การเตรียมวัสดุผสมนาโนไทเทเนียมไดออกไซด์และกราฟินออกไซด์โดยอาศัยคลื่นไมโครเวฟ เตรียมผงกราฟินออกไซด์ 2, 4 และ 6 มิลลิกรัมต่อมิลลิลิตร ละลายในน้ำปราศจากไอออน และเติม ผงไทเทเนียมไดออกไซด์ 0.5 กรัม คนให้สารละลายเข้ากันโดยอาศัยเครื่องอัลตราโชนิก วิเคราะห์ สัณฐานวิทยาของวัสดุผสมนาโนไทเทเนียมไดออกไซด์และกราฟินออกไซด์จากกล้องจุลทรรศน์ อิเล็กตรอนแบบส่องกราด จะสังเกตเห็นอนุภาคของไทเทเนียมไดออกไซด์เกาะอยู่บนพื้นผิวของ แผ่นกราฟินออกไซด์ พบองค์ประกอบของธาตุของไทเทเนียม ออกซิเจน และคาร์บอน วิเคราะห์ เฟสและโครงสร้างผลึกด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์ของแกรไฟต์ พบว่าที่มุม $2\theta = 26.6^{\circ}$ มีระยะห่างระหว่างระนาบ 0.335 นาโนเมตร ส่วนกราฟินออกไซด์ที่ปรากฏพีคที่มุม $2\theta = 11.8^{\circ}$ ระนาบ (002) มีระยะห่างระหว่างระนาบ 0.75 นาโนเมตร ระยะห่างระหว่างระนาบที่เปลี่ยนแปลง ไป บ่งบอกถึงการมีหมู่ฟังก์ชั่นออกซิเจนเกาะอยู่บริเวณขอบของกราฟินออกไซด์ และวัสดุผสม TiO_2 -GO ที่มุม $2\theta = 25.3^{\circ}$ ระนาบ (101) มีระยะห่างระหว่างระนาบ 0.35 นาโนเมตร พบว่า ไทเทเนียมไดออกไซด์มีผลึกเป็นอะนาเทส (JCPDS 21-1272)

วัสดุผสมนาโนไทเทเนียมไดออกไซด์และกราฟีนออกไซด์ถูกเตรียมด้วยอาศัยคลื่นไมโครเวฟ ที่พลังงาน 500 วัตต์ เป็นเวลา 10 นาที จากการวิเคราะห์ด้วยเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์พบ เพียงเฟสอะนาเทสของไทเทเนียมไดออกไซด์ ตรงกับหมายเลข JCPDS หมายเลข 21-1272 และไม่ ปรากฏเฟสของกราฟีนออกไซด์อาจเนื่องจากมีปริมาณน้อยมาก พบหมู่ฟังก์ชันของออกซิเจนและ ไทเทเนียม-ออกซิเจน-คาร์บอน จากการวิเคราะห์โดยใช้เทคนิคฟลูเรียร์ทรานสฟอร์มอินฟา เรดสเปกโทรสโคปี พบ G-band และ G-band จากสเปคตรัมรามาน นอกจากนั้นเมื่อมีปริมาณ ของกราฟีนออกไซด์เพิ่มขึ้นพบว่าพลังงานแถบช่องว่างของวัสดุผสมนาโนไทเทเนียมไดออกไซด์ และกราฟีนออกไซด์มีค่าลดลง

คำสำคัญ: กราฟินออกไซด์, ไทเทเนียมไดออกไซด์, วัสดุผสมระดับนาโน, สมบัติทางแสง

Abstract

TiO₂-Graphene oxide particulated composites (GOT) were prepared by microwave technique. An amount graphene oxide was dispersed in deionized water to 2, 4 and 6 mg.mL⁻¹ containing 0.5 g of TiO₂. The morphology of TiO₂graphene oxide composites are also characterized by scanning electron microscopy (SEM). It showed that the TiO₂-graphene oxide composites seem to consist of TiO₂ particles aggregated on the top of graphene oxide layer. Energy dispersive spectroscopy (EDS) spectra of all investigated TiO₂-graphene oxide sample have revealed peaks of Ti, O and C. X-ray diffraction (XRD) shown patterns of graphene oxide and TiO_{2-g}raphene oxide composites. The strong peak in the XRD pattern of pristine graphite appears at $2\theta = 26.6^{\circ}$, corresponding to the interlayer spacing of 0.335 nm while the graphene oxide pattern shows a characteristic peak at 2θ = 11.8° is assigned to (002) inter-planar spacing of 0.75 nm, indicating the presence of oxygen-containing functional groups formed during oxidation. The groups cause the graphene oxide sheets to stack more loosely, and the interlayer spacing increases from 0.335 nm to 0.75 nm. Clearly, all the peaks for the TiO_{2-graphene} oxide composites at 2θ = 25.3° can be ascribed to the (101) corresponding to the interlayer spacing of 0.35 nm planes of anatase from of TiO₂ (JCPDS 21-1272), which is significantly different from the pristine graphite.

Titanium dioxide (TiO_2)-graphene oxide (GO) nanocomposites have been successfully prepared through microwave technique at power of 500 W for 10 min. The XRD results revealed only anatase phase of TiO_2 without detection of the GO peak. By using FTIR, the oxygen functional groups and Ti-O-C were also detected,

จ

including two broad bands of G and D by Raman analysis. When GO was doped with TiO_2 , energy band gap of the nanocomposites became lessened with better conductive materials. The nanocomposites were composed of the anatase phase of TiO_2 particles with well dispersed across the GO sheets.

Keywords: graphene oxide, titanium dioxide, nanocomposites, optical properties