = s(k + 1) + tk. We choose s and ¢
with minimum s + ¢ to obtain ¢ < k which implies s +¢ = [n/(k +1)]. O

3. The Equitable 1-Defective Coloring of K,

In this section, we investigate the equitable 1-defective chromatic numbers of
complete bipartite graphs K, , with m < n.

Theorem 7. For a complete bipartite graph Ki,, xppi1(Kin) = 1+
[(n—1)/3].
Proof. The proof follows from Corollary 2 in [3]. O

Theorem 8. For a complete bipartite graph K., , withm > 2, xgp 1 (Km.n)
= [m/(M 4+ 1)] + [n/(M + 1)] where M is the largest integer such that
m(mod M) < [m/M] and n(mod M) < [n/M].
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Proof. We first define f(t) = t+[(m—t)/3]+[(n—t)/3] fort =0,1,2,...,m

Observe that the equitable 1-defective coloring with ¢ non-independent color
classes, where ¢ > 1, has at least f(¢) color classes.

One can verify that min{f(¢) : ¢ = 0,1,2,...,m} = f(1) for m = n =
1(mod 3), and otherwise min{f(¢) : t =0,1,2,...,m} = f(0). We consider two
cases.

Case 1 : m =n = 1(mod 3).
In this case, the minimum of f(t) is attained at t = 1 and f(1) =1+ [(m —
DT+ =1)/3] = (m+n+1)/3.

Since m = 1(mod 3) < [m/3] and n = 1(mo
M > 3. This implies that [m/(M + 1)] + [n/(M
[(m +3)/4] + [(n + 3)/4].

Since [(m+n+1)/3] = [((m+3)/4)+ ((n+3)/4)] = [(m+n—14)/12] > 0
for m +n > 14, the theorem holds. The remaining (m,n) are (4,4) and (4,7)
for which xgp.1(Kmn) = [m/(M +1)] + [n/(M + 1)].

Case 2 : m # 1(mod 3) or n # 1(mod 3).

In this case, the minimum of f(¢) is attained at ¢t = 0. Since [m/(M lﬂ +
[/ (M+1)] < [m/3]+ [n/3] = £(0), therefore xgp.1(Kmn) = [m/(M+1)] +
[n/(M+1)]. O

d 3) < [n/3], we obtain
+ D] < [m/4] + [n/4] <

4. The Equitable 2-Defective Coloring of K, ,

In this section, we investigate the equitable 2-defective chromatic numbers of
complete bipartite graphs K, , with m < n. First, we introduce some defini-
tions that will be used in later arguments.

Definition 9. Let P be a color class in an equitable 2-defective coloring
of Ky, . We say that

1. P is a color class of type A if it comprises two vertices of X and two
vertices of Y

2. P is a color class of type B if it comprises two vertices of X and one
vertex of Y;

3. P is a color class of type C if it comprises one vertex of X and two
vertices of Y.

Definition 10. Let c be an equitable 2-defective coloring of K, ,. We say
that
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of type A5 if its maximum color class size is 5 and it
class of type A as its only non-independent color class;

of type A/ if its maximum color class size is 4 and it
class of type A as its only non-independent color class;

of type B/ if its maximum color class size is 4 and it
class of type B as its only non-independent color class;

of type B3 if its maximum color class size is 3 and it
class of type B as its only non-independent color class;

of type C/ if its maximum color class size is 4 and it
class of type C as its only non-independent color class;

of type C3 if its maximum color class size is 3 and it
class of type C as its only non-independent color class.

Lemma 11. The following statements hold for the equitable 2-defective
coloring of Ky, .
(i) Every equitable 2-defective coloring of K, with xXgp2(Kmn) color
classes has a color class which induces K if and only if (m,n) = (1,1) or (1, 3).
(t3) If Ky, p, has an equitable 2-defective coloring in ¢ colors, then it has an
equitable 2-defective coloring in ¢ colors that has at most one non-independent

color classes.

Proof. We shall prove only the sufficiency of (i) because the necessity can
be easily verified.

Consider an equitable 2-defective coloring with xgp 2(Kpm ) color classes with
a color class that induces Ks.

Let P = {z1,y1} and @ be non-independent color classes that result from
this coloring. We repartition P U @ into two equitable independent sets and
leave all other color classes unchanged. By continuing this process, we obtain
an equitable 2-defective coloring that has at most one non-independent set that
is a color class that induces K.

Let {z1,y1}, A1, Aa,..., Ay, B, Ba, ..., Bs be color classes that result from
the above coloring where A; C X, B; C Y and |A;| < |A;],|B1]| < |Bj| for
1<i<rl1<j<s.

Note that 1 +7+ s = xgp2(Kpm ). Since m > 2, we have r > 1 and s > 1.
Then Ay U{x1}, Ag,..., Ay, B1U{y1}, Ba,..., Bs are equitable color classes of
K, p. This contradicts xgpp 2(Kpmpn) =1+ 7+ s. Thus m = 1.

For n = 2 or n > 4, it is straightforward to verify that a coloring of type C3
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or C4 has xgp2(Ki,) color classes. Thus, the only possible (m,n) are (1,1)
and (1,3).

Next, we prove (i7) by considering an equitable 2-defective coloring with
(at least) two non-independent color classes, say P and ). We can repartition
PUQ into two color classes with fewer non-independent color classes and leave
all other color classes unchanged. By continuing this process, we obtain an
equitable 2-defective coloring with at most one non-independent color class. [

Lemma 12. For a complete bipartite graph K1 n, Xxgp2(K15) =14+ [(n—

2)/4].
Proof. The proof follows from Corollary 2 in [3]. O

Lemma 13. For a complete bipartite graph Ks , Xgp2(K2pn) = 1+[(n—

2)/5].

Proof. For 1 <n <6, it is easy to see that xgp2(K2 ) =1+ [(n—2)/5].
We consider the case when n > 7. By the division algorithm, n — 2 = 5q +
7,0 < r < 4. Therefore, r = 0 or 3 — 2g < r < 4. Lemma 3 implies that
X=(Kyn-2) =1+ [(n—2)/5].

Consider a coloring of type C4 or C3. Note that the minimum number of
color classes that result from this coloring is x—=(K4,—2) = 14 [(n—2)/5], but
X=(K2) =1+ [n/3]. Thus, xgp2(K2n) =1+ [(n—2)/5] by Lemma 11. O

Lemma 14. [coloring of type A5] Suppose that m,n # 2. The number
of color classes in a coloring of type A5 is less than x—(K,, ) if and only if
(m,n) = (7,10), (7,11), (7,17), (11,14), or (11,19).

Proof. We begin by assuming that the number of color classes in a coloring
of type A5 is less than x— (K, ). Then there exist nonnegative integers g, r, s,
and t such that m = 24+4q+5r, n = 24+4s+5t, and x= (K ) > qg+r+s+t+1.

Let A={x e N:z>20}U{5,6,10,11,12,15,16,17,18}.

Observe that if the smallest color class size of an equitable coloring is at
least 5, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type A5. Combining this with Lemma
6, we have a contradiction for m,n € A. Thus, we consider only the cases when
m € {7,14,19} or n € {7,14,19}.

Case 1 : m € {7,14,19}. We consider two subcases.

Subcase 1.1 : m = 7. If n > 18, then Lemmas 1 and 4 indicte that K7, has
an equitable coloring with color classes of size 7, which is a contradiction. The
remaining cases are n = 7,10,11,12,14,15,16, or 17. We can verify directly
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that the only possible (m,n) are (7,10),(7,11), and (7,17).

Subcase 1.2 : m = 14 or 19. It is easy to show that x= (K, ) < g+r+s+t+1
which is a contradiction.

Case 2 : n € {7,14,19}. We consider two subcases.

Subcase 2.1 : n = 7. We consider only (m,n) = (6,7) and (7, 7). The number
of color classes that result from a coloring of type A5 on K,, 7 is 3. Because
this result is greater than x—(K,, 7) = 2, we have a contradiction.

Subcase 2.2 : m =14 0r 19.If ¢ > 2 or r > 2, then x= (K, ) < g+r+s+t+1
which is a contradiction. It is sufficient to consider ¢ < 1 and r < 1. That is
m = 6,7, or 11. With the exception of the cases (m,n) = (11,14) and (11, 19),
the numbers of color classes resulting from a coloring of type A5 is greater than
X:(Km,n)'

Conversely, we can easily verify that the numbers of color classes resulting
from a coloring of type A5 are 4,4,5,6 and 7 for (m,n) = (7,10), (7,11), (7,17),
(11,14), and (11, 19), respectively. Each of the numbers of color classes is less
than the equitable chromatic number of the corresponding graph. O

Lemma 15. [coloring of type A4] Suppose that m,n # 2. The number
of color classes in a coloring of type A4 is less than x—(K, ) if and only if
(ma 7’L) - (67 9)

Proof. We begin by assuming that the number of color classes in a coloring
of type A4 is less than x— (K, ). Then there exist nonnegative integers g, r, s,
and t such that m = 24+3¢+4r, n = 24+ 3s+4t, and x= (K ) > q¢+r+s+t+1.

Let A={x e N:x > 12} U{4,5,8,9,10}.

Observe that if the smallest color class size of an equitable coloring is at
least 4, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type A4. Combining this with Lemma
6, we have a contradiction for m,n € A. Therefore, we consider only the cases
when m € {6,11} or n € {6,11}.

Case 1 : m € {6,11}. We consider two subcases.

Subcase 1.1 : m = 6. For t > 2, Lemmas 1 and 4 imply that x—(Kgn) <
q¢+r+s+t+1 which is a contradiction. Because x=(K¢n) < g+r+s+t+1
whens > 2, we consider only (m,n) = (6,6) and (6,9). The number of color
classes that result from a coloring of type A4 on K¢ is 3, which is greater
than x—(Kg ) = 2. Thus, the remaining (m,n) is (6,9).

Subcase 1.2 : m = 11. Since x=(K11,,) < ¢+1r+s+t+1 for all n, we have
a contradiction.

Case 2 : n € {6,11}. We can show that x—(Kp, ) < ¢+7+s+t+1 except the
cases 0 < ¢ <1 and r = 0. That is, m = 2 or 5. However, each of these cases is
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eliminated.

Hence, the only possible (m,n) in this case is (6,9).

Conversely, we can verify that the number of color classes that result from
a coloring of type A4 on Kgg is 4, which is less than x—(Ks9) = 5. O

Lemma 16. [coloring of type B4] Suppose that m,n # 2. The number
of color classes in a coloring of type B4 is less than x—(K,, ) if and only if
(m,n) = (5,7) or (6,9).

Proof. We begin by assuming that the number of color classes in a coloring
of type B4 is less than x—(K,, ). Then there exist nonnegative integers g, r, s,
and t such that m = 24+3¢+4r, n = 14+3s+4t, and x=(Kp ) > q¢+r+s+t+1.

Let A={x e N: 2 > 12} U{4,5,8,9,10}.

Observe that if the smallest color class size of an equitable coloring is at
least 4, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type B4. Combining this with Lemma
6, we have a contradiction for m,n € A. Therefore, we consider only the cases
when m € {6,11} or n € {1,7,11}.

Case 1 : m € {6,11}. We consider two subcases.

Subcase 1.1 : m = 6. By Lemmas 1 and 4, x—(K¢,n) < ¢+7+s+t+1 where
n > 10. Therefore, n = 7,8, or 9. However, x—(Ks7) = 2 and x=(Ksg) = 4
are not less than the number of color classes that result from a coloring of type
Bj. Thus, the only possibility is (m,n) = (6,9).

Subcase 1.2 : m = 11. Since x=(K11,,) < ¢+7r+s+t+1 for all n, we have
a contradiction.

Case 2 : n € {1,7,11}. Because K ; cannot be assigned by a coloring of type
B/, we consider only n = 7 or 11. We can show that x—(Kp,,) < g+r+s+t+1
it m # 5.

The number of color classes that result from a coloring of type B4 on Kj 11
is 5, which is greater than y— (K5 11) = 3. Thus, the only possible (m,n) in this
case is (5,7).

Conversely, for both (m,n) = (5,7) and (6,9), the number of color classes
that result from a coloring of type B4 on K, ,, is 4, which is less than x— (K, ) =
5. O

Lemma 17. [coloring of type B3] Suppose m,n # 2. The number of
color classes in a coloring of type B3 is less than x—(K,, ) if and only if
(m,n) = (5,7).

Proof. We first assume that the number of color classes in a coloring of type
B3 is less than x—(K,, ). Then there exist nonnegative integers ¢, r,s, and ¢
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such that m =2+42¢+3r, n =1+ 2s+3t, and x=(Kpn) >q+r+s+t+1.

Let A={xr e N:x > 6} U{3,4}.

Observe that if the smallest color class size of an equitable coloring is at
least 3, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type B3. Combining this with Lemma 6,
we have a contradiction for m,n € A. We consider only the cases when m =5
or n =5.

Case 1 : m = 5. Lemmas 1 and 4 imply that x—(K5,) <g+7r+s+t+1 for
n > 8. If n =5 or 6, then Lemma 2 indicates that x—(K5,) < ¢+r+s+t+1.
Thus, the only possibility is (m,n) = (5,7).

Case 2 : n = 5. For both (m,n) = (4,5) and (5,5), the number of color classes
that result from a coloring of type B3 is 4, which is greater than x— (K, ») = 2.
This is a contradiction.

Conversely, the number of color classes the result from a coloring of type
B3 on K7 is 4, which is less than x—(K57) = 5. O

Lemma 18. [coloring of type C4] Suppose that m,n ¢ {1,2}. The number
of color classes in a coloring of type C4 is not less than x— (K, ).

Proof. Suppose that the number of color classes in a coloring of type C4
is less than x— (K, ). Then there exist nonnegative integers ¢, r, s, and ¢ such
that m =1+3¢+4r, n =2+ 3s+4t, and x=(Kpn) >q+r+s+t+1.

Let A={xr e N:x > 12} U{4,5,8,9,10}.

Observe that if the smallest color class size of an equitable coloring is at
least 4, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type C4. Combining this with Lemma
6, we have a contradiction for m,n € A. We consider only the cases when
m € {7,11} or n € {6,11}.

Case 1 : m € {7,11}. We can show that x=(Ky,n) < g+r+s+t+1ifn #2,5.
However, n = 2,5 violates the condition m < n.

Case 2 : n € {6,11}. Because x—(Ku6) = 3 and x=(K56) = 2 are not greater
than the number of color classes that result from a coloring of type C4, we
consider only n = 11.

Because m = 7 and 11 have been considered, only the cases when m =
4,5,8,9, or 10 remain to be considered. We can show that the numbers of
color classes that result from a coloring of type C4 are 5,5,6,6, and 7 for
(m,n) = (4,11), (5,11), (8,11), (9,11), and (10,11), respectively. Each of the
numbers of color classes is not less than the equitable chromatic number of the
corresponding graph.
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Hence, the numbers of color classes that result from a coloring of type C4
are not less than x—(Kp, ). O

Lemma 19. [coloring of type C3] Suppose m,n ¢ {1,2}. The number of
color classes in a coloring of type C3 is not less than x— (K, ).

Proof. Suppose that the number of color classes in a coloring of type C3
is less than x— (K, ). Then there exist nonnegative integers ¢, r, s, and ¢ such
that m =1+2¢+3r,n=2+2s+3t, and x=(Kppn) >q+7r+s+t+1.

Let A={x e N: x> 6} U{3,4}.

Observe that if the smallest color class size of an equitable coloring is at
least 3, then the number of color classes in the equitable coloring is less than the
number of color classes in a coloring of type C38. Combining this with Lemma 6,
we have a contradiction for m,n € A. We consider only the cases when m =5
or n = 5.

Because x=(K5,) < g+r+s+t+1 for all n, we consider only the case when
n = 5. The numbers of color classes that result from a coloring of type C3 on
K35, K45, and K55 are 3,3, and 4, respectively. Each of the numbers of color
classes is not less than the equitable chromatic number of the corresponding

graph.
Hence, the number of color classes in a coloring of type C& is not less than
X=Kmn)- O

Now, we are ready to prove our main Theorem.

Theorem 20. For a complete bipartite graph K, with m < n,
XE'D,Q(Km,n) = X=(Km,n) except

1. XED,2(K1,n) =1 + HTL — 2)/4—|,
2. XED,2(K2,n) =1 + HTL — 2)/5—|,

3. xep2(Kmn) =1+ [(m—2)/5] + [(n —2)/5],
where (m,n) = (7,10),(7,11),(7,17), (11,14), or (11,19);

4. xXep2(Ks7) =4;

5. XED2(Ke9) = 4.
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Proof. We have by Lemma 12, xgp2(K1,,) = 1+ [(n — 2)/4]. By Lemma
13, xep2(K2,) = 1+ [(n — 2)/5]. In addition, x=(Ki,) = 1+ [n/2] and
X=(K2,5) =1+ [n/3].

Consider K, , where (m,n) = (7,10),(7,11),(7,17),(11,14), or (11,19).
By Lemma 14, the number of color classes that result from a coloring of
type A5 on K, is less than x—(K,, ). By Lemmas 15 — 19, colorings of
other types on K,,, do not exist or the resulting numbers of color classes
are less than x— (K, ). From the proof of Lemma 14, the numbers of color
classes that result from colorings of type A5 on K,,, are 4,4,5,6, and 7
for (m,n) = (7,10),(7,11),(7,17),(11,14), and (11,19), respectively. Hence,
XED2(Kmn) =14 [(m —2)/5] 4+ [(n—2)/5] for (m,n) in this case.

For K57, Lemma 17 implies that the number of color classes that result
from a coloring of type B3 on Kj7 is less than x—(K57). By Lemmas 14 —
19, colorings of other types on K57 do not exist or the resulting numbers of
color classes are less than y—(K5 7). From the proof of Lemma 17, the number
of color classes that result from a coloring of type B3 on K57 is 4. Hence,
XED2(K57) =4.

For K¢ g9, Lemmas 15 and 16 imply that the numbers of color classes that
result from colorings of types A4 and B4 on Kgg are less than x—(Kgg9). By
Lemmas 14 — 19, colorings of other types on Kgg do not exist or the resulting
numbers of color classes are less than x—(Kg9). The proofs of Lemmas 15 and
16 show that the number of color classes resulting from a coloring of types A4
and B4 are equal to 4. Hence, xgp 2(Ke9) = 4.

If K, is not addressed by the previous cases, then Lemmas 14 — 19 indi-
cate that x—(K,,,) is not greater than the number of color classes that result
from a coloring of type A5, A4, B4, B3, C4, or C3. Hence, xgp2(Kmn) =

X=Kmn)- O
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Abstract

A strong edge-coloring is a proper edge-coloring such that two edges
with the same color are not allowed to lie on a path of length three. The
strong chromatic index of a graph G denoted by §'(G) is the minimum
number of colors in a strong edge-coloring.

We denote the degree of a vertex v by d(v). Let the Ore-degree of a
graph G be the maximum values of d(u) + d(v) where u and v are adjacent
vertices in GG. Let F3 denote the graph obtained from a 5-cycle by adding
a new vertex and joining it to a pair of nonadjacent vertices of the 5-cycle.
In 2008, Wu and Lin [J. Wu and W. Lin, The strong chromatic index
of a class of graphs, Discrete Math., 308 (2008), 6254-6261] studied the
strong chromatic index with respect to the Ore-degree. Their main result
states that if a connected graph G is not F3 and its Ore-degree is 5, then
s'(G) < 6. Inspired by the result of Wu and Lin, we investigate the strong
edge-coloring of graphs with Ore-degree 6. We show that each graph G
with Ore-degree 6 has s'(G) < 10. With the further condition that G is
bipartite, we have s'(G) < 9. Our results give general forms of previous
results about strong chromatic indices of graphs with maximum degree 3.

1 Corresponding author email:kitnak@hotmail.com



1 Introduction

Graphs in this paper are finite, undirected, and loopless, but multiple
edges are allowed. We always assume that graphs are connected unless the
context implies otherwise. Note that some results that we refer to may not
consider multiple edges, but these results can be extended easily to graphs
with multiple edges.

Let V(G) and E(G) denote the vertex set and the edge set of a graph G
respectively. We use d(z) to denote the degree of a vertex x and A(G) to
denote the maximum degree of a graph G. Let the Ore-degree of a graph GG
be the maximum values of d(u) 4+ d(v) where u and v are adjacent vertices
in G. A k-vertex is a vertex of degree k.

The distance between edges e; and ey in a graph G is the distance
between the corresponding two vertices in the line graph of G. A strong
edge-coloring of a graph G is an edge-coloring in which two distinct edges
with distance at most 2 have different colors. A strong k-edge-coloring
is a strong edge-coloring using at most k colors. The strong chromatic
index s'(G) is the minimum & such that G has a strong k-edge-coloring.
Throughout this paper, the term coloring means strong edge-coloring, un-
less the coloring is specified to be other type of coloring.

Erdés and Nesetfil [4] conjectured that s'(G) < 5D?/4 — D/2 + 1/4, if
D is odd and §'(G) < 5D?/4, if D is even, where D = A(G). Andersen [1]
and Hordk, Qing, and Trotter [7] settled the case D = 3 of the conjecture
by showing the following.

Theorem 1.1 ([1, 7]) If a graph G has a mazimum degree three, then
s'(G) < 10.

Hordk [6] showed that there is a strong 23-edge-coloring for graphs
with maximum degree four. Cranston [3] improved the bound to 22. The
conjecture for D = 4 which has s'(G) < 20 remains unsolved.

Faudree et al. [5] formulated a bipartite version of this problem. They
conjectured that s’(G) < D2, if G is a bipartite graph. Steger and Yu [14]
settled the conjecture for A(G) = 3 which is the first non-trivial case of
the second conjecture by showing the following.

Theorem 1.2 ([14]) If a bipartite graph G has a mazimum degree three,
then s'(G) < 9.



A stronger version of the second conjecture, due to Brualdi and Massey [2],
states that s’(G) is bounded by Dy Dy, where Dy and D5 are the maximum
degrees among vertices in the two partite sets, respectively. Quinn and
Benjamin [12] proved this for a special class of bipartite graphs whose par-
tite sets are the k-sets and I-sets in [m], adjacent when the two sets share
exactly j elements. Quinn and Sundberg [13] proved it for the incidence
bigraph of the k-sets in [m]. Nakprasit [10] gave the affirmative answer to
the conjecture for D = 2.

Note that there are researches focusing to colorings related to Ore-
degrees of graphs instead of maximum degrees. For example, Kierstead
and Kostochka [8, 9] studied the relation of ordinary coloring, equitable
coloring, and nearly-equitable coloring to Ore-degrees of graphs. In [5],
Faudree et al. conjectured that if GG is a bipartite graph with Ore-degree at
most 5, then s'(G) < 6. Let Fp denote the graph obtained from a 5-cycle
by adding D — 2 new vertices and joining them to a pair of nonadjacent
vertices of the 5-cycle. Wu and Lin [15] obtained the main result in their
paper which verified the conjecture in a stronger form as follows.

Theorem 1.3 ([15]) If a graph G is not F3 and its Ore-degree is at most
5, then s'(G) < 6.

Let H; denote the graph obtained from a 8-cycle C = vivy...vg by
adding two vertices v} and v§ and joining v} to v, vs, and v5 to v4, vg. Wu
and Lin [15] noted that they did not know any graphs with Ore-degree 5
to have §'(G) > 6 except F3, Hy, and K 3. The result of Wu and Lin is
generalized by Nakprasit and Nakprasit [11] as follows.

Theorem 1.4 ([11]) If each edge xy of a graph G has d(z)+d(y) < D+2
and min{d(z),d(y)} < 2, then s'(G) < 2D + 1. With the further conditon
that G is not Fp, we have s'(G) < 2D.

However, the stronger form of Theorem 1.3 in terms of Ore-degrees is
not known. For graphs with small Ore-degrees, we have the followings.

Observation 1.5 (Characterization of graphs with small Ore-degrees)
(i) The only graph with Ore-degree 0 is K;.
(ii) No graph has Ore-degree 1.

(iii) The only graph with Ore-degree 2 is a path with one edge.



(iv) The only graph with Ore-degree 3 is a path with two edges.

(v) A graph G has Ore-degree 4 if and only if G is a path of length at
least 3, K13, a cycle, or a graph with two vertices and two multiple
edges.

Since graphs with the above Ore-degrees can be classified explicitly, we
can find their strong chromatic indices easily. Thus Theorem 1.3 by Wu
and Lin is the first non-trivial result about the strong chromatic index in
terms of Ore-degrees.

Inspired by the result of Wu and Lin, we show that each graph G with
Ore-degree at most 6 has s'(G) < 10. With the further condition that G is
bipartite, we have s'(G) < 9. Our results give general forms of Theorems 1.1
and 1.2.

2 The strong edge-colorings of graphs with

restricted Ore-degrees

Note again that we assume that each graph is connected unless the context
implies otherwise.

Next, we proceed to investigate strong chromatic indices in terms of
Ore-degree of graphs in general.

Lemma 2.1 Let G be a graph with Ore-degree at most R. If M is the set
of vertices of G with degree R — 2, then s'(G) < max{s'(G — M),3R — 8}.

Proof. If A(G) =R —1, then G = K g_; which has §'(G) = R— 1. If
A(G) < R—3, then G = G— M. Thus A(G) = R—2 which implies M # 0.
Let G; be the graph induced by the edges incident to M.

First, note that each edge of G; has at most 2(R—3)+(R—2) =3R-38
edges within distance two. If each edge of one component of G; has 3R —8
edges within distance two, then G satisfies the condition of Theorem 1.4
which implies §'(G) < 2(R —2) + 1 = 2R — 3. Now we may assume that
every component of G; has

Apply strong edge-coloring with s'(G — M) colors to E(G — M). It can
be see that we can use this as a partial strong edge-coloring in G. Now, we
want to extend the coloring to edges in the component of E(G1) with an
edge e having at most 3R — 9 edges within distance two. To greedily color



them one by one, we give an ordering of the edges of this component in the
following way.

If the distance from ey to e is greater than the distance from ey to e,
then we color e; before es. Since every edge has at most 3R — 9 colored
edges within distance two at each step, we can color every edge of such
component of G;. Using similar method to all components to complete the
coloring. O

A path wwyws is a special 2-path if d(wy) = d(wz) = 2 and w is an
(R — 2)-vertex.

Lemma 2.2 Let G be a graph with Ore-degree at most R with a special
2-path wwywsz. Then s'(G) < max{s'(G —w;),2R — 3}.

Proof. Apply strong edge-coloring with s'(G —w; ) colors to G—w;. Now
ww; has at most 2(R — 3) + 1 = 2R — 5 colored edges within distance two
and wiwe has at most (R —3) + (R —2) = 2R — 5 colored edges within
distance two. Since we have at least 2R — 3 available colors, we can extend
the coloring to ww; and wyws. As a result, we have a required coloring. [

Theorem 2.3 If a graph G has Ore-degree at most 6, then s'(G) < 10.
With the futher condition that G is bipartite, we have s'(G) < 9.

Proof. Let G be a graph with Ore-degree 6. If A(G) = 5, then G = K 5
which has s'(G) = 5. So we can assume that A(G) < 4. Let M be the set of
vertices with degree 4. Lemma 2.1 yields that s'(G) < max{s'(G—M), 10}.
Since A(G — M) < 3, we have s'(G — M) < 10 by Theorem 1.1. Thus we
have s'(G) < 10.

Now, it remains to show that s'(G) < 9 when G is bipartite. Suppose
that GG is a minimal counterexample to the theorem. Consider the case
that G contains two distinct edges e, es with a pair of common endpoints.
Since §'(G — e1) < 9 by minimality and e; has at most seven edges within
distance two, we have s'(G) < 9. Thus we may assume G has no multiple
edges. If A(G) = 5, then G = K; 5 which has s'(G) = 5. If A(G) < 3,
then Theorem 1.2 yields s'(G) < 9. Consequently, we assume that A(G) =
4. Since G is not K; 4 which has §'(G) = 4, the graph G contains a 4-
vertex adjacent to a 2-vertex. If G has no 3-vertices, then Theorem 1.4
yields s'(G) < 9. Thus G contains a 3-vertex and a 4-vertex. Since G is



connected and has Ore-degree 6, the graph G has a path of length at least
two with every internal vertex is 2-vertex whereas one endpoint is 3-vertex
and the other is 4-vertex. If G contains a special 2-path, then s'(G) < 9
by minimality of G and Lemma 2.2. Thus G contains a path uvw with u
is a 4-vertex, v is a 2-vertex, and w is a 3-vertex.

Consider such u with its four neighbors v, vs,vs, and v4. Since G is
bipartite, the set {v1,v2,vs,v4} is independent. Suppose some v; is a 1-
vertex. Since s'(G — uwv;) <9 by minimality and uv; has at most six edges
within distance two, we have s'(G) < 9. Let w; different from u be the
other neighbor of the 2-vertex v; (1 < i < 4). Note that wy,ws, w3, wy are
not necessarily pairwise distinct. We have d(w;) # 1 as before. Moreover,

d(w;) # 2 because G has no special 2-edges. Combinining with the fact
that G has Ore-degree at most 6, we have each d(w;) = 3 or 4. From the
choice of u, some w; is a 3-vertex. Let W = {w1, wa, w3, wy}.

Figure 1: Configurations in a minimum counterexample.

We claim that the counterexample G must contain one of the configu-
rations in Fig. 1, where a black square is the vertex u, a dot indicates a
vertex of degree 2 (that is some v;), a hollow triangle indicates a vertex
of degree 3, a hollow square indicates a vertex of degree 4, the degree of
a black diamond is at least the number of edges incident to the black di-
amond in the figure, and all vertices are distinct. If |W| = 4, that is all
w1, we, w3, wy are distinct, then G contains the first configuration. Con-
sider the case |W| = 3 where wg = wy. If d(w;y) or d(ws) is 3, then G



contains the second configuration, otherwise G contains the third configu-
ration. The case |W| = 2 where w; = we and w3 = w4 implies G contains
the fourth configuration. Consider the case |W| = 2 where we = w3 = wy.
If d(wy) = 3, then G contains the fifth configuration, otherwise G contains
the sixth configuration. The case that |[W| = 1 contradicts the fact that
d(w;) = 3.

After some partial strong k-edge coloring on G, we use A(e) denote the
number of legal colors from k colors that can be assigned to e. Consider a
coloring of all edges in G except edges in a configurtion. Each edge e is
the figure is shown with a lower bound for A(e) that is calculated from 9
minus the number of edges with distance within two from the edge e,

Since the number of legal colors for each edge not incident to u is large
enough, the sets of legal colors of those edges cannot be all pairwise disjoint.
Thus we can assign some color to two of those edges simultaneously. Next,
we color other two edges that are not incident to the vertex u. Note that the
lower bound for A(e) in each uncolored edge e is now decreased by at most
three. Finally, we color four edges incident to the vertex w sequentially
from an edge with the least number of legal colors to the most one. Since
the number of legal colors for each edge is large enough, the strong edge-
coloring using at most nine colors can be completed. O

Acknowledgements

Both authors would like to thank the anonymous referee for helpful com-
ments and suggestions which much improve our presentation of the paper,
especially the proofs.

The first author was supported by The Thailand Research Fund under
grant MRG5580003. The second author was supported by National Re-
search Council of Thailand and Khon Kaen University, Thailand (Grant
number: kku fmis (570018)).

References

[1] L.D. Andersen, The strong chromatic index of a cubic graph is at most
10, Discrete Math., 108 (1992), 231-252.



2]

R.A. Brualdi and J.Q. Massey, Incidence and strong edge colorings of
graphs, Discrete Math., 122 (1993), 51-58.

D.W. Cranston, Strong edge-coloring of graphs with maximum degree
4 using 22 colors. Discrete Math., 306 (2006), 2772-2778.

P.Erdos and J. Nesettil, Problem, in: G. Haldsz and V. T. Sés, eds.,
Irregularities of partitions, (Springer, New York, 1989), 83-87.

R.J. Faudree, A. Gyarfas, R.H. Schelp, and Z. Tuza, Induced match-
ings in bipartite graphs, Discrete Math., 78 (1989), 83-87.

P. Horak, The strong chromatic index of graphs with maximum degree
four, Contemporary methods in graph theory, 399-403, Bibliographis-
ches Inst., Mannheim, 1990.

P. Hordk, H. Qing, and W.T. Trotter, Induced matchings in cubic
graphs, J. Graph Theory, 17 (1993), 151-160.

H.A. Kierstead and A.V. Kostochka, An Ore-type theorem on equi-
table coloring, J. Combin. Theory Ser. B, 98 (2008), 226-234.

H.A. Kierstead and A.V. Kostochka, Ore-type versions of Brooks the-
orem, J. Combin. Theory Ser. B, 99 (2009) 298-305.

K. Nakprasit, A note on the strong chromatic index of bipartite graphs,
Discrete Math., 308 (2008), 3726-3728.

K. Nakprasit and K. Nakprasit, The strong chromatic index of graphs
and subdivisions, Discrete Math., 317 (2014), 75-78.

J.J. Quinn and A.T. Benjamin, Strong chromatic index of subset
graphs, J. Graph Theory, 24 (1997), 267-273.

J.J. Quinn and E.L. Sundberg, Strong chromatic index in subset
graphs, Ars Combin., 49 (1998), 155-159.

A. Steger and M.L. Yu, On induced matchings, Discrete Math., 120
(1993), 291-295.

J. Wu and W. Lin, The strong chromatic index of a class of graphs,
Discrete Math. 308 (2008), 6254-6261.



Date: Fri, 13 Jun 2014 13:40:05 -0500
To: kitnak@hotmail.com

From: MathJournals@attglobal.net
Subject: Ars Comb paper

Professor Nakprasit,

| have now received the referees third report on your paper with Keaitsuda Nakprasit
entitled, "The strong chromatic index of graphs with restricted Ore-degrees".
The report is attached below. The referee now recommends publication. Therefore, |

am happy to accept it for publication once the corrections have been made.

Would you please send me a new copy: single spaced, in 10 point Times or
Computer Modern font, 4.5 x 7.125 inches (11.4 x 18.1 cm) in text size. | use your
copy as camera-ready for publication. A .pdf file by email will suffice.

Yours sincerely,

J.L. Allston

Managing Editor

Ars Combinatoria



A3. Nakprasit, K., Nakprasit, K., Equitable coloring games on complete bipartite

graphs, manuscript.



Equitable Coloring Games on Complete Bipartite
Graphs

Keaitsuda Nakprasit
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand

E-mail address: kmaneeruk@hotmail.com

Kittikorn Nakprasit *
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand

E-mail address: kitnak@hotmail.com

Abstract

An equitable k-coloring game on a graph G is a game that Alice and Bob play
with a color set C'= {1,2,...,k}. They take turns coloring the vertices of G one at a
time with colors from C, with Alice has the first move, under the rule that adjacent
vertices have different colors. Each color cannot be used more than b times where
b= [|V(G)|/k], and the coloring is allowed to have at most |V (G)| — k(b — 1) colors
to be used b times. When there are no legal colorings left, Alice wins if all the vertices
are colored and Bob wins otherwise. By this rule, we always has an equitable coloring
when all vertices are colored.

In this paper, we have a characterization for complete bipartite graphs that Alice
has a winning strategy in the equitable coloring game.

1 Introduction

A k-coloring game on a graph G is a game that Alice and Bob play with a color set C' =
{1,2,...,k}. They take turns coloring vertices in G one at a time with colors from C, with
Alice has the first move, under the rule that adjacent vertices have different colors. When
there are no legal colorings left, Alice wins if all the vertices are colored and Bob wins
otherwise.

In 1981, Steven Brams in [7] considered the coloring game on maps which is equivalent to
the coloring game on planar graphs. In 1991, Bodlaender [1] introduced the formal concept
of the coloring game in general graphs. From then, the research in the coloring game has
flourished with many interesting results. The game chromatic number of a graph G is the
least k that Alice has a winning strategy for the k-coloring game. One of the most studied
problems in this topic is to find the game chromatic number of planar graphs. Upper bounds

*Corresponding Author



for the game chromatic number have been determined for outerplanar graphs [8] and planar
graphs [5, 13, 14, 19, 20]. Guan and Zhu [8] proved that the game chromatic number of an
outerplanar graph is at most 7. Zhu [20] proved that the game chromatic number of a planar
graph is at most 17. Currently, both results are the best-known bounds for respective classes
of graphs. Upper bounds for the game chromatic numbers have been determined for other
graphs including forests [6], line graphs of k-degenerate graphs [2], and graphs embeddable
on orientable surfaces with bounded genus [13].

An equitable coloring of a graph is a proper vertex coloring such that the sizes of every two
color classes differ by at most 1. A graph G is equitably k-colorable if there is an equitable
coloring of k£ colors for G. The smallest integer k for which G is equitably k-colorable is
called the equitable chromatic number of G. Meyer [16] introduced this notion of equitable
colorability in 1973. However, a work in 1970 of Hajnal and Szemerédi [9] actually settled
a conjecture of Erdés by showing that a graph G with maximum degree A(G) is equitably
k-colorable if k > A(G) + 1. The simpler proof of Hajnal-Szemerédi theorem was given later
by Kierstead and Kostochka [11].

The bound of the Hajnal-Szemerédi theorem is sharp. However, Chen, Lih, and Wu [4]
conjectured that every connected graph G with maximum degree A > 3 has an equitable
coloring with A colors, except when G is Kai1 or Kaa. They proved the conjecture for
graphs with maximum degree at most three. Later, Kierstead and Kostochka [12] proved
the conjecture for graphs with maximum degree at most four. Yap and Zhang [18] proved
that the conjecture holds for outerplanar graphs. Later, Kostochka [10] determined the sharp
upper bound of equitable chromatic number for outerplanar graph which is 1+ A/2. Lam et
al. [15] determined which k that each n-partie graph can have an equitable k-coloring. This
result verifies the conjecture for complete n-partite graphs. The conjecture is also verified for
various graphs including trees [3] and planar graphs with maximum degree at least nine [17].

In this paper, we introduce an equitable version of a coloring game. In a coloring game,
Alice wins if and only if all vertices are colored. To enforce a coloring of all vertices to be
an equitable k-coloring, we propose the additional rules for an equitable k-coloring game as
follows. Let b = [|V(G)|/k] and d = [|[V(G)|/k]. A color that has been used b times is a
magjor color. Each color cannot be used more than b times and the coloring is allowed to
have at most |V(G)| — k(b — 1) major colors.

From now on, a game means an equitable k-coloring game on a complete bipartite K, ,,.
Let X and Y be partite sets of K,,,, of size m and n, respectively, with m < n. A partite
set is called even (respectively, odd) if its size is even (respectively, odd). Let f(X) be the
number of colors that appear in X and g(X) be the number of major colors that appear in
X. Functions f(Y) and g(Y") are defined similarly.

We study the games with b < 2 in Section 2, the games with d > 3 in Section 3, and the
games with b = d+1 = 3 in Section 4. In Section 5, we conclude our finding by characterizing
complete bipartite graphs that Alice has a winning strategy in the equitable coloring game.

2 The games with b <2

Lemma 1. If d < 1 then Alice has a winning strategy.

Proof. Since Alice wins trivially when b = 1, we consider only the case b = 2 and d = 1.
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Consider Alice’s strategy as follows. If it is possible, then Alice assigns a used color to
a vertex preferably in an even partite set. Otherwise she assigns a new color to a vertex
preferably in an odd partite set.

Note that when X and Y have uncolored vertices the number of major colors in every two
turns always increases by Alice’s strategy. If m +mn — k major colors occur during gameplay,
then the size of each remaining color class can be at most 1. Thus remaining vertices can
be arbitrarily colored. Now suppose that fewer than m + n — k£ major colors occur during a
game but all vertices in one partite set, say X, are colored. We analyze this situation into
two cases.

Case 1: m is odd. In this case, there exists exactly one color class of current size 1 in X
by Alice’s strategy. Then the remaining vertices can be colored arbitrarily to complete an
equitable coloring.

Case 2: m is even. Note that there are at most two color classes of current size 1 by
Alice’s strategy. If there is no color class of current size 1 in X, then the remaining vertices
can be colored arbitrarily to complete an equitable coloring. Suppose there are two color
classes of current size 1 in X. Deducing from Alice’s strategy, we have that n is also even.
So there must be at least two color classes of size 1 in an equitable k-coloring of K, ,,. Thus
an equitable coloring will be completed by arbitrary coloring of the remaining vertices. [J

Lemma 2. If b = d = 2 then Bob has a winning strategy.

Proof. Obviously Bob wins when m or n is odd. In the case that m and n are even, Bob
imitates Alice’s play every turn until one partite set has exactly one vertex uncolored, then
he plays a new color in such partite set. This move makes Bob win the game. 0

Lemma 3. Let m = d = b—1 = 2. Alice has a winning strategy if and only if (i) n = 3(k—1)
and n is even, or (ii) n < 3(k — 1) and n is odd.

Proof. Let m=d=b—-1=2.

Neccesity: Assume (i) and (ii) do not hold. Consider Bob’s strategy as follows. Bob
colors a vertex in Y preferably by a used color until Alice plays a vertex in X or plays the
(k — 1)st color. If Alice plays a vertex in X, then Bob assigns a new color to another vertex
in X. If Alice plays the (k — 1)st color, then Alice assigns the last color to a vertex in the
same partite set. Bob wins by this strategy.

Sufficiency: Assume (i) or (ii) holds. Consider Alice’s strategy as follows. Alice colors
a vertex in Y preferably by a used color until Bob plays a vertex in X or plays the (k — 1)st
color. If Bob plays a vertex in X, then Alice assigns the same color to another vertex in X.
If Bob plays the (k — 1)st color, then Alice assigns the last color to a vertex in the other
partite set. Alice wins by this strategy. O

3 The games with d > 3

The X -mazimizing tactic is a strategy of Bob defined as follows. Bob plays a new color
in X if there exists an unused color, and fewer than d uncolored vertices are in X or Alice
played a new color in the turn immediately before. Otherwise, Bob plays a legal color with



the largest class size in X. If all vertices in X are colored, then Bob plays arbitrarily. The
Y -maximizing tacticis defined similarly.

Remark. If Bob always has new colors to use for the X-maximizing tactic before all vertices
in X are colored, then there is a color class of size less than d. Thus if we assume that a
coloring is completed despite the X-maximizing tactic used by Bob, then all colors are used
before all vertices in X are colored.

Lemma 4. Let d > 3. If Alice colors a vertex in X in the first turn, then Bob has a winning
strategy.

Proof. Assume that Alice colors a vertex in X in the first turn. We claim that Bob can win
by the X-maximizing tactic. Suppose all vertices are colored. Note that all colors are used
before all vertices in X are colored by the previous remark. Bob’s strategy yields f(X) >
f(Y)+1and g(X)>g(Y)—1. Thus m =df (X)+ (b—d)g(X) > df(Y)+ (b—d)g(Y) =n
which is a contradiction. Hence Bob has a winning strategy. U

Remark. In view of Lemma 4, we assume that Alice colors a vertex in Y in the first turn
for a game with d > 3.

Before we investigate the equitable game coloring further, we define two conditions of m
and n which are refered in later parts.

Definition 1. Let £ = 2t + 1 where ¢ is an integer. We say m and n satisfy condition (A)
if m=rb+(t —r)d and n =rb+ (t + 1 — r)d where r is an integer satisfying 1 <r <t.

Definition 2. Let k = 2t + 1 where ¢ is an integer. We say m and n satisfy condition (B)
if one of the following holds:

(i) m=tband n = (t — 1)b+ 2d,

(i) m=(t—1)b+dand n = (t+1)b,

(ii) m=(t—1)b+dand n =tb+d,

(iv) m=(t —2)b+2d and n = (t + 1),

(v) m=(t —2)b+2d and n =tb+d, or
(vi) m=(t—2)b+2d and n = (t — 1)b + 2d.

Lemma 5. Let d > 3. If k is even, then Bob has a winning strategy.

Proof. We consider two cases.

Case 1: n —m < 2. We claim that Bob can win by the Y-maximizing tactic. Suppose
all vertices are colored. Bob’s strategy yields f(Y) > f(X)+ 2 and ¢g(Y') > ¢g(X) — 1. Thus
n —m > 3d — b > 3 which is a contradiction.

Case 2: n —m > 3. We claim that Bob can win by the X-maximizing tactic. Suppose
all vertices are colored. Bob’s strategy yields f(X) > f(Y) and ¢g(X) > g(Y) — 2. (Note
that the equality of the second bound is attained only if g(X)+2 = f(X) = f(Y) =g(Y).)
Thus n — m < 2 which is a contradiction.

Hence Bob has a winning strategy. 0]



Lemma 6. Let d > 3. If k£ is odd and Alice has a winning strategy, then m and n satisfy
condition (A), (B), orn —m >d+ 1.

Proof. Suppose Bob uses the Y-maximizing tactic. Since Alice has a winning strategy, all
vertices can be colored in the end. Bob’s strategy yields f(Y) > f(X) + 3 and ¢g(Y) >
9(X) =1L or f(Y) = f(X) + 1 and g(Y) > g(X). If f(Y) > f(X)+3and g(Y) > g(X) — 1,
then n —m > 3d — b > d + 1. Now suppose f(Y) = f(X)+ 1 and g(Y) > ¢g(X). Then
n—m > d+ 1, or m and n satisfy condition (A) or (B). O

Lemma 7. Let d > 3. If k is odd and Alice has a winning strategy, then m and n satisfy
condition (A), (B),orn—m <d—1.

Proof. Suppose Bob uses the X-maximizing tactic. Since Alice has a winning strategy,
all vertices can be colored in the end. Bob’s strategy yields that m and n satisfy condtion
(B), or f(X) = f(Y)+1and g(X) > g(Y) — 1, or f(X) = f(Y) =1 and g(X) > g(V).
If f(X)> f(Y)+1and g(X) > ¢g(Y) — 1, then m > n which is a contradiction. Now we
consider the case f(X) = f(Y)—1and g(X) > ¢g(Y). We have n —m < d and the equality
is attained only if m and n satisfy condition (A) or (B). O

Combining Lemmas 6 and 7, we immediately have the following result.

Corollary 1. Let d > 3. If k£ is odd and Alice has a winning strategy, then m and n satisfy
condition (A) or (B).

Corollary 1 gives necessary condition for complete bipartite graphs that Alice has a
winning strategy. Next we investigate which necessary condtions are also sufficient.

Lemma 8. Let odd k = 2t + 1, d > 3, while m and n satisfy condition (A) or (B). If b is
even, then Bob has a winning strategy. (Note that b and d maybe equal in this lemma.)

Proof. Since b is even, Bob can play the first color until Alice plays the second color in a
partite set. Then Bob uses the maximizing tactic on such partite set. Suppose all vertices
are colored.

Case 1: The second color appears in X. Bob’s strategy yields f(X) > f(Y) + 1 and
g(X) > g(Y) — 1. Thus m > n which is a contradiction.

Case 2: The second color appears in Y. Bob’s strategy yields f(Y) > f(X) + 3 and
g(Y) > ¢g(X) — 1. Thus m —n > 4d — b which is a contradiction.

Hence Bob has a winning strategy. 0

Lemma 9. Letodd k=2t +1,d>2, m=(t—1)b+d,and n=tb+d, or (t +1)b. If b is
odd, then Alice has a winning strategy. (Note that b and d maybe equal in this lemma.)

Proof. Alice begins the game by playing a vertex in Y then she responds to Bob’s moves.
If Bob plays the first color, then Alice also plays the first color in the next turn. If Bob
plays the (2r)th color (respectively the (2r+ 1)st color), then Alice plays the (2r 4 1)st color
(respectively the (2r)th color) to a vertex in the other partite set. Alice can carry on this
strategy until all vertices are colored. Thus Alice has a winning strategy. U



Lemma 10. Let odd k£ =2t + 1 and odd b > d > 2. Bob has a winning strategy if m and n
satisfy one of the following:

(i) m =tb, and n = (t — 1)b+ 2d,

(i) m = (t —2)b+2d, and n = (t — 1)b + 2d,

(iii) m = (t — 2)b+ 2d, and n = tb+ d or (t + 1)b.

Proof. Bob sets the trap by playing a new color in Y in each of his first ¢t — 1 turns. If Alice
fails to respond by playing ¢t — 1 new colors on X, then Bob can continue playing new colors
to make at least ¢ 4 2 colors in Y. Thus vertices in X can be colored by at most ¢t — 1 colors
which are not enough.

If Alice avoids the trap, then we have the situation that Y has ¢ colored vertices and X
has ¢t — 1 colored vertices in which all used colors are different.

Case 1: m and n satisfy (i). Bob continues playing a legal used color in Y with the
largest current class size until Alice plays a new color (that is the (2¢)th color). This leads
to the situation that ¢ used colors in Y become major colors or Alice is the first person who
play the (2t)th color. In the former situation, each remaining color class in Y has class size
less than d which results in Bob’s victory. In the latter situation, Bob plays the last color
in the same partite set as of the (2¢)th color. This make the other partite set has too few
colors to be assigned. Thus Bob wins.

Case 2: m and n satisfy (ii) or (iii). Bob continues playing a legal used color in X with
the largest current class size until Alice plays a new color (that is the (2¢)th color). If Alice
plays the (2¢)th color, then Bob plays the last color in the same partite set. We have that
Bob wins as in Case 1. 0

Lemma 11. Let odd k = 2t+1,0dd b > d > 3, m = rb+(t—r)d > 3, and n = rb+(t—r+1)d
where 1 < r <t. Alice has a winning strategy if and only if r = t.

Proof. One can prove the sufficiency part by the strategy as in the proof of Lemma 9.
Neccesity: Assume 1 <r <t — 1. Bob uses the strategy in a series of steps.

Step 1: Bob sets up a trap by playing the first color until Alice plays the second color.
Suppose Alice is the first person who plays the second color. Then Bob uses the maximizing
tactic on the partite set with the second color. Suppose furthermore that all vertices are
colored in the end. If the second color appears in X, then Bob’s strategy yields f(X) >
f(Y)+1and g(X) > g(Y) — 2. Thus m > n which is a contradiction. If the second color
appears in Y, then Bob’s strategy yields f(Y) > f(X) + 3 and g(Y) > g(X) — 1. Thus
n —m > d + 1 which is also a contradiction. Thus Bob wins if Alice is the first person who
plays the second color. Now we suppose that Alice can avoid this trap. This leads to the
situation that the first color class has size b.

Step ¢ for 2 < i < r+ 1 : Assume that Alice avoids all traps in previous steps. Bob sets
up the first trap in Step ¢ by assigning the (2i — 2)nd color to a vertex in X. If Alice fails to
respond by assigning the (2i — 1)st color to a vertex in Y, then Bob uses the X-maximizing
tactic. One can deduce that Bob wins as in Step 1. Suppose Alice assigns the (2i — 1)st color
to a vertex in Y. Bob sets up the second trap in this step by playing used colors preferably
the (2¢ — 2)nd color, until Alice plays the (2¢)th color. Note that if Alice can avoid all traps
from each Step j where 1 < 5 < 4, then ¢ color classes of size b are in Y and ¢ — 1 color
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classes of size b are in X. Since there are exactly 2r major colors in an equitable coloring of
this graph, Alice must be the first person who plays the (2i)th color in Step i for some 4.
When this happens, Bob uses the maximizing tactic on the partite set with the (2¢)th color.
This tactic results in Bob’s victory as in Step 1.

Hence Bob can win by using his trap in some step. ([l

4 The games with b=d+1=3

The main idea of this section is similar to one in Section 3. However we need tactics other
than the maximizing tactic which is not effective anymore; now Bob may not be able to play
a new color to make a color class of size less than d even when some colors are unused. For
example, Bob uses the X-maximizing tactic with | X| = 6, and Alice can counter the tactic
by playing the same color after each play of Bob. This play results in three color classes
of size 2 in X even if some colors are unused. To emphasize the difference and to prevent
confusion, we separate the games with b = d 4+ 1 = 3 to be considered in this section.

To define the next tactic, we needs two new deifinitions. If a color ¢ appears twice and
it is played by Bob first and Alice later while there is an unused color to play, then we call
c a bad color unless stated otherwise. A good color is a color that is not bad. (Note that an
unused color is also a good color.) Let f'(X) be the number of good colors in X, and ¢'(X)
be the number of good colors of size 3 in X. Bob has four types of colors for playing in the
the X -optimizing tactic: (1) a new color in X, (2) a legal good color in X with the largest
size, (3) a legal bad color in X, or (4) a legal color in Y. Table 1 lists these four types of
colors from the most preference to the least preference according to situations. Bob always
plays the most prefered legal color. The Y -optimizing tactic, f'(Y'), and ¢'(Y") can be defined
similarly to previous definitions.

Conditions Bob’s preference
Alice plays a new color (1), (2), (3), (4)
Alice plays a used color in X (1), (2), (3), (4)
If Bob plays (2) then there are at most one color class of size 1 in X | (1), (2), (3), (4)
Alice plays a used color in Y, and if Bob responds by playing (2) then | (2), (1), (3), (4)
there are at least two color classes of size 1 in X

Table 1: The X-optimizing tactic

Remark. Assume that in a certain stage of the game, two (or more) color classes of size
1 appear in X. If Bob always has a new color to use for the X-optimizing tactic before all
vertices in X are colored, then there is a color class of size 1 in the endgame. Thus if we
suppose that a coloring is completed despite the X-optimizing tactic used by Bob, then all
colors are used before all vertices in X are colored.

Lemma 12. Let b =d + 1 = 3. If Alice colors a vertex in X in the first turn, then Bob has
a winning strategy.

Proof. Assume that Alice colors a vertex in X in the first turn. We claim that Bob can
win by the X-optimizing tactic. Suppose all vertices are colored. Note that all colors are
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used before all vertices in X are colored by the previous remark. Bob’s strategy yields

f(X)> fY)+1and ¢'(X) > g(Y) — 1. Thus
m = df(X) + (b= d)g(X) 2 df'(X) + (b — d)g'(X) > df (Y) + (b = d)g(Y) = n
which is a contradiction. Hence Bob has a winning strategy. U

Remark. In view of Lemma 12, we assume that Alice colors a vertex in Y in the first turn
for a game in this section.

Lemma 13. Let b =d+ 1 = 3. If k is even, then Bob has a winning strategy.

Proof. We consider two cases. Case 1: n —m < 2. We claim that Bob can win by the
Y-optimizing tactic. Suppose all vertices are colored. Bob’s strategy yields f/(Y) > f(X)+2
and ¢'(Y) > g(X) — 1. Thus n — m > 3d — b > 3 which is a contradiction.

Case 2: n —m > 3. Bob begins his turn by playing a new color in X. If Alice does not
use the same color in X in her second turn, then Bob uses the X-optimizing tactic. In the
situation that Alice uses the same color in X in her second turn, Bob regards this particular
color as a good color and he plays his second turn according to the parity of m as follows.

e If m is odd, then he plays a new color in X.
e If m is even, then he plays a used color in X.

After that he uses the X-optimizing tactic. Suppose all vertices are colored. Note that in
each scenario of this case, if Bob always has a new color to use for the X-optimizing tactic
before all vertices in X are colored, then there is a color class of size 1 in the endgame; this is
a contradiction. Thus we assume that all colors are used before all vertices in X are colored.
In each scenario, Bob’s strategy yields f/(X) > f(Y) and ¢/(X) > ¢g(Y) —2. Thusn—m < 2
which is a contradiction. Hence Bob has a winning strategy. U

Lemma 14. Let b=d+ 1 = 3. If k is odd and Alice has a winning strategy, then m and n
satisfy condition (A), (B), orn —m > d + 1.

Proof. Suppose Bob uses the Y-optimizing tactic. Since Alice has a winning strategy, all
vertices can be colored in the end. Bob’s strategy yields f(Y) > f(X) + 2 and ¢'(Y) >
g(X) =1, or f(V) = F(X)+1and ¢(¥) 2 g(X). I f(¥) > f(X) 2 and ¢(V) > g(X) ~ 1,
then n —m > 3d — b > d + 1. Now suppose f(Y) = f(X)+ 1 and ¢'(Y) > g(X). We have
n—m >d+ 1, or m and n satisfy condition (A) or (B). O

Lemma 15. Let b=d+ 1 = 3. If k is odd and Alice has a winning strategy, then m and n
satisfy condition (A), (B), orn —m < d — 1.

Proof. Suppose Bob uses the strategy as in Case 2 in the proof of Lemma 13. Since Alice
has a winning strategy, all vertices can be colored in the end. If Bob always has a new color
to use for the X-optimizing tactic before all vertices in X are colored, then there is a color
class of size 1 in the endgame; this is a contradiction. Thus we assume that all colors are
used before all vertices in X are colored. Bob’s strategy yields m and n satisfy condtion (B),
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or f(X) = f(Y)+1and ¢'(X) > g(Y) -1, or f(X) = f(Y) =1 and ¢'(X) = g(X) = g(Y).
If f(X)>f(Y)+1and ¢(X) > g(Y)— 1, then m > n which is a contradiction. Now
consider the case f(X) = f(Y)—1and ¢'(X) > ¢g(Y). We have n — m < d and the equality
is attained only if m and n satisfy condition (A) or (B). O

Combining Lemmas 14 and 15, we immediately have the following result.

Corollary 2. Let b =d+ 1 = 3. If k is odd and Alice has a winning strategy, then m and
n satisfy condition (A) or (B).

Corollary 2 gives necessary condition for complete bipartite graphs that Alice has a
winning strategy. Next we investigate which necessary condtions are also sufficient.

Lemma 16. Let odd k =2t+1,b=d+1=3, m =rb+(t—r)d > 3,and n = rb+(t—r+1)d
where 1 < r <'t. Alice has a winning strategy if and only if r = ¢.

Proof. One can prove the sufficiency part by the strategy as in the proof of Lemma 9.

Neccesity: Assume 1 < r <t — 1. Bob uses the strategy in a series of steps.

Step 1. Bob sets up a trap by playing the first color until Alice plays the second color.
Suppose Alice is the first person who plays the second color and all vertices are colored in
the end. If the second color appears in Y. Bob’s Y-optimizing strategy yields f(Y) > f(X)+3
and ¢'(Y) > ¢g(X) — 1. Thus n — m > d + 1 which is a contradiction. If the second color
appears in X. Bob uses the strategy as in Case 2 in the proof of Lemma 13. This yields
f(X)> f(Y)+1and ¢/(X) > g(Y) — 2. Thus m > n which is also a contradiction.

Thus Bob wins if Alice is the first person who plays the second color. Now we suppose
that Alice can avoid this trap. This leads to the situation that the first color class has size
3.

Step i for 2 < i < r + 1. Assume that Alice avoid all traps in previous steps. Bob sets
up the first trap in Step i by assigning the (2¢ — 2)nd color to a vertex in X. If Alice fails
to respond by assigning the (2i — 1)st color to a vertex in Y, then Bob uses the strategy
similar to one in Case 2 of the proof of Lemma 13 except that he considers the parity of the
number of uncolored vertices in X instead of m. One can deduce that Bob wins as in Step
1. Suppose Alice assigns the (2¢ — 1)st color to a vertex in Y. Bob sets up the second trap in
this step by playing used colors preferably the (2i — 2)nd color until Alice plays the (2i)th
color. Note that if Alice can avoid all traps from each Step j where 1 < 5 <4, then i color
classes of size b are in Y and ¢ — 1 color classes of size b are in X. Since there are exactly 2r
major colors in an equitable coloring of this graph, Alice must be the first person who plays
the (2¢)th color in Step i for some i. When this happens, Bob uses the optimizing tactic on
the partite set with the (2¢)th color. This tactic results in Bob’s victory as in Step 1.
Hence Bob can win by using his trap in some step. 0

5 Conclusion

To characterize complete bipartite graphs that Alice has a winning strategy, we refer to
(i) Lemmas 1, 2, and 3 for b < 2,

(ii) Corollary 1 and Lemmas 5, 8, 9, 10, and 11 for d > 3,

(iii) Corollary 2 and Lemmas 9, 10, 13, and 16 for b=d + 1 = 3.
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Theorem 1. Alice has a winning strategy for an equitable k-coloring game on K, ,, if and
only if one of the following holds:

(i) d < 1,

(i) m=d=b—1=2,n=3(k—1),nis even,

(ili) m=d=b—1=2,n<3(k—1),nis odd, or

(iv) kisodd (k=2t+1), bis odd, m = (t —i)b+1id > 3, and n = (¢t + j)b+ (1 — j)d where
1,7 =0or 1.
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